1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1999 Eric Youngdale
4 * Copyright (C) 2014 Christoph Hellwig
5 *
6 * SCSI queueing library.
7 * Initial versions: Eric Youngdale (eric@andante.org).
8 * Based upon conversations with large numbers
9 * of people at Linux Expo.
10 */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36
37 #include <trace/events/scsi.h>
38
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42
43 /*
44 * Size of integrity metadata is usually small, 1 inline sg should
45 * cover normal cases.
46 */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define SCSI_INLINE_PROT_SG_CNT 0
49 #define SCSI_INLINE_SG_CNT 0
50 #else
51 #define SCSI_INLINE_PROT_SG_CNT 1
52 #define SCSI_INLINE_SG_CNT 2
53 #endif
54
55 static struct kmem_cache *scsi_sense_cache;
56 static struct kmem_cache *scsi_sense_isadma_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
61 static inline struct kmem_cache *
scsi_select_sense_cache(bool unchecked_isa_dma)62 scsi_select_sense_cache(bool unchecked_isa_dma)
63 {
64 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
65 }
66
scsi_free_sense_buffer(bool unchecked_isa_dma, unsigned char *sense_buffer)67 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
68 unsigned char *sense_buffer)
69 {
70 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
71 sense_buffer);
72 }
73
scsi_alloc_sense_buffer(bool unchecked_isa_dma, gfp_t gfp_mask, int numa_node)74 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
75 gfp_t gfp_mask, int numa_node)
76 {
77 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
78 gfp_mask, numa_node);
79 }
80
scsi_init_sense_cache(struct Scsi_Host *shost)81 int scsi_init_sense_cache(struct Scsi_Host *shost)
82 {
83 struct kmem_cache *cache;
84 int ret = 0;
85
86 mutex_lock(&scsi_sense_cache_mutex);
87 cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
88 if (cache)
89 goto exit;
90
91 if (shost->unchecked_isa_dma) {
92 scsi_sense_isadma_cache =
93 kmem_cache_create("scsi_sense_cache(DMA)",
94 SCSI_SENSE_BUFFERSIZE, 0,
95 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
96 if (!scsi_sense_isadma_cache)
97 ret = -ENOMEM;
98 } else {
99 scsi_sense_cache =
100 kmem_cache_create_usercopy("scsi_sense_cache",
101 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
102 0, SCSI_SENSE_BUFFERSIZE, NULL);
103 if (!scsi_sense_cache)
104 ret = -ENOMEM;
105 }
106 exit:
107 mutex_unlock(&scsi_sense_cache_mutex);
108 return ret;
109 }
110
111 /*
112 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
113 * not change behaviour from the previous unplug mechanism, experimentation
114 * may prove this needs changing.
115 */
116 #define SCSI_QUEUE_DELAY 3
117
118 static void
scsi_set_blocked(struct scsi_cmnd *cmd, int reason)119 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
120 {
121 struct Scsi_Host *host = cmd->device->host;
122 struct scsi_device *device = cmd->device;
123 struct scsi_target *starget = scsi_target(device);
124
125 /*
126 * Set the appropriate busy bit for the device/host.
127 *
128 * If the host/device isn't busy, assume that something actually
129 * completed, and that we should be able to queue a command now.
130 *
131 * Note that the prior mid-layer assumption that any host could
132 * always queue at least one command is now broken. The mid-layer
133 * will implement a user specifiable stall (see
134 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
135 * if a command is requeued with no other commands outstanding
136 * either for the device or for the host.
137 */
138 switch (reason) {
139 case SCSI_MLQUEUE_HOST_BUSY:
140 atomic_set(&host->host_blocked, host->max_host_blocked);
141 break;
142 case SCSI_MLQUEUE_DEVICE_BUSY:
143 case SCSI_MLQUEUE_EH_RETRY:
144 atomic_set(&device->device_blocked,
145 device->max_device_blocked);
146 break;
147 case SCSI_MLQUEUE_TARGET_BUSY:
148 atomic_set(&starget->target_blocked,
149 starget->max_target_blocked);
150 break;
151 }
152 }
153
scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)154 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
155 {
156 if (cmd->request->rq_flags & RQF_DONTPREP) {
157 cmd->request->rq_flags &= ~RQF_DONTPREP;
158 scsi_mq_uninit_cmd(cmd);
159 } else {
160 WARN_ON_ONCE(true);
161 }
162 blk_mq_requeue_request(cmd->request, true);
163 }
164
165 /**
166 * __scsi_queue_insert - private queue insertion
167 * @cmd: The SCSI command being requeued
168 * @reason: The reason for the requeue
169 * @unbusy: Whether the queue should be unbusied
170 *
171 * This is a private queue insertion. The public interface
172 * scsi_queue_insert() always assumes the queue should be unbusied
173 * because it's always called before the completion. This function is
174 * for a requeue after completion, which should only occur in this
175 * file.
176 */
__scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)177 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
178 {
179 struct scsi_device *device = cmd->device;
180
181 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
182 "Inserting command %p into mlqueue\n", cmd));
183
184 scsi_set_blocked(cmd, reason);
185
186 /*
187 * Decrement the counters, since these commands are no longer
188 * active on the host/device.
189 */
190 if (unbusy)
191 scsi_device_unbusy(device, cmd);
192
193 /*
194 * Requeue this command. It will go before all other commands
195 * that are already in the queue. Schedule requeue work under
196 * lock such that the kblockd_schedule_work() call happens
197 * before blk_cleanup_queue() finishes.
198 */
199 cmd->result = 0;
200
201 blk_mq_requeue_request(cmd->request, true);
202 }
203
204 /**
205 * scsi_queue_insert - Reinsert a command in the queue.
206 * @cmd: command that we are adding to queue.
207 * @reason: why we are inserting command to queue.
208 *
209 * We do this for one of two cases. Either the host is busy and it cannot accept
210 * any more commands for the time being, or the device returned QUEUE_FULL and
211 * can accept no more commands.
212 *
213 * Context: This could be called either from an interrupt context or a normal
214 * process context.
215 */
scsi_queue_insert(struct scsi_cmnd *cmd, int reason)216 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
217 {
218 __scsi_queue_insert(cmd, reason, true);
219 }
220
221
222 /**
223 * __scsi_execute - insert request and wait for the result
224 * @sdev: scsi device
225 * @cmd: scsi command
226 * @data_direction: data direction
227 * @buffer: data buffer
228 * @bufflen: len of buffer
229 * @sense: optional sense buffer
230 * @sshdr: optional decoded sense header
231 * @timeout: request timeout in seconds
232 * @retries: number of times to retry request
233 * @flags: flags for ->cmd_flags
234 * @rq_flags: flags for ->rq_flags
235 * @resid: optional residual length
236 *
237 * Returns the scsi_cmnd result field if a command was executed, or a negative
238 * Linux error code if we didn't get that far.
239 */
__scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, int data_direction, void *buffer, unsigned bufflen, unsigned char *sense, struct scsi_sense_hdr *sshdr, int timeout, int retries, u64 flags, req_flags_t rq_flags, int *resid)240 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
241 int data_direction, void *buffer, unsigned bufflen,
242 unsigned char *sense, struct scsi_sense_hdr *sshdr,
243 int timeout, int retries, u64 flags, req_flags_t rq_flags,
244 int *resid)
245 {
246 struct request *req;
247 struct scsi_request *rq;
248 int ret = DRIVER_ERROR << 24;
249
250 req = blk_get_request(sdev->request_queue,
251 data_direction == DMA_TO_DEVICE ?
252 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN,
253 rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
254 if (IS_ERR(req))
255 return ret;
256 rq = scsi_req(req);
257
258 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
259 buffer, bufflen, GFP_NOIO))
260 goto out;
261
262 rq->cmd_len = COMMAND_SIZE(cmd[0]);
263 memcpy(rq->cmd, cmd, rq->cmd_len);
264 rq->retries = retries;
265 req->timeout = timeout;
266 req->cmd_flags |= flags;
267 req->rq_flags |= rq_flags | RQF_QUIET;
268
269 /*
270 * head injection *required* here otherwise quiesce won't work
271 */
272 blk_execute_rq(req->q, NULL, req, 1);
273
274 /*
275 * Some devices (USB mass-storage in particular) may transfer
276 * garbage data together with a residue indicating that the data
277 * is invalid. Prevent the garbage from being misinterpreted
278 * and prevent security leaks by zeroing out the excess data.
279 */
280 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
281 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
282
283 if (resid)
284 *resid = rq->resid_len;
285 if (sense && rq->sense_len)
286 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
287 if (sshdr)
288 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
289 ret = rq->result;
290 out:
291 blk_put_request(req);
292
293 return ret;
294 }
295 EXPORT_SYMBOL(__scsi_execute);
296
297 /*
298 * Wake up the error handler if necessary. Avoid as follows that the error
299 * handler is not woken up if host in-flight requests number ==
300 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
301 * with an RCU read lock in this function to ensure that this function in
302 * its entirety either finishes before scsi_eh_scmd_add() increases the
303 * host_failed counter or that it notices the shost state change made by
304 * scsi_eh_scmd_add().
305 */
scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)306 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
307 {
308 unsigned long flags;
309
310 rcu_read_lock();
311 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
312 if (unlikely(scsi_host_in_recovery(shost))) {
313 unsigned int busy = scsi_host_busy(shost);
314
315 spin_lock_irqsave(shost->host_lock, flags);
316 if (shost->host_failed || shost->host_eh_scheduled)
317 scsi_eh_wakeup(shost, busy);
318 spin_unlock_irqrestore(shost->host_lock, flags);
319 }
320 rcu_read_unlock();
321 }
322
scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)323 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
324 {
325 struct Scsi_Host *shost = sdev->host;
326 struct scsi_target *starget = scsi_target(sdev);
327
328 scsi_dec_host_busy(shost, cmd);
329
330 if (starget->can_queue > 0)
331 atomic_dec(&starget->target_busy);
332
333 atomic_dec(&sdev->device_busy);
334 }
335
scsi_kick_queue(struct request_queue *q)336 static void scsi_kick_queue(struct request_queue *q)
337 {
338 blk_mq_run_hw_queues(q, false);
339 }
340
341 /*
342 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
343 * and call blk_run_queue for all the scsi_devices on the target -
344 * including current_sdev first.
345 *
346 * Called with *no* scsi locks held.
347 */
scsi_single_lun_run(struct scsi_device *current_sdev)348 static void scsi_single_lun_run(struct scsi_device *current_sdev)
349 {
350 struct Scsi_Host *shost = current_sdev->host;
351 struct scsi_device *sdev, *tmp;
352 struct scsi_target *starget = scsi_target(current_sdev);
353 unsigned long flags;
354
355 spin_lock_irqsave(shost->host_lock, flags);
356 starget->starget_sdev_user = NULL;
357 spin_unlock_irqrestore(shost->host_lock, flags);
358
359 /*
360 * Call blk_run_queue for all LUNs on the target, starting with
361 * current_sdev. We race with others (to set starget_sdev_user),
362 * but in most cases, we will be first. Ideally, each LU on the
363 * target would get some limited time or requests on the target.
364 */
365 scsi_kick_queue(current_sdev->request_queue);
366
367 spin_lock_irqsave(shost->host_lock, flags);
368 if (starget->starget_sdev_user)
369 goto out;
370 list_for_each_entry_safe(sdev, tmp, &starget->devices,
371 same_target_siblings) {
372 if (sdev == current_sdev)
373 continue;
374 if (scsi_device_get(sdev))
375 continue;
376
377 spin_unlock_irqrestore(shost->host_lock, flags);
378 scsi_kick_queue(sdev->request_queue);
379 spin_lock_irqsave(shost->host_lock, flags);
380
381 scsi_device_put(sdev);
382 }
383 out:
384 spin_unlock_irqrestore(shost->host_lock, flags);
385 }
386
scsi_device_is_busy(struct scsi_device *sdev)387 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
388 {
389 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
390 return true;
391 if (atomic_read(&sdev->device_blocked) > 0)
392 return true;
393 return false;
394 }
395
scsi_target_is_busy(struct scsi_target *starget)396 static inline bool scsi_target_is_busy(struct scsi_target *starget)
397 {
398 if (starget->can_queue > 0) {
399 if (atomic_read(&starget->target_busy) >= starget->can_queue)
400 return true;
401 if (atomic_read(&starget->target_blocked) > 0)
402 return true;
403 }
404 return false;
405 }
406
scsi_host_is_busy(struct Scsi_Host *shost)407 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
408 {
409 if (atomic_read(&shost->host_blocked) > 0)
410 return true;
411 if (shost->host_self_blocked)
412 return true;
413 return false;
414 }
415
scsi_starved_list_run(struct Scsi_Host *shost)416 static void scsi_starved_list_run(struct Scsi_Host *shost)
417 {
418 LIST_HEAD(starved_list);
419 struct scsi_device *sdev;
420 unsigned long flags;
421
422 spin_lock_irqsave(shost->host_lock, flags);
423 list_splice_init(&shost->starved_list, &starved_list);
424
425 while (!list_empty(&starved_list)) {
426 struct request_queue *slq;
427
428 /*
429 * As long as shost is accepting commands and we have
430 * starved queues, call blk_run_queue. scsi_request_fn
431 * drops the queue_lock and can add us back to the
432 * starved_list.
433 *
434 * host_lock protects the starved_list and starved_entry.
435 * scsi_request_fn must get the host_lock before checking
436 * or modifying starved_list or starved_entry.
437 */
438 if (scsi_host_is_busy(shost))
439 break;
440
441 sdev = list_entry(starved_list.next,
442 struct scsi_device, starved_entry);
443 list_del_init(&sdev->starved_entry);
444 if (scsi_target_is_busy(scsi_target(sdev))) {
445 list_move_tail(&sdev->starved_entry,
446 &shost->starved_list);
447 continue;
448 }
449
450 /*
451 * Once we drop the host lock, a racing scsi_remove_device()
452 * call may remove the sdev from the starved list and destroy
453 * it and the queue. Mitigate by taking a reference to the
454 * queue and never touching the sdev again after we drop the
455 * host lock. Note: if __scsi_remove_device() invokes
456 * blk_cleanup_queue() before the queue is run from this
457 * function then blk_run_queue() will return immediately since
458 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
459 */
460 slq = sdev->request_queue;
461 if (!blk_get_queue(slq))
462 continue;
463 spin_unlock_irqrestore(shost->host_lock, flags);
464
465 scsi_kick_queue(slq);
466 blk_put_queue(slq);
467
468 spin_lock_irqsave(shost->host_lock, flags);
469 }
470 /* put any unprocessed entries back */
471 list_splice(&starved_list, &shost->starved_list);
472 spin_unlock_irqrestore(shost->host_lock, flags);
473 }
474
475 /**
476 * scsi_run_queue - Select a proper request queue to serve next.
477 * @q: last request's queue
478 *
479 * The previous command was completely finished, start a new one if possible.
480 */
scsi_run_queue(struct request_queue *q)481 static void scsi_run_queue(struct request_queue *q)
482 {
483 struct scsi_device *sdev = q->queuedata;
484
485 if (scsi_target(sdev)->single_lun)
486 scsi_single_lun_run(sdev);
487 if (!list_empty(&sdev->host->starved_list))
488 scsi_starved_list_run(sdev->host);
489
490 blk_mq_run_hw_queues(q, false);
491 }
492
scsi_requeue_run_queue(struct work_struct *work)493 void scsi_requeue_run_queue(struct work_struct *work)
494 {
495 struct scsi_device *sdev;
496 struct request_queue *q;
497
498 sdev = container_of(work, struct scsi_device, requeue_work);
499 q = sdev->request_queue;
500 scsi_run_queue(q);
501 }
502
scsi_run_host_queues(struct Scsi_Host *shost)503 void scsi_run_host_queues(struct Scsi_Host *shost)
504 {
505 struct scsi_device *sdev;
506
507 shost_for_each_device(sdev, shost)
508 scsi_run_queue(sdev->request_queue);
509 }
510
scsi_uninit_cmd(struct scsi_cmnd *cmd)511 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
512 {
513 if (!blk_rq_is_passthrough(cmd->request)) {
514 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
515
516 if (drv->uninit_command)
517 drv->uninit_command(cmd);
518 }
519 }
520
scsi_free_sgtables(struct scsi_cmnd *cmd)521 void scsi_free_sgtables(struct scsi_cmnd *cmd)
522 {
523 if (cmd->sdb.table.nents)
524 sg_free_table_chained(&cmd->sdb.table,
525 SCSI_INLINE_SG_CNT);
526 if (scsi_prot_sg_count(cmd))
527 sg_free_table_chained(&cmd->prot_sdb->table,
528 SCSI_INLINE_PROT_SG_CNT);
529 }
530 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
531
scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)532 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
533 {
534 scsi_free_sgtables(cmd);
535 scsi_uninit_cmd(cmd);
536 }
537
scsi_run_queue_async(struct scsi_device *sdev)538 static void scsi_run_queue_async(struct scsi_device *sdev)
539 {
540 if (scsi_target(sdev)->single_lun ||
541 !list_empty(&sdev->host->starved_list)) {
542 kblockd_schedule_work(&sdev->requeue_work);
543 } else {
544 /*
545 * smp_mb() present in sbitmap_queue_clear() or implied in
546 * .end_io is for ordering writing .device_busy in
547 * scsi_device_unbusy() and reading sdev->restarts.
548 */
549 int old = atomic_read(&sdev->restarts);
550
551 /*
552 * ->restarts has to be kept as non-zero if new budget
553 * contention occurs.
554 *
555 * No need to run queue when either another re-run
556 * queue wins in updating ->restarts or a new budget
557 * contention occurs.
558 */
559 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
560 blk_mq_run_hw_queues(sdev->request_queue, true);
561 }
562 }
563
564 /* Returns false when no more bytes to process, true if there are more */
scsi_end_request(struct request *req, blk_status_t error, unsigned int bytes)565 static bool scsi_end_request(struct request *req, blk_status_t error,
566 unsigned int bytes)
567 {
568 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
569 struct scsi_device *sdev = cmd->device;
570 struct request_queue *q = sdev->request_queue;
571
572 if (blk_update_request(req, error, bytes))
573 return true;
574
575 if (blk_queue_add_random(q))
576 add_disk_randomness(req->rq_disk);
577
578 if (!blk_rq_is_scsi(req)) {
579 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
580 cmd->flags &= ~SCMD_INITIALIZED;
581 }
582
583 /*
584 * Calling rcu_barrier() is not necessary here because the
585 * SCSI error handler guarantees that the function called by
586 * call_rcu() has been called before scsi_end_request() is
587 * called.
588 */
589 destroy_rcu_head(&cmd->rcu);
590
591 /*
592 * In the MQ case the command gets freed by __blk_mq_end_request,
593 * so we have to do all cleanup that depends on it earlier.
594 *
595 * We also can't kick the queues from irq context, so we
596 * will have to defer it to a workqueue.
597 */
598 scsi_mq_uninit_cmd(cmd);
599
600 /*
601 * queue is still alive, so grab the ref for preventing it
602 * from being cleaned up during running queue.
603 */
604 percpu_ref_get(&q->q_usage_counter);
605
606 __blk_mq_end_request(req, error);
607
608 scsi_run_queue_async(sdev);
609
610 percpu_ref_put(&q->q_usage_counter);
611 return false;
612 }
613
614 /**
615 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
616 * @cmd: SCSI command
617 * @result: scsi error code
618 *
619 * Translate a SCSI result code into a blk_status_t value. May reset the host
620 * byte of @cmd->result.
621 */
scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)622 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
623 {
624 switch (host_byte(result)) {
625 case DID_OK:
626 /*
627 * Also check the other bytes than the status byte in result
628 * to handle the case when a SCSI LLD sets result to
629 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
630 */
631 if (scsi_status_is_good(result) && (result & ~0xff) == 0)
632 return BLK_STS_OK;
633 return BLK_STS_IOERR;
634 case DID_TRANSPORT_FAILFAST:
635 return BLK_STS_TRANSPORT;
636 case DID_TARGET_FAILURE:
637 set_host_byte(cmd, DID_OK);
638 return BLK_STS_TARGET;
639 case DID_NEXUS_FAILURE:
640 set_host_byte(cmd, DID_OK);
641 return BLK_STS_NEXUS;
642 case DID_ALLOC_FAILURE:
643 set_host_byte(cmd, DID_OK);
644 return BLK_STS_NOSPC;
645 case DID_MEDIUM_ERROR:
646 set_host_byte(cmd, DID_OK);
647 return BLK_STS_MEDIUM;
648 default:
649 return BLK_STS_IOERR;
650 }
651 }
652
653 /* Helper for scsi_io_completion() when "reprep" action required. */
scsi_io_completion_reprep(struct scsi_cmnd *cmd, struct request_queue *q)654 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
655 struct request_queue *q)
656 {
657 /* A new command will be prepared and issued. */
658 scsi_mq_requeue_cmd(cmd);
659 }
660
scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)661 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
662 {
663 struct request *req = cmd->request;
664 unsigned long wait_for;
665
666 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
667 return false;
668
669 wait_for = (cmd->allowed + 1) * req->timeout;
670 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
671 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
672 wait_for/HZ);
673 return true;
674 }
675 return false;
676 }
677
678 /* Helper for scsi_io_completion() when special action required. */
scsi_io_completion_action(struct scsi_cmnd *cmd, int result)679 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
680 {
681 struct request_queue *q = cmd->device->request_queue;
682 struct request *req = cmd->request;
683 int level = 0;
684 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
685 ACTION_DELAYED_RETRY} action;
686 struct scsi_sense_hdr sshdr;
687 bool sense_valid;
688 bool sense_current = true; /* false implies "deferred sense" */
689 blk_status_t blk_stat;
690
691 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
692 if (sense_valid)
693 sense_current = !scsi_sense_is_deferred(&sshdr);
694
695 blk_stat = scsi_result_to_blk_status(cmd, result);
696
697 if (host_byte(result) == DID_RESET) {
698 /* Third party bus reset or reset for error recovery
699 * reasons. Just retry the command and see what
700 * happens.
701 */
702 action = ACTION_RETRY;
703 } else if (sense_valid && sense_current) {
704 switch (sshdr.sense_key) {
705 case UNIT_ATTENTION:
706 if (cmd->device->removable) {
707 /* Detected disc change. Set a bit
708 * and quietly refuse further access.
709 */
710 cmd->device->changed = 1;
711 action = ACTION_FAIL;
712 } else {
713 /* Must have been a power glitch, or a
714 * bus reset. Could not have been a
715 * media change, so we just retry the
716 * command and see what happens.
717 */
718 action = ACTION_RETRY;
719 }
720 break;
721 case ILLEGAL_REQUEST:
722 /* If we had an ILLEGAL REQUEST returned, then
723 * we may have performed an unsupported
724 * command. The only thing this should be
725 * would be a ten byte read where only a six
726 * byte read was supported. Also, on a system
727 * where READ CAPACITY failed, we may have
728 * read past the end of the disk.
729 */
730 if ((cmd->device->use_10_for_rw &&
731 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
732 (cmd->cmnd[0] == READ_10 ||
733 cmd->cmnd[0] == WRITE_10)) {
734 /* This will issue a new 6-byte command. */
735 cmd->device->use_10_for_rw = 0;
736 action = ACTION_REPREP;
737 } else if (sshdr.asc == 0x10) /* DIX */ {
738 action = ACTION_FAIL;
739 blk_stat = BLK_STS_PROTECTION;
740 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
741 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
742 action = ACTION_FAIL;
743 blk_stat = BLK_STS_TARGET;
744 } else
745 action = ACTION_FAIL;
746 break;
747 case ABORTED_COMMAND:
748 action = ACTION_FAIL;
749 if (sshdr.asc == 0x10) /* DIF */
750 blk_stat = BLK_STS_PROTECTION;
751 break;
752 case NOT_READY:
753 /* If the device is in the process of becoming
754 * ready, or has a temporary blockage, retry.
755 */
756 if (sshdr.asc == 0x04) {
757 switch (sshdr.ascq) {
758 case 0x01: /* becoming ready */
759 case 0x04: /* format in progress */
760 case 0x05: /* rebuild in progress */
761 case 0x06: /* recalculation in progress */
762 case 0x07: /* operation in progress */
763 case 0x08: /* Long write in progress */
764 case 0x09: /* self test in progress */
765 case 0x11: /* notify (enable spinup) required */
766 case 0x14: /* space allocation in progress */
767 case 0x1a: /* start stop unit in progress */
768 case 0x1b: /* sanitize in progress */
769 case 0x1d: /* configuration in progress */
770 case 0x24: /* depopulation in progress */
771 action = ACTION_DELAYED_RETRY;
772 break;
773 default:
774 action = ACTION_FAIL;
775 break;
776 }
777 } else
778 action = ACTION_FAIL;
779 break;
780 case VOLUME_OVERFLOW:
781 /* See SSC3rXX or current. */
782 action = ACTION_FAIL;
783 break;
784 case DATA_PROTECT:
785 action = ACTION_FAIL;
786 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
787 (sshdr.asc == 0x55 &&
788 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
789 /* Insufficient zone resources */
790 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
791 }
792 break;
793 default:
794 action = ACTION_FAIL;
795 break;
796 }
797 } else
798 action = ACTION_FAIL;
799
800 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
801 action = ACTION_FAIL;
802
803 switch (action) {
804 case ACTION_FAIL:
805 /* Give up and fail the remainder of the request */
806 if (!(req->rq_flags & RQF_QUIET)) {
807 static DEFINE_RATELIMIT_STATE(_rs,
808 DEFAULT_RATELIMIT_INTERVAL,
809 DEFAULT_RATELIMIT_BURST);
810
811 if (unlikely(scsi_logging_level))
812 level =
813 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
814 SCSI_LOG_MLCOMPLETE_BITS);
815
816 /*
817 * if logging is enabled the failure will be printed
818 * in scsi_log_completion(), so avoid duplicate messages
819 */
820 if (!level && __ratelimit(&_rs)) {
821 scsi_print_result(cmd, NULL, FAILED);
822 if (driver_byte(result) == DRIVER_SENSE)
823 scsi_print_sense(cmd);
824 scsi_print_command(cmd);
825 }
826 }
827 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
828 return;
829 fallthrough;
830 case ACTION_REPREP:
831 scsi_io_completion_reprep(cmd, q);
832 break;
833 case ACTION_RETRY:
834 /* Retry the same command immediately */
835 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
836 break;
837 case ACTION_DELAYED_RETRY:
838 /* Retry the same command after a delay */
839 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
840 break;
841 }
842 }
843
844 /*
845 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
846 * new result that may suppress further error checking. Also modifies
847 * *blk_statp in some cases.
848 */
scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, blk_status_t *blk_statp)849 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
850 blk_status_t *blk_statp)
851 {
852 bool sense_valid;
853 bool sense_current = true; /* false implies "deferred sense" */
854 struct request *req = cmd->request;
855 struct scsi_sense_hdr sshdr;
856
857 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
858 if (sense_valid)
859 sense_current = !scsi_sense_is_deferred(&sshdr);
860
861 if (blk_rq_is_passthrough(req)) {
862 if (sense_valid) {
863 /*
864 * SG_IO wants current and deferred errors
865 */
866 scsi_req(req)->sense_len =
867 min(8 + cmd->sense_buffer[7],
868 SCSI_SENSE_BUFFERSIZE);
869 }
870 if (sense_current)
871 *blk_statp = scsi_result_to_blk_status(cmd, result);
872 } else if (blk_rq_bytes(req) == 0 && sense_current) {
873 /*
874 * Flush commands do not transfers any data, and thus cannot use
875 * good_bytes != blk_rq_bytes(req) as the signal for an error.
876 * This sets *blk_statp explicitly for the problem case.
877 */
878 *blk_statp = scsi_result_to_blk_status(cmd, result);
879 }
880 /*
881 * Recovered errors need reporting, but they're always treated as
882 * success, so fiddle the result code here. For passthrough requests
883 * we already took a copy of the original into sreq->result which
884 * is what gets returned to the user
885 */
886 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
887 bool do_print = true;
888 /*
889 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
890 * skip print since caller wants ATA registers. Only occurs
891 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
892 */
893 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
894 do_print = false;
895 else if (req->rq_flags & RQF_QUIET)
896 do_print = false;
897 if (do_print)
898 scsi_print_sense(cmd);
899 result = 0;
900 /* for passthrough, *blk_statp may be set */
901 *blk_statp = BLK_STS_OK;
902 }
903 /*
904 * Another corner case: the SCSI status byte is non-zero but 'good'.
905 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
906 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
907 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
908 * intermediate statuses (both obsolete in SAM-4) as good.
909 */
910 if (status_byte(result) && scsi_status_is_good(result)) {
911 result = 0;
912 *blk_statp = BLK_STS_OK;
913 }
914 return result;
915 }
916
917 /**
918 * scsi_io_completion - Completion processing for SCSI commands.
919 * @cmd: command that is finished.
920 * @good_bytes: number of processed bytes.
921 *
922 * We will finish off the specified number of sectors. If we are done, the
923 * command block will be released and the queue function will be goosed. If we
924 * are not done then we have to figure out what to do next:
925 *
926 * a) We can call scsi_io_completion_reprep(). The request will be
927 * unprepared and put back on the queue. Then a new command will
928 * be created for it. This should be used if we made forward
929 * progress, or if we want to switch from READ(10) to READ(6) for
930 * example.
931 *
932 * b) We can call scsi_io_completion_action(). The request will be
933 * put back on the queue and retried using the same command as
934 * before, possibly after a delay.
935 *
936 * c) We can call scsi_end_request() with blk_stat other than
937 * BLK_STS_OK, to fail the remainder of the request.
938 */
scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)939 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
940 {
941 int result = cmd->result;
942 struct request_queue *q = cmd->device->request_queue;
943 struct request *req = cmd->request;
944 blk_status_t blk_stat = BLK_STS_OK;
945
946 if (unlikely(result)) /* a nz result may or may not be an error */
947 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
948
949 if (unlikely(blk_rq_is_passthrough(req))) {
950 /*
951 * scsi_result_to_blk_status may have reset the host_byte
952 */
953 scsi_req(req)->result = cmd->result;
954 }
955
956 /*
957 * Next deal with any sectors which we were able to correctly
958 * handle.
959 */
960 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
961 "%u sectors total, %d bytes done.\n",
962 blk_rq_sectors(req), good_bytes));
963
964 /*
965 * Failed, zero length commands always need to drop down
966 * to retry code. Fast path should return in this block.
967 */
968 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
969 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
970 return; /* no bytes remaining */
971 }
972
973 /* Kill remainder if no retries. */
974 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
975 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
976 WARN_ONCE(true,
977 "Bytes remaining after failed, no-retry command");
978 return;
979 }
980
981 /*
982 * If there had been no error, but we have leftover bytes in the
983 * requeues just queue the command up again.
984 */
985 if (likely(result == 0))
986 scsi_io_completion_reprep(cmd, q);
987 else
988 scsi_io_completion_action(cmd, result);
989 }
990
scsi_cmd_needs_dma_drain(struct scsi_device *sdev, struct request *rq)991 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
992 struct request *rq)
993 {
994 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
995 !op_is_write(req_op(rq)) &&
996 sdev->host->hostt->dma_need_drain(rq);
997 }
998
999 /**
1000 * scsi_alloc_sgtables - allocate S/G tables for a command
1001 * @cmd: command descriptor we wish to initialize
1002 *
1003 * Returns:
1004 * * BLK_STS_OK - on success
1005 * * BLK_STS_RESOURCE - if the failure is retryable
1006 * * BLK_STS_IOERR - if the failure is fatal
1007 */
scsi_alloc_sgtables(struct scsi_cmnd *cmd)1008 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1009 {
1010 struct scsi_device *sdev = cmd->device;
1011 struct request *rq = cmd->request;
1012 unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1013 struct scatterlist *last_sg = NULL;
1014 blk_status_t ret;
1015 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1016 int count;
1017
1018 if (WARN_ON_ONCE(!nr_segs))
1019 return BLK_STS_IOERR;
1020
1021 /*
1022 * Make sure there is space for the drain. The driver must adjust
1023 * max_hw_segments to be prepared for this.
1024 */
1025 if (need_drain)
1026 nr_segs++;
1027
1028 /*
1029 * If sg table allocation fails, requeue request later.
1030 */
1031 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1032 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1033 return BLK_STS_RESOURCE;
1034
1035 /*
1036 * Next, walk the list, and fill in the addresses and sizes of
1037 * each segment.
1038 */
1039 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1040
1041 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1042 unsigned int pad_len =
1043 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1044
1045 last_sg->length += pad_len;
1046 cmd->extra_len += pad_len;
1047 }
1048
1049 if (need_drain) {
1050 sg_unmark_end(last_sg);
1051 last_sg = sg_next(last_sg);
1052 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1053 sg_mark_end(last_sg);
1054
1055 cmd->extra_len += sdev->dma_drain_len;
1056 count++;
1057 }
1058
1059 BUG_ON(count > cmd->sdb.table.nents);
1060 cmd->sdb.table.nents = count;
1061 cmd->sdb.length = blk_rq_payload_bytes(rq);
1062
1063 if (blk_integrity_rq(rq)) {
1064 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1065 int ivecs;
1066
1067 if (WARN_ON_ONCE(!prot_sdb)) {
1068 /*
1069 * This can happen if someone (e.g. multipath)
1070 * queues a command to a device on an adapter
1071 * that does not support DIX.
1072 */
1073 ret = BLK_STS_IOERR;
1074 goto out_free_sgtables;
1075 }
1076
1077 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1078
1079 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1080 prot_sdb->table.sgl,
1081 SCSI_INLINE_PROT_SG_CNT)) {
1082 ret = BLK_STS_RESOURCE;
1083 goto out_free_sgtables;
1084 }
1085
1086 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1087 prot_sdb->table.sgl);
1088 BUG_ON(count > ivecs);
1089 BUG_ON(count > queue_max_integrity_segments(rq->q));
1090
1091 cmd->prot_sdb = prot_sdb;
1092 cmd->prot_sdb->table.nents = count;
1093 }
1094
1095 return BLK_STS_OK;
1096 out_free_sgtables:
1097 scsi_free_sgtables(cmd);
1098 return ret;
1099 }
1100 EXPORT_SYMBOL(scsi_alloc_sgtables);
1101
1102 /**
1103 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1104 * @rq: Request associated with the SCSI command to be initialized.
1105 *
1106 * This function initializes the members of struct scsi_cmnd that must be
1107 * initialized before request processing starts and that won't be
1108 * reinitialized if a SCSI command is requeued.
1109 *
1110 * Called from inside blk_get_request() for pass-through requests and from
1111 * inside scsi_init_command() for filesystem requests.
1112 */
scsi_initialize_rq(struct request *rq)1113 static void scsi_initialize_rq(struct request *rq)
1114 {
1115 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1116
1117 scsi_req_init(&cmd->req);
1118 init_rcu_head(&cmd->rcu);
1119 cmd->jiffies_at_alloc = jiffies;
1120 cmd->retries = 0;
1121 }
1122
1123 /*
1124 * Only called when the request isn't completed by SCSI, and not freed by
1125 * SCSI
1126 */
scsi_cleanup_rq(struct request *rq)1127 static void scsi_cleanup_rq(struct request *rq)
1128 {
1129 if (rq->rq_flags & RQF_DONTPREP) {
1130 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1131 rq->rq_flags &= ~RQF_DONTPREP;
1132 }
1133 }
1134
1135 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)1136 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1137 {
1138 void *buf = cmd->sense_buffer;
1139 void *prot = cmd->prot_sdb;
1140 struct request *rq = blk_mq_rq_from_pdu(cmd);
1141 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1142 unsigned long jiffies_at_alloc;
1143 int retries, to_clear;
1144 bool in_flight;
1145
1146 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1147 flags |= SCMD_INITIALIZED;
1148 scsi_initialize_rq(rq);
1149 }
1150
1151 jiffies_at_alloc = cmd->jiffies_at_alloc;
1152 retries = cmd->retries;
1153 in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1154 /*
1155 * Zero out the cmd, except for the embedded scsi_request. Only clear
1156 * the driver-private command data if the LLD does not supply a
1157 * function to initialize that data.
1158 */
1159 to_clear = sizeof(*cmd) - sizeof(cmd->req);
1160 if (!dev->host->hostt->init_cmd_priv)
1161 to_clear += dev->host->hostt->cmd_size;
1162 memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1163
1164 cmd->device = dev;
1165 cmd->sense_buffer = buf;
1166 cmd->prot_sdb = prot;
1167 cmd->flags = flags;
1168 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1169 cmd->jiffies_at_alloc = jiffies_at_alloc;
1170 cmd->retries = retries;
1171 if (in_flight)
1172 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1173
1174 }
1175
scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)1176 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1177 struct request *req)
1178 {
1179 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1180
1181 /*
1182 * Passthrough requests may transfer data, in which case they must
1183 * a bio attached to them. Or they might contain a SCSI command
1184 * that does not transfer data, in which case they may optionally
1185 * submit a request without an attached bio.
1186 */
1187 if (req->bio) {
1188 blk_status_t ret = scsi_alloc_sgtables(cmd);
1189 if (unlikely(ret != BLK_STS_OK))
1190 return ret;
1191 } else {
1192 BUG_ON(blk_rq_bytes(req));
1193
1194 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1195 }
1196
1197 cmd->cmd_len = scsi_req(req)->cmd_len;
1198 cmd->cmnd = scsi_req(req)->cmd;
1199 cmd->transfersize = blk_rq_bytes(req);
1200 cmd->allowed = scsi_req(req)->retries;
1201 return BLK_STS_OK;
1202 }
1203
1204 static blk_status_t
scsi_device_state_check(struct scsi_device *sdev, struct request *req)1205 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1206 {
1207 switch (sdev->sdev_state) {
1208 case SDEV_CREATED:
1209 return BLK_STS_OK;
1210 case SDEV_OFFLINE:
1211 case SDEV_TRANSPORT_OFFLINE:
1212 /*
1213 * If the device is offline we refuse to process any
1214 * commands. The device must be brought online
1215 * before trying any recovery commands.
1216 */
1217 if (!sdev->offline_already) {
1218 sdev->offline_already = true;
1219 sdev_printk(KERN_ERR, sdev,
1220 "rejecting I/O to offline device\n");
1221 }
1222 return BLK_STS_IOERR;
1223 case SDEV_DEL:
1224 /*
1225 * If the device is fully deleted, we refuse to
1226 * process any commands as well.
1227 */
1228 sdev_printk(KERN_ERR, sdev,
1229 "rejecting I/O to dead device\n");
1230 return BLK_STS_IOERR;
1231 case SDEV_BLOCK:
1232 case SDEV_CREATED_BLOCK:
1233 return BLK_STS_RESOURCE;
1234 case SDEV_QUIESCE:
1235 /*
1236 * If the device is blocked we only accept power management
1237 * commands.
1238 */
1239 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1240 return BLK_STS_RESOURCE;
1241 return BLK_STS_OK;
1242 default:
1243 /*
1244 * For any other not fully online state we only allow
1245 * power management commands.
1246 */
1247 if (req && !(req->rq_flags & RQF_PM))
1248 return BLK_STS_IOERR;
1249 return BLK_STS_OK;
1250 }
1251 }
1252
1253 /*
1254 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1255 * return 0.
1256 *
1257 * Called with the queue_lock held.
1258 */
scsi_dev_queue_ready(struct request_queue *q, struct scsi_device *sdev)1259 static inline int scsi_dev_queue_ready(struct request_queue *q,
1260 struct scsi_device *sdev)
1261 {
1262 unsigned int busy;
1263
1264 busy = atomic_inc_return(&sdev->device_busy) - 1;
1265 if (atomic_read(&sdev->device_blocked)) {
1266 if (busy)
1267 goto out_dec;
1268
1269 /*
1270 * unblock after device_blocked iterates to zero
1271 */
1272 if (atomic_dec_return(&sdev->device_blocked) > 0)
1273 goto out_dec;
1274 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1275 "unblocking device at zero depth\n"));
1276 }
1277
1278 if (busy >= sdev->queue_depth)
1279 goto out_dec;
1280
1281 return 1;
1282 out_dec:
1283 atomic_dec(&sdev->device_busy);
1284 return 0;
1285 }
1286
1287 /*
1288 * scsi_target_queue_ready: checks if there we can send commands to target
1289 * @sdev: scsi device on starget to check.
1290 */
scsi_target_queue_ready(struct Scsi_Host *shost, struct scsi_device *sdev)1291 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1292 struct scsi_device *sdev)
1293 {
1294 struct scsi_target *starget = scsi_target(sdev);
1295 unsigned int busy;
1296
1297 if (starget->single_lun) {
1298 spin_lock_irq(shost->host_lock);
1299 if (starget->starget_sdev_user &&
1300 starget->starget_sdev_user != sdev) {
1301 spin_unlock_irq(shost->host_lock);
1302 return 0;
1303 }
1304 starget->starget_sdev_user = sdev;
1305 spin_unlock_irq(shost->host_lock);
1306 }
1307
1308 if (starget->can_queue <= 0)
1309 return 1;
1310
1311 busy = atomic_inc_return(&starget->target_busy) - 1;
1312 if (atomic_read(&starget->target_blocked) > 0) {
1313 if (busy)
1314 goto starved;
1315
1316 /*
1317 * unblock after target_blocked iterates to zero
1318 */
1319 if (atomic_dec_return(&starget->target_blocked) > 0)
1320 goto out_dec;
1321
1322 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1323 "unblocking target at zero depth\n"));
1324 }
1325
1326 if (busy >= starget->can_queue)
1327 goto starved;
1328
1329 return 1;
1330
1331 starved:
1332 spin_lock_irq(shost->host_lock);
1333 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1334 spin_unlock_irq(shost->host_lock);
1335 out_dec:
1336 if (starget->can_queue > 0)
1337 atomic_dec(&starget->target_busy);
1338 return 0;
1339 }
1340
1341 /*
1342 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1343 * return 0. We must end up running the queue again whenever 0 is
1344 * returned, else IO can hang.
1345 */
scsi_host_queue_ready(struct request_queue *q, struct Scsi_Host *shost, struct scsi_device *sdev, struct scsi_cmnd *cmd)1346 static inline int scsi_host_queue_ready(struct request_queue *q,
1347 struct Scsi_Host *shost,
1348 struct scsi_device *sdev,
1349 struct scsi_cmnd *cmd)
1350 {
1351 if (scsi_host_in_recovery(shost))
1352 return 0;
1353
1354 if (atomic_read(&shost->host_blocked) > 0) {
1355 if (scsi_host_busy(shost) > 0)
1356 goto starved;
1357
1358 /*
1359 * unblock after host_blocked iterates to zero
1360 */
1361 if (atomic_dec_return(&shost->host_blocked) > 0)
1362 goto out_dec;
1363
1364 SCSI_LOG_MLQUEUE(3,
1365 shost_printk(KERN_INFO, shost,
1366 "unblocking host at zero depth\n"));
1367 }
1368
1369 if (shost->host_self_blocked)
1370 goto starved;
1371
1372 /* We're OK to process the command, so we can't be starved */
1373 if (!list_empty(&sdev->starved_entry)) {
1374 spin_lock_irq(shost->host_lock);
1375 if (!list_empty(&sdev->starved_entry))
1376 list_del_init(&sdev->starved_entry);
1377 spin_unlock_irq(shost->host_lock);
1378 }
1379
1380 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1381
1382 return 1;
1383
1384 starved:
1385 spin_lock_irq(shost->host_lock);
1386 if (list_empty(&sdev->starved_entry))
1387 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1388 spin_unlock_irq(shost->host_lock);
1389 out_dec:
1390 scsi_dec_host_busy(shost, cmd);
1391 return 0;
1392 }
1393
1394 /*
1395 * Busy state exporting function for request stacking drivers.
1396 *
1397 * For efficiency, no lock is taken to check the busy state of
1398 * shost/starget/sdev, since the returned value is not guaranteed and
1399 * may be changed after request stacking drivers call the function,
1400 * regardless of taking lock or not.
1401 *
1402 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1403 * needs to return 'not busy'. Otherwise, request stacking drivers
1404 * may hold requests forever.
1405 */
scsi_mq_lld_busy(struct request_queue *q)1406 static bool scsi_mq_lld_busy(struct request_queue *q)
1407 {
1408 struct scsi_device *sdev = q->queuedata;
1409 struct Scsi_Host *shost;
1410
1411 if (blk_queue_dying(q))
1412 return false;
1413
1414 shost = sdev->host;
1415
1416 /*
1417 * Ignore host/starget busy state.
1418 * Since block layer does not have a concept of fairness across
1419 * multiple queues, congestion of host/starget needs to be handled
1420 * in SCSI layer.
1421 */
1422 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1423 return true;
1424
1425 return false;
1426 }
1427
scsi_softirq_done(struct request *rq)1428 static void scsi_softirq_done(struct request *rq)
1429 {
1430 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1431 enum scsi_disposition disposition;
1432
1433 INIT_LIST_HEAD(&cmd->eh_entry);
1434
1435 atomic_inc(&cmd->device->iodone_cnt);
1436 if (cmd->result)
1437 atomic_inc(&cmd->device->ioerr_cnt);
1438
1439 disposition = scsi_decide_disposition(cmd);
1440 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1441 disposition = SUCCESS;
1442
1443 scsi_log_completion(cmd, disposition);
1444
1445 switch (disposition) {
1446 case SUCCESS:
1447 scsi_finish_command(cmd);
1448 break;
1449 case NEEDS_RETRY:
1450 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1451 break;
1452 case ADD_TO_MLQUEUE:
1453 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1454 break;
1455 default:
1456 scsi_eh_scmd_add(cmd);
1457 break;
1458 }
1459 }
1460
1461 /**
1462 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1463 * @cmd: command block we are dispatching.
1464 *
1465 * Return: nonzero return request was rejected and device's queue needs to be
1466 * plugged.
1467 */
scsi_dispatch_cmd(struct scsi_cmnd *cmd)1468 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1469 {
1470 struct Scsi_Host *host = cmd->device->host;
1471 int rtn = 0;
1472
1473 atomic_inc(&cmd->device->iorequest_cnt);
1474
1475 /* check if the device is still usable */
1476 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1477 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1478 * returns an immediate error upwards, and signals
1479 * that the device is no longer present */
1480 cmd->result = DID_NO_CONNECT << 16;
1481 goto done;
1482 }
1483
1484 /* Check to see if the scsi lld made this device blocked. */
1485 if (unlikely(scsi_device_blocked(cmd->device))) {
1486 /*
1487 * in blocked state, the command is just put back on
1488 * the device queue. The suspend state has already
1489 * blocked the queue so future requests should not
1490 * occur until the device transitions out of the
1491 * suspend state.
1492 */
1493 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1494 "queuecommand : device blocked\n"));
1495 atomic_dec(&cmd->device->iorequest_cnt);
1496 return SCSI_MLQUEUE_DEVICE_BUSY;
1497 }
1498
1499 /* Store the LUN value in cmnd, if needed. */
1500 if (cmd->device->lun_in_cdb)
1501 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1502 (cmd->device->lun << 5 & 0xe0);
1503
1504 scsi_log_send(cmd);
1505
1506 /*
1507 * Before we queue this command, check if the command
1508 * length exceeds what the host adapter can handle.
1509 */
1510 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1511 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1512 "queuecommand : command too long. "
1513 "cdb_size=%d host->max_cmd_len=%d\n",
1514 cmd->cmd_len, cmd->device->host->max_cmd_len));
1515 cmd->result = (DID_ABORT << 16);
1516 goto done;
1517 }
1518
1519 if (unlikely(host->shost_state == SHOST_DEL)) {
1520 cmd->result = (DID_NO_CONNECT << 16);
1521 goto done;
1522
1523 }
1524
1525 trace_scsi_dispatch_cmd_start(cmd);
1526 rtn = host->hostt->queuecommand(host, cmd);
1527 if (rtn) {
1528 atomic_dec(&cmd->device->iorequest_cnt);
1529 trace_scsi_dispatch_cmd_error(cmd, rtn);
1530 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1531 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1532 rtn = SCSI_MLQUEUE_HOST_BUSY;
1533
1534 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1535 "queuecommand : request rejected\n"));
1536 }
1537
1538 return rtn;
1539 done:
1540 cmd->scsi_done(cmd);
1541 return 0;
1542 }
1543
1544 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
scsi_mq_inline_sgl_size(struct Scsi_Host *shost)1545 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1546 {
1547 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1548 sizeof(struct scatterlist);
1549 }
1550
scsi_prepare_cmd(struct request *req)1551 static blk_status_t scsi_prepare_cmd(struct request *req)
1552 {
1553 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1554 struct scsi_device *sdev = req->q->queuedata;
1555 struct Scsi_Host *shost = sdev->host;
1556 struct scatterlist *sg;
1557
1558 scsi_init_command(sdev, cmd);
1559
1560 cmd->request = req;
1561 cmd->tag = req->tag;
1562 cmd->prot_op = SCSI_PROT_NORMAL;
1563 if (blk_rq_bytes(req))
1564 cmd->sc_data_direction = rq_dma_dir(req);
1565 else
1566 cmd->sc_data_direction = DMA_NONE;
1567
1568 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1569 cmd->sdb.table.sgl = sg;
1570
1571 if (scsi_host_get_prot(shost)) {
1572 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1573
1574 cmd->prot_sdb->table.sgl =
1575 (struct scatterlist *)(cmd->prot_sdb + 1);
1576 }
1577
1578 /*
1579 * Special handling for passthrough commands, which don't go to the ULP
1580 * at all:
1581 */
1582 if (blk_rq_is_scsi(req))
1583 return scsi_setup_scsi_cmnd(sdev, req);
1584
1585 if (sdev->handler && sdev->handler->prep_fn) {
1586 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1587
1588 if (ret != BLK_STS_OK)
1589 return ret;
1590 }
1591
1592 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1593 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1594 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1595 }
1596
scsi_mq_done(struct scsi_cmnd *cmd)1597 static void scsi_mq_done(struct scsi_cmnd *cmd)
1598 {
1599 if (unlikely(blk_should_fake_timeout(cmd->request->q)))
1600 return;
1601 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1602 return;
1603 trace_scsi_dispatch_cmd_done(cmd);
1604 blk_mq_complete_request(cmd->request);
1605 }
1606
scsi_mq_put_budget(struct request_queue *q)1607 static void scsi_mq_put_budget(struct request_queue *q)
1608 {
1609 struct scsi_device *sdev = q->queuedata;
1610
1611 atomic_dec(&sdev->device_busy);
1612 }
1613
scsi_mq_get_budget(struct request_queue *q)1614 static bool scsi_mq_get_budget(struct request_queue *q)
1615 {
1616 struct scsi_device *sdev = q->queuedata;
1617
1618 if (scsi_dev_queue_ready(q, sdev))
1619 return true;
1620
1621 atomic_inc(&sdev->restarts);
1622
1623 /*
1624 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1625 * .restarts must be incremented before .device_busy is read because the
1626 * code in scsi_run_queue_async() depends on the order of these operations.
1627 */
1628 smp_mb__after_atomic();
1629
1630 /*
1631 * If all in-flight requests originated from this LUN are completed
1632 * before reading .device_busy, sdev->device_busy will be observed as
1633 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1634 * soon. Otherwise, completion of one of these requests will observe
1635 * the .restarts flag, and the request queue will be run for handling
1636 * this request, see scsi_end_request().
1637 */
1638 if (unlikely(atomic_read(&sdev->device_busy) == 0 &&
1639 !scsi_device_blocked(sdev)))
1640 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1641 return false;
1642 }
1643
scsi_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *bd)1644 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1645 const struct blk_mq_queue_data *bd)
1646 {
1647 struct request *req = bd->rq;
1648 struct request_queue *q = req->q;
1649 struct scsi_device *sdev = q->queuedata;
1650 struct Scsi_Host *shost = sdev->host;
1651 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1652 blk_status_t ret;
1653 int reason;
1654
1655 /*
1656 * If the device is not in running state we will reject some or all
1657 * commands.
1658 */
1659 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1660 ret = scsi_device_state_check(sdev, req);
1661 if (ret != BLK_STS_OK)
1662 goto out_put_budget;
1663 }
1664
1665 ret = BLK_STS_RESOURCE;
1666 if (!scsi_target_queue_ready(shost, sdev))
1667 goto out_put_budget;
1668 if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1669 goto out_dec_target_busy;
1670
1671 if (!(req->rq_flags & RQF_DONTPREP)) {
1672 ret = scsi_prepare_cmd(req);
1673 if (ret != BLK_STS_OK)
1674 goto out_dec_host_busy;
1675 req->rq_flags |= RQF_DONTPREP;
1676 } else {
1677 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1678 }
1679
1680 cmd->flags &= SCMD_PRESERVED_FLAGS;
1681 if (sdev->simple_tags)
1682 cmd->flags |= SCMD_TAGGED;
1683 if (bd->last)
1684 cmd->flags |= SCMD_LAST;
1685
1686 scsi_set_resid(cmd, 0);
1687 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1688 cmd->scsi_done = scsi_mq_done;
1689
1690 blk_mq_start_request(req);
1691 reason = scsi_dispatch_cmd(cmd);
1692 if (reason) {
1693 scsi_set_blocked(cmd, reason);
1694 ret = BLK_STS_RESOURCE;
1695 goto out_dec_host_busy;
1696 }
1697
1698 return BLK_STS_OK;
1699
1700 out_dec_host_busy:
1701 scsi_dec_host_busy(shost, cmd);
1702 out_dec_target_busy:
1703 if (scsi_target(sdev)->can_queue > 0)
1704 atomic_dec(&scsi_target(sdev)->target_busy);
1705 out_put_budget:
1706 scsi_mq_put_budget(q);
1707 switch (ret) {
1708 case BLK_STS_OK:
1709 break;
1710 case BLK_STS_RESOURCE:
1711 case BLK_STS_ZONE_RESOURCE:
1712 if (scsi_device_blocked(sdev))
1713 ret = BLK_STS_DEV_RESOURCE;
1714 break;
1715 default:
1716 if (unlikely(!scsi_device_online(sdev)))
1717 scsi_req(req)->result = DID_NO_CONNECT << 16;
1718 else
1719 scsi_req(req)->result = DID_ERROR << 16;
1720 /*
1721 * Make sure to release all allocated resources when
1722 * we hit an error, as we will never see this command
1723 * again.
1724 */
1725 if (req->rq_flags & RQF_DONTPREP)
1726 scsi_mq_uninit_cmd(cmd);
1727 scsi_run_queue_async(sdev);
1728 break;
1729 }
1730 return ret;
1731 }
1732
scsi_timeout(struct request *req, bool reserved)1733 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1734 bool reserved)
1735 {
1736 if (reserved)
1737 return BLK_EH_RESET_TIMER;
1738 return scsi_times_out(req);
1739 }
1740
scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, unsigned int hctx_idx, unsigned int numa_node)1741 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1742 unsigned int hctx_idx, unsigned int numa_node)
1743 {
1744 struct Scsi_Host *shost = set->driver_data;
1745 const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1746 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1747 struct scatterlist *sg;
1748 int ret = 0;
1749
1750 if (unchecked_isa_dma)
1751 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1752 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1753 GFP_KERNEL, numa_node);
1754 if (!cmd->sense_buffer)
1755 return -ENOMEM;
1756 cmd->req.sense = cmd->sense_buffer;
1757
1758 if (scsi_host_get_prot(shost)) {
1759 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1760 shost->hostt->cmd_size;
1761 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1762 }
1763
1764 if (shost->hostt->init_cmd_priv) {
1765 ret = shost->hostt->init_cmd_priv(shost, cmd);
1766 if (ret < 0)
1767 scsi_free_sense_buffer(unchecked_isa_dma,
1768 cmd->sense_buffer);
1769 }
1770
1771 return ret;
1772 }
1773
scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, unsigned int hctx_idx)1774 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1775 unsigned int hctx_idx)
1776 {
1777 struct Scsi_Host *shost = set->driver_data;
1778 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1779
1780 if (shost->hostt->exit_cmd_priv)
1781 shost->hostt->exit_cmd_priv(shost, cmd);
1782 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1783 cmd->sense_buffer);
1784 }
1785
scsi_map_queues(struct blk_mq_tag_set *set)1786 static int scsi_map_queues(struct blk_mq_tag_set *set)
1787 {
1788 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1789
1790 if (shost->hostt->map_queues)
1791 return shost->hostt->map_queues(shost);
1792 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1793 }
1794
__scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)1795 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1796 {
1797 struct device *dev = shost->dma_dev;
1798
1799 /*
1800 * this limit is imposed by hardware restrictions
1801 */
1802 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1803 SG_MAX_SEGMENTS));
1804
1805 if (scsi_host_prot_dma(shost)) {
1806 shost->sg_prot_tablesize =
1807 min_not_zero(shost->sg_prot_tablesize,
1808 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1809 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1810 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1811 }
1812
1813 if (dev->dma_mask) {
1814 shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1815 dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1816 }
1817 blk_queue_max_hw_sectors(q, shost->max_sectors);
1818 if (shost->unchecked_isa_dma)
1819 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1820 blk_queue_segment_boundary(q, shost->dma_boundary);
1821 dma_set_seg_boundary(dev, shost->dma_boundary);
1822
1823 blk_queue_max_segment_size(q, shost->max_segment_size);
1824 blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1825 dma_set_max_seg_size(dev, queue_max_segment_size(q));
1826
1827 /*
1828 * Set a reasonable default alignment: The larger of 32-byte (dword),
1829 * which is a common minimum for HBAs, and the minimum DMA alignment,
1830 * which is set by the platform.
1831 *
1832 * Devices that require a bigger alignment can increase it later.
1833 */
1834 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1835 }
1836 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1837
1838 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1839 .get_budget = scsi_mq_get_budget,
1840 .put_budget = scsi_mq_put_budget,
1841 .queue_rq = scsi_queue_rq,
1842 .complete = scsi_softirq_done,
1843 .timeout = scsi_timeout,
1844 #ifdef CONFIG_BLK_DEBUG_FS
1845 .show_rq = scsi_show_rq,
1846 #endif
1847 .init_request = scsi_mq_init_request,
1848 .exit_request = scsi_mq_exit_request,
1849 .initialize_rq_fn = scsi_initialize_rq,
1850 .cleanup_rq = scsi_cleanup_rq,
1851 .busy = scsi_mq_lld_busy,
1852 .map_queues = scsi_map_queues,
1853 };
1854
1855
scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)1856 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1857 {
1858 struct request_queue *q = hctx->queue;
1859 struct scsi_device *sdev = q->queuedata;
1860 struct Scsi_Host *shost = sdev->host;
1861
1862 shost->hostt->commit_rqs(shost, hctx->queue_num);
1863 }
1864
1865 static const struct blk_mq_ops scsi_mq_ops = {
1866 .get_budget = scsi_mq_get_budget,
1867 .put_budget = scsi_mq_put_budget,
1868 .queue_rq = scsi_queue_rq,
1869 .commit_rqs = scsi_commit_rqs,
1870 .complete = scsi_softirq_done,
1871 .timeout = scsi_timeout,
1872 #ifdef CONFIG_BLK_DEBUG_FS
1873 .show_rq = scsi_show_rq,
1874 #endif
1875 .init_request = scsi_mq_init_request,
1876 .exit_request = scsi_mq_exit_request,
1877 .initialize_rq_fn = scsi_initialize_rq,
1878 .cleanup_rq = scsi_cleanup_rq,
1879 .busy = scsi_mq_lld_busy,
1880 .map_queues = scsi_map_queues,
1881 };
1882
scsi_mq_alloc_queue(struct scsi_device *sdev)1883 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1884 {
1885 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1886 if (IS_ERR(sdev->request_queue))
1887 return NULL;
1888
1889 sdev->request_queue->queuedata = sdev;
1890 __scsi_init_queue(sdev->host, sdev->request_queue);
1891 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1892 return sdev->request_queue;
1893 }
1894
scsi_mq_setup_tags(struct Scsi_Host *shost)1895 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1896 {
1897 unsigned int cmd_size, sgl_size;
1898 struct blk_mq_tag_set *tag_set = &shost->tag_set;
1899
1900 sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1901 scsi_mq_inline_sgl_size(shost));
1902 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1903 if (scsi_host_get_prot(shost))
1904 cmd_size += sizeof(struct scsi_data_buffer) +
1905 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1906
1907 memset(tag_set, 0, sizeof(*tag_set));
1908 if (shost->hostt->commit_rqs)
1909 tag_set->ops = &scsi_mq_ops;
1910 else
1911 tag_set->ops = &scsi_mq_ops_no_commit;
1912 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1913 tag_set->queue_depth = shost->can_queue;
1914 tag_set->cmd_size = cmd_size;
1915 tag_set->numa_node = NUMA_NO_NODE;
1916 tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1917 tag_set->flags |=
1918 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1919 tag_set->driver_data = shost;
1920 if (shost->host_tagset)
1921 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1922
1923 return blk_mq_alloc_tag_set(tag_set);
1924 }
1925
scsi_mq_destroy_tags(struct Scsi_Host *shost)1926 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1927 {
1928 blk_mq_free_tag_set(&shost->tag_set);
1929 }
1930
1931 /**
1932 * scsi_device_from_queue - return sdev associated with a request_queue
1933 * @q: The request queue to return the sdev from
1934 *
1935 * Return the sdev associated with a request queue or NULL if the
1936 * request_queue does not reference a SCSI device.
1937 */
scsi_device_from_queue(struct request_queue *q)1938 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1939 {
1940 struct scsi_device *sdev = NULL;
1941
1942 if (q->mq_ops == &scsi_mq_ops_no_commit ||
1943 q->mq_ops == &scsi_mq_ops)
1944 sdev = q->queuedata;
1945 if (!sdev || !get_device(&sdev->sdev_gendev))
1946 sdev = NULL;
1947
1948 return sdev;
1949 }
1950
1951 /**
1952 * scsi_block_requests - Utility function used by low-level drivers to prevent
1953 * further commands from being queued to the device.
1954 * @shost: host in question
1955 *
1956 * There is no timer nor any other means by which the requests get unblocked
1957 * other than the low-level driver calling scsi_unblock_requests().
1958 */
scsi_block_requests(struct Scsi_Host *shost)1959 void scsi_block_requests(struct Scsi_Host *shost)
1960 {
1961 shost->host_self_blocked = 1;
1962 }
1963 EXPORT_SYMBOL(scsi_block_requests);
1964
1965 /**
1966 * scsi_unblock_requests - Utility function used by low-level drivers to allow
1967 * further commands to be queued to the device.
1968 * @shost: host in question
1969 *
1970 * There is no timer nor any other means by which the requests get unblocked
1971 * other than the low-level driver calling scsi_unblock_requests(). This is done
1972 * as an API function so that changes to the internals of the scsi mid-layer
1973 * won't require wholesale changes to drivers that use this feature.
1974 */
scsi_unblock_requests(struct Scsi_Host *shost)1975 void scsi_unblock_requests(struct Scsi_Host *shost)
1976 {
1977 shost->host_self_blocked = 0;
1978 scsi_run_host_queues(shost);
1979 }
1980 EXPORT_SYMBOL(scsi_unblock_requests);
1981
scsi_exit_queue(void)1982 void scsi_exit_queue(void)
1983 {
1984 kmem_cache_destroy(scsi_sense_cache);
1985 kmem_cache_destroy(scsi_sense_isadma_cache);
1986 }
1987
1988 /**
1989 * scsi_mode_select - issue a mode select
1990 * @sdev: SCSI device to be queried
1991 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1992 * @sp: Save page bit (0 == don't save, 1 == save)
1993 * @modepage: mode page being requested
1994 * @buffer: request buffer (may not be smaller than eight bytes)
1995 * @len: length of request buffer.
1996 * @timeout: command timeout
1997 * @retries: number of retries before failing
1998 * @data: returns a structure abstracting the mode header data
1999 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2000 * must be SCSI_SENSE_BUFFERSIZE big.
2001 *
2002 * Returns zero if successful; negative error number or scsi
2003 * status on error
2004 *
2005 */
2006 int
scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, unsigned char *buffer, int len, int timeout, int retries, struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)2007 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2008 unsigned char *buffer, int len, int timeout, int retries,
2009 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2010 {
2011 unsigned char cmd[10];
2012 unsigned char *real_buffer;
2013 int ret;
2014
2015 memset(cmd, 0, sizeof(cmd));
2016 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2017
2018 if (sdev->use_10_for_ms) {
2019 if (len > 65535)
2020 return -EINVAL;
2021 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2022 if (!real_buffer)
2023 return -ENOMEM;
2024 memcpy(real_buffer + 8, buffer, len);
2025 len += 8;
2026 real_buffer[0] = 0;
2027 real_buffer[1] = 0;
2028 real_buffer[2] = data->medium_type;
2029 real_buffer[3] = data->device_specific;
2030 real_buffer[4] = data->longlba ? 0x01 : 0;
2031 real_buffer[5] = 0;
2032 real_buffer[6] = data->block_descriptor_length >> 8;
2033 real_buffer[7] = data->block_descriptor_length;
2034
2035 cmd[0] = MODE_SELECT_10;
2036 cmd[7] = len >> 8;
2037 cmd[8] = len;
2038 } else {
2039 if (len > 255 || data->block_descriptor_length > 255 ||
2040 data->longlba)
2041 return -EINVAL;
2042
2043 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2044 if (!real_buffer)
2045 return -ENOMEM;
2046 memcpy(real_buffer + 4, buffer, len);
2047 len += 4;
2048 real_buffer[0] = 0;
2049 real_buffer[1] = data->medium_type;
2050 real_buffer[2] = data->device_specific;
2051 real_buffer[3] = data->block_descriptor_length;
2052
2053 cmd[0] = MODE_SELECT;
2054 cmd[4] = len;
2055 }
2056
2057 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2058 sshdr, timeout, retries, NULL);
2059 kfree(real_buffer);
2060 return ret;
2061 }
2062 EXPORT_SYMBOL_GPL(scsi_mode_select);
2063
2064 /**
2065 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2066 * @sdev: SCSI device to be queried
2067 * @dbd: set to prevent mode sense from returning block descriptors
2068 * @modepage: mode page being requested
2069 * @buffer: request buffer (may not be smaller than eight bytes)
2070 * @len: length of request buffer.
2071 * @timeout: command timeout
2072 * @retries: number of retries before failing
2073 * @data: returns a structure abstracting the mode header data
2074 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2075 * must be SCSI_SENSE_BUFFERSIZE big.
2076 *
2077 * Returns zero if successful, or a negative error number on failure
2078 */
2079 int
scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, unsigned char *buffer, int len, int timeout, int retries, struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)2080 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2081 unsigned char *buffer, int len, int timeout, int retries,
2082 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2083 {
2084 unsigned char cmd[12];
2085 int use_10_for_ms;
2086 int header_length;
2087 int result, retry_count = retries;
2088 struct scsi_sense_hdr my_sshdr;
2089
2090 memset(data, 0, sizeof(*data));
2091 memset(&cmd[0], 0, 12);
2092
2093 dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2094 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2095 cmd[2] = modepage;
2096
2097 /* caller might not be interested in sense, but we need it */
2098 if (!sshdr)
2099 sshdr = &my_sshdr;
2100
2101 retry:
2102 use_10_for_ms = sdev->use_10_for_ms || len > 255;
2103
2104 if (use_10_for_ms) {
2105 if (len < 8 || len > 65535)
2106 return -EINVAL;
2107
2108 cmd[0] = MODE_SENSE_10;
2109 put_unaligned_be16(len, &cmd[7]);
2110 header_length = 8;
2111 } else {
2112 if (len < 4)
2113 return -EINVAL;
2114
2115 cmd[0] = MODE_SENSE;
2116 cmd[4] = len;
2117 header_length = 4;
2118 }
2119
2120 memset(buffer, 0, len);
2121
2122 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2123 sshdr, timeout, retries, NULL);
2124 if (result < 0)
2125 return result;
2126
2127 /* This code looks awful: what it's doing is making sure an
2128 * ILLEGAL REQUEST sense return identifies the actual command
2129 * byte as the problem. MODE_SENSE commands can return
2130 * ILLEGAL REQUEST if the code page isn't supported */
2131
2132 if (use_10_for_ms && !scsi_status_is_good(result) &&
2133 driver_byte(result) == DRIVER_SENSE) {
2134 if (scsi_sense_valid(sshdr)) {
2135 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2136 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2137 /*
2138 * Invalid command operation code: retry using
2139 * MODE SENSE(6) if this was a MODE SENSE(10)
2140 * request, except if the request mode page is
2141 * too large for MODE SENSE single byte
2142 * allocation length field.
2143 */
2144 sdev->use_10_for_ms = 0;
2145 goto retry;
2146 }
2147 }
2148 }
2149
2150 if (scsi_status_is_good(result)) {
2151 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2152 (modepage == 6 || modepage == 8))) {
2153 /* Initio breakage? */
2154 header_length = 0;
2155 data->length = 13;
2156 data->medium_type = 0;
2157 data->device_specific = 0;
2158 data->longlba = 0;
2159 data->block_descriptor_length = 0;
2160 } else if (use_10_for_ms) {
2161 data->length = get_unaligned_be16(&buffer[0]) + 2;
2162 data->medium_type = buffer[2];
2163 data->device_specific = buffer[3];
2164 data->longlba = buffer[4] & 0x01;
2165 data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2166 } else {
2167 data->length = buffer[0] + 1;
2168 data->medium_type = buffer[1];
2169 data->device_specific = buffer[2];
2170 data->block_descriptor_length = buffer[3];
2171 }
2172 data->header_length = header_length;
2173 result = 0;
2174 } else if ((status_byte(result) == CHECK_CONDITION) &&
2175 scsi_sense_valid(sshdr) &&
2176 sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2177 retry_count--;
2178 goto retry;
2179 }
2180 if (result > 0)
2181 result = -EIO;
2182 return result;
2183 }
2184 EXPORT_SYMBOL(scsi_mode_sense);
2185
2186 /**
2187 * scsi_test_unit_ready - test if unit is ready
2188 * @sdev: scsi device to change the state of.
2189 * @timeout: command timeout
2190 * @retries: number of retries before failing
2191 * @sshdr: outpout pointer for decoded sense information.
2192 *
2193 * Returns zero if unsuccessful or an error if TUR failed. For
2194 * removable media, UNIT_ATTENTION sets ->changed flag.
2195 **/
2196 int
scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, struct scsi_sense_hdr *sshdr)2197 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2198 struct scsi_sense_hdr *sshdr)
2199 {
2200 char cmd[] = {
2201 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2202 };
2203 int result;
2204
2205 /* try to eat the UNIT_ATTENTION if there are enough retries */
2206 do {
2207 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2208 timeout, 1, NULL);
2209 if (sdev->removable && scsi_sense_valid(sshdr) &&
2210 sshdr->sense_key == UNIT_ATTENTION)
2211 sdev->changed = 1;
2212 } while (scsi_sense_valid(sshdr) &&
2213 sshdr->sense_key == UNIT_ATTENTION && --retries);
2214
2215 return result;
2216 }
2217 EXPORT_SYMBOL(scsi_test_unit_ready);
2218
2219 /**
2220 * scsi_device_set_state - Take the given device through the device state model.
2221 * @sdev: scsi device to change the state of.
2222 * @state: state to change to.
2223 *
2224 * Returns zero if successful or an error if the requested
2225 * transition is illegal.
2226 */
2227 int
scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)2228 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2229 {
2230 enum scsi_device_state oldstate = sdev->sdev_state;
2231
2232 if (state == oldstate)
2233 return 0;
2234
2235 switch (state) {
2236 case SDEV_CREATED:
2237 switch (oldstate) {
2238 case SDEV_CREATED_BLOCK:
2239 break;
2240 default:
2241 goto illegal;
2242 }
2243 break;
2244
2245 case SDEV_RUNNING:
2246 switch (oldstate) {
2247 case SDEV_CREATED:
2248 case SDEV_OFFLINE:
2249 case SDEV_TRANSPORT_OFFLINE:
2250 case SDEV_QUIESCE:
2251 case SDEV_BLOCK:
2252 break;
2253 default:
2254 goto illegal;
2255 }
2256 break;
2257
2258 case SDEV_QUIESCE:
2259 switch (oldstate) {
2260 case SDEV_RUNNING:
2261 case SDEV_OFFLINE:
2262 case SDEV_TRANSPORT_OFFLINE:
2263 break;
2264 default:
2265 goto illegal;
2266 }
2267 break;
2268
2269 case SDEV_OFFLINE:
2270 case SDEV_TRANSPORT_OFFLINE:
2271 switch (oldstate) {
2272 case SDEV_CREATED:
2273 case SDEV_RUNNING:
2274 case SDEV_QUIESCE:
2275 case SDEV_BLOCK:
2276 break;
2277 default:
2278 goto illegal;
2279 }
2280 break;
2281
2282 case SDEV_BLOCK:
2283 switch (oldstate) {
2284 case SDEV_RUNNING:
2285 case SDEV_CREATED_BLOCK:
2286 case SDEV_QUIESCE:
2287 case SDEV_OFFLINE:
2288 break;
2289 default:
2290 goto illegal;
2291 }
2292 break;
2293
2294 case SDEV_CREATED_BLOCK:
2295 switch (oldstate) {
2296 case SDEV_CREATED:
2297 break;
2298 default:
2299 goto illegal;
2300 }
2301 break;
2302
2303 case SDEV_CANCEL:
2304 switch (oldstate) {
2305 case SDEV_CREATED:
2306 case SDEV_RUNNING:
2307 case SDEV_QUIESCE:
2308 case SDEV_OFFLINE:
2309 case SDEV_TRANSPORT_OFFLINE:
2310 break;
2311 default:
2312 goto illegal;
2313 }
2314 break;
2315
2316 case SDEV_DEL:
2317 switch (oldstate) {
2318 case SDEV_CREATED:
2319 case SDEV_RUNNING:
2320 case SDEV_OFFLINE:
2321 case SDEV_TRANSPORT_OFFLINE:
2322 case SDEV_CANCEL:
2323 case SDEV_BLOCK:
2324 case SDEV_CREATED_BLOCK:
2325 break;
2326 default:
2327 goto illegal;
2328 }
2329 break;
2330
2331 }
2332 sdev->offline_already = false;
2333 sdev->sdev_state = state;
2334 return 0;
2335
2336 illegal:
2337 SCSI_LOG_ERROR_RECOVERY(1,
2338 sdev_printk(KERN_ERR, sdev,
2339 "Illegal state transition %s->%s",
2340 scsi_device_state_name(oldstate),
2341 scsi_device_state_name(state))
2342 );
2343 return -EINVAL;
2344 }
2345 EXPORT_SYMBOL(scsi_device_set_state);
2346
2347 /**
2348 * sdev_evt_emit - emit a single SCSI device uevent
2349 * @sdev: associated SCSI device
2350 * @evt: event to emit
2351 *
2352 * Send a single uevent (scsi_event) to the associated scsi_device.
2353 */
scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)2354 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2355 {
2356 int idx = 0;
2357 char *envp[3];
2358
2359 switch (evt->evt_type) {
2360 case SDEV_EVT_MEDIA_CHANGE:
2361 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2362 break;
2363 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2364 scsi_rescan_device(&sdev->sdev_gendev);
2365 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2366 break;
2367 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2368 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2369 break;
2370 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2371 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2372 break;
2373 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2374 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2375 break;
2376 case SDEV_EVT_LUN_CHANGE_REPORTED:
2377 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2378 break;
2379 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2380 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2381 break;
2382 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2383 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2384 break;
2385 default:
2386 /* do nothing */
2387 break;
2388 }
2389
2390 envp[idx++] = NULL;
2391
2392 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2393 }
2394
2395 /**
2396 * sdev_evt_thread - send a uevent for each scsi event
2397 * @work: work struct for scsi_device
2398 *
2399 * Dispatch queued events to their associated scsi_device kobjects
2400 * as uevents.
2401 */
scsi_evt_thread(struct work_struct *work)2402 void scsi_evt_thread(struct work_struct *work)
2403 {
2404 struct scsi_device *sdev;
2405 enum scsi_device_event evt_type;
2406 LIST_HEAD(event_list);
2407
2408 sdev = container_of(work, struct scsi_device, event_work);
2409
2410 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2411 if (test_and_clear_bit(evt_type, sdev->pending_events))
2412 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2413
2414 while (1) {
2415 struct scsi_event *evt;
2416 struct list_head *this, *tmp;
2417 unsigned long flags;
2418
2419 spin_lock_irqsave(&sdev->list_lock, flags);
2420 list_splice_init(&sdev->event_list, &event_list);
2421 spin_unlock_irqrestore(&sdev->list_lock, flags);
2422
2423 if (list_empty(&event_list))
2424 break;
2425
2426 list_for_each_safe(this, tmp, &event_list) {
2427 evt = list_entry(this, struct scsi_event, node);
2428 list_del(&evt->node);
2429 scsi_evt_emit(sdev, evt);
2430 kfree(evt);
2431 }
2432 }
2433 }
2434
2435 /**
2436 * sdev_evt_send - send asserted event to uevent thread
2437 * @sdev: scsi_device event occurred on
2438 * @evt: event to send
2439 *
2440 * Assert scsi device event asynchronously.
2441 */
sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)2442 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2443 {
2444 unsigned long flags;
2445
2446 #if 0
2447 /* FIXME: currently this check eliminates all media change events
2448 * for polled devices. Need to update to discriminate between AN
2449 * and polled events */
2450 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2451 kfree(evt);
2452 return;
2453 }
2454 #endif
2455
2456 spin_lock_irqsave(&sdev->list_lock, flags);
2457 list_add_tail(&evt->node, &sdev->event_list);
2458 schedule_work(&sdev->event_work);
2459 spin_unlock_irqrestore(&sdev->list_lock, flags);
2460 }
2461 EXPORT_SYMBOL_GPL(sdev_evt_send);
2462
2463 /**
2464 * sdev_evt_alloc - allocate a new scsi event
2465 * @evt_type: type of event to allocate
2466 * @gfpflags: GFP flags for allocation
2467 *
2468 * Allocates and returns a new scsi_event.
2469 */
sdev_evt_alloc(enum scsi_device_event evt_type, gfp_t gfpflags)2470 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2471 gfp_t gfpflags)
2472 {
2473 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2474 if (!evt)
2475 return NULL;
2476
2477 evt->evt_type = evt_type;
2478 INIT_LIST_HEAD(&evt->node);
2479
2480 /* evt_type-specific initialization, if any */
2481 switch (evt_type) {
2482 case SDEV_EVT_MEDIA_CHANGE:
2483 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2484 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2485 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2486 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2487 case SDEV_EVT_LUN_CHANGE_REPORTED:
2488 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2489 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2490 default:
2491 /* do nothing */
2492 break;
2493 }
2494
2495 return evt;
2496 }
2497 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2498
2499 /**
2500 * sdev_evt_send_simple - send asserted event to uevent thread
2501 * @sdev: scsi_device event occurred on
2502 * @evt_type: type of event to send
2503 * @gfpflags: GFP flags for allocation
2504 *
2505 * Assert scsi device event asynchronously, given an event type.
2506 */
sdev_evt_send_simple(struct scsi_device *sdev, enum scsi_device_event evt_type, gfp_t gfpflags)2507 void sdev_evt_send_simple(struct scsi_device *sdev,
2508 enum scsi_device_event evt_type, gfp_t gfpflags)
2509 {
2510 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2511 if (!evt) {
2512 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2513 evt_type);
2514 return;
2515 }
2516
2517 sdev_evt_send(sdev, evt);
2518 }
2519 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2520
2521 /**
2522 * scsi_device_quiesce - Block all commands except power management.
2523 * @sdev: scsi device to quiesce.
2524 *
2525 * This works by trying to transition to the SDEV_QUIESCE state
2526 * (which must be a legal transition). When the device is in this
2527 * state, only power management requests will be accepted, all others will
2528 * be deferred.
2529 *
2530 * Must be called with user context, may sleep.
2531 *
2532 * Returns zero if unsuccessful or an error if not.
2533 */
2534 int
scsi_device_quiesce(struct scsi_device *sdev)2535 scsi_device_quiesce(struct scsi_device *sdev)
2536 {
2537 struct request_queue *q = sdev->request_queue;
2538 int err;
2539
2540 /*
2541 * It is allowed to call scsi_device_quiesce() multiple times from
2542 * the same context but concurrent scsi_device_quiesce() calls are
2543 * not allowed.
2544 */
2545 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2546
2547 if (sdev->quiesced_by == current)
2548 return 0;
2549
2550 blk_set_pm_only(q);
2551
2552 blk_mq_freeze_queue(q);
2553 /*
2554 * Ensure that the effect of blk_set_pm_only() will be visible
2555 * for percpu_ref_tryget() callers that occur after the queue
2556 * unfreeze even if the queue was already frozen before this function
2557 * was called. See also https://lwn.net/Articles/573497/.
2558 */
2559 synchronize_rcu();
2560 blk_mq_unfreeze_queue(q);
2561
2562 mutex_lock(&sdev->state_mutex);
2563 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2564 if (err == 0)
2565 sdev->quiesced_by = current;
2566 else
2567 blk_clear_pm_only(q);
2568 mutex_unlock(&sdev->state_mutex);
2569
2570 return err;
2571 }
2572 EXPORT_SYMBOL(scsi_device_quiesce);
2573
2574 /**
2575 * scsi_device_resume - Restart user issued commands to a quiesced device.
2576 * @sdev: scsi device to resume.
2577 *
2578 * Moves the device from quiesced back to running and restarts the
2579 * queues.
2580 *
2581 * Must be called with user context, may sleep.
2582 */
scsi_device_resume(struct scsi_device *sdev)2583 void scsi_device_resume(struct scsi_device *sdev)
2584 {
2585 /* check if the device state was mutated prior to resume, and if
2586 * so assume the state is being managed elsewhere (for example
2587 * device deleted during suspend)
2588 */
2589 mutex_lock(&sdev->state_mutex);
2590 if (sdev->sdev_state == SDEV_QUIESCE)
2591 scsi_device_set_state(sdev, SDEV_RUNNING);
2592 if (sdev->quiesced_by) {
2593 sdev->quiesced_by = NULL;
2594 blk_clear_pm_only(sdev->request_queue);
2595 }
2596 mutex_unlock(&sdev->state_mutex);
2597 }
2598 EXPORT_SYMBOL(scsi_device_resume);
2599
2600 static void
device_quiesce_fn(struct scsi_device *sdev, void *data)2601 device_quiesce_fn(struct scsi_device *sdev, void *data)
2602 {
2603 scsi_device_quiesce(sdev);
2604 }
2605
2606 void
scsi_target_quiesce(struct scsi_target *starget)2607 scsi_target_quiesce(struct scsi_target *starget)
2608 {
2609 starget_for_each_device(starget, NULL, device_quiesce_fn);
2610 }
2611 EXPORT_SYMBOL(scsi_target_quiesce);
2612
2613 static void
device_resume_fn(struct scsi_device *sdev, void *data)2614 device_resume_fn(struct scsi_device *sdev, void *data)
2615 {
2616 scsi_device_resume(sdev);
2617 }
2618
2619 void
scsi_target_resume(struct scsi_target *starget)2620 scsi_target_resume(struct scsi_target *starget)
2621 {
2622 starget_for_each_device(starget, NULL, device_resume_fn);
2623 }
2624 EXPORT_SYMBOL(scsi_target_resume);
2625
__scsi_internal_device_block_nowait(struct scsi_device *sdev)2626 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2627 {
2628 if (scsi_device_set_state(sdev, SDEV_BLOCK))
2629 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2630
2631 return 0;
2632 }
2633
2634 static DEFINE_SPINLOCK(sdev_queue_stop_lock);
2635
scsi_start_queue(struct scsi_device *sdev)2636 void scsi_start_queue(struct scsi_device *sdev)
2637 {
2638 bool need_start;
2639 unsigned long flags;
2640
2641 spin_lock_irqsave(&sdev_queue_stop_lock, flags);
2642 need_start = sdev->queue_stopped;
2643 sdev->queue_stopped = 0;
2644 spin_unlock_irqrestore(&sdev_queue_stop_lock, flags);
2645
2646 if (need_start)
2647 blk_mq_unquiesce_queue(sdev->request_queue);
2648 }
2649
scsi_stop_queue(struct scsi_device *sdev, bool nowait)2650 static void scsi_stop_queue(struct scsi_device *sdev, bool nowait)
2651 {
2652 bool need_stop;
2653 unsigned long flags;
2654
2655 spin_lock_irqsave(&sdev_queue_stop_lock, flags);
2656 need_stop = !sdev->queue_stopped;
2657 sdev->queue_stopped = 1;
2658 spin_unlock_irqrestore(&sdev_queue_stop_lock, flags);
2659
2660 if (need_stop) {
2661 if (nowait)
2662 blk_mq_quiesce_queue_nowait(sdev->request_queue);
2663 else
2664 blk_mq_quiesce_queue(sdev->request_queue);
2665 }
2666 }
2667
2668 /**
2669 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2670 * @sdev: device to block
2671 *
2672 * Pause SCSI command processing on the specified device. Does not sleep.
2673 *
2674 * Returns zero if successful or a negative error code upon failure.
2675 *
2676 * Notes:
2677 * This routine transitions the device to the SDEV_BLOCK state (which must be
2678 * a legal transition). When the device is in this state, command processing
2679 * is paused until the device leaves the SDEV_BLOCK state. See also
2680 * scsi_internal_device_unblock_nowait().
2681 */
scsi_internal_device_block_nowait(struct scsi_device *sdev)2682 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2683 {
2684 int ret = __scsi_internal_device_block_nowait(sdev);
2685
2686 /*
2687 * The device has transitioned to SDEV_BLOCK. Stop the
2688 * block layer from calling the midlayer with this device's
2689 * request queue.
2690 */
2691 if (!ret)
2692 scsi_stop_queue(sdev, true);
2693 return ret;
2694 }
2695 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2696
2697 /**
2698 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2699 * @sdev: device to block
2700 *
2701 * Pause SCSI command processing on the specified device and wait until all
2702 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2703 *
2704 * Returns zero if successful or a negative error code upon failure.
2705 *
2706 * Note:
2707 * This routine transitions the device to the SDEV_BLOCK state (which must be
2708 * a legal transition). When the device is in this state, command processing
2709 * is paused until the device leaves the SDEV_BLOCK state. See also
2710 * scsi_internal_device_unblock().
2711 */
scsi_internal_device_block(struct scsi_device *sdev)2712 static int scsi_internal_device_block(struct scsi_device *sdev)
2713 {
2714 int err;
2715
2716 mutex_lock(&sdev->state_mutex);
2717 err = __scsi_internal_device_block_nowait(sdev);
2718 if (err == 0)
2719 scsi_stop_queue(sdev, false);
2720 mutex_unlock(&sdev->state_mutex);
2721
2722 return err;
2723 }
2724
2725 /**
2726 * scsi_internal_device_unblock_nowait - resume a device after a block request
2727 * @sdev: device to resume
2728 * @new_state: state to set the device to after unblocking
2729 *
2730 * Restart the device queue for a previously suspended SCSI device. Does not
2731 * sleep.
2732 *
2733 * Returns zero if successful or a negative error code upon failure.
2734 *
2735 * Notes:
2736 * This routine transitions the device to the SDEV_RUNNING state or to one of
2737 * the offline states (which must be a legal transition) allowing the midlayer
2738 * to goose the queue for this device.
2739 */
scsi_internal_device_unblock_nowait(struct scsi_device *sdev, enum scsi_device_state new_state)2740 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2741 enum scsi_device_state new_state)
2742 {
2743 switch (new_state) {
2744 case SDEV_RUNNING:
2745 case SDEV_TRANSPORT_OFFLINE:
2746 break;
2747 default:
2748 return -EINVAL;
2749 }
2750
2751 /*
2752 * Try to transition the scsi device to SDEV_RUNNING or one of the
2753 * offlined states and goose the device queue if successful.
2754 */
2755 switch (sdev->sdev_state) {
2756 case SDEV_BLOCK:
2757 case SDEV_TRANSPORT_OFFLINE:
2758 sdev->sdev_state = new_state;
2759 break;
2760 case SDEV_CREATED_BLOCK:
2761 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2762 new_state == SDEV_OFFLINE)
2763 sdev->sdev_state = new_state;
2764 else
2765 sdev->sdev_state = SDEV_CREATED;
2766 break;
2767 case SDEV_CANCEL:
2768 case SDEV_OFFLINE:
2769 break;
2770 default:
2771 return -EINVAL;
2772 }
2773 scsi_start_queue(sdev);
2774
2775 return 0;
2776 }
2777 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2778
2779 /**
2780 * scsi_internal_device_unblock - resume a device after a block request
2781 * @sdev: device to resume
2782 * @new_state: state to set the device to after unblocking
2783 *
2784 * Restart the device queue for a previously suspended SCSI device. May sleep.
2785 *
2786 * Returns zero if successful or a negative error code upon failure.
2787 *
2788 * Notes:
2789 * This routine transitions the device to the SDEV_RUNNING state or to one of
2790 * the offline states (which must be a legal transition) allowing the midlayer
2791 * to goose the queue for this device.
2792 */
scsi_internal_device_unblock(struct scsi_device *sdev, enum scsi_device_state new_state)2793 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2794 enum scsi_device_state new_state)
2795 {
2796 int ret;
2797
2798 mutex_lock(&sdev->state_mutex);
2799 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2800 mutex_unlock(&sdev->state_mutex);
2801
2802 return ret;
2803 }
2804
2805 static void
device_block(struct scsi_device *sdev, void *data)2806 device_block(struct scsi_device *sdev, void *data)
2807 {
2808 int ret;
2809
2810 ret = scsi_internal_device_block(sdev);
2811
2812 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2813 dev_name(&sdev->sdev_gendev), ret);
2814 }
2815
2816 static int
target_block(struct device *dev, void *data)2817 target_block(struct device *dev, void *data)
2818 {
2819 if (scsi_is_target_device(dev))
2820 starget_for_each_device(to_scsi_target(dev), NULL,
2821 device_block);
2822 return 0;
2823 }
2824
2825 void
scsi_target_block(struct device *dev)2826 scsi_target_block(struct device *dev)
2827 {
2828 if (scsi_is_target_device(dev))
2829 starget_for_each_device(to_scsi_target(dev), NULL,
2830 device_block);
2831 else
2832 device_for_each_child(dev, NULL, target_block);
2833 }
2834 EXPORT_SYMBOL_GPL(scsi_target_block);
2835
2836 static void
device_unblock(struct scsi_device *sdev, void *data)2837 device_unblock(struct scsi_device *sdev, void *data)
2838 {
2839 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2840 }
2841
2842 static int
target_unblock(struct device *dev, void *data)2843 target_unblock(struct device *dev, void *data)
2844 {
2845 if (scsi_is_target_device(dev))
2846 starget_for_each_device(to_scsi_target(dev), data,
2847 device_unblock);
2848 return 0;
2849 }
2850
2851 void
scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)2852 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2853 {
2854 if (scsi_is_target_device(dev))
2855 starget_for_each_device(to_scsi_target(dev), &new_state,
2856 device_unblock);
2857 else
2858 device_for_each_child(dev, &new_state, target_unblock);
2859 }
2860 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2861
2862 int
scsi_host_block(struct Scsi_Host *shost)2863 scsi_host_block(struct Scsi_Host *shost)
2864 {
2865 struct scsi_device *sdev;
2866 int ret = 0;
2867
2868 /*
2869 * Call scsi_internal_device_block_nowait so we can avoid
2870 * calling synchronize_rcu() for each LUN.
2871 */
2872 shost_for_each_device(sdev, shost) {
2873 mutex_lock(&sdev->state_mutex);
2874 ret = scsi_internal_device_block_nowait(sdev);
2875 mutex_unlock(&sdev->state_mutex);
2876 if (ret) {
2877 scsi_device_put(sdev);
2878 break;
2879 }
2880 }
2881
2882 /*
2883 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2884 * calling synchronize_rcu() once is enough.
2885 */
2886 WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2887
2888 if (!ret)
2889 synchronize_rcu();
2890
2891 return ret;
2892 }
2893 EXPORT_SYMBOL_GPL(scsi_host_block);
2894
2895 int
scsi_host_unblock(struct Scsi_Host *shost, int new_state)2896 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2897 {
2898 struct scsi_device *sdev;
2899 int ret = 0;
2900
2901 shost_for_each_device(sdev, shost) {
2902 ret = scsi_internal_device_unblock(sdev, new_state);
2903 if (ret) {
2904 scsi_device_put(sdev);
2905 break;
2906 }
2907 }
2908 return ret;
2909 }
2910 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2911
2912 /**
2913 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2914 * @sgl: scatter-gather list
2915 * @sg_count: number of segments in sg
2916 * @offset: offset in bytes into sg, on return offset into the mapped area
2917 * @len: bytes to map, on return number of bytes mapped
2918 *
2919 * Returns virtual address of the start of the mapped page
2920 */
scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, size_t *offset, size_t *len)2921 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2922 size_t *offset, size_t *len)
2923 {
2924 int i;
2925 size_t sg_len = 0, len_complete = 0;
2926 struct scatterlist *sg;
2927 struct page *page;
2928
2929 WARN_ON(!irqs_disabled());
2930
2931 for_each_sg(sgl, sg, sg_count, i) {
2932 len_complete = sg_len; /* Complete sg-entries */
2933 sg_len += sg->length;
2934 if (sg_len > *offset)
2935 break;
2936 }
2937
2938 if (unlikely(i == sg_count)) {
2939 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2940 "elements %d\n",
2941 __func__, sg_len, *offset, sg_count);
2942 WARN_ON(1);
2943 return NULL;
2944 }
2945
2946 /* Offset starting from the beginning of first page in this sg-entry */
2947 *offset = *offset - len_complete + sg->offset;
2948
2949 /* Assumption: contiguous pages can be accessed as "page + i" */
2950 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2951 *offset &= ~PAGE_MASK;
2952
2953 /* Bytes in this sg-entry from *offset to the end of the page */
2954 sg_len = PAGE_SIZE - *offset;
2955 if (*len > sg_len)
2956 *len = sg_len;
2957
2958 return kmap_atomic(page);
2959 }
2960 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2961
2962 /**
2963 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2964 * @virt: virtual address to be unmapped
2965 */
scsi_kunmap_atomic_sg(void *virt)2966 void scsi_kunmap_atomic_sg(void *virt)
2967 {
2968 kunmap_atomic(virt);
2969 }
2970 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2971
sdev_disable_disk_events(struct scsi_device *sdev)2972 void sdev_disable_disk_events(struct scsi_device *sdev)
2973 {
2974 atomic_inc(&sdev->disk_events_disable_depth);
2975 }
2976 EXPORT_SYMBOL(sdev_disable_disk_events);
2977
sdev_enable_disk_events(struct scsi_device *sdev)2978 void sdev_enable_disk_events(struct scsi_device *sdev)
2979 {
2980 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2981 return;
2982 atomic_dec(&sdev->disk_events_disable_depth);
2983 }
2984 EXPORT_SYMBOL(sdev_enable_disk_events);
2985
designator_prio(const unsigned char *d)2986 static unsigned char designator_prio(const unsigned char *d)
2987 {
2988 if (d[1] & 0x30)
2989 /* not associated with LUN */
2990 return 0;
2991
2992 if (d[3] == 0)
2993 /* invalid length */
2994 return 0;
2995
2996 /*
2997 * Order of preference for lun descriptor:
2998 * - SCSI name string
2999 * - NAA IEEE Registered Extended
3000 * - EUI-64 based 16-byte
3001 * - EUI-64 based 12-byte
3002 * - NAA IEEE Registered
3003 * - NAA IEEE Extended
3004 * - EUI-64 based 8-byte
3005 * - SCSI name string (truncated)
3006 * - T10 Vendor ID
3007 * as longer descriptors reduce the likelyhood
3008 * of identification clashes.
3009 */
3010
3011 switch (d[1] & 0xf) {
3012 case 8:
3013 /* SCSI name string, variable-length UTF-8 */
3014 return 9;
3015 case 3:
3016 switch (d[4] >> 4) {
3017 case 6:
3018 /* NAA registered extended */
3019 return 8;
3020 case 5:
3021 /* NAA registered */
3022 return 5;
3023 case 4:
3024 /* NAA extended */
3025 return 4;
3026 case 3:
3027 /* NAA locally assigned */
3028 return 1;
3029 default:
3030 break;
3031 }
3032 break;
3033 case 2:
3034 switch (d[3]) {
3035 case 16:
3036 /* EUI64-based, 16 byte */
3037 return 7;
3038 case 12:
3039 /* EUI64-based, 12 byte */
3040 return 6;
3041 case 8:
3042 /* EUI64-based, 8 byte */
3043 return 3;
3044 default:
3045 break;
3046 }
3047 break;
3048 case 1:
3049 /* T10 vendor ID */
3050 return 1;
3051 default:
3052 break;
3053 }
3054
3055 return 0;
3056 }
3057
3058 /**
3059 * scsi_vpd_lun_id - return a unique device identification
3060 * @sdev: SCSI device
3061 * @id: buffer for the identification
3062 * @id_len: length of the buffer
3063 *
3064 * Copies a unique device identification into @id based
3065 * on the information in the VPD page 0x83 of the device.
3066 * The string will be formatted as a SCSI name string.
3067 *
3068 * Returns the length of the identification or error on failure.
3069 * If the identifier is longer than the supplied buffer the actual
3070 * identifier length is returned and the buffer is not zero-padded.
3071 */
scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)3072 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3073 {
3074 u8 cur_id_prio = 0;
3075 u8 cur_id_size = 0;
3076 const unsigned char *d, *cur_id_str;
3077 const struct scsi_vpd *vpd_pg83;
3078 int id_size = -EINVAL;
3079
3080 rcu_read_lock();
3081 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3082 if (!vpd_pg83) {
3083 rcu_read_unlock();
3084 return -ENXIO;
3085 }
3086
3087 /* The id string must be at least 20 bytes + terminating NULL byte */
3088 if (id_len < 21) {
3089 rcu_read_unlock();
3090 return -EINVAL;
3091 }
3092
3093 memset(id, 0, id_len);
3094 d = vpd_pg83->data + 4;
3095 while (d < vpd_pg83->data + vpd_pg83->len) {
3096 u8 prio = designator_prio(d);
3097
3098 if (prio == 0 || cur_id_prio > prio)
3099 goto next_desig;
3100
3101 switch (d[1] & 0xf) {
3102 case 0x1:
3103 /* T10 Vendor ID */
3104 if (cur_id_size > d[3])
3105 break;
3106 cur_id_prio = prio;
3107 cur_id_size = d[3];
3108 if (cur_id_size + 4 > id_len)
3109 cur_id_size = id_len - 4;
3110 cur_id_str = d + 4;
3111 id_size = snprintf(id, id_len, "t10.%*pE",
3112 cur_id_size, cur_id_str);
3113 break;
3114 case 0x2:
3115 /* EUI-64 */
3116 cur_id_prio = prio;
3117 cur_id_size = d[3];
3118 cur_id_str = d + 4;
3119 switch (cur_id_size) {
3120 case 8:
3121 id_size = snprintf(id, id_len,
3122 "eui.%8phN",
3123 cur_id_str);
3124 break;
3125 case 12:
3126 id_size = snprintf(id, id_len,
3127 "eui.%12phN",
3128 cur_id_str);
3129 break;
3130 case 16:
3131 id_size = snprintf(id, id_len,
3132 "eui.%16phN",
3133 cur_id_str);
3134 break;
3135 default:
3136 break;
3137 }
3138 break;
3139 case 0x3:
3140 /* NAA */
3141 cur_id_prio = prio;
3142 cur_id_size = d[3];
3143 cur_id_str = d + 4;
3144 switch (cur_id_size) {
3145 case 8:
3146 id_size = snprintf(id, id_len,
3147 "naa.%8phN",
3148 cur_id_str);
3149 break;
3150 case 16:
3151 id_size = snprintf(id, id_len,
3152 "naa.%16phN",
3153 cur_id_str);
3154 break;
3155 default:
3156 break;
3157 }
3158 break;
3159 case 0x8:
3160 /* SCSI name string */
3161 if (cur_id_size > d[3])
3162 break;
3163 /* Prefer others for truncated descriptor */
3164 if (d[3] > id_len) {
3165 prio = 2;
3166 if (cur_id_prio > prio)
3167 break;
3168 }
3169 cur_id_prio = prio;
3170 cur_id_size = id_size = d[3];
3171 cur_id_str = d + 4;
3172 if (cur_id_size >= id_len)
3173 cur_id_size = id_len - 1;
3174 memcpy(id, cur_id_str, cur_id_size);
3175 break;
3176 default:
3177 break;
3178 }
3179 next_desig:
3180 d += d[3] + 4;
3181 }
3182 rcu_read_unlock();
3183
3184 return id_size;
3185 }
3186 EXPORT_SYMBOL(scsi_vpd_lun_id);
3187
3188 /*
3189 * scsi_vpd_tpg_id - return a target port group identifier
3190 * @sdev: SCSI device
3191 *
3192 * Returns the Target Port Group identifier from the information
3193 * froom VPD page 0x83 of the device.
3194 *
3195 * Returns the identifier or error on failure.
3196 */
scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)3197 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3198 {
3199 const unsigned char *d;
3200 const struct scsi_vpd *vpd_pg83;
3201 int group_id = -EAGAIN, rel_port = -1;
3202
3203 rcu_read_lock();
3204 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3205 if (!vpd_pg83) {
3206 rcu_read_unlock();
3207 return -ENXIO;
3208 }
3209
3210 d = vpd_pg83->data + 4;
3211 while (d < vpd_pg83->data + vpd_pg83->len) {
3212 switch (d[1] & 0xf) {
3213 case 0x4:
3214 /* Relative target port */
3215 rel_port = get_unaligned_be16(&d[6]);
3216 break;
3217 case 0x5:
3218 /* Target port group */
3219 group_id = get_unaligned_be16(&d[6]);
3220 break;
3221 default:
3222 break;
3223 }
3224 d += d[3] + 4;
3225 }
3226 rcu_read_unlock();
3227
3228 if (group_id >= 0 && rel_id && rel_port != -1)
3229 *rel_id = rel_port;
3230
3231 return group_id;
3232 }
3233 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3234