1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c  --  Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/regmap.h>
23#include <linux/regulator/of_regulator.h>
24#include <linux/regulator/consumer.h>
25#include <linux/regulator/coupler.h>
26#include <linux/regulator/driver.h>
27#include <linux/regulator/machine.h>
28#include <linux/module.h>
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/regulator.h>
32
33#include "dummy.h"
34#include "internal.h"
35
36#define rdev_crit(rdev, fmt, ...)					\
37	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38#define rdev_err(rdev, fmt, ...)					\
39	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40#define rdev_warn(rdev, fmt, ...)					\
41	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_info(rdev, fmt, ...)					\
43	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_dbg(rdev, fmt, ...)					\
45	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47static DEFINE_WW_CLASS(regulator_ww_class);
48static DEFINE_MUTEX(regulator_nesting_mutex);
49static DEFINE_MUTEX(regulator_list_mutex);
50static LIST_HEAD(regulator_map_list);
51static LIST_HEAD(regulator_ena_gpio_list);
52static LIST_HEAD(regulator_supply_alias_list);
53static LIST_HEAD(regulator_coupler_list);
54static bool has_full_constraints;
55
56static struct dentry *debugfs_root;
57
58/*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63struct regulator_map {
64	struct list_head list;
65	const char *dev_name;   /* The dev_name() for the consumer */
66	const char *supply;
67	struct regulator_dev *regulator;
68};
69
70/*
71 * struct regulator_enable_gpio
72 *
73 * Management for shared enable GPIO pin
74 */
75struct regulator_enable_gpio {
76	struct list_head list;
77	struct gpio_desc *gpiod;
78	u32 enable_count;	/* a number of enabled shared GPIO */
79	u32 request_count;	/* a number of requested shared GPIO */
80};
81
82/*
83 * struct regulator_supply_alias
84 *
85 * Used to map lookups for a supply onto an alternative device.
86 */
87struct regulator_supply_alias {
88	struct list_head list;
89	struct device *src_dev;
90	const char *src_supply;
91	struct device *alias_dev;
92	const char *alias_supply;
93};
94
95static int _regulator_is_enabled(struct regulator_dev *rdev);
96static int _regulator_disable(struct regulator *regulator);
97static int _regulator_get_current_limit(struct regulator_dev *rdev);
98static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99static int _notifier_call_chain(struct regulator_dev *rdev,
100				  unsigned long event, void *data);
101static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102				     int min_uV, int max_uV);
103static int regulator_balance_voltage(struct regulator_dev *rdev,
104				     suspend_state_t state);
105static struct regulator *create_regulator(struct regulator_dev *rdev,
106					  struct device *dev,
107					  const char *supply_name);
108static void destroy_regulator(struct regulator *regulator);
109static void _regulator_put(struct regulator *regulator);
110
111const char *rdev_get_name(struct regulator_dev *rdev)
112{
113	if (rdev->constraints && rdev->constraints->name)
114		return rdev->constraints->name;
115	else if (rdev->desc->name)
116		return rdev->desc->name;
117	else
118		return "";
119}
120
121static bool have_full_constraints(void)
122{
123	return has_full_constraints || of_have_populated_dt();
124}
125
126static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127{
128	if (!rdev->constraints) {
129		rdev_err(rdev, "no constraints\n");
130		return false;
131	}
132
133	if (rdev->constraints->valid_ops_mask & ops)
134		return true;
135
136	return false;
137}
138
139/**
140 * regulator_lock_nested - lock a single regulator
141 * @rdev:		regulator source
142 * @ww_ctx:		w/w mutex acquire context
143 *
144 * This function can be called many times by one task on
145 * a single regulator and its mutex will be locked only
146 * once. If a task, which is calling this function is other
147 * than the one, which initially locked the mutex, it will
148 * wait on mutex.
149 */
150static inline int regulator_lock_nested(struct regulator_dev *rdev,
151					struct ww_acquire_ctx *ww_ctx)
152{
153	bool lock = false;
154	int ret = 0;
155
156	mutex_lock(&regulator_nesting_mutex);
157
158	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159		if (rdev->mutex_owner == current)
160			rdev->ref_cnt++;
161		else
162			lock = true;
163
164		if (lock) {
165			mutex_unlock(&regulator_nesting_mutex);
166			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167			mutex_lock(&regulator_nesting_mutex);
168		}
169	} else {
170		lock = true;
171	}
172
173	if (lock && ret != -EDEADLK) {
174		rdev->ref_cnt++;
175		rdev->mutex_owner = current;
176	}
177
178	mutex_unlock(&regulator_nesting_mutex);
179
180	return ret;
181}
182
183/**
184 * regulator_lock - lock a single regulator
185 * @rdev:		regulator source
186 *
187 * This function can be called many times by one task on
188 * a single regulator and its mutex will be locked only
189 * once. If a task, which is calling this function is other
190 * than the one, which initially locked the mutex, it will
191 * wait on mutex.
192 */
193static void regulator_lock(struct regulator_dev *rdev)
194{
195	regulator_lock_nested(rdev, NULL);
196}
197
198/**
199 * regulator_unlock - unlock a single regulator
200 * @rdev:		regulator_source
201 *
202 * This function unlocks the mutex when the
203 * reference counter reaches 0.
204 */
205static void regulator_unlock(struct regulator_dev *rdev)
206{
207	mutex_lock(&regulator_nesting_mutex);
208
209	if (--rdev->ref_cnt == 0) {
210		rdev->mutex_owner = NULL;
211		ww_mutex_unlock(&rdev->mutex);
212	}
213
214	WARN_ON_ONCE(rdev->ref_cnt < 0);
215
216	mutex_unlock(&regulator_nesting_mutex);
217}
218
219/**
220 * regulator_lock_two - lock two regulators
221 * @rdev1:		first regulator
222 * @rdev2:		second regulator
223 * @ww_ctx:		w/w mutex acquire context
224 *
225 * Locks both rdevs using the regulator_ww_class.
226 */
227static void regulator_lock_two(struct regulator_dev *rdev1,
228			       struct regulator_dev *rdev2,
229			       struct ww_acquire_ctx *ww_ctx)
230{
231	struct regulator_dev *tmp;
232	int ret;
233
234	ww_acquire_init(ww_ctx, &regulator_ww_class);
235
236	/* Try to just grab both of them */
237	ret = regulator_lock_nested(rdev1, ww_ctx);
238	WARN_ON(ret);
239	ret = regulator_lock_nested(rdev2, ww_ctx);
240	if (ret != -EDEADLOCK) {
241		WARN_ON(ret);
242		goto exit;
243	}
244
245	while (true) {
246		/*
247		 * Start of loop: rdev1 was locked and rdev2 was contended.
248		 * Need to unlock rdev1, slowly lock rdev2, then try rdev1
249		 * again.
250		 */
251		regulator_unlock(rdev1);
252
253		ww_mutex_lock_slow(&rdev2->mutex, ww_ctx);
254		rdev2->ref_cnt++;
255		rdev2->mutex_owner = current;
256		ret = regulator_lock_nested(rdev1, ww_ctx);
257
258		if (ret == -EDEADLOCK) {
259			/* More contention; swap which needs to be slow */
260			tmp = rdev1;
261			rdev1 = rdev2;
262			rdev2 = tmp;
263		} else {
264			WARN_ON(ret);
265			break;
266		}
267	}
268
269exit:
270	ww_acquire_done(ww_ctx);
271}
272
273/**
274 * regulator_unlock_two - unlock two regulators
275 * @rdev1:		first regulator
276 * @rdev2:		second regulator
277 * @ww_ctx:		w/w mutex acquire context
278 *
279 * The inverse of regulator_lock_two().
280 */
281
282static void regulator_unlock_two(struct regulator_dev *rdev1,
283				 struct regulator_dev *rdev2,
284				 struct ww_acquire_ctx *ww_ctx)
285{
286	regulator_unlock(rdev2);
287	regulator_unlock(rdev1);
288	ww_acquire_fini(ww_ctx);
289}
290
291static bool regulator_supply_is_couple(struct regulator_dev *rdev)
292{
293	struct regulator_dev *c_rdev;
294	int i;
295
296	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
297		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
298
299		if (rdev->supply->rdev == c_rdev)
300			return true;
301	}
302
303	return false;
304}
305
306static void regulator_unlock_recursive(struct regulator_dev *rdev,
307				       unsigned int n_coupled)
308{
309	struct regulator_dev *c_rdev, *supply_rdev;
310	int i, supply_n_coupled;
311
312	for (i = n_coupled; i > 0; i--) {
313		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
314
315		if (!c_rdev)
316			continue;
317
318		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
319			supply_rdev = c_rdev->supply->rdev;
320			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
321
322			regulator_unlock_recursive(supply_rdev,
323						   supply_n_coupled);
324		}
325
326		regulator_unlock(c_rdev);
327	}
328}
329
330static int regulator_lock_recursive(struct regulator_dev *rdev,
331				    struct regulator_dev **new_contended_rdev,
332				    struct regulator_dev **old_contended_rdev,
333				    struct ww_acquire_ctx *ww_ctx)
334{
335	struct regulator_dev *c_rdev;
336	int i, err;
337
338	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
339		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
340
341		if (!c_rdev)
342			continue;
343
344		if (c_rdev != *old_contended_rdev) {
345			err = regulator_lock_nested(c_rdev, ww_ctx);
346			if (err) {
347				if (err == -EDEADLK) {
348					*new_contended_rdev = c_rdev;
349					goto err_unlock;
350				}
351
352				/* shouldn't happen */
353				WARN_ON_ONCE(err != -EALREADY);
354			}
355		} else {
356			*old_contended_rdev = NULL;
357		}
358
359		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
360			err = regulator_lock_recursive(c_rdev->supply->rdev,
361						       new_contended_rdev,
362						       old_contended_rdev,
363						       ww_ctx);
364			if (err) {
365				regulator_unlock(c_rdev);
366				goto err_unlock;
367			}
368		}
369	}
370
371	return 0;
372
373err_unlock:
374	regulator_unlock_recursive(rdev, i);
375
376	return err;
377}
378
379/**
380 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
381 *				regulators
382 * @rdev:			regulator source
383 * @ww_ctx:			w/w mutex acquire context
384 *
385 * Unlock all regulators related with rdev by coupling or supplying.
386 */
387static void regulator_unlock_dependent(struct regulator_dev *rdev,
388				       struct ww_acquire_ctx *ww_ctx)
389{
390	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
391	ww_acquire_fini(ww_ctx);
392}
393
394/**
395 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
396 * @rdev:			regulator source
397 * @ww_ctx:			w/w mutex acquire context
398 *
399 * This function as a wrapper on regulator_lock_recursive(), which locks
400 * all regulators related with rdev by coupling or supplying.
401 */
402static void regulator_lock_dependent(struct regulator_dev *rdev,
403				     struct ww_acquire_ctx *ww_ctx)
404{
405	struct regulator_dev *new_contended_rdev = NULL;
406	struct regulator_dev *old_contended_rdev = NULL;
407	int err;
408
409	mutex_lock(&regulator_list_mutex);
410
411	ww_acquire_init(ww_ctx, &regulator_ww_class);
412
413	do {
414		if (new_contended_rdev) {
415			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
416			old_contended_rdev = new_contended_rdev;
417			old_contended_rdev->ref_cnt++;
418			old_contended_rdev->mutex_owner = current;
419		}
420
421		err = regulator_lock_recursive(rdev,
422					       &new_contended_rdev,
423					       &old_contended_rdev,
424					       ww_ctx);
425
426		if (old_contended_rdev)
427			regulator_unlock(old_contended_rdev);
428
429	} while (err == -EDEADLK);
430
431	ww_acquire_done(ww_ctx);
432
433	mutex_unlock(&regulator_list_mutex);
434}
435
436/**
437 * of_get_child_regulator - get a child regulator device node
438 * based on supply name
439 * @parent: Parent device node
440 * @prop_name: Combination regulator supply name and "-supply"
441 *
442 * Traverse all child nodes.
443 * Extract the child regulator device node corresponding to the supply name.
444 * returns the device node corresponding to the regulator if found, else
445 * returns NULL.
446 */
447static struct device_node *of_get_child_regulator(struct device_node *parent,
448						  const char *prop_name)
449{
450	struct device_node *regnode = NULL;
451	struct device_node *child = NULL;
452
453	for_each_child_of_node(parent, child) {
454		regnode = of_parse_phandle(child, prop_name, 0);
455
456		if (!regnode) {
457			regnode = of_get_child_regulator(child, prop_name);
458			if (regnode)
459				goto err_node_put;
460		} else {
461			goto err_node_put;
462		}
463	}
464	return NULL;
465
466err_node_put:
467	of_node_put(child);
468	return regnode;
469}
470
471/**
472 * of_get_regulator - get a regulator device node based on supply name
473 * @dev: Device pointer for the consumer (of regulator) device
474 * @supply: regulator supply name
475 *
476 * Extract the regulator device node corresponding to the supply name.
477 * returns the device node corresponding to the regulator if found, else
478 * returns NULL.
479 */
480static struct device_node *of_get_regulator(struct device *dev, const char *supply)
481{
482	struct device_node *regnode = NULL;
483	char prop_name[64]; /* 64 is max size of property name */
484
485	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
486
487	snprintf(prop_name, 64, "%s-supply", supply);
488	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
489
490	if (!regnode) {
491		regnode = of_get_child_regulator(dev->of_node, prop_name);
492		if (regnode)
493			return regnode;
494
495		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
496				prop_name, dev->of_node);
497		return NULL;
498	}
499	return regnode;
500}
501
502/* Platform voltage constraint check */
503int regulator_check_voltage(struct regulator_dev *rdev,
504			    int *min_uV, int *max_uV)
505{
506	BUG_ON(*min_uV > *max_uV);
507
508	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
509		rdev_err(rdev, "voltage operation not allowed\n");
510		return -EPERM;
511	}
512
513	if (*max_uV > rdev->constraints->max_uV)
514		*max_uV = rdev->constraints->max_uV;
515	if (*min_uV < rdev->constraints->min_uV)
516		*min_uV = rdev->constraints->min_uV;
517
518	if (*min_uV > *max_uV) {
519		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
520			 *min_uV, *max_uV);
521		return -EINVAL;
522	}
523
524	return 0;
525}
526
527/* return 0 if the state is valid */
528static int regulator_check_states(suspend_state_t state)
529{
530	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
531}
532
533/* Make sure we select a voltage that suits the needs of all
534 * regulator consumers
535 */
536int regulator_check_consumers(struct regulator_dev *rdev,
537			      int *min_uV, int *max_uV,
538			      suspend_state_t state)
539{
540	struct regulator *regulator;
541	struct regulator_voltage *voltage;
542
543	list_for_each_entry(regulator, &rdev->consumer_list, list) {
544		voltage = &regulator->voltage[state];
545		/*
546		 * Assume consumers that didn't say anything are OK
547		 * with anything in the constraint range.
548		 */
549		if (!voltage->min_uV && !voltage->max_uV)
550			continue;
551
552		if (*max_uV > voltage->max_uV)
553			*max_uV = voltage->max_uV;
554		if (*min_uV < voltage->min_uV)
555			*min_uV = voltage->min_uV;
556	}
557
558	if (*min_uV > *max_uV) {
559		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
560			*min_uV, *max_uV);
561		return -EINVAL;
562	}
563
564	return 0;
565}
566
567/* current constraint check */
568static int regulator_check_current_limit(struct regulator_dev *rdev,
569					int *min_uA, int *max_uA)
570{
571	BUG_ON(*min_uA > *max_uA);
572
573	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
574		rdev_err(rdev, "current operation not allowed\n");
575		return -EPERM;
576	}
577
578	if (*max_uA > rdev->constraints->max_uA)
579		*max_uA = rdev->constraints->max_uA;
580	if (*min_uA < rdev->constraints->min_uA)
581		*min_uA = rdev->constraints->min_uA;
582
583	if (*min_uA > *max_uA) {
584		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
585			 *min_uA, *max_uA);
586		return -EINVAL;
587	}
588
589	return 0;
590}
591
592/* operating mode constraint check */
593static int regulator_mode_constrain(struct regulator_dev *rdev,
594				    unsigned int *mode)
595{
596	switch (*mode) {
597	case REGULATOR_MODE_FAST:
598	case REGULATOR_MODE_NORMAL:
599	case REGULATOR_MODE_IDLE:
600	case REGULATOR_MODE_STANDBY:
601		break;
602	default:
603		rdev_err(rdev, "invalid mode %x specified\n", *mode);
604		return -EINVAL;
605	}
606
607	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
608		rdev_err(rdev, "mode operation not allowed\n");
609		return -EPERM;
610	}
611
612	/* The modes are bitmasks, the most power hungry modes having
613	 * the lowest values. If the requested mode isn't supported
614	 * try higher modes. */
615	while (*mode) {
616		if (rdev->constraints->valid_modes_mask & *mode)
617			return 0;
618		*mode /= 2;
619	}
620
621	return -EINVAL;
622}
623
624static inline struct regulator_state *
625regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
626{
627	if (rdev->constraints == NULL)
628		return NULL;
629
630	switch (state) {
631	case PM_SUSPEND_STANDBY:
632		return &rdev->constraints->state_standby;
633	case PM_SUSPEND_MEM:
634		return &rdev->constraints->state_mem;
635	case PM_SUSPEND_MAX:
636		return &rdev->constraints->state_disk;
637	default:
638		return NULL;
639	}
640}
641
642static const struct regulator_state *
643regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
644{
645	const struct regulator_state *rstate;
646
647	rstate = regulator_get_suspend_state(rdev, state);
648	if (rstate == NULL)
649		return NULL;
650
651	/* If we have no suspend mode configuration don't set anything;
652	 * only warn if the driver implements set_suspend_voltage or
653	 * set_suspend_mode callback.
654	 */
655	if (rstate->enabled != ENABLE_IN_SUSPEND &&
656	    rstate->enabled != DISABLE_IN_SUSPEND) {
657		if (rdev->desc->ops->set_suspend_voltage ||
658		    rdev->desc->ops->set_suspend_mode)
659			rdev_warn(rdev, "No configuration\n");
660		return NULL;
661	}
662
663	return rstate;
664}
665
666static ssize_t regulator_uV_show(struct device *dev,
667				struct device_attribute *attr, char *buf)
668{
669	struct regulator_dev *rdev = dev_get_drvdata(dev);
670	int uV;
671
672	regulator_lock(rdev);
673	uV = regulator_get_voltage_rdev(rdev);
674	regulator_unlock(rdev);
675
676	if (uV < 0)
677		return uV;
678	return sprintf(buf, "%d\n", uV);
679}
680static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
681
682static ssize_t regulator_uA_show(struct device *dev,
683				struct device_attribute *attr, char *buf)
684{
685	struct regulator_dev *rdev = dev_get_drvdata(dev);
686
687	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
688}
689static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
690
691static ssize_t name_show(struct device *dev, struct device_attribute *attr,
692			 char *buf)
693{
694	struct regulator_dev *rdev = dev_get_drvdata(dev);
695
696	return sprintf(buf, "%s\n", rdev_get_name(rdev));
697}
698static DEVICE_ATTR_RO(name);
699
700static const char *regulator_opmode_to_str(int mode)
701{
702	switch (mode) {
703	case REGULATOR_MODE_FAST:
704		return "fast";
705	case REGULATOR_MODE_NORMAL:
706		return "normal";
707	case REGULATOR_MODE_IDLE:
708		return "idle";
709	case REGULATOR_MODE_STANDBY:
710		return "standby";
711	}
712	return "unknown";
713}
714
715static ssize_t regulator_print_opmode(char *buf, int mode)
716{
717	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
718}
719
720static ssize_t regulator_opmode_show(struct device *dev,
721				    struct device_attribute *attr, char *buf)
722{
723	struct regulator_dev *rdev = dev_get_drvdata(dev);
724
725	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
726}
727static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
728
729static ssize_t regulator_print_state(char *buf, int state)
730{
731	if (state > 0)
732		return sprintf(buf, "enabled\n");
733	else if (state == 0)
734		return sprintf(buf, "disabled\n");
735	else
736		return sprintf(buf, "unknown\n");
737}
738
739static ssize_t regulator_state_show(struct device *dev,
740				   struct device_attribute *attr, char *buf)
741{
742	struct regulator_dev *rdev = dev_get_drvdata(dev);
743	ssize_t ret;
744
745	regulator_lock(rdev);
746	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
747	regulator_unlock(rdev);
748
749	return ret;
750}
751static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
752
753static ssize_t regulator_status_show(struct device *dev,
754				   struct device_attribute *attr, char *buf)
755{
756	struct regulator_dev *rdev = dev_get_drvdata(dev);
757	int status;
758	char *label;
759
760	status = rdev->desc->ops->get_status(rdev);
761	if (status < 0)
762		return status;
763
764	switch (status) {
765	case REGULATOR_STATUS_OFF:
766		label = "off";
767		break;
768	case REGULATOR_STATUS_ON:
769		label = "on";
770		break;
771	case REGULATOR_STATUS_ERROR:
772		label = "error";
773		break;
774	case REGULATOR_STATUS_FAST:
775		label = "fast";
776		break;
777	case REGULATOR_STATUS_NORMAL:
778		label = "normal";
779		break;
780	case REGULATOR_STATUS_IDLE:
781		label = "idle";
782		break;
783	case REGULATOR_STATUS_STANDBY:
784		label = "standby";
785		break;
786	case REGULATOR_STATUS_BYPASS:
787		label = "bypass";
788		break;
789	case REGULATOR_STATUS_UNDEFINED:
790		label = "undefined";
791		break;
792	default:
793		return -ERANGE;
794	}
795
796	return sprintf(buf, "%s\n", label);
797}
798static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
799
800static ssize_t regulator_min_uA_show(struct device *dev,
801				    struct device_attribute *attr, char *buf)
802{
803	struct regulator_dev *rdev = dev_get_drvdata(dev);
804
805	if (!rdev->constraints)
806		return sprintf(buf, "constraint not defined\n");
807
808	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
809}
810static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
811
812static ssize_t regulator_max_uA_show(struct device *dev,
813				    struct device_attribute *attr, char *buf)
814{
815	struct regulator_dev *rdev = dev_get_drvdata(dev);
816
817	if (!rdev->constraints)
818		return sprintf(buf, "constraint not defined\n");
819
820	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
821}
822static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
823
824static ssize_t regulator_min_uV_show(struct device *dev,
825				    struct device_attribute *attr, char *buf)
826{
827	struct regulator_dev *rdev = dev_get_drvdata(dev);
828
829	if (!rdev->constraints)
830		return sprintf(buf, "constraint not defined\n");
831
832	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
833}
834static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
835
836static ssize_t regulator_max_uV_show(struct device *dev,
837				    struct device_attribute *attr, char *buf)
838{
839	struct regulator_dev *rdev = dev_get_drvdata(dev);
840
841	if (!rdev->constraints)
842		return sprintf(buf, "constraint not defined\n");
843
844	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
845}
846static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
847
848static ssize_t regulator_total_uA_show(struct device *dev,
849				      struct device_attribute *attr, char *buf)
850{
851	struct regulator_dev *rdev = dev_get_drvdata(dev);
852	struct regulator *regulator;
853	int uA = 0;
854
855	regulator_lock(rdev);
856	list_for_each_entry(regulator, &rdev->consumer_list, list) {
857		if (regulator->enable_count)
858			uA += regulator->uA_load;
859	}
860	regulator_unlock(rdev);
861	return sprintf(buf, "%d\n", uA);
862}
863static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
864
865static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
866			      char *buf)
867{
868	struct regulator_dev *rdev = dev_get_drvdata(dev);
869	return sprintf(buf, "%d\n", rdev->use_count);
870}
871static DEVICE_ATTR_RO(num_users);
872
873static ssize_t type_show(struct device *dev, struct device_attribute *attr,
874			 char *buf)
875{
876	struct regulator_dev *rdev = dev_get_drvdata(dev);
877
878	switch (rdev->desc->type) {
879	case REGULATOR_VOLTAGE:
880		return sprintf(buf, "voltage\n");
881	case REGULATOR_CURRENT:
882		return sprintf(buf, "current\n");
883	}
884	return sprintf(buf, "unknown\n");
885}
886static DEVICE_ATTR_RO(type);
887
888static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
889				struct device_attribute *attr, char *buf)
890{
891	struct regulator_dev *rdev = dev_get_drvdata(dev);
892
893	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
894}
895static DEVICE_ATTR(suspend_mem_microvolts, 0444,
896		regulator_suspend_mem_uV_show, NULL);
897
898static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
899				struct device_attribute *attr, char *buf)
900{
901	struct regulator_dev *rdev = dev_get_drvdata(dev);
902
903	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
904}
905static DEVICE_ATTR(suspend_disk_microvolts, 0444,
906		regulator_suspend_disk_uV_show, NULL);
907
908static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
909				struct device_attribute *attr, char *buf)
910{
911	struct regulator_dev *rdev = dev_get_drvdata(dev);
912
913	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
914}
915static DEVICE_ATTR(suspend_standby_microvolts, 0444,
916		regulator_suspend_standby_uV_show, NULL);
917
918static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
919				struct device_attribute *attr, char *buf)
920{
921	struct regulator_dev *rdev = dev_get_drvdata(dev);
922
923	return regulator_print_opmode(buf,
924		rdev->constraints->state_mem.mode);
925}
926static DEVICE_ATTR(suspend_mem_mode, 0444,
927		regulator_suspend_mem_mode_show, NULL);
928
929static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
930				struct device_attribute *attr, char *buf)
931{
932	struct regulator_dev *rdev = dev_get_drvdata(dev);
933
934	return regulator_print_opmode(buf,
935		rdev->constraints->state_disk.mode);
936}
937static DEVICE_ATTR(suspend_disk_mode, 0444,
938		regulator_suspend_disk_mode_show, NULL);
939
940static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
941				struct device_attribute *attr, char *buf)
942{
943	struct regulator_dev *rdev = dev_get_drvdata(dev);
944
945	return regulator_print_opmode(buf,
946		rdev->constraints->state_standby.mode);
947}
948static DEVICE_ATTR(suspend_standby_mode, 0444,
949		regulator_suspend_standby_mode_show, NULL);
950
951static ssize_t regulator_suspend_mem_state_show(struct device *dev,
952				   struct device_attribute *attr, char *buf)
953{
954	struct regulator_dev *rdev = dev_get_drvdata(dev);
955
956	return regulator_print_state(buf,
957			rdev->constraints->state_mem.enabled);
958}
959static DEVICE_ATTR(suspend_mem_state, 0444,
960		regulator_suspend_mem_state_show, NULL);
961
962static ssize_t regulator_suspend_disk_state_show(struct device *dev,
963				   struct device_attribute *attr, char *buf)
964{
965	struct regulator_dev *rdev = dev_get_drvdata(dev);
966
967	return regulator_print_state(buf,
968			rdev->constraints->state_disk.enabled);
969}
970static DEVICE_ATTR(suspend_disk_state, 0444,
971		regulator_suspend_disk_state_show, NULL);
972
973static ssize_t regulator_suspend_standby_state_show(struct device *dev,
974				   struct device_attribute *attr, char *buf)
975{
976	struct regulator_dev *rdev = dev_get_drvdata(dev);
977
978	return regulator_print_state(buf,
979			rdev->constraints->state_standby.enabled);
980}
981static DEVICE_ATTR(suspend_standby_state, 0444,
982		regulator_suspend_standby_state_show, NULL);
983
984static ssize_t regulator_bypass_show(struct device *dev,
985				     struct device_attribute *attr, char *buf)
986{
987	struct regulator_dev *rdev = dev_get_drvdata(dev);
988	const char *report;
989	bool bypass;
990	int ret;
991
992	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
993
994	if (ret != 0)
995		report = "unknown";
996	else if (bypass)
997		report = "enabled";
998	else
999		report = "disabled";
1000
1001	return sprintf(buf, "%s\n", report);
1002}
1003static DEVICE_ATTR(bypass, 0444,
1004		   regulator_bypass_show, NULL);
1005
1006/* Calculate the new optimum regulator operating mode based on the new total
1007 * consumer load. All locks held by caller */
1008static int drms_uA_update(struct regulator_dev *rdev)
1009{
1010	struct regulator *sibling;
1011	int current_uA = 0, output_uV, input_uV, err;
1012	unsigned int mode;
1013
1014	/*
1015	 * first check to see if we can set modes at all, otherwise just
1016	 * tell the consumer everything is OK.
1017	 */
1018	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1019		rdev_dbg(rdev, "DRMS operation not allowed\n");
1020		return 0;
1021	}
1022
1023	if (!rdev->desc->ops->get_optimum_mode &&
1024	    !rdev->desc->ops->set_load)
1025		return 0;
1026
1027	if (!rdev->desc->ops->set_mode &&
1028	    !rdev->desc->ops->set_load)
1029		return -EINVAL;
1030
1031	/* calc total requested load */
1032	list_for_each_entry(sibling, &rdev->consumer_list, list) {
1033		if (sibling->enable_count)
1034			current_uA += sibling->uA_load;
1035	}
1036
1037	current_uA += rdev->constraints->system_load;
1038
1039	if (rdev->desc->ops->set_load) {
1040		/* set the optimum mode for our new total regulator load */
1041		err = rdev->desc->ops->set_load(rdev, current_uA);
1042		if (err < 0)
1043			rdev_err(rdev, "failed to set load %d: %pe\n",
1044				 current_uA, ERR_PTR(err));
1045	} else {
1046		/* get output voltage */
1047		output_uV = regulator_get_voltage_rdev(rdev);
1048		if (output_uV <= 0) {
1049			rdev_err(rdev, "invalid output voltage found\n");
1050			return -EINVAL;
1051		}
1052
1053		/* get input voltage */
1054		input_uV = 0;
1055		if (rdev->supply)
1056			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1057		if (input_uV <= 0)
1058			input_uV = rdev->constraints->input_uV;
1059		if (input_uV <= 0) {
1060			rdev_err(rdev, "invalid input voltage found\n");
1061			return -EINVAL;
1062		}
1063
1064		/* now get the optimum mode for our new total regulator load */
1065		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1066							 output_uV, current_uA);
1067
1068		/* check the new mode is allowed */
1069		err = regulator_mode_constrain(rdev, &mode);
1070		if (err < 0) {
1071			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1072				 current_uA, input_uV, output_uV, ERR_PTR(err));
1073			return err;
1074		}
1075
1076		err = rdev->desc->ops->set_mode(rdev, mode);
1077		if (err < 0)
1078			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1079				 mode, ERR_PTR(err));
1080	}
1081
1082	return err;
1083}
1084
1085static int __suspend_set_state(struct regulator_dev *rdev,
1086			       const struct regulator_state *rstate)
1087{
1088	int ret = 0;
1089
1090	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1091		rdev->desc->ops->set_suspend_enable)
1092		ret = rdev->desc->ops->set_suspend_enable(rdev);
1093	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1094		rdev->desc->ops->set_suspend_disable)
1095		ret = rdev->desc->ops->set_suspend_disable(rdev);
1096	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1097		ret = 0;
1098
1099	if (ret < 0) {
1100		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1101		return ret;
1102	}
1103
1104	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1105		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1106		if (ret < 0) {
1107			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1108			return ret;
1109		}
1110	}
1111
1112	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1113		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1114		if (ret < 0) {
1115			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1116			return ret;
1117		}
1118	}
1119
1120	return ret;
1121}
1122
1123static int suspend_set_initial_state(struct regulator_dev *rdev)
1124{
1125	const struct regulator_state *rstate;
1126
1127	rstate = regulator_get_suspend_state_check(rdev,
1128			rdev->constraints->initial_state);
1129	if (!rstate)
1130		return 0;
1131
1132	return __suspend_set_state(rdev, rstate);
1133}
1134
1135#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1136static void print_constraints_debug(struct regulator_dev *rdev)
1137{
1138	struct regulation_constraints *constraints = rdev->constraints;
1139	char buf[160] = "";
1140	size_t len = sizeof(buf) - 1;
1141	int count = 0;
1142	int ret;
1143
1144	if (constraints->min_uV && constraints->max_uV) {
1145		if (constraints->min_uV == constraints->max_uV)
1146			count += scnprintf(buf + count, len - count, "%d mV ",
1147					   constraints->min_uV / 1000);
1148		else
1149			count += scnprintf(buf + count, len - count,
1150					   "%d <--> %d mV ",
1151					   constraints->min_uV / 1000,
1152					   constraints->max_uV / 1000);
1153	}
1154
1155	if (!constraints->min_uV ||
1156	    constraints->min_uV != constraints->max_uV) {
1157		ret = regulator_get_voltage_rdev(rdev);
1158		if (ret > 0)
1159			count += scnprintf(buf + count, len - count,
1160					   "at %d mV ", ret / 1000);
1161	}
1162
1163	if (constraints->uV_offset)
1164		count += scnprintf(buf + count, len - count, "%dmV offset ",
1165				   constraints->uV_offset / 1000);
1166
1167	if (constraints->min_uA && constraints->max_uA) {
1168		if (constraints->min_uA == constraints->max_uA)
1169			count += scnprintf(buf + count, len - count, "%d mA ",
1170					   constraints->min_uA / 1000);
1171		else
1172			count += scnprintf(buf + count, len - count,
1173					   "%d <--> %d mA ",
1174					   constraints->min_uA / 1000,
1175					   constraints->max_uA / 1000);
1176	}
1177
1178	if (!constraints->min_uA ||
1179	    constraints->min_uA != constraints->max_uA) {
1180		ret = _regulator_get_current_limit(rdev);
1181		if (ret > 0)
1182			count += scnprintf(buf + count, len - count,
1183					   "at %d mA ", ret / 1000);
1184	}
1185
1186	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1187		count += scnprintf(buf + count, len - count, "fast ");
1188	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1189		count += scnprintf(buf + count, len - count, "normal ");
1190	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1191		count += scnprintf(buf + count, len - count, "idle ");
1192	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1193		count += scnprintf(buf + count, len - count, "standby ");
1194
1195	if (!count)
1196		count = scnprintf(buf, len, "no parameters");
1197	else
1198		--count;
1199
1200	count += scnprintf(buf + count, len - count, ", %s",
1201		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1202
1203	rdev_dbg(rdev, "%s\n", buf);
1204}
1205#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1206static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1207#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1208
1209static void print_constraints(struct regulator_dev *rdev)
1210{
1211	struct regulation_constraints *constraints = rdev->constraints;
1212
1213	print_constraints_debug(rdev);
1214
1215	if ((constraints->min_uV != constraints->max_uV) &&
1216	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1217		rdev_warn(rdev,
1218			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1219}
1220
1221static int machine_constraints_voltage(struct regulator_dev *rdev,
1222	struct regulation_constraints *constraints)
1223{
1224	const struct regulator_ops *ops = rdev->desc->ops;
1225	int ret;
1226
1227	/* do we need to apply the constraint voltage */
1228	if (rdev->constraints->apply_uV &&
1229	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1230		int target_min, target_max;
1231		int current_uV = regulator_get_voltage_rdev(rdev);
1232
1233		if (current_uV == -ENOTRECOVERABLE) {
1234			/* This regulator can't be read and must be initialized */
1235			rdev_info(rdev, "Setting %d-%duV\n",
1236				  rdev->constraints->min_uV,
1237				  rdev->constraints->max_uV);
1238			_regulator_do_set_voltage(rdev,
1239						  rdev->constraints->min_uV,
1240						  rdev->constraints->max_uV);
1241			current_uV = regulator_get_voltage_rdev(rdev);
1242		}
1243
1244		if (current_uV < 0) {
1245			rdev_err(rdev,
1246				 "failed to get the current voltage: %pe\n",
1247				 ERR_PTR(current_uV));
1248			return current_uV;
1249		}
1250
1251		/*
1252		 * If we're below the minimum voltage move up to the
1253		 * minimum voltage, if we're above the maximum voltage
1254		 * then move down to the maximum.
1255		 */
1256		target_min = current_uV;
1257		target_max = current_uV;
1258
1259		if (current_uV < rdev->constraints->min_uV) {
1260			target_min = rdev->constraints->min_uV;
1261			target_max = rdev->constraints->min_uV;
1262		}
1263
1264		if (current_uV > rdev->constraints->max_uV) {
1265			target_min = rdev->constraints->max_uV;
1266			target_max = rdev->constraints->max_uV;
1267		}
1268
1269		if (target_min != current_uV || target_max != current_uV) {
1270			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1271				  current_uV, target_min, target_max);
1272			ret = _regulator_do_set_voltage(
1273				rdev, target_min, target_max);
1274			if (ret < 0) {
1275				rdev_err(rdev,
1276					"failed to apply %d-%duV constraint: %pe\n",
1277					target_min, target_max, ERR_PTR(ret));
1278				return ret;
1279			}
1280		}
1281	}
1282
1283	/* constrain machine-level voltage specs to fit
1284	 * the actual range supported by this regulator.
1285	 */
1286	if (ops->list_voltage && rdev->desc->n_voltages) {
1287		int	count = rdev->desc->n_voltages;
1288		int	i;
1289		int	min_uV = INT_MAX;
1290		int	max_uV = INT_MIN;
1291		int	cmin = constraints->min_uV;
1292		int	cmax = constraints->max_uV;
1293
1294		/* it's safe to autoconfigure fixed-voltage supplies
1295		   and the constraints are used by list_voltage. */
1296		if (count == 1 && !cmin) {
1297			cmin = 1;
1298			cmax = INT_MAX;
1299			constraints->min_uV = cmin;
1300			constraints->max_uV = cmax;
1301		}
1302
1303		/* voltage constraints are optional */
1304		if ((cmin == 0) && (cmax == 0))
1305			return 0;
1306
1307		/* else require explicit machine-level constraints */
1308		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1309			rdev_err(rdev, "invalid voltage constraints\n");
1310			return -EINVAL;
1311		}
1312
1313		/* no need to loop voltages if range is continuous */
1314		if (rdev->desc->continuous_voltage_range)
1315			return 0;
1316
1317		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1318		for (i = 0; i < count; i++) {
1319			int	value;
1320
1321			value = ops->list_voltage(rdev, i);
1322			if (value <= 0)
1323				continue;
1324
1325			/* maybe adjust [min_uV..max_uV] */
1326			if (value >= cmin && value < min_uV)
1327				min_uV = value;
1328			if (value <= cmax && value > max_uV)
1329				max_uV = value;
1330		}
1331
1332		/* final: [min_uV..max_uV] valid iff constraints valid */
1333		if (max_uV < min_uV) {
1334			rdev_err(rdev,
1335				 "unsupportable voltage constraints %u-%uuV\n",
1336				 min_uV, max_uV);
1337			return -EINVAL;
1338		}
1339
1340		/* use regulator's subset of machine constraints */
1341		if (constraints->min_uV < min_uV) {
1342			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1343				 constraints->min_uV, min_uV);
1344			constraints->min_uV = min_uV;
1345		}
1346		if (constraints->max_uV > max_uV) {
1347			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1348				 constraints->max_uV, max_uV);
1349			constraints->max_uV = max_uV;
1350		}
1351	}
1352
1353	return 0;
1354}
1355
1356static int machine_constraints_current(struct regulator_dev *rdev,
1357	struct regulation_constraints *constraints)
1358{
1359	const struct regulator_ops *ops = rdev->desc->ops;
1360	int ret;
1361
1362	if (!constraints->min_uA && !constraints->max_uA)
1363		return 0;
1364
1365	if (constraints->min_uA > constraints->max_uA) {
1366		rdev_err(rdev, "Invalid current constraints\n");
1367		return -EINVAL;
1368	}
1369
1370	if (!ops->set_current_limit || !ops->get_current_limit) {
1371		rdev_warn(rdev, "Operation of current configuration missing\n");
1372		return 0;
1373	}
1374
1375	/* Set regulator current in constraints range */
1376	ret = ops->set_current_limit(rdev, constraints->min_uA,
1377			constraints->max_uA);
1378	if (ret < 0) {
1379		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1380		return ret;
1381	}
1382
1383	return 0;
1384}
1385
1386static int _regulator_do_enable(struct regulator_dev *rdev);
1387
1388/**
1389 * set_machine_constraints - sets regulator constraints
1390 * @rdev: regulator source
1391 *
1392 * Allows platform initialisation code to define and constrain
1393 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1394 * Constraints *must* be set by platform code in order for some
1395 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1396 * set_mode.
1397 */
1398static int set_machine_constraints(struct regulator_dev *rdev)
1399{
1400	int ret = 0;
1401	const struct regulator_ops *ops = rdev->desc->ops;
1402
1403	ret = machine_constraints_voltage(rdev, rdev->constraints);
1404	if (ret != 0)
1405		return ret;
1406
1407	ret = machine_constraints_current(rdev, rdev->constraints);
1408	if (ret != 0)
1409		return ret;
1410
1411	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1412		ret = ops->set_input_current_limit(rdev,
1413						   rdev->constraints->ilim_uA);
1414		if (ret < 0) {
1415			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1416			return ret;
1417		}
1418	}
1419
1420	/* do we need to setup our suspend state */
1421	if (rdev->constraints->initial_state) {
1422		ret = suspend_set_initial_state(rdev);
1423		if (ret < 0) {
1424			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1425			return ret;
1426		}
1427	}
1428
1429	if (rdev->constraints->initial_mode) {
1430		if (!ops->set_mode) {
1431			rdev_err(rdev, "no set_mode operation\n");
1432			return -EINVAL;
1433		}
1434
1435		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1436		if (ret < 0) {
1437			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1438			return ret;
1439		}
1440	} else if (rdev->constraints->system_load) {
1441		/*
1442		 * We'll only apply the initial system load if an
1443		 * initial mode wasn't specified.
1444		 */
1445		drms_uA_update(rdev);
1446	}
1447
1448	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1449		&& ops->set_ramp_delay) {
1450		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1451		if (ret < 0) {
1452			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1453			return ret;
1454		}
1455	}
1456
1457	if (rdev->constraints->pull_down && ops->set_pull_down) {
1458		ret = ops->set_pull_down(rdev);
1459		if (ret < 0) {
1460			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1461			return ret;
1462		}
1463	}
1464
1465	if (rdev->constraints->soft_start && ops->set_soft_start) {
1466		ret = ops->set_soft_start(rdev);
1467		if (ret < 0) {
1468			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1469			return ret;
1470		}
1471	}
1472
1473	if (rdev->constraints->over_current_protection
1474		&& ops->set_over_current_protection) {
1475		ret = ops->set_over_current_protection(rdev);
1476		if (ret < 0) {
1477			rdev_err(rdev, "failed to set over current protection: %pe\n",
1478				 ERR_PTR(ret));
1479			return ret;
1480		}
1481	}
1482
1483	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1484		bool ad_state = (rdev->constraints->active_discharge ==
1485			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1486
1487		ret = ops->set_active_discharge(rdev, ad_state);
1488		if (ret < 0) {
1489			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1490			return ret;
1491		}
1492	}
1493
1494	/* If the constraints say the regulator should be on at this point
1495	 * and we have control then make sure it is enabled.
1496	 */
1497	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1498		/* If we want to enable this regulator, make sure that we know
1499		 * the supplying regulator.
1500		 */
1501		if (rdev->supply_name && !rdev->supply)
1502			return -EPROBE_DEFER;
1503
1504		/* If supplying regulator has already been enabled,
1505		 * it's not intended to have use_count increment
1506		 * when rdev is only boot-on.
1507		 */
1508		if (rdev->supply &&
1509		    (rdev->constraints->always_on ||
1510		     !regulator_is_enabled(rdev->supply))) {
1511			ret = regulator_enable(rdev->supply);
1512			if (ret < 0) {
1513				_regulator_put(rdev->supply);
1514				rdev->supply = NULL;
1515				return ret;
1516			}
1517		}
1518
1519		ret = _regulator_do_enable(rdev);
1520		if (ret < 0 && ret != -EINVAL) {
1521			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1522			return ret;
1523		}
1524
1525		if (rdev->constraints->always_on)
1526			rdev->use_count++;
1527	} else if (rdev->desc->off_on_delay) {
1528		rdev->last_off_jiffy = jiffies;
1529	}
1530
1531	print_constraints(rdev);
1532	return 0;
1533}
1534
1535/**
1536 * set_supply - set regulator supply regulator
1537 * @rdev: regulator (locked)
1538 * @supply_rdev: supply regulator (locked))
1539 *
1540 * Called by platform initialisation code to set the supply regulator for this
1541 * regulator. This ensures that a regulators supply will also be enabled by the
1542 * core if it's child is enabled.
1543 */
1544static int set_supply(struct regulator_dev *rdev,
1545		      struct regulator_dev *supply_rdev)
1546{
1547	int err;
1548
1549	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1550
1551	if (!try_module_get(supply_rdev->owner))
1552		return -ENODEV;
1553
1554	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1555	if (rdev->supply == NULL) {
1556		module_put(supply_rdev->owner);
1557		err = -ENOMEM;
1558		return err;
1559	}
1560	supply_rdev->open_count++;
1561
1562	return 0;
1563}
1564
1565/**
1566 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1567 * @rdev:         regulator source
1568 * @consumer_dev_name: dev_name() string for device supply applies to
1569 * @supply:       symbolic name for supply
1570 *
1571 * Allows platform initialisation code to map physical regulator
1572 * sources to symbolic names for supplies for use by devices.  Devices
1573 * should use these symbolic names to request regulators, avoiding the
1574 * need to provide board-specific regulator names as platform data.
1575 */
1576static int set_consumer_device_supply(struct regulator_dev *rdev,
1577				      const char *consumer_dev_name,
1578				      const char *supply)
1579{
1580	struct regulator_map *node, *new_node;
1581	int has_dev;
1582
1583	if (supply == NULL)
1584		return -EINVAL;
1585
1586	if (consumer_dev_name != NULL)
1587		has_dev = 1;
1588	else
1589		has_dev = 0;
1590
1591	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1592	if (new_node == NULL)
1593		return -ENOMEM;
1594
1595	new_node->regulator = rdev;
1596	new_node->supply = supply;
1597
1598	if (has_dev) {
1599		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1600		if (new_node->dev_name == NULL) {
1601			kfree(new_node);
1602			return -ENOMEM;
1603		}
1604	}
1605
1606	mutex_lock(&regulator_list_mutex);
1607	list_for_each_entry(node, &regulator_map_list, list) {
1608		if (node->dev_name && consumer_dev_name) {
1609			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1610				continue;
1611		} else if (node->dev_name || consumer_dev_name) {
1612			continue;
1613		}
1614
1615		if (strcmp(node->supply, supply) != 0)
1616			continue;
1617
1618		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1619			 consumer_dev_name,
1620			 dev_name(&node->regulator->dev),
1621			 node->regulator->desc->name,
1622			 supply,
1623			 dev_name(&rdev->dev), rdev_get_name(rdev));
1624		goto fail;
1625	}
1626
1627	list_add(&new_node->list, &regulator_map_list);
1628	mutex_unlock(&regulator_list_mutex);
1629
1630	return 0;
1631
1632fail:
1633	mutex_unlock(&regulator_list_mutex);
1634	kfree(new_node->dev_name);
1635	kfree(new_node);
1636	return -EBUSY;
1637}
1638
1639static void unset_regulator_supplies(struct regulator_dev *rdev)
1640{
1641	struct regulator_map *node, *n;
1642
1643	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1644		if (rdev == node->regulator) {
1645			list_del(&node->list);
1646			kfree(node->dev_name);
1647			kfree(node);
1648		}
1649	}
1650}
1651
1652#ifdef CONFIG_DEBUG_FS
1653static ssize_t constraint_flags_read_file(struct file *file,
1654					  char __user *user_buf,
1655					  size_t count, loff_t *ppos)
1656{
1657	const struct regulator *regulator = file->private_data;
1658	const struct regulation_constraints *c = regulator->rdev->constraints;
1659	char *buf;
1660	ssize_t ret;
1661
1662	if (!c)
1663		return 0;
1664
1665	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1666	if (!buf)
1667		return -ENOMEM;
1668
1669	ret = snprintf(buf, PAGE_SIZE,
1670			"always_on: %u\n"
1671			"boot_on: %u\n"
1672			"apply_uV: %u\n"
1673			"ramp_disable: %u\n"
1674			"soft_start: %u\n"
1675			"pull_down: %u\n"
1676			"over_current_protection: %u\n",
1677			c->always_on,
1678			c->boot_on,
1679			c->apply_uV,
1680			c->ramp_disable,
1681			c->soft_start,
1682			c->pull_down,
1683			c->over_current_protection);
1684
1685	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1686	kfree(buf);
1687
1688	return ret;
1689}
1690
1691#endif
1692
1693static const struct file_operations constraint_flags_fops = {
1694#ifdef CONFIG_DEBUG_FS
1695	.open = simple_open,
1696	.read = constraint_flags_read_file,
1697	.llseek = default_llseek,
1698#endif
1699};
1700
1701#define REG_STR_SIZE	64
1702
1703static struct regulator *create_regulator(struct regulator_dev *rdev,
1704					  struct device *dev,
1705					  const char *supply_name)
1706{
1707	struct regulator *regulator;
1708	int err = 0;
1709
1710	lockdep_assert_held_once(&rdev->mutex.base);
1711
1712	if (dev) {
1713		char buf[REG_STR_SIZE];
1714		int size;
1715
1716		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1717				dev->kobj.name, supply_name);
1718		if (size >= REG_STR_SIZE)
1719			return NULL;
1720
1721		supply_name = kstrdup(buf, GFP_KERNEL);
1722		if (supply_name == NULL)
1723			return NULL;
1724	} else {
1725		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1726		if (supply_name == NULL)
1727			return NULL;
1728	}
1729
1730	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1731	if (regulator == NULL) {
1732		kfree_const(supply_name);
1733		return NULL;
1734	}
1735
1736	regulator->rdev = rdev;
1737	regulator->supply_name = supply_name;
1738
1739	list_add(&regulator->list, &rdev->consumer_list);
1740
1741	if (dev) {
1742		regulator->dev = dev;
1743
1744		/* Add a link to the device sysfs entry */
1745		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1746					       supply_name);
1747		if (err) {
1748			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1749				  dev->kobj.name, ERR_PTR(err));
1750			/* non-fatal */
1751		}
1752	}
1753
1754	if (err != -EEXIST)
1755		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1756	if (IS_ERR(regulator->debugfs))
1757		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1758
1759	debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1760			   &regulator->uA_load);
1761	debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1762			   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1763	debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1764			   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1765	debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1766			    regulator, &constraint_flags_fops);
1767
1768	/*
1769	 * Check now if the regulator is an always on regulator - if
1770	 * it is then we don't need to do nearly so much work for
1771	 * enable/disable calls.
1772	 */
1773	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1774	    _regulator_is_enabled(rdev))
1775		regulator->always_on = true;
1776
1777	return regulator;
1778}
1779
1780static int _regulator_get_enable_time(struct regulator_dev *rdev)
1781{
1782	if (rdev->constraints && rdev->constraints->enable_time)
1783		return rdev->constraints->enable_time;
1784	if (rdev->desc->ops->enable_time)
1785		return rdev->desc->ops->enable_time(rdev);
1786	return rdev->desc->enable_time;
1787}
1788
1789static struct regulator_supply_alias *regulator_find_supply_alias(
1790		struct device *dev, const char *supply)
1791{
1792	struct regulator_supply_alias *map;
1793
1794	list_for_each_entry(map, &regulator_supply_alias_list, list)
1795		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1796			return map;
1797
1798	return NULL;
1799}
1800
1801static void regulator_supply_alias(struct device **dev, const char **supply)
1802{
1803	struct regulator_supply_alias *map;
1804
1805	map = regulator_find_supply_alias(*dev, *supply);
1806	if (map) {
1807		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1808				*supply, map->alias_supply,
1809				dev_name(map->alias_dev));
1810		*dev = map->alias_dev;
1811		*supply = map->alias_supply;
1812	}
1813}
1814
1815static int regulator_match(struct device *dev, const void *data)
1816{
1817	struct regulator_dev *r = dev_to_rdev(dev);
1818
1819	return strcmp(rdev_get_name(r), data) == 0;
1820}
1821
1822static struct regulator_dev *regulator_lookup_by_name(const char *name)
1823{
1824	struct device *dev;
1825
1826	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1827
1828	return dev ? dev_to_rdev(dev) : NULL;
1829}
1830
1831/**
1832 * regulator_dev_lookup - lookup a regulator device.
1833 * @dev: device for regulator "consumer".
1834 * @supply: Supply name or regulator ID.
1835 *
1836 * If successful, returns a struct regulator_dev that corresponds to the name
1837 * @supply and with the embedded struct device refcount incremented by one.
1838 * The refcount must be dropped by calling put_device().
1839 * On failure one of the following ERR-PTR-encoded values is returned:
1840 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1841 * in the future.
1842 */
1843static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1844						  const char *supply)
1845{
1846	struct regulator_dev *r = NULL;
1847	struct device_node *node;
1848	struct regulator_map *map;
1849	const char *devname = NULL;
1850
1851	regulator_supply_alias(&dev, &supply);
1852
1853	/* first do a dt based lookup */
1854	if (dev && dev->of_node) {
1855		node = of_get_regulator(dev, supply);
1856		if (node) {
1857			r = of_find_regulator_by_node(node);
1858			of_node_put(node);
1859			if (r)
1860				return r;
1861
1862			/*
1863			 * We have a node, but there is no device.
1864			 * assume it has not registered yet.
1865			 */
1866			return ERR_PTR(-EPROBE_DEFER);
1867		}
1868	}
1869
1870	/* if not found, try doing it non-dt way */
1871	if (dev)
1872		devname = dev_name(dev);
1873
1874	mutex_lock(&regulator_list_mutex);
1875	list_for_each_entry(map, &regulator_map_list, list) {
1876		/* If the mapping has a device set up it must match */
1877		if (map->dev_name &&
1878		    (!devname || strcmp(map->dev_name, devname)))
1879			continue;
1880
1881		if (strcmp(map->supply, supply) == 0 &&
1882		    get_device(&map->regulator->dev)) {
1883			r = map->regulator;
1884			break;
1885		}
1886	}
1887	mutex_unlock(&regulator_list_mutex);
1888
1889	if (r)
1890		return r;
1891
1892	r = regulator_lookup_by_name(supply);
1893	if (r)
1894		return r;
1895
1896	return ERR_PTR(-ENODEV);
1897}
1898
1899static int regulator_resolve_supply(struct regulator_dev *rdev)
1900{
1901	struct regulator_dev *r;
1902	struct device *dev = rdev->dev.parent;
1903	struct ww_acquire_ctx ww_ctx;
1904	int ret = 0;
1905
1906	/* No supply to resolve? */
1907	if (!rdev->supply_name)
1908		return 0;
1909
1910	/* Supply already resolved? (fast-path without locking contention) */
1911	if (rdev->supply)
1912		return 0;
1913
1914	r = regulator_dev_lookup(dev, rdev->supply_name);
1915	if (IS_ERR(r)) {
1916		ret = PTR_ERR(r);
1917
1918		/* Did the lookup explicitly defer for us? */
1919		if (ret == -EPROBE_DEFER)
1920			goto out;
1921
1922		if (have_full_constraints()) {
1923			r = dummy_regulator_rdev;
1924			get_device(&r->dev);
1925		} else {
1926			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1927				rdev->supply_name, rdev->desc->name);
1928			ret = -EPROBE_DEFER;
1929			goto out;
1930		}
1931	}
1932
1933	if (r == rdev) {
1934		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1935			rdev->desc->name, rdev->supply_name);
1936		if (!have_full_constraints()) {
1937			ret = -EINVAL;
1938			goto out;
1939		}
1940		r = dummy_regulator_rdev;
1941		get_device(&r->dev);
1942	}
1943
1944	/*
1945	 * If the supply's parent device is not the same as the
1946	 * regulator's parent device, then ensure the parent device
1947	 * is bound before we resolve the supply, in case the parent
1948	 * device get probe deferred and unregisters the supply.
1949	 */
1950	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1951		if (!device_is_bound(r->dev.parent)) {
1952			put_device(&r->dev);
1953			ret = -EPROBE_DEFER;
1954			goto out;
1955		}
1956	}
1957
1958	/* Recursively resolve the supply of the supply */
1959	ret = regulator_resolve_supply(r);
1960	if (ret < 0) {
1961		put_device(&r->dev);
1962		goto out;
1963	}
1964
1965	/*
1966	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1967	 * between rdev->supply null check and setting rdev->supply in
1968	 * set_supply() from concurrent tasks.
1969	 */
1970	regulator_lock_two(rdev, r, &ww_ctx);
1971
1972	/* Supply just resolved by a concurrent task? */
1973	if (rdev->supply) {
1974		regulator_unlock_two(rdev, r, &ww_ctx);
1975		put_device(&r->dev);
1976		goto out;
1977	}
1978
1979	ret = set_supply(rdev, r);
1980	if (ret < 0) {
1981		regulator_unlock_two(rdev, r, &ww_ctx);
1982		put_device(&r->dev);
1983		goto out;
1984	}
1985
1986	regulator_unlock_two(rdev, r, &ww_ctx);
1987
1988	/*
1989	 * In set_machine_constraints() we may have turned this regulator on
1990	 * but we couldn't propagate to the supply if it hadn't been resolved
1991	 * yet.  Do it now.
1992	 */
1993	if (rdev->use_count) {
1994		ret = regulator_enable(rdev->supply);
1995		if (ret < 0) {
1996			_regulator_put(rdev->supply);
1997			rdev->supply = NULL;
1998			goto out;
1999		}
2000	}
2001
2002out:
2003	return ret;
2004}
2005
2006/* Internal regulator request function */
2007struct regulator *_regulator_get(struct device *dev, const char *id,
2008				 enum regulator_get_type get_type)
2009{
2010	struct regulator_dev *rdev;
2011	struct regulator *regulator;
2012	struct device_link *link;
2013	int ret;
2014
2015	if (get_type >= MAX_GET_TYPE) {
2016		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2017		return ERR_PTR(-EINVAL);
2018	}
2019
2020	if (id == NULL) {
2021		pr_err("get() with no identifier\n");
2022		return ERR_PTR(-EINVAL);
2023	}
2024
2025	rdev = regulator_dev_lookup(dev, id);
2026	if (IS_ERR(rdev)) {
2027		ret = PTR_ERR(rdev);
2028
2029		/*
2030		 * If regulator_dev_lookup() fails with error other
2031		 * than -ENODEV our job here is done, we simply return it.
2032		 */
2033		if (ret != -ENODEV)
2034			return ERR_PTR(ret);
2035
2036		if (!have_full_constraints()) {
2037			dev_warn(dev,
2038				 "incomplete constraints, dummy supplies not allowed\n");
2039			return ERR_PTR(-ENODEV);
2040		}
2041
2042		switch (get_type) {
2043		case NORMAL_GET:
2044			/*
2045			 * Assume that a regulator is physically present and
2046			 * enabled, even if it isn't hooked up, and just
2047			 * provide a dummy.
2048			 */
2049			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2050			rdev = dummy_regulator_rdev;
2051			get_device(&rdev->dev);
2052			break;
2053
2054		case EXCLUSIVE_GET:
2055			dev_warn(dev,
2056				 "dummy supplies not allowed for exclusive requests\n");
2057			fallthrough;
2058
2059		default:
2060			return ERR_PTR(-ENODEV);
2061		}
2062	}
2063
2064	if (rdev->exclusive) {
2065		regulator = ERR_PTR(-EPERM);
2066		put_device(&rdev->dev);
2067		return regulator;
2068	}
2069
2070	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2071		regulator = ERR_PTR(-EBUSY);
2072		put_device(&rdev->dev);
2073		return regulator;
2074	}
2075
2076	mutex_lock(&regulator_list_mutex);
2077	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2078	mutex_unlock(&regulator_list_mutex);
2079
2080	if (ret != 0) {
2081		regulator = ERR_PTR(-EPROBE_DEFER);
2082		put_device(&rdev->dev);
2083		return regulator;
2084	}
2085
2086	ret = regulator_resolve_supply(rdev);
2087	if (ret < 0) {
2088		regulator = ERR_PTR(ret);
2089		put_device(&rdev->dev);
2090		return regulator;
2091	}
2092
2093	if (!try_module_get(rdev->owner)) {
2094		regulator = ERR_PTR(-EPROBE_DEFER);
2095		put_device(&rdev->dev);
2096		return regulator;
2097	}
2098
2099	regulator_lock(rdev);
2100	regulator = create_regulator(rdev, dev, id);
2101	regulator_unlock(rdev);
2102	if (regulator == NULL) {
2103		regulator = ERR_PTR(-ENOMEM);
2104		module_put(rdev->owner);
2105		put_device(&rdev->dev);
2106		return regulator;
2107	}
2108
2109	rdev->open_count++;
2110	if (get_type == EXCLUSIVE_GET) {
2111		rdev->exclusive = 1;
2112
2113		ret = _regulator_is_enabled(rdev);
2114		if (ret > 0) {
2115			rdev->use_count = 1;
2116			regulator->enable_count = 1;
2117		} else {
2118			rdev->use_count = 0;
2119			regulator->enable_count = 0;
2120		}
2121	}
2122
2123	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2124	if (!IS_ERR_OR_NULL(link))
2125		regulator->device_link = true;
2126
2127	return regulator;
2128}
2129
2130/**
2131 * regulator_get - lookup and obtain a reference to a regulator.
2132 * @dev: device for regulator "consumer"
2133 * @id: Supply name or regulator ID.
2134 *
2135 * Returns a struct regulator corresponding to the regulator producer,
2136 * or IS_ERR() condition containing errno.
2137 *
2138 * Use of supply names configured via regulator_set_device_supply() is
2139 * strongly encouraged.  It is recommended that the supply name used
2140 * should match the name used for the supply and/or the relevant
2141 * device pins in the datasheet.
2142 */
2143struct regulator *regulator_get(struct device *dev, const char *id)
2144{
2145	return _regulator_get(dev, id, NORMAL_GET);
2146}
2147EXPORT_SYMBOL_GPL(regulator_get);
2148
2149/**
2150 * regulator_get_exclusive - obtain exclusive access to a regulator.
2151 * @dev: device for regulator "consumer"
2152 * @id: Supply name or regulator ID.
2153 *
2154 * Returns a struct regulator corresponding to the regulator producer,
2155 * or IS_ERR() condition containing errno.  Other consumers will be
2156 * unable to obtain this regulator while this reference is held and the
2157 * use count for the regulator will be initialised to reflect the current
2158 * state of the regulator.
2159 *
2160 * This is intended for use by consumers which cannot tolerate shared
2161 * use of the regulator such as those which need to force the
2162 * regulator off for correct operation of the hardware they are
2163 * controlling.
2164 *
2165 * Use of supply names configured via regulator_set_device_supply() is
2166 * strongly encouraged.  It is recommended that the supply name used
2167 * should match the name used for the supply and/or the relevant
2168 * device pins in the datasheet.
2169 */
2170struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2171{
2172	return _regulator_get(dev, id, EXCLUSIVE_GET);
2173}
2174EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2175
2176/**
2177 * regulator_get_optional - obtain optional access to a regulator.
2178 * @dev: device for regulator "consumer"
2179 * @id: Supply name or regulator ID.
2180 *
2181 * Returns a struct regulator corresponding to the regulator producer,
2182 * or IS_ERR() condition containing errno.
2183 *
2184 * This is intended for use by consumers for devices which can have
2185 * some supplies unconnected in normal use, such as some MMC devices.
2186 * It can allow the regulator core to provide stub supplies for other
2187 * supplies requested using normal regulator_get() calls without
2188 * disrupting the operation of drivers that can handle absent
2189 * supplies.
2190 *
2191 * Use of supply names configured via regulator_set_device_supply() is
2192 * strongly encouraged.  It is recommended that the supply name used
2193 * should match the name used for the supply and/or the relevant
2194 * device pins in the datasheet.
2195 */
2196struct regulator *regulator_get_optional(struct device *dev, const char *id)
2197{
2198	return _regulator_get(dev, id, OPTIONAL_GET);
2199}
2200EXPORT_SYMBOL_GPL(regulator_get_optional);
2201
2202static void destroy_regulator(struct regulator *regulator)
2203{
2204	struct regulator_dev *rdev = regulator->rdev;
2205
2206	debugfs_remove_recursive(regulator->debugfs);
2207
2208	if (regulator->dev) {
2209		if (regulator->device_link)
2210			device_link_remove(regulator->dev, &rdev->dev);
2211
2212		/* remove any sysfs entries */
2213		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2214	}
2215
2216	regulator_lock(rdev);
2217	list_del(&regulator->list);
2218
2219	rdev->open_count--;
2220	rdev->exclusive = 0;
2221	regulator_unlock(rdev);
2222
2223	kfree_const(regulator->supply_name);
2224	kfree(regulator);
2225}
2226
2227/* regulator_list_mutex lock held by regulator_put() */
2228static void _regulator_put(struct regulator *regulator)
2229{
2230	struct regulator_dev *rdev;
2231
2232	if (IS_ERR_OR_NULL(regulator))
2233		return;
2234
2235	lockdep_assert_held_once(&regulator_list_mutex);
2236
2237	/* Docs say you must disable before calling regulator_put() */
2238	WARN_ON(regulator->enable_count);
2239
2240	rdev = regulator->rdev;
2241
2242	destroy_regulator(regulator);
2243
2244	module_put(rdev->owner);
2245	put_device(&rdev->dev);
2246}
2247
2248/**
2249 * regulator_put - "free" the regulator source
2250 * @regulator: regulator source
2251 *
2252 * Note: drivers must ensure that all regulator_enable calls made on this
2253 * regulator source are balanced by regulator_disable calls prior to calling
2254 * this function.
2255 */
2256void regulator_put(struct regulator *regulator)
2257{
2258	mutex_lock(&regulator_list_mutex);
2259	_regulator_put(regulator);
2260	mutex_unlock(&regulator_list_mutex);
2261}
2262EXPORT_SYMBOL_GPL(regulator_put);
2263
2264/**
2265 * regulator_register_supply_alias - Provide device alias for supply lookup
2266 *
2267 * @dev: device that will be given as the regulator "consumer"
2268 * @id: Supply name or regulator ID
2269 * @alias_dev: device that should be used to lookup the supply
2270 * @alias_id: Supply name or regulator ID that should be used to lookup the
2271 * supply
2272 *
2273 * All lookups for id on dev will instead be conducted for alias_id on
2274 * alias_dev.
2275 */
2276int regulator_register_supply_alias(struct device *dev, const char *id,
2277				    struct device *alias_dev,
2278				    const char *alias_id)
2279{
2280	struct regulator_supply_alias *map;
2281
2282	map = regulator_find_supply_alias(dev, id);
2283	if (map)
2284		return -EEXIST;
2285
2286	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2287	if (!map)
2288		return -ENOMEM;
2289
2290	map->src_dev = dev;
2291	map->src_supply = id;
2292	map->alias_dev = alias_dev;
2293	map->alias_supply = alias_id;
2294
2295	list_add(&map->list, &regulator_supply_alias_list);
2296
2297	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2298		id, dev_name(dev), alias_id, dev_name(alias_dev));
2299
2300	return 0;
2301}
2302EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2303
2304/**
2305 * regulator_unregister_supply_alias - Remove device alias
2306 *
2307 * @dev: device that will be given as the regulator "consumer"
2308 * @id: Supply name or regulator ID
2309 *
2310 * Remove a lookup alias if one exists for id on dev.
2311 */
2312void regulator_unregister_supply_alias(struct device *dev, const char *id)
2313{
2314	struct regulator_supply_alias *map;
2315
2316	map = regulator_find_supply_alias(dev, id);
2317	if (map) {
2318		list_del(&map->list);
2319		kfree(map);
2320	}
2321}
2322EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2323
2324/**
2325 * regulator_bulk_register_supply_alias - register multiple aliases
2326 *
2327 * @dev: device that will be given as the regulator "consumer"
2328 * @id: List of supply names or regulator IDs
2329 * @alias_dev: device that should be used to lookup the supply
2330 * @alias_id: List of supply names or regulator IDs that should be used to
2331 * lookup the supply
2332 * @num_id: Number of aliases to register
2333 *
2334 * @return 0 on success, an errno on failure.
2335 *
2336 * This helper function allows drivers to register several supply
2337 * aliases in one operation.  If any of the aliases cannot be
2338 * registered any aliases that were registered will be removed
2339 * before returning to the caller.
2340 */
2341int regulator_bulk_register_supply_alias(struct device *dev,
2342					 const char *const *id,
2343					 struct device *alias_dev,
2344					 const char *const *alias_id,
2345					 int num_id)
2346{
2347	int i;
2348	int ret;
2349
2350	for (i = 0; i < num_id; ++i) {
2351		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2352						      alias_id[i]);
2353		if (ret < 0)
2354			goto err;
2355	}
2356
2357	return 0;
2358
2359err:
2360	dev_err(dev,
2361		"Failed to create supply alias %s,%s -> %s,%s\n",
2362		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2363
2364	while (--i >= 0)
2365		regulator_unregister_supply_alias(dev, id[i]);
2366
2367	return ret;
2368}
2369EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2370
2371/**
2372 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2373 *
2374 * @dev: device that will be given as the regulator "consumer"
2375 * @id: List of supply names or regulator IDs
2376 * @num_id: Number of aliases to unregister
2377 *
2378 * This helper function allows drivers to unregister several supply
2379 * aliases in one operation.
2380 */
2381void regulator_bulk_unregister_supply_alias(struct device *dev,
2382					    const char *const *id,
2383					    int num_id)
2384{
2385	int i;
2386
2387	for (i = 0; i < num_id; ++i)
2388		regulator_unregister_supply_alias(dev, id[i]);
2389}
2390EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2391
2392
2393/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2394static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2395				const struct regulator_config *config)
2396{
2397	struct regulator_enable_gpio *pin, *new_pin;
2398	struct gpio_desc *gpiod;
2399
2400	gpiod = config->ena_gpiod;
2401	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2402
2403	mutex_lock(&regulator_list_mutex);
2404
2405	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2406		if (pin->gpiod == gpiod) {
2407			rdev_dbg(rdev, "GPIO is already used\n");
2408			goto update_ena_gpio_to_rdev;
2409		}
2410	}
2411
2412	if (new_pin == NULL) {
2413		mutex_unlock(&regulator_list_mutex);
2414		return -ENOMEM;
2415	}
2416
2417	pin = new_pin;
2418	new_pin = NULL;
2419
2420	pin->gpiod = gpiod;
2421	list_add(&pin->list, &regulator_ena_gpio_list);
2422
2423update_ena_gpio_to_rdev:
2424	pin->request_count++;
2425	rdev->ena_pin = pin;
2426
2427	mutex_unlock(&regulator_list_mutex);
2428	kfree(new_pin);
2429
2430	return 0;
2431}
2432
2433static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2434{
2435	struct regulator_enable_gpio *pin, *n;
2436
2437	if (!rdev->ena_pin)
2438		return;
2439
2440	/* Free the GPIO only in case of no use */
2441	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2442		if (pin != rdev->ena_pin)
2443			continue;
2444
2445		if (--pin->request_count)
2446			break;
2447
2448		gpiod_put(pin->gpiod);
2449		list_del(&pin->list);
2450		kfree(pin);
2451		break;
2452	}
2453
2454	rdev->ena_pin = NULL;
2455}
2456
2457/**
2458 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2459 * @rdev: regulator_dev structure
2460 * @enable: enable GPIO at initial use?
2461 *
2462 * GPIO is enabled in case of initial use. (enable_count is 0)
2463 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2464 */
2465static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2466{
2467	struct regulator_enable_gpio *pin = rdev->ena_pin;
2468
2469	if (!pin)
2470		return -EINVAL;
2471
2472	if (enable) {
2473		/* Enable GPIO at initial use */
2474		if (pin->enable_count == 0)
2475			gpiod_set_value_cansleep(pin->gpiod, 1);
2476
2477		pin->enable_count++;
2478	} else {
2479		if (pin->enable_count > 1) {
2480			pin->enable_count--;
2481			return 0;
2482		}
2483
2484		/* Disable GPIO if not used */
2485		if (pin->enable_count <= 1) {
2486			gpiod_set_value_cansleep(pin->gpiod, 0);
2487			pin->enable_count = 0;
2488		}
2489	}
2490
2491	return 0;
2492}
2493
2494/**
2495 * _regulator_enable_delay - a delay helper function
2496 * @delay: time to delay in microseconds
2497 *
2498 * Delay for the requested amount of time as per the guidelines in:
2499 *
2500 *     Documentation/timers/timers-howto.rst
2501 *
2502 * The assumption here is that regulators will never be enabled in
2503 * atomic context and therefore sleeping functions can be used.
2504 */
2505static void _regulator_enable_delay(unsigned int delay)
2506{
2507	unsigned int ms = delay / 1000;
2508	unsigned int us = delay % 1000;
2509
2510	if (ms > 0) {
2511		/*
2512		 * For small enough values, handle super-millisecond
2513		 * delays in the usleep_range() call below.
2514		 */
2515		if (ms < 20)
2516			us += ms * 1000;
2517		else
2518			msleep(ms);
2519	}
2520
2521	/*
2522	 * Give the scheduler some room to coalesce with any other
2523	 * wakeup sources. For delays shorter than 10 us, don't even
2524	 * bother setting up high-resolution timers and just busy-
2525	 * loop.
2526	 */
2527	if (us >= 10)
2528		usleep_range(us, us + 100);
2529	else
2530		udelay(us);
2531}
2532
2533/**
2534 * _regulator_check_status_enabled
2535 *
2536 * A helper function to check if the regulator status can be interpreted
2537 * as 'regulator is enabled'.
2538 * @rdev: the regulator device to check
2539 *
2540 * Return:
2541 * * 1			- if status shows regulator is in enabled state
2542 * * 0			- if not enabled state
2543 * * Error Value	- as received from ops->get_status()
2544 */
2545static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2546{
2547	int ret = rdev->desc->ops->get_status(rdev);
2548
2549	if (ret < 0) {
2550		rdev_info(rdev, "get_status returned error: %d\n", ret);
2551		return ret;
2552	}
2553
2554	switch (ret) {
2555	case REGULATOR_STATUS_OFF:
2556	case REGULATOR_STATUS_ERROR:
2557	case REGULATOR_STATUS_UNDEFINED:
2558		return 0;
2559	default:
2560		return 1;
2561	}
2562}
2563
2564static int _regulator_do_enable(struct regulator_dev *rdev)
2565{
2566	int ret, delay;
2567
2568	/* Query before enabling in case configuration dependent.  */
2569	ret = _regulator_get_enable_time(rdev);
2570	if (ret >= 0) {
2571		delay = ret;
2572	} else {
2573		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2574		delay = 0;
2575	}
2576
2577	trace_regulator_enable(rdev_get_name(rdev));
2578
2579	if (rdev->desc->off_on_delay) {
2580		/* if needed, keep a distance of off_on_delay from last time
2581		 * this regulator was disabled.
2582		 */
2583		unsigned long start_jiffy = jiffies;
2584		unsigned long intended, max_delay, remaining;
2585
2586		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2587		intended = rdev->last_off_jiffy + max_delay;
2588
2589		if (time_before(start_jiffy, intended)) {
2590			/* calc remaining jiffies to deal with one-time
2591			 * timer wrapping.
2592			 * in case of multiple timer wrapping, either it can be
2593			 * detected by out-of-range remaining, or it cannot be
2594			 * detected and we get a penalty of
2595			 * _regulator_enable_delay().
2596			 */
2597			remaining = intended - start_jiffy;
2598			if (remaining <= max_delay)
2599				_regulator_enable_delay(
2600						jiffies_to_usecs(remaining));
2601		}
2602	}
2603
2604	if (rdev->ena_pin) {
2605		if (!rdev->ena_gpio_state) {
2606			ret = regulator_ena_gpio_ctrl(rdev, true);
2607			if (ret < 0)
2608				return ret;
2609			rdev->ena_gpio_state = 1;
2610		}
2611	} else if (rdev->desc->ops->enable) {
2612		ret = rdev->desc->ops->enable(rdev);
2613		if (ret < 0)
2614			return ret;
2615	} else {
2616		return -EINVAL;
2617	}
2618
2619	/* Allow the regulator to ramp; it would be useful to extend
2620	 * this for bulk operations so that the regulators can ramp
2621	 * together.  */
2622	trace_regulator_enable_delay(rdev_get_name(rdev));
2623
2624	/* If poll_enabled_time is set, poll upto the delay calculated
2625	 * above, delaying poll_enabled_time uS to check if the regulator
2626	 * actually got enabled.
2627	 * If the regulator isn't enabled after enable_delay has
2628	 * expired, return -ETIMEDOUT.
2629	 */
2630	if (rdev->desc->poll_enabled_time) {
2631		int time_remaining = delay;
2632
2633		while (time_remaining > 0) {
2634			_regulator_enable_delay(rdev->desc->poll_enabled_time);
2635
2636			if (rdev->desc->ops->get_status) {
2637				ret = _regulator_check_status_enabled(rdev);
2638				if (ret < 0)
2639					return ret;
2640				else if (ret)
2641					break;
2642			} else if (rdev->desc->ops->is_enabled(rdev))
2643				break;
2644
2645			time_remaining -= rdev->desc->poll_enabled_time;
2646		}
2647
2648		if (time_remaining <= 0) {
2649			rdev_err(rdev, "Enabled check timed out\n");
2650			return -ETIMEDOUT;
2651		}
2652	} else {
2653		_regulator_enable_delay(delay);
2654	}
2655
2656	trace_regulator_enable_complete(rdev_get_name(rdev));
2657
2658	return 0;
2659}
2660
2661/**
2662 * _regulator_handle_consumer_enable - handle that a consumer enabled
2663 * @regulator: regulator source
2664 *
2665 * Some things on a regulator consumer (like the contribution towards total
2666 * load on the regulator) only have an effect when the consumer wants the
2667 * regulator enabled.  Explained in example with two consumers of the same
2668 * regulator:
2669 *   consumer A: set_load(100);       => total load = 0
2670 *   consumer A: regulator_enable();  => total load = 100
2671 *   consumer B: set_load(1000);      => total load = 100
2672 *   consumer B: regulator_enable();  => total load = 1100
2673 *   consumer A: regulator_disable(); => total_load = 1000
2674 *
2675 * This function (together with _regulator_handle_consumer_disable) is
2676 * responsible for keeping track of the refcount for a given regulator consumer
2677 * and applying / unapplying these things.
2678 *
2679 * Returns 0 upon no error; -error upon error.
2680 */
2681static int _regulator_handle_consumer_enable(struct regulator *regulator)
2682{
2683	int ret;
2684	struct regulator_dev *rdev = regulator->rdev;
2685
2686	lockdep_assert_held_once(&rdev->mutex.base);
2687
2688	regulator->enable_count++;
2689	if (regulator->uA_load && regulator->enable_count == 1) {
2690		ret = drms_uA_update(rdev);
2691		if (ret)
2692			regulator->enable_count--;
2693		return ret;
2694	}
2695
2696	return 0;
2697}
2698
2699/**
2700 * _regulator_handle_consumer_disable - handle that a consumer disabled
2701 * @regulator: regulator source
2702 *
2703 * The opposite of _regulator_handle_consumer_enable().
2704 *
2705 * Returns 0 upon no error; -error upon error.
2706 */
2707static int _regulator_handle_consumer_disable(struct regulator *regulator)
2708{
2709	struct regulator_dev *rdev = regulator->rdev;
2710
2711	lockdep_assert_held_once(&rdev->mutex.base);
2712
2713	if (!regulator->enable_count) {
2714		rdev_err(rdev, "Underflow of regulator enable count\n");
2715		return -EINVAL;
2716	}
2717
2718	regulator->enable_count--;
2719	if (regulator->uA_load && regulator->enable_count == 0)
2720		return drms_uA_update(rdev);
2721
2722	return 0;
2723}
2724
2725/* locks held by regulator_enable() */
2726static int _regulator_enable(struct regulator *regulator)
2727{
2728	struct regulator_dev *rdev = regulator->rdev;
2729	int ret;
2730
2731	lockdep_assert_held_once(&rdev->mutex.base);
2732
2733	if (rdev->use_count == 0 && rdev->supply) {
2734		ret = _regulator_enable(rdev->supply);
2735		if (ret < 0)
2736			return ret;
2737	}
2738
2739	/* balance only if there are regulators coupled */
2740	if (rdev->coupling_desc.n_coupled > 1) {
2741		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2742		if (ret < 0)
2743			goto err_disable_supply;
2744	}
2745
2746	ret = _regulator_handle_consumer_enable(regulator);
2747	if (ret < 0)
2748		goto err_disable_supply;
2749
2750	if (rdev->use_count == 0) {
2751		/* The regulator may on if it's not switchable or left on */
2752		ret = _regulator_is_enabled(rdev);
2753		if (ret == -EINVAL || ret == 0) {
2754			if (!regulator_ops_is_valid(rdev,
2755					REGULATOR_CHANGE_STATUS)) {
2756				ret = -EPERM;
2757				goto err_consumer_disable;
2758			}
2759
2760			ret = _regulator_do_enable(rdev);
2761			if (ret < 0)
2762				goto err_consumer_disable;
2763
2764			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2765					     NULL);
2766		} else if (ret < 0) {
2767			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2768			goto err_consumer_disable;
2769		}
2770		/* Fallthrough on positive return values - already enabled */
2771	}
2772
2773	if (regulator->enable_count == 1)
2774		rdev->use_count++;
2775
2776	return 0;
2777
2778err_consumer_disable:
2779	_regulator_handle_consumer_disable(regulator);
2780
2781err_disable_supply:
2782	if (rdev->use_count == 0 && rdev->supply)
2783		_regulator_disable(rdev->supply);
2784
2785	return ret;
2786}
2787
2788/**
2789 * regulator_enable - enable regulator output
2790 * @regulator: regulator source
2791 *
2792 * Request that the regulator be enabled with the regulator output at
2793 * the predefined voltage or current value.  Calls to regulator_enable()
2794 * must be balanced with calls to regulator_disable().
2795 *
2796 * NOTE: the output value can be set by other drivers, boot loader or may be
2797 * hardwired in the regulator.
2798 */
2799int regulator_enable(struct regulator *regulator)
2800{
2801	struct regulator_dev *rdev = regulator->rdev;
2802	struct ww_acquire_ctx ww_ctx;
2803	int ret;
2804
2805	regulator_lock_dependent(rdev, &ww_ctx);
2806	ret = _regulator_enable(regulator);
2807	regulator_unlock_dependent(rdev, &ww_ctx);
2808
2809	return ret;
2810}
2811EXPORT_SYMBOL_GPL(regulator_enable);
2812
2813static int _regulator_do_disable(struct regulator_dev *rdev)
2814{
2815	int ret;
2816
2817	trace_regulator_disable(rdev_get_name(rdev));
2818
2819	if (rdev->ena_pin) {
2820		if (rdev->ena_gpio_state) {
2821			ret = regulator_ena_gpio_ctrl(rdev, false);
2822			if (ret < 0)
2823				return ret;
2824			rdev->ena_gpio_state = 0;
2825		}
2826
2827	} else if (rdev->desc->ops->disable) {
2828		ret = rdev->desc->ops->disable(rdev);
2829		if (ret != 0)
2830			return ret;
2831	}
2832
2833	/* cares about last_off_jiffy only if off_on_delay is required by
2834	 * device.
2835	 */
2836	if (rdev->desc->off_on_delay)
2837		rdev->last_off_jiffy = jiffies;
2838
2839	trace_regulator_disable_complete(rdev_get_name(rdev));
2840
2841	return 0;
2842}
2843
2844/* locks held by regulator_disable() */
2845static int _regulator_disable(struct regulator *regulator)
2846{
2847	struct regulator_dev *rdev = regulator->rdev;
2848	int ret = 0;
2849
2850	lockdep_assert_held_once(&rdev->mutex.base);
2851
2852	if (WARN(regulator->enable_count == 0,
2853		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2854		return -EIO;
2855
2856	if (regulator->enable_count == 1) {
2857	/* disabling last enable_count from this regulator */
2858		/* are we the last user and permitted to disable ? */
2859		if (rdev->use_count == 1 &&
2860		    (rdev->constraints && !rdev->constraints->always_on)) {
2861
2862			/* we are last user */
2863			if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2864				ret = _notifier_call_chain(rdev,
2865							   REGULATOR_EVENT_PRE_DISABLE,
2866							   NULL);
2867				if (ret & NOTIFY_STOP_MASK)
2868					return -EINVAL;
2869
2870				ret = _regulator_do_disable(rdev);
2871				if (ret < 0) {
2872					rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2873					_notifier_call_chain(rdev,
2874							REGULATOR_EVENT_ABORT_DISABLE,
2875							NULL);
2876					return ret;
2877				}
2878				_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2879						NULL);
2880			}
2881
2882			rdev->use_count = 0;
2883		} else if (rdev->use_count > 1) {
2884			rdev->use_count--;
2885		}
2886	}
2887
2888	if (ret == 0)
2889		ret = _regulator_handle_consumer_disable(regulator);
2890
2891	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2892		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2893
2894	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2895		ret = _regulator_disable(rdev->supply);
2896
2897	return ret;
2898}
2899
2900/**
2901 * regulator_disable - disable regulator output
2902 * @regulator: regulator source
2903 *
2904 * Disable the regulator output voltage or current.  Calls to
2905 * regulator_enable() must be balanced with calls to
2906 * regulator_disable().
2907 *
2908 * NOTE: this will only disable the regulator output if no other consumer
2909 * devices have it enabled, the regulator device supports disabling and
2910 * machine constraints permit this operation.
2911 */
2912int regulator_disable(struct regulator *regulator)
2913{
2914	struct regulator_dev *rdev = regulator->rdev;
2915	struct ww_acquire_ctx ww_ctx;
2916	int ret;
2917
2918	regulator_lock_dependent(rdev, &ww_ctx);
2919	ret = _regulator_disable(regulator);
2920	regulator_unlock_dependent(rdev, &ww_ctx);
2921
2922	return ret;
2923}
2924EXPORT_SYMBOL_GPL(regulator_disable);
2925
2926/* locks held by regulator_force_disable() */
2927static int _regulator_force_disable(struct regulator_dev *rdev)
2928{
2929	int ret = 0;
2930
2931	lockdep_assert_held_once(&rdev->mutex.base);
2932
2933	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2934			REGULATOR_EVENT_PRE_DISABLE, NULL);
2935	if (ret & NOTIFY_STOP_MASK)
2936		return -EINVAL;
2937
2938	ret = _regulator_do_disable(rdev);
2939	if (ret < 0) {
2940		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2941		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2942				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2943		return ret;
2944	}
2945
2946	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2947			REGULATOR_EVENT_DISABLE, NULL);
2948
2949	return 0;
2950}
2951
2952/**
2953 * regulator_force_disable - force disable regulator output
2954 * @regulator: regulator source
2955 *
2956 * Forcibly disable the regulator output voltage or current.
2957 * NOTE: this *will* disable the regulator output even if other consumer
2958 * devices have it enabled. This should be used for situations when device
2959 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2960 */
2961int regulator_force_disable(struct regulator *regulator)
2962{
2963	struct regulator_dev *rdev = regulator->rdev;
2964	struct ww_acquire_ctx ww_ctx;
2965	int ret;
2966
2967	regulator_lock_dependent(rdev, &ww_ctx);
2968
2969	ret = _regulator_force_disable(regulator->rdev);
2970
2971	if (rdev->coupling_desc.n_coupled > 1)
2972		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2973
2974	if (regulator->uA_load) {
2975		regulator->uA_load = 0;
2976		ret = drms_uA_update(rdev);
2977	}
2978
2979	if (rdev->use_count != 0 && rdev->supply)
2980		_regulator_disable(rdev->supply);
2981
2982	regulator_unlock_dependent(rdev, &ww_ctx);
2983
2984	return ret;
2985}
2986EXPORT_SYMBOL_GPL(regulator_force_disable);
2987
2988static void regulator_disable_work(struct work_struct *work)
2989{
2990	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2991						  disable_work.work);
2992	struct ww_acquire_ctx ww_ctx;
2993	int count, i, ret;
2994	struct regulator *regulator;
2995	int total_count = 0;
2996
2997	regulator_lock_dependent(rdev, &ww_ctx);
2998
2999	/*
3000	 * Workqueue functions queue the new work instance while the previous
3001	 * work instance is being processed. Cancel the queued work instance
3002	 * as the work instance under processing does the job of the queued
3003	 * work instance.
3004	 */
3005	cancel_delayed_work(&rdev->disable_work);
3006
3007	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3008		count = regulator->deferred_disables;
3009
3010		if (!count)
3011			continue;
3012
3013		total_count += count;
3014		regulator->deferred_disables = 0;
3015
3016		for (i = 0; i < count; i++) {
3017			ret = _regulator_disable(regulator);
3018			if (ret != 0)
3019				rdev_err(rdev, "Deferred disable failed: %pe\n",
3020					 ERR_PTR(ret));
3021		}
3022	}
3023	WARN_ON(!total_count);
3024
3025	if (rdev->coupling_desc.n_coupled > 1)
3026		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3027
3028	regulator_unlock_dependent(rdev, &ww_ctx);
3029}
3030
3031/**
3032 * regulator_disable_deferred - disable regulator output with delay
3033 * @regulator: regulator source
3034 * @ms: milliseconds until the regulator is disabled
3035 *
3036 * Execute regulator_disable() on the regulator after a delay.  This
3037 * is intended for use with devices that require some time to quiesce.
3038 *
3039 * NOTE: this will only disable the regulator output if no other consumer
3040 * devices have it enabled, the regulator device supports disabling and
3041 * machine constraints permit this operation.
3042 */
3043int regulator_disable_deferred(struct regulator *regulator, int ms)
3044{
3045	struct regulator_dev *rdev = regulator->rdev;
3046
3047	if (!ms)
3048		return regulator_disable(regulator);
3049
3050	regulator_lock(rdev);
3051	regulator->deferred_disables++;
3052	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3053			 msecs_to_jiffies(ms));
3054	regulator_unlock(rdev);
3055
3056	return 0;
3057}
3058EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3059
3060static int _regulator_is_enabled(struct regulator_dev *rdev)
3061{
3062	/* A GPIO control always takes precedence */
3063	if (rdev->ena_pin)
3064		return rdev->ena_gpio_state;
3065
3066	/* If we don't know then assume that the regulator is always on */
3067	if (!rdev->desc->ops->is_enabled)
3068		return 1;
3069
3070	return rdev->desc->ops->is_enabled(rdev);
3071}
3072
3073static int _regulator_list_voltage(struct regulator_dev *rdev,
3074				   unsigned selector, int lock)
3075{
3076	const struct regulator_ops *ops = rdev->desc->ops;
3077	int ret;
3078
3079	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3080		return rdev->desc->fixed_uV;
3081
3082	if (ops->list_voltage) {
3083		if (selector >= rdev->desc->n_voltages)
3084			return -EINVAL;
3085		if (lock)
3086			regulator_lock(rdev);
3087		ret = ops->list_voltage(rdev, selector);
3088		if (lock)
3089			regulator_unlock(rdev);
3090	} else if (rdev->is_switch && rdev->supply) {
3091		ret = _regulator_list_voltage(rdev->supply->rdev,
3092					      selector, lock);
3093	} else {
3094		return -EINVAL;
3095	}
3096
3097	if (ret > 0) {
3098		if (ret < rdev->constraints->min_uV)
3099			ret = 0;
3100		else if (ret > rdev->constraints->max_uV)
3101			ret = 0;
3102	}
3103
3104	return ret;
3105}
3106
3107/**
3108 * regulator_is_enabled - is the regulator output enabled
3109 * @regulator: regulator source
3110 *
3111 * Returns positive if the regulator driver backing the source/client
3112 * has requested that the device be enabled, zero if it hasn't, else a
3113 * negative errno code.
3114 *
3115 * Note that the device backing this regulator handle can have multiple
3116 * users, so it might be enabled even if regulator_enable() was never
3117 * called for this particular source.
3118 */
3119int regulator_is_enabled(struct regulator *regulator)
3120{
3121	int ret;
3122
3123	if (regulator->always_on)
3124		return 1;
3125
3126	regulator_lock(regulator->rdev);
3127	ret = _regulator_is_enabled(regulator->rdev);
3128	regulator_unlock(regulator->rdev);
3129
3130	return ret;
3131}
3132EXPORT_SYMBOL_GPL(regulator_is_enabled);
3133
3134/**
3135 * regulator_count_voltages - count regulator_list_voltage() selectors
3136 * @regulator: regulator source
3137 *
3138 * Returns number of selectors, or negative errno.  Selectors are
3139 * numbered starting at zero, and typically correspond to bitfields
3140 * in hardware registers.
3141 */
3142int regulator_count_voltages(struct regulator *regulator)
3143{
3144	struct regulator_dev	*rdev = regulator->rdev;
3145
3146	if (rdev->desc->n_voltages)
3147		return rdev->desc->n_voltages;
3148
3149	if (!rdev->is_switch || !rdev->supply)
3150		return -EINVAL;
3151
3152	return regulator_count_voltages(rdev->supply);
3153}
3154EXPORT_SYMBOL_GPL(regulator_count_voltages);
3155
3156/**
3157 * regulator_list_voltage - enumerate supported voltages
3158 * @regulator: regulator source
3159 * @selector: identify voltage to list
3160 * Context: can sleep
3161 *
3162 * Returns a voltage that can be passed to @regulator_set_voltage(),
3163 * zero if this selector code can't be used on this system, or a
3164 * negative errno.
3165 */
3166int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3167{
3168	return _regulator_list_voltage(regulator->rdev, selector, 1);
3169}
3170EXPORT_SYMBOL_GPL(regulator_list_voltage);
3171
3172/**
3173 * regulator_get_regmap - get the regulator's register map
3174 * @regulator: regulator source
3175 *
3176 * Returns the register map for the given regulator, or an ERR_PTR value
3177 * if the regulator doesn't use regmap.
3178 */
3179struct regmap *regulator_get_regmap(struct regulator *regulator)
3180{
3181	struct regmap *map = regulator->rdev->regmap;
3182
3183	return map ? map : ERR_PTR(-EOPNOTSUPP);
3184}
3185
3186/**
3187 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3188 * @regulator: regulator source
3189 * @vsel_reg: voltage selector register, output parameter
3190 * @vsel_mask: mask for voltage selector bitfield, output parameter
3191 *
3192 * Returns the hardware register offset and bitmask used for setting the
3193 * regulator voltage. This might be useful when configuring voltage-scaling
3194 * hardware or firmware that can make I2C requests behind the kernel's back,
3195 * for example.
3196 *
3197 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3198 * and 0 is returned, otherwise a negative errno is returned.
3199 */
3200int regulator_get_hardware_vsel_register(struct regulator *regulator,
3201					 unsigned *vsel_reg,
3202					 unsigned *vsel_mask)
3203{
3204	struct regulator_dev *rdev = regulator->rdev;
3205	const struct regulator_ops *ops = rdev->desc->ops;
3206
3207	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3208		return -EOPNOTSUPP;
3209
3210	*vsel_reg = rdev->desc->vsel_reg;
3211	*vsel_mask = rdev->desc->vsel_mask;
3212
3213	return 0;
3214}
3215EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3216
3217/**
3218 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3219 * @regulator: regulator source
3220 * @selector: identify voltage to list
3221 *
3222 * Converts the selector to a hardware-specific voltage selector that can be
3223 * directly written to the regulator registers. The address of the voltage
3224 * register can be determined by calling @regulator_get_hardware_vsel_register.
3225 *
3226 * On error a negative errno is returned.
3227 */
3228int regulator_list_hardware_vsel(struct regulator *regulator,
3229				 unsigned selector)
3230{
3231	struct regulator_dev *rdev = regulator->rdev;
3232	const struct regulator_ops *ops = rdev->desc->ops;
3233
3234	if (selector >= rdev->desc->n_voltages)
3235		return -EINVAL;
3236	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3237		return -EOPNOTSUPP;
3238
3239	return selector;
3240}
3241EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3242
3243/**
3244 * regulator_get_linear_step - return the voltage step size between VSEL values
3245 * @regulator: regulator source
3246 *
3247 * Returns the voltage step size between VSEL values for linear
3248 * regulators, or return 0 if the regulator isn't a linear regulator.
3249 */
3250unsigned int regulator_get_linear_step(struct regulator *regulator)
3251{
3252	struct regulator_dev *rdev = regulator->rdev;
3253
3254	return rdev->desc->uV_step;
3255}
3256EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3257
3258/**
3259 * regulator_is_supported_voltage - check if a voltage range can be supported
3260 *
3261 * @regulator: Regulator to check.
3262 * @min_uV: Minimum required voltage in uV.
3263 * @max_uV: Maximum required voltage in uV.
3264 *
3265 * Returns a boolean.
3266 */
3267int regulator_is_supported_voltage(struct regulator *regulator,
3268				   int min_uV, int max_uV)
3269{
3270	struct regulator_dev *rdev = regulator->rdev;
3271	int i, voltages, ret;
3272
3273	/* If we can't change voltage check the current voltage */
3274	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3275		ret = regulator_get_voltage(regulator);
3276		if (ret >= 0)
3277			return min_uV <= ret && ret <= max_uV;
3278		else
3279			return ret;
3280	}
3281
3282	/* Any voltage within constrains range is fine? */
3283	if (rdev->desc->continuous_voltage_range)
3284		return min_uV >= rdev->constraints->min_uV &&
3285				max_uV <= rdev->constraints->max_uV;
3286
3287	ret = regulator_count_voltages(regulator);
3288	if (ret < 0)
3289		return 0;
3290	voltages = ret;
3291
3292	for (i = 0; i < voltages; i++) {
3293		ret = regulator_list_voltage(regulator, i);
3294
3295		if (ret >= min_uV && ret <= max_uV)
3296			return 1;
3297	}
3298
3299	return 0;
3300}
3301EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3302
3303static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3304				 int max_uV)
3305{
3306	const struct regulator_desc *desc = rdev->desc;
3307
3308	if (desc->ops->map_voltage)
3309		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3310
3311	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3312		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3313
3314	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3315		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3316
3317	if (desc->ops->list_voltage ==
3318		regulator_list_voltage_pickable_linear_range)
3319		return regulator_map_voltage_pickable_linear_range(rdev,
3320							min_uV, max_uV);
3321
3322	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3323}
3324
3325static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3326				       int min_uV, int max_uV,
3327				       unsigned *selector)
3328{
3329	struct pre_voltage_change_data data;
3330	int ret;
3331
3332	data.old_uV = regulator_get_voltage_rdev(rdev);
3333	data.min_uV = min_uV;
3334	data.max_uV = max_uV;
3335	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3336				   &data);
3337	if (ret & NOTIFY_STOP_MASK)
3338		return -EINVAL;
3339
3340	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3341	if (ret >= 0)
3342		return ret;
3343
3344	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3345			     (void *)data.old_uV);
3346
3347	return ret;
3348}
3349
3350static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3351					   int uV, unsigned selector)
3352{
3353	struct pre_voltage_change_data data;
3354	int ret;
3355
3356	data.old_uV = regulator_get_voltage_rdev(rdev);
3357	data.min_uV = uV;
3358	data.max_uV = uV;
3359	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3360				   &data);
3361	if (ret & NOTIFY_STOP_MASK)
3362		return -EINVAL;
3363
3364	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3365	if (ret >= 0)
3366		return ret;
3367
3368	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3369			     (void *)data.old_uV);
3370
3371	return ret;
3372}
3373
3374static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3375					   int uV, int new_selector)
3376{
3377	const struct regulator_ops *ops = rdev->desc->ops;
3378	int diff, old_sel, curr_sel, ret;
3379
3380	/* Stepping is only needed if the regulator is enabled. */
3381	if (!_regulator_is_enabled(rdev))
3382		goto final_set;
3383
3384	if (!ops->get_voltage_sel)
3385		return -EINVAL;
3386
3387	old_sel = ops->get_voltage_sel(rdev);
3388	if (old_sel < 0)
3389		return old_sel;
3390
3391	diff = new_selector - old_sel;
3392	if (diff == 0)
3393		return 0; /* No change needed. */
3394
3395	if (diff > 0) {
3396		/* Stepping up. */
3397		for (curr_sel = old_sel + rdev->desc->vsel_step;
3398		     curr_sel < new_selector;
3399		     curr_sel += rdev->desc->vsel_step) {
3400			/*
3401			 * Call the callback directly instead of using
3402			 * _regulator_call_set_voltage_sel() as we don't
3403			 * want to notify anyone yet. Same in the branch
3404			 * below.
3405			 */
3406			ret = ops->set_voltage_sel(rdev, curr_sel);
3407			if (ret)
3408				goto try_revert;
3409		}
3410	} else {
3411		/* Stepping down. */
3412		for (curr_sel = old_sel - rdev->desc->vsel_step;
3413		     curr_sel > new_selector;
3414		     curr_sel -= rdev->desc->vsel_step) {
3415			ret = ops->set_voltage_sel(rdev, curr_sel);
3416			if (ret)
3417				goto try_revert;
3418		}
3419	}
3420
3421final_set:
3422	/* The final selector will trigger the notifiers. */
3423	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3424
3425try_revert:
3426	/*
3427	 * At least try to return to the previous voltage if setting a new
3428	 * one failed.
3429	 */
3430	(void)ops->set_voltage_sel(rdev, old_sel);
3431	return ret;
3432}
3433
3434static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3435				       int old_uV, int new_uV)
3436{
3437	unsigned int ramp_delay = 0;
3438
3439	if (rdev->constraints->ramp_delay)
3440		ramp_delay = rdev->constraints->ramp_delay;
3441	else if (rdev->desc->ramp_delay)
3442		ramp_delay = rdev->desc->ramp_delay;
3443	else if (rdev->constraints->settling_time)
3444		return rdev->constraints->settling_time;
3445	else if (rdev->constraints->settling_time_up &&
3446		 (new_uV > old_uV))
3447		return rdev->constraints->settling_time_up;
3448	else if (rdev->constraints->settling_time_down &&
3449		 (new_uV < old_uV))
3450		return rdev->constraints->settling_time_down;
3451
3452	if (ramp_delay == 0) {
3453		rdev_dbg(rdev, "ramp_delay not set\n");
3454		return 0;
3455	}
3456
3457	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3458}
3459
3460static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3461				     int min_uV, int max_uV)
3462{
3463	int ret;
3464	int delay = 0;
3465	int best_val = 0;
3466	unsigned int selector;
3467	int old_selector = -1;
3468	const struct regulator_ops *ops = rdev->desc->ops;
3469	int old_uV = regulator_get_voltage_rdev(rdev);
3470
3471	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3472
3473	min_uV += rdev->constraints->uV_offset;
3474	max_uV += rdev->constraints->uV_offset;
3475
3476	/*
3477	 * If we can't obtain the old selector there is not enough
3478	 * info to call set_voltage_time_sel().
3479	 */
3480	if (_regulator_is_enabled(rdev) &&
3481	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3482		old_selector = ops->get_voltage_sel(rdev);
3483		if (old_selector < 0)
3484			return old_selector;
3485	}
3486
3487	if (ops->set_voltage) {
3488		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3489						  &selector);
3490
3491		if (ret >= 0) {
3492			if (ops->list_voltage)
3493				best_val = ops->list_voltage(rdev,
3494							     selector);
3495			else
3496				best_val = regulator_get_voltage_rdev(rdev);
3497		}
3498
3499	} else if (ops->set_voltage_sel) {
3500		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3501		if (ret >= 0) {
3502			best_val = ops->list_voltage(rdev, ret);
3503			if (min_uV <= best_val && max_uV >= best_val) {
3504				selector = ret;
3505				if (old_selector == selector)
3506					ret = 0;
3507				else if (rdev->desc->vsel_step)
3508					ret = _regulator_set_voltage_sel_step(
3509						rdev, best_val, selector);
3510				else
3511					ret = _regulator_call_set_voltage_sel(
3512						rdev, best_val, selector);
3513			} else {
3514				ret = -EINVAL;
3515			}
3516		}
3517	} else {
3518		ret = -EINVAL;
3519	}
3520
3521	if (ret)
3522		goto out;
3523
3524	if (ops->set_voltage_time_sel) {
3525		/*
3526		 * Call set_voltage_time_sel if successfully obtained
3527		 * old_selector
3528		 */
3529		if (old_selector >= 0 && old_selector != selector)
3530			delay = ops->set_voltage_time_sel(rdev, old_selector,
3531							  selector);
3532	} else {
3533		if (old_uV != best_val) {
3534			if (ops->set_voltage_time)
3535				delay = ops->set_voltage_time(rdev, old_uV,
3536							      best_val);
3537			else
3538				delay = _regulator_set_voltage_time(rdev,
3539								    old_uV,
3540								    best_val);
3541		}
3542	}
3543
3544	if (delay < 0) {
3545		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3546		delay = 0;
3547	}
3548
3549	/* Insert any necessary delays */
3550	if (delay >= 1000) {
3551		mdelay(delay / 1000);
3552		udelay(delay % 1000);
3553	} else if (delay) {
3554		udelay(delay);
3555	}
3556
3557	if (best_val >= 0) {
3558		unsigned long data = best_val;
3559
3560		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3561				     (void *)data);
3562	}
3563
3564out:
3565	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3566
3567	return ret;
3568}
3569
3570static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3571				  int min_uV, int max_uV, suspend_state_t state)
3572{
3573	struct regulator_state *rstate;
3574	int uV, sel;
3575
3576	rstate = regulator_get_suspend_state(rdev, state);
3577	if (rstate == NULL)
3578		return -EINVAL;
3579
3580	if (min_uV < rstate->min_uV)
3581		min_uV = rstate->min_uV;
3582	if (max_uV > rstate->max_uV)
3583		max_uV = rstate->max_uV;
3584
3585	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3586	if (sel < 0)
3587		return sel;
3588
3589	uV = rdev->desc->ops->list_voltage(rdev, sel);
3590	if (uV >= min_uV && uV <= max_uV)
3591		rstate->uV = uV;
3592
3593	return 0;
3594}
3595
3596static int regulator_set_voltage_unlocked(struct regulator *regulator,
3597					  int min_uV, int max_uV,
3598					  suspend_state_t state)
3599{
3600	struct regulator_dev *rdev = regulator->rdev;
3601	struct regulator_voltage *voltage = &regulator->voltage[state];
3602	int ret = 0;
3603	int old_min_uV, old_max_uV;
3604	int current_uV;
3605
3606	/* If we're setting the same range as last time the change
3607	 * should be a noop (some cpufreq implementations use the same
3608	 * voltage for multiple frequencies, for example).
3609	 */
3610	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3611		goto out;
3612
3613	/* If we're trying to set a range that overlaps the current voltage,
3614	 * return successfully even though the regulator does not support
3615	 * changing the voltage.
3616	 */
3617	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3618		current_uV = regulator_get_voltage_rdev(rdev);
3619		if (min_uV <= current_uV && current_uV <= max_uV) {
3620			voltage->min_uV = min_uV;
3621			voltage->max_uV = max_uV;
3622			goto out;
3623		}
3624	}
3625
3626	/* sanity check */
3627	if (!rdev->desc->ops->set_voltage &&
3628	    !rdev->desc->ops->set_voltage_sel) {
3629		ret = -EINVAL;
3630		goto out;
3631	}
3632
3633	/* constraints check */
3634	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3635	if (ret < 0)
3636		goto out;
3637
3638	/* restore original values in case of error */
3639	old_min_uV = voltage->min_uV;
3640	old_max_uV = voltage->max_uV;
3641	voltage->min_uV = min_uV;
3642	voltage->max_uV = max_uV;
3643
3644	/* for not coupled regulators this will just set the voltage */
3645	ret = regulator_balance_voltage(rdev, state);
3646	if (ret < 0) {
3647		voltage->min_uV = old_min_uV;
3648		voltage->max_uV = old_max_uV;
3649	}
3650
3651out:
3652	return ret;
3653}
3654
3655int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3656			       int max_uV, suspend_state_t state)
3657{
3658	int best_supply_uV = 0;
3659	int supply_change_uV = 0;
3660	int ret;
3661
3662	if (rdev->supply &&
3663	    regulator_ops_is_valid(rdev->supply->rdev,
3664				   REGULATOR_CHANGE_VOLTAGE) &&
3665	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3666					   rdev->desc->ops->get_voltage_sel))) {
3667		int current_supply_uV;
3668		int selector;
3669
3670		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3671		if (selector < 0) {
3672			ret = selector;
3673			goto out;
3674		}
3675
3676		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3677		if (best_supply_uV < 0) {
3678			ret = best_supply_uV;
3679			goto out;
3680		}
3681
3682		best_supply_uV += rdev->desc->min_dropout_uV;
3683
3684		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3685		if (current_supply_uV < 0) {
3686			ret = current_supply_uV;
3687			goto out;
3688		}
3689
3690		supply_change_uV = best_supply_uV - current_supply_uV;
3691	}
3692
3693	if (supply_change_uV > 0) {
3694		ret = regulator_set_voltage_unlocked(rdev->supply,
3695				best_supply_uV, INT_MAX, state);
3696		if (ret) {
3697			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3698				ERR_PTR(ret));
3699			goto out;
3700		}
3701	}
3702
3703	if (state == PM_SUSPEND_ON)
3704		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3705	else
3706		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3707							max_uV, state);
3708	if (ret < 0)
3709		goto out;
3710
3711	if (supply_change_uV < 0) {
3712		ret = regulator_set_voltage_unlocked(rdev->supply,
3713				best_supply_uV, INT_MAX, state);
3714		if (ret)
3715			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3716				 ERR_PTR(ret));
3717		/* No need to fail here */
3718		ret = 0;
3719	}
3720
3721out:
3722	return ret;
3723}
3724EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3725
3726static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3727					int *current_uV, int *min_uV)
3728{
3729	struct regulation_constraints *constraints = rdev->constraints;
3730
3731	/* Limit voltage change only if necessary */
3732	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3733		return 1;
3734
3735	if (*current_uV < 0) {
3736		*current_uV = regulator_get_voltage_rdev(rdev);
3737
3738		if (*current_uV < 0)
3739			return *current_uV;
3740	}
3741
3742	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3743		return 1;
3744
3745	/* Clamp target voltage within the given step */
3746	if (*current_uV < *min_uV)
3747		*min_uV = min(*current_uV + constraints->max_uV_step,
3748			      *min_uV);
3749	else
3750		*min_uV = max(*current_uV - constraints->max_uV_step,
3751			      *min_uV);
3752
3753	return 0;
3754}
3755
3756static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3757					 int *current_uV,
3758					 int *min_uV, int *max_uV,
3759					 suspend_state_t state,
3760					 int n_coupled)
3761{
3762	struct coupling_desc *c_desc = &rdev->coupling_desc;
3763	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3764	struct regulation_constraints *constraints = rdev->constraints;
3765	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3766	int max_current_uV = 0, min_current_uV = INT_MAX;
3767	int highest_min_uV = 0, target_uV, possible_uV;
3768	int i, ret, max_spread;
3769	bool done;
3770
3771	*current_uV = -1;
3772
3773	/*
3774	 * If there are no coupled regulators, simply set the voltage
3775	 * demanded by consumers.
3776	 */
3777	if (n_coupled == 1) {
3778		/*
3779		 * If consumers don't provide any demands, set voltage
3780		 * to min_uV
3781		 */
3782		desired_min_uV = constraints->min_uV;
3783		desired_max_uV = constraints->max_uV;
3784
3785		ret = regulator_check_consumers(rdev,
3786						&desired_min_uV,
3787						&desired_max_uV, state);
3788		if (ret < 0)
3789			return ret;
3790
3791		possible_uV = desired_min_uV;
3792		done = true;
3793
3794		goto finish;
3795	}
3796
3797	/* Find highest min desired voltage */
3798	for (i = 0; i < n_coupled; i++) {
3799		int tmp_min = 0;
3800		int tmp_max = INT_MAX;
3801
3802		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3803
3804		ret = regulator_check_consumers(c_rdevs[i],
3805						&tmp_min,
3806						&tmp_max, state);
3807		if (ret < 0)
3808			return ret;
3809
3810		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3811		if (ret < 0)
3812			return ret;
3813
3814		highest_min_uV = max(highest_min_uV, tmp_min);
3815
3816		if (i == 0) {
3817			desired_min_uV = tmp_min;
3818			desired_max_uV = tmp_max;
3819		}
3820	}
3821
3822	max_spread = constraints->max_spread[0];
3823
3824	/*
3825	 * Let target_uV be equal to the desired one if possible.
3826	 * If not, set it to minimum voltage, allowed by other coupled
3827	 * regulators.
3828	 */
3829	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3830
3831	/*
3832	 * Find min and max voltages, which currently aren't violating
3833	 * max_spread.
3834	 */
3835	for (i = 1; i < n_coupled; i++) {
3836		int tmp_act;
3837
3838		if (!_regulator_is_enabled(c_rdevs[i]))
3839			continue;
3840
3841		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3842		if (tmp_act < 0)
3843			return tmp_act;
3844
3845		min_current_uV = min(tmp_act, min_current_uV);
3846		max_current_uV = max(tmp_act, max_current_uV);
3847	}
3848
3849	/* There aren't any other regulators enabled */
3850	if (max_current_uV == 0) {
3851		possible_uV = target_uV;
3852	} else {
3853		/*
3854		 * Correct target voltage, so as it currently isn't
3855		 * violating max_spread
3856		 */
3857		possible_uV = max(target_uV, max_current_uV - max_spread);
3858		possible_uV = min(possible_uV, min_current_uV + max_spread);
3859	}
3860
3861	if (possible_uV > desired_max_uV)
3862		return -EINVAL;
3863
3864	done = (possible_uV == target_uV);
3865	desired_min_uV = possible_uV;
3866
3867finish:
3868	/* Apply max_uV_step constraint if necessary */
3869	if (state == PM_SUSPEND_ON) {
3870		ret = regulator_limit_voltage_step(rdev, current_uV,
3871						   &desired_min_uV);
3872		if (ret < 0)
3873			return ret;
3874
3875		if (ret == 0)
3876			done = false;
3877	}
3878
3879	/* Set current_uV if wasn't done earlier in the code and if necessary */
3880	if (n_coupled > 1 && *current_uV == -1) {
3881
3882		if (_regulator_is_enabled(rdev)) {
3883			ret = regulator_get_voltage_rdev(rdev);
3884			if (ret < 0)
3885				return ret;
3886
3887			*current_uV = ret;
3888		} else {
3889			*current_uV = desired_min_uV;
3890		}
3891	}
3892
3893	*min_uV = desired_min_uV;
3894	*max_uV = desired_max_uV;
3895
3896	return done;
3897}
3898
3899int regulator_do_balance_voltage(struct regulator_dev *rdev,
3900				 suspend_state_t state, bool skip_coupled)
3901{
3902	struct regulator_dev **c_rdevs;
3903	struct regulator_dev *best_rdev;
3904	struct coupling_desc *c_desc = &rdev->coupling_desc;
3905	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3906	unsigned int delta, best_delta;
3907	unsigned long c_rdev_done = 0;
3908	bool best_c_rdev_done;
3909
3910	c_rdevs = c_desc->coupled_rdevs;
3911	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3912
3913	/*
3914	 * Find the best possible voltage change on each loop. Leave the loop
3915	 * if there isn't any possible change.
3916	 */
3917	do {
3918		best_c_rdev_done = false;
3919		best_delta = 0;
3920		best_min_uV = 0;
3921		best_max_uV = 0;
3922		best_c_rdev = 0;
3923		best_rdev = NULL;
3924
3925		/*
3926		 * Find highest difference between optimal voltage
3927		 * and current voltage.
3928		 */
3929		for (i = 0; i < n_coupled; i++) {
3930			/*
3931			 * optimal_uV is the best voltage that can be set for
3932			 * i-th regulator at the moment without violating
3933			 * max_spread constraint in order to balance
3934			 * the coupled voltages.
3935			 */
3936			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3937
3938			if (test_bit(i, &c_rdev_done))
3939				continue;
3940
3941			ret = regulator_get_optimal_voltage(c_rdevs[i],
3942							    &current_uV,
3943							    &optimal_uV,
3944							    &optimal_max_uV,
3945							    state, n_coupled);
3946			if (ret < 0)
3947				goto out;
3948
3949			delta = abs(optimal_uV - current_uV);
3950
3951			if (delta && best_delta <= delta) {
3952				best_c_rdev_done = ret;
3953				best_delta = delta;
3954				best_rdev = c_rdevs[i];
3955				best_min_uV = optimal_uV;
3956				best_max_uV = optimal_max_uV;
3957				best_c_rdev = i;
3958			}
3959		}
3960
3961		/* Nothing to change, return successfully */
3962		if (!best_rdev) {
3963			ret = 0;
3964			goto out;
3965		}
3966
3967		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3968						 best_max_uV, state);
3969
3970		if (ret < 0)
3971			goto out;
3972
3973		if (best_c_rdev_done)
3974			set_bit(best_c_rdev, &c_rdev_done);
3975
3976	} while (n_coupled > 1);
3977
3978out:
3979	return ret;
3980}
3981
3982static int regulator_balance_voltage(struct regulator_dev *rdev,
3983				     suspend_state_t state)
3984{
3985	struct coupling_desc *c_desc = &rdev->coupling_desc;
3986	struct regulator_coupler *coupler = c_desc->coupler;
3987	bool skip_coupled = false;
3988
3989	/*
3990	 * If system is in a state other than PM_SUSPEND_ON, don't check
3991	 * other coupled regulators.
3992	 */
3993	if (state != PM_SUSPEND_ON)
3994		skip_coupled = true;
3995
3996	if (c_desc->n_resolved < c_desc->n_coupled) {
3997		rdev_err(rdev, "Not all coupled regulators registered\n");
3998		return -EPERM;
3999	}
4000
4001	/* Invoke custom balancer for customized couplers */
4002	if (coupler && coupler->balance_voltage)
4003		return coupler->balance_voltage(coupler, rdev, state);
4004
4005	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4006}
4007
4008/**
4009 * regulator_set_voltage - set regulator output voltage
4010 * @regulator: regulator source
4011 * @min_uV: Minimum required voltage in uV
4012 * @max_uV: Maximum acceptable voltage in uV
4013 *
4014 * Sets a voltage regulator to the desired output voltage. This can be set
4015 * during any regulator state. IOW, regulator can be disabled or enabled.
4016 *
4017 * If the regulator is enabled then the voltage will change to the new value
4018 * immediately otherwise if the regulator is disabled the regulator will
4019 * output at the new voltage when enabled.
4020 *
4021 * NOTE: If the regulator is shared between several devices then the lowest
4022 * request voltage that meets the system constraints will be used.
4023 * Regulator system constraints must be set for this regulator before
4024 * calling this function otherwise this call will fail.
4025 */
4026int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4027{
4028	struct ww_acquire_ctx ww_ctx;
4029	int ret;
4030
4031	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4032
4033	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4034					     PM_SUSPEND_ON);
4035
4036	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4037
4038	return ret;
4039}
4040EXPORT_SYMBOL_GPL(regulator_set_voltage);
4041
4042static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4043					   suspend_state_t state, bool en)
4044{
4045	struct regulator_state *rstate;
4046
4047	rstate = regulator_get_suspend_state(rdev, state);
4048	if (rstate == NULL)
4049		return -EINVAL;
4050
4051	if (!rstate->changeable)
4052		return -EPERM;
4053
4054	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4055
4056	return 0;
4057}
4058
4059int regulator_suspend_enable(struct regulator_dev *rdev,
4060				    suspend_state_t state)
4061{
4062	return regulator_suspend_toggle(rdev, state, true);
4063}
4064EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4065
4066int regulator_suspend_disable(struct regulator_dev *rdev,
4067				     suspend_state_t state)
4068{
4069	struct regulator *regulator;
4070	struct regulator_voltage *voltage;
4071
4072	/*
4073	 * if any consumer wants this regulator device keeping on in
4074	 * suspend states, don't set it as disabled.
4075	 */
4076	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4077		voltage = &regulator->voltage[state];
4078		if (voltage->min_uV || voltage->max_uV)
4079			return 0;
4080	}
4081
4082	return regulator_suspend_toggle(rdev, state, false);
4083}
4084EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4085
4086static int _regulator_set_suspend_voltage(struct regulator *regulator,
4087					  int min_uV, int max_uV,
4088					  suspend_state_t state)
4089{
4090	struct regulator_dev *rdev = regulator->rdev;
4091	struct regulator_state *rstate;
4092
4093	rstate = regulator_get_suspend_state(rdev, state);
4094	if (rstate == NULL)
4095		return -EINVAL;
4096
4097	if (rstate->min_uV == rstate->max_uV) {
4098		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4099		return -EPERM;
4100	}
4101
4102	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4103}
4104
4105int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4106				  int max_uV, suspend_state_t state)
4107{
4108	struct ww_acquire_ctx ww_ctx;
4109	int ret;
4110
4111	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4112	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4113		return -EINVAL;
4114
4115	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4116
4117	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4118					     max_uV, state);
4119
4120	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4121
4122	return ret;
4123}
4124EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4125
4126/**
4127 * regulator_set_voltage_time - get raise/fall time
4128 * @regulator: regulator source
4129 * @old_uV: starting voltage in microvolts
4130 * @new_uV: target voltage in microvolts
4131 *
4132 * Provided with the starting and ending voltage, this function attempts to
4133 * calculate the time in microseconds required to rise or fall to this new
4134 * voltage.
4135 */
4136int regulator_set_voltage_time(struct regulator *regulator,
4137			       int old_uV, int new_uV)
4138{
4139	struct regulator_dev *rdev = regulator->rdev;
4140	const struct regulator_ops *ops = rdev->desc->ops;
4141	int old_sel = -1;
4142	int new_sel = -1;
4143	int voltage;
4144	int i;
4145
4146	if (ops->set_voltage_time)
4147		return ops->set_voltage_time(rdev, old_uV, new_uV);
4148	else if (!ops->set_voltage_time_sel)
4149		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4150
4151	/* Currently requires operations to do this */
4152	if (!ops->list_voltage || !rdev->desc->n_voltages)
4153		return -EINVAL;
4154
4155	for (i = 0; i < rdev->desc->n_voltages; i++) {
4156		/* We only look for exact voltage matches here */
4157
4158		if (old_sel >= 0 && new_sel >= 0)
4159			break;
4160
4161		voltage = regulator_list_voltage(regulator, i);
4162		if (voltage < 0)
4163			return -EINVAL;
4164		if (voltage == 0)
4165			continue;
4166		if (voltage == old_uV)
4167			old_sel = i;
4168		if (voltage == new_uV)
4169			new_sel = i;
4170	}
4171
4172	if (old_sel < 0 || new_sel < 0)
4173		return -EINVAL;
4174
4175	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4176}
4177EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4178
4179/**
4180 * regulator_set_voltage_time_sel - get raise/fall time
4181 * @rdev: regulator source device
4182 * @old_selector: selector for starting voltage
4183 * @new_selector: selector for target voltage
4184 *
4185 * Provided with the starting and target voltage selectors, this function
4186 * returns time in microseconds required to rise or fall to this new voltage
4187 *
4188 * Drivers providing ramp_delay in regulation_constraints can use this as their
4189 * set_voltage_time_sel() operation.
4190 */
4191int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4192				   unsigned int old_selector,
4193				   unsigned int new_selector)
4194{
4195	int old_volt, new_volt;
4196
4197	/* sanity check */
4198	if (!rdev->desc->ops->list_voltage)
4199		return -EINVAL;
4200
4201	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4202	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4203
4204	if (rdev->desc->ops->set_voltage_time)
4205		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4206							 new_volt);
4207	else
4208		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4209}
4210EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4211
4212/**
4213 * regulator_sync_voltage - re-apply last regulator output voltage
4214 * @regulator: regulator source
4215 *
4216 * Re-apply the last configured voltage.  This is intended to be used
4217 * where some external control source the consumer is cooperating with
4218 * has caused the configured voltage to change.
4219 */
4220int regulator_sync_voltage(struct regulator *regulator)
4221{
4222	struct regulator_dev *rdev = regulator->rdev;
4223	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4224	int ret, min_uV, max_uV;
4225
4226	regulator_lock(rdev);
4227
4228	if (!rdev->desc->ops->set_voltage &&
4229	    !rdev->desc->ops->set_voltage_sel) {
4230		ret = -EINVAL;
4231		goto out;
4232	}
4233
4234	/* This is only going to work if we've had a voltage configured. */
4235	if (!voltage->min_uV && !voltage->max_uV) {
4236		ret = -EINVAL;
4237		goto out;
4238	}
4239
4240	min_uV = voltage->min_uV;
4241	max_uV = voltage->max_uV;
4242
4243	/* This should be a paranoia check... */
4244	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4245	if (ret < 0)
4246		goto out;
4247
4248	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4249	if (ret < 0)
4250		goto out;
4251
4252	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4253
4254out:
4255	regulator_unlock(rdev);
4256	return ret;
4257}
4258EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4259
4260int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4261{
4262	int sel, ret;
4263	bool bypassed;
4264
4265	if (rdev->desc->ops->get_bypass) {
4266		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4267		if (ret < 0)
4268			return ret;
4269		if (bypassed) {
4270			/* if bypassed the regulator must have a supply */
4271			if (!rdev->supply) {
4272				rdev_err(rdev,
4273					 "bypassed regulator has no supply!\n");
4274				return -EPROBE_DEFER;
4275			}
4276
4277			return regulator_get_voltage_rdev(rdev->supply->rdev);
4278		}
4279	}
4280
4281	if (rdev->desc->ops->get_voltage_sel) {
4282		sel = rdev->desc->ops->get_voltage_sel(rdev);
4283		if (sel < 0)
4284			return sel;
4285		ret = rdev->desc->ops->list_voltage(rdev, sel);
4286	} else if (rdev->desc->ops->get_voltage) {
4287		ret = rdev->desc->ops->get_voltage(rdev);
4288	} else if (rdev->desc->ops->list_voltage) {
4289		ret = rdev->desc->ops->list_voltage(rdev, 0);
4290	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4291		ret = rdev->desc->fixed_uV;
4292	} else if (rdev->supply) {
4293		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4294	} else if (rdev->supply_name) {
4295		return -EPROBE_DEFER;
4296	} else {
4297		return -EINVAL;
4298	}
4299
4300	if (ret < 0)
4301		return ret;
4302	return ret - rdev->constraints->uV_offset;
4303}
4304EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4305
4306/**
4307 * regulator_get_voltage - get regulator output voltage
4308 * @regulator: regulator source
4309 *
4310 * This returns the current regulator voltage in uV.
4311 *
4312 * NOTE: If the regulator is disabled it will return the voltage value. This
4313 * function should not be used to determine regulator state.
4314 */
4315int regulator_get_voltage(struct regulator *regulator)
4316{
4317	struct ww_acquire_ctx ww_ctx;
4318	int ret;
4319
4320	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4321	ret = regulator_get_voltage_rdev(regulator->rdev);
4322	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4323
4324	return ret;
4325}
4326EXPORT_SYMBOL_GPL(regulator_get_voltage);
4327
4328/**
4329 * regulator_set_current_limit - set regulator output current limit
4330 * @regulator: regulator source
4331 * @min_uA: Minimum supported current in uA
4332 * @max_uA: Maximum supported current in uA
4333 *
4334 * Sets current sink to the desired output current. This can be set during
4335 * any regulator state. IOW, regulator can be disabled or enabled.
4336 *
4337 * If the regulator is enabled then the current will change to the new value
4338 * immediately otherwise if the regulator is disabled the regulator will
4339 * output at the new current when enabled.
4340 *
4341 * NOTE: Regulator system constraints must be set for this regulator before
4342 * calling this function otherwise this call will fail.
4343 */
4344int regulator_set_current_limit(struct regulator *regulator,
4345			       int min_uA, int max_uA)
4346{
4347	struct regulator_dev *rdev = regulator->rdev;
4348	int ret;
4349
4350	regulator_lock(rdev);
4351
4352	/* sanity check */
4353	if (!rdev->desc->ops->set_current_limit) {
4354		ret = -EINVAL;
4355		goto out;
4356	}
4357
4358	/* constraints check */
4359	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4360	if (ret < 0)
4361		goto out;
4362
4363	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4364out:
4365	regulator_unlock(rdev);
4366	return ret;
4367}
4368EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4369
4370static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4371{
4372	/* sanity check */
4373	if (!rdev->desc->ops->get_current_limit)
4374		return -EINVAL;
4375
4376	return rdev->desc->ops->get_current_limit(rdev);
4377}
4378
4379static int _regulator_get_current_limit(struct regulator_dev *rdev)
4380{
4381	int ret;
4382
4383	regulator_lock(rdev);
4384	ret = _regulator_get_current_limit_unlocked(rdev);
4385	regulator_unlock(rdev);
4386
4387	return ret;
4388}
4389
4390/**
4391 * regulator_get_current_limit - get regulator output current
4392 * @regulator: regulator source
4393 *
4394 * This returns the current supplied by the specified current sink in uA.
4395 *
4396 * NOTE: If the regulator is disabled it will return the current value. This
4397 * function should not be used to determine regulator state.
4398 */
4399int regulator_get_current_limit(struct regulator *regulator)
4400{
4401	return _regulator_get_current_limit(regulator->rdev);
4402}
4403EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4404
4405/**
4406 * regulator_set_mode - set regulator operating mode
4407 * @regulator: regulator source
4408 * @mode: operating mode - one of the REGULATOR_MODE constants
4409 *
4410 * Set regulator operating mode to increase regulator efficiency or improve
4411 * regulation performance.
4412 *
4413 * NOTE: Regulator system constraints must be set for this regulator before
4414 * calling this function otherwise this call will fail.
4415 */
4416int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4417{
4418	struct regulator_dev *rdev = regulator->rdev;
4419	int ret;
4420	int regulator_curr_mode;
4421
4422	regulator_lock(rdev);
4423
4424	/* sanity check */
4425	if (!rdev->desc->ops->set_mode) {
4426		ret = -EINVAL;
4427		goto out;
4428	}
4429
4430	/* return if the same mode is requested */
4431	if (rdev->desc->ops->get_mode) {
4432		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4433		if (regulator_curr_mode == mode) {
4434			ret = 0;
4435			goto out;
4436		}
4437	}
4438
4439	/* constraints check */
4440	ret = regulator_mode_constrain(rdev, &mode);
4441	if (ret < 0)
4442		goto out;
4443
4444	ret = rdev->desc->ops->set_mode(rdev, mode);
4445out:
4446	regulator_unlock(rdev);
4447	return ret;
4448}
4449EXPORT_SYMBOL_GPL(regulator_set_mode);
4450
4451static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4452{
4453	/* sanity check */
4454	if (!rdev->desc->ops->get_mode)
4455		return -EINVAL;
4456
4457	return rdev->desc->ops->get_mode(rdev);
4458}
4459
4460static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4461{
4462	int ret;
4463
4464	regulator_lock(rdev);
4465	ret = _regulator_get_mode_unlocked(rdev);
4466	regulator_unlock(rdev);
4467
4468	return ret;
4469}
4470
4471/**
4472 * regulator_get_mode - get regulator operating mode
4473 * @regulator: regulator source
4474 *
4475 * Get the current regulator operating mode.
4476 */
4477unsigned int regulator_get_mode(struct regulator *regulator)
4478{
4479	return _regulator_get_mode(regulator->rdev);
4480}
4481EXPORT_SYMBOL_GPL(regulator_get_mode);
4482
4483static int _regulator_get_error_flags(struct regulator_dev *rdev,
4484					unsigned int *flags)
4485{
4486	int ret;
4487
4488	regulator_lock(rdev);
4489
4490	/* sanity check */
4491	if (!rdev->desc->ops->get_error_flags) {
4492		ret = -EINVAL;
4493		goto out;
4494	}
4495
4496	ret = rdev->desc->ops->get_error_flags(rdev, flags);
4497out:
4498	regulator_unlock(rdev);
4499	return ret;
4500}
4501
4502/**
4503 * regulator_get_error_flags - get regulator error information
4504 * @regulator: regulator source
4505 * @flags: pointer to store error flags
4506 *
4507 * Get the current regulator error information.
4508 */
4509int regulator_get_error_flags(struct regulator *regulator,
4510				unsigned int *flags)
4511{
4512	return _regulator_get_error_flags(regulator->rdev, flags);
4513}
4514EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4515
4516/**
4517 * regulator_set_load - set regulator load
4518 * @regulator: regulator source
4519 * @uA_load: load current
4520 *
4521 * Notifies the regulator core of a new device load. This is then used by
4522 * DRMS (if enabled by constraints) to set the most efficient regulator
4523 * operating mode for the new regulator loading.
4524 *
4525 * Consumer devices notify their supply regulator of the maximum power
4526 * they will require (can be taken from device datasheet in the power
4527 * consumption tables) when they change operational status and hence power
4528 * state. Examples of operational state changes that can affect power
4529 * consumption are :-
4530 *
4531 *    o Device is opened / closed.
4532 *    o Device I/O is about to begin or has just finished.
4533 *    o Device is idling in between work.
4534 *
4535 * This information is also exported via sysfs to userspace.
4536 *
4537 * DRMS will sum the total requested load on the regulator and change
4538 * to the most efficient operating mode if platform constraints allow.
4539 *
4540 * NOTE: when a regulator consumer requests to have a regulator
4541 * disabled then any load that consumer requested no longer counts
4542 * toward the total requested load.  If the regulator is re-enabled
4543 * then the previously requested load will start counting again.
4544 *
4545 * If a regulator is an always-on regulator then an individual consumer's
4546 * load will still be removed if that consumer is fully disabled.
4547 *
4548 * On error a negative errno is returned.
4549 */
4550int regulator_set_load(struct regulator *regulator, int uA_load)
4551{
4552	struct regulator_dev *rdev = regulator->rdev;
4553	int old_uA_load;
4554	int ret = 0;
4555
4556	regulator_lock(rdev);
4557	old_uA_load = regulator->uA_load;
4558	regulator->uA_load = uA_load;
4559	if (regulator->enable_count && old_uA_load != uA_load) {
4560		ret = drms_uA_update(rdev);
4561		if (ret < 0)
4562			regulator->uA_load = old_uA_load;
4563	}
4564	regulator_unlock(rdev);
4565
4566	return ret;
4567}
4568EXPORT_SYMBOL_GPL(regulator_set_load);
4569
4570/**
4571 * regulator_allow_bypass - allow the regulator to go into bypass mode
4572 *
4573 * @regulator: Regulator to configure
4574 * @enable: enable or disable bypass mode
4575 *
4576 * Allow the regulator to go into bypass mode if all other consumers
4577 * for the regulator also enable bypass mode and the machine
4578 * constraints allow this.  Bypass mode means that the regulator is
4579 * simply passing the input directly to the output with no regulation.
4580 */
4581int regulator_allow_bypass(struct regulator *regulator, bool enable)
4582{
4583	struct regulator_dev *rdev = regulator->rdev;
4584	const char *name = rdev_get_name(rdev);
4585	int ret = 0;
4586
4587	if (!rdev->desc->ops->set_bypass)
4588		return 0;
4589
4590	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4591		return 0;
4592
4593	regulator_lock(rdev);
4594
4595	if (enable && !regulator->bypass) {
4596		rdev->bypass_count++;
4597
4598		if (rdev->bypass_count == rdev->open_count) {
4599			trace_regulator_bypass_enable(name);
4600
4601			ret = rdev->desc->ops->set_bypass(rdev, enable);
4602			if (ret != 0)
4603				rdev->bypass_count--;
4604			else
4605				trace_regulator_bypass_enable_complete(name);
4606		}
4607
4608	} else if (!enable && regulator->bypass) {
4609		rdev->bypass_count--;
4610
4611		if (rdev->bypass_count != rdev->open_count) {
4612			trace_regulator_bypass_disable(name);
4613
4614			ret = rdev->desc->ops->set_bypass(rdev, enable);
4615			if (ret != 0)
4616				rdev->bypass_count++;
4617			else
4618				trace_regulator_bypass_disable_complete(name);
4619		}
4620	}
4621
4622	if (ret == 0)
4623		regulator->bypass = enable;
4624
4625	regulator_unlock(rdev);
4626
4627	return ret;
4628}
4629EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4630
4631/**
4632 * regulator_register_notifier - register regulator event notifier
4633 * @regulator: regulator source
4634 * @nb: notifier block
4635 *
4636 * Register notifier block to receive regulator events.
4637 */
4638int regulator_register_notifier(struct regulator *regulator,
4639			      struct notifier_block *nb)
4640{
4641	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4642						nb);
4643}
4644EXPORT_SYMBOL_GPL(regulator_register_notifier);
4645
4646/**
4647 * regulator_unregister_notifier - unregister regulator event notifier
4648 * @regulator: regulator source
4649 * @nb: notifier block
4650 *
4651 * Unregister regulator event notifier block.
4652 */
4653int regulator_unregister_notifier(struct regulator *regulator,
4654				struct notifier_block *nb)
4655{
4656	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4657						  nb);
4658}
4659EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4660
4661/* notify regulator consumers and downstream regulator consumers.
4662 * Note mutex must be held by caller.
4663 */
4664static int _notifier_call_chain(struct regulator_dev *rdev,
4665				  unsigned long event, void *data)
4666{
4667	/* call rdev chain first */
4668	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4669}
4670
4671/**
4672 * regulator_bulk_get - get multiple regulator consumers
4673 *
4674 * @dev:           Device to supply
4675 * @num_consumers: Number of consumers to register
4676 * @consumers:     Configuration of consumers; clients are stored here.
4677 *
4678 * @return 0 on success, an errno on failure.
4679 *
4680 * This helper function allows drivers to get several regulator
4681 * consumers in one operation.  If any of the regulators cannot be
4682 * acquired then any regulators that were allocated will be freed
4683 * before returning to the caller.
4684 */
4685int regulator_bulk_get(struct device *dev, int num_consumers,
4686		       struct regulator_bulk_data *consumers)
4687{
4688	int i;
4689	int ret;
4690
4691	for (i = 0; i < num_consumers; i++)
4692		consumers[i].consumer = NULL;
4693
4694	for (i = 0; i < num_consumers; i++) {
4695		consumers[i].consumer = regulator_get(dev,
4696						      consumers[i].supply);
4697		if (IS_ERR(consumers[i].consumer)) {
4698			ret = PTR_ERR(consumers[i].consumer);
4699			consumers[i].consumer = NULL;
4700			goto err;
4701		}
4702	}
4703
4704	return 0;
4705
4706err:
4707	if (ret != -EPROBE_DEFER)
4708		dev_err(dev, "Failed to get supply '%s': %pe\n",
4709			consumers[i].supply, ERR_PTR(ret));
4710	else
4711		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4712			consumers[i].supply);
4713
4714	while (--i >= 0)
4715		regulator_put(consumers[i].consumer);
4716
4717	return ret;
4718}
4719EXPORT_SYMBOL_GPL(regulator_bulk_get);
4720
4721static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4722{
4723	struct regulator_bulk_data *bulk = data;
4724
4725	bulk->ret = regulator_enable(bulk->consumer);
4726}
4727
4728/**
4729 * regulator_bulk_enable - enable multiple regulator consumers
4730 *
4731 * @num_consumers: Number of consumers
4732 * @consumers:     Consumer data; clients are stored here.
4733 * @return         0 on success, an errno on failure
4734 *
4735 * This convenience API allows consumers to enable multiple regulator
4736 * clients in a single API call.  If any consumers cannot be enabled
4737 * then any others that were enabled will be disabled again prior to
4738 * return.
4739 */
4740int regulator_bulk_enable(int num_consumers,
4741			  struct regulator_bulk_data *consumers)
4742{
4743	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4744	int i;
4745	int ret = 0;
4746
4747	for (i = 0; i < num_consumers; i++) {
4748		async_schedule_domain(regulator_bulk_enable_async,
4749				      &consumers[i], &async_domain);
4750	}
4751
4752	async_synchronize_full_domain(&async_domain);
4753
4754	/* If any consumer failed we need to unwind any that succeeded */
4755	for (i = 0; i < num_consumers; i++) {
4756		if (consumers[i].ret != 0) {
4757			ret = consumers[i].ret;
4758			goto err;
4759		}
4760	}
4761
4762	return 0;
4763
4764err:
4765	for (i = 0; i < num_consumers; i++) {
4766		if (consumers[i].ret < 0)
4767			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4768			       ERR_PTR(consumers[i].ret));
4769		else
4770			regulator_disable(consumers[i].consumer);
4771	}
4772
4773	return ret;
4774}
4775EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4776
4777/**
4778 * regulator_bulk_disable - disable multiple regulator consumers
4779 *
4780 * @num_consumers: Number of consumers
4781 * @consumers:     Consumer data; clients are stored here.
4782 * @return         0 on success, an errno on failure
4783 *
4784 * This convenience API allows consumers to disable multiple regulator
4785 * clients in a single API call.  If any consumers cannot be disabled
4786 * then any others that were disabled will be enabled again prior to
4787 * return.
4788 */
4789int regulator_bulk_disable(int num_consumers,
4790			   struct regulator_bulk_data *consumers)
4791{
4792	int i;
4793	int ret, r;
4794
4795	for (i = num_consumers - 1; i >= 0; --i) {
4796		ret = regulator_disable(consumers[i].consumer);
4797		if (ret != 0)
4798			goto err;
4799	}
4800
4801	return 0;
4802
4803err:
4804	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4805	for (++i; i < num_consumers; ++i) {
4806		r = regulator_enable(consumers[i].consumer);
4807		if (r != 0)
4808			pr_err("Failed to re-enable %s: %pe\n",
4809			       consumers[i].supply, ERR_PTR(r));
4810	}
4811
4812	return ret;
4813}
4814EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4815
4816/**
4817 * regulator_bulk_force_disable - force disable multiple regulator consumers
4818 *
4819 * @num_consumers: Number of consumers
4820 * @consumers:     Consumer data; clients are stored here.
4821 * @return         0 on success, an errno on failure
4822 *
4823 * This convenience API allows consumers to forcibly disable multiple regulator
4824 * clients in a single API call.
4825 * NOTE: This should be used for situations when device damage will
4826 * likely occur if the regulators are not disabled (e.g. over temp).
4827 * Although regulator_force_disable function call for some consumers can
4828 * return error numbers, the function is called for all consumers.
4829 */
4830int regulator_bulk_force_disable(int num_consumers,
4831			   struct regulator_bulk_data *consumers)
4832{
4833	int i;
4834	int ret = 0;
4835
4836	for (i = 0; i < num_consumers; i++) {
4837		consumers[i].ret =
4838			    regulator_force_disable(consumers[i].consumer);
4839
4840		/* Store first error for reporting */
4841		if (consumers[i].ret && !ret)
4842			ret = consumers[i].ret;
4843	}
4844
4845	return ret;
4846}
4847EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4848
4849/**
4850 * regulator_bulk_free - free multiple regulator consumers
4851 *
4852 * @num_consumers: Number of consumers
4853 * @consumers:     Consumer data; clients are stored here.
4854 *
4855 * This convenience API allows consumers to free multiple regulator
4856 * clients in a single API call.
4857 */
4858void regulator_bulk_free(int num_consumers,
4859			 struct regulator_bulk_data *consumers)
4860{
4861	int i;
4862
4863	for (i = 0; i < num_consumers; i++) {
4864		regulator_put(consumers[i].consumer);
4865		consumers[i].consumer = NULL;
4866	}
4867}
4868EXPORT_SYMBOL_GPL(regulator_bulk_free);
4869
4870/**
4871 * regulator_notifier_call_chain - call regulator event notifier
4872 * @rdev: regulator source
4873 * @event: notifier block
4874 * @data: callback-specific data.
4875 *
4876 * Called by regulator drivers to notify clients a regulator event has
4877 * occurred.
4878 */
4879int regulator_notifier_call_chain(struct regulator_dev *rdev,
4880				  unsigned long event, void *data)
4881{
4882	_notifier_call_chain(rdev, event, data);
4883	return NOTIFY_DONE;
4884
4885}
4886EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4887
4888/**
4889 * regulator_mode_to_status - convert a regulator mode into a status
4890 *
4891 * @mode: Mode to convert
4892 *
4893 * Convert a regulator mode into a status.
4894 */
4895int regulator_mode_to_status(unsigned int mode)
4896{
4897	switch (mode) {
4898	case REGULATOR_MODE_FAST:
4899		return REGULATOR_STATUS_FAST;
4900	case REGULATOR_MODE_NORMAL:
4901		return REGULATOR_STATUS_NORMAL;
4902	case REGULATOR_MODE_IDLE:
4903		return REGULATOR_STATUS_IDLE;
4904	case REGULATOR_MODE_STANDBY:
4905		return REGULATOR_STATUS_STANDBY;
4906	default:
4907		return REGULATOR_STATUS_UNDEFINED;
4908	}
4909}
4910EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4911
4912static struct attribute *regulator_dev_attrs[] = {
4913	&dev_attr_name.attr,
4914	&dev_attr_num_users.attr,
4915	&dev_attr_type.attr,
4916	&dev_attr_microvolts.attr,
4917	&dev_attr_microamps.attr,
4918	&dev_attr_opmode.attr,
4919	&dev_attr_state.attr,
4920	&dev_attr_status.attr,
4921	&dev_attr_bypass.attr,
4922	&dev_attr_requested_microamps.attr,
4923	&dev_attr_min_microvolts.attr,
4924	&dev_attr_max_microvolts.attr,
4925	&dev_attr_min_microamps.attr,
4926	&dev_attr_max_microamps.attr,
4927	&dev_attr_suspend_standby_state.attr,
4928	&dev_attr_suspend_mem_state.attr,
4929	&dev_attr_suspend_disk_state.attr,
4930	&dev_attr_suspend_standby_microvolts.attr,
4931	&dev_attr_suspend_mem_microvolts.attr,
4932	&dev_attr_suspend_disk_microvolts.attr,
4933	&dev_attr_suspend_standby_mode.attr,
4934	&dev_attr_suspend_mem_mode.attr,
4935	&dev_attr_suspend_disk_mode.attr,
4936	NULL
4937};
4938
4939/*
4940 * To avoid cluttering sysfs (and memory) with useless state, only
4941 * create attributes that can be meaningfully displayed.
4942 */
4943static umode_t regulator_attr_is_visible(struct kobject *kobj,
4944					 struct attribute *attr, int idx)
4945{
4946	struct device *dev = kobj_to_dev(kobj);
4947	struct regulator_dev *rdev = dev_to_rdev(dev);
4948	const struct regulator_ops *ops = rdev->desc->ops;
4949	umode_t mode = attr->mode;
4950
4951	/* these three are always present */
4952	if (attr == &dev_attr_name.attr ||
4953	    attr == &dev_attr_num_users.attr ||
4954	    attr == &dev_attr_type.attr)
4955		return mode;
4956
4957	/* some attributes need specific methods to be displayed */
4958	if (attr == &dev_attr_microvolts.attr) {
4959		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4960		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4961		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4962		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4963			return mode;
4964		return 0;
4965	}
4966
4967	if (attr == &dev_attr_microamps.attr)
4968		return ops->get_current_limit ? mode : 0;
4969
4970	if (attr == &dev_attr_opmode.attr)
4971		return ops->get_mode ? mode : 0;
4972
4973	if (attr == &dev_attr_state.attr)
4974		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4975
4976	if (attr == &dev_attr_status.attr)
4977		return ops->get_status ? mode : 0;
4978
4979	if (attr == &dev_attr_bypass.attr)
4980		return ops->get_bypass ? mode : 0;
4981
4982	/* constraints need specific supporting methods */
4983	if (attr == &dev_attr_min_microvolts.attr ||
4984	    attr == &dev_attr_max_microvolts.attr)
4985		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4986
4987	if (attr == &dev_attr_min_microamps.attr ||
4988	    attr == &dev_attr_max_microamps.attr)
4989		return ops->set_current_limit ? mode : 0;
4990
4991	if (attr == &dev_attr_suspend_standby_state.attr ||
4992	    attr == &dev_attr_suspend_mem_state.attr ||
4993	    attr == &dev_attr_suspend_disk_state.attr)
4994		return mode;
4995
4996	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4997	    attr == &dev_attr_suspend_mem_microvolts.attr ||
4998	    attr == &dev_attr_suspend_disk_microvolts.attr)
4999		return ops->set_suspend_voltage ? mode : 0;
5000
5001	if (attr == &dev_attr_suspend_standby_mode.attr ||
5002	    attr == &dev_attr_suspend_mem_mode.attr ||
5003	    attr == &dev_attr_suspend_disk_mode.attr)
5004		return ops->set_suspend_mode ? mode : 0;
5005
5006	return mode;
5007}
5008
5009static const struct attribute_group regulator_dev_group = {
5010	.attrs = regulator_dev_attrs,
5011	.is_visible = regulator_attr_is_visible,
5012};
5013
5014static const struct attribute_group *regulator_dev_groups[] = {
5015	&regulator_dev_group,
5016	NULL
5017};
5018
5019static void regulator_dev_release(struct device *dev)
5020{
5021	struct regulator_dev *rdev = dev_get_drvdata(dev);
5022
5023	debugfs_remove_recursive(rdev->debugfs);
5024	kfree(rdev->constraints);
5025	of_node_put(rdev->dev.of_node);
5026	kfree(rdev);
5027}
5028
5029static void rdev_init_debugfs(struct regulator_dev *rdev)
5030{
5031	struct device *parent = rdev->dev.parent;
5032	const char *rname = rdev_get_name(rdev);
5033	char name[NAME_MAX];
5034
5035	/* Avoid duplicate debugfs directory names */
5036	if (parent && rname == rdev->desc->name) {
5037		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5038			 rname);
5039		rname = name;
5040	}
5041
5042	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5043	if (IS_ERR(rdev->debugfs))
5044		rdev_dbg(rdev, "Failed to create debugfs directory\n");
5045
5046	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5047			   &rdev->use_count);
5048	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5049			   &rdev->open_count);
5050	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5051			   &rdev->bypass_count);
5052}
5053
5054static int regulator_register_resolve_supply(struct device *dev, void *data)
5055{
5056	struct regulator_dev *rdev = dev_to_rdev(dev);
5057
5058	if (regulator_resolve_supply(rdev))
5059		rdev_dbg(rdev, "unable to resolve supply\n");
5060
5061	return 0;
5062}
5063
5064int regulator_coupler_register(struct regulator_coupler *coupler)
5065{
5066	mutex_lock(&regulator_list_mutex);
5067	list_add_tail(&coupler->list, &regulator_coupler_list);
5068	mutex_unlock(&regulator_list_mutex);
5069
5070	return 0;
5071}
5072
5073static struct regulator_coupler *
5074regulator_find_coupler(struct regulator_dev *rdev)
5075{
5076	struct regulator_coupler *coupler;
5077	int err;
5078
5079	/*
5080	 * Note that regulators are appended to the list and the generic
5081	 * coupler is registered first, hence it will be attached at last
5082	 * if nobody cared.
5083	 */
5084	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5085		err = coupler->attach_regulator(coupler, rdev);
5086		if (!err) {
5087			if (!coupler->balance_voltage &&
5088			    rdev->coupling_desc.n_coupled > 2)
5089				goto err_unsupported;
5090
5091			return coupler;
5092		}
5093
5094		if (err < 0)
5095			return ERR_PTR(err);
5096
5097		if (err == 1)
5098			continue;
5099
5100		break;
5101	}
5102
5103	return ERR_PTR(-EINVAL);
5104
5105err_unsupported:
5106	if (coupler->detach_regulator)
5107		coupler->detach_regulator(coupler, rdev);
5108
5109	rdev_err(rdev,
5110		"Voltage balancing for multiple regulator couples is unimplemented\n");
5111
5112	return ERR_PTR(-EPERM);
5113}
5114
5115static void regulator_resolve_coupling(struct regulator_dev *rdev)
5116{
5117	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5118	struct coupling_desc *c_desc = &rdev->coupling_desc;
5119	int n_coupled = c_desc->n_coupled;
5120	struct regulator_dev *c_rdev;
5121	int i;
5122
5123	for (i = 1; i < n_coupled; i++) {
5124		/* already resolved */
5125		if (c_desc->coupled_rdevs[i])
5126			continue;
5127
5128		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5129
5130		if (!c_rdev)
5131			continue;
5132
5133		if (c_rdev->coupling_desc.coupler != coupler) {
5134			rdev_err(rdev, "coupler mismatch with %s\n",
5135				 rdev_get_name(c_rdev));
5136			return;
5137		}
5138
5139		c_desc->coupled_rdevs[i] = c_rdev;
5140		c_desc->n_resolved++;
5141
5142		regulator_resolve_coupling(c_rdev);
5143	}
5144}
5145
5146static void regulator_remove_coupling(struct regulator_dev *rdev)
5147{
5148	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5149	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5150	struct regulator_dev *__c_rdev, *c_rdev;
5151	unsigned int __n_coupled, n_coupled;
5152	int i, k;
5153	int err;
5154
5155	n_coupled = c_desc->n_coupled;
5156
5157	for (i = 1; i < n_coupled; i++) {
5158		c_rdev = c_desc->coupled_rdevs[i];
5159
5160		if (!c_rdev)
5161			continue;
5162
5163		regulator_lock(c_rdev);
5164
5165		__c_desc = &c_rdev->coupling_desc;
5166		__n_coupled = __c_desc->n_coupled;
5167
5168		for (k = 1; k < __n_coupled; k++) {
5169			__c_rdev = __c_desc->coupled_rdevs[k];
5170
5171			if (__c_rdev == rdev) {
5172				__c_desc->coupled_rdevs[k] = NULL;
5173				__c_desc->n_resolved--;
5174				break;
5175			}
5176		}
5177
5178		regulator_unlock(c_rdev);
5179
5180		c_desc->coupled_rdevs[i] = NULL;
5181		c_desc->n_resolved--;
5182	}
5183
5184	if (coupler && coupler->detach_regulator) {
5185		err = coupler->detach_regulator(coupler, rdev);
5186		if (err)
5187			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5188				 ERR_PTR(err));
5189	}
5190
5191	kfree(rdev->coupling_desc.coupled_rdevs);
5192	rdev->coupling_desc.coupled_rdevs = NULL;
5193}
5194
5195static int regulator_init_coupling(struct regulator_dev *rdev)
5196{
5197	struct regulator_dev **coupled;
5198	int err, n_phandles;
5199
5200	if (!IS_ENABLED(CONFIG_OF))
5201		n_phandles = 0;
5202	else
5203		n_phandles = of_get_n_coupled(rdev);
5204
5205	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5206	if (!coupled)
5207		return -ENOMEM;
5208
5209	rdev->coupling_desc.coupled_rdevs = coupled;
5210
5211	/*
5212	 * Every regulator should always have coupling descriptor filled with
5213	 * at least pointer to itself.
5214	 */
5215	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5216	rdev->coupling_desc.n_coupled = n_phandles + 1;
5217	rdev->coupling_desc.n_resolved++;
5218
5219	/* regulator isn't coupled */
5220	if (n_phandles == 0)
5221		return 0;
5222
5223	if (!of_check_coupling_data(rdev))
5224		return -EPERM;
5225
5226	mutex_lock(&regulator_list_mutex);
5227	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5228	mutex_unlock(&regulator_list_mutex);
5229
5230	if (IS_ERR(rdev->coupling_desc.coupler)) {
5231		err = PTR_ERR(rdev->coupling_desc.coupler);
5232		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5233		return err;
5234	}
5235
5236	return 0;
5237}
5238
5239static int generic_coupler_attach(struct regulator_coupler *coupler,
5240				  struct regulator_dev *rdev)
5241{
5242	if (rdev->coupling_desc.n_coupled > 2) {
5243		rdev_err(rdev,
5244			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5245		return -EPERM;
5246	}
5247
5248	if (!rdev->constraints->always_on) {
5249		rdev_err(rdev,
5250			 "Coupling of a non always-on regulator is unimplemented\n");
5251		return -ENOTSUPP;
5252	}
5253
5254	return 0;
5255}
5256
5257static struct regulator_coupler generic_regulator_coupler = {
5258	.attach_regulator = generic_coupler_attach,
5259};
5260
5261/**
5262 * regulator_register - register regulator
5263 * @regulator_desc: regulator to register
5264 * @cfg: runtime configuration for regulator
5265 *
5266 * Called by regulator drivers to register a regulator.
5267 * Returns a valid pointer to struct regulator_dev on success
5268 * or an ERR_PTR() on error.
5269 */
5270struct regulator_dev *
5271regulator_register(const struct regulator_desc *regulator_desc,
5272		   const struct regulator_config *cfg)
5273{
5274	const struct regulator_init_data *init_data;
5275	struct regulator_config *config = NULL;
5276	static atomic_t regulator_no = ATOMIC_INIT(-1);
5277	struct regulator_dev *rdev;
5278	bool dangling_cfg_gpiod = false;
5279	bool dangling_of_gpiod = false;
5280	struct device *dev;
5281	int ret, i;
5282
5283	if (cfg == NULL)
5284		return ERR_PTR(-EINVAL);
5285	if (cfg->ena_gpiod)
5286		dangling_cfg_gpiod = true;
5287	if (regulator_desc == NULL) {
5288		ret = -EINVAL;
5289		goto rinse;
5290	}
5291
5292	dev = cfg->dev;
5293	WARN_ON(!dev);
5294
5295	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5296		ret = -EINVAL;
5297		goto rinse;
5298	}
5299
5300	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5301	    regulator_desc->type != REGULATOR_CURRENT) {
5302		ret = -EINVAL;
5303		goto rinse;
5304	}
5305
5306	/* Only one of each should be implemented */
5307	WARN_ON(regulator_desc->ops->get_voltage &&
5308		regulator_desc->ops->get_voltage_sel);
5309	WARN_ON(regulator_desc->ops->set_voltage &&
5310		regulator_desc->ops->set_voltage_sel);
5311
5312	/* If we're using selectors we must implement list_voltage. */
5313	if (regulator_desc->ops->get_voltage_sel &&
5314	    !regulator_desc->ops->list_voltage) {
5315		ret = -EINVAL;
5316		goto rinse;
5317	}
5318	if (regulator_desc->ops->set_voltage_sel &&
5319	    !regulator_desc->ops->list_voltage) {
5320		ret = -EINVAL;
5321		goto rinse;
5322	}
5323
5324	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5325	if (rdev == NULL) {
5326		ret = -ENOMEM;
5327		goto rinse;
5328	}
5329	device_initialize(&rdev->dev);
5330
5331	/*
5332	 * Duplicate the config so the driver could override it after
5333	 * parsing init data.
5334	 */
5335	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5336	if (config == NULL) {
5337		ret = -ENOMEM;
5338		goto clean;
5339	}
5340
5341	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5342					       &rdev->dev.of_node);
5343
5344	/*
5345	 * Sometimes not all resources are probed already so we need to take
5346	 * that into account. This happens most the time if the ena_gpiod comes
5347	 * from a gpio extender or something else.
5348	 */
5349	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5350		ret = -EPROBE_DEFER;
5351		goto clean;
5352	}
5353
5354	/*
5355	 * We need to keep track of any GPIO descriptor coming from the
5356	 * device tree until we have handled it over to the core. If the
5357	 * config that was passed in to this function DOES NOT contain
5358	 * a descriptor, and the config after this call DOES contain
5359	 * a descriptor, we definitely got one from parsing the device
5360	 * tree.
5361	 */
5362	if (!cfg->ena_gpiod && config->ena_gpiod)
5363		dangling_of_gpiod = true;
5364	if (!init_data) {
5365		init_data = config->init_data;
5366		rdev->dev.of_node = of_node_get(config->of_node);
5367	}
5368
5369	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5370	rdev->reg_data = config->driver_data;
5371	rdev->owner = regulator_desc->owner;
5372	rdev->desc = regulator_desc;
5373	if (config->regmap)
5374		rdev->regmap = config->regmap;
5375	else if (dev_get_regmap(dev, NULL))
5376		rdev->regmap = dev_get_regmap(dev, NULL);
5377	else if (dev->parent)
5378		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5379	INIT_LIST_HEAD(&rdev->consumer_list);
5380	INIT_LIST_HEAD(&rdev->list);
5381	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5382	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5383
5384	/* preform any regulator specific init */
5385	if (init_data && init_data->regulator_init) {
5386		ret = init_data->regulator_init(rdev->reg_data);
5387		if (ret < 0)
5388			goto clean;
5389	}
5390
5391	if (config->ena_gpiod) {
5392		ret = regulator_ena_gpio_request(rdev, config);
5393		if (ret != 0) {
5394			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5395				 ERR_PTR(ret));
5396			goto clean;
5397		}
5398		/* The regulator core took over the GPIO descriptor */
5399		dangling_cfg_gpiod = false;
5400		dangling_of_gpiod = false;
5401	}
5402
5403	/* register with sysfs */
5404	rdev->dev.class = &regulator_class;
5405	rdev->dev.parent = dev;
5406	dev_set_name(&rdev->dev, "regulator.%lu",
5407		    (unsigned long) atomic_inc_return(&regulator_no));
5408	dev_set_drvdata(&rdev->dev, rdev);
5409
5410	/* set regulator constraints */
5411	if (init_data)
5412		rdev->constraints = kmemdup(&init_data->constraints,
5413					    sizeof(*rdev->constraints),
5414					    GFP_KERNEL);
5415	else
5416		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5417					    GFP_KERNEL);
5418	if (!rdev->constraints) {
5419		ret = -ENOMEM;
5420		goto wash;
5421	}
5422
5423	if (init_data && init_data->supply_regulator)
5424		rdev->supply_name = init_data->supply_regulator;
5425	else if (regulator_desc->supply_name)
5426		rdev->supply_name = regulator_desc->supply_name;
5427
5428	ret = set_machine_constraints(rdev);
5429	if (ret == -EPROBE_DEFER) {
5430		/* Regulator might be in bypass mode and so needs its supply
5431		 * to set the constraints */
5432		/* FIXME: this currently triggers a chicken-and-egg problem
5433		 * when creating -SUPPLY symlink in sysfs to a regulator
5434		 * that is just being created */
5435		ret = regulator_resolve_supply(rdev);
5436		if (!ret)
5437			ret = set_machine_constraints(rdev);
5438		else
5439			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5440				 ERR_PTR(ret));
5441	}
5442	if (ret < 0)
5443		goto wash;
5444
5445	ret = regulator_init_coupling(rdev);
5446	if (ret < 0)
5447		goto wash;
5448
5449	/* add consumers devices */
5450	if (init_data) {
5451		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5452			ret = set_consumer_device_supply(rdev,
5453				init_data->consumer_supplies[i].dev_name,
5454				init_data->consumer_supplies[i].supply);
5455			if (ret < 0) {
5456				dev_err(dev, "Failed to set supply %s\n",
5457					init_data->consumer_supplies[i].supply);
5458				goto unset_supplies;
5459			}
5460		}
5461	}
5462
5463	if (!rdev->desc->ops->get_voltage &&
5464	    !rdev->desc->ops->list_voltage &&
5465	    !rdev->desc->fixed_uV)
5466		rdev->is_switch = true;
5467
5468	ret = device_add(&rdev->dev);
5469	if (ret != 0)
5470		goto unset_supplies;
5471
5472	rdev_init_debugfs(rdev);
5473
5474	/* try to resolve regulators coupling since a new one was registered */
5475	mutex_lock(&regulator_list_mutex);
5476	regulator_resolve_coupling(rdev);
5477	mutex_unlock(&regulator_list_mutex);
5478
5479	/* try to resolve regulators supply since a new one was registered */
5480	class_for_each_device(&regulator_class, NULL, NULL,
5481			      regulator_register_resolve_supply);
5482	kfree(config);
5483	return rdev;
5484
5485unset_supplies:
5486	mutex_lock(&regulator_list_mutex);
5487	unset_regulator_supplies(rdev);
5488	regulator_remove_coupling(rdev);
5489	mutex_unlock(&regulator_list_mutex);
5490wash:
5491	regulator_put(rdev->supply);
5492	kfree(rdev->coupling_desc.coupled_rdevs);
5493	mutex_lock(&regulator_list_mutex);
5494	regulator_ena_gpio_free(rdev);
5495	mutex_unlock(&regulator_list_mutex);
5496clean:
5497	if (dangling_of_gpiod)
5498		gpiod_put(config->ena_gpiod);
5499	kfree(config);
5500	put_device(&rdev->dev);
5501rinse:
5502	if (dangling_cfg_gpiod)
5503		gpiod_put(cfg->ena_gpiod);
5504	return ERR_PTR(ret);
5505}
5506EXPORT_SYMBOL_GPL(regulator_register);
5507
5508/**
5509 * regulator_unregister - unregister regulator
5510 * @rdev: regulator to unregister
5511 *
5512 * Called by regulator drivers to unregister a regulator.
5513 */
5514void regulator_unregister(struct regulator_dev *rdev)
5515{
5516	if (rdev == NULL)
5517		return;
5518
5519	if (rdev->supply) {
5520		while (rdev->use_count--)
5521			regulator_disable(rdev->supply);
5522		regulator_put(rdev->supply);
5523	}
5524
5525	flush_work(&rdev->disable_work.work);
5526
5527	mutex_lock(&regulator_list_mutex);
5528
5529	WARN_ON(rdev->open_count);
5530	regulator_remove_coupling(rdev);
5531	unset_regulator_supplies(rdev);
5532	list_del(&rdev->list);
5533	regulator_ena_gpio_free(rdev);
5534	device_unregister(&rdev->dev);
5535
5536	mutex_unlock(&regulator_list_mutex);
5537}
5538EXPORT_SYMBOL_GPL(regulator_unregister);
5539
5540#ifdef CONFIG_SUSPEND
5541/**
5542 * regulator_suspend - prepare regulators for system wide suspend
5543 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5544 *
5545 * Configure each regulator with it's suspend operating parameters for state.
5546 */
5547static int regulator_suspend(struct device *dev)
5548{
5549	struct regulator_dev *rdev = dev_to_rdev(dev);
5550	suspend_state_t state = pm_suspend_target_state;
5551	int ret;
5552	const struct regulator_state *rstate;
5553
5554	rstate = regulator_get_suspend_state_check(rdev, state);
5555	if (!rstate)
5556		return 0;
5557
5558	regulator_lock(rdev);
5559	ret = __suspend_set_state(rdev, rstate);
5560	regulator_unlock(rdev);
5561
5562	return ret;
5563}
5564
5565static int regulator_resume(struct device *dev)
5566{
5567	suspend_state_t state = pm_suspend_target_state;
5568	struct regulator_dev *rdev = dev_to_rdev(dev);
5569	struct regulator_state *rstate;
5570	int ret = 0;
5571
5572	rstate = regulator_get_suspend_state(rdev, state);
5573	if (rstate == NULL)
5574		return 0;
5575
5576	/* Avoid grabbing the lock if we don't need to */
5577	if (!rdev->desc->ops->resume)
5578		return 0;
5579
5580	regulator_lock(rdev);
5581
5582	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5583	    rstate->enabled == DISABLE_IN_SUSPEND)
5584		ret = rdev->desc->ops->resume(rdev);
5585
5586	regulator_unlock(rdev);
5587
5588	return ret;
5589}
5590#else /* !CONFIG_SUSPEND */
5591
5592#define regulator_suspend	NULL
5593#define regulator_resume	NULL
5594
5595#endif /* !CONFIG_SUSPEND */
5596
5597#ifdef CONFIG_PM
5598static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5599	.suspend	= regulator_suspend,
5600	.resume		= regulator_resume,
5601};
5602#endif
5603
5604struct class regulator_class = {
5605	.name = "regulator",
5606	.dev_release = regulator_dev_release,
5607	.dev_groups = regulator_dev_groups,
5608#ifdef CONFIG_PM
5609	.pm = &regulator_pm_ops,
5610#endif
5611};
5612/**
5613 * regulator_has_full_constraints - the system has fully specified constraints
5614 *
5615 * Calling this function will cause the regulator API to disable all
5616 * regulators which have a zero use count and don't have an always_on
5617 * constraint in a late_initcall.
5618 *
5619 * The intention is that this will become the default behaviour in a
5620 * future kernel release so users are encouraged to use this facility
5621 * now.
5622 */
5623void regulator_has_full_constraints(void)
5624{
5625	has_full_constraints = 1;
5626}
5627EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5628
5629/**
5630 * rdev_get_drvdata - get rdev regulator driver data
5631 * @rdev: regulator
5632 *
5633 * Get rdev regulator driver private data. This call can be used in the
5634 * regulator driver context.
5635 */
5636void *rdev_get_drvdata(struct regulator_dev *rdev)
5637{
5638	return rdev->reg_data;
5639}
5640EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5641
5642/**
5643 * regulator_get_drvdata - get regulator driver data
5644 * @regulator: regulator
5645 *
5646 * Get regulator driver private data. This call can be used in the consumer
5647 * driver context when non API regulator specific functions need to be called.
5648 */
5649void *regulator_get_drvdata(struct regulator *regulator)
5650{
5651	return regulator->rdev->reg_data;
5652}
5653EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5654
5655/**
5656 * regulator_set_drvdata - set regulator driver data
5657 * @regulator: regulator
5658 * @data: data
5659 */
5660void regulator_set_drvdata(struct regulator *regulator, void *data)
5661{
5662	regulator->rdev->reg_data = data;
5663}
5664EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5665
5666/**
5667 * regulator_get_id - get regulator ID
5668 * @rdev: regulator
5669 */
5670int rdev_get_id(struct regulator_dev *rdev)
5671{
5672	return rdev->desc->id;
5673}
5674EXPORT_SYMBOL_GPL(rdev_get_id);
5675
5676struct device *rdev_get_dev(struct regulator_dev *rdev)
5677{
5678	return &rdev->dev;
5679}
5680EXPORT_SYMBOL_GPL(rdev_get_dev);
5681
5682struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5683{
5684	return rdev->regmap;
5685}
5686EXPORT_SYMBOL_GPL(rdev_get_regmap);
5687
5688void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5689{
5690	return reg_init_data->driver_data;
5691}
5692EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5693
5694#ifdef CONFIG_DEBUG_FS
5695static int supply_map_show(struct seq_file *sf, void *data)
5696{
5697	struct regulator_map *map;
5698
5699	list_for_each_entry(map, &regulator_map_list, list) {
5700		seq_printf(sf, "%s -> %s.%s\n",
5701				rdev_get_name(map->regulator), map->dev_name,
5702				map->supply);
5703	}
5704
5705	return 0;
5706}
5707DEFINE_SHOW_ATTRIBUTE(supply_map);
5708
5709struct summary_data {
5710	struct seq_file *s;
5711	struct regulator_dev *parent;
5712	int level;
5713};
5714
5715static void regulator_summary_show_subtree(struct seq_file *s,
5716					   struct regulator_dev *rdev,
5717					   int level);
5718
5719static int regulator_summary_show_children(struct device *dev, void *data)
5720{
5721	struct regulator_dev *rdev = dev_to_rdev(dev);
5722	struct summary_data *summary_data = data;
5723
5724	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5725		regulator_summary_show_subtree(summary_data->s, rdev,
5726					       summary_data->level + 1);
5727
5728	return 0;
5729}
5730
5731static void regulator_summary_show_subtree(struct seq_file *s,
5732					   struct regulator_dev *rdev,
5733					   int level)
5734{
5735	struct regulation_constraints *c;
5736	struct regulator *consumer;
5737	struct summary_data summary_data;
5738	unsigned int opmode;
5739
5740	if (!rdev)
5741		return;
5742
5743	opmode = _regulator_get_mode_unlocked(rdev);
5744	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5745		   level * 3 + 1, "",
5746		   30 - level * 3, rdev_get_name(rdev),
5747		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5748		   regulator_opmode_to_str(opmode));
5749
5750	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5751	seq_printf(s, "%5dmA ",
5752		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5753
5754	c = rdev->constraints;
5755	if (c) {
5756		switch (rdev->desc->type) {
5757		case REGULATOR_VOLTAGE:
5758			seq_printf(s, "%5dmV %5dmV ",
5759				   c->min_uV / 1000, c->max_uV / 1000);
5760			break;
5761		case REGULATOR_CURRENT:
5762			seq_printf(s, "%5dmA %5dmA ",
5763				   c->min_uA / 1000, c->max_uA / 1000);
5764			break;
5765		}
5766	}
5767
5768	seq_puts(s, "\n");
5769
5770	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5771		if (consumer->dev && consumer->dev->class == &regulator_class)
5772			continue;
5773
5774		seq_printf(s, "%*s%-*s ",
5775			   (level + 1) * 3 + 1, "",
5776			   30 - (level + 1) * 3,
5777			   consumer->supply_name ? consumer->supply_name :
5778			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5779
5780		switch (rdev->desc->type) {
5781		case REGULATOR_VOLTAGE:
5782			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5783				   consumer->enable_count,
5784				   consumer->uA_load / 1000,
5785				   consumer->uA_load && !consumer->enable_count ?
5786				   '*' : ' ',
5787				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5788				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5789			break;
5790		case REGULATOR_CURRENT:
5791			break;
5792		}
5793
5794		seq_puts(s, "\n");
5795	}
5796
5797	summary_data.s = s;
5798	summary_data.level = level;
5799	summary_data.parent = rdev;
5800
5801	class_for_each_device(&regulator_class, NULL, &summary_data,
5802			      regulator_summary_show_children);
5803}
5804
5805struct summary_lock_data {
5806	struct ww_acquire_ctx *ww_ctx;
5807	struct regulator_dev **new_contended_rdev;
5808	struct regulator_dev **old_contended_rdev;
5809};
5810
5811static int regulator_summary_lock_one(struct device *dev, void *data)
5812{
5813	struct regulator_dev *rdev = dev_to_rdev(dev);
5814	struct summary_lock_data *lock_data = data;
5815	int ret = 0;
5816
5817	if (rdev != *lock_data->old_contended_rdev) {
5818		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5819
5820		if (ret == -EDEADLK)
5821			*lock_data->new_contended_rdev = rdev;
5822		else
5823			WARN_ON_ONCE(ret);
5824	} else {
5825		*lock_data->old_contended_rdev = NULL;
5826	}
5827
5828	return ret;
5829}
5830
5831static int regulator_summary_unlock_one(struct device *dev, void *data)
5832{
5833	struct regulator_dev *rdev = dev_to_rdev(dev);
5834	struct summary_lock_data *lock_data = data;
5835
5836	if (lock_data) {
5837		if (rdev == *lock_data->new_contended_rdev)
5838			return -EDEADLK;
5839	}
5840
5841	regulator_unlock(rdev);
5842
5843	return 0;
5844}
5845
5846static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5847				      struct regulator_dev **new_contended_rdev,
5848				      struct regulator_dev **old_contended_rdev)
5849{
5850	struct summary_lock_data lock_data;
5851	int ret;
5852
5853	lock_data.ww_ctx = ww_ctx;
5854	lock_data.new_contended_rdev = new_contended_rdev;
5855	lock_data.old_contended_rdev = old_contended_rdev;
5856
5857	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5858				    regulator_summary_lock_one);
5859	if (ret)
5860		class_for_each_device(&regulator_class, NULL, &lock_data,
5861				      regulator_summary_unlock_one);
5862
5863	return ret;
5864}
5865
5866static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5867{
5868	struct regulator_dev *new_contended_rdev = NULL;
5869	struct regulator_dev *old_contended_rdev = NULL;
5870	int err;
5871
5872	mutex_lock(&regulator_list_mutex);
5873
5874	ww_acquire_init(ww_ctx, &regulator_ww_class);
5875
5876	do {
5877		if (new_contended_rdev) {
5878			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5879			old_contended_rdev = new_contended_rdev;
5880			old_contended_rdev->ref_cnt++;
5881			old_contended_rdev->mutex_owner = current;
5882		}
5883
5884		err = regulator_summary_lock_all(ww_ctx,
5885						 &new_contended_rdev,
5886						 &old_contended_rdev);
5887
5888		if (old_contended_rdev)
5889			regulator_unlock(old_contended_rdev);
5890
5891	} while (err == -EDEADLK);
5892
5893	ww_acquire_done(ww_ctx);
5894}
5895
5896static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5897{
5898	class_for_each_device(&regulator_class, NULL, NULL,
5899			      regulator_summary_unlock_one);
5900	ww_acquire_fini(ww_ctx);
5901
5902	mutex_unlock(&regulator_list_mutex);
5903}
5904
5905static int regulator_summary_show_roots(struct device *dev, void *data)
5906{
5907	struct regulator_dev *rdev = dev_to_rdev(dev);
5908	struct seq_file *s = data;
5909
5910	if (!rdev->supply)
5911		regulator_summary_show_subtree(s, rdev, 0);
5912
5913	return 0;
5914}
5915
5916static int regulator_summary_show(struct seq_file *s, void *data)
5917{
5918	struct ww_acquire_ctx ww_ctx;
5919
5920	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5921	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5922
5923	regulator_summary_lock(&ww_ctx);
5924
5925	class_for_each_device(&regulator_class, NULL, s,
5926			      regulator_summary_show_roots);
5927
5928	regulator_summary_unlock(&ww_ctx);
5929
5930	return 0;
5931}
5932DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5933#endif /* CONFIG_DEBUG_FS */
5934
5935static int __init regulator_init(void)
5936{
5937	int ret;
5938
5939	ret = class_register(&regulator_class);
5940
5941	debugfs_root = debugfs_create_dir("regulator", NULL);
5942	if (IS_ERR(debugfs_root))
5943		pr_debug("regulator: Failed to create debugfs directory\n");
5944
5945#ifdef CONFIG_DEBUG_FS
5946	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5947			    &supply_map_fops);
5948
5949	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5950			    NULL, &regulator_summary_fops);
5951#endif
5952	regulator_dummy_init();
5953
5954	regulator_coupler_register(&generic_regulator_coupler);
5955
5956	return ret;
5957}
5958
5959/* init early to allow our consumers to complete system booting */
5960core_initcall(regulator_init);
5961
5962static int regulator_late_cleanup(struct device *dev, void *data)
5963{
5964	struct regulator_dev *rdev = dev_to_rdev(dev);
5965	struct regulation_constraints *c = rdev->constraints;
5966	int ret;
5967
5968	if (c && c->always_on)
5969		return 0;
5970
5971	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5972		return 0;
5973
5974	regulator_lock(rdev);
5975
5976	if (rdev->use_count)
5977		goto unlock;
5978
5979	/* If reading the status failed, assume that it's off. */
5980	if (_regulator_is_enabled(rdev) <= 0)
5981		goto unlock;
5982
5983	if (have_full_constraints()) {
5984		/* We log since this may kill the system if it goes
5985		 * wrong. */
5986		rdev_info(rdev, "disabling\n");
5987		ret = _regulator_do_disable(rdev);
5988		if (ret != 0)
5989			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5990	} else {
5991		/* The intention is that in future we will
5992		 * assume that full constraints are provided
5993		 * so warn even if we aren't going to do
5994		 * anything here.
5995		 */
5996		rdev_warn(rdev, "incomplete constraints, leaving on\n");
5997	}
5998
5999unlock:
6000	regulator_unlock(rdev);
6001
6002	return 0;
6003}
6004
6005static void regulator_init_complete_work_function(struct work_struct *work)
6006{
6007	/*
6008	 * Regulators may had failed to resolve their input supplies
6009	 * when were registered, either because the input supply was
6010	 * not registered yet or because its parent device was not
6011	 * bound yet. So attempt to resolve the input supplies for
6012	 * pending regulators before trying to disable unused ones.
6013	 */
6014	class_for_each_device(&regulator_class, NULL, NULL,
6015			      regulator_register_resolve_supply);
6016
6017	/* If we have a full configuration then disable any regulators
6018	 * we have permission to change the status for and which are
6019	 * not in use or always_on.  This is effectively the default
6020	 * for DT and ACPI as they have full constraints.
6021	 */
6022	class_for_each_device(&regulator_class, NULL, NULL,
6023			      regulator_late_cleanup);
6024}
6025
6026static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6027			    regulator_init_complete_work_function);
6028
6029static int __init regulator_init_complete(void)
6030{
6031	/*
6032	 * Since DT doesn't provide an idiomatic mechanism for
6033	 * enabling full constraints and since it's much more natural
6034	 * with DT to provide them just assume that a DT enabled
6035	 * system has full constraints.
6036	 */
6037	if (of_have_populated_dt())
6038		has_full_constraints = true;
6039
6040	/*
6041	 * We punt completion for an arbitrary amount of time since
6042	 * systems like distros will load many drivers from userspace
6043	 * so consumers might not always be ready yet, this is
6044	 * particularly an issue with laptops where this might bounce
6045	 * the display off then on.  Ideally we'd get a notification
6046	 * from userspace when this happens but we don't so just wait
6047	 * a bit and hope we waited long enough.  It'd be better if
6048	 * we'd only do this on systems that need it, and a kernel
6049	 * command line option might be useful.
6050	 */
6051	schedule_delayed_work(&regulator_init_complete_work,
6052			      msecs_to_jiffies(30000));
6053
6054	return 0;
6055}
6056late_initcall_sync(regulator_init_complete);
6057