1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32 
33 #include "dummy.h"
34 #include "internal.h"
35 
36 #define rdev_crit(rdev, fmt, ...)					\
37 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...)					\
39 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...)					\
41 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...)					\
43 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...)					\
45 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55 
56 static struct dentry *debugfs_root;
57 
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64 	struct list_head list;
65 	const char *dev_name;   /* The dev_name() for the consumer */
66 	const char *supply;
67 	struct regulator_dev *regulator;
68 };
69 
70 /*
71  * struct regulator_enable_gpio
72  *
73  * Management for shared enable GPIO pin
74  */
75 struct regulator_enable_gpio {
76 	struct list_head list;
77 	struct gpio_desc *gpiod;
78 	u32 enable_count;	/* a number of enabled shared GPIO */
79 	u32 request_count;	/* a number of requested shared GPIO */
80 };
81 
82 /*
83  * struct regulator_supply_alias
84  *
85  * Used to map lookups for a supply onto an alternative device.
86  */
87 struct regulator_supply_alias {
88 	struct list_head list;
89 	struct device *src_dev;
90 	const char *src_supply;
91 	struct device *alias_dev;
92 	const char *alias_supply;
93 };
94 
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100 				  unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 				     int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104 				     suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106 					  struct device *dev,
107 					  const char *supply_name);
108 static void destroy_regulator(struct regulator *regulator);
109 static void _regulator_put(struct regulator *regulator);
110 
rdev_get_name(struct regulator_dev *rdev)111 const char *rdev_get_name(struct regulator_dev *rdev)
112 {
113 	if (rdev->constraints && rdev->constraints->name)
114 		return rdev->constraints->name;
115 	else if (rdev->desc->name)
116 		return rdev->desc->name;
117 	else
118 		return "";
119 }
120 
have_full_constraints(void)121 static bool have_full_constraints(void)
122 {
123 	return has_full_constraints || of_have_populated_dt();
124 }
125 
regulator_ops_is_valid(struct regulator_dev *rdev, int ops)126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127 {
128 	if (!rdev->constraints) {
129 		rdev_err(rdev, "no constraints\n");
130 		return false;
131 	}
132 
133 	if (rdev->constraints->valid_ops_mask & ops)
134 		return true;
135 
136 	return false;
137 }
138 
139 /**
140  * regulator_lock_nested - lock a single regulator
141  * @rdev:		regulator source
142  * @ww_ctx:		w/w mutex acquire context
143  *
144  * This function can be called many times by one task on
145  * a single regulator and its mutex will be locked only
146  * once. If a task, which is calling this function is other
147  * than the one, which initially locked the mutex, it will
148  * wait on mutex.
149  */
regulator_lock_nested(struct regulator_dev *rdev, struct ww_acquire_ctx *ww_ctx)150 static inline int regulator_lock_nested(struct regulator_dev *rdev,
151 					struct ww_acquire_ctx *ww_ctx)
152 {
153 	bool lock = false;
154 	int ret = 0;
155 
156 	mutex_lock(&regulator_nesting_mutex);
157 
158 	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159 		if (rdev->mutex_owner == current)
160 			rdev->ref_cnt++;
161 		else
162 			lock = true;
163 
164 		if (lock) {
165 			mutex_unlock(&regulator_nesting_mutex);
166 			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167 			mutex_lock(&regulator_nesting_mutex);
168 		}
169 	} else {
170 		lock = true;
171 	}
172 
173 	if (lock && ret != -EDEADLK) {
174 		rdev->ref_cnt++;
175 		rdev->mutex_owner = current;
176 	}
177 
178 	mutex_unlock(&regulator_nesting_mutex);
179 
180 	return ret;
181 }
182 
183 /**
184  * regulator_lock - lock a single regulator
185  * @rdev:		regulator source
186  *
187  * This function can be called many times by one task on
188  * a single regulator and its mutex will be locked only
189  * once. If a task, which is calling this function is other
190  * than the one, which initially locked the mutex, it will
191  * wait on mutex.
192  */
regulator_lock(struct regulator_dev *rdev)193 static void regulator_lock(struct regulator_dev *rdev)
194 {
195 	regulator_lock_nested(rdev, NULL);
196 }
197 
198 /**
199  * regulator_unlock - unlock a single regulator
200  * @rdev:		regulator_source
201  *
202  * This function unlocks the mutex when the
203  * reference counter reaches 0.
204  */
regulator_unlock(struct regulator_dev *rdev)205 static void regulator_unlock(struct regulator_dev *rdev)
206 {
207 	mutex_lock(&regulator_nesting_mutex);
208 
209 	if (--rdev->ref_cnt == 0) {
210 		rdev->mutex_owner = NULL;
211 		ww_mutex_unlock(&rdev->mutex);
212 	}
213 
214 	WARN_ON_ONCE(rdev->ref_cnt < 0);
215 
216 	mutex_unlock(&regulator_nesting_mutex);
217 }
218 
219 /**
220  * regulator_lock_two - lock two regulators
221  * @rdev1:		first regulator
222  * @rdev2:		second regulator
223  * @ww_ctx:		w/w mutex acquire context
224  *
225  * Locks both rdevs using the regulator_ww_class.
226  */
regulator_lock_two(struct regulator_dev *rdev1, struct regulator_dev *rdev2, struct ww_acquire_ctx *ww_ctx)227 static void regulator_lock_two(struct regulator_dev *rdev1,
228 			       struct regulator_dev *rdev2,
229 			       struct ww_acquire_ctx *ww_ctx)
230 {
231 	struct regulator_dev *tmp;
232 	int ret;
233 
234 	ww_acquire_init(ww_ctx, &regulator_ww_class);
235 
236 	/* Try to just grab both of them */
237 	ret = regulator_lock_nested(rdev1, ww_ctx);
238 	WARN_ON(ret);
239 	ret = regulator_lock_nested(rdev2, ww_ctx);
240 	if (ret != -EDEADLOCK) {
241 		WARN_ON(ret);
242 		goto exit;
243 	}
244 
245 	while (true) {
246 		/*
247 		 * Start of loop: rdev1 was locked and rdev2 was contended.
248 		 * Need to unlock rdev1, slowly lock rdev2, then try rdev1
249 		 * again.
250 		 */
251 		regulator_unlock(rdev1);
252 
253 		ww_mutex_lock_slow(&rdev2->mutex, ww_ctx);
254 		rdev2->ref_cnt++;
255 		rdev2->mutex_owner = current;
256 		ret = regulator_lock_nested(rdev1, ww_ctx);
257 
258 		if (ret == -EDEADLOCK) {
259 			/* More contention; swap which needs to be slow */
260 			tmp = rdev1;
261 			rdev1 = rdev2;
262 			rdev2 = tmp;
263 		} else {
264 			WARN_ON(ret);
265 			break;
266 		}
267 	}
268 
269 exit:
270 	ww_acquire_done(ww_ctx);
271 }
272 
273 /**
274  * regulator_unlock_two - unlock two regulators
275  * @rdev1:		first regulator
276  * @rdev2:		second regulator
277  * @ww_ctx:		w/w mutex acquire context
278  *
279  * The inverse of regulator_lock_two().
280  */
281 
regulator_unlock_two(struct regulator_dev *rdev1, struct regulator_dev *rdev2, struct ww_acquire_ctx *ww_ctx)282 static void regulator_unlock_two(struct regulator_dev *rdev1,
283 				 struct regulator_dev *rdev2,
284 				 struct ww_acquire_ctx *ww_ctx)
285 {
286 	regulator_unlock(rdev2);
287 	regulator_unlock(rdev1);
288 	ww_acquire_fini(ww_ctx);
289 }
290 
regulator_supply_is_couple(struct regulator_dev *rdev)291 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
292 {
293 	struct regulator_dev *c_rdev;
294 	int i;
295 
296 	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
297 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
298 
299 		if (rdev->supply->rdev == c_rdev)
300 			return true;
301 	}
302 
303 	return false;
304 }
305 
regulator_unlock_recursive(struct regulator_dev *rdev, unsigned int n_coupled)306 static void regulator_unlock_recursive(struct regulator_dev *rdev,
307 				       unsigned int n_coupled)
308 {
309 	struct regulator_dev *c_rdev, *supply_rdev;
310 	int i, supply_n_coupled;
311 
312 	for (i = n_coupled; i > 0; i--) {
313 		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
314 
315 		if (!c_rdev)
316 			continue;
317 
318 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
319 			supply_rdev = c_rdev->supply->rdev;
320 			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
321 
322 			regulator_unlock_recursive(supply_rdev,
323 						   supply_n_coupled);
324 		}
325 
326 		regulator_unlock(c_rdev);
327 	}
328 }
329 
regulator_lock_recursive(struct regulator_dev *rdev, struct regulator_dev **new_contended_rdev, struct regulator_dev **old_contended_rdev, struct ww_acquire_ctx *ww_ctx)330 static int regulator_lock_recursive(struct regulator_dev *rdev,
331 				    struct regulator_dev **new_contended_rdev,
332 				    struct regulator_dev **old_contended_rdev,
333 				    struct ww_acquire_ctx *ww_ctx)
334 {
335 	struct regulator_dev *c_rdev;
336 	int i, err;
337 
338 	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
339 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
340 
341 		if (!c_rdev)
342 			continue;
343 
344 		if (c_rdev != *old_contended_rdev) {
345 			err = regulator_lock_nested(c_rdev, ww_ctx);
346 			if (err) {
347 				if (err == -EDEADLK) {
348 					*new_contended_rdev = c_rdev;
349 					goto err_unlock;
350 				}
351 
352 				/* shouldn't happen */
353 				WARN_ON_ONCE(err != -EALREADY);
354 			}
355 		} else {
356 			*old_contended_rdev = NULL;
357 		}
358 
359 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
360 			err = regulator_lock_recursive(c_rdev->supply->rdev,
361 						       new_contended_rdev,
362 						       old_contended_rdev,
363 						       ww_ctx);
364 			if (err) {
365 				regulator_unlock(c_rdev);
366 				goto err_unlock;
367 			}
368 		}
369 	}
370 
371 	return 0;
372 
373 err_unlock:
374 	regulator_unlock_recursive(rdev, i);
375 
376 	return err;
377 }
378 
379 /**
380  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
381  *				regulators
382  * @rdev:			regulator source
383  * @ww_ctx:			w/w mutex acquire context
384  *
385  * Unlock all regulators related with rdev by coupling or supplying.
386  */
regulator_unlock_dependent(struct regulator_dev *rdev, struct ww_acquire_ctx *ww_ctx)387 static void regulator_unlock_dependent(struct regulator_dev *rdev,
388 				       struct ww_acquire_ctx *ww_ctx)
389 {
390 	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
391 	ww_acquire_fini(ww_ctx);
392 }
393 
394 /**
395  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
396  * @rdev:			regulator source
397  * @ww_ctx:			w/w mutex acquire context
398  *
399  * This function as a wrapper on regulator_lock_recursive(), which locks
400  * all regulators related with rdev by coupling or supplying.
401  */
regulator_lock_dependent(struct regulator_dev *rdev, struct ww_acquire_ctx *ww_ctx)402 static void regulator_lock_dependent(struct regulator_dev *rdev,
403 				     struct ww_acquire_ctx *ww_ctx)
404 {
405 	struct regulator_dev *new_contended_rdev = NULL;
406 	struct regulator_dev *old_contended_rdev = NULL;
407 	int err;
408 
409 	mutex_lock(&regulator_list_mutex);
410 
411 	ww_acquire_init(ww_ctx, &regulator_ww_class);
412 
413 	do {
414 		if (new_contended_rdev) {
415 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
416 			old_contended_rdev = new_contended_rdev;
417 			old_contended_rdev->ref_cnt++;
418 			old_contended_rdev->mutex_owner = current;
419 		}
420 
421 		err = regulator_lock_recursive(rdev,
422 					       &new_contended_rdev,
423 					       &old_contended_rdev,
424 					       ww_ctx);
425 
426 		if (old_contended_rdev)
427 			regulator_unlock(old_contended_rdev);
428 
429 	} while (err == -EDEADLK);
430 
431 	ww_acquire_done(ww_ctx);
432 
433 	mutex_unlock(&regulator_list_mutex);
434 }
435 
436 /**
437  * of_get_child_regulator - get a child regulator device node
438  * based on supply name
439  * @parent: Parent device node
440  * @prop_name: Combination regulator supply name and "-supply"
441  *
442  * Traverse all child nodes.
443  * Extract the child regulator device node corresponding to the supply name.
444  * returns the device node corresponding to the regulator if found, else
445  * returns NULL.
446  */
of_get_child_regulator(struct device_node *parent, const char *prop_name)447 static struct device_node *of_get_child_regulator(struct device_node *parent,
448 						  const char *prop_name)
449 {
450 	struct device_node *regnode = NULL;
451 	struct device_node *child = NULL;
452 
453 	for_each_child_of_node(parent, child) {
454 		regnode = of_parse_phandle(child, prop_name, 0);
455 
456 		if (!regnode) {
457 			regnode = of_get_child_regulator(child, prop_name);
458 			if (regnode)
459 				goto err_node_put;
460 		} else {
461 			goto err_node_put;
462 		}
463 	}
464 	return NULL;
465 
466 err_node_put:
467 	of_node_put(child);
468 	return regnode;
469 }
470 
471 /**
472  * of_get_regulator - get a regulator device node based on supply name
473  * @dev: Device pointer for the consumer (of regulator) device
474  * @supply: regulator supply name
475  *
476  * Extract the regulator device node corresponding to the supply name.
477  * returns the device node corresponding to the regulator if found, else
478  * returns NULL.
479  */
of_get_regulator(struct device *dev, const char *supply)480 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
481 {
482 	struct device_node *regnode = NULL;
483 	char prop_name[64]; /* 64 is max size of property name */
484 
485 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
486 
487 	snprintf(prop_name, 64, "%s-supply", supply);
488 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
489 
490 	if (!regnode) {
491 		regnode = of_get_child_regulator(dev->of_node, prop_name);
492 		if (regnode)
493 			return regnode;
494 
495 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
496 				prop_name, dev->of_node);
497 		return NULL;
498 	}
499 	return regnode;
500 }
501 
502 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev *rdev, int *min_uV, int *max_uV)503 int regulator_check_voltage(struct regulator_dev *rdev,
504 			    int *min_uV, int *max_uV)
505 {
506 	BUG_ON(*min_uV > *max_uV);
507 
508 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
509 		rdev_err(rdev, "voltage operation not allowed\n");
510 		return -EPERM;
511 	}
512 
513 	if (*max_uV > rdev->constraints->max_uV)
514 		*max_uV = rdev->constraints->max_uV;
515 	if (*min_uV < rdev->constraints->min_uV)
516 		*min_uV = rdev->constraints->min_uV;
517 
518 	if (*min_uV > *max_uV) {
519 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
520 			 *min_uV, *max_uV);
521 		return -EINVAL;
522 	}
523 
524 	return 0;
525 }
526 
527 /* return 0 if the state is valid */
regulator_check_states(suspend_state_t state)528 static int regulator_check_states(suspend_state_t state)
529 {
530 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
531 }
532 
533 /* Make sure we select a voltage that suits the needs of all
534  * regulator consumers
535  */
regulator_check_consumers(struct regulator_dev *rdev, int *min_uV, int *max_uV, suspend_state_t state)536 int regulator_check_consumers(struct regulator_dev *rdev,
537 			      int *min_uV, int *max_uV,
538 			      suspend_state_t state)
539 {
540 	struct regulator *regulator;
541 	struct regulator_voltage *voltage;
542 
543 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
544 		voltage = &regulator->voltage[state];
545 		/*
546 		 * Assume consumers that didn't say anything are OK
547 		 * with anything in the constraint range.
548 		 */
549 		if (!voltage->min_uV && !voltage->max_uV)
550 			continue;
551 
552 		if (*max_uV > voltage->max_uV)
553 			*max_uV = voltage->max_uV;
554 		if (*min_uV < voltage->min_uV)
555 			*min_uV = voltage->min_uV;
556 	}
557 
558 	if (*min_uV > *max_uV) {
559 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
560 			*min_uV, *max_uV);
561 		return -EINVAL;
562 	}
563 
564 	return 0;
565 }
566 
567 /* current constraint check */
regulator_check_current_limit(struct regulator_dev *rdev, int *min_uA, int *max_uA)568 static int regulator_check_current_limit(struct regulator_dev *rdev,
569 					int *min_uA, int *max_uA)
570 {
571 	BUG_ON(*min_uA > *max_uA);
572 
573 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
574 		rdev_err(rdev, "current operation not allowed\n");
575 		return -EPERM;
576 	}
577 
578 	if (*max_uA > rdev->constraints->max_uA)
579 		*max_uA = rdev->constraints->max_uA;
580 	if (*min_uA < rdev->constraints->min_uA)
581 		*min_uA = rdev->constraints->min_uA;
582 
583 	if (*min_uA > *max_uA) {
584 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
585 			 *min_uA, *max_uA);
586 		return -EINVAL;
587 	}
588 
589 	return 0;
590 }
591 
592 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev *rdev, unsigned int *mode)593 static int regulator_mode_constrain(struct regulator_dev *rdev,
594 				    unsigned int *mode)
595 {
596 	switch (*mode) {
597 	case REGULATOR_MODE_FAST:
598 	case REGULATOR_MODE_NORMAL:
599 	case REGULATOR_MODE_IDLE:
600 	case REGULATOR_MODE_STANDBY:
601 		break;
602 	default:
603 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
604 		return -EINVAL;
605 	}
606 
607 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
608 		rdev_err(rdev, "mode operation not allowed\n");
609 		return -EPERM;
610 	}
611 
612 	/* The modes are bitmasks, the most power hungry modes having
613 	 * the lowest values. If the requested mode isn't supported
614 	 * try higher modes. */
615 	while (*mode) {
616 		if (rdev->constraints->valid_modes_mask & *mode)
617 			return 0;
618 		*mode /= 2;
619 	}
620 
621 	return -EINVAL;
622 }
623 
624 static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)625 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
626 {
627 	if (rdev->constraints == NULL)
628 		return NULL;
629 
630 	switch (state) {
631 	case PM_SUSPEND_STANDBY:
632 		return &rdev->constraints->state_standby;
633 	case PM_SUSPEND_MEM:
634 		return &rdev->constraints->state_mem;
635 	case PM_SUSPEND_MAX:
636 		return &rdev->constraints->state_disk;
637 	default:
638 		return NULL;
639 	}
640 }
641 
642 static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)643 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
644 {
645 	const struct regulator_state *rstate;
646 
647 	rstate = regulator_get_suspend_state(rdev, state);
648 	if (rstate == NULL)
649 		return NULL;
650 
651 	/* If we have no suspend mode configuration don't set anything;
652 	 * only warn if the driver implements set_suspend_voltage or
653 	 * set_suspend_mode callback.
654 	 */
655 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
656 	    rstate->enabled != DISABLE_IN_SUSPEND) {
657 		if (rdev->desc->ops->set_suspend_voltage ||
658 		    rdev->desc->ops->set_suspend_mode)
659 			rdev_warn(rdev, "No configuration\n");
660 		return NULL;
661 	}
662 
663 	return rstate;
664 }
665 
regulator_uV_show(struct device *dev, struct device_attribute *attr, char *buf)666 static ssize_t regulator_uV_show(struct device *dev,
667 				struct device_attribute *attr, char *buf)
668 {
669 	struct regulator_dev *rdev = dev_get_drvdata(dev);
670 	int uV;
671 
672 	regulator_lock(rdev);
673 	uV = regulator_get_voltage_rdev(rdev);
674 	regulator_unlock(rdev);
675 
676 	if (uV < 0)
677 		return uV;
678 	return sprintf(buf, "%d\n", uV);
679 }
680 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
681 
regulator_uA_show(struct device *dev, struct device_attribute *attr, char *buf)682 static ssize_t regulator_uA_show(struct device *dev,
683 				struct device_attribute *attr, char *buf)
684 {
685 	struct regulator_dev *rdev = dev_get_drvdata(dev);
686 
687 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
688 }
689 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
690 
name_show(struct device *dev, struct device_attribute *attr, char *buf)691 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
692 			 char *buf)
693 {
694 	struct regulator_dev *rdev = dev_get_drvdata(dev);
695 
696 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
697 }
698 static DEVICE_ATTR_RO(name);
699 
regulator_opmode_to_str(int mode)700 static const char *regulator_opmode_to_str(int mode)
701 {
702 	switch (mode) {
703 	case REGULATOR_MODE_FAST:
704 		return "fast";
705 	case REGULATOR_MODE_NORMAL:
706 		return "normal";
707 	case REGULATOR_MODE_IDLE:
708 		return "idle";
709 	case REGULATOR_MODE_STANDBY:
710 		return "standby";
711 	}
712 	return "unknown";
713 }
714 
regulator_print_opmode(char *buf, int mode)715 static ssize_t regulator_print_opmode(char *buf, int mode)
716 {
717 	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
718 }
719 
regulator_opmode_show(struct device *dev, struct device_attribute *attr, char *buf)720 static ssize_t regulator_opmode_show(struct device *dev,
721 				    struct device_attribute *attr, char *buf)
722 {
723 	struct regulator_dev *rdev = dev_get_drvdata(dev);
724 
725 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
726 }
727 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
728 
regulator_print_state(char *buf, int state)729 static ssize_t regulator_print_state(char *buf, int state)
730 {
731 	if (state > 0)
732 		return sprintf(buf, "enabled\n");
733 	else if (state == 0)
734 		return sprintf(buf, "disabled\n");
735 	else
736 		return sprintf(buf, "unknown\n");
737 }
738 
regulator_state_show(struct device *dev, struct device_attribute *attr, char *buf)739 static ssize_t regulator_state_show(struct device *dev,
740 				   struct device_attribute *attr, char *buf)
741 {
742 	struct regulator_dev *rdev = dev_get_drvdata(dev);
743 	ssize_t ret;
744 
745 	regulator_lock(rdev);
746 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
747 	regulator_unlock(rdev);
748 
749 	return ret;
750 }
751 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
752 
regulator_status_show(struct device *dev, struct device_attribute *attr, char *buf)753 static ssize_t regulator_status_show(struct device *dev,
754 				   struct device_attribute *attr, char *buf)
755 {
756 	struct regulator_dev *rdev = dev_get_drvdata(dev);
757 	int status;
758 	char *label;
759 
760 	status = rdev->desc->ops->get_status(rdev);
761 	if (status < 0)
762 		return status;
763 
764 	switch (status) {
765 	case REGULATOR_STATUS_OFF:
766 		label = "off";
767 		break;
768 	case REGULATOR_STATUS_ON:
769 		label = "on";
770 		break;
771 	case REGULATOR_STATUS_ERROR:
772 		label = "error";
773 		break;
774 	case REGULATOR_STATUS_FAST:
775 		label = "fast";
776 		break;
777 	case REGULATOR_STATUS_NORMAL:
778 		label = "normal";
779 		break;
780 	case REGULATOR_STATUS_IDLE:
781 		label = "idle";
782 		break;
783 	case REGULATOR_STATUS_STANDBY:
784 		label = "standby";
785 		break;
786 	case REGULATOR_STATUS_BYPASS:
787 		label = "bypass";
788 		break;
789 	case REGULATOR_STATUS_UNDEFINED:
790 		label = "undefined";
791 		break;
792 	default:
793 		return -ERANGE;
794 	}
795 
796 	return sprintf(buf, "%s\n", label);
797 }
798 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
799 
regulator_min_uA_show(struct device *dev, struct device_attribute *attr, char *buf)800 static ssize_t regulator_min_uA_show(struct device *dev,
801 				    struct device_attribute *attr, char *buf)
802 {
803 	struct regulator_dev *rdev = dev_get_drvdata(dev);
804 
805 	if (!rdev->constraints)
806 		return sprintf(buf, "constraint not defined\n");
807 
808 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
809 }
810 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
811 
regulator_max_uA_show(struct device *dev, struct device_attribute *attr, char *buf)812 static ssize_t regulator_max_uA_show(struct device *dev,
813 				    struct device_attribute *attr, char *buf)
814 {
815 	struct regulator_dev *rdev = dev_get_drvdata(dev);
816 
817 	if (!rdev->constraints)
818 		return sprintf(buf, "constraint not defined\n");
819 
820 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
821 }
822 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
823 
regulator_min_uV_show(struct device *dev, struct device_attribute *attr, char *buf)824 static ssize_t regulator_min_uV_show(struct device *dev,
825 				    struct device_attribute *attr, char *buf)
826 {
827 	struct regulator_dev *rdev = dev_get_drvdata(dev);
828 
829 	if (!rdev->constraints)
830 		return sprintf(buf, "constraint not defined\n");
831 
832 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
833 }
834 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
835 
regulator_max_uV_show(struct device *dev, struct device_attribute *attr, char *buf)836 static ssize_t regulator_max_uV_show(struct device *dev,
837 				    struct device_attribute *attr, char *buf)
838 {
839 	struct regulator_dev *rdev = dev_get_drvdata(dev);
840 
841 	if (!rdev->constraints)
842 		return sprintf(buf, "constraint not defined\n");
843 
844 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
845 }
846 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
847 
regulator_total_uA_show(struct device *dev, struct device_attribute *attr, char *buf)848 static ssize_t regulator_total_uA_show(struct device *dev,
849 				      struct device_attribute *attr, char *buf)
850 {
851 	struct regulator_dev *rdev = dev_get_drvdata(dev);
852 	struct regulator *regulator;
853 	int uA = 0;
854 
855 	regulator_lock(rdev);
856 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
857 		if (regulator->enable_count)
858 			uA += regulator->uA_load;
859 	}
860 	regulator_unlock(rdev);
861 	return sprintf(buf, "%d\n", uA);
862 }
863 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
864 
num_users_show(struct device *dev, struct device_attribute *attr, char *buf)865 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
866 			      char *buf)
867 {
868 	struct regulator_dev *rdev = dev_get_drvdata(dev);
869 	return sprintf(buf, "%d\n", rdev->use_count);
870 }
871 static DEVICE_ATTR_RO(num_users);
872 
type_show(struct device *dev, struct device_attribute *attr, char *buf)873 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
874 			 char *buf)
875 {
876 	struct regulator_dev *rdev = dev_get_drvdata(dev);
877 
878 	switch (rdev->desc->type) {
879 	case REGULATOR_VOLTAGE:
880 		return sprintf(buf, "voltage\n");
881 	case REGULATOR_CURRENT:
882 		return sprintf(buf, "current\n");
883 	}
884 	return sprintf(buf, "unknown\n");
885 }
886 static DEVICE_ATTR_RO(type);
887 
regulator_suspend_mem_uV_show(struct device *dev, struct device_attribute *attr, char *buf)888 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
889 				struct device_attribute *attr, char *buf)
890 {
891 	struct regulator_dev *rdev = dev_get_drvdata(dev);
892 
893 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
894 }
895 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
896 		regulator_suspend_mem_uV_show, NULL);
897 
regulator_suspend_disk_uV_show(struct device *dev, struct device_attribute *attr, char *buf)898 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
899 				struct device_attribute *attr, char *buf)
900 {
901 	struct regulator_dev *rdev = dev_get_drvdata(dev);
902 
903 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
904 }
905 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
906 		regulator_suspend_disk_uV_show, NULL);
907 
regulator_suspend_standby_uV_show(struct device *dev, struct device_attribute *attr, char *buf)908 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
909 				struct device_attribute *attr, char *buf)
910 {
911 	struct regulator_dev *rdev = dev_get_drvdata(dev);
912 
913 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
914 }
915 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
916 		regulator_suspend_standby_uV_show, NULL);
917 
regulator_suspend_mem_mode_show(struct device *dev, struct device_attribute *attr, char *buf)918 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
919 				struct device_attribute *attr, char *buf)
920 {
921 	struct regulator_dev *rdev = dev_get_drvdata(dev);
922 
923 	return regulator_print_opmode(buf,
924 		rdev->constraints->state_mem.mode);
925 }
926 static DEVICE_ATTR(suspend_mem_mode, 0444,
927 		regulator_suspend_mem_mode_show, NULL);
928 
regulator_suspend_disk_mode_show(struct device *dev, struct device_attribute *attr, char *buf)929 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
930 				struct device_attribute *attr, char *buf)
931 {
932 	struct regulator_dev *rdev = dev_get_drvdata(dev);
933 
934 	return regulator_print_opmode(buf,
935 		rdev->constraints->state_disk.mode);
936 }
937 static DEVICE_ATTR(suspend_disk_mode, 0444,
938 		regulator_suspend_disk_mode_show, NULL);
939 
regulator_suspend_standby_mode_show(struct device *dev, struct device_attribute *attr, char *buf)940 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
941 				struct device_attribute *attr, char *buf)
942 {
943 	struct regulator_dev *rdev = dev_get_drvdata(dev);
944 
945 	return regulator_print_opmode(buf,
946 		rdev->constraints->state_standby.mode);
947 }
948 static DEVICE_ATTR(suspend_standby_mode, 0444,
949 		regulator_suspend_standby_mode_show, NULL);
950 
regulator_suspend_mem_state_show(struct device *dev, struct device_attribute *attr, char *buf)951 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
952 				   struct device_attribute *attr, char *buf)
953 {
954 	struct regulator_dev *rdev = dev_get_drvdata(dev);
955 
956 	return regulator_print_state(buf,
957 			rdev->constraints->state_mem.enabled);
958 }
959 static DEVICE_ATTR(suspend_mem_state, 0444,
960 		regulator_suspend_mem_state_show, NULL);
961 
regulator_suspend_disk_state_show(struct device *dev, struct device_attribute *attr, char *buf)962 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
963 				   struct device_attribute *attr, char *buf)
964 {
965 	struct regulator_dev *rdev = dev_get_drvdata(dev);
966 
967 	return regulator_print_state(buf,
968 			rdev->constraints->state_disk.enabled);
969 }
970 static DEVICE_ATTR(suspend_disk_state, 0444,
971 		regulator_suspend_disk_state_show, NULL);
972 
regulator_suspend_standby_state_show(struct device *dev, struct device_attribute *attr, char *buf)973 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
974 				   struct device_attribute *attr, char *buf)
975 {
976 	struct regulator_dev *rdev = dev_get_drvdata(dev);
977 
978 	return regulator_print_state(buf,
979 			rdev->constraints->state_standby.enabled);
980 }
981 static DEVICE_ATTR(suspend_standby_state, 0444,
982 		regulator_suspend_standby_state_show, NULL);
983 
regulator_bypass_show(struct device *dev, struct device_attribute *attr, char *buf)984 static ssize_t regulator_bypass_show(struct device *dev,
985 				     struct device_attribute *attr, char *buf)
986 {
987 	struct regulator_dev *rdev = dev_get_drvdata(dev);
988 	const char *report;
989 	bool bypass;
990 	int ret;
991 
992 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
993 
994 	if (ret != 0)
995 		report = "unknown";
996 	else if (bypass)
997 		report = "enabled";
998 	else
999 		report = "disabled";
1000 
1001 	return sprintf(buf, "%s\n", report);
1002 }
1003 static DEVICE_ATTR(bypass, 0444,
1004 		   regulator_bypass_show, NULL);
1005 
1006 /* Calculate the new optimum regulator operating mode based on the new total
1007  * consumer load. All locks held by caller */
drms_uA_update(struct regulator_dev *rdev)1008 static int drms_uA_update(struct regulator_dev *rdev)
1009 {
1010 	struct regulator *sibling;
1011 	int current_uA = 0, output_uV, input_uV, err;
1012 	unsigned int mode;
1013 
1014 	/*
1015 	 * first check to see if we can set modes at all, otherwise just
1016 	 * tell the consumer everything is OK.
1017 	 */
1018 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1019 		rdev_dbg(rdev, "DRMS operation not allowed\n");
1020 		return 0;
1021 	}
1022 
1023 	if (!rdev->desc->ops->get_optimum_mode &&
1024 	    !rdev->desc->ops->set_load)
1025 		return 0;
1026 
1027 	if (!rdev->desc->ops->set_mode &&
1028 	    !rdev->desc->ops->set_load)
1029 		return -EINVAL;
1030 
1031 	/* calc total requested load */
1032 	list_for_each_entry(sibling, &rdev->consumer_list, list) {
1033 		if (sibling->enable_count)
1034 			current_uA += sibling->uA_load;
1035 	}
1036 
1037 	current_uA += rdev->constraints->system_load;
1038 
1039 	if (rdev->desc->ops->set_load) {
1040 		/* set the optimum mode for our new total regulator load */
1041 		err = rdev->desc->ops->set_load(rdev, current_uA);
1042 		if (err < 0)
1043 			rdev_err(rdev, "failed to set load %d: %pe\n",
1044 				 current_uA, ERR_PTR(err));
1045 	} else {
1046 		/* get output voltage */
1047 		output_uV = regulator_get_voltage_rdev(rdev);
1048 		if (output_uV <= 0) {
1049 			rdev_err(rdev, "invalid output voltage found\n");
1050 			return -EINVAL;
1051 		}
1052 
1053 		/* get input voltage */
1054 		input_uV = 0;
1055 		if (rdev->supply)
1056 			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1057 		if (input_uV <= 0)
1058 			input_uV = rdev->constraints->input_uV;
1059 		if (input_uV <= 0) {
1060 			rdev_err(rdev, "invalid input voltage found\n");
1061 			return -EINVAL;
1062 		}
1063 
1064 		/* now get the optimum mode for our new total regulator load */
1065 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1066 							 output_uV, current_uA);
1067 
1068 		/* check the new mode is allowed */
1069 		err = regulator_mode_constrain(rdev, &mode);
1070 		if (err < 0) {
1071 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1072 				 current_uA, input_uV, output_uV, ERR_PTR(err));
1073 			return err;
1074 		}
1075 
1076 		err = rdev->desc->ops->set_mode(rdev, mode);
1077 		if (err < 0)
1078 			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1079 				 mode, ERR_PTR(err));
1080 	}
1081 
1082 	return err;
1083 }
1084 
__suspend_set_state(struct regulator_dev *rdev, const struct regulator_state *rstate)1085 static int __suspend_set_state(struct regulator_dev *rdev,
1086 			       const struct regulator_state *rstate)
1087 {
1088 	int ret = 0;
1089 
1090 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1091 		rdev->desc->ops->set_suspend_enable)
1092 		ret = rdev->desc->ops->set_suspend_enable(rdev);
1093 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1094 		rdev->desc->ops->set_suspend_disable)
1095 		ret = rdev->desc->ops->set_suspend_disable(rdev);
1096 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1097 		ret = 0;
1098 
1099 	if (ret < 0) {
1100 		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1101 		return ret;
1102 	}
1103 
1104 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1105 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1106 		if (ret < 0) {
1107 			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1108 			return ret;
1109 		}
1110 	}
1111 
1112 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1113 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1114 		if (ret < 0) {
1115 			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1116 			return ret;
1117 		}
1118 	}
1119 
1120 	return ret;
1121 }
1122 
suspend_set_initial_state(struct regulator_dev *rdev)1123 static int suspend_set_initial_state(struct regulator_dev *rdev)
1124 {
1125 	const struct regulator_state *rstate;
1126 
1127 	rstate = regulator_get_suspend_state_check(rdev,
1128 			rdev->constraints->initial_state);
1129 	if (!rstate)
1130 		return 0;
1131 
1132 	return __suspend_set_state(rdev, rstate);
1133 }
1134 
1135 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
print_constraints_debug(struct regulator_dev *rdev)1136 static void print_constraints_debug(struct regulator_dev *rdev)
1137 {
1138 	struct regulation_constraints *constraints = rdev->constraints;
1139 	char buf[160] = "";
1140 	size_t len = sizeof(buf) - 1;
1141 	int count = 0;
1142 	int ret;
1143 
1144 	if (constraints->min_uV && constraints->max_uV) {
1145 		if (constraints->min_uV == constraints->max_uV)
1146 			count += scnprintf(buf + count, len - count, "%d mV ",
1147 					   constraints->min_uV / 1000);
1148 		else
1149 			count += scnprintf(buf + count, len - count,
1150 					   "%d <--> %d mV ",
1151 					   constraints->min_uV / 1000,
1152 					   constraints->max_uV / 1000);
1153 	}
1154 
1155 	if (!constraints->min_uV ||
1156 	    constraints->min_uV != constraints->max_uV) {
1157 		ret = regulator_get_voltage_rdev(rdev);
1158 		if (ret > 0)
1159 			count += scnprintf(buf + count, len - count,
1160 					   "at %d mV ", ret / 1000);
1161 	}
1162 
1163 	if (constraints->uV_offset)
1164 		count += scnprintf(buf + count, len - count, "%dmV offset ",
1165 				   constraints->uV_offset / 1000);
1166 
1167 	if (constraints->min_uA && constraints->max_uA) {
1168 		if (constraints->min_uA == constraints->max_uA)
1169 			count += scnprintf(buf + count, len - count, "%d mA ",
1170 					   constraints->min_uA / 1000);
1171 		else
1172 			count += scnprintf(buf + count, len - count,
1173 					   "%d <--> %d mA ",
1174 					   constraints->min_uA / 1000,
1175 					   constraints->max_uA / 1000);
1176 	}
1177 
1178 	if (!constraints->min_uA ||
1179 	    constraints->min_uA != constraints->max_uA) {
1180 		ret = _regulator_get_current_limit(rdev);
1181 		if (ret > 0)
1182 			count += scnprintf(buf + count, len - count,
1183 					   "at %d mA ", ret / 1000);
1184 	}
1185 
1186 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1187 		count += scnprintf(buf + count, len - count, "fast ");
1188 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1189 		count += scnprintf(buf + count, len - count, "normal ");
1190 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1191 		count += scnprintf(buf + count, len - count, "idle ");
1192 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1193 		count += scnprintf(buf + count, len - count, "standby ");
1194 
1195 	if (!count)
1196 		count = scnprintf(buf, len, "no parameters");
1197 	else
1198 		--count;
1199 
1200 	count += scnprintf(buf + count, len - count, ", %s",
1201 		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1202 
1203 	rdev_dbg(rdev, "%s\n", buf);
1204 }
1205 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
print_constraints_debug(struct regulator_dev *rdev)1206 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1207 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1208 
print_constraints(struct regulator_dev *rdev)1209 static void print_constraints(struct regulator_dev *rdev)
1210 {
1211 	struct regulation_constraints *constraints = rdev->constraints;
1212 
1213 	print_constraints_debug(rdev);
1214 
1215 	if ((constraints->min_uV != constraints->max_uV) &&
1216 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1217 		rdev_warn(rdev,
1218 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1219 }
1220 
machine_constraints_voltage(struct regulator_dev *rdev, struct regulation_constraints *constraints)1221 static int machine_constraints_voltage(struct regulator_dev *rdev,
1222 	struct regulation_constraints *constraints)
1223 {
1224 	const struct regulator_ops *ops = rdev->desc->ops;
1225 	int ret;
1226 
1227 	/* do we need to apply the constraint voltage */
1228 	if (rdev->constraints->apply_uV &&
1229 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1230 		int target_min, target_max;
1231 		int current_uV = regulator_get_voltage_rdev(rdev);
1232 
1233 		if (current_uV == -ENOTRECOVERABLE) {
1234 			/* This regulator can't be read and must be initialized */
1235 			rdev_info(rdev, "Setting %d-%duV\n",
1236 				  rdev->constraints->min_uV,
1237 				  rdev->constraints->max_uV);
1238 			_regulator_do_set_voltage(rdev,
1239 						  rdev->constraints->min_uV,
1240 						  rdev->constraints->max_uV);
1241 			current_uV = regulator_get_voltage_rdev(rdev);
1242 		}
1243 
1244 		if (current_uV < 0) {
1245 			rdev_err(rdev,
1246 				 "failed to get the current voltage: %pe\n",
1247 				 ERR_PTR(current_uV));
1248 			return current_uV;
1249 		}
1250 
1251 		/*
1252 		 * If we're below the minimum voltage move up to the
1253 		 * minimum voltage, if we're above the maximum voltage
1254 		 * then move down to the maximum.
1255 		 */
1256 		target_min = current_uV;
1257 		target_max = current_uV;
1258 
1259 		if (current_uV < rdev->constraints->min_uV) {
1260 			target_min = rdev->constraints->min_uV;
1261 			target_max = rdev->constraints->min_uV;
1262 		}
1263 
1264 		if (current_uV > rdev->constraints->max_uV) {
1265 			target_min = rdev->constraints->max_uV;
1266 			target_max = rdev->constraints->max_uV;
1267 		}
1268 
1269 		if (target_min != current_uV || target_max != current_uV) {
1270 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1271 				  current_uV, target_min, target_max);
1272 			ret = _regulator_do_set_voltage(
1273 				rdev, target_min, target_max);
1274 			if (ret < 0) {
1275 				rdev_err(rdev,
1276 					"failed to apply %d-%duV constraint: %pe\n",
1277 					target_min, target_max, ERR_PTR(ret));
1278 				return ret;
1279 			}
1280 		}
1281 	}
1282 
1283 	/* constrain machine-level voltage specs to fit
1284 	 * the actual range supported by this regulator.
1285 	 */
1286 	if (ops->list_voltage && rdev->desc->n_voltages) {
1287 		int	count = rdev->desc->n_voltages;
1288 		int	i;
1289 		int	min_uV = INT_MAX;
1290 		int	max_uV = INT_MIN;
1291 		int	cmin = constraints->min_uV;
1292 		int	cmax = constraints->max_uV;
1293 
1294 		/* it's safe to autoconfigure fixed-voltage supplies
1295 		   and the constraints are used by list_voltage. */
1296 		if (count == 1 && !cmin) {
1297 			cmin = 1;
1298 			cmax = INT_MAX;
1299 			constraints->min_uV = cmin;
1300 			constraints->max_uV = cmax;
1301 		}
1302 
1303 		/* voltage constraints are optional */
1304 		if ((cmin == 0) && (cmax == 0))
1305 			return 0;
1306 
1307 		/* else require explicit machine-level constraints */
1308 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1309 			rdev_err(rdev, "invalid voltage constraints\n");
1310 			return -EINVAL;
1311 		}
1312 
1313 		/* no need to loop voltages if range is continuous */
1314 		if (rdev->desc->continuous_voltage_range)
1315 			return 0;
1316 
1317 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1318 		for (i = 0; i < count; i++) {
1319 			int	value;
1320 
1321 			value = ops->list_voltage(rdev, i);
1322 			if (value <= 0)
1323 				continue;
1324 
1325 			/* maybe adjust [min_uV..max_uV] */
1326 			if (value >= cmin && value < min_uV)
1327 				min_uV = value;
1328 			if (value <= cmax && value > max_uV)
1329 				max_uV = value;
1330 		}
1331 
1332 		/* final: [min_uV..max_uV] valid iff constraints valid */
1333 		if (max_uV < min_uV) {
1334 			rdev_err(rdev,
1335 				 "unsupportable voltage constraints %u-%uuV\n",
1336 				 min_uV, max_uV);
1337 			return -EINVAL;
1338 		}
1339 
1340 		/* use regulator's subset of machine constraints */
1341 		if (constraints->min_uV < min_uV) {
1342 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1343 				 constraints->min_uV, min_uV);
1344 			constraints->min_uV = min_uV;
1345 		}
1346 		if (constraints->max_uV > max_uV) {
1347 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1348 				 constraints->max_uV, max_uV);
1349 			constraints->max_uV = max_uV;
1350 		}
1351 	}
1352 
1353 	return 0;
1354 }
1355 
machine_constraints_current(struct regulator_dev *rdev, struct regulation_constraints *constraints)1356 static int machine_constraints_current(struct regulator_dev *rdev,
1357 	struct regulation_constraints *constraints)
1358 {
1359 	const struct regulator_ops *ops = rdev->desc->ops;
1360 	int ret;
1361 
1362 	if (!constraints->min_uA && !constraints->max_uA)
1363 		return 0;
1364 
1365 	if (constraints->min_uA > constraints->max_uA) {
1366 		rdev_err(rdev, "Invalid current constraints\n");
1367 		return -EINVAL;
1368 	}
1369 
1370 	if (!ops->set_current_limit || !ops->get_current_limit) {
1371 		rdev_warn(rdev, "Operation of current configuration missing\n");
1372 		return 0;
1373 	}
1374 
1375 	/* Set regulator current in constraints range */
1376 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1377 			constraints->max_uA);
1378 	if (ret < 0) {
1379 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1380 		return ret;
1381 	}
1382 
1383 	return 0;
1384 }
1385 
1386 static int _regulator_do_enable(struct regulator_dev *rdev);
1387 
1388 /**
1389  * set_machine_constraints - sets regulator constraints
1390  * @rdev: regulator source
1391  *
1392  * Allows platform initialisation code to define and constrain
1393  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1394  * Constraints *must* be set by platform code in order for some
1395  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1396  * set_mode.
1397  */
set_machine_constraints(struct regulator_dev *rdev)1398 static int set_machine_constraints(struct regulator_dev *rdev)
1399 {
1400 	int ret = 0;
1401 	const struct regulator_ops *ops = rdev->desc->ops;
1402 
1403 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1404 	if (ret != 0)
1405 		return ret;
1406 
1407 	ret = machine_constraints_current(rdev, rdev->constraints);
1408 	if (ret != 0)
1409 		return ret;
1410 
1411 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1412 		ret = ops->set_input_current_limit(rdev,
1413 						   rdev->constraints->ilim_uA);
1414 		if (ret < 0) {
1415 			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1416 			return ret;
1417 		}
1418 	}
1419 
1420 	/* do we need to setup our suspend state */
1421 	if (rdev->constraints->initial_state) {
1422 		ret = suspend_set_initial_state(rdev);
1423 		if (ret < 0) {
1424 			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1425 			return ret;
1426 		}
1427 	}
1428 
1429 	if (rdev->constraints->initial_mode) {
1430 		if (!ops->set_mode) {
1431 			rdev_err(rdev, "no set_mode operation\n");
1432 			return -EINVAL;
1433 		}
1434 
1435 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1436 		if (ret < 0) {
1437 			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1438 			return ret;
1439 		}
1440 	} else if (rdev->constraints->system_load) {
1441 		/*
1442 		 * We'll only apply the initial system load if an
1443 		 * initial mode wasn't specified.
1444 		 */
1445 		drms_uA_update(rdev);
1446 	}
1447 
1448 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1449 		&& ops->set_ramp_delay) {
1450 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1451 		if (ret < 0) {
1452 			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1453 			return ret;
1454 		}
1455 	}
1456 
1457 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1458 		ret = ops->set_pull_down(rdev);
1459 		if (ret < 0) {
1460 			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1461 			return ret;
1462 		}
1463 	}
1464 
1465 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1466 		ret = ops->set_soft_start(rdev);
1467 		if (ret < 0) {
1468 			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1469 			return ret;
1470 		}
1471 	}
1472 
1473 	if (rdev->constraints->over_current_protection
1474 		&& ops->set_over_current_protection) {
1475 		ret = ops->set_over_current_protection(rdev);
1476 		if (ret < 0) {
1477 			rdev_err(rdev, "failed to set over current protection: %pe\n",
1478 				 ERR_PTR(ret));
1479 			return ret;
1480 		}
1481 	}
1482 
1483 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1484 		bool ad_state = (rdev->constraints->active_discharge ==
1485 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1486 
1487 		ret = ops->set_active_discharge(rdev, ad_state);
1488 		if (ret < 0) {
1489 			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1490 			return ret;
1491 		}
1492 	}
1493 
1494 	/* If the constraints say the regulator should be on at this point
1495 	 * and we have control then make sure it is enabled.
1496 	 */
1497 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1498 		/* If we want to enable this regulator, make sure that we know
1499 		 * the supplying regulator.
1500 		 */
1501 		if (rdev->supply_name && !rdev->supply)
1502 			return -EPROBE_DEFER;
1503 
1504 		/* If supplying regulator has already been enabled,
1505 		 * it's not intended to have use_count increment
1506 		 * when rdev is only boot-on.
1507 		 */
1508 		if (rdev->supply &&
1509 		    (rdev->constraints->always_on ||
1510 		     !regulator_is_enabled(rdev->supply))) {
1511 			ret = regulator_enable(rdev->supply);
1512 			if (ret < 0) {
1513 				_regulator_put(rdev->supply);
1514 				rdev->supply = NULL;
1515 				return ret;
1516 			}
1517 		}
1518 
1519 		ret = _regulator_do_enable(rdev);
1520 		if (ret < 0 && ret != -EINVAL) {
1521 			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1522 			return ret;
1523 		}
1524 
1525 		if (rdev->constraints->always_on)
1526 			rdev->use_count++;
1527 	} else if (rdev->desc->off_on_delay) {
1528 		rdev->last_off_jiffy = jiffies;
1529 	}
1530 
1531 	print_constraints(rdev);
1532 	return 0;
1533 }
1534 
1535 /**
1536  * set_supply - set regulator supply regulator
1537  * @rdev: regulator (locked)
1538  * @supply_rdev: supply regulator (locked))
1539  *
1540  * Called by platform initialisation code to set the supply regulator for this
1541  * regulator. This ensures that a regulators supply will also be enabled by the
1542  * core if it's child is enabled.
1543  */
set_supply(struct regulator_dev *rdev, struct regulator_dev *supply_rdev)1544 static int set_supply(struct regulator_dev *rdev,
1545 		      struct regulator_dev *supply_rdev)
1546 {
1547 	int err;
1548 
1549 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1550 
1551 	if (!try_module_get(supply_rdev->owner))
1552 		return -ENODEV;
1553 
1554 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1555 	if (rdev->supply == NULL) {
1556 		module_put(supply_rdev->owner);
1557 		err = -ENOMEM;
1558 		return err;
1559 	}
1560 	supply_rdev->open_count++;
1561 
1562 	return 0;
1563 }
1564 
1565 /**
1566  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1567  * @rdev:         regulator source
1568  * @consumer_dev_name: dev_name() string for device supply applies to
1569  * @supply:       symbolic name for supply
1570  *
1571  * Allows platform initialisation code to map physical regulator
1572  * sources to symbolic names for supplies for use by devices.  Devices
1573  * should use these symbolic names to request regulators, avoiding the
1574  * need to provide board-specific regulator names as platform data.
1575  */
set_consumer_device_supply(struct regulator_dev *rdev, const char *consumer_dev_name, const char *supply)1576 static int set_consumer_device_supply(struct regulator_dev *rdev,
1577 				      const char *consumer_dev_name,
1578 				      const char *supply)
1579 {
1580 	struct regulator_map *node, *new_node;
1581 	int has_dev;
1582 
1583 	if (supply == NULL)
1584 		return -EINVAL;
1585 
1586 	if (consumer_dev_name != NULL)
1587 		has_dev = 1;
1588 	else
1589 		has_dev = 0;
1590 
1591 	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1592 	if (new_node == NULL)
1593 		return -ENOMEM;
1594 
1595 	new_node->regulator = rdev;
1596 	new_node->supply = supply;
1597 
1598 	if (has_dev) {
1599 		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1600 		if (new_node->dev_name == NULL) {
1601 			kfree(new_node);
1602 			return -ENOMEM;
1603 		}
1604 	}
1605 
1606 	mutex_lock(&regulator_list_mutex);
1607 	list_for_each_entry(node, &regulator_map_list, list) {
1608 		if (node->dev_name && consumer_dev_name) {
1609 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1610 				continue;
1611 		} else if (node->dev_name || consumer_dev_name) {
1612 			continue;
1613 		}
1614 
1615 		if (strcmp(node->supply, supply) != 0)
1616 			continue;
1617 
1618 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1619 			 consumer_dev_name,
1620 			 dev_name(&node->regulator->dev),
1621 			 node->regulator->desc->name,
1622 			 supply,
1623 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1624 		goto fail;
1625 	}
1626 
1627 	list_add(&new_node->list, &regulator_map_list);
1628 	mutex_unlock(&regulator_list_mutex);
1629 
1630 	return 0;
1631 
1632 fail:
1633 	mutex_unlock(&regulator_list_mutex);
1634 	kfree(new_node->dev_name);
1635 	kfree(new_node);
1636 	return -EBUSY;
1637 }
1638 
unset_regulator_supplies(struct regulator_dev *rdev)1639 static void unset_regulator_supplies(struct regulator_dev *rdev)
1640 {
1641 	struct regulator_map *node, *n;
1642 
1643 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1644 		if (rdev == node->regulator) {
1645 			list_del(&node->list);
1646 			kfree(node->dev_name);
1647 			kfree(node);
1648 		}
1649 	}
1650 }
1651 
1652 #ifdef CONFIG_DEBUG_FS
constraint_flags_read_file(struct file *file, char __user *user_buf, size_t count, loff_t *ppos)1653 static ssize_t constraint_flags_read_file(struct file *file,
1654 					  char __user *user_buf,
1655 					  size_t count, loff_t *ppos)
1656 {
1657 	const struct regulator *regulator = file->private_data;
1658 	const struct regulation_constraints *c = regulator->rdev->constraints;
1659 	char *buf;
1660 	ssize_t ret;
1661 
1662 	if (!c)
1663 		return 0;
1664 
1665 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1666 	if (!buf)
1667 		return -ENOMEM;
1668 
1669 	ret = snprintf(buf, PAGE_SIZE,
1670 			"always_on: %u\n"
1671 			"boot_on: %u\n"
1672 			"apply_uV: %u\n"
1673 			"ramp_disable: %u\n"
1674 			"soft_start: %u\n"
1675 			"pull_down: %u\n"
1676 			"over_current_protection: %u\n",
1677 			c->always_on,
1678 			c->boot_on,
1679 			c->apply_uV,
1680 			c->ramp_disable,
1681 			c->soft_start,
1682 			c->pull_down,
1683 			c->over_current_protection);
1684 
1685 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1686 	kfree(buf);
1687 
1688 	return ret;
1689 }
1690 
1691 #endif
1692 
1693 static const struct file_operations constraint_flags_fops = {
1694 #ifdef CONFIG_DEBUG_FS
1695 	.open = simple_open,
1696 	.read = constraint_flags_read_file,
1697 	.llseek = default_llseek,
1698 #endif
1699 };
1700 
1701 #define REG_STR_SIZE	64
1702 
create_regulator(struct regulator_dev *rdev, struct device *dev, const char *supply_name)1703 static struct regulator *create_regulator(struct regulator_dev *rdev,
1704 					  struct device *dev,
1705 					  const char *supply_name)
1706 {
1707 	struct regulator *regulator;
1708 	int err = 0;
1709 
1710 	lockdep_assert_held_once(&rdev->mutex.base);
1711 
1712 	if (dev) {
1713 		char buf[REG_STR_SIZE];
1714 		int size;
1715 
1716 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1717 				dev->kobj.name, supply_name);
1718 		if (size >= REG_STR_SIZE)
1719 			return NULL;
1720 
1721 		supply_name = kstrdup(buf, GFP_KERNEL);
1722 		if (supply_name == NULL)
1723 			return NULL;
1724 	} else {
1725 		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1726 		if (supply_name == NULL)
1727 			return NULL;
1728 	}
1729 
1730 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1731 	if (regulator == NULL) {
1732 		kfree_const(supply_name);
1733 		return NULL;
1734 	}
1735 
1736 	regulator->rdev = rdev;
1737 	regulator->supply_name = supply_name;
1738 
1739 	list_add(&regulator->list, &rdev->consumer_list);
1740 
1741 	if (dev) {
1742 		regulator->dev = dev;
1743 
1744 		/* Add a link to the device sysfs entry */
1745 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1746 					       supply_name);
1747 		if (err) {
1748 			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1749 				  dev->kobj.name, ERR_PTR(err));
1750 			/* non-fatal */
1751 		}
1752 	}
1753 
1754 	if (err != -EEXIST)
1755 		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1756 	if (IS_ERR(regulator->debugfs))
1757 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1758 
1759 	debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1760 			   &regulator->uA_load);
1761 	debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1762 			   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1763 	debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1764 			   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1765 	debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1766 			    regulator, &constraint_flags_fops);
1767 
1768 	/*
1769 	 * Check now if the regulator is an always on regulator - if
1770 	 * it is then we don't need to do nearly so much work for
1771 	 * enable/disable calls.
1772 	 */
1773 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1774 	    _regulator_is_enabled(rdev))
1775 		regulator->always_on = true;
1776 
1777 	return regulator;
1778 }
1779 
_regulator_get_enable_time(struct regulator_dev *rdev)1780 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1781 {
1782 	if (rdev->constraints && rdev->constraints->enable_time)
1783 		return rdev->constraints->enable_time;
1784 	if (rdev->desc->ops->enable_time)
1785 		return rdev->desc->ops->enable_time(rdev);
1786 	return rdev->desc->enable_time;
1787 }
1788 
regulator_find_supply_alias( struct device *dev, const char *supply)1789 static struct regulator_supply_alias *regulator_find_supply_alias(
1790 		struct device *dev, const char *supply)
1791 {
1792 	struct regulator_supply_alias *map;
1793 
1794 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1795 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1796 			return map;
1797 
1798 	return NULL;
1799 }
1800 
regulator_supply_alias(struct device **dev, const char **supply)1801 static void regulator_supply_alias(struct device **dev, const char **supply)
1802 {
1803 	struct regulator_supply_alias *map;
1804 
1805 	map = regulator_find_supply_alias(*dev, *supply);
1806 	if (map) {
1807 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1808 				*supply, map->alias_supply,
1809 				dev_name(map->alias_dev));
1810 		*dev = map->alias_dev;
1811 		*supply = map->alias_supply;
1812 	}
1813 }
1814 
regulator_match(struct device *dev, const void *data)1815 static int regulator_match(struct device *dev, const void *data)
1816 {
1817 	struct regulator_dev *r = dev_to_rdev(dev);
1818 
1819 	return strcmp(rdev_get_name(r), data) == 0;
1820 }
1821 
regulator_lookup_by_name(const char *name)1822 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1823 {
1824 	struct device *dev;
1825 
1826 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1827 
1828 	return dev ? dev_to_rdev(dev) : NULL;
1829 }
1830 
1831 /**
1832  * regulator_dev_lookup - lookup a regulator device.
1833  * @dev: device for regulator "consumer".
1834  * @supply: Supply name or regulator ID.
1835  *
1836  * If successful, returns a struct regulator_dev that corresponds to the name
1837  * @supply and with the embedded struct device refcount incremented by one.
1838  * The refcount must be dropped by calling put_device().
1839  * On failure one of the following ERR-PTR-encoded values is returned:
1840  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1841  * in the future.
1842  */
regulator_dev_lookup(struct device *dev, const char *supply)1843 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1844 						  const char *supply)
1845 {
1846 	struct regulator_dev *r = NULL;
1847 	struct device_node *node;
1848 	struct regulator_map *map;
1849 	const char *devname = NULL;
1850 
1851 	regulator_supply_alias(&dev, &supply);
1852 
1853 	/* first do a dt based lookup */
1854 	if (dev && dev->of_node) {
1855 		node = of_get_regulator(dev, supply);
1856 		if (node) {
1857 			r = of_find_regulator_by_node(node);
1858 			of_node_put(node);
1859 			if (r)
1860 				return r;
1861 
1862 			/*
1863 			 * We have a node, but there is no device.
1864 			 * assume it has not registered yet.
1865 			 */
1866 			return ERR_PTR(-EPROBE_DEFER);
1867 		}
1868 	}
1869 
1870 	/* if not found, try doing it non-dt way */
1871 	if (dev)
1872 		devname = dev_name(dev);
1873 
1874 	mutex_lock(&regulator_list_mutex);
1875 	list_for_each_entry(map, &regulator_map_list, list) {
1876 		/* If the mapping has a device set up it must match */
1877 		if (map->dev_name &&
1878 		    (!devname || strcmp(map->dev_name, devname)))
1879 			continue;
1880 
1881 		if (strcmp(map->supply, supply) == 0 &&
1882 		    get_device(&map->regulator->dev)) {
1883 			r = map->regulator;
1884 			break;
1885 		}
1886 	}
1887 	mutex_unlock(&regulator_list_mutex);
1888 
1889 	if (r)
1890 		return r;
1891 
1892 	r = regulator_lookup_by_name(supply);
1893 	if (r)
1894 		return r;
1895 
1896 	return ERR_PTR(-ENODEV);
1897 }
1898 
regulator_resolve_supply(struct regulator_dev *rdev)1899 static int regulator_resolve_supply(struct regulator_dev *rdev)
1900 {
1901 	struct regulator_dev *r;
1902 	struct device *dev = rdev->dev.parent;
1903 	struct ww_acquire_ctx ww_ctx;
1904 	int ret = 0;
1905 
1906 	/* No supply to resolve? */
1907 	if (!rdev->supply_name)
1908 		return 0;
1909 
1910 	/* Supply already resolved? (fast-path without locking contention) */
1911 	if (rdev->supply)
1912 		return 0;
1913 
1914 	r = regulator_dev_lookup(dev, rdev->supply_name);
1915 	if (IS_ERR(r)) {
1916 		ret = PTR_ERR(r);
1917 
1918 		/* Did the lookup explicitly defer for us? */
1919 		if (ret == -EPROBE_DEFER)
1920 			goto out;
1921 
1922 		if (have_full_constraints()) {
1923 			r = dummy_regulator_rdev;
1924 			get_device(&r->dev);
1925 		} else {
1926 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1927 				rdev->supply_name, rdev->desc->name);
1928 			ret = -EPROBE_DEFER;
1929 			goto out;
1930 		}
1931 	}
1932 
1933 	if (r == rdev) {
1934 		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1935 			rdev->desc->name, rdev->supply_name);
1936 		if (!have_full_constraints()) {
1937 			ret = -EINVAL;
1938 			goto out;
1939 		}
1940 		r = dummy_regulator_rdev;
1941 		get_device(&r->dev);
1942 	}
1943 
1944 	/*
1945 	 * If the supply's parent device is not the same as the
1946 	 * regulator's parent device, then ensure the parent device
1947 	 * is bound before we resolve the supply, in case the parent
1948 	 * device get probe deferred and unregisters the supply.
1949 	 */
1950 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1951 		if (!device_is_bound(r->dev.parent)) {
1952 			put_device(&r->dev);
1953 			ret = -EPROBE_DEFER;
1954 			goto out;
1955 		}
1956 	}
1957 
1958 	/* Recursively resolve the supply of the supply */
1959 	ret = regulator_resolve_supply(r);
1960 	if (ret < 0) {
1961 		put_device(&r->dev);
1962 		goto out;
1963 	}
1964 
1965 	/*
1966 	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1967 	 * between rdev->supply null check and setting rdev->supply in
1968 	 * set_supply() from concurrent tasks.
1969 	 */
1970 	regulator_lock_two(rdev, r, &ww_ctx);
1971 
1972 	/* Supply just resolved by a concurrent task? */
1973 	if (rdev->supply) {
1974 		regulator_unlock_two(rdev, r, &ww_ctx);
1975 		put_device(&r->dev);
1976 		goto out;
1977 	}
1978 
1979 	ret = set_supply(rdev, r);
1980 	if (ret < 0) {
1981 		regulator_unlock_two(rdev, r, &ww_ctx);
1982 		put_device(&r->dev);
1983 		goto out;
1984 	}
1985 
1986 	regulator_unlock_two(rdev, r, &ww_ctx);
1987 
1988 	/*
1989 	 * In set_machine_constraints() we may have turned this regulator on
1990 	 * but we couldn't propagate to the supply if it hadn't been resolved
1991 	 * yet.  Do it now.
1992 	 */
1993 	if (rdev->use_count) {
1994 		ret = regulator_enable(rdev->supply);
1995 		if (ret < 0) {
1996 			_regulator_put(rdev->supply);
1997 			rdev->supply = NULL;
1998 			goto out;
1999 		}
2000 	}
2001 
2002 out:
2003 	return ret;
2004 }
2005 
2006 /* Internal regulator request function */
_regulator_get(struct device *dev, const char *id, enum regulator_get_type get_type)2007 struct regulator *_regulator_get(struct device *dev, const char *id,
2008 				 enum regulator_get_type get_type)
2009 {
2010 	struct regulator_dev *rdev;
2011 	struct regulator *regulator;
2012 	struct device_link *link;
2013 	int ret;
2014 
2015 	if (get_type >= MAX_GET_TYPE) {
2016 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2017 		return ERR_PTR(-EINVAL);
2018 	}
2019 
2020 	if (id == NULL) {
2021 		pr_err("get() with no identifier\n");
2022 		return ERR_PTR(-EINVAL);
2023 	}
2024 
2025 	rdev = regulator_dev_lookup(dev, id);
2026 	if (IS_ERR(rdev)) {
2027 		ret = PTR_ERR(rdev);
2028 
2029 		/*
2030 		 * If regulator_dev_lookup() fails with error other
2031 		 * than -ENODEV our job here is done, we simply return it.
2032 		 */
2033 		if (ret != -ENODEV)
2034 			return ERR_PTR(ret);
2035 
2036 		if (!have_full_constraints()) {
2037 			dev_warn(dev,
2038 				 "incomplete constraints, dummy supplies not allowed\n");
2039 			return ERR_PTR(-ENODEV);
2040 		}
2041 
2042 		switch (get_type) {
2043 		case NORMAL_GET:
2044 			/*
2045 			 * Assume that a regulator is physically present and
2046 			 * enabled, even if it isn't hooked up, and just
2047 			 * provide a dummy.
2048 			 */
2049 			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2050 			rdev = dummy_regulator_rdev;
2051 			get_device(&rdev->dev);
2052 			break;
2053 
2054 		case EXCLUSIVE_GET:
2055 			dev_warn(dev,
2056 				 "dummy supplies not allowed for exclusive requests\n");
2057 			fallthrough;
2058 
2059 		default:
2060 			return ERR_PTR(-ENODEV);
2061 		}
2062 	}
2063 
2064 	if (rdev->exclusive) {
2065 		regulator = ERR_PTR(-EPERM);
2066 		put_device(&rdev->dev);
2067 		return regulator;
2068 	}
2069 
2070 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2071 		regulator = ERR_PTR(-EBUSY);
2072 		put_device(&rdev->dev);
2073 		return regulator;
2074 	}
2075 
2076 	mutex_lock(&regulator_list_mutex);
2077 	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2078 	mutex_unlock(&regulator_list_mutex);
2079 
2080 	if (ret != 0) {
2081 		regulator = ERR_PTR(-EPROBE_DEFER);
2082 		put_device(&rdev->dev);
2083 		return regulator;
2084 	}
2085 
2086 	ret = regulator_resolve_supply(rdev);
2087 	if (ret < 0) {
2088 		regulator = ERR_PTR(ret);
2089 		put_device(&rdev->dev);
2090 		return regulator;
2091 	}
2092 
2093 	if (!try_module_get(rdev->owner)) {
2094 		regulator = ERR_PTR(-EPROBE_DEFER);
2095 		put_device(&rdev->dev);
2096 		return regulator;
2097 	}
2098 
2099 	regulator_lock(rdev);
2100 	regulator = create_regulator(rdev, dev, id);
2101 	regulator_unlock(rdev);
2102 	if (regulator == NULL) {
2103 		regulator = ERR_PTR(-ENOMEM);
2104 		module_put(rdev->owner);
2105 		put_device(&rdev->dev);
2106 		return regulator;
2107 	}
2108 
2109 	rdev->open_count++;
2110 	if (get_type == EXCLUSIVE_GET) {
2111 		rdev->exclusive = 1;
2112 
2113 		ret = _regulator_is_enabled(rdev);
2114 		if (ret > 0) {
2115 			rdev->use_count = 1;
2116 			regulator->enable_count = 1;
2117 		} else {
2118 			rdev->use_count = 0;
2119 			regulator->enable_count = 0;
2120 		}
2121 	}
2122 
2123 	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2124 	if (!IS_ERR_OR_NULL(link))
2125 		regulator->device_link = true;
2126 
2127 	return regulator;
2128 }
2129 
2130 /**
2131  * regulator_get - lookup and obtain a reference to a regulator.
2132  * @dev: device for regulator "consumer"
2133  * @id: Supply name or regulator ID.
2134  *
2135  * Returns a struct regulator corresponding to the regulator producer,
2136  * or IS_ERR() condition containing errno.
2137  *
2138  * Use of supply names configured via regulator_set_device_supply() is
2139  * strongly encouraged.  It is recommended that the supply name used
2140  * should match the name used for the supply and/or the relevant
2141  * device pins in the datasheet.
2142  */
regulator_get(struct device *dev, const char *id)2143 struct regulator *regulator_get(struct device *dev, const char *id)
2144 {
2145 	return _regulator_get(dev, id, NORMAL_GET);
2146 }
2147 EXPORT_SYMBOL_GPL(regulator_get);
2148 
2149 /**
2150  * regulator_get_exclusive - obtain exclusive access to a regulator.
2151  * @dev: device for regulator "consumer"
2152  * @id: Supply name or regulator ID.
2153  *
2154  * Returns a struct regulator corresponding to the regulator producer,
2155  * or IS_ERR() condition containing errno.  Other consumers will be
2156  * unable to obtain this regulator while this reference is held and the
2157  * use count for the regulator will be initialised to reflect the current
2158  * state of the regulator.
2159  *
2160  * This is intended for use by consumers which cannot tolerate shared
2161  * use of the regulator such as those which need to force the
2162  * regulator off for correct operation of the hardware they are
2163  * controlling.
2164  *
2165  * Use of supply names configured via regulator_set_device_supply() is
2166  * strongly encouraged.  It is recommended that the supply name used
2167  * should match the name used for the supply and/or the relevant
2168  * device pins in the datasheet.
2169  */
regulator_get_exclusive(struct device *dev, const char *id)2170 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2171 {
2172 	return _regulator_get(dev, id, EXCLUSIVE_GET);
2173 }
2174 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2175 
2176 /**
2177  * regulator_get_optional - obtain optional access to a regulator.
2178  * @dev: device for regulator "consumer"
2179  * @id: Supply name or regulator ID.
2180  *
2181  * Returns a struct regulator corresponding to the regulator producer,
2182  * or IS_ERR() condition containing errno.
2183  *
2184  * This is intended for use by consumers for devices which can have
2185  * some supplies unconnected in normal use, such as some MMC devices.
2186  * It can allow the regulator core to provide stub supplies for other
2187  * supplies requested using normal regulator_get() calls without
2188  * disrupting the operation of drivers that can handle absent
2189  * supplies.
2190  *
2191  * Use of supply names configured via regulator_set_device_supply() is
2192  * strongly encouraged.  It is recommended that the supply name used
2193  * should match the name used for the supply and/or the relevant
2194  * device pins in the datasheet.
2195  */
regulator_get_optional(struct device *dev, const char *id)2196 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2197 {
2198 	return _regulator_get(dev, id, OPTIONAL_GET);
2199 }
2200 EXPORT_SYMBOL_GPL(regulator_get_optional);
2201 
destroy_regulator(struct regulator *regulator)2202 static void destroy_regulator(struct regulator *regulator)
2203 {
2204 	struct regulator_dev *rdev = regulator->rdev;
2205 
2206 	debugfs_remove_recursive(regulator->debugfs);
2207 
2208 	if (regulator->dev) {
2209 		if (regulator->device_link)
2210 			device_link_remove(regulator->dev, &rdev->dev);
2211 
2212 		/* remove any sysfs entries */
2213 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2214 	}
2215 
2216 	regulator_lock(rdev);
2217 	list_del(&regulator->list);
2218 
2219 	rdev->open_count--;
2220 	rdev->exclusive = 0;
2221 	regulator_unlock(rdev);
2222 
2223 	kfree_const(regulator->supply_name);
2224 	kfree(regulator);
2225 }
2226 
2227 /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator *regulator)2228 static void _regulator_put(struct regulator *regulator)
2229 {
2230 	struct regulator_dev *rdev;
2231 
2232 	if (IS_ERR_OR_NULL(regulator))
2233 		return;
2234 
2235 	lockdep_assert_held_once(&regulator_list_mutex);
2236 
2237 	/* Docs say you must disable before calling regulator_put() */
2238 	WARN_ON(regulator->enable_count);
2239 
2240 	rdev = regulator->rdev;
2241 
2242 	destroy_regulator(regulator);
2243 
2244 	module_put(rdev->owner);
2245 	put_device(&rdev->dev);
2246 }
2247 
2248 /**
2249  * regulator_put - "free" the regulator source
2250  * @regulator: regulator source
2251  *
2252  * Note: drivers must ensure that all regulator_enable calls made on this
2253  * regulator source are balanced by regulator_disable calls prior to calling
2254  * this function.
2255  */
regulator_put(struct regulator *regulator)2256 void regulator_put(struct regulator *regulator)
2257 {
2258 	mutex_lock(&regulator_list_mutex);
2259 	_regulator_put(regulator);
2260 	mutex_unlock(&regulator_list_mutex);
2261 }
2262 EXPORT_SYMBOL_GPL(regulator_put);
2263 
2264 /**
2265  * regulator_register_supply_alias - Provide device alias for supply lookup
2266  *
2267  * @dev: device that will be given as the regulator "consumer"
2268  * @id: Supply name or regulator ID
2269  * @alias_dev: device that should be used to lookup the supply
2270  * @alias_id: Supply name or regulator ID that should be used to lookup the
2271  * supply
2272  *
2273  * All lookups for id on dev will instead be conducted for alias_id on
2274  * alias_dev.
2275  */
regulator_register_supply_alias(struct device *dev, const char *id, struct device *alias_dev, const char *alias_id)2276 int regulator_register_supply_alias(struct device *dev, const char *id,
2277 				    struct device *alias_dev,
2278 				    const char *alias_id)
2279 {
2280 	struct regulator_supply_alias *map;
2281 
2282 	map = regulator_find_supply_alias(dev, id);
2283 	if (map)
2284 		return -EEXIST;
2285 
2286 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2287 	if (!map)
2288 		return -ENOMEM;
2289 
2290 	map->src_dev = dev;
2291 	map->src_supply = id;
2292 	map->alias_dev = alias_dev;
2293 	map->alias_supply = alias_id;
2294 
2295 	list_add(&map->list, &regulator_supply_alias_list);
2296 
2297 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2298 		id, dev_name(dev), alias_id, dev_name(alias_dev));
2299 
2300 	return 0;
2301 }
2302 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2303 
2304 /**
2305  * regulator_unregister_supply_alias - Remove device alias
2306  *
2307  * @dev: device that will be given as the regulator "consumer"
2308  * @id: Supply name or regulator ID
2309  *
2310  * Remove a lookup alias if one exists for id on dev.
2311  */
regulator_unregister_supply_alias(struct device *dev, const char *id)2312 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2313 {
2314 	struct regulator_supply_alias *map;
2315 
2316 	map = regulator_find_supply_alias(dev, id);
2317 	if (map) {
2318 		list_del(&map->list);
2319 		kfree(map);
2320 	}
2321 }
2322 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2323 
2324 /**
2325  * regulator_bulk_register_supply_alias - register multiple aliases
2326  *
2327  * @dev: device that will be given as the regulator "consumer"
2328  * @id: List of supply names or regulator IDs
2329  * @alias_dev: device that should be used to lookup the supply
2330  * @alias_id: List of supply names or regulator IDs that should be used to
2331  * lookup the supply
2332  * @num_id: Number of aliases to register
2333  *
2334  * @return 0 on success, an errno on failure.
2335  *
2336  * This helper function allows drivers to register several supply
2337  * aliases in one operation.  If any of the aliases cannot be
2338  * registered any aliases that were registered will be removed
2339  * before returning to the caller.
2340  */
regulator_bulk_register_supply_alias(struct device *dev, const char *const *id, struct device *alias_dev, const char *const *alias_id, int num_id)2341 int regulator_bulk_register_supply_alias(struct device *dev,
2342 					 const char *const *id,
2343 					 struct device *alias_dev,
2344 					 const char *const *alias_id,
2345 					 int num_id)
2346 {
2347 	int i;
2348 	int ret;
2349 
2350 	for (i = 0; i < num_id; ++i) {
2351 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2352 						      alias_id[i]);
2353 		if (ret < 0)
2354 			goto err;
2355 	}
2356 
2357 	return 0;
2358 
2359 err:
2360 	dev_err(dev,
2361 		"Failed to create supply alias %s,%s -> %s,%s\n",
2362 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2363 
2364 	while (--i >= 0)
2365 		regulator_unregister_supply_alias(dev, id[i]);
2366 
2367 	return ret;
2368 }
2369 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2370 
2371 /**
2372  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2373  *
2374  * @dev: device that will be given as the regulator "consumer"
2375  * @id: List of supply names or regulator IDs
2376  * @num_id: Number of aliases to unregister
2377  *
2378  * This helper function allows drivers to unregister several supply
2379  * aliases in one operation.
2380  */
regulator_bulk_unregister_supply_alias(struct device *dev, const char *const *id, int num_id)2381 void regulator_bulk_unregister_supply_alias(struct device *dev,
2382 					    const char *const *id,
2383 					    int num_id)
2384 {
2385 	int i;
2386 
2387 	for (i = 0; i < num_id; ++i)
2388 		regulator_unregister_supply_alias(dev, id[i]);
2389 }
2390 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2391 
2392 
2393 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev *rdev, const struct regulator_config *config)2394 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2395 				const struct regulator_config *config)
2396 {
2397 	struct regulator_enable_gpio *pin, *new_pin;
2398 	struct gpio_desc *gpiod;
2399 
2400 	gpiod = config->ena_gpiod;
2401 	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2402 
2403 	mutex_lock(&regulator_list_mutex);
2404 
2405 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2406 		if (pin->gpiod == gpiod) {
2407 			rdev_dbg(rdev, "GPIO is already used\n");
2408 			goto update_ena_gpio_to_rdev;
2409 		}
2410 	}
2411 
2412 	if (new_pin == NULL) {
2413 		mutex_unlock(&regulator_list_mutex);
2414 		return -ENOMEM;
2415 	}
2416 
2417 	pin = new_pin;
2418 	new_pin = NULL;
2419 
2420 	pin->gpiod = gpiod;
2421 	list_add(&pin->list, &regulator_ena_gpio_list);
2422 
2423 update_ena_gpio_to_rdev:
2424 	pin->request_count++;
2425 	rdev->ena_pin = pin;
2426 
2427 	mutex_unlock(&regulator_list_mutex);
2428 	kfree(new_pin);
2429 
2430 	return 0;
2431 }
2432 
regulator_ena_gpio_free(struct regulator_dev *rdev)2433 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2434 {
2435 	struct regulator_enable_gpio *pin, *n;
2436 
2437 	if (!rdev->ena_pin)
2438 		return;
2439 
2440 	/* Free the GPIO only in case of no use */
2441 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2442 		if (pin != rdev->ena_pin)
2443 			continue;
2444 
2445 		if (--pin->request_count)
2446 			break;
2447 
2448 		gpiod_put(pin->gpiod);
2449 		list_del(&pin->list);
2450 		kfree(pin);
2451 		break;
2452 	}
2453 
2454 	rdev->ena_pin = NULL;
2455 }
2456 
2457 /**
2458  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2459  * @rdev: regulator_dev structure
2460  * @enable: enable GPIO at initial use?
2461  *
2462  * GPIO is enabled in case of initial use. (enable_count is 0)
2463  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2464  */
regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)2465 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2466 {
2467 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2468 
2469 	if (!pin)
2470 		return -EINVAL;
2471 
2472 	if (enable) {
2473 		/* Enable GPIO at initial use */
2474 		if (pin->enable_count == 0)
2475 			gpiod_set_value_cansleep(pin->gpiod, 1);
2476 
2477 		pin->enable_count++;
2478 	} else {
2479 		if (pin->enable_count > 1) {
2480 			pin->enable_count--;
2481 			return 0;
2482 		}
2483 
2484 		/* Disable GPIO if not used */
2485 		if (pin->enable_count <= 1) {
2486 			gpiod_set_value_cansleep(pin->gpiod, 0);
2487 			pin->enable_count = 0;
2488 		}
2489 	}
2490 
2491 	return 0;
2492 }
2493 
2494 /**
2495  * _regulator_enable_delay - a delay helper function
2496  * @delay: time to delay in microseconds
2497  *
2498  * Delay for the requested amount of time as per the guidelines in:
2499  *
2500  *     Documentation/timers/timers-howto.rst
2501  *
2502  * The assumption here is that regulators will never be enabled in
2503  * atomic context and therefore sleeping functions can be used.
2504  */
_regulator_enable_delay(unsigned int delay)2505 static void _regulator_enable_delay(unsigned int delay)
2506 {
2507 	unsigned int ms = delay / 1000;
2508 	unsigned int us = delay % 1000;
2509 
2510 	if (ms > 0) {
2511 		/*
2512 		 * For small enough values, handle super-millisecond
2513 		 * delays in the usleep_range() call below.
2514 		 */
2515 		if (ms < 20)
2516 			us += ms * 1000;
2517 		else
2518 			msleep(ms);
2519 	}
2520 
2521 	/*
2522 	 * Give the scheduler some room to coalesce with any other
2523 	 * wakeup sources. For delays shorter than 10 us, don't even
2524 	 * bother setting up high-resolution timers and just busy-
2525 	 * loop.
2526 	 */
2527 	if (us >= 10)
2528 		usleep_range(us, us + 100);
2529 	else
2530 		udelay(us);
2531 }
2532 
2533 /**
2534  * _regulator_check_status_enabled
2535  *
2536  * A helper function to check if the regulator status can be interpreted
2537  * as 'regulator is enabled'.
2538  * @rdev: the regulator device to check
2539  *
2540  * Return:
2541  * * 1			- if status shows regulator is in enabled state
2542  * * 0			- if not enabled state
2543  * * Error Value	- as received from ops->get_status()
2544  */
_regulator_check_status_enabled(struct regulator_dev *rdev)2545 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2546 {
2547 	int ret = rdev->desc->ops->get_status(rdev);
2548 
2549 	if (ret < 0) {
2550 		rdev_info(rdev, "get_status returned error: %d\n", ret);
2551 		return ret;
2552 	}
2553 
2554 	switch (ret) {
2555 	case REGULATOR_STATUS_OFF:
2556 	case REGULATOR_STATUS_ERROR:
2557 	case REGULATOR_STATUS_UNDEFINED:
2558 		return 0;
2559 	default:
2560 		return 1;
2561 	}
2562 }
2563 
_regulator_do_enable(struct regulator_dev *rdev)2564 static int _regulator_do_enable(struct regulator_dev *rdev)
2565 {
2566 	int ret, delay;
2567 
2568 	/* Query before enabling in case configuration dependent.  */
2569 	ret = _regulator_get_enable_time(rdev);
2570 	if (ret >= 0) {
2571 		delay = ret;
2572 	} else {
2573 		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2574 		delay = 0;
2575 	}
2576 
2577 	trace_regulator_enable(rdev_get_name(rdev));
2578 
2579 	if (rdev->desc->off_on_delay) {
2580 		/* if needed, keep a distance of off_on_delay from last time
2581 		 * this regulator was disabled.
2582 		 */
2583 		unsigned long start_jiffy = jiffies;
2584 		unsigned long intended, max_delay, remaining;
2585 
2586 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2587 		intended = rdev->last_off_jiffy + max_delay;
2588 
2589 		if (time_before(start_jiffy, intended)) {
2590 			/* calc remaining jiffies to deal with one-time
2591 			 * timer wrapping.
2592 			 * in case of multiple timer wrapping, either it can be
2593 			 * detected by out-of-range remaining, or it cannot be
2594 			 * detected and we get a penalty of
2595 			 * _regulator_enable_delay().
2596 			 */
2597 			remaining = intended - start_jiffy;
2598 			if (remaining <= max_delay)
2599 				_regulator_enable_delay(
2600 						jiffies_to_usecs(remaining));
2601 		}
2602 	}
2603 
2604 	if (rdev->ena_pin) {
2605 		if (!rdev->ena_gpio_state) {
2606 			ret = regulator_ena_gpio_ctrl(rdev, true);
2607 			if (ret < 0)
2608 				return ret;
2609 			rdev->ena_gpio_state = 1;
2610 		}
2611 	} else if (rdev->desc->ops->enable) {
2612 		ret = rdev->desc->ops->enable(rdev);
2613 		if (ret < 0)
2614 			return ret;
2615 	} else {
2616 		return -EINVAL;
2617 	}
2618 
2619 	/* Allow the regulator to ramp; it would be useful to extend
2620 	 * this for bulk operations so that the regulators can ramp
2621 	 * together.  */
2622 	trace_regulator_enable_delay(rdev_get_name(rdev));
2623 
2624 	/* If poll_enabled_time is set, poll upto the delay calculated
2625 	 * above, delaying poll_enabled_time uS to check if the regulator
2626 	 * actually got enabled.
2627 	 * If the regulator isn't enabled after enable_delay has
2628 	 * expired, return -ETIMEDOUT.
2629 	 */
2630 	if (rdev->desc->poll_enabled_time) {
2631 		int time_remaining = delay;
2632 
2633 		while (time_remaining > 0) {
2634 			_regulator_enable_delay(rdev->desc->poll_enabled_time);
2635 
2636 			if (rdev->desc->ops->get_status) {
2637 				ret = _regulator_check_status_enabled(rdev);
2638 				if (ret < 0)
2639 					return ret;
2640 				else if (ret)
2641 					break;
2642 			} else if (rdev->desc->ops->is_enabled(rdev))
2643 				break;
2644 
2645 			time_remaining -= rdev->desc->poll_enabled_time;
2646 		}
2647 
2648 		if (time_remaining <= 0) {
2649 			rdev_err(rdev, "Enabled check timed out\n");
2650 			return -ETIMEDOUT;
2651 		}
2652 	} else {
2653 		_regulator_enable_delay(delay);
2654 	}
2655 
2656 	trace_regulator_enable_complete(rdev_get_name(rdev));
2657 
2658 	return 0;
2659 }
2660 
2661 /**
2662  * _regulator_handle_consumer_enable - handle that a consumer enabled
2663  * @regulator: regulator source
2664  *
2665  * Some things on a regulator consumer (like the contribution towards total
2666  * load on the regulator) only have an effect when the consumer wants the
2667  * regulator enabled.  Explained in example with two consumers of the same
2668  * regulator:
2669  *   consumer A: set_load(100);       => total load = 0
2670  *   consumer A: regulator_enable();  => total load = 100
2671  *   consumer B: set_load(1000);      => total load = 100
2672  *   consumer B: regulator_enable();  => total load = 1100
2673  *   consumer A: regulator_disable(); => total_load = 1000
2674  *
2675  * This function (together with _regulator_handle_consumer_disable) is
2676  * responsible for keeping track of the refcount for a given regulator consumer
2677  * and applying / unapplying these things.
2678  *
2679  * Returns 0 upon no error; -error upon error.
2680  */
_regulator_handle_consumer_enable(struct regulator *regulator)2681 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2682 {
2683 	int ret;
2684 	struct regulator_dev *rdev = regulator->rdev;
2685 
2686 	lockdep_assert_held_once(&rdev->mutex.base);
2687 
2688 	regulator->enable_count++;
2689 	if (regulator->uA_load && regulator->enable_count == 1) {
2690 		ret = drms_uA_update(rdev);
2691 		if (ret)
2692 			regulator->enable_count--;
2693 		return ret;
2694 	}
2695 
2696 	return 0;
2697 }
2698 
2699 /**
2700  * _regulator_handle_consumer_disable - handle that a consumer disabled
2701  * @regulator: regulator source
2702  *
2703  * The opposite of _regulator_handle_consumer_enable().
2704  *
2705  * Returns 0 upon no error; -error upon error.
2706  */
_regulator_handle_consumer_disable(struct regulator *regulator)2707 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2708 {
2709 	struct regulator_dev *rdev = regulator->rdev;
2710 
2711 	lockdep_assert_held_once(&rdev->mutex.base);
2712 
2713 	if (!regulator->enable_count) {
2714 		rdev_err(rdev, "Underflow of regulator enable count\n");
2715 		return -EINVAL;
2716 	}
2717 
2718 	regulator->enable_count--;
2719 	if (regulator->uA_load && regulator->enable_count == 0)
2720 		return drms_uA_update(rdev);
2721 
2722 	return 0;
2723 }
2724 
2725 /* locks held by regulator_enable() */
_regulator_enable(struct regulator *regulator)2726 static int _regulator_enable(struct regulator *regulator)
2727 {
2728 	struct regulator_dev *rdev = regulator->rdev;
2729 	int ret;
2730 
2731 	lockdep_assert_held_once(&rdev->mutex.base);
2732 
2733 	if (rdev->use_count == 0 && rdev->supply) {
2734 		ret = _regulator_enable(rdev->supply);
2735 		if (ret < 0)
2736 			return ret;
2737 	}
2738 
2739 	/* balance only if there are regulators coupled */
2740 	if (rdev->coupling_desc.n_coupled > 1) {
2741 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2742 		if (ret < 0)
2743 			goto err_disable_supply;
2744 	}
2745 
2746 	ret = _regulator_handle_consumer_enable(regulator);
2747 	if (ret < 0)
2748 		goto err_disable_supply;
2749 
2750 	if (rdev->use_count == 0) {
2751 		/* The regulator may on if it's not switchable or left on */
2752 		ret = _regulator_is_enabled(rdev);
2753 		if (ret == -EINVAL || ret == 0) {
2754 			if (!regulator_ops_is_valid(rdev,
2755 					REGULATOR_CHANGE_STATUS)) {
2756 				ret = -EPERM;
2757 				goto err_consumer_disable;
2758 			}
2759 
2760 			ret = _regulator_do_enable(rdev);
2761 			if (ret < 0)
2762 				goto err_consumer_disable;
2763 
2764 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2765 					     NULL);
2766 		} else if (ret < 0) {
2767 			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2768 			goto err_consumer_disable;
2769 		}
2770 		/* Fallthrough on positive return values - already enabled */
2771 	}
2772 
2773 	if (regulator->enable_count == 1)
2774 		rdev->use_count++;
2775 
2776 	return 0;
2777 
2778 err_consumer_disable:
2779 	_regulator_handle_consumer_disable(regulator);
2780 
2781 err_disable_supply:
2782 	if (rdev->use_count == 0 && rdev->supply)
2783 		_regulator_disable(rdev->supply);
2784 
2785 	return ret;
2786 }
2787 
2788 /**
2789  * regulator_enable - enable regulator output
2790  * @regulator: regulator source
2791  *
2792  * Request that the regulator be enabled with the regulator output at
2793  * the predefined voltage or current value.  Calls to regulator_enable()
2794  * must be balanced with calls to regulator_disable().
2795  *
2796  * NOTE: the output value can be set by other drivers, boot loader or may be
2797  * hardwired in the regulator.
2798  */
regulator_enable(struct regulator *regulator)2799 int regulator_enable(struct regulator *regulator)
2800 {
2801 	struct regulator_dev *rdev = regulator->rdev;
2802 	struct ww_acquire_ctx ww_ctx;
2803 	int ret;
2804 
2805 	regulator_lock_dependent(rdev, &ww_ctx);
2806 	ret = _regulator_enable(regulator);
2807 	regulator_unlock_dependent(rdev, &ww_ctx);
2808 
2809 	return ret;
2810 }
2811 EXPORT_SYMBOL_GPL(regulator_enable);
2812 
_regulator_do_disable(struct regulator_dev *rdev)2813 static int _regulator_do_disable(struct regulator_dev *rdev)
2814 {
2815 	int ret;
2816 
2817 	trace_regulator_disable(rdev_get_name(rdev));
2818 
2819 	if (rdev->ena_pin) {
2820 		if (rdev->ena_gpio_state) {
2821 			ret = regulator_ena_gpio_ctrl(rdev, false);
2822 			if (ret < 0)
2823 				return ret;
2824 			rdev->ena_gpio_state = 0;
2825 		}
2826 
2827 	} else if (rdev->desc->ops->disable) {
2828 		ret = rdev->desc->ops->disable(rdev);
2829 		if (ret != 0)
2830 			return ret;
2831 	}
2832 
2833 	/* cares about last_off_jiffy only if off_on_delay is required by
2834 	 * device.
2835 	 */
2836 	if (rdev->desc->off_on_delay)
2837 		rdev->last_off_jiffy = jiffies;
2838 
2839 	trace_regulator_disable_complete(rdev_get_name(rdev));
2840 
2841 	return 0;
2842 }
2843 
2844 /* locks held by regulator_disable() */
_regulator_disable(struct regulator *regulator)2845 static int _regulator_disable(struct regulator *regulator)
2846 {
2847 	struct regulator_dev *rdev = regulator->rdev;
2848 	int ret = 0;
2849 
2850 	lockdep_assert_held_once(&rdev->mutex.base);
2851 
2852 	if (WARN(regulator->enable_count == 0,
2853 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2854 		return -EIO;
2855 
2856 	if (regulator->enable_count == 1) {
2857 	/* disabling last enable_count from this regulator */
2858 		/* are we the last user and permitted to disable ? */
2859 		if (rdev->use_count == 1 &&
2860 		    (rdev->constraints && !rdev->constraints->always_on)) {
2861 
2862 			/* we are last user */
2863 			if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2864 				ret = _notifier_call_chain(rdev,
2865 							   REGULATOR_EVENT_PRE_DISABLE,
2866 							   NULL);
2867 				if (ret & NOTIFY_STOP_MASK)
2868 					return -EINVAL;
2869 
2870 				ret = _regulator_do_disable(rdev);
2871 				if (ret < 0) {
2872 					rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2873 					_notifier_call_chain(rdev,
2874 							REGULATOR_EVENT_ABORT_DISABLE,
2875 							NULL);
2876 					return ret;
2877 				}
2878 				_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2879 						NULL);
2880 			}
2881 
2882 			rdev->use_count = 0;
2883 		} else if (rdev->use_count > 1) {
2884 			rdev->use_count--;
2885 		}
2886 	}
2887 
2888 	if (ret == 0)
2889 		ret = _regulator_handle_consumer_disable(regulator);
2890 
2891 	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2892 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2893 
2894 	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2895 		ret = _regulator_disable(rdev->supply);
2896 
2897 	return ret;
2898 }
2899 
2900 /**
2901  * regulator_disable - disable regulator output
2902  * @regulator: regulator source
2903  *
2904  * Disable the regulator output voltage or current.  Calls to
2905  * regulator_enable() must be balanced with calls to
2906  * regulator_disable().
2907  *
2908  * NOTE: this will only disable the regulator output if no other consumer
2909  * devices have it enabled, the regulator device supports disabling and
2910  * machine constraints permit this operation.
2911  */
regulator_disable(struct regulator *regulator)2912 int regulator_disable(struct regulator *regulator)
2913 {
2914 	struct regulator_dev *rdev = regulator->rdev;
2915 	struct ww_acquire_ctx ww_ctx;
2916 	int ret;
2917 
2918 	regulator_lock_dependent(rdev, &ww_ctx);
2919 	ret = _regulator_disable(regulator);
2920 	regulator_unlock_dependent(rdev, &ww_ctx);
2921 
2922 	return ret;
2923 }
2924 EXPORT_SYMBOL_GPL(regulator_disable);
2925 
2926 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev *rdev)2927 static int _regulator_force_disable(struct regulator_dev *rdev)
2928 {
2929 	int ret = 0;
2930 
2931 	lockdep_assert_held_once(&rdev->mutex.base);
2932 
2933 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2934 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2935 	if (ret & NOTIFY_STOP_MASK)
2936 		return -EINVAL;
2937 
2938 	ret = _regulator_do_disable(rdev);
2939 	if (ret < 0) {
2940 		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2941 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2942 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2943 		return ret;
2944 	}
2945 
2946 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2947 			REGULATOR_EVENT_DISABLE, NULL);
2948 
2949 	return 0;
2950 }
2951 
2952 /**
2953  * regulator_force_disable - force disable regulator output
2954  * @regulator: regulator source
2955  *
2956  * Forcibly disable the regulator output voltage or current.
2957  * NOTE: this *will* disable the regulator output even if other consumer
2958  * devices have it enabled. This should be used for situations when device
2959  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2960  */
regulator_force_disable(struct regulator *regulator)2961 int regulator_force_disable(struct regulator *regulator)
2962 {
2963 	struct regulator_dev *rdev = regulator->rdev;
2964 	struct ww_acquire_ctx ww_ctx;
2965 	int ret;
2966 
2967 	regulator_lock_dependent(rdev, &ww_ctx);
2968 
2969 	ret = _regulator_force_disable(regulator->rdev);
2970 
2971 	if (rdev->coupling_desc.n_coupled > 1)
2972 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2973 
2974 	if (regulator->uA_load) {
2975 		regulator->uA_load = 0;
2976 		ret = drms_uA_update(rdev);
2977 	}
2978 
2979 	if (rdev->use_count != 0 && rdev->supply)
2980 		_regulator_disable(rdev->supply);
2981 
2982 	regulator_unlock_dependent(rdev, &ww_ctx);
2983 
2984 	return ret;
2985 }
2986 EXPORT_SYMBOL_GPL(regulator_force_disable);
2987 
regulator_disable_work(struct work_struct *work)2988 static void regulator_disable_work(struct work_struct *work)
2989 {
2990 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2991 						  disable_work.work);
2992 	struct ww_acquire_ctx ww_ctx;
2993 	int count, i, ret;
2994 	struct regulator *regulator;
2995 	int total_count = 0;
2996 
2997 	regulator_lock_dependent(rdev, &ww_ctx);
2998 
2999 	/*
3000 	 * Workqueue functions queue the new work instance while the previous
3001 	 * work instance is being processed. Cancel the queued work instance
3002 	 * as the work instance under processing does the job of the queued
3003 	 * work instance.
3004 	 */
3005 	cancel_delayed_work(&rdev->disable_work);
3006 
3007 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3008 		count = regulator->deferred_disables;
3009 
3010 		if (!count)
3011 			continue;
3012 
3013 		total_count += count;
3014 		regulator->deferred_disables = 0;
3015 
3016 		for (i = 0; i < count; i++) {
3017 			ret = _regulator_disable(regulator);
3018 			if (ret != 0)
3019 				rdev_err(rdev, "Deferred disable failed: %pe\n",
3020 					 ERR_PTR(ret));
3021 		}
3022 	}
3023 	WARN_ON(!total_count);
3024 
3025 	if (rdev->coupling_desc.n_coupled > 1)
3026 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3027 
3028 	regulator_unlock_dependent(rdev, &ww_ctx);
3029 }
3030 
3031 /**
3032  * regulator_disable_deferred - disable regulator output with delay
3033  * @regulator: regulator source
3034  * @ms: milliseconds until the regulator is disabled
3035  *
3036  * Execute regulator_disable() on the regulator after a delay.  This
3037  * is intended for use with devices that require some time to quiesce.
3038  *
3039  * NOTE: this will only disable the regulator output if no other consumer
3040  * devices have it enabled, the regulator device supports disabling and
3041  * machine constraints permit this operation.
3042  */
regulator_disable_deferred(struct regulator *regulator, int ms)3043 int regulator_disable_deferred(struct regulator *regulator, int ms)
3044 {
3045 	struct regulator_dev *rdev = regulator->rdev;
3046 
3047 	if (!ms)
3048 		return regulator_disable(regulator);
3049 
3050 	regulator_lock(rdev);
3051 	regulator->deferred_disables++;
3052 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3053 			 msecs_to_jiffies(ms));
3054 	regulator_unlock(rdev);
3055 
3056 	return 0;
3057 }
3058 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3059 
_regulator_is_enabled(struct regulator_dev *rdev)3060 static int _regulator_is_enabled(struct regulator_dev *rdev)
3061 {
3062 	/* A GPIO control always takes precedence */
3063 	if (rdev->ena_pin)
3064 		return rdev->ena_gpio_state;
3065 
3066 	/* If we don't know then assume that the regulator is always on */
3067 	if (!rdev->desc->ops->is_enabled)
3068 		return 1;
3069 
3070 	return rdev->desc->ops->is_enabled(rdev);
3071 }
3072 
_regulator_list_voltage(struct regulator_dev *rdev, unsigned selector, int lock)3073 static int _regulator_list_voltage(struct regulator_dev *rdev,
3074 				   unsigned selector, int lock)
3075 {
3076 	const struct regulator_ops *ops = rdev->desc->ops;
3077 	int ret;
3078 
3079 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3080 		return rdev->desc->fixed_uV;
3081 
3082 	if (ops->list_voltage) {
3083 		if (selector >= rdev->desc->n_voltages)
3084 			return -EINVAL;
3085 		if (lock)
3086 			regulator_lock(rdev);
3087 		ret = ops->list_voltage(rdev, selector);
3088 		if (lock)
3089 			regulator_unlock(rdev);
3090 	} else if (rdev->is_switch && rdev->supply) {
3091 		ret = _regulator_list_voltage(rdev->supply->rdev,
3092 					      selector, lock);
3093 	} else {
3094 		return -EINVAL;
3095 	}
3096 
3097 	if (ret > 0) {
3098 		if (ret < rdev->constraints->min_uV)
3099 			ret = 0;
3100 		else if (ret > rdev->constraints->max_uV)
3101 			ret = 0;
3102 	}
3103 
3104 	return ret;
3105 }
3106 
3107 /**
3108  * regulator_is_enabled - is the regulator output enabled
3109  * @regulator: regulator source
3110  *
3111  * Returns positive if the regulator driver backing the source/client
3112  * has requested that the device be enabled, zero if it hasn't, else a
3113  * negative errno code.
3114  *
3115  * Note that the device backing this regulator handle can have multiple
3116  * users, so it might be enabled even if regulator_enable() was never
3117  * called for this particular source.
3118  */
regulator_is_enabled(struct regulator *regulator)3119 int regulator_is_enabled(struct regulator *regulator)
3120 {
3121 	int ret;
3122 
3123 	if (regulator->always_on)
3124 		return 1;
3125 
3126 	regulator_lock(regulator->rdev);
3127 	ret = _regulator_is_enabled(regulator->rdev);
3128 	regulator_unlock(regulator->rdev);
3129 
3130 	return ret;
3131 }
3132 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3133 
3134 /**
3135  * regulator_count_voltages - count regulator_list_voltage() selectors
3136  * @regulator: regulator source
3137  *
3138  * Returns number of selectors, or negative errno.  Selectors are
3139  * numbered starting at zero, and typically correspond to bitfields
3140  * in hardware registers.
3141  */
regulator_count_voltages(struct regulator *regulator)3142 int regulator_count_voltages(struct regulator *regulator)
3143 {
3144 	struct regulator_dev	*rdev = regulator->rdev;
3145 
3146 	if (rdev->desc->n_voltages)
3147 		return rdev->desc->n_voltages;
3148 
3149 	if (!rdev->is_switch || !rdev->supply)
3150 		return -EINVAL;
3151 
3152 	return regulator_count_voltages(rdev->supply);
3153 }
3154 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3155 
3156 /**
3157  * regulator_list_voltage - enumerate supported voltages
3158  * @regulator: regulator source
3159  * @selector: identify voltage to list
3160  * Context: can sleep
3161  *
3162  * Returns a voltage that can be passed to @regulator_set_voltage(),
3163  * zero if this selector code can't be used on this system, or a
3164  * negative errno.
3165  */
regulator_list_voltage(struct regulator *regulator, unsigned selector)3166 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3167 {
3168 	return _regulator_list_voltage(regulator->rdev, selector, 1);
3169 }
3170 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3171 
3172 /**
3173  * regulator_get_regmap - get the regulator's register map
3174  * @regulator: regulator source
3175  *
3176  * Returns the register map for the given regulator, or an ERR_PTR value
3177  * if the regulator doesn't use regmap.
3178  */
regulator_get_regmap(struct regulator *regulator)3179 struct regmap *regulator_get_regmap(struct regulator *regulator)
3180 {
3181 	struct regmap *map = regulator->rdev->regmap;
3182 
3183 	return map ? map : ERR_PTR(-EOPNOTSUPP);
3184 }
3185 
3186 /**
3187  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3188  * @regulator: regulator source
3189  * @vsel_reg: voltage selector register, output parameter
3190  * @vsel_mask: mask for voltage selector bitfield, output parameter
3191  *
3192  * Returns the hardware register offset and bitmask used for setting the
3193  * regulator voltage. This might be useful when configuring voltage-scaling
3194  * hardware or firmware that can make I2C requests behind the kernel's back,
3195  * for example.
3196  *
3197  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3198  * and 0 is returned, otherwise a negative errno is returned.
3199  */
regulator_get_hardware_vsel_register(struct regulator *regulator, unsigned *vsel_reg, unsigned *vsel_mask)3200 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3201 					 unsigned *vsel_reg,
3202 					 unsigned *vsel_mask)
3203 {
3204 	struct regulator_dev *rdev = regulator->rdev;
3205 	const struct regulator_ops *ops = rdev->desc->ops;
3206 
3207 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3208 		return -EOPNOTSUPP;
3209 
3210 	*vsel_reg = rdev->desc->vsel_reg;
3211 	*vsel_mask = rdev->desc->vsel_mask;
3212 
3213 	return 0;
3214 }
3215 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3216 
3217 /**
3218  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3219  * @regulator: regulator source
3220  * @selector: identify voltage to list
3221  *
3222  * Converts the selector to a hardware-specific voltage selector that can be
3223  * directly written to the regulator registers. The address of the voltage
3224  * register can be determined by calling @regulator_get_hardware_vsel_register.
3225  *
3226  * On error a negative errno is returned.
3227  */
regulator_list_hardware_vsel(struct regulator *regulator, unsigned selector)3228 int regulator_list_hardware_vsel(struct regulator *regulator,
3229 				 unsigned selector)
3230 {
3231 	struct regulator_dev *rdev = regulator->rdev;
3232 	const struct regulator_ops *ops = rdev->desc->ops;
3233 
3234 	if (selector >= rdev->desc->n_voltages)
3235 		return -EINVAL;
3236 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3237 		return -EOPNOTSUPP;
3238 
3239 	return selector;
3240 }
3241 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3242 
3243 /**
3244  * regulator_get_linear_step - return the voltage step size between VSEL values
3245  * @regulator: regulator source
3246  *
3247  * Returns the voltage step size between VSEL values for linear
3248  * regulators, or return 0 if the regulator isn't a linear regulator.
3249  */
regulator_get_linear_step(struct regulator *regulator)3250 unsigned int regulator_get_linear_step(struct regulator *regulator)
3251 {
3252 	struct regulator_dev *rdev = regulator->rdev;
3253 
3254 	return rdev->desc->uV_step;
3255 }
3256 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3257 
3258 /**
3259  * regulator_is_supported_voltage - check if a voltage range can be supported
3260  *
3261  * @regulator: Regulator to check.
3262  * @min_uV: Minimum required voltage in uV.
3263  * @max_uV: Maximum required voltage in uV.
3264  *
3265  * Returns a boolean.
3266  */
regulator_is_supported_voltage(struct regulator *regulator, int min_uV, int max_uV)3267 int regulator_is_supported_voltage(struct regulator *regulator,
3268 				   int min_uV, int max_uV)
3269 {
3270 	struct regulator_dev *rdev = regulator->rdev;
3271 	int i, voltages, ret;
3272 
3273 	/* If we can't change voltage check the current voltage */
3274 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3275 		ret = regulator_get_voltage(regulator);
3276 		if (ret >= 0)
3277 			return min_uV <= ret && ret <= max_uV;
3278 		else
3279 			return ret;
3280 	}
3281 
3282 	/* Any voltage within constrains range is fine? */
3283 	if (rdev->desc->continuous_voltage_range)
3284 		return min_uV >= rdev->constraints->min_uV &&
3285 				max_uV <= rdev->constraints->max_uV;
3286 
3287 	ret = regulator_count_voltages(regulator);
3288 	if (ret < 0)
3289 		return 0;
3290 	voltages = ret;
3291 
3292 	for (i = 0; i < voltages; i++) {
3293 		ret = regulator_list_voltage(regulator, i);
3294 
3295 		if (ret >= min_uV && ret <= max_uV)
3296 			return 1;
3297 	}
3298 
3299 	return 0;
3300 }
3301 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3302 
regulator_map_voltage(struct regulator_dev *rdev, int min_uV, int max_uV)3303 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3304 				 int max_uV)
3305 {
3306 	const struct regulator_desc *desc = rdev->desc;
3307 
3308 	if (desc->ops->map_voltage)
3309 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3310 
3311 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3312 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3313 
3314 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3315 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3316 
3317 	if (desc->ops->list_voltage ==
3318 		regulator_list_voltage_pickable_linear_range)
3319 		return regulator_map_voltage_pickable_linear_range(rdev,
3320 							min_uV, max_uV);
3321 
3322 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3323 }
3324 
_regulator_call_set_voltage(struct regulator_dev *rdev, int min_uV, int max_uV, unsigned *selector)3325 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3326 				       int min_uV, int max_uV,
3327 				       unsigned *selector)
3328 {
3329 	struct pre_voltage_change_data data;
3330 	int ret;
3331 
3332 	data.old_uV = regulator_get_voltage_rdev(rdev);
3333 	data.min_uV = min_uV;
3334 	data.max_uV = max_uV;
3335 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3336 				   &data);
3337 	if (ret & NOTIFY_STOP_MASK)
3338 		return -EINVAL;
3339 
3340 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3341 	if (ret >= 0)
3342 		return ret;
3343 
3344 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3345 			     (void *)data.old_uV);
3346 
3347 	return ret;
3348 }
3349 
_regulator_call_set_voltage_sel(struct regulator_dev *rdev, int uV, unsigned selector)3350 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3351 					   int uV, unsigned selector)
3352 {
3353 	struct pre_voltage_change_data data;
3354 	int ret;
3355 
3356 	data.old_uV = regulator_get_voltage_rdev(rdev);
3357 	data.min_uV = uV;
3358 	data.max_uV = uV;
3359 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3360 				   &data);
3361 	if (ret & NOTIFY_STOP_MASK)
3362 		return -EINVAL;
3363 
3364 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3365 	if (ret >= 0)
3366 		return ret;
3367 
3368 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3369 			     (void *)data.old_uV);
3370 
3371 	return ret;
3372 }
3373 
_regulator_set_voltage_sel_step(struct regulator_dev *rdev, int uV, int new_selector)3374 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3375 					   int uV, int new_selector)
3376 {
3377 	const struct regulator_ops *ops = rdev->desc->ops;
3378 	int diff, old_sel, curr_sel, ret;
3379 
3380 	/* Stepping is only needed if the regulator is enabled. */
3381 	if (!_regulator_is_enabled(rdev))
3382 		goto final_set;
3383 
3384 	if (!ops->get_voltage_sel)
3385 		return -EINVAL;
3386 
3387 	old_sel = ops->get_voltage_sel(rdev);
3388 	if (old_sel < 0)
3389 		return old_sel;
3390 
3391 	diff = new_selector - old_sel;
3392 	if (diff == 0)
3393 		return 0; /* No change needed. */
3394 
3395 	if (diff > 0) {
3396 		/* Stepping up. */
3397 		for (curr_sel = old_sel + rdev->desc->vsel_step;
3398 		     curr_sel < new_selector;
3399 		     curr_sel += rdev->desc->vsel_step) {
3400 			/*
3401 			 * Call the callback directly instead of using
3402 			 * _regulator_call_set_voltage_sel() as we don't
3403 			 * want to notify anyone yet. Same in the branch
3404 			 * below.
3405 			 */
3406 			ret = ops->set_voltage_sel(rdev, curr_sel);
3407 			if (ret)
3408 				goto try_revert;
3409 		}
3410 	} else {
3411 		/* Stepping down. */
3412 		for (curr_sel = old_sel - rdev->desc->vsel_step;
3413 		     curr_sel > new_selector;
3414 		     curr_sel -= rdev->desc->vsel_step) {
3415 			ret = ops->set_voltage_sel(rdev, curr_sel);
3416 			if (ret)
3417 				goto try_revert;
3418 		}
3419 	}
3420 
3421 final_set:
3422 	/* The final selector will trigger the notifiers. */
3423 	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3424 
3425 try_revert:
3426 	/*
3427 	 * At least try to return to the previous voltage if setting a new
3428 	 * one failed.
3429 	 */
3430 	(void)ops->set_voltage_sel(rdev, old_sel);
3431 	return ret;
3432 }
3433 
_regulator_set_voltage_time(struct regulator_dev *rdev, int old_uV, int new_uV)3434 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3435 				       int old_uV, int new_uV)
3436 {
3437 	unsigned int ramp_delay = 0;
3438 
3439 	if (rdev->constraints->ramp_delay)
3440 		ramp_delay = rdev->constraints->ramp_delay;
3441 	else if (rdev->desc->ramp_delay)
3442 		ramp_delay = rdev->desc->ramp_delay;
3443 	else if (rdev->constraints->settling_time)
3444 		return rdev->constraints->settling_time;
3445 	else if (rdev->constraints->settling_time_up &&
3446 		 (new_uV > old_uV))
3447 		return rdev->constraints->settling_time_up;
3448 	else if (rdev->constraints->settling_time_down &&
3449 		 (new_uV < old_uV))
3450 		return rdev->constraints->settling_time_down;
3451 
3452 	if (ramp_delay == 0) {
3453 		rdev_dbg(rdev, "ramp_delay not set\n");
3454 		return 0;
3455 	}
3456 
3457 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3458 }
3459 
_regulator_do_set_voltage(struct regulator_dev *rdev, int min_uV, int max_uV)3460 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3461 				     int min_uV, int max_uV)
3462 {
3463 	int ret;
3464 	int delay = 0;
3465 	int best_val = 0;
3466 	unsigned int selector;
3467 	int old_selector = -1;
3468 	const struct regulator_ops *ops = rdev->desc->ops;
3469 	int old_uV = regulator_get_voltage_rdev(rdev);
3470 
3471 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3472 
3473 	min_uV += rdev->constraints->uV_offset;
3474 	max_uV += rdev->constraints->uV_offset;
3475 
3476 	/*
3477 	 * If we can't obtain the old selector there is not enough
3478 	 * info to call set_voltage_time_sel().
3479 	 */
3480 	if (_regulator_is_enabled(rdev) &&
3481 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3482 		old_selector = ops->get_voltage_sel(rdev);
3483 		if (old_selector < 0)
3484 			return old_selector;
3485 	}
3486 
3487 	if (ops->set_voltage) {
3488 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3489 						  &selector);
3490 
3491 		if (ret >= 0) {
3492 			if (ops->list_voltage)
3493 				best_val = ops->list_voltage(rdev,
3494 							     selector);
3495 			else
3496 				best_val = regulator_get_voltage_rdev(rdev);
3497 		}
3498 
3499 	} else if (ops->set_voltage_sel) {
3500 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3501 		if (ret >= 0) {
3502 			best_val = ops->list_voltage(rdev, ret);
3503 			if (min_uV <= best_val && max_uV >= best_val) {
3504 				selector = ret;
3505 				if (old_selector == selector)
3506 					ret = 0;
3507 				else if (rdev->desc->vsel_step)
3508 					ret = _regulator_set_voltage_sel_step(
3509 						rdev, best_val, selector);
3510 				else
3511 					ret = _regulator_call_set_voltage_sel(
3512 						rdev, best_val, selector);
3513 			} else {
3514 				ret = -EINVAL;
3515 			}
3516 		}
3517 	} else {
3518 		ret = -EINVAL;
3519 	}
3520 
3521 	if (ret)
3522 		goto out;
3523 
3524 	if (ops->set_voltage_time_sel) {
3525 		/*
3526 		 * Call set_voltage_time_sel if successfully obtained
3527 		 * old_selector
3528 		 */
3529 		if (old_selector >= 0 && old_selector != selector)
3530 			delay = ops->set_voltage_time_sel(rdev, old_selector,
3531 							  selector);
3532 	} else {
3533 		if (old_uV != best_val) {
3534 			if (ops->set_voltage_time)
3535 				delay = ops->set_voltage_time(rdev, old_uV,
3536 							      best_val);
3537 			else
3538 				delay = _regulator_set_voltage_time(rdev,
3539 								    old_uV,
3540 								    best_val);
3541 		}
3542 	}
3543 
3544 	if (delay < 0) {
3545 		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3546 		delay = 0;
3547 	}
3548 
3549 	/* Insert any necessary delays */
3550 	if (delay >= 1000) {
3551 		mdelay(delay / 1000);
3552 		udelay(delay % 1000);
3553 	} else if (delay) {
3554 		udelay(delay);
3555 	}
3556 
3557 	if (best_val >= 0) {
3558 		unsigned long data = best_val;
3559 
3560 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3561 				     (void *)data);
3562 	}
3563 
3564 out:
3565 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3566 
3567 	return ret;
3568 }
3569 
_regulator_do_set_suspend_voltage(struct regulator_dev *rdev, int min_uV, int max_uV, suspend_state_t state)3570 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3571 				  int min_uV, int max_uV, suspend_state_t state)
3572 {
3573 	struct regulator_state *rstate;
3574 	int uV, sel;
3575 
3576 	rstate = regulator_get_suspend_state(rdev, state);
3577 	if (rstate == NULL)
3578 		return -EINVAL;
3579 
3580 	if (min_uV < rstate->min_uV)
3581 		min_uV = rstate->min_uV;
3582 	if (max_uV > rstate->max_uV)
3583 		max_uV = rstate->max_uV;
3584 
3585 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3586 	if (sel < 0)
3587 		return sel;
3588 
3589 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3590 	if (uV >= min_uV && uV <= max_uV)
3591 		rstate->uV = uV;
3592 
3593 	return 0;
3594 }
3595 
regulator_set_voltage_unlocked(struct regulator *regulator, int min_uV, int max_uV, suspend_state_t state)3596 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3597 					  int min_uV, int max_uV,
3598 					  suspend_state_t state)
3599 {
3600 	struct regulator_dev *rdev = regulator->rdev;
3601 	struct regulator_voltage *voltage = &regulator->voltage[state];
3602 	int ret = 0;
3603 	int old_min_uV, old_max_uV;
3604 	int current_uV;
3605 
3606 	/* If we're setting the same range as last time the change
3607 	 * should be a noop (some cpufreq implementations use the same
3608 	 * voltage for multiple frequencies, for example).
3609 	 */
3610 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3611 		goto out;
3612 
3613 	/* If we're trying to set a range that overlaps the current voltage,
3614 	 * return successfully even though the regulator does not support
3615 	 * changing the voltage.
3616 	 */
3617 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3618 		current_uV = regulator_get_voltage_rdev(rdev);
3619 		if (min_uV <= current_uV && current_uV <= max_uV) {
3620 			voltage->min_uV = min_uV;
3621 			voltage->max_uV = max_uV;
3622 			goto out;
3623 		}
3624 	}
3625 
3626 	/* sanity check */
3627 	if (!rdev->desc->ops->set_voltage &&
3628 	    !rdev->desc->ops->set_voltage_sel) {
3629 		ret = -EINVAL;
3630 		goto out;
3631 	}
3632 
3633 	/* constraints check */
3634 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3635 	if (ret < 0)
3636 		goto out;
3637 
3638 	/* restore original values in case of error */
3639 	old_min_uV = voltage->min_uV;
3640 	old_max_uV = voltage->max_uV;
3641 	voltage->min_uV = min_uV;
3642 	voltage->max_uV = max_uV;
3643 
3644 	/* for not coupled regulators this will just set the voltage */
3645 	ret = regulator_balance_voltage(rdev, state);
3646 	if (ret < 0) {
3647 		voltage->min_uV = old_min_uV;
3648 		voltage->max_uV = old_max_uV;
3649 	}
3650 
3651 out:
3652 	return ret;
3653 }
3654 
regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV, int max_uV, suspend_state_t state)3655 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3656 			       int max_uV, suspend_state_t state)
3657 {
3658 	int best_supply_uV = 0;
3659 	int supply_change_uV = 0;
3660 	int ret;
3661 
3662 	if (rdev->supply &&
3663 	    regulator_ops_is_valid(rdev->supply->rdev,
3664 				   REGULATOR_CHANGE_VOLTAGE) &&
3665 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3666 					   rdev->desc->ops->get_voltage_sel))) {
3667 		int current_supply_uV;
3668 		int selector;
3669 
3670 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3671 		if (selector < 0) {
3672 			ret = selector;
3673 			goto out;
3674 		}
3675 
3676 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3677 		if (best_supply_uV < 0) {
3678 			ret = best_supply_uV;
3679 			goto out;
3680 		}
3681 
3682 		best_supply_uV += rdev->desc->min_dropout_uV;
3683 
3684 		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3685 		if (current_supply_uV < 0) {
3686 			ret = current_supply_uV;
3687 			goto out;
3688 		}
3689 
3690 		supply_change_uV = best_supply_uV - current_supply_uV;
3691 	}
3692 
3693 	if (supply_change_uV > 0) {
3694 		ret = regulator_set_voltage_unlocked(rdev->supply,
3695 				best_supply_uV, INT_MAX, state);
3696 		if (ret) {
3697 			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3698 				ERR_PTR(ret));
3699 			goto out;
3700 		}
3701 	}
3702 
3703 	if (state == PM_SUSPEND_ON)
3704 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3705 	else
3706 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3707 							max_uV, state);
3708 	if (ret < 0)
3709 		goto out;
3710 
3711 	if (supply_change_uV < 0) {
3712 		ret = regulator_set_voltage_unlocked(rdev->supply,
3713 				best_supply_uV, INT_MAX, state);
3714 		if (ret)
3715 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3716 				 ERR_PTR(ret));
3717 		/* No need to fail here */
3718 		ret = 0;
3719 	}
3720 
3721 out:
3722 	return ret;
3723 }
3724 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3725 
regulator_limit_voltage_step(struct regulator_dev *rdev, int *current_uV, int *min_uV)3726 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3727 					int *current_uV, int *min_uV)
3728 {
3729 	struct regulation_constraints *constraints = rdev->constraints;
3730 
3731 	/* Limit voltage change only if necessary */
3732 	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3733 		return 1;
3734 
3735 	if (*current_uV < 0) {
3736 		*current_uV = regulator_get_voltage_rdev(rdev);
3737 
3738 		if (*current_uV < 0)
3739 			return *current_uV;
3740 	}
3741 
3742 	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3743 		return 1;
3744 
3745 	/* Clamp target voltage within the given step */
3746 	if (*current_uV < *min_uV)
3747 		*min_uV = min(*current_uV + constraints->max_uV_step,
3748 			      *min_uV);
3749 	else
3750 		*min_uV = max(*current_uV - constraints->max_uV_step,
3751 			      *min_uV);
3752 
3753 	return 0;
3754 }
3755 
regulator_get_optimal_voltage(struct regulator_dev *rdev, int *current_uV, int *min_uV, int *max_uV, suspend_state_t state, int n_coupled)3756 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3757 					 int *current_uV,
3758 					 int *min_uV, int *max_uV,
3759 					 suspend_state_t state,
3760 					 int n_coupled)
3761 {
3762 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3763 	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3764 	struct regulation_constraints *constraints = rdev->constraints;
3765 	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3766 	int max_current_uV = 0, min_current_uV = INT_MAX;
3767 	int highest_min_uV = 0, target_uV, possible_uV;
3768 	int i, ret, max_spread;
3769 	bool done;
3770 
3771 	*current_uV = -1;
3772 
3773 	/*
3774 	 * If there are no coupled regulators, simply set the voltage
3775 	 * demanded by consumers.
3776 	 */
3777 	if (n_coupled == 1) {
3778 		/*
3779 		 * If consumers don't provide any demands, set voltage
3780 		 * to min_uV
3781 		 */
3782 		desired_min_uV = constraints->min_uV;
3783 		desired_max_uV = constraints->max_uV;
3784 
3785 		ret = regulator_check_consumers(rdev,
3786 						&desired_min_uV,
3787 						&desired_max_uV, state);
3788 		if (ret < 0)
3789 			return ret;
3790 
3791 		possible_uV = desired_min_uV;
3792 		done = true;
3793 
3794 		goto finish;
3795 	}
3796 
3797 	/* Find highest min desired voltage */
3798 	for (i = 0; i < n_coupled; i++) {
3799 		int tmp_min = 0;
3800 		int tmp_max = INT_MAX;
3801 
3802 		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3803 
3804 		ret = regulator_check_consumers(c_rdevs[i],
3805 						&tmp_min,
3806 						&tmp_max, state);
3807 		if (ret < 0)
3808 			return ret;
3809 
3810 		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3811 		if (ret < 0)
3812 			return ret;
3813 
3814 		highest_min_uV = max(highest_min_uV, tmp_min);
3815 
3816 		if (i == 0) {
3817 			desired_min_uV = tmp_min;
3818 			desired_max_uV = tmp_max;
3819 		}
3820 	}
3821 
3822 	max_spread = constraints->max_spread[0];
3823 
3824 	/*
3825 	 * Let target_uV be equal to the desired one if possible.
3826 	 * If not, set it to minimum voltage, allowed by other coupled
3827 	 * regulators.
3828 	 */
3829 	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3830 
3831 	/*
3832 	 * Find min and max voltages, which currently aren't violating
3833 	 * max_spread.
3834 	 */
3835 	for (i = 1; i < n_coupled; i++) {
3836 		int tmp_act;
3837 
3838 		if (!_regulator_is_enabled(c_rdevs[i]))
3839 			continue;
3840 
3841 		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3842 		if (tmp_act < 0)
3843 			return tmp_act;
3844 
3845 		min_current_uV = min(tmp_act, min_current_uV);
3846 		max_current_uV = max(tmp_act, max_current_uV);
3847 	}
3848 
3849 	/* There aren't any other regulators enabled */
3850 	if (max_current_uV == 0) {
3851 		possible_uV = target_uV;
3852 	} else {
3853 		/*
3854 		 * Correct target voltage, so as it currently isn't
3855 		 * violating max_spread
3856 		 */
3857 		possible_uV = max(target_uV, max_current_uV - max_spread);
3858 		possible_uV = min(possible_uV, min_current_uV + max_spread);
3859 	}
3860 
3861 	if (possible_uV > desired_max_uV)
3862 		return -EINVAL;
3863 
3864 	done = (possible_uV == target_uV);
3865 	desired_min_uV = possible_uV;
3866 
3867 finish:
3868 	/* Apply max_uV_step constraint if necessary */
3869 	if (state == PM_SUSPEND_ON) {
3870 		ret = regulator_limit_voltage_step(rdev, current_uV,
3871 						   &desired_min_uV);
3872 		if (ret < 0)
3873 			return ret;
3874 
3875 		if (ret == 0)
3876 			done = false;
3877 	}
3878 
3879 	/* Set current_uV if wasn't done earlier in the code and if necessary */
3880 	if (n_coupled > 1 && *current_uV == -1) {
3881 
3882 		if (_regulator_is_enabled(rdev)) {
3883 			ret = regulator_get_voltage_rdev(rdev);
3884 			if (ret < 0)
3885 				return ret;
3886 
3887 			*current_uV = ret;
3888 		} else {
3889 			*current_uV = desired_min_uV;
3890 		}
3891 	}
3892 
3893 	*min_uV = desired_min_uV;
3894 	*max_uV = desired_max_uV;
3895 
3896 	return done;
3897 }
3898 
regulator_do_balance_voltage(struct regulator_dev *rdev, suspend_state_t state, bool skip_coupled)3899 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3900 				 suspend_state_t state, bool skip_coupled)
3901 {
3902 	struct regulator_dev **c_rdevs;
3903 	struct regulator_dev *best_rdev;
3904 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3905 	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3906 	unsigned int delta, best_delta;
3907 	unsigned long c_rdev_done = 0;
3908 	bool best_c_rdev_done;
3909 
3910 	c_rdevs = c_desc->coupled_rdevs;
3911 	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3912 
3913 	/*
3914 	 * Find the best possible voltage change on each loop. Leave the loop
3915 	 * if there isn't any possible change.
3916 	 */
3917 	do {
3918 		best_c_rdev_done = false;
3919 		best_delta = 0;
3920 		best_min_uV = 0;
3921 		best_max_uV = 0;
3922 		best_c_rdev = 0;
3923 		best_rdev = NULL;
3924 
3925 		/*
3926 		 * Find highest difference between optimal voltage
3927 		 * and current voltage.
3928 		 */
3929 		for (i = 0; i < n_coupled; i++) {
3930 			/*
3931 			 * optimal_uV is the best voltage that can be set for
3932 			 * i-th regulator at the moment without violating
3933 			 * max_spread constraint in order to balance
3934 			 * the coupled voltages.
3935 			 */
3936 			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3937 
3938 			if (test_bit(i, &c_rdev_done))
3939 				continue;
3940 
3941 			ret = regulator_get_optimal_voltage(c_rdevs[i],
3942 							    &current_uV,
3943 							    &optimal_uV,
3944 							    &optimal_max_uV,
3945 							    state, n_coupled);
3946 			if (ret < 0)
3947 				goto out;
3948 
3949 			delta = abs(optimal_uV - current_uV);
3950 
3951 			if (delta && best_delta <= delta) {
3952 				best_c_rdev_done = ret;
3953 				best_delta = delta;
3954 				best_rdev = c_rdevs[i];
3955 				best_min_uV = optimal_uV;
3956 				best_max_uV = optimal_max_uV;
3957 				best_c_rdev = i;
3958 			}
3959 		}
3960 
3961 		/* Nothing to change, return successfully */
3962 		if (!best_rdev) {
3963 			ret = 0;
3964 			goto out;
3965 		}
3966 
3967 		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3968 						 best_max_uV, state);
3969 
3970 		if (ret < 0)
3971 			goto out;
3972 
3973 		if (best_c_rdev_done)
3974 			set_bit(best_c_rdev, &c_rdev_done);
3975 
3976 	} while (n_coupled > 1);
3977 
3978 out:
3979 	return ret;
3980 }
3981 
regulator_balance_voltage(struct regulator_dev *rdev, suspend_state_t state)3982 static int regulator_balance_voltage(struct regulator_dev *rdev,
3983 				     suspend_state_t state)
3984 {
3985 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3986 	struct regulator_coupler *coupler = c_desc->coupler;
3987 	bool skip_coupled = false;
3988 
3989 	/*
3990 	 * If system is in a state other than PM_SUSPEND_ON, don't check
3991 	 * other coupled regulators.
3992 	 */
3993 	if (state != PM_SUSPEND_ON)
3994 		skip_coupled = true;
3995 
3996 	if (c_desc->n_resolved < c_desc->n_coupled) {
3997 		rdev_err(rdev, "Not all coupled regulators registered\n");
3998 		return -EPERM;
3999 	}
4000 
4001 	/* Invoke custom balancer for customized couplers */
4002 	if (coupler && coupler->balance_voltage)
4003 		return coupler->balance_voltage(coupler, rdev, state);
4004 
4005 	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4006 }
4007 
4008 /**
4009  * regulator_set_voltage - set regulator output voltage
4010  * @regulator: regulator source
4011  * @min_uV: Minimum required voltage in uV
4012  * @max_uV: Maximum acceptable voltage in uV
4013  *
4014  * Sets a voltage regulator to the desired output voltage. This can be set
4015  * during any regulator state. IOW, regulator can be disabled or enabled.
4016  *
4017  * If the regulator is enabled then the voltage will change to the new value
4018  * immediately otherwise if the regulator is disabled the regulator will
4019  * output at the new voltage when enabled.
4020  *
4021  * NOTE: If the regulator is shared between several devices then the lowest
4022  * request voltage that meets the system constraints will be used.
4023  * Regulator system constraints must be set for this regulator before
4024  * calling this function otherwise this call will fail.
4025  */
regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)4026 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4027 {
4028 	struct ww_acquire_ctx ww_ctx;
4029 	int ret;
4030 
4031 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4032 
4033 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4034 					     PM_SUSPEND_ON);
4035 
4036 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4037 
4038 	return ret;
4039 }
4040 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4041 
regulator_suspend_toggle(struct regulator_dev *rdev, suspend_state_t state, bool en)4042 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4043 					   suspend_state_t state, bool en)
4044 {
4045 	struct regulator_state *rstate;
4046 
4047 	rstate = regulator_get_suspend_state(rdev, state);
4048 	if (rstate == NULL)
4049 		return -EINVAL;
4050 
4051 	if (!rstate->changeable)
4052 		return -EPERM;
4053 
4054 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4055 
4056 	return 0;
4057 }
4058 
regulator_suspend_enable(struct regulator_dev *rdev, suspend_state_t state)4059 int regulator_suspend_enable(struct regulator_dev *rdev,
4060 				    suspend_state_t state)
4061 {
4062 	return regulator_suspend_toggle(rdev, state, true);
4063 }
4064 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4065 
regulator_suspend_disable(struct regulator_dev *rdev, suspend_state_t state)4066 int regulator_suspend_disable(struct regulator_dev *rdev,
4067 				     suspend_state_t state)
4068 {
4069 	struct regulator *regulator;
4070 	struct regulator_voltage *voltage;
4071 
4072 	/*
4073 	 * if any consumer wants this regulator device keeping on in
4074 	 * suspend states, don't set it as disabled.
4075 	 */
4076 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4077 		voltage = &regulator->voltage[state];
4078 		if (voltage->min_uV || voltage->max_uV)
4079 			return 0;
4080 	}
4081 
4082 	return regulator_suspend_toggle(rdev, state, false);
4083 }
4084 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4085 
_regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, int max_uV, suspend_state_t state)4086 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4087 					  int min_uV, int max_uV,
4088 					  suspend_state_t state)
4089 {
4090 	struct regulator_dev *rdev = regulator->rdev;
4091 	struct regulator_state *rstate;
4092 
4093 	rstate = regulator_get_suspend_state(rdev, state);
4094 	if (rstate == NULL)
4095 		return -EINVAL;
4096 
4097 	if (rstate->min_uV == rstate->max_uV) {
4098 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4099 		return -EPERM;
4100 	}
4101 
4102 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4103 }
4104 
regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, int max_uV, suspend_state_t state)4105 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4106 				  int max_uV, suspend_state_t state)
4107 {
4108 	struct ww_acquire_ctx ww_ctx;
4109 	int ret;
4110 
4111 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4112 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4113 		return -EINVAL;
4114 
4115 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4116 
4117 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4118 					     max_uV, state);
4119 
4120 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4121 
4122 	return ret;
4123 }
4124 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4125 
4126 /**
4127  * regulator_set_voltage_time - get raise/fall time
4128  * @regulator: regulator source
4129  * @old_uV: starting voltage in microvolts
4130  * @new_uV: target voltage in microvolts
4131  *
4132  * Provided with the starting and ending voltage, this function attempts to
4133  * calculate the time in microseconds required to rise or fall to this new
4134  * voltage.
4135  */
regulator_set_voltage_time(struct regulator *regulator, int old_uV, int new_uV)4136 int regulator_set_voltage_time(struct regulator *regulator,
4137 			       int old_uV, int new_uV)
4138 {
4139 	struct regulator_dev *rdev = regulator->rdev;
4140 	const struct regulator_ops *ops = rdev->desc->ops;
4141 	int old_sel = -1;
4142 	int new_sel = -1;
4143 	int voltage;
4144 	int i;
4145 
4146 	if (ops->set_voltage_time)
4147 		return ops->set_voltage_time(rdev, old_uV, new_uV);
4148 	else if (!ops->set_voltage_time_sel)
4149 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4150 
4151 	/* Currently requires operations to do this */
4152 	if (!ops->list_voltage || !rdev->desc->n_voltages)
4153 		return -EINVAL;
4154 
4155 	for (i = 0; i < rdev->desc->n_voltages; i++) {
4156 		/* We only look for exact voltage matches here */
4157 
4158 		if (old_sel >= 0 && new_sel >= 0)
4159 			break;
4160 
4161 		voltage = regulator_list_voltage(regulator, i);
4162 		if (voltage < 0)
4163 			return -EINVAL;
4164 		if (voltage == 0)
4165 			continue;
4166 		if (voltage == old_uV)
4167 			old_sel = i;
4168 		if (voltage == new_uV)
4169 			new_sel = i;
4170 	}
4171 
4172 	if (old_sel < 0 || new_sel < 0)
4173 		return -EINVAL;
4174 
4175 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4176 }
4177 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4178 
4179 /**
4180  * regulator_set_voltage_time_sel - get raise/fall time
4181  * @rdev: regulator source device
4182  * @old_selector: selector for starting voltage
4183  * @new_selector: selector for target voltage
4184  *
4185  * Provided with the starting and target voltage selectors, this function
4186  * returns time in microseconds required to rise or fall to this new voltage
4187  *
4188  * Drivers providing ramp_delay in regulation_constraints can use this as their
4189  * set_voltage_time_sel() operation.
4190  */
regulator_set_voltage_time_sel(struct regulator_dev *rdev, unsigned int old_selector, unsigned int new_selector)4191 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4192 				   unsigned int old_selector,
4193 				   unsigned int new_selector)
4194 {
4195 	int old_volt, new_volt;
4196 
4197 	/* sanity check */
4198 	if (!rdev->desc->ops->list_voltage)
4199 		return -EINVAL;
4200 
4201 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4202 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4203 
4204 	if (rdev->desc->ops->set_voltage_time)
4205 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4206 							 new_volt);
4207 	else
4208 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4209 }
4210 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4211 
4212 /**
4213  * regulator_sync_voltage - re-apply last regulator output voltage
4214  * @regulator: regulator source
4215  *
4216  * Re-apply the last configured voltage.  This is intended to be used
4217  * where some external control source the consumer is cooperating with
4218  * has caused the configured voltage to change.
4219  */
regulator_sync_voltage(struct regulator *regulator)4220 int regulator_sync_voltage(struct regulator *regulator)
4221 {
4222 	struct regulator_dev *rdev = regulator->rdev;
4223 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4224 	int ret, min_uV, max_uV;
4225 
4226 	regulator_lock(rdev);
4227 
4228 	if (!rdev->desc->ops->set_voltage &&
4229 	    !rdev->desc->ops->set_voltage_sel) {
4230 		ret = -EINVAL;
4231 		goto out;
4232 	}
4233 
4234 	/* This is only going to work if we've had a voltage configured. */
4235 	if (!voltage->min_uV && !voltage->max_uV) {
4236 		ret = -EINVAL;
4237 		goto out;
4238 	}
4239 
4240 	min_uV = voltage->min_uV;
4241 	max_uV = voltage->max_uV;
4242 
4243 	/* This should be a paranoia check... */
4244 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4245 	if (ret < 0)
4246 		goto out;
4247 
4248 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4249 	if (ret < 0)
4250 		goto out;
4251 
4252 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4253 
4254 out:
4255 	regulator_unlock(rdev);
4256 	return ret;
4257 }
4258 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4259 
regulator_get_voltage_rdev(struct regulator_dev *rdev)4260 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4261 {
4262 	int sel, ret;
4263 	bool bypassed;
4264 
4265 	if (rdev->desc->ops->get_bypass) {
4266 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4267 		if (ret < 0)
4268 			return ret;
4269 		if (bypassed) {
4270 			/* if bypassed the regulator must have a supply */
4271 			if (!rdev->supply) {
4272 				rdev_err(rdev,
4273 					 "bypassed regulator has no supply!\n");
4274 				return -EPROBE_DEFER;
4275 			}
4276 
4277 			return regulator_get_voltage_rdev(rdev->supply->rdev);
4278 		}
4279 	}
4280 
4281 	if (rdev->desc->ops->get_voltage_sel) {
4282 		sel = rdev->desc->ops->get_voltage_sel(rdev);
4283 		if (sel < 0)
4284 			return sel;
4285 		ret = rdev->desc->ops->list_voltage(rdev, sel);
4286 	} else if (rdev->desc->ops->get_voltage) {
4287 		ret = rdev->desc->ops->get_voltage(rdev);
4288 	} else if (rdev->desc->ops->list_voltage) {
4289 		ret = rdev->desc->ops->list_voltage(rdev, 0);
4290 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4291 		ret = rdev->desc->fixed_uV;
4292 	} else if (rdev->supply) {
4293 		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4294 	} else if (rdev->supply_name) {
4295 		return -EPROBE_DEFER;
4296 	} else {
4297 		return -EINVAL;
4298 	}
4299 
4300 	if (ret < 0)
4301 		return ret;
4302 	return ret - rdev->constraints->uV_offset;
4303 }
4304 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4305 
4306 /**
4307  * regulator_get_voltage - get regulator output voltage
4308  * @regulator: regulator source
4309  *
4310  * This returns the current regulator voltage in uV.
4311  *
4312  * NOTE: If the regulator is disabled it will return the voltage value. This
4313  * function should not be used to determine regulator state.
4314  */
regulator_get_voltage(struct regulator *regulator)4315 int regulator_get_voltage(struct regulator *regulator)
4316 {
4317 	struct ww_acquire_ctx ww_ctx;
4318 	int ret;
4319 
4320 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4321 	ret = regulator_get_voltage_rdev(regulator->rdev);
4322 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4323 
4324 	return ret;
4325 }
4326 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4327 
4328 /**
4329  * regulator_set_current_limit - set regulator output current limit
4330  * @regulator: regulator source
4331  * @min_uA: Minimum supported current in uA
4332  * @max_uA: Maximum supported current in uA
4333  *
4334  * Sets current sink to the desired output current. This can be set during
4335  * any regulator state. IOW, regulator can be disabled or enabled.
4336  *
4337  * If the regulator is enabled then the current will change to the new value
4338  * immediately otherwise if the regulator is disabled the regulator will
4339  * output at the new current when enabled.
4340  *
4341  * NOTE: Regulator system constraints must be set for this regulator before
4342  * calling this function otherwise this call will fail.
4343  */
regulator_set_current_limit(struct regulator *regulator, int min_uA, int max_uA)4344 int regulator_set_current_limit(struct regulator *regulator,
4345 			       int min_uA, int max_uA)
4346 {
4347 	struct regulator_dev *rdev = regulator->rdev;
4348 	int ret;
4349 
4350 	regulator_lock(rdev);
4351 
4352 	/* sanity check */
4353 	if (!rdev->desc->ops->set_current_limit) {
4354 		ret = -EINVAL;
4355 		goto out;
4356 	}
4357 
4358 	/* constraints check */
4359 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4360 	if (ret < 0)
4361 		goto out;
4362 
4363 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4364 out:
4365 	regulator_unlock(rdev);
4366 	return ret;
4367 }
4368 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4369 
_regulator_get_current_limit_unlocked(struct regulator_dev *rdev)4370 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4371 {
4372 	/* sanity check */
4373 	if (!rdev->desc->ops->get_current_limit)
4374 		return -EINVAL;
4375 
4376 	return rdev->desc->ops->get_current_limit(rdev);
4377 }
4378 
_regulator_get_current_limit(struct regulator_dev *rdev)4379 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4380 {
4381 	int ret;
4382 
4383 	regulator_lock(rdev);
4384 	ret = _regulator_get_current_limit_unlocked(rdev);
4385 	regulator_unlock(rdev);
4386 
4387 	return ret;
4388 }
4389 
4390 /**
4391  * regulator_get_current_limit - get regulator output current
4392  * @regulator: regulator source
4393  *
4394  * This returns the current supplied by the specified current sink in uA.
4395  *
4396  * NOTE: If the regulator is disabled it will return the current value. This
4397  * function should not be used to determine regulator state.
4398  */
regulator_get_current_limit(struct regulator *regulator)4399 int regulator_get_current_limit(struct regulator *regulator)
4400 {
4401 	return _regulator_get_current_limit(regulator->rdev);
4402 }
4403 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4404 
4405 /**
4406  * regulator_set_mode - set regulator operating mode
4407  * @regulator: regulator source
4408  * @mode: operating mode - one of the REGULATOR_MODE constants
4409  *
4410  * Set regulator operating mode to increase regulator efficiency or improve
4411  * regulation performance.
4412  *
4413  * NOTE: Regulator system constraints must be set for this regulator before
4414  * calling this function otherwise this call will fail.
4415  */
regulator_set_mode(struct regulator *regulator, unsigned int mode)4416 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4417 {
4418 	struct regulator_dev *rdev = regulator->rdev;
4419 	int ret;
4420 	int regulator_curr_mode;
4421 
4422 	regulator_lock(rdev);
4423 
4424 	/* sanity check */
4425 	if (!rdev->desc->ops->set_mode) {
4426 		ret = -EINVAL;
4427 		goto out;
4428 	}
4429 
4430 	/* return if the same mode is requested */
4431 	if (rdev->desc->ops->get_mode) {
4432 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4433 		if (regulator_curr_mode == mode) {
4434 			ret = 0;
4435 			goto out;
4436 		}
4437 	}
4438 
4439 	/* constraints check */
4440 	ret = regulator_mode_constrain(rdev, &mode);
4441 	if (ret < 0)
4442 		goto out;
4443 
4444 	ret = rdev->desc->ops->set_mode(rdev, mode);
4445 out:
4446 	regulator_unlock(rdev);
4447 	return ret;
4448 }
4449 EXPORT_SYMBOL_GPL(regulator_set_mode);
4450 
_regulator_get_mode_unlocked(struct regulator_dev *rdev)4451 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4452 {
4453 	/* sanity check */
4454 	if (!rdev->desc->ops->get_mode)
4455 		return -EINVAL;
4456 
4457 	return rdev->desc->ops->get_mode(rdev);
4458 }
4459 
_regulator_get_mode(struct regulator_dev *rdev)4460 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4461 {
4462 	int ret;
4463 
4464 	regulator_lock(rdev);
4465 	ret = _regulator_get_mode_unlocked(rdev);
4466 	regulator_unlock(rdev);
4467 
4468 	return ret;
4469 }
4470 
4471 /**
4472  * regulator_get_mode - get regulator operating mode
4473  * @regulator: regulator source
4474  *
4475  * Get the current regulator operating mode.
4476  */
regulator_get_mode(struct regulator *regulator)4477 unsigned int regulator_get_mode(struct regulator *regulator)
4478 {
4479 	return _regulator_get_mode(regulator->rdev);
4480 }
4481 EXPORT_SYMBOL_GPL(regulator_get_mode);
4482 
_regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags)4483 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4484 					unsigned int *flags)
4485 {
4486 	int ret;
4487 
4488 	regulator_lock(rdev);
4489 
4490 	/* sanity check */
4491 	if (!rdev->desc->ops->get_error_flags) {
4492 		ret = -EINVAL;
4493 		goto out;
4494 	}
4495 
4496 	ret = rdev->desc->ops->get_error_flags(rdev, flags);
4497 out:
4498 	regulator_unlock(rdev);
4499 	return ret;
4500 }
4501 
4502 /**
4503  * regulator_get_error_flags - get regulator error information
4504  * @regulator: regulator source
4505  * @flags: pointer to store error flags
4506  *
4507  * Get the current regulator error information.
4508  */
regulator_get_error_flags(struct regulator *regulator, unsigned int *flags)4509 int regulator_get_error_flags(struct regulator *regulator,
4510 				unsigned int *flags)
4511 {
4512 	return _regulator_get_error_flags(regulator->rdev, flags);
4513 }
4514 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4515 
4516 /**
4517  * regulator_set_load - set regulator load
4518  * @regulator: regulator source
4519  * @uA_load: load current
4520  *
4521  * Notifies the regulator core of a new device load. This is then used by
4522  * DRMS (if enabled by constraints) to set the most efficient regulator
4523  * operating mode for the new regulator loading.
4524  *
4525  * Consumer devices notify their supply regulator of the maximum power
4526  * they will require (can be taken from device datasheet in the power
4527  * consumption tables) when they change operational status and hence power
4528  * state. Examples of operational state changes that can affect power
4529  * consumption are :-
4530  *
4531  *    o Device is opened / closed.
4532  *    o Device I/O is about to begin or has just finished.
4533  *    o Device is idling in between work.
4534  *
4535  * This information is also exported via sysfs to userspace.
4536  *
4537  * DRMS will sum the total requested load on the regulator and change
4538  * to the most efficient operating mode if platform constraints allow.
4539  *
4540  * NOTE: when a regulator consumer requests to have a regulator
4541  * disabled then any load that consumer requested no longer counts
4542  * toward the total requested load.  If the regulator is re-enabled
4543  * then the previously requested load will start counting again.
4544  *
4545  * If a regulator is an always-on regulator then an individual consumer's
4546  * load will still be removed if that consumer is fully disabled.
4547  *
4548  * On error a negative errno is returned.
4549  */
regulator_set_load(struct regulator *regulator, int uA_load)4550 int regulator_set_load(struct regulator *regulator, int uA_load)
4551 {
4552 	struct regulator_dev *rdev = regulator->rdev;
4553 	int old_uA_load;
4554 	int ret = 0;
4555 
4556 	regulator_lock(rdev);
4557 	old_uA_load = regulator->uA_load;
4558 	regulator->uA_load = uA_load;
4559 	if (regulator->enable_count && old_uA_load != uA_load) {
4560 		ret = drms_uA_update(rdev);
4561 		if (ret < 0)
4562 			regulator->uA_load = old_uA_load;
4563 	}
4564 	regulator_unlock(rdev);
4565 
4566 	return ret;
4567 }
4568 EXPORT_SYMBOL_GPL(regulator_set_load);
4569 
4570 /**
4571  * regulator_allow_bypass - allow the regulator to go into bypass mode
4572  *
4573  * @regulator: Regulator to configure
4574  * @enable: enable or disable bypass mode
4575  *
4576  * Allow the regulator to go into bypass mode if all other consumers
4577  * for the regulator also enable bypass mode and the machine
4578  * constraints allow this.  Bypass mode means that the regulator is
4579  * simply passing the input directly to the output with no regulation.
4580  */
regulator_allow_bypass(struct regulator *regulator, bool enable)4581 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4582 {
4583 	struct regulator_dev *rdev = regulator->rdev;
4584 	const char *name = rdev_get_name(rdev);
4585 	int ret = 0;
4586 
4587 	if (!rdev->desc->ops->set_bypass)
4588 		return 0;
4589 
4590 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4591 		return 0;
4592 
4593 	regulator_lock(rdev);
4594 
4595 	if (enable && !regulator->bypass) {
4596 		rdev->bypass_count++;
4597 
4598 		if (rdev->bypass_count == rdev->open_count) {
4599 			trace_regulator_bypass_enable(name);
4600 
4601 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4602 			if (ret != 0)
4603 				rdev->bypass_count--;
4604 			else
4605 				trace_regulator_bypass_enable_complete(name);
4606 		}
4607 
4608 	} else if (!enable && regulator->bypass) {
4609 		rdev->bypass_count--;
4610 
4611 		if (rdev->bypass_count != rdev->open_count) {
4612 			trace_regulator_bypass_disable(name);
4613 
4614 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4615 			if (ret != 0)
4616 				rdev->bypass_count++;
4617 			else
4618 				trace_regulator_bypass_disable_complete(name);
4619 		}
4620 	}
4621 
4622 	if (ret == 0)
4623 		regulator->bypass = enable;
4624 
4625 	regulator_unlock(rdev);
4626 
4627 	return ret;
4628 }
4629 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4630 
4631 /**
4632  * regulator_register_notifier - register regulator event notifier
4633  * @regulator: regulator source
4634  * @nb: notifier block
4635  *
4636  * Register notifier block to receive regulator events.
4637  */
regulator_register_notifier(struct regulator *regulator, struct notifier_block *nb)4638 int regulator_register_notifier(struct regulator *regulator,
4639 			      struct notifier_block *nb)
4640 {
4641 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4642 						nb);
4643 }
4644 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4645 
4646 /**
4647  * regulator_unregister_notifier - unregister regulator event notifier
4648  * @regulator: regulator source
4649  * @nb: notifier block
4650  *
4651  * Unregister regulator event notifier block.
4652  */
regulator_unregister_notifier(struct regulator *regulator, struct notifier_block *nb)4653 int regulator_unregister_notifier(struct regulator *regulator,
4654 				struct notifier_block *nb)
4655 {
4656 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4657 						  nb);
4658 }
4659 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4660 
4661 /* notify regulator consumers and downstream regulator consumers.
4662  * Note mutex must be held by caller.
4663  */
_notifier_call_chain(struct regulator_dev *rdev, unsigned long event, void *data)4664 static int _notifier_call_chain(struct regulator_dev *rdev,
4665 				  unsigned long event, void *data)
4666 {
4667 	/* call rdev chain first */
4668 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4669 }
4670 
4671 /**
4672  * regulator_bulk_get - get multiple regulator consumers
4673  *
4674  * @dev:           Device to supply
4675  * @num_consumers: Number of consumers to register
4676  * @consumers:     Configuration of consumers; clients are stored here.
4677  *
4678  * @return 0 on success, an errno on failure.
4679  *
4680  * This helper function allows drivers to get several regulator
4681  * consumers in one operation.  If any of the regulators cannot be
4682  * acquired then any regulators that were allocated will be freed
4683  * before returning to the caller.
4684  */
regulator_bulk_get(struct device *dev, int num_consumers, struct regulator_bulk_data *consumers)4685 int regulator_bulk_get(struct device *dev, int num_consumers,
4686 		       struct regulator_bulk_data *consumers)
4687 {
4688 	int i;
4689 	int ret;
4690 
4691 	for (i = 0; i < num_consumers; i++)
4692 		consumers[i].consumer = NULL;
4693 
4694 	for (i = 0; i < num_consumers; i++) {
4695 		consumers[i].consumer = regulator_get(dev,
4696 						      consumers[i].supply);
4697 		if (IS_ERR(consumers[i].consumer)) {
4698 			ret = PTR_ERR(consumers[i].consumer);
4699 			consumers[i].consumer = NULL;
4700 			goto err;
4701 		}
4702 	}
4703 
4704 	return 0;
4705 
4706 err:
4707 	if (ret != -EPROBE_DEFER)
4708 		dev_err(dev, "Failed to get supply '%s': %pe\n",
4709 			consumers[i].supply, ERR_PTR(ret));
4710 	else
4711 		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4712 			consumers[i].supply);
4713 
4714 	while (--i >= 0)
4715 		regulator_put(consumers[i].consumer);
4716 
4717 	return ret;
4718 }
4719 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4720 
regulator_bulk_enable_async(void *data, async_cookie_t cookie)4721 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4722 {
4723 	struct regulator_bulk_data *bulk = data;
4724 
4725 	bulk->ret = regulator_enable(bulk->consumer);
4726 }
4727 
4728 /**
4729  * regulator_bulk_enable - enable multiple regulator consumers
4730  *
4731  * @num_consumers: Number of consumers
4732  * @consumers:     Consumer data; clients are stored here.
4733  * @return         0 on success, an errno on failure
4734  *
4735  * This convenience API allows consumers to enable multiple regulator
4736  * clients in a single API call.  If any consumers cannot be enabled
4737  * then any others that were enabled will be disabled again prior to
4738  * return.
4739  */
regulator_bulk_enable(int num_consumers, struct regulator_bulk_data *consumers)4740 int regulator_bulk_enable(int num_consumers,
4741 			  struct regulator_bulk_data *consumers)
4742 {
4743 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4744 	int i;
4745 	int ret = 0;
4746 
4747 	for (i = 0; i < num_consumers; i++) {
4748 		async_schedule_domain(regulator_bulk_enable_async,
4749 				      &consumers[i], &async_domain);
4750 	}
4751 
4752 	async_synchronize_full_domain(&async_domain);
4753 
4754 	/* If any consumer failed we need to unwind any that succeeded */
4755 	for (i = 0; i < num_consumers; i++) {
4756 		if (consumers[i].ret != 0) {
4757 			ret = consumers[i].ret;
4758 			goto err;
4759 		}
4760 	}
4761 
4762 	return 0;
4763 
4764 err:
4765 	for (i = 0; i < num_consumers; i++) {
4766 		if (consumers[i].ret < 0)
4767 			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4768 			       ERR_PTR(consumers[i].ret));
4769 		else
4770 			regulator_disable(consumers[i].consumer);
4771 	}
4772 
4773 	return ret;
4774 }
4775 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4776 
4777 /**
4778  * regulator_bulk_disable - disable multiple regulator consumers
4779  *
4780  * @num_consumers: Number of consumers
4781  * @consumers:     Consumer data; clients are stored here.
4782  * @return         0 on success, an errno on failure
4783  *
4784  * This convenience API allows consumers to disable multiple regulator
4785  * clients in a single API call.  If any consumers cannot be disabled
4786  * then any others that were disabled will be enabled again prior to
4787  * return.
4788  */
regulator_bulk_disable(int num_consumers, struct regulator_bulk_data *consumers)4789 int regulator_bulk_disable(int num_consumers,
4790 			   struct regulator_bulk_data *consumers)
4791 {
4792 	int i;
4793 	int ret, r;
4794 
4795 	for (i = num_consumers - 1; i >= 0; --i) {
4796 		ret = regulator_disable(consumers[i].consumer);
4797 		if (ret != 0)
4798 			goto err;
4799 	}
4800 
4801 	return 0;
4802 
4803 err:
4804 	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4805 	for (++i; i < num_consumers; ++i) {
4806 		r = regulator_enable(consumers[i].consumer);
4807 		if (r != 0)
4808 			pr_err("Failed to re-enable %s: %pe\n",
4809 			       consumers[i].supply, ERR_PTR(r));
4810 	}
4811 
4812 	return ret;
4813 }
4814 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4815 
4816 /**
4817  * regulator_bulk_force_disable - force disable multiple regulator consumers
4818  *
4819  * @num_consumers: Number of consumers
4820  * @consumers:     Consumer data; clients are stored here.
4821  * @return         0 on success, an errno on failure
4822  *
4823  * This convenience API allows consumers to forcibly disable multiple regulator
4824  * clients in a single API call.
4825  * NOTE: This should be used for situations when device damage will
4826  * likely occur if the regulators are not disabled (e.g. over temp).
4827  * Although regulator_force_disable function call for some consumers can
4828  * return error numbers, the function is called for all consumers.
4829  */
regulator_bulk_force_disable(int num_consumers, struct regulator_bulk_data *consumers)4830 int regulator_bulk_force_disable(int num_consumers,
4831 			   struct regulator_bulk_data *consumers)
4832 {
4833 	int i;
4834 	int ret = 0;
4835 
4836 	for (i = 0; i < num_consumers; i++) {
4837 		consumers[i].ret =
4838 			    regulator_force_disable(consumers[i].consumer);
4839 
4840 		/* Store first error for reporting */
4841 		if (consumers[i].ret && !ret)
4842 			ret = consumers[i].ret;
4843 	}
4844 
4845 	return ret;
4846 }
4847 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4848 
4849 /**
4850  * regulator_bulk_free - free multiple regulator consumers
4851  *
4852  * @num_consumers: Number of consumers
4853  * @consumers:     Consumer data; clients are stored here.
4854  *
4855  * This convenience API allows consumers to free multiple regulator
4856  * clients in a single API call.
4857  */
regulator_bulk_free(int num_consumers, struct regulator_bulk_data *consumers)4858 void regulator_bulk_free(int num_consumers,
4859 			 struct regulator_bulk_data *consumers)
4860 {
4861 	int i;
4862 
4863 	for (i = 0; i < num_consumers; i++) {
4864 		regulator_put(consumers[i].consumer);
4865 		consumers[i].consumer = NULL;
4866 	}
4867 }
4868 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4869 
4870 /**
4871  * regulator_notifier_call_chain - call regulator event notifier
4872  * @rdev: regulator source
4873  * @event: notifier block
4874  * @data: callback-specific data.
4875  *
4876  * Called by regulator drivers to notify clients a regulator event has
4877  * occurred.
4878  */
regulator_notifier_call_chain(struct regulator_dev *rdev, unsigned long event, void *data)4879 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4880 				  unsigned long event, void *data)
4881 {
4882 	_notifier_call_chain(rdev, event, data);
4883 	return NOTIFY_DONE;
4884 
4885 }
4886 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4887 
4888 /**
4889  * regulator_mode_to_status - convert a regulator mode into a status
4890  *
4891  * @mode: Mode to convert
4892  *
4893  * Convert a regulator mode into a status.
4894  */
regulator_mode_to_status(unsigned int mode)4895 int regulator_mode_to_status(unsigned int mode)
4896 {
4897 	switch (mode) {
4898 	case REGULATOR_MODE_FAST:
4899 		return REGULATOR_STATUS_FAST;
4900 	case REGULATOR_MODE_NORMAL:
4901 		return REGULATOR_STATUS_NORMAL;
4902 	case REGULATOR_MODE_IDLE:
4903 		return REGULATOR_STATUS_IDLE;
4904 	case REGULATOR_MODE_STANDBY:
4905 		return REGULATOR_STATUS_STANDBY;
4906 	default:
4907 		return REGULATOR_STATUS_UNDEFINED;
4908 	}
4909 }
4910 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4911 
4912 static struct attribute *regulator_dev_attrs[] = {
4913 	&dev_attr_name.attr,
4914 	&dev_attr_num_users.attr,
4915 	&dev_attr_type.attr,
4916 	&dev_attr_microvolts.attr,
4917 	&dev_attr_microamps.attr,
4918 	&dev_attr_opmode.attr,
4919 	&dev_attr_state.attr,
4920 	&dev_attr_status.attr,
4921 	&dev_attr_bypass.attr,
4922 	&dev_attr_requested_microamps.attr,
4923 	&dev_attr_min_microvolts.attr,
4924 	&dev_attr_max_microvolts.attr,
4925 	&dev_attr_min_microamps.attr,
4926 	&dev_attr_max_microamps.attr,
4927 	&dev_attr_suspend_standby_state.attr,
4928 	&dev_attr_suspend_mem_state.attr,
4929 	&dev_attr_suspend_disk_state.attr,
4930 	&dev_attr_suspend_standby_microvolts.attr,
4931 	&dev_attr_suspend_mem_microvolts.attr,
4932 	&dev_attr_suspend_disk_microvolts.attr,
4933 	&dev_attr_suspend_standby_mode.attr,
4934 	&dev_attr_suspend_mem_mode.attr,
4935 	&dev_attr_suspend_disk_mode.attr,
4936 	NULL
4937 };
4938 
4939 /*
4940  * To avoid cluttering sysfs (and memory) with useless state, only
4941  * create attributes that can be meaningfully displayed.
4942  */
regulator_attr_is_visible(struct kobject *kobj, struct attribute *attr, int idx)4943 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4944 					 struct attribute *attr, int idx)
4945 {
4946 	struct device *dev = kobj_to_dev(kobj);
4947 	struct regulator_dev *rdev = dev_to_rdev(dev);
4948 	const struct regulator_ops *ops = rdev->desc->ops;
4949 	umode_t mode = attr->mode;
4950 
4951 	/* these three are always present */
4952 	if (attr == &dev_attr_name.attr ||
4953 	    attr == &dev_attr_num_users.attr ||
4954 	    attr == &dev_attr_type.attr)
4955 		return mode;
4956 
4957 	/* some attributes need specific methods to be displayed */
4958 	if (attr == &dev_attr_microvolts.attr) {
4959 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4960 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4961 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4962 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4963 			return mode;
4964 		return 0;
4965 	}
4966 
4967 	if (attr == &dev_attr_microamps.attr)
4968 		return ops->get_current_limit ? mode : 0;
4969 
4970 	if (attr == &dev_attr_opmode.attr)
4971 		return ops->get_mode ? mode : 0;
4972 
4973 	if (attr == &dev_attr_state.attr)
4974 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4975 
4976 	if (attr == &dev_attr_status.attr)
4977 		return ops->get_status ? mode : 0;
4978 
4979 	if (attr == &dev_attr_bypass.attr)
4980 		return ops->get_bypass ? mode : 0;
4981 
4982 	/* constraints need specific supporting methods */
4983 	if (attr == &dev_attr_min_microvolts.attr ||
4984 	    attr == &dev_attr_max_microvolts.attr)
4985 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4986 
4987 	if (attr == &dev_attr_min_microamps.attr ||
4988 	    attr == &dev_attr_max_microamps.attr)
4989 		return ops->set_current_limit ? mode : 0;
4990 
4991 	if (attr == &dev_attr_suspend_standby_state.attr ||
4992 	    attr == &dev_attr_suspend_mem_state.attr ||
4993 	    attr == &dev_attr_suspend_disk_state.attr)
4994 		return mode;
4995 
4996 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4997 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
4998 	    attr == &dev_attr_suspend_disk_microvolts.attr)
4999 		return ops->set_suspend_voltage ? mode : 0;
5000 
5001 	if (attr == &dev_attr_suspend_standby_mode.attr ||
5002 	    attr == &dev_attr_suspend_mem_mode.attr ||
5003 	    attr == &dev_attr_suspend_disk_mode.attr)
5004 		return ops->set_suspend_mode ? mode : 0;
5005 
5006 	return mode;
5007 }
5008 
5009 static const struct attribute_group regulator_dev_group = {
5010 	.attrs = regulator_dev_attrs,
5011 	.is_visible = regulator_attr_is_visible,
5012 };
5013 
5014 static const struct attribute_group *regulator_dev_groups[] = {
5015 	&regulator_dev_group,
5016 	NULL
5017 };
5018 
regulator_dev_release(struct device *dev)5019 static void regulator_dev_release(struct device *dev)
5020 {
5021 	struct regulator_dev *rdev = dev_get_drvdata(dev);
5022 
5023 	debugfs_remove_recursive(rdev->debugfs);
5024 	kfree(rdev->constraints);
5025 	of_node_put(rdev->dev.of_node);
5026 	kfree(rdev);
5027 }
5028 
rdev_init_debugfs(struct regulator_dev *rdev)5029 static void rdev_init_debugfs(struct regulator_dev *rdev)
5030 {
5031 	struct device *parent = rdev->dev.parent;
5032 	const char *rname = rdev_get_name(rdev);
5033 	char name[NAME_MAX];
5034 
5035 	/* Avoid duplicate debugfs directory names */
5036 	if (parent && rname == rdev->desc->name) {
5037 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5038 			 rname);
5039 		rname = name;
5040 	}
5041 
5042 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5043 	if (IS_ERR(rdev->debugfs))
5044 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
5045 
5046 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5047 			   &rdev->use_count);
5048 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5049 			   &rdev->open_count);
5050 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5051 			   &rdev->bypass_count);
5052 }
5053 
regulator_register_resolve_supply(struct device *dev, void *data)5054 static int regulator_register_resolve_supply(struct device *dev, void *data)
5055 {
5056 	struct regulator_dev *rdev = dev_to_rdev(dev);
5057 
5058 	if (regulator_resolve_supply(rdev))
5059 		rdev_dbg(rdev, "unable to resolve supply\n");
5060 
5061 	return 0;
5062 }
5063 
regulator_coupler_register(struct regulator_coupler *coupler)5064 int regulator_coupler_register(struct regulator_coupler *coupler)
5065 {
5066 	mutex_lock(&regulator_list_mutex);
5067 	list_add_tail(&coupler->list, &regulator_coupler_list);
5068 	mutex_unlock(&regulator_list_mutex);
5069 
5070 	return 0;
5071 }
5072 
5073 static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev *rdev)5074 regulator_find_coupler(struct regulator_dev *rdev)
5075 {
5076 	struct regulator_coupler *coupler;
5077 	int err;
5078 
5079 	/*
5080 	 * Note that regulators are appended to the list and the generic
5081 	 * coupler is registered first, hence it will be attached at last
5082 	 * if nobody cared.
5083 	 */
5084 	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5085 		err = coupler->attach_regulator(coupler, rdev);
5086 		if (!err) {
5087 			if (!coupler->balance_voltage &&
5088 			    rdev->coupling_desc.n_coupled > 2)
5089 				goto err_unsupported;
5090 
5091 			return coupler;
5092 		}
5093 
5094 		if (err < 0)
5095 			return ERR_PTR(err);
5096 
5097 		if (err == 1)
5098 			continue;
5099 
5100 		break;
5101 	}
5102 
5103 	return ERR_PTR(-EINVAL);
5104 
5105 err_unsupported:
5106 	if (coupler->detach_regulator)
5107 		coupler->detach_regulator(coupler, rdev);
5108 
5109 	rdev_err(rdev,
5110 		"Voltage balancing for multiple regulator couples is unimplemented\n");
5111 
5112 	return ERR_PTR(-EPERM);
5113 }
5114 
regulator_resolve_coupling(struct regulator_dev *rdev)5115 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5116 {
5117 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5118 	struct coupling_desc *c_desc = &rdev->coupling_desc;
5119 	int n_coupled = c_desc->n_coupled;
5120 	struct regulator_dev *c_rdev;
5121 	int i;
5122 
5123 	for (i = 1; i < n_coupled; i++) {
5124 		/* already resolved */
5125 		if (c_desc->coupled_rdevs[i])
5126 			continue;
5127 
5128 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5129 
5130 		if (!c_rdev)
5131 			continue;
5132 
5133 		if (c_rdev->coupling_desc.coupler != coupler) {
5134 			rdev_err(rdev, "coupler mismatch with %s\n",
5135 				 rdev_get_name(c_rdev));
5136 			return;
5137 		}
5138 
5139 		c_desc->coupled_rdevs[i] = c_rdev;
5140 		c_desc->n_resolved++;
5141 
5142 		regulator_resolve_coupling(c_rdev);
5143 	}
5144 }
5145 
regulator_remove_coupling(struct regulator_dev *rdev)5146 static void regulator_remove_coupling(struct regulator_dev *rdev)
5147 {
5148 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5149 	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5150 	struct regulator_dev *__c_rdev, *c_rdev;
5151 	unsigned int __n_coupled, n_coupled;
5152 	int i, k;
5153 	int err;
5154 
5155 	n_coupled = c_desc->n_coupled;
5156 
5157 	for (i = 1; i < n_coupled; i++) {
5158 		c_rdev = c_desc->coupled_rdevs[i];
5159 
5160 		if (!c_rdev)
5161 			continue;
5162 
5163 		regulator_lock(c_rdev);
5164 
5165 		__c_desc = &c_rdev->coupling_desc;
5166 		__n_coupled = __c_desc->n_coupled;
5167 
5168 		for (k = 1; k < __n_coupled; k++) {
5169 			__c_rdev = __c_desc->coupled_rdevs[k];
5170 
5171 			if (__c_rdev == rdev) {
5172 				__c_desc->coupled_rdevs[k] = NULL;
5173 				__c_desc->n_resolved--;
5174 				break;
5175 			}
5176 		}
5177 
5178 		regulator_unlock(c_rdev);
5179 
5180 		c_desc->coupled_rdevs[i] = NULL;
5181 		c_desc->n_resolved--;
5182 	}
5183 
5184 	if (coupler && coupler->detach_regulator) {
5185 		err = coupler->detach_regulator(coupler, rdev);
5186 		if (err)
5187 			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5188 				 ERR_PTR(err));
5189 	}
5190 
5191 	kfree(rdev->coupling_desc.coupled_rdevs);
5192 	rdev->coupling_desc.coupled_rdevs = NULL;
5193 }
5194 
regulator_init_coupling(struct regulator_dev *rdev)5195 static int regulator_init_coupling(struct regulator_dev *rdev)
5196 {
5197 	struct regulator_dev **coupled;
5198 	int err, n_phandles;
5199 
5200 	if (!IS_ENABLED(CONFIG_OF))
5201 		n_phandles = 0;
5202 	else
5203 		n_phandles = of_get_n_coupled(rdev);
5204 
5205 	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5206 	if (!coupled)
5207 		return -ENOMEM;
5208 
5209 	rdev->coupling_desc.coupled_rdevs = coupled;
5210 
5211 	/*
5212 	 * Every regulator should always have coupling descriptor filled with
5213 	 * at least pointer to itself.
5214 	 */
5215 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5216 	rdev->coupling_desc.n_coupled = n_phandles + 1;
5217 	rdev->coupling_desc.n_resolved++;
5218 
5219 	/* regulator isn't coupled */
5220 	if (n_phandles == 0)
5221 		return 0;
5222 
5223 	if (!of_check_coupling_data(rdev))
5224 		return -EPERM;
5225 
5226 	mutex_lock(&regulator_list_mutex);
5227 	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5228 	mutex_unlock(&regulator_list_mutex);
5229 
5230 	if (IS_ERR(rdev->coupling_desc.coupler)) {
5231 		err = PTR_ERR(rdev->coupling_desc.coupler);
5232 		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5233 		return err;
5234 	}
5235 
5236 	return 0;
5237 }
5238 
generic_coupler_attach(struct regulator_coupler *coupler, struct regulator_dev *rdev)5239 static int generic_coupler_attach(struct regulator_coupler *coupler,
5240 				  struct regulator_dev *rdev)
5241 {
5242 	if (rdev->coupling_desc.n_coupled > 2) {
5243 		rdev_err(rdev,
5244 			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5245 		return -EPERM;
5246 	}
5247 
5248 	if (!rdev->constraints->always_on) {
5249 		rdev_err(rdev,
5250 			 "Coupling of a non always-on regulator is unimplemented\n");
5251 		return -ENOTSUPP;
5252 	}
5253 
5254 	return 0;
5255 }
5256 
5257 static struct regulator_coupler generic_regulator_coupler = {
5258 	.attach_regulator = generic_coupler_attach,
5259 };
5260 
5261 /**
5262  * regulator_register - register regulator
5263  * @regulator_desc: regulator to register
5264  * @cfg: runtime configuration for regulator
5265  *
5266  * Called by regulator drivers to register a regulator.
5267  * Returns a valid pointer to struct regulator_dev on success
5268  * or an ERR_PTR() on error.
5269  */
5270 struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc, const struct regulator_config *cfg)5271 regulator_register(const struct regulator_desc *regulator_desc,
5272 		   const struct regulator_config *cfg)
5273 {
5274 	const struct regulator_init_data *init_data;
5275 	struct regulator_config *config = NULL;
5276 	static atomic_t regulator_no = ATOMIC_INIT(-1);
5277 	struct regulator_dev *rdev;
5278 	bool dangling_cfg_gpiod = false;
5279 	bool dangling_of_gpiod = false;
5280 	struct device *dev;
5281 	int ret, i;
5282 
5283 	if (cfg == NULL)
5284 		return ERR_PTR(-EINVAL);
5285 	if (cfg->ena_gpiod)
5286 		dangling_cfg_gpiod = true;
5287 	if (regulator_desc == NULL) {
5288 		ret = -EINVAL;
5289 		goto rinse;
5290 	}
5291 
5292 	dev = cfg->dev;
5293 	WARN_ON(!dev);
5294 
5295 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5296 		ret = -EINVAL;
5297 		goto rinse;
5298 	}
5299 
5300 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5301 	    regulator_desc->type != REGULATOR_CURRENT) {
5302 		ret = -EINVAL;
5303 		goto rinse;
5304 	}
5305 
5306 	/* Only one of each should be implemented */
5307 	WARN_ON(regulator_desc->ops->get_voltage &&
5308 		regulator_desc->ops->get_voltage_sel);
5309 	WARN_ON(regulator_desc->ops->set_voltage &&
5310 		regulator_desc->ops->set_voltage_sel);
5311 
5312 	/* If we're using selectors we must implement list_voltage. */
5313 	if (regulator_desc->ops->get_voltage_sel &&
5314 	    !regulator_desc->ops->list_voltage) {
5315 		ret = -EINVAL;
5316 		goto rinse;
5317 	}
5318 	if (regulator_desc->ops->set_voltage_sel &&
5319 	    !regulator_desc->ops->list_voltage) {
5320 		ret = -EINVAL;
5321 		goto rinse;
5322 	}
5323 
5324 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5325 	if (rdev == NULL) {
5326 		ret = -ENOMEM;
5327 		goto rinse;
5328 	}
5329 	device_initialize(&rdev->dev);
5330 
5331 	/*
5332 	 * Duplicate the config so the driver could override it after
5333 	 * parsing init data.
5334 	 */
5335 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5336 	if (config == NULL) {
5337 		ret = -ENOMEM;
5338 		goto clean;
5339 	}
5340 
5341 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5342 					       &rdev->dev.of_node);
5343 
5344 	/*
5345 	 * Sometimes not all resources are probed already so we need to take
5346 	 * that into account. This happens most the time if the ena_gpiod comes
5347 	 * from a gpio extender or something else.
5348 	 */
5349 	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5350 		ret = -EPROBE_DEFER;
5351 		goto clean;
5352 	}
5353 
5354 	/*
5355 	 * We need to keep track of any GPIO descriptor coming from the
5356 	 * device tree until we have handled it over to the core. If the
5357 	 * config that was passed in to this function DOES NOT contain
5358 	 * a descriptor, and the config after this call DOES contain
5359 	 * a descriptor, we definitely got one from parsing the device
5360 	 * tree.
5361 	 */
5362 	if (!cfg->ena_gpiod && config->ena_gpiod)
5363 		dangling_of_gpiod = true;
5364 	if (!init_data) {
5365 		init_data = config->init_data;
5366 		rdev->dev.of_node = of_node_get(config->of_node);
5367 	}
5368 
5369 	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5370 	rdev->reg_data = config->driver_data;
5371 	rdev->owner = regulator_desc->owner;
5372 	rdev->desc = regulator_desc;
5373 	if (config->regmap)
5374 		rdev->regmap = config->regmap;
5375 	else if (dev_get_regmap(dev, NULL))
5376 		rdev->regmap = dev_get_regmap(dev, NULL);
5377 	else if (dev->parent)
5378 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5379 	INIT_LIST_HEAD(&rdev->consumer_list);
5380 	INIT_LIST_HEAD(&rdev->list);
5381 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5382 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5383 
5384 	/* preform any regulator specific init */
5385 	if (init_data && init_data->regulator_init) {
5386 		ret = init_data->regulator_init(rdev->reg_data);
5387 		if (ret < 0)
5388 			goto clean;
5389 	}
5390 
5391 	if (config->ena_gpiod) {
5392 		ret = regulator_ena_gpio_request(rdev, config);
5393 		if (ret != 0) {
5394 			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5395 				 ERR_PTR(ret));
5396 			goto clean;
5397 		}
5398 		/* The regulator core took over the GPIO descriptor */
5399 		dangling_cfg_gpiod = false;
5400 		dangling_of_gpiod = false;
5401 	}
5402 
5403 	/* register with sysfs */
5404 	rdev->dev.class = &regulator_class;
5405 	rdev->dev.parent = dev;
5406 	dev_set_name(&rdev->dev, "regulator.%lu",
5407 		    (unsigned long) atomic_inc_return(&regulator_no));
5408 	dev_set_drvdata(&rdev->dev, rdev);
5409 
5410 	/* set regulator constraints */
5411 	if (init_data)
5412 		rdev->constraints = kmemdup(&init_data->constraints,
5413 					    sizeof(*rdev->constraints),
5414 					    GFP_KERNEL);
5415 	else
5416 		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5417 					    GFP_KERNEL);
5418 	if (!rdev->constraints) {
5419 		ret = -ENOMEM;
5420 		goto wash;
5421 	}
5422 
5423 	if (init_data && init_data->supply_regulator)
5424 		rdev->supply_name = init_data->supply_regulator;
5425 	else if (regulator_desc->supply_name)
5426 		rdev->supply_name = regulator_desc->supply_name;
5427 
5428 	ret = set_machine_constraints(rdev);
5429 	if (ret == -EPROBE_DEFER) {
5430 		/* Regulator might be in bypass mode and so needs its supply
5431 		 * to set the constraints */
5432 		/* FIXME: this currently triggers a chicken-and-egg problem
5433 		 * when creating -SUPPLY symlink in sysfs to a regulator
5434 		 * that is just being created */
5435 		ret = regulator_resolve_supply(rdev);
5436 		if (!ret)
5437 			ret = set_machine_constraints(rdev);
5438 		else
5439 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5440 				 ERR_PTR(ret));
5441 	}
5442 	if (ret < 0)
5443 		goto wash;
5444 
5445 	ret = regulator_init_coupling(rdev);
5446 	if (ret < 0)
5447 		goto wash;
5448 
5449 	/* add consumers devices */
5450 	if (init_data) {
5451 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5452 			ret = set_consumer_device_supply(rdev,
5453 				init_data->consumer_supplies[i].dev_name,
5454 				init_data->consumer_supplies[i].supply);
5455 			if (ret < 0) {
5456 				dev_err(dev, "Failed to set supply %s\n",
5457 					init_data->consumer_supplies[i].supply);
5458 				goto unset_supplies;
5459 			}
5460 		}
5461 	}
5462 
5463 	if (!rdev->desc->ops->get_voltage &&
5464 	    !rdev->desc->ops->list_voltage &&
5465 	    !rdev->desc->fixed_uV)
5466 		rdev->is_switch = true;
5467 
5468 	ret = device_add(&rdev->dev);
5469 	if (ret != 0)
5470 		goto unset_supplies;
5471 
5472 	rdev_init_debugfs(rdev);
5473 
5474 	/* try to resolve regulators coupling since a new one was registered */
5475 	mutex_lock(&regulator_list_mutex);
5476 	regulator_resolve_coupling(rdev);
5477 	mutex_unlock(&regulator_list_mutex);
5478 
5479 	/* try to resolve regulators supply since a new one was registered */
5480 	class_for_each_device(&regulator_class, NULL, NULL,
5481 			      regulator_register_resolve_supply);
5482 	kfree(config);
5483 	return rdev;
5484 
5485 unset_supplies:
5486 	mutex_lock(&regulator_list_mutex);
5487 	unset_regulator_supplies(rdev);
5488 	regulator_remove_coupling(rdev);
5489 	mutex_unlock(&regulator_list_mutex);
5490 wash:
5491 	regulator_put(rdev->supply);
5492 	kfree(rdev->coupling_desc.coupled_rdevs);
5493 	mutex_lock(&regulator_list_mutex);
5494 	regulator_ena_gpio_free(rdev);
5495 	mutex_unlock(&regulator_list_mutex);
5496 clean:
5497 	if (dangling_of_gpiod)
5498 		gpiod_put(config->ena_gpiod);
5499 	kfree(config);
5500 	put_device(&rdev->dev);
5501 rinse:
5502 	if (dangling_cfg_gpiod)
5503 		gpiod_put(cfg->ena_gpiod);
5504 	return ERR_PTR(ret);
5505 }
5506 EXPORT_SYMBOL_GPL(regulator_register);
5507 
5508 /**
5509  * regulator_unregister - unregister regulator
5510  * @rdev: regulator to unregister
5511  *
5512  * Called by regulator drivers to unregister a regulator.
5513  */
regulator_unregister(struct regulator_dev *rdev)5514 void regulator_unregister(struct regulator_dev *rdev)
5515 {
5516 	if (rdev == NULL)
5517 		return;
5518 
5519 	if (rdev->supply) {
5520 		while (rdev->use_count--)
5521 			regulator_disable(rdev->supply);
5522 		regulator_put(rdev->supply);
5523 	}
5524 
5525 	flush_work(&rdev->disable_work.work);
5526 
5527 	mutex_lock(&regulator_list_mutex);
5528 
5529 	WARN_ON(rdev->open_count);
5530 	regulator_remove_coupling(rdev);
5531 	unset_regulator_supplies(rdev);
5532 	list_del(&rdev->list);
5533 	regulator_ena_gpio_free(rdev);
5534 	device_unregister(&rdev->dev);
5535 
5536 	mutex_unlock(&regulator_list_mutex);
5537 }
5538 EXPORT_SYMBOL_GPL(regulator_unregister);
5539 
5540 #ifdef CONFIG_SUSPEND
5541 /**
5542  * regulator_suspend - prepare regulators for system wide suspend
5543  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5544  *
5545  * Configure each regulator with it's suspend operating parameters for state.
5546  */
regulator_suspend(struct device *dev)5547 static int regulator_suspend(struct device *dev)
5548 {
5549 	struct regulator_dev *rdev = dev_to_rdev(dev);
5550 	suspend_state_t state = pm_suspend_target_state;
5551 	int ret;
5552 	const struct regulator_state *rstate;
5553 
5554 	rstate = regulator_get_suspend_state_check(rdev, state);
5555 	if (!rstate)
5556 		return 0;
5557 
5558 	regulator_lock(rdev);
5559 	ret = __suspend_set_state(rdev, rstate);
5560 	regulator_unlock(rdev);
5561 
5562 	return ret;
5563 }
5564 
regulator_resume(struct device *dev)5565 static int regulator_resume(struct device *dev)
5566 {
5567 	suspend_state_t state = pm_suspend_target_state;
5568 	struct regulator_dev *rdev = dev_to_rdev(dev);
5569 	struct regulator_state *rstate;
5570 	int ret = 0;
5571 
5572 	rstate = regulator_get_suspend_state(rdev, state);
5573 	if (rstate == NULL)
5574 		return 0;
5575 
5576 	/* Avoid grabbing the lock if we don't need to */
5577 	if (!rdev->desc->ops->resume)
5578 		return 0;
5579 
5580 	regulator_lock(rdev);
5581 
5582 	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5583 	    rstate->enabled == DISABLE_IN_SUSPEND)
5584 		ret = rdev->desc->ops->resume(rdev);
5585 
5586 	regulator_unlock(rdev);
5587 
5588 	return ret;
5589 }
5590 #else /* !CONFIG_SUSPEND */
5591 
5592 #define regulator_suspend	NULL
5593 #define regulator_resume	NULL
5594 
5595 #endif /* !CONFIG_SUSPEND */
5596 
5597 #ifdef CONFIG_PM
5598 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5599 	.suspend	= regulator_suspend,
5600 	.resume		= regulator_resume,
5601 };
5602 #endif
5603 
5604 struct class regulator_class = {
5605 	.name = "regulator",
5606 	.dev_release = regulator_dev_release,
5607 	.dev_groups = regulator_dev_groups,
5608 #ifdef CONFIG_PM
5609 	.pm = &regulator_pm_ops,
5610 #endif
5611 };
5612 /**
5613  * regulator_has_full_constraints - the system has fully specified constraints
5614  *
5615  * Calling this function will cause the regulator API to disable all
5616  * regulators which have a zero use count and don't have an always_on
5617  * constraint in a late_initcall.
5618  *
5619  * The intention is that this will become the default behaviour in a
5620  * future kernel release so users are encouraged to use this facility
5621  * now.
5622  */
regulator_has_full_constraints(void)5623 void regulator_has_full_constraints(void)
5624 {
5625 	has_full_constraints = 1;
5626 }
5627 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5628 
5629 /**
5630  * rdev_get_drvdata - get rdev regulator driver data
5631  * @rdev: regulator
5632  *
5633  * Get rdev regulator driver private data. This call can be used in the
5634  * regulator driver context.
5635  */
rdev_get_drvdata(struct regulator_dev *rdev)5636 void *rdev_get_drvdata(struct regulator_dev *rdev)
5637 {
5638 	return rdev->reg_data;
5639 }
5640 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5641 
5642 /**
5643  * regulator_get_drvdata - get regulator driver data
5644  * @regulator: regulator
5645  *
5646  * Get regulator driver private data. This call can be used in the consumer
5647  * driver context when non API regulator specific functions need to be called.
5648  */
regulator_get_drvdata(struct regulator *regulator)5649 void *regulator_get_drvdata(struct regulator *regulator)
5650 {
5651 	return regulator->rdev->reg_data;
5652 }
5653 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5654 
5655 /**
5656  * regulator_set_drvdata - set regulator driver data
5657  * @regulator: regulator
5658  * @data: data
5659  */
regulator_set_drvdata(struct regulator *regulator, void *data)5660 void regulator_set_drvdata(struct regulator *regulator, void *data)
5661 {
5662 	regulator->rdev->reg_data = data;
5663 }
5664 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5665 
5666 /**
5667  * regulator_get_id - get regulator ID
5668  * @rdev: regulator
5669  */
rdev_get_id(struct regulator_dev *rdev)5670 int rdev_get_id(struct regulator_dev *rdev)
5671 {
5672 	return rdev->desc->id;
5673 }
5674 EXPORT_SYMBOL_GPL(rdev_get_id);
5675 
rdev_get_dev(struct regulator_dev *rdev)5676 struct device *rdev_get_dev(struct regulator_dev *rdev)
5677 {
5678 	return &rdev->dev;
5679 }
5680 EXPORT_SYMBOL_GPL(rdev_get_dev);
5681 
rdev_get_regmap(struct regulator_dev *rdev)5682 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5683 {
5684 	return rdev->regmap;
5685 }
5686 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5687 
regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)5688 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5689 {
5690 	return reg_init_data->driver_data;
5691 }
5692 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5693 
5694 #ifdef CONFIG_DEBUG_FS
supply_map_show(struct seq_file *sf, void *data)5695 static int supply_map_show(struct seq_file *sf, void *data)
5696 {
5697 	struct regulator_map *map;
5698 
5699 	list_for_each_entry(map, &regulator_map_list, list) {
5700 		seq_printf(sf, "%s -> %s.%s\n",
5701 				rdev_get_name(map->regulator), map->dev_name,
5702 				map->supply);
5703 	}
5704 
5705 	return 0;
5706 }
5707 DEFINE_SHOW_ATTRIBUTE(supply_map);
5708 
5709 struct summary_data {
5710 	struct seq_file *s;
5711 	struct regulator_dev *parent;
5712 	int level;
5713 };
5714 
5715 static void regulator_summary_show_subtree(struct seq_file *s,
5716 					   struct regulator_dev *rdev,
5717 					   int level);
5718 
regulator_summary_show_children(struct device *dev, void *data)5719 static int regulator_summary_show_children(struct device *dev, void *data)
5720 {
5721 	struct regulator_dev *rdev = dev_to_rdev(dev);
5722 	struct summary_data *summary_data = data;
5723 
5724 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5725 		regulator_summary_show_subtree(summary_data->s, rdev,
5726 					       summary_data->level + 1);
5727 
5728 	return 0;
5729 }
5730 
regulator_summary_show_subtree(struct seq_file *s, struct regulator_dev *rdev, int level)5731 static void regulator_summary_show_subtree(struct seq_file *s,
5732 					   struct regulator_dev *rdev,
5733 					   int level)
5734 {
5735 	struct regulation_constraints *c;
5736 	struct regulator *consumer;
5737 	struct summary_data summary_data;
5738 	unsigned int opmode;
5739 
5740 	if (!rdev)
5741 		return;
5742 
5743 	opmode = _regulator_get_mode_unlocked(rdev);
5744 	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5745 		   level * 3 + 1, "",
5746 		   30 - level * 3, rdev_get_name(rdev),
5747 		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5748 		   regulator_opmode_to_str(opmode));
5749 
5750 	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5751 	seq_printf(s, "%5dmA ",
5752 		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5753 
5754 	c = rdev->constraints;
5755 	if (c) {
5756 		switch (rdev->desc->type) {
5757 		case REGULATOR_VOLTAGE:
5758 			seq_printf(s, "%5dmV %5dmV ",
5759 				   c->min_uV / 1000, c->max_uV / 1000);
5760 			break;
5761 		case REGULATOR_CURRENT:
5762 			seq_printf(s, "%5dmA %5dmA ",
5763 				   c->min_uA / 1000, c->max_uA / 1000);
5764 			break;
5765 		}
5766 	}
5767 
5768 	seq_puts(s, "\n");
5769 
5770 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5771 		if (consumer->dev && consumer->dev->class == &regulator_class)
5772 			continue;
5773 
5774 		seq_printf(s, "%*s%-*s ",
5775 			   (level + 1) * 3 + 1, "",
5776 			   30 - (level + 1) * 3,
5777 			   consumer->supply_name ? consumer->supply_name :
5778 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5779 
5780 		switch (rdev->desc->type) {
5781 		case REGULATOR_VOLTAGE:
5782 			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5783 				   consumer->enable_count,
5784 				   consumer->uA_load / 1000,
5785 				   consumer->uA_load && !consumer->enable_count ?
5786 				   '*' : ' ',
5787 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5788 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5789 			break;
5790 		case REGULATOR_CURRENT:
5791 			break;
5792 		}
5793 
5794 		seq_puts(s, "\n");
5795 	}
5796 
5797 	summary_data.s = s;
5798 	summary_data.level = level;
5799 	summary_data.parent = rdev;
5800 
5801 	class_for_each_device(&regulator_class, NULL, &summary_data,
5802 			      regulator_summary_show_children);
5803 }
5804 
5805 struct summary_lock_data {
5806 	struct ww_acquire_ctx *ww_ctx;
5807 	struct regulator_dev **new_contended_rdev;
5808 	struct regulator_dev **old_contended_rdev;
5809 };
5810 
regulator_summary_lock_one(struct device *dev, void *data)5811 static int regulator_summary_lock_one(struct device *dev, void *data)
5812 {
5813 	struct regulator_dev *rdev = dev_to_rdev(dev);
5814 	struct summary_lock_data *lock_data = data;
5815 	int ret = 0;
5816 
5817 	if (rdev != *lock_data->old_contended_rdev) {
5818 		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5819 
5820 		if (ret == -EDEADLK)
5821 			*lock_data->new_contended_rdev = rdev;
5822 		else
5823 			WARN_ON_ONCE(ret);
5824 	} else {
5825 		*lock_data->old_contended_rdev = NULL;
5826 	}
5827 
5828 	return ret;
5829 }
5830 
regulator_summary_unlock_one(struct device *dev, void *data)5831 static int regulator_summary_unlock_one(struct device *dev, void *data)
5832 {
5833 	struct regulator_dev *rdev = dev_to_rdev(dev);
5834 	struct summary_lock_data *lock_data = data;
5835 
5836 	if (lock_data) {
5837 		if (rdev == *lock_data->new_contended_rdev)
5838 			return -EDEADLK;
5839 	}
5840 
5841 	regulator_unlock(rdev);
5842 
5843 	return 0;
5844 }
5845 
regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx, struct regulator_dev **new_contended_rdev, struct regulator_dev **old_contended_rdev)5846 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5847 				      struct regulator_dev **new_contended_rdev,
5848 				      struct regulator_dev **old_contended_rdev)
5849 {
5850 	struct summary_lock_data lock_data;
5851 	int ret;
5852 
5853 	lock_data.ww_ctx = ww_ctx;
5854 	lock_data.new_contended_rdev = new_contended_rdev;
5855 	lock_data.old_contended_rdev = old_contended_rdev;
5856 
5857 	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5858 				    regulator_summary_lock_one);
5859 	if (ret)
5860 		class_for_each_device(&regulator_class, NULL, &lock_data,
5861 				      regulator_summary_unlock_one);
5862 
5863 	return ret;
5864 }
5865 
regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)5866 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5867 {
5868 	struct regulator_dev *new_contended_rdev = NULL;
5869 	struct regulator_dev *old_contended_rdev = NULL;
5870 	int err;
5871 
5872 	mutex_lock(&regulator_list_mutex);
5873 
5874 	ww_acquire_init(ww_ctx, &regulator_ww_class);
5875 
5876 	do {
5877 		if (new_contended_rdev) {
5878 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5879 			old_contended_rdev = new_contended_rdev;
5880 			old_contended_rdev->ref_cnt++;
5881 			old_contended_rdev->mutex_owner = current;
5882 		}
5883 
5884 		err = regulator_summary_lock_all(ww_ctx,
5885 						 &new_contended_rdev,
5886 						 &old_contended_rdev);
5887 
5888 		if (old_contended_rdev)
5889 			regulator_unlock(old_contended_rdev);
5890 
5891 	} while (err == -EDEADLK);
5892 
5893 	ww_acquire_done(ww_ctx);
5894 }
5895 
regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)5896 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5897 {
5898 	class_for_each_device(&regulator_class, NULL, NULL,
5899 			      regulator_summary_unlock_one);
5900 	ww_acquire_fini(ww_ctx);
5901 
5902 	mutex_unlock(&regulator_list_mutex);
5903 }
5904 
regulator_summary_show_roots(struct device *dev, void *data)5905 static int regulator_summary_show_roots(struct device *dev, void *data)
5906 {
5907 	struct regulator_dev *rdev = dev_to_rdev(dev);
5908 	struct seq_file *s = data;
5909 
5910 	if (!rdev->supply)
5911 		regulator_summary_show_subtree(s, rdev, 0);
5912 
5913 	return 0;
5914 }
5915 
regulator_summary_show(struct seq_file *s, void *data)5916 static int regulator_summary_show(struct seq_file *s, void *data)
5917 {
5918 	struct ww_acquire_ctx ww_ctx;
5919 
5920 	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5921 	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5922 
5923 	regulator_summary_lock(&ww_ctx);
5924 
5925 	class_for_each_device(&regulator_class, NULL, s,
5926 			      regulator_summary_show_roots);
5927 
5928 	regulator_summary_unlock(&ww_ctx);
5929 
5930 	return 0;
5931 }
5932 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5933 #endif /* CONFIG_DEBUG_FS */
5934 
regulator_init(void)5935 static int __init regulator_init(void)
5936 {
5937 	int ret;
5938 
5939 	ret = class_register(&regulator_class);
5940 
5941 	debugfs_root = debugfs_create_dir("regulator", NULL);
5942 	if (IS_ERR(debugfs_root))
5943 		pr_debug("regulator: Failed to create debugfs directory\n");
5944 
5945 #ifdef CONFIG_DEBUG_FS
5946 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5947 			    &supply_map_fops);
5948 
5949 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5950 			    NULL, &regulator_summary_fops);
5951 #endif
5952 	regulator_dummy_init();
5953 
5954 	regulator_coupler_register(&generic_regulator_coupler);
5955 
5956 	return ret;
5957 }
5958 
5959 /* init early to allow our consumers to complete system booting */
5960 core_initcall(regulator_init);
5961 
regulator_late_cleanup(struct device *dev, void *data)5962 static int regulator_late_cleanup(struct device *dev, void *data)
5963 {
5964 	struct regulator_dev *rdev = dev_to_rdev(dev);
5965 	struct regulation_constraints *c = rdev->constraints;
5966 	int ret;
5967 
5968 	if (c && c->always_on)
5969 		return 0;
5970 
5971 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5972 		return 0;
5973 
5974 	regulator_lock(rdev);
5975 
5976 	if (rdev->use_count)
5977 		goto unlock;
5978 
5979 	/* If reading the status failed, assume that it's off. */
5980 	if (_regulator_is_enabled(rdev) <= 0)
5981 		goto unlock;
5982 
5983 	if (have_full_constraints()) {
5984 		/* We log since this may kill the system if it goes
5985 		 * wrong. */
5986 		rdev_info(rdev, "disabling\n");
5987 		ret = _regulator_do_disable(rdev);
5988 		if (ret != 0)
5989 			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5990 	} else {
5991 		/* The intention is that in future we will
5992 		 * assume that full constraints are provided
5993 		 * so warn even if we aren't going to do
5994 		 * anything here.
5995 		 */
5996 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
5997 	}
5998 
5999 unlock:
6000 	regulator_unlock(rdev);
6001 
6002 	return 0;
6003 }
6004 
regulator_init_complete_work_function(struct work_struct *work)6005 static void regulator_init_complete_work_function(struct work_struct *work)
6006 {
6007 	/*
6008 	 * Regulators may had failed to resolve their input supplies
6009 	 * when were registered, either because the input supply was
6010 	 * not registered yet or because its parent device was not
6011 	 * bound yet. So attempt to resolve the input supplies for
6012 	 * pending regulators before trying to disable unused ones.
6013 	 */
6014 	class_for_each_device(&regulator_class, NULL, NULL,
6015 			      regulator_register_resolve_supply);
6016 
6017 	/* If we have a full configuration then disable any regulators
6018 	 * we have permission to change the status for and which are
6019 	 * not in use or always_on.  This is effectively the default
6020 	 * for DT and ACPI as they have full constraints.
6021 	 */
6022 	class_for_each_device(&regulator_class, NULL, NULL,
6023 			      regulator_late_cleanup);
6024 }
6025 
6026 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6027 			    regulator_init_complete_work_function);
6028 
regulator_init_complete(void)6029 static int __init regulator_init_complete(void)
6030 {
6031 	/*
6032 	 * Since DT doesn't provide an idiomatic mechanism for
6033 	 * enabling full constraints and since it's much more natural
6034 	 * with DT to provide them just assume that a DT enabled
6035 	 * system has full constraints.
6036 	 */
6037 	if (of_have_populated_dt())
6038 		has_full_constraints = true;
6039 
6040 	/*
6041 	 * We punt completion for an arbitrary amount of time since
6042 	 * systems like distros will load many drivers from userspace
6043 	 * so consumers might not always be ready yet, this is
6044 	 * particularly an issue with laptops where this might bounce
6045 	 * the display off then on.  Ideally we'd get a notification
6046 	 * from userspace when this happens but we don't so just wait
6047 	 * a bit and hope we waited long enough.  It'd be better if
6048 	 * we'd only do this on systems that need it, and a kernel
6049 	 * command line option might be useful.
6050 	 */
6051 	schedule_delayed_work(&regulator_init_complete_work,
6052 			      msecs_to_jiffies(30000));
6053 
6054 	return 0;
6055 }
6056 late_initcall_sync(regulator_init_complete);
6057