1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * intel_powerclamp.c - package c-state idle injection
4 *
5 * Copyright (c) 2012, Intel Corporation.
6 *
7 * Authors:
8 * Arjan van de Ven <arjan@linux.intel.com>
9 * Jacob Pan <jacob.jun.pan@linux.intel.com>
10 *
11 * TODO:
12 * 1. better handle wakeup from external interrupts, currently a fixed
13 * compensation is added to clamping duration when excessive amount
14 * of wakeups are observed during idle time. the reason is that in
15 * case of external interrupts without need for ack, clamping down
16 * cpu in non-irq context does not reduce irq. for majority of the
17 * cases, clamping down cpu does help reduce irq as well, we should
18 * be able to differentiate the two cases and give a quantitative
19 * solution for the irqs that we can control. perhaps based on
20 * get_cpu_iowait_time_us()
21 *
22 * 2. synchronization with other hw blocks
23 */
24
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
27 #include <linux/module.h>
28 #include <linux/kernel.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/cpu.h>
32 #include <linux/thermal.h>
33 #include <linux/slab.h>
34 #include <linux/tick.h>
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #include <linux/sched/rt.h>
38 #include <uapi/linux/sched/types.h>
39
40 #include <asm/nmi.h>
41 #include <asm/msr.h>
42 #include <asm/mwait.h>
43 #include <asm/cpu_device_id.h>
44 #include <asm/hardirq.h>
45
46 #define MAX_TARGET_RATIO (50U)
47 /* For each undisturbed clamping period (no extra wake ups during idle time),
48 * we increment the confidence counter for the given target ratio.
49 * CONFIDENCE_OK defines the level where runtime calibration results are
50 * valid.
51 */
52 #define CONFIDENCE_OK (3)
53 /* Default idle injection duration, driver adjust sleep time to meet target
54 * idle ratio. Similar to frequency modulation.
55 */
56 #define DEFAULT_DURATION_JIFFIES (6)
57
58 static unsigned int target_mwait;
59 static struct dentry *debug_dir;
60 static bool poll_pkg_cstate_enable;
61
62 /* user selected target */
63 static unsigned int set_target_ratio;
64 static unsigned int current_ratio;
65 static bool should_skip;
66 static bool reduce_irq;
67 static atomic_t idle_wakeup_counter;
68 static unsigned int control_cpu; /* The cpu assigned to collect stat and update
69 * control parameters. default to BSP but BSP
70 * can be offlined.
71 */
72 static bool clamping;
73
74 struct powerclamp_worker_data {
75 struct kthread_worker *worker;
76 struct kthread_work balancing_work;
77 struct kthread_delayed_work idle_injection_work;
78 unsigned int cpu;
79 unsigned int count;
80 unsigned int guard;
81 unsigned int window_size_now;
82 unsigned int target_ratio;
83 unsigned int duration_jiffies;
84 bool clamping;
85 };
86
87 static struct powerclamp_worker_data __percpu *worker_data;
88 static struct thermal_cooling_device *cooling_dev;
89 static unsigned long *cpu_clamping_mask; /* bit map for tracking per cpu
90 * clamping kthread worker
91 */
92
93 static unsigned int duration;
94 static unsigned int pkg_cstate_ratio_cur;
95 static unsigned int window_size;
96
duration_set(const char *arg, const struct kernel_param *kp)97 static int duration_set(const char *arg, const struct kernel_param *kp)
98 {
99 int ret = 0;
100 unsigned long new_duration;
101
102 ret = kstrtoul(arg, 10, &new_duration);
103 if (ret)
104 goto exit;
105 if (new_duration > 25 || new_duration < 6) {
106 pr_err("Out of recommended range %lu, between 6-25ms\n",
107 new_duration);
108 ret = -EINVAL;
109 }
110
111 duration = clamp(new_duration, 6ul, 25ul);
112 smp_mb();
113
114 exit:
115
116 return ret;
117 }
118
119 static const struct kernel_param_ops duration_ops = {
120 .set = duration_set,
121 .get = param_get_int,
122 };
123
124
125 module_param_cb(duration, &duration_ops, &duration, 0644);
126 MODULE_PARM_DESC(duration, "forced idle time for each attempt in msec.");
127
128 struct powerclamp_calibration_data {
129 unsigned long confidence; /* used for calibration, basically a counter
130 * gets incremented each time a clamping
131 * period is completed without extra wakeups
132 * once that counter is reached given level,
133 * compensation is deemed usable.
134 */
135 unsigned long steady_comp; /* steady state compensation used when
136 * no extra wakeups occurred.
137 */
138 unsigned long dynamic_comp; /* compensate excessive wakeup from idle
139 * mostly from external interrupts.
140 */
141 };
142
143 static struct powerclamp_calibration_data cal_data[MAX_TARGET_RATIO];
144
window_size_set(const char *arg, const struct kernel_param *kp)145 static int window_size_set(const char *arg, const struct kernel_param *kp)
146 {
147 int ret = 0;
148 unsigned long new_window_size;
149
150 ret = kstrtoul(arg, 10, &new_window_size);
151 if (ret)
152 goto exit_win;
153 if (new_window_size > 10 || new_window_size < 2) {
154 pr_err("Out of recommended window size %lu, between 2-10\n",
155 new_window_size);
156 ret = -EINVAL;
157 }
158
159 window_size = clamp(new_window_size, 2ul, 10ul);
160 smp_mb();
161
162 exit_win:
163
164 return ret;
165 }
166
167 static const struct kernel_param_ops window_size_ops = {
168 .set = window_size_set,
169 .get = param_get_int,
170 };
171
172 module_param_cb(window_size, &window_size_ops, &window_size, 0644);
173 MODULE_PARM_DESC(window_size, "sliding window in number of clamping cycles\n"
174 "\tpowerclamp controls idle ratio within this window. larger\n"
175 "\twindow size results in slower response time but more smooth\n"
176 "\tclamping results. default to 2.");
177
find_target_mwait(void)178 static void find_target_mwait(void)
179 {
180 unsigned int eax, ebx, ecx, edx;
181 unsigned int highest_cstate = 0;
182 unsigned int highest_subcstate = 0;
183 int i;
184
185 if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
186 return;
187
188 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
189
190 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
191 !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
192 return;
193
194 edx >>= MWAIT_SUBSTATE_SIZE;
195 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
196 if (edx & MWAIT_SUBSTATE_MASK) {
197 highest_cstate = i;
198 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
199 }
200 }
201 target_mwait = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
202 (highest_subcstate - 1);
203
204 }
205
206 struct pkg_cstate_info {
207 bool skip;
208 int msr_index;
209 int cstate_id;
210 };
211
212 #define PKG_CSTATE_INIT(id) { \
213 .msr_index = MSR_PKG_C##id##_RESIDENCY, \
214 .cstate_id = id \
215 }
216
217 static struct pkg_cstate_info pkg_cstates[] = {
218 PKG_CSTATE_INIT(2),
219 PKG_CSTATE_INIT(3),
220 PKG_CSTATE_INIT(6),
221 PKG_CSTATE_INIT(7),
222 PKG_CSTATE_INIT(8),
223 PKG_CSTATE_INIT(9),
224 PKG_CSTATE_INIT(10),
225 {NULL},
226 };
227
has_pkg_state_counter(void)228 static bool has_pkg_state_counter(void)
229 {
230 u64 val;
231 struct pkg_cstate_info *info = pkg_cstates;
232
233 /* check if any one of the counter msrs exists */
234 while (info->msr_index) {
235 if (!rdmsrl_safe(info->msr_index, &val))
236 return true;
237 info++;
238 }
239
240 return false;
241 }
242
pkg_state_counter(void)243 static u64 pkg_state_counter(void)
244 {
245 u64 val;
246 u64 count = 0;
247 struct pkg_cstate_info *info = pkg_cstates;
248
249 while (info->msr_index) {
250 if (!info->skip) {
251 if (!rdmsrl_safe(info->msr_index, &val))
252 count += val;
253 else
254 info->skip = true;
255 }
256 info++;
257 }
258
259 return count;
260 }
261
get_compensation(int ratio)262 static unsigned int get_compensation(int ratio)
263 {
264 unsigned int comp = 0;
265
266 if (!poll_pkg_cstate_enable)
267 return 0;
268
269 /* we only use compensation if all adjacent ones are good */
270 if (ratio == 1 &&
271 cal_data[ratio].confidence >= CONFIDENCE_OK &&
272 cal_data[ratio + 1].confidence >= CONFIDENCE_OK &&
273 cal_data[ratio + 2].confidence >= CONFIDENCE_OK) {
274 comp = (cal_data[ratio].steady_comp +
275 cal_data[ratio + 1].steady_comp +
276 cal_data[ratio + 2].steady_comp) / 3;
277 } else if (ratio == MAX_TARGET_RATIO - 1 &&
278 cal_data[ratio].confidence >= CONFIDENCE_OK &&
279 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
280 cal_data[ratio - 2].confidence >= CONFIDENCE_OK) {
281 comp = (cal_data[ratio].steady_comp +
282 cal_data[ratio - 1].steady_comp +
283 cal_data[ratio - 2].steady_comp) / 3;
284 } else if (cal_data[ratio].confidence >= CONFIDENCE_OK &&
285 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
286 cal_data[ratio + 1].confidence >= CONFIDENCE_OK) {
287 comp = (cal_data[ratio].steady_comp +
288 cal_data[ratio - 1].steady_comp +
289 cal_data[ratio + 1].steady_comp) / 3;
290 }
291
292 /* REVISIT: simple penalty of double idle injection */
293 if (reduce_irq)
294 comp = ratio;
295 /* do not exceed limit */
296 if (comp + ratio >= MAX_TARGET_RATIO)
297 comp = MAX_TARGET_RATIO - ratio - 1;
298
299 return comp;
300 }
301
adjust_compensation(int target_ratio, unsigned int win)302 static void adjust_compensation(int target_ratio, unsigned int win)
303 {
304 int delta;
305 struct powerclamp_calibration_data *d = &cal_data[target_ratio];
306
307 /*
308 * adjust compensations if confidence level has not been reached or
309 * there are too many wakeups during the last idle injection period, we
310 * cannot trust the data for compensation.
311 */
312 if (d->confidence >= CONFIDENCE_OK ||
313 atomic_read(&idle_wakeup_counter) >
314 win * num_online_cpus())
315 return;
316
317 delta = set_target_ratio - current_ratio;
318 /* filter out bad data */
319 if (delta >= 0 && delta <= (1+target_ratio/10)) {
320 if (d->steady_comp)
321 d->steady_comp =
322 roundup(delta+d->steady_comp, 2)/2;
323 else
324 d->steady_comp = delta;
325 d->confidence++;
326 }
327 }
328
powerclamp_adjust_controls(unsigned int target_ratio, unsigned int guard, unsigned int win)329 static bool powerclamp_adjust_controls(unsigned int target_ratio,
330 unsigned int guard, unsigned int win)
331 {
332 static u64 msr_last, tsc_last;
333 u64 msr_now, tsc_now;
334 u64 val64;
335
336 /* check result for the last window */
337 msr_now = pkg_state_counter();
338 tsc_now = rdtsc();
339
340 /* calculate pkg cstate vs tsc ratio */
341 if (!msr_last || !tsc_last)
342 current_ratio = 1;
343 else if (tsc_now-tsc_last) {
344 val64 = 100*(msr_now-msr_last);
345 do_div(val64, (tsc_now-tsc_last));
346 current_ratio = val64;
347 }
348
349 /* update record */
350 msr_last = msr_now;
351 tsc_last = tsc_now;
352
353 adjust_compensation(target_ratio, win);
354 /*
355 * too many external interrupts, set flag such
356 * that we can take measure later.
357 */
358 reduce_irq = atomic_read(&idle_wakeup_counter) >=
359 2 * win * num_online_cpus();
360
361 atomic_set(&idle_wakeup_counter, 0);
362 /* if we are above target+guard, skip */
363 return set_target_ratio + guard <= current_ratio;
364 }
365
clamp_balancing_func(struct kthread_work *work)366 static void clamp_balancing_func(struct kthread_work *work)
367 {
368 struct powerclamp_worker_data *w_data;
369 int sleeptime;
370 unsigned long target_jiffies;
371 unsigned int compensated_ratio;
372 int interval; /* jiffies to sleep for each attempt */
373
374 w_data = container_of(work, struct powerclamp_worker_data,
375 balancing_work);
376
377 /*
378 * make sure user selected ratio does not take effect until
379 * the next round. adjust target_ratio if user has changed
380 * target such that we can converge quickly.
381 */
382 w_data->target_ratio = READ_ONCE(set_target_ratio);
383 w_data->guard = 1 + w_data->target_ratio / 20;
384 w_data->window_size_now = window_size;
385 w_data->duration_jiffies = msecs_to_jiffies(duration);
386 w_data->count++;
387
388 /*
389 * systems may have different ability to enter package level
390 * c-states, thus we need to compensate the injected idle ratio
391 * to achieve the actual target reported by the HW.
392 */
393 compensated_ratio = w_data->target_ratio +
394 get_compensation(w_data->target_ratio);
395 if (compensated_ratio <= 0)
396 compensated_ratio = 1;
397 interval = w_data->duration_jiffies * 100 / compensated_ratio;
398
399 /* align idle time */
400 target_jiffies = roundup(jiffies, interval);
401 sleeptime = target_jiffies - jiffies;
402 if (sleeptime <= 0)
403 sleeptime = 1;
404
405 if (clamping && w_data->clamping && cpu_online(w_data->cpu))
406 kthread_queue_delayed_work(w_data->worker,
407 &w_data->idle_injection_work,
408 sleeptime);
409 }
410
clamp_idle_injection_func(struct kthread_work *work)411 static void clamp_idle_injection_func(struct kthread_work *work)
412 {
413 struct powerclamp_worker_data *w_data;
414
415 w_data = container_of(work, struct powerclamp_worker_data,
416 idle_injection_work.work);
417
418 /*
419 * only elected controlling cpu can collect stats and update
420 * control parameters.
421 */
422 if (w_data->cpu == control_cpu &&
423 !(w_data->count % w_data->window_size_now)) {
424 should_skip =
425 powerclamp_adjust_controls(w_data->target_ratio,
426 w_data->guard,
427 w_data->window_size_now);
428 smp_mb();
429 }
430
431 if (should_skip)
432 goto balance;
433
434 play_idle(jiffies_to_usecs(w_data->duration_jiffies));
435
436 balance:
437 if (clamping && w_data->clamping && cpu_online(w_data->cpu))
438 kthread_queue_work(w_data->worker, &w_data->balancing_work);
439 }
440
441 /*
442 * 1 HZ polling while clamping is active, useful for userspace
443 * to monitor actual idle ratio.
444 */
445 static void poll_pkg_cstate(struct work_struct *dummy);
446 static DECLARE_DELAYED_WORK(poll_pkg_cstate_work, poll_pkg_cstate);
poll_pkg_cstate(struct work_struct *dummy)447 static void poll_pkg_cstate(struct work_struct *dummy)
448 {
449 static u64 msr_last;
450 static u64 tsc_last;
451
452 u64 msr_now;
453 u64 tsc_now;
454 u64 val64;
455
456 msr_now = pkg_state_counter();
457 tsc_now = rdtsc();
458
459 /* calculate pkg cstate vs tsc ratio */
460 if (!msr_last || !tsc_last)
461 pkg_cstate_ratio_cur = 1;
462 else {
463 if (tsc_now - tsc_last) {
464 val64 = 100 * (msr_now - msr_last);
465 do_div(val64, (tsc_now - tsc_last));
466 pkg_cstate_ratio_cur = val64;
467 }
468 }
469
470 /* update record */
471 msr_last = msr_now;
472 tsc_last = tsc_now;
473
474 if (true == clamping)
475 schedule_delayed_work(&poll_pkg_cstate_work, HZ);
476 }
477
start_power_clamp_worker(unsigned long cpu)478 static void start_power_clamp_worker(unsigned long cpu)
479 {
480 struct powerclamp_worker_data *w_data = per_cpu_ptr(worker_data, cpu);
481 struct kthread_worker *worker;
482
483 worker = kthread_create_worker_on_cpu(cpu, 0, "kidle_inj/%ld", cpu);
484 if (IS_ERR(worker))
485 return;
486
487 w_data->worker = worker;
488 w_data->count = 0;
489 w_data->cpu = cpu;
490 w_data->clamping = true;
491 set_bit(cpu, cpu_clamping_mask);
492 sched_set_fifo(worker->task);
493 kthread_init_work(&w_data->balancing_work, clamp_balancing_func);
494 kthread_init_delayed_work(&w_data->idle_injection_work,
495 clamp_idle_injection_func);
496 kthread_queue_work(w_data->worker, &w_data->balancing_work);
497 }
498
stop_power_clamp_worker(unsigned long cpu)499 static void stop_power_clamp_worker(unsigned long cpu)
500 {
501 struct powerclamp_worker_data *w_data = per_cpu_ptr(worker_data, cpu);
502
503 if (!w_data->worker)
504 return;
505
506 w_data->clamping = false;
507 /*
508 * Make sure that all works that get queued after this point see
509 * the clamping disabled. The counter part is not needed because
510 * there is an implicit memory barrier when the queued work
511 * is proceed.
512 */
513 smp_wmb();
514 kthread_cancel_work_sync(&w_data->balancing_work);
515 kthread_cancel_delayed_work_sync(&w_data->idle_injection_work);
516 /*
517 * The balancing work still might be queued here because
518 * the handling of the "clapming" variable, cancel, and queue
519 * operations are not synchronized via a lock. But it is not
520 * a big deal. The balancing work is fast and destroy kthread
521 * will wait for it.
522 */
523 clear_bit(w_data->cpu, cpu_clamping_mask);
524 kthread_destroy_worker(w_data->worker);
525
526 w_data->worker = NULL;
527 }
528
start_power_clamp(void)529 static int start_power_clamp(void)
530 {
531 unsigned long cpu;
532
533 set_target_ratio = clamp(set_target_ratio, 0U, MAX_TARGET_RATIO - 1);
534 /* prevent cpu hotplug */
535 get_online_cpus();
536
537 /* prefer BSP */
538 control_cpu = cpumask_first(cpu_online_mask);
539
540 clamping = true;
541 if (poll_pkg_cstate_enable)
542 schedule_delayed_work(&poll_pkg_cstate_work, 0);
543
544 /* start one kthread worker per online cpu */
545 for_each_online_cpu(cpu) {
546 start_power_clamp_worker(cpu);
547 }
548 put_online_cpus();
549
550 return 0;
551 }
552
end_power_clamp(void)553 static void end_power_clamp(void)
554 {
555 int i;
556
557 /*
558 * Block requeuing in all the kthread workers. They will flush and
559 * stop faster.
560 */
561 clamping = false;
562 if (bitmap_weight(cpu_clamping_mask, num_possible_cpus())) {
563 for_each_set_bit(i, cpu_clamping_mask, num_possible_cpus()) {
564 pr_debug("clamping worker for cpu %d alive, destroy\n",
565 i);
566 stop_power_clamp_worker(i);
567 }
568 }
569 }
570
powerclamp_cpu_online(unsigned int cpu)571 static int powerclamp_cpu_online(unsigned int cpu)
572 {
573 if (clamping == false)
574 return 0;
575 start_power_clamp_worker(cpu);
576 /* prefer BSP as controlling CPU */
577 if (cpu == 0) {
578 control_cpu = 0;
579 smp_mb();
580 }
581 return 0;
582 }
583
powerclamp_cpu_predown(unsigned int cpu)584 static int powerclamp_cpu_predown(unsigned int cpu)
585 {
586 if (clamping == false)
587 return 0;
588
589 stop_power_clamp_worker(cpu);
590 if (cpu != control_cpu)
591 return 0;
592
593 control_cpu = cpumask_first(cpu_online_mask);
594 if (control_cpu == cpu)
595 control_cpu = cpumask_next(cpu, cpu_online_mask);
596 smp_mb();
597 return 0;
598 }
599
powerclamp_get_max_state(struct thermal_cooling_device *cdev, unsigned long *state)600 static int powerclamp_get_max_state(struct thermal_cooling_device *cdev,
601 unsigned long *state)
602 {
603 *state = MAX_TARGET_RATIO;
604
605 return 0;
606 }
607
powerclamp_get_cur_state(struct thermal_cooling_device *cdev, unsigned long *state)608 static int powerclamp_get_cur_state(struct thermal_cooling_device *cdev,
609 unsigned long *state)
610 {
611 if (clamping) {
612 if (poll_pkg_cstate_enable)
613 *state = pkg_cstate_ratio_cur;
614 else
615 *state = set_target_ratio;
616 } else {
617 /* to save power, do not poll idle ratio while not clamping */
618 *state = -1; /* indicates invalid state */
619 }
620
621 return 0;
622 }
623
powerclamp_set_cur_state(struct thermal_cooling_device *cdev, unsigned long new_target_ratio)624 static int powerclamp_set_cur_state(struct thermal_cooling_device *cdev,
625 unsigned long new_target_ratio)
626 {
627 int ret = 0;
628
629 new_target_ratio = clamp(new_target_ratio, 0UL,
630 (unsigned long) (MAX_TARGET_RATIO-1));
631 if (set_target_ratio == 0 && new_target_ratio > 0) {
632 pr_info("Start idle injection to reduce power\n");
633 set_target_ratio = new_target_ratio;
634 ret = start_power_clamp();
635 goto exit_set;
636 } else if (set_target_ratio > 0 && new_target_ratio == 0) {
637 pr_info("Stop forced idle injection\n");
638 end_power_clamp();
639 set_target_ratio = 0;
640 } else /* adjust currently running */ {
641 set_target_ratio = new_target_ratio;
642 /* make new set_target_ratio visible to other cpus */
643 smp_mb();
644 }
645
646 exit_set:
647 return ret;
648 }
649
650 /* bind to generic thermal layer as cooling device*/
651 static struct thermal_cooling_device_ops powerclamp_cooling_ops = {
652 .get_max_state = powerclamp_get_max_state,
653 .get_cur_state = powerclamp_get_cur_state,
654 .set_cur_state = powerclamp_set_cur_state,
655 };
656
657 static const struct x86_cpu_id __initconst intel_powerclamp_ids[] = {
658 X86_MATCH_VENDOR_FEATURE(INTEL, X86_FEATURE_MWAIT, NULL),
659 {}
660 };
661 MODULE_DEVICE_TABLE(x86cpu, intel_powerclamp_ids);
662
powerclamp_probe(void)663 static int __init powerclamp_probe(void)
664 {
665
666 if (!x86_match_cpu(intel_powerclamp_ids)) {
667 pr_err("CPU does not support MWAIT\n");
668 return -ENODEV;
669 }
670
671 /* The goal for idle time alignment is to achieve package cstate. */
672 if (!has_pkg_state_counter()) {
673 pr_info("No package C-state available\n");
674 return -ENODEV;
675 }
676
677 /* find the deepest mwait value */
678 find_target_mwait();
679
680 return 0;
681 }
682
powerclamp_debug_show(struct seq_file *m, void *unused)683 static int powerclamp_debug_show(struct seq_file *m, void *unused)
684 {
685 int i = 0;
686
687 seq_printf(m, "controlling cpu: %d\n", control_cpu);
688 seq_printf(m, "pct confidence steady dynamic (compensation)\n");
689 for (i = 0; i < MAX_TARGET_RATIO; i++) {
690 seq_printf(m, "%d\t%lu\t%lu\t%lu\n",
691 i,
692 cal_data[i].confidence,
693 cal_data[i].steady_comp,
694 cal_data[i].dynamic_comp);
695 }
696
697 return 0;
698 }
699
700 DEFINE_SHOW_ATTRIBUTE(powerclamp_debug);
701
powerclamp_create_debug_files(void)702 static inline void powerclamp_create_debug_files(void)
703 {
704 debug_dir = debugfs_create_dir("intel_powerclamp", NULL);
705
706 debugfs_create_file("powerclamp_calib", S_IRUGO, debug_dir, cal_data,
707 &powerclamp_debug_fops);
708 }
709
710 static enum cpuhp_state hp_state;
711
powerclamp_init(void)712 static int __init powerclamp_init(void)
713 {
714 int retval;
715 int bitmap_size;
716
717 bitmap_size = BITS_TO_LONGS(num_possible_cpus()) * sizeof(long);
718 cpu_clamping_mask = kzalloc(bitmap_size, GFP_KERNEL);
719 if (!cpu_clamping_mask)
720 return -ENOMEM;
721
722 /* probe cpu features and ids here */
723 retval = powerclamp_probe();
724 if (retval)
725 goto exit_free;
726
727 /* set default limit, maybe adjusted during runtime based on feedback */
728 window_size = 2;
729 retval = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
730 "thermal/intel_powerclamp:online",
731 powerclamp_cpu_online,
732 powerclamp_cpu_predown);
733 if (retval < 0)
734 goto exit_free;
735
736 hp_state = retval;
737
738 worker_data = alloc_percpu(struct powerclamp_worker_data);
739 if (!worker_data) {
740 retval = -ENOMEM;
741 goto exit_unregister;
742 }
743
744 if (topology_max_packages() == 1 && topology_max_die_per_package() == 1)
745 poll_pkg_cstate_enable = true;
746
747 cooling_dev = thermal_cooling_device_register("intel_powerclamp", NULL,
748 &powerclamp_cooling_ops);
749 if (IS_ERR(cooling_dev)) {
750 retval = -ENODEV;
751 goto exit_free_thread;
752 }
753
754 if (!duration)
755 duration = jiffies_to_msecs(DEFAULT_DURATION_JIFFIES);
756
757 powerclamp_create_debug_files();
758
759 return 0;
760
761 exit_free_thread:
762 free_percpu(worker_data);
763 exit_unregister:
764 cpuhp_remove_state_nocalls(hp_state);
765 exit_free:
766 kfree(cpu_clamping_mask);
767 return retval;
768 }
769 module_init(powerclamp_init);
770
powerclamp_exit(void)771 static void __exit powerclamp_exit(void)
772 {
773 end_power_clamp();
774 cpuhp_remove_state_nocalls(hp_state);
775 free_percpu(worker_data);
776 thermal_cooling_device_unregister(cooling_dev);
777 kfree(cpu_clamping_mask);
778
779 cancel_delayed_work_sync(&poll_pkg_cstate_work);
780 debugfs_remove_recursive(debug_dir);
781 }
782 module_exit(powerclamp_exit);
783
784 MODULE_LICENSE("GPL");
785 MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>");
786 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@linux.intel.com>");
787 MODULE_DESCRIPTION("Package Level C-state Idle Injection for Intel CPUs");
788