1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c -- Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 #define rdev_crit(rdev, fmt, ...) \
37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...) \
39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...) \
41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...) \
43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...) \
45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55
56 static struct dentry *debugfs_root;
57
58 /*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63 struct regulator_map {
64 struct list_head list;
65 const char *dev_name; /* The dev_name() for the consumer */
66 const char *supply;
67 struct regulator_dev *regulator;
68 };
69
70 /*
71 * struct regulator_enable_gpio
72 *
73 * Management for shared enable GPIO pin
74 */
75 struct regulator_enable_gpio {
76 struct list_head list;
77 struct gpio_desc *gpiod;
78 u32 enable_count; /* a number of enabled shared GPIO */
79 u32 request_count; /* a number of requested shared GPIO */
80 };
81
82 /*
83 * struct regulator_supply_alias
84 *
85 * Used to map lookups for a supply onto an alternative device.
86 */
87 struct regulator_supply_alias {
88 struct list_head list;
89 struct device *src_dev;
90 const char *src_supply;
91 struct device *alias_dev;
92 const char *alias_supply;
93 };
94
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100 unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104 suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106 struct device *dev,
107 const char *supply_name);
108 static void destroy_regulator(struct regulator *regulator);
109 static void _regulator_put(struct regulator *regulator);
110
rdev_get_name(struct regulator_dev *rdev)111 const char *rdev_get_name(struct regulator_dev *rdev)
112 {
113 if (rdev->constraints && rdev->constraints->name)
114 return rdev->constraints->name;
115 else if (rdev->desc->name)
116 return rdev->desc->name;
117 else
118 return "";
119 }
120
have_full_constraints(void)121 static bool have_full_constraints(void)
122 {
123 return has_full_constraints || of_have_populated_dt();
124 }
125
regulator_ops_is_valid(struct regulator_dev *rdev, int ops)126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127 {
128 if (!rdev->constraints) {
129 rdev_err(rdev, "no constraints\n");
130 return false;
131 }
132
133 if (rdev->constraints->valid_ops_mask & ops)
134 return true;
135
136 return false;
137 }
138
139 /**
140 * regulator_lock_nested - lock a single regulator
141 * @rdev: regulator source
142 * @ww_ctx: w/w mutex acquire context
143 *
144 * This function can be called many times by one task on
145 * a single regulator and its mutex will be locked only
146 * once. If a task, which is calling this function is other
147 * than the one, which initially locked the mutex, it will
148 * wait on mutex.
149 */
regulator_lock_nested(struct regulator_dev *rdev, struct ww_acquire_ctx *ww_ctx)150 static inline int regulator_lock_nested(struct regulator_dev *rdev,
151 struct ww_acquire_ctx *ww_ctx)
152 {
153 bool lock = false;
154 int ret = 0;
155
156 mutex_lock(®ulator_nesting_mutex);
157
158 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159 if (rdev->mutex_owner == current)
160 rdev->ref_cnt++;
161 else
162 lock = true;
163
164 if (lock) {
165 mutex_unlock(®ulator_nesting_mutex);
166 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167 mutex_lock(®ulator_nesting_mutex);
168 }
169 } else {
170 lock = true;
171 }
172
173 if (lock && ret != -EDEADLK) {
174 rdev->ref_cnt++;
175 rdev->mutex_owner = current;
176 }
177
178 mutex_unlock(®ulator_nesting_mutex);
179
180 return ret;
181 }
182
183 /**
184 * regulator_lock - lock a single regulator
185 * @rdev: regulator source
186 *
187 * This function can be called many times by one task on
188 * a single regulator and its mutex will be locked only
189 * once. If a task, which is calling this function is other
190 * than the one, which initially locked the mutex, it will
191 * wait on mutex.
192 */
regulator_lock(struct regulator_dev *rdev)193 static void regulator_lock(struct regulator_dev *rdev)
194 {
195 regulator_lock_nested(rdev, NULL);
196 }
197
198 /**
199 * regulator_unlock - unlock a single regulator
200 * @rdev: regulator_source
201 *
202 * This function unlocks the mutex when the
203 * reference counter reaches 0.
204 */
regulator_unlock(struct regulator_dev *rdev)205 static void regulator_unlock(struct regulator_dev *rdev)
206 {
207 mutex_lock(®ulator_nesting_mutex);
208
209 if (--rdev->ref_cnt == 0) {
210 rdev->mutex_owner = NULL;
211 ww_mutex_unlock(&rdev->mutex);
212 }
213
214 WARN_ON_ONCE(rdev->ref_cnt < 0);
215
216 mutex_unlock(®ulator_nesting_mutex);
217 }
218
219 /**
220 * regulator_lock_two - lock two regulators
221 * @rdev1: first regulator
222 * @rdev2: second regulator
223 * @ww_ctx: w/w mutex acquire context
224 *
225 * Locks both rdevs using the regulator_ww_class.
226 */
regulator_lock_two(struct regulator_dev *rdev1, struct regulator_dev *rdev2, struct ww_acquire_ctx *ww_ctx)227 static void regulator_lock_two(struct regulator_dev *rdev1,
228 struct regulator_dev *rdev2,
229 struct ww_acquire_ctx *ww_ctx)
230 {
231 struct regulator_dev *tmp;
232 int ret;
233
234 ww_acquire_init(ww_ctx, ®ulator_ww_class);
235
236 /* Try to just grab both of them */
237 ret = regulator_lock_nested(rdev1, ww_ctx);
238 WARN_ON(ret);
239 ret = regulator_lock_nested(rdev2, ww_ctx);
240 if (ret != -EDEADLOCK) {
241 WARN_ON(ret);
242 goto exit;
243 }
244
245 while (true) {
246 /*
247 * Start of loop: rdev1 was locked and rdev2 was contended.
248 * Need to unlock rdev1, slowly lock rdev2, then try rdev1
249 * again.
250 */
251 regulator_unlock(rdev1);
252
253 ww_mutex_lock_slow(&rdev2->mutex, ww_ctx);
254 rdev2->ref_cnt++;
255 rdev2->mutex_owner = current;
256 ret = regulator_lock_nested(rdev1, ww_ctx);
257
258 if (ret == -EDEADLOCK) {
259 /* More contention; swap which needs to be slow */
260 tmp = rdev1;
261 rdev1 = rdev2;
262 rdev2 = tmp;
263 } else {
264 WARN_ON(ret);
265 break;
266 }
267 }
268
269 exit:
270 ww_acquire_done(ww_ctx);
271 }
272
273 /**
274 * regulator_unlock_two - unlock two regulators
275 * @rdev1: first regulator
276 * @rdev2: second regulator
277 * @ww_ctx: w/w mutex acquire context
278 *
279 * The inverse of regulator_lock_two().
280 */
281
regulator_unlock_two(struct regulator_dev *rdev1, struct regulator_dev *rdev2, struct ww_acquire_ctx *ww_ctx)282 static void regulator_unlock_two(struct regulator_dev *rdev1,
283 struct regulator_dev *rdev2,
284 struct ww_acquire_ctx *ww_ctx)
285 {
286 regulator_unlock(rdev2);
287 regulator_unlock(rdev1);
288 ww_acquire_fini(ww_ctx);
289 }
290
regulator_supply_is_couple(struct regulator_dev *rdev)291 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
292 {
293 struct regulator_dev *c_rdev;
294 int i;
295
296 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
297 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
298
299 if (rdev->supply->rdev == c_rdev)
300 return true;
301 }
302
303 return false;
304 }
305
regulator_unlock_recursive(struct regulator_dev *rdev, unsigned int n_coupled)306 static void regulator_unlock_recursive(struct regulator_dev *rdev,
307 unsigned int n_coupled)
308 {
309 struct regulator_dev *c_rdev, *supply_rdev;
310 int i, supply_n_coupled;
311
312 for (i = n_coupled; i > 0; i--) {
313 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
314
315 if (!c_rdev)
316 continue;
317
318 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
319 supply_rdev = c_rdev->supply->rdev;
320 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
321
322 regulator_unlock_recursive(supply_rdev,
323 supply_n_coupled);
324 }
325
326 regulator_unlock(c_rdev);
327 }
328 }
329
regulator_lock_recursive(struct regulator_dev *rdev, struct regulator_dev **new_contended_rdev, struct regulator_dev **old_contended_rdev, struct ww_acquire_ctx *ww_ctx)330 static int regulator_lock_recursive(struct regulator_dev *rdev,
331 struct regulator_dev **new_contended_rdev,
332 struct regulator_dev **old_contended_rdev,
333 struct ww_acquire_ctx *ww_ctx)
334 {
335 struct regulator_dev *c_rdev;
336 int i, err;
337
338 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
339 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
340
341 if (!c_rdev)
342 continue;
343
344 if (c_rdev != *old_contended_rdev) {
345 err = regulator_lock_nested(c_rdev, ww_ctx);
346 if (err) {
347 if (err == -EDEADLK) {
348 *new_contended_rdev = c_rdev;
349 goto err_unlock;
350 }
351
352 /* shouldn't happen */
353 WARN_ON_ONCE(err != -EALREADY);
354 }
355 } else {
356 *old_contended_rdev = NULL;
357 }
358
359 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
360 err = regulator_lock_recursive(c_rdev->supply->rdev,
361 new_contended_rdev,
362 old_contended_rdev,
363 ww_ctx);
364 if (err) {
365 regulator_unlock(c_rdev);
366 goto err_unlock;
367 }
368 }
369 }
370
371 return 0;
372
373 err_unlock:
374 regulator_unlock_recursive(rdev, i);
375
376 return err;
377 }
378
379 /**
380 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
381 * regulators
382 * @rdev: regulator source
383 * @ww_ctx: w/w mutex acquire context
384 *
385 * Unlock all regulators related with rdev by coupling or supplying.
386 */
regulator_unlock_dependent(struct regulator_dev *rdev, struct ww_acquire_ctx *ww_ctx)387 static void regulator_unlock_dependent(struct regulator_dev *rdev,
388 struct ww_acquire_ctx *ww_ctx)
389 {
390 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
391 ww_acquire_fini(ww_ctx);
392 }
393
394 /**
395 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
396 * @rdev: regulator source
397 * @ww_ctx: w/w mutex acquire context
398 *
399 * This function as a wrapper on regulator_lock_recursive(), which locks
400 * all regulators related with rdev by coupling or supplying.
401 */
regulator_lock_dependent(struct regulator_dev *rdev, struct ww_acquire_ctx *ww_ctx)402 static void regulator_lock_dependent(struct regulator_dev *rdev,
403 struct ww_acquire_ctx *ww_ctx)
404 {
405 struct regulator_dev *new_contended_rdev = NULL;
406 struct regulator_dev *old_contended_rdev = NULL;
407 int err;
408
409 mutex_lock(®ulator_list_mutex);
410
411 ww_acquire_init(ww_ctx, ®ulator_ww_class);
412
413 do {
414 if (new_contended_rdev) {
415 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
416 old_contended_rdev = new_contended_rdev;
417 old_contended_rdev->ref_cnt++;
418 old_contended_rdev->mutex_owner = current;
419 }
420
421 err = regulator_lock_recursive(rdev,
422 &new_contended_rdev,
423 &old_contended_rdev,
424 ww_ctx);
425
426 if (old_contended_rdev)
427 regulator_unlock(old_contended_rdev);
428
429 } while (err == -EDEADLK);
430
431 ww_acquire_done(ww_ctx);
432
433 mutex_unlock(®ulator_list_mutex);
434 }
435
436 /**
437 * of_get_child_regulator - get a child regulator device node
438 * based on supply name
439 * @parent: Parent device node
440 * @prop_name: Combination regulator supply name and "-supply"
441 *
442 * Traverse all child nodes.
443 * Extract the child regulator device node corresponding to the supply name.
444 * returns the device node corresponding to the regulator if found, else
445 * returns NULL.
446 */
of_get_child_regulator(struct device_node *parent, const char *prop_name)447 static struct device_node *of_get_child_regulator(struct device_node *parent,
448 const char *prop_name)
449 {
450 struct device_node *regnode = NULL;
451 struct device_node *child = NULL;
452
453 for_each_child_of_node(parent, child) {
454 regnode = of_parse_phandle(child, prop_name, 0);
455
456 if (!regnode) {
457 regnode = of_get_child_regulator(child, prop_name);
458 if (regnode)
459 goto err_node_put;
460 } else {
461 goto err_node_put;
462 }
463 }
464 return NULL;
465
466 err_node_put:
467 of_node_put(child);
468 return regnode;
469 }
470
471 /**
472 * of_get_regulator - get a regulator device node based on supply name
473 * @dev: Device pointer for the consumer (of regulator) device
474 * @supply: regulator supply name
475 *
476 * Extract the regulator device node corresponding to the supply name.
477 * returns the device node corresponding to the regulator if found, else
478 * returns NULL.
479 */
of_get_regulator(struct device *dev, const char *supply)480 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
481 {
482 struct device_node *regnode = NULL;
483 char prop_name[64]; /* 64 is max size of property name */
484
485 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
486
487 snprintf(prop_name, 64, "%s-supply", supply);
488 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
489
490 if (!regnode) {
491 regnode = of_get_child_regulator(dev->of_node, prop_name);
492 if (regnode)
493 return regnode;
494
495 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
496 prop_name, dev->of_node);
497 return NULL;
498 }
499 return regnode;
500 }
501
502 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev *rdev, int *min_uV, int *max_uV)503 int regulator_check_voltage(struct regulator_dev *rdev,
504 int *min_uV, int *max_uV)
505 {
506 BUG_ON(*min_uV > *max_uV);
507
508 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
509 rdev_err(rdev, "voltage operation not allowed\n");
510 return -EPERM;
511 }
512
513 if (*max_uV > rdev->constraints->max_uV)
514 *max_uV = rdev->constraints->max_uV;
515 if (*min_uV < rdev->constraints->min_uV)
516 *min_uV = rdev->constraints->min_uV;
517
518 if (*min_uV > *max_uV) {
519 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
520 *min_uV, *max_uV);
521 return -EINVAL;
522 }
523
524 return 0;
525 }
526
527 /* return 0 if the state is valid */
regulator_check_states(suspend_state_t state)528 static int regulator_check_states(suspend_state_t state)
529 {
530 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
531 }
532
533 /* Make sure we select a voltage that suits the needs of all
534 * regulator consumers
535 */
regulator_check_consumers(struct regulator_dev *rdev, int *min_uV, int *max_uV, suspend_state_t state)536 int regulator_check_consumers(struct regulator_dev *rdev,
537 int *min_uV, int *max_uV,
538 suspend_state_t state)
539 {
540 struct regulator *regulator;
541 struct regulator_voltage *voltage;
542
543 list_for_each_entry(regulator, &rdev->consumer_list, list) {
544 voltage = ®ulator->voltage[state];
545 /*
546 * Assume consumers that didn't say anything are OK
547 * with anything in the constraint range.
548 */
549 if (!voltage->min_uV && !voltage->max_uV)
550 continue;
551
552 if (*max_uV > voltage->max_uV)
553 *max_uV = voltage->max_uV;
554 if (*min_uV < voltage->min_uV)
555 *min_uV = voltage->min_uV;
556 }
557
558 if (*min_uV > *max_uV) {
559 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
560 *min_uV, *max_uV);
561 return -EINVAL;
562 }
563
564 return 0;
565 }
566
567 /* current constraint check */
regulator_check_current_limit(struct regulator_dev *rdev, int *min_uA, int *max_uA)568 static int regulator_check_current_limit(struct regulator_dev *rdev,
569 int *min_uA, int *max_uA)
570 {
571 BUG_ON(*min_uA > *max_uA);
572
573 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
574 rdev_err(rdev, "current operation not allowed\n");
575 return -EPERM;
576 }
577
578 if (*max_uA > rdev->constraints->max_uA)
579 *max_uA = rdev->constraints->max_uA;
580 if (*min_uA < rdev->constraints->min_uA)
581 *min_uA = rdev->constraints->min_uA;
582
583 if (*min_uA > *max_uA) {
584 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
585 *min_uA, *max_uA);
586 return -EINVAL;
587 }
588
589 return 0;
590 }
591
592 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev *rdev, unsigned int *mode)593 static int regulator_mode_constrain(struct regulator_dev *rdev,
594 unsigned int *mode)
595 {
596 switch (*mode) {
597 case REGULATOR_MODE_FAST:
598 case REGULATOR_MODE_NORMAL:
599 case REGULATOR_MODE_IDLE:
600 case REGULATOR_MODE_STANDBY:
601 break;
602 default:
603 rdev_err(rdev, "invalid mode %x specified\n", *mode);
604 return -EINVAL;
605 }
606
607 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
608 rdev_err(rdev, "mode operation not allowed\n");
609 return -EPERM;
610 }
611
612 /* The modes are bitmasks, the most power hungry modes having
613 * the lowest values. If the requested mode isn't supported
614 * try higher modes. */
615 while (*mode) {
616 if (rdev->constraints->valid_modes_mask & *mode)
617 return 0;
618 *mode /= 2;
619 }
620
621 return -EINVAL;
622 }
623
624 static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)625 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
626 {
627 if (rdev->constraints == NULL)
628 return NULL;
629
630 switch (state) {
631 case PM_SUSPEND_STANDBY:
632 return &rdev->constraints->state_standby;
633 case PM_SUSPEND_MEM:
634 return &rdev->constraints->state_mem;
635 case PM_SUSPEND_MAX:
636 return &rdev->constraints->state_disk;
637 default:
638 return NULL;
639 }
640 }
641
642 static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)643 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
644 {
645 const struct regulator_state *rstate;
646
647 rstate = regulator_get_suspend_state(rdev, state);
648 if (rstate == NULL)
649 return NULL;
650
651 /* If we have no suspend mode configuration don't set anything;
652 * only warn if the driver implements set_suspend_voltage or
653 * set_suspend_mode callback.
654 */
655 if (rstate->enabled != ENABLE_IN_SUSPEND &&
656 rstate->enabled != DISABLE_IN_SUSPEND) {
657 if (rdev->desc->ops->set_suspend_voltage ||
658 rdev->desc->ops->set_suspend_mode)
659 rdev_warn(rdev, "No configuration\n");
660 return NULL;
661 }
662
663 return rstate;
664 }
665
regulator_uV_show(struct device *dev, struct device_attribute *attr, char *buf)666 static ssize_t regulator_uV_show(struct device *dev,
667 struct device_attribute *attr, char *buf)
668 {
669 struct regulator_dev *rdev = dev_get_drvdata(dev);
670 int uV;
671
672 regulator_lock(rdev);
673 uV = regulator_get_voltage_rdev(rdev);
674 regulator_unlock(rdev);
675
676 if (uV < 0)
677 return uV;
678 return sprintf(buf, "%d\n", uV);
679 }
680 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
681
regulator_uA_show(struct device *dev, struct device_attribute *attr, char *buf)682 static ssize_t regulator_uA_show(struct device *dev,
683 struct device_attribute *attr, char *buf)
684 {
685 struct regulator_dev *rdev = dev_get_drvdata(dev);
686
687 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
688 }
689 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
690
name_show(struct device *dev, struct device_attribute *attr, char *buf)691 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
692 char *buf)
693 {
694 struct regulator_dev *rdev = dev_get_drvdata(dev);
695
696 return sprintf(buf, "%s\n", rdev_get_name(rdev));
697 }
698 static DEVICE_ATTR_RO(name);
699
regulator_opmode_to_str(int mode)700 static const char *regulator_opmode_to_str(int mode)
701 {
702 switch (mode) {
703 case REGULATOR_MODE_FAST:
704 return "fast";
705 case REGULATOR_MODE_NORMAL:
706 return "normal";
707 case REGULATOR_MODE_IDLE:
708 return "idle";
709 case REGULATOR_MODE_STANDBY:
710 return "standby";
711 }
712 return "unknown";
713 }
714
regulator_print_opmode(char *buf, int mode)715 static ssize_t regulator_print_opmode(char *buf, int mode)
716 {
717 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
718 }
719
regulator_opmode_show(struct device *dev, struct device_attribute *attr, char *buf)720 static ssize_t regulator_opmode_show(struct device *dev,
721 struct device_attribute *attr, char *buf)
722 {
723 struct regulator_dev *rdev = dev_get_drvdata(dev);
724
725 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
726 }
727 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
728
regulator_print_state(char *buf, int state)729 static ssize_t regulator_print_state(char *buf, int state)
730 {
731 if (state > 0)
732 return sprintf(buf, "enabled\n");
733 else if (state == 0)
734 return sprintf(buf, "disabled\n");
735 else
736 return sprintf(buf, "unknown\n");
737 }
738
regulator_state_show(struct device *dev, struct device_attribute *attr, char *buf)739 static ssize_t regulator_state_show(struct device *dev,
740 struct device_attribute *attr, char *buf)
741 {
742 struct regulator_dev *rdev = dev_get_drvdata(dev);
743 ssize_t ret;
744
745 regulator_lock(rdev);
746 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
747 regulator_unlock(rdev);
748
749 return ret;
750 }
751 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
752
regulator_status_show(struct device *dev, struct device_attribute *attr, char *buf)753 static ssize_t regulator_status_show(struct device *dev,
754 struct device_attribute *attr, char *buf)
755 {
756 struct regulator_dev *rdev = dev_get_drvdata(dev);
757 int status;
758 char *label;
759
760 status = rdev->desc->ops->get_status(rdev);
761 if (status < 0)
762 return status;
763
764 switch (status) {
765 case REGULATOR_STATUS_OFF:
766 label = "off";
767 break;
768 case REGULATOR_STATUS_ON:
769 label = "on";
770 break;
771 case REGULATOR_STATUS_ERROR:
772 label = "error";
773 break;
774 case REGULATOR_STATUS_FAST:
775 label = "fast";
776 break;
777 case REGULATOR_STATUS_NORMAL:
778 label = "normal";
779 break;
780 case REGULATOR_STATUS_IDLE:
781 label = "idle";
782 break;
783 case REGULATOR_STATUS_STANDBY:
784 label = "standby";
785 break;
786 case REGULATOR_STATUS_BYPASS:
787 label = "bypass";
788 break;
789 case REGULATOR_STATUS_UNDEFINED:
790 label = "undefined";
791 break;
792 default:
793 return -ERANGE;
794 }
795
796 return sprintf(buf, "%s\n", label);
797 }
798 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
799
regulator_min_uA_show(struct device *dev, struct device_attribute *attr, char *buf)800 static ssize_t regulator_min_uA_show(struct device *dev,
801 struct device_attribute *attr, char *buf)
802 {
803 struct regulator_dev *rdev = dev_get_drvdata(dev);
804
805 if (!rdev->constraints)
806 return sprintf(buf, "constraint not defined\n");
807
808 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
809 }
810 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
811
regulator_max_uA_show(struct device *dev, struct device_attribute *attr, char *buf)812 static ssize_t regulator_max_uA_show(struct device *dev,
813 struct device_attribute *attr, char *buf)
814 {
815 struct regulator_dev *rdev = dev_get_drvdata(dev);
816
817 if (!rdev->constraints)
818 return sprintf(buf, "constraint not defined\n");
819
820 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
821 }
822 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
823
regulator_min_uV_show(struct device *dev, struct device_attribute *attr, char *buf)824 static ssize_t regulator_min_uV_show(struct device *dev,
825 struct device_attribute *attr, char *buf)
826 {
827 struct regulator_dev *rdev = dev_get_drvdata(dev);
828
829 if (!rdev->constraints)
830 return sprintf(buf, "constraint not defined\n");
831
832 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
833 }
834 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
835
regulator_max_uV_show(struct device *dev, struct device_attribute *attr, char *buf)836 static ssize_t regulator_max_uV_show(struct device *dev,
837 struct device_attribute *attr, char *buf)
838 {
839 struct regulator_dev *rdev = dev_get_drvdata(dev);
840
841 if (!rdev->constraints)
842 return sprintf(buf, "constraint not defined\n");
843
844 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
845 }
846 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
847
regulator_total_uA_show(struct device *dev, struct device_attribute *attr, char *buf)848 static ssize_t regulator_total_uA_show(struct device *dev,
849 struct device_attribute *attr, char *buf)
850 {
851 struct regulator_dev *rdev = dev_get_drvdata(dev);
852 struct regulator *regulator;
853 int uA = 0;
854
855 regulator_lock(rdev);
856 list_for_each_entry(regulator, &rdev->consumer_list, list) {
857 if (regulator->enable_count)
858 uA += regulator->uA_load;
859 }
860 regulator_unlock(rdev);
861 return sprintf(buf, "%d\n", uA);
862 }
863 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
864
num_users_show(struct device *dev, struct device_attribute *attr, char *buf)865 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
866 char *buf)
867 {
868 struct regulator_dev *rdev = dev_get_drvdata(dev);
869 return sprintf(buf, "%d\n", rdev->use_count);
870 }
871 static DEVICE_ATTR_RO(num_users);
872
type_show(struct device *dev, struct device_attribute *attr, char *buf)873 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
874 char *buf)
875 {
876 struct regulator_dev *rdev = dev_get_drvdata(dev);
877
878 switch (rdev->desc->type) {
879 case REGULATOR_VOLTAGE:
880 return sprintf(buf, "voltage\n");
881 case REGULATOR_CURRENT:
882 return sprintf(buf, "current\n");
883 }
884 return sprintf(buf, "unknown\n");
885 }
886 static DEVICE_ATTR_RO(type);
887
regulator_suspend_mem_uV_show(struct device *dev, struct device_attribute *attr, char *buf)888 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
889 struct device_attribute *attr, char *buf)
890 {
891 struct regulator_dev *rdev = dev_get_drvdata(dev);
892
893 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
894 }
895 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
896 regulator_suspend_mem_uV_show, NULL);
897
regulator_suspend_disk_uV_show(struct device *dev, struct device_attribute *attr, char *buf)898 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
899 struct device_attribute *attr, char *buf)
900 {
901 struct regulator_dev *rdev = dev_get_drvdata(dev);
902
903 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
904 }
905 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
906 regulator_suspend_disk_uV_show, NULL);
907
regulator_suspend_standby_uV_show(struct device *dev, struct device_attribute *attr, char *buf)908 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
909 struct device_attribute *attr, char *buf)
910 {
911 struct regulator_dev *rdev = dev_get_drvdata(dev);
912
913 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
914 }
915 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
916 regulator_suspend_standby_uV_show, NULL);
917
regulator_suspend_mem_mode_show(struct device *dev, struct device_attribute *attr, char *buf)918 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
919 struct device_attribute *attr, char *buf)
920 {
921 struct regulator_dev *rdev = dev_get_drvdata(dev);
922
923 return regulator_print_opmode(buf,
924 rdev->constraints->state_mem.mode);
925 }
926 static DEVICE_ATTR(suspend_mem_mode, 0444,
927 regulator_suspend_mem_mode_show, NULL);
928
regulator_suspend_disk_mode_show(struct device *dev, struct device_attribute *attr, char *buf)929 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
930 struct device_attribute *attr, char *buf)
931 {
932 struct regulator_dev *rdev = dev_get_drvdata(dev);
933
934 return regulator_print_opmode(buf,
935 rdev->constraints->state_disk.mode);
936 }
937 static DEVICE_ATTR(suspend_disk_mode, 0444,
938 regulator_suspend_disk_mode_show, NULL);
939
regulator_suspend_standby_mode_show(struct device *dev, struct device_attribute *attr, char *buf)940 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
941 struct device_attribute *attr, char *buf)
942 {
943 struct regulator_dev *rdev = dev_get_drvdata(dev);
944
945 return regulator_print_opmode(buf,
946 rdev->constraints->state_standby.mode);
947 }
948 static DEVICE_ATTR(suspend_standby_mode, 0444,
949 regulator_suspend_standby_mode_show, NULL);
950
regulator_suspend_mem_state_show(struct device *dev, struct device_attribute *attr, char *buf)951 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
952 struct device_attribute *attr, char *buf)
953 {
954 struct regulator_dev *rdev = dev_get_drvdata(dev);
955
956 return regulator_print_state(buf,
957 rdev->constraints->state_mem.enabled);
958 }
959 static DEVICE_ATTR(suspend_mem_state, 0444,
960 regulator_suspend_mem_state_show, NULL);
961
regulator_suspend_disk_state_show(struct device *dev, struct device_attribute *attr, char *buf)962 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
963 struct device_attribute *attr, char *buf)
964 {
965 struct regulator_dev *rdev = dev_get_drvdata(dev);
966
967 return regulator_print_state(buf,
968 rdev->constraints->state_disk.enabled);
969 }
970 static DEVICE_ATTR(suspend_disk_state, 0444,
971 regulator_suspend_disk_state_show, NULL);
972
regulator_suspend_standby_state_show(struct device *dev, struct device_attribute *attr, char *buf)973 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
974 struct device_attribute *attr, char *buf)
975 {
976 struct regulator_dev *rdev = dev_get_drvdata(dev);
977
978 return regulator_print_state(buf,
979 rdev->constraints->state_standby.enabled);
980 }
981 static DEVICE_ATTR(suspend_standby_state, 0444,
982 regulator_suspend_standby_state_show, NULL);
983
regulator_bypass_show(struct device *dev, struct device_attribute *attr, char *buf)984 static ssize_t regulator_bypass_show(struct device *dev,
985 struct device_attribute *attr, char *buf)
986 {
987 struct regulator_dev *rdev = dev_get_drvdata(dev);
988 const char *report;
989 bool bypass;
990 int ret;
991
992 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
993
994 if (ret != 0)
995 report = "unknown";
996 else if (bypass)
997 report = "enabled";
998 else
999 report = "disabled";
1000
1001 return sprintf(buf, "%s\n", report);
1002 }
1003 static DEVICE_ATTR(bypass, 0444,
1004 regulator_bypass_show, NULL);
1005
1006 /* Calculate the new optimum regulator operating mode based on the new total
1007 * consumer load. All locks held by caller */
drms_uA_update(struct regulator_dev *rdev)1008 static int drms_uA_update(struct regulator_dev *rdev)
1009 {
1010 struct regulator *sibling;
1011 int current_uA = 0, output_uV, input_uV, err;
1012 unsigned int mode;
1013
1014 /*
1015 * first check to see if we can set modes at all, otherwise just
1016 * tell the consumer everything is OK.
1017 */
1018 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1019 rdev_dbg(rdev, "DRMS operation not allowed\n");
1020 return 0;
1021 }
1022
1023 if (!rdev->desc->ops->get_optimum_mode &&
1024 !rdev->desc->ops->set_load)
1025 return 0;
1026
1027 if (!rdev->desc->ops->set_mode &&
1028 !rdev->desc->ops->set_load)
1029 return -EINVAL;
1030
1031 /* calc total requested load */
1032 list_for_each_entry(sibling, &rdev->consumer_list, list) {
1033 if (sibling->enable_count)
1034 current_uA += sibling->uA_load;
1035 }
1036
1037 current_uA += rdev->constraints->system_load;
1038
1039 if (rdev->desc->ops->set_load) {
1040 /* set the optimum mode for our new total regulator load */
1041 err = rdev->desc->ops->set_load(rdev, current_uA);
1042 if (err < 0)
1043 rdev_err(rdev, "failed to set load %d: %pe\n",
1044 current_uA, ERR_PTR(err));
1045 } else {
1046 /* get output voltage */
1047 output_uV = regulator_get_voltage_rdev(rdev);
1048 if (output_uV <= 0) {
1049 rdev_err(rdev, "invalid output voltage found\n");
1050 return -EINVAL;
1051 }
1052
1053 /* get input voltage */
1054 input_uV = 0;
1055 if (rdev->supply)
1056 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1057 if (input_uV <= 0)
1058 input_uV = rdev->constraints->input_uV;
1059 if (input_uV <= 0) {
1060 rdev_err(rdev, "invalid input voltage found\n");
1061 return -EINVAL;
1062 }
1063
1064 /* now get the optimum mode for our new total regulator load */
1065 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1066 output_uV, current_uA);
1067
1068 /* check the new mode is allowed */
1069 err = regulator_mode_constrain(rdev, &mode);
1070 if (err < 0) {
1071 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1072 current_uA, input_uV, output_uV, ERR_PTR(err));
1073 return err;
1074 }
1075
1076 err = rdev->desc->ops->set_mode(rdev, mode);
1077 if (err < 0)
1078 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1079 mode, ERR_PTR(err));
1080 }
1081
1082 return err;
1083 }
1084
__suspend_set_state(struct regulator_dev *rdev, const struct regulator_state *rstate)1085 static int __suspend_set_state(struct regulator_dev *rdev,
1086 const struct regulator_state *rstate)
1087 {
1088 int ret = 0;
1089
1090 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1091 rdev->desc->ops->set_suspend_enable)
1092 ret = rdev->desc->ops->set_suspend_enable(rdev);
1093 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1094 rdev->desc->ops->set_suspend_disable)
1095 ret = rdev->desc->ops->set_suspend_disable(rdev);
1096 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1097 ret = 0;
1098
1099 if (ret < 0) {
1100 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1101 return ret;
1102 }
1103
1104 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1105 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1106 if (ret < 0) {
1107 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1108 return ret;
1109 }
1110 }
1111
1112 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1113 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1114 if (ret < 0) {
1115 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1116 return ret;
1117 }
1118 }
1119
1120 return ret;
1121 }
1122
suspend_set_initial_state(struct regulator_dev *rdev)1123 static int suspend_set_initial_state(struct regulator_dev *rdev)
1124 {
1125 const struct regulator_state *rstate;
1126
1127 rstate = regulator_get_suspend_state_check(rdev,
1128 rdev->constraints->initial_state);
1129 if (!rstate)
1130 return 0;
1131
1132 return __suspend_set_state(rdev, rstate);
1133 }
1134
1135 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
print_constraints_debug(struct regulator_dev *rdev)1136 static void print_constraints_debug(struct regulator_dev *rdev)
1137 {
1138 struct regulation_constraints *constraints = rdev->constraints;
1139 char buf[160] = "";
1140 size_t len = sizeof(buf) - 1;
1141 int count = 0;
1142 int ret;
1143
1144 if (constraints->min_uV && constraints->max_uV) {
1145 if (constraints->min_uV == constraints->max_uV)
1146 count += scnprintf(buf + count, len - count, "%d mV ",
1147 constraints->min_uV / 1000);
1148 else
1149 count += scnprintf(buf + count, len - count,
1150 "%d <--> %d mV ",
1151 constraints->min_uV / 1000,
1152 constraints->max_uV / 1000);
1153 }
1154
1155 if (!constraints->min_uV ||
1156 constraints->min_uV != constraints->max_uV) {
1157 ret = regulator_get_voltage_rdev(rdev);
1158 if (ret > 0)
1159 count += scnprintf(buf + count, len - count,
1160 "at %d mV ", ret / 1000);
1161 }
1162
1163 if (constraints->uV_offset)
1164 count += scnprintf(buf + count, len - count, "%dmV offset ",
1165 constraints->uV_offset / 1000);
1166
1167 if (constraints->min_uA && constraints->max_uA) {
1168 if (constraints->min_uA == constraints->max_uA)
1169 count += scnprintf(buf + count, len - count, "%d mA ",
1170 constraints->min_uA / 1000);
1171 else
1172 count += scnprintf(buf + count, len - count,
1173 "%d <--> %d mA ",
1174 constraints->min_uA / 1000,
1175 constraints->max_uA / 1000);
1176 }
1177
1178 if (!constraints->min_uA ||
1179 constraints->min_uA != constraints->max_uA) {
1180 ret = _regulator_get_current_limit(rdev);
1181 if (ret > 0)
1182 count += scnprintf(buf + count, len - count,
1183 "at %d mA ", ret / 1000);
1184 }
1185
1186 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1187 count += scnprintf(buf + count, len - count, "fast ");
1188 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1189 count += scnprintf(buf + count, len - count, "normal ");
1190 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1191 count += scnprintf(buf + count, len - count, "idle ");
1192 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1193 count += scnprintf(buf + count, len - count, "standby ");
1194
1195 if (!count)
1196 count = scnprintf(buf, len, "no parameters");
1197 else
1198 --count;
1199
1200 count += scnprintf(buf + count, len - count, ", %s",
1201 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1202
1203 rdev_dbg(rdev, "%s\n", buf);
1204 }
1205 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
print_constraints_debug(struct regulator_dev *rdev)1206 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1207 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1208
print_constraints(struct regulator_dev *rdev)1209 static void print_constraints(struct regulator_dev *rdev)
1210 {
1211 struct regulation_constraints *constraints = rdev->constraints;
1212
1213 print_constraints_debug(rdev);
1214
1215 if ((constraints->min_uV != constraints->max_uV) &&
1216 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1217 rdev_warn(rdev,
1218 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1219 }
1220
machine_constraints_voltage(struct regulator_dev *rdev, struct regulation_constraints *constraints)1221 static int machine_constraints_voltage(struct regulator_dev *rdev,
1222 struct regulation_constraints *constraints)
1223 {
1224 const struct regulator_ops *ops = rdev->desc->ops;
1225 int ret;
1226
1227 /* do we need to apply the constraint voltage */
1228 if (rdev->constraints->apply_uV &&
1229 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1230 int target_min, target_max;
1231 int current_uV = regulator_get_voltage_rdev(rdev);
1232
1233 if (current_uV == -ENOTRECOVERABLE) {
1234 /* This regulator can't be read and must be initialized */
1235 rdev_info(rdev, "Setting %d-%duV\n",
1236 rdev->constraints->min_uV,
1237 rdev->constraints->max_uV);
1238 _regulator_do_set_voltage(rdev,
1239 rdev->constraints->min_uV,
1240 rdev->constraints->max_uV);
1241 current_uV = regulator_get_voltage_rdev(rdev);
1242 }
1243
1244 if (current_uV < 0) {
1245 rdev_err(rdev,
1246 "failed to get the current voltage: %pe\n",
1247 ERR_PTR(current_uV));
1248 return current_uV;
1249 }
1250
1251 /*
1252 * If we're below the minimum voltage move up to the
1253 * minimum voltage, if we're above the maximum voltage
1254 * then move down to the maximum.
1255 */
1256 target_min = current_uV;
1257 target_max = current_uV;
1258
1259 if (current_uV < rdev->constraints->min_uV) {
1260 target_min = rdev->constraints->min_uV;
1261 target_max = rdev->constraints->min_uV;
1262 }
1263
1264 if (current_uV > rdev->constraints->max_uV) {
1265 target_min = rdev->constraints->max_uV;
1266 target_max = rdev->constraints->max_uV;
1267 }
1268
1269 if (target_min != current_uV || target_max != current_uV) {
1270 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1271 current_uV, target_min, target_max);
1272 ret = _regulator_do_set_voltage(
1273 rdev, target_min, target_max);
1274 if (ret < 0) {
1275 rdev_err(rdev,
1276 "failed to apply %d-%duV constraint: %pe\n",
1277 target_min, target_max, ERR_PTR(ret));
1278 return ret;
1279 }
1280 }
1281 }
1282
1283 /* constrain machine-level voltage specs to fit
1284 * the actual range supported by this regulator.
1285 */
1286 if (ops->list_voltage && rdev->desc->n_voltages) {
1287 int count = rdev->desc->n_voltages;
1288 int i;
1289 int min_uV = INT_MAX;
1290 int max_uV = INT_MIN;
1291 int cmin = constraints->min_uV;
1292 int cmax = constraints->max_uV;
1293
1294 /* it's safe to autoconfigure fixed-voltage supplies
1295 and the constraints are used by list_voltage. */
1296 if (count == 1 && !cmin) {
1297 cmin = 1;
1298 cmax = INT_MAX;
1299 constraints->min_uV = cmin;
1300 constraints->max_uV = cmax;
1301 }
1302
1303 /* voltage constraints are optional */
1304 if ((cmin == 0) && (cmax == 0))
1305 return 0;
1306
1307 /* else require explicit machine-level constraints */
1308 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1309 rdev_err(rdev, "invalid voltage constraints\n");
1310 return -EINVAL;
1311 }
1312
1313 /* no need to loop voltages if range is continuous */
1314 if (rdev->desc->continuous_voltage_range)
1315 return 0;
1316
1317 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1318 for (i = 0; i < count; i++) {
1319 int value;
1320
1321 value = ops->list_voltage(rdev, i);
1322 if (value <= 0)
1323 continue;
1324
1325 /* maybe adjust [min_uV..max_uV] */
1326 if (value >= cmin && value < min_uV)
1327 min_uV = value;
1328 if (value <= cmax && value > max_uV)
1329 max_uV = value;
1330 }
1331
1332 /* final: [min_uV..max_uV] valid iff constraints valid */
1333 if (max_uV < min_uV) {
1334 rdev_err(rdev,
1335 "unsupportable voltage constraints %u-%uuV\n",
1336 min_uV, max_uV);
1337 return -EINVAL;
1338 }
1339
1340 /* use regulator's subset of machine constraints */
1341 if (constraints->min_uV < min_uV) {
1342 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1343 constraints->min_uV, min_uV);
1344 constraints->min_uV = min_uV;
1345 }
1346 if (constraints->max_uV > max_uV) {
1347 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1348 constraints->max_uV, max_uV);
1349 constraints->max_uV = max_uV;
1350 }
1351 }
1352
1353 return 0;
1354 }
1355
machine_constraints_current(struct regulator_dev *rdev, struct regulation_constraints *constraints)1356 static int machine_constraints_current(struct regulator_dev *rdev,
1357 struct regulation_constraints *constraints)
1358 {
1359 const struct regulator_ops *ops = rdev->desc->ops;
1360 int ret;
1361
1362 if (!constraints->min_uA && !constraints->max_uA)
1363 return 0;
1364
1365 if (constraints->min_uA > constraints->max_uA) {
1366 rdev_err(rdev, "Invalid current constraints\n");
1367 return -EINVAL;
1368 }
1369
1370 if (!ops->set_current_limit || !ops->get_current_limit) {
1371 rdev_warn(rdev, "Operation of current configuration missing\n");
1372 return 0;
1373 }
1374
1375 /* Set regulator current in constraints range */
1376 ret = ops->set_current_limit(rdev, constraints->min_uA,
1377 constraints->max_uA);
1378 if (ret < 0) {
1379 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1380 return ret;
1381 }
1382
1383 return 0;
1384 }
1385
1386 static int _regulator_do_enable(struct regulator_dev *rdev);
1387
1388 /**
1389 * set_machine_constraints - sets regulator constraints
1390 * @rdev: regulator source
1391 *
1392 * Allows platform initialisation code to define and constrain
1393 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1394 * Constraints *must* be set by platform code in order for some
1395 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1396 * set_mode.
1397 */
set_machine_constraints(struct regulator_dev *rdev)1398 static int set_machine_constraints(struct regulator_dev *rdev)
1399 {
1400 int ret = 0;
1401 const struct regulator_ops *ops = rdev->desc->ops;
1402
1403 ret = machine_constraints_voltage(rdev, rdev->constraints);
1404 if (ret != 0)
1405 return ret;
1406
1407 ret = machine_constraints_current(rdev, rdev->constraints);
1408 if (ret != 0)
1409 return ret;
1410
1411 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1412 ret = ops->set_input_current_limit(rdev,
1413 rdev->constraints->ilim_uA);
1414 if (ret < 0) {
1415 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1416 return ret;
1417 }
1418 }
1419
1420 /* do we need to setup our suspend state */
1421 if (rdev->constraints->initial_state) {
1422 ret = suspend_set_initial_state(rdev);
1423 if (ret < 0) {
1424 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1425 return ret;
1426 }
1427 }
1428
1429 if (rdev->constraints->initial_mode) {
1430 if (!ops->set_mode) {
1431 rdev_err(rdev, "no set_mode operation\n");
1432 return -EINVAL;
1433 }
1434
1435 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1436 if (ret < 0) {
1437 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1438 return ret;
1439 }
1440 } else if (rdev->constraints->system_load) {
1441 /*
1442 * We'll only apply the initial system load if an
1443 * initial mode wasn't specified.
1444 */
1445 drms_uA_update(rdev);
1446 }
1447
1448 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1449 && ops->set_ramp_delay) {
1450 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1451 if (ret < 0) {
1452 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1453 return ret;
1454 }
1455 }
1456
1457 if (rdev->constraints->pull_down && ops->set_pull_down) {
1458 ret = ops->set_pull_down(rdev);
1459 if (ret < 0) {
1460 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1461 return ret;
1462 }
1463 }
1464
1465 if (rdev->constraints->soft_start && ops->set_soft_start) {
1466 ret = ops->set_soft_start(rdev);
1467 if (ret < 0) {
1468 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1469 return ret;
1470 }
1471 }
1472
1473 if (rdev->constraints->over_current_protection
1474 && ops->set_over_current_protection) {
1475 ret = ops->set_over_current_protection(rdev);
1476 if (ret < 0) {
1477 rdev_err(rdev, "failed to set over current protection: %pe\n",
1478 ERR_PTR(ret));
1479 return ret;
1480 }
1481 }
1482
1483 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1484 bool ad_state = (rdev->constraints->active_discharge ==
1485 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1486
1487 ret = ops->set_active_discharge(rdev, ad_state);
1488 if (ret < 0) {
1489 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1490 return ret;
1491 }
1492 }
1493
1494 /* If the constraints say the regulator should be on at this point
1495 * and we have control then make sure it is enabled.
1496 */
1497 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1498 /* If we want to enable this regulator, make sure that we know
1499 * the supplying regulator.
1500 */
1501 if (rdev->supply_name && !rdev->supply)
1502 return -EPROBE_DEFER;
1503
1504 /* If supplying regulator has already been enabled,
1505 * it's not intended to have use_count increment
1506 * when rdev is only boot-on.
1507 */
1508 if (rdev->supply &&
1509 (rdev->constraints->always_on ||
1510 !regulator_is_enabled(rdev->supply))) {
1511 ret = regulator_enable(rdev->supply);
1512 if (ret < 0) {
1513 _regulator_put(rdev->supply);
1514 rdev->supply = NULL;
1515 return ret;
1516 }
1517 }
1518
1519 ret = _regulator_do_enable(rdev);
1520 if (ret < 0 && ret != -EINVAL) {
1521 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1522 return ret;
1523 }
1524
1525 if (rdev->constraints->always_on)
1526 rdev->use_count++;
1527 } else if (rdev->desc->off_on_delay) {
1528 rdev->last_off_jiffy = jiffies;
1529 }
1530
1531 print_constraints(rdev);
1532 return 0;
1533 }
1534
1535 /**
1536 * set_supply - set regulator supply regulator
1537 * @rdev: regulator (locked)
1538 * @supply_rdev: supply regulator (locked))
1539 *
1540 * Called by platform initialisation code to set the supply regulator for this
1541 * regulator. This ensures that a regulators supply will also be enabled by the
1542 * core if it's child is enabled.
1543 */
set_supply(struct regulator_dev *rdev, struct regulator_dev *supply_rdev)1544 static int set_supply(struct regulator_dev *rdev,
1545 struct regulator_dev *supply_rdev)
1546 {
1547 int err;
1548
1549 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1550
1551 if (!try_module_get(supply_rdev->owner))
1552 return -ENODEV;
1553
1554 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1555 if (rdev->supply == NULL) {
1556 module_put(supply_rdev->owner);
1557 err = -ENOMEM;
1558 return err;
1559 }
1560 supply_rdev->open_count++;
1561
1562 return 0;
1563 }
1564
1565 /**
1566 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1567 * @rdev: regulator source
1568 * @consumer_dev_name: dev_name() string for device supply applies to
1569 * @supply: symbolic name for supply
1570 *
1571 * Allows platform initialisation code to map physical regulator
1572 * sources to symbolic names for supplies for use by devices. Devices
1573 * should use these symbolic names to request regulators, avoiding the
1574 * need to provide board-specific regulator names as platform data.
1575 */
set_consumer_device_supply(struct regulator_dev *rdev, const char *consumer_dev_name, const char *supply)1576 static int set_consumer_device_supply(struct regulator_dev *rdev,
1577 const char *consumer_dev_name,
1578 const char *supply)
1579 {
1580 struct regulator_map *node, *new_node;
1581 int has_dev;
1582
1583 if (supply == NULL)
1584 return -EINVAL;
1585
1586 if (consumer_dev_name != NULL)
1587 has_dev = 1;
1588 else
1589 has_dev = 0;
1590
1591 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1592 if (new_node == NULL)
1593 return -ENOMEM;
1594
1595 new_node->regulator = rdev;
1596 new_node->supply = supply;
1597
1598 if (has_dev) {
1599 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1600 if (new_node->dev_name == NULL) {
1601 kfree(new_node);
1602 return -ENOMEM;
1603 }
1604 }
1605
1606 mutex_lock(®ulator_list_mutex);
1607 list_for_each_entry(node, ®ulator_map_list, list) {
1608 if (node->dev_name && consumer_dev_name) {
1609 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1610 continue;
1611 } else if (node->dev_name || consumer_dev_name) {
1612 continue;
1613 }
1614
1615 if (strcmp(node->supply, supply) != 0)
1616 continue;
1617
1618 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1619 consumer_dev_name,
1620 dev_name(&node->regulator->dev),
1621 node->regulator->desc->name,
1622 supply,
1623 dev_name(&rdev->dev), rdev_get_name(rdev));
1624 goto fail;
1625 }
1626
1627 list_add(&new_node->list, ®ulator_map_list);
1628 mutex_unlock(®ulator_list_mutex);
1629
1630 return 0;
1631
1632 fail:
1633 mutex_unlock(®ulator_list_mutex);
1634 kfree(new_node->dev_name);
1635 kfree(new_node);
1636 return -EBUSY;
1637 }
1638
unset_regulator_supplies(struct regulator_dev *rdev)1639 static void unset_regulator_supplies(struct regulator_dev *rdev)
1640 {
1641 struct regulator_map *node, *n;
1642
1643 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1644 if (rdev == node->regulator) {
1645 list_del(&node->list);
1646 kfree(node->dev_name);
1647 kfree(node);
1648 }
1649 }
1650 }
1651
1652 #ifdef CONFIG_DEBUG_FS
constraint_flags_read_file(struct file *file, char __user *user_buf, size_t count, loff_t *ppos)1653 static ssize_t constraint_flags_read_file(struct file *file,
1654 char __user *user_buf,
1655 size_t count, loff_t *ppos)
1656 {
1657 const struct regulator *regulator = file->private_data;
1658 const struct regulation_constraints *c = regulator->rdev->constraints;
1659 char *buf;
1660 ssize_t ret;
1661
1662 if (!c)
1663 return 0;
1664
1665 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1666 if (!buf)
1667 return -ENOMEM;
1668
1669 ret = snprintf(buf, PAGE_SIZE,
1670 "always_on: %u\n"
1671 "boot_on: %u\n"
1672 "apply_uV: %u\n"
1673 "ramp_disable: %u\n"
1674 "soft_start: %u\n"
1675 "pull_down: %u\n"
1676 "over_current_protection: %u\n",
1677 c->always_on,
1678 c->boot_on,
1679 c->apply_uV,
1680 c->ramp_disable,
1681 c->soft_start,
1682 c->pull_down,
1683 c->over_current_protection);
1684
1685 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1686 kfree(buf);
1687
1688 return ret;
1689 }
1690
1691 #endif
1692
1693 static const struct file_operations constraint_flags_fops = {
1694 #ifdef CONFIG_DEBUG_FS
1695 .open = simple_open,
1696 .read = constraint_flags_read_file,
1697 .llseek = default_llseek,
1698 #endif
1699 };
1700
1701 #define REG_STR_SIZE 64
1702
create_regulator(struct regulator_dev *rdev, struct device *dev, const char *supply_name)1703 static struct regulator *create_regulator(struct regulator_dev *rdev,
1704 struct device *dev,
1705 const char *supply_name)
1706 {
1707 struct regulator *regulator;
1708 int err = 0;
1709
1710 lockdep_assert_held_once(&rdev->mutex.base);
1711
1712 if (dev) {
1713 char buf[REG_STR_SIZE];
1714 int size;
1715
1716 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1717 dev->kobj.name, supply_name);
1718 if (size >= REG_STR_SIZE)
1719 return NULL;
1720
1721 supply_name = kstrdup(buf, GFP_KERNEL);
1722 if (supply_name == NULL)
1723 return NULL;
1724 } else {
1725 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1726 if (supply_name == NULL)
1727 return NULL;
1728 }
1729
1730 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1731 if (regulator == NULL) {
1732 kfree_const(supply_name);
1733 return NULL;
1734 }
1735
1736 regulator->rdev = rdev;
1737 regulator->supply_name = supply_name;
1738
1739 list_add(®ulator->list, &rdev->consumer_list);
1740
1741 if (dev) {
1742 regulator->dev = dev;
1743
1744 /* Add a link to the device sysfs entry */
1745 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1746 supply_name);
1747 if (err) {
1748 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1749 dev->kobj.name, ERR_PTR(err));
1750 /* non-fatal */
1751 }
1752 }
1753
1754 if (err != -EEXIST)
1755 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1756 if (IS_ERR(regulator->debugfs))
1757 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1758
1759 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1760 ®ulator->uA_load);
1761 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1762 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1763 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1764 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1765 debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1766 regulator, &constraint_flags_fops);
1767
1768 /*
1769 * Check now if the regulator is an always on regulator - if
1770 * it is then we don't need to do nearly so much work for
1771 * enable/disable calls.
1772 */
1773 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1774 _regulator_is_enabled(rdev))
1775 regulator->always_on = true;
1776
1777 return regulator;
1778 }
1779
_regulator_get_enable_time(struct regulator_dev *rdev)1780 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1781 {
1782 if (rdev->constraints && rdev->constraints->enable_time)
1783 return rdev->constraints->enable_time;
1784 if (rdev->desc->ops->enable_time)
1785 return rdev->desc->ops->enable_time(rdev);
1786 return rdev->desc->enable_time;
1787 }
1788
regulator_find_supply_alias( struct device *dev, const char *supply)1789 static struct regulator_supply_alias *regulator_find_supply_alias(
1790 struct device *dev, const char *supply)
1791 {
1792 struct regulator_supply_alias *map;
1793
1794 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1795 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1796 return map;
1797
1798 return NULL;
1799 }
1800
regulator_supply_alias(struct device **dev, const char **supply)1801 static void regulator_supply_alias(struct device **dev, const char **supply)
1802 {
1803 struct regulator_supply_alias *map;
1804
1805 map = regulator_find_supply_alias(*dev, *supply);
1806 if (map) {
1807 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1808 *supply, map->alias_supply,
1809 dev_name(map->alias_dev));
1810 *dev = map->alias_dev;
1811 *supply = map->alias_supply;
1812 }
1813 }
1814
regulator_match(struct device *dev, const void *data)1815 static int regulator_match(struct device *dev, const void *data)
1816 {
1817 struct regulator_dev *r = dev_to_rdev(dev);
1818
1819 return strcmp(rdev_get_name(r), data) == 0;
1820 }
1821
regulator_lookup_by_name(const char *name)1822 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1823 {
1824 struct device *dev;
1825
1826 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1827
1828 return dev ? dev_to_rdev(dev) : NULL;
1829 }
1830
1831 /**
1832 * regulator_dev_lookup - lookup a regulator device.
1833 * @dev: device for regulator "consumer".
1834 * @supply: Supply name or regulator ID.
1835 *
1836 * If successful, returns a struct regulator_dev that corresponds to the name
1837 * @supply and with the embedded struct device refcount incremented by one.
1838 * The refcount must be dropped by calling put_device().
1839 * On failure one of the following ERR-PTR-encoded values is returned:
1840 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1841 * in the future.
1842 */
regulator_dev_lookup(struct device *dev, const char *supply)1843 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1844 const char *supply)
1845 {
1846 struct regulator_dev *r = NULL;
1847 struct device_node *node;
1848 struct regulator_map *map;
1849 const char *devname = NULL;
1850
1851 regulator_supply_alias(&dev, &supply);
1852
1853 /* first do a dt based lookup */
1854 if (dev && dev->of_node) {
1855 node = of_get_regulator(dev, supply);
1856 if (node) {
1857 r = of_find_regulator_by_node(node);
1858 of_node_put(node);
1859 if (r)
1860 return r;
1861
1862 /*
1863 * We have a node, but there is no device.
1864 * assume it has not registered yet.
1865 */
1866 return ERR_PTR(-EPROBE_DEFER);
1867 }
1868 }
1869
1870 /* if not found, try doing it non-dt way */
1871 if (dev)
1872 devname = dev_name(dev);
1873
1874 mutex_lock(®ulator_list_mutex);
1875 list_for_each_entry(map, ®ulator_map_list, list) {
1876 /* If the mapping has a device set up it must match */
1877 if (map->dev_name &&
1878 (!devname || strcmp(map->dev_name, devname)))
1879 continue;
1880
1881 if (strcmp(map->supply, supply) == 0 &&
1882 get_device(&map->regulator->dev)) {
1883 r = map->regulator;
1884 break;
1885 }
1886 }
1887 mutex_unlock(®ulator_list_mutex);
1888
1889 if (r)
1890 return r;
1891
1892 r = regulator_lookup_by_name(supply);
1893 if (r)
1894 return r;
1895
1896 return ERR_PTR(-ENODEV);
1897 }
1898
regulator_resolve_supply(struct regulator_dev *rdev)1899 static int regulator_resolve_supply(struct regulator_dev *rdev)
1900 {
1901 struct regulator_dev *r;
1902 struct device *dev = rdev->dev.parent;
1903 struct ww_acquire_ctx ww_ctx;
1904 int ret = 0;
1905
1906 /* No supply to resolve? */
1907 if (!rdev->supply_name)
1908 return 0;
1909
1910 /* Supply already resolved? (fast-path without locking contention) */
1911 if (rdev->supply)
1912 return 0;
1913
1914 r = regulator_dev_lookup(dev, rdev->supply_name);
1915 if (IS_ERR(r)) {
1916 ret = PTR_ERR(r);
1917
1918 /* Did the lookup explicitly defer for us? */
1919 if (ret == -EPROBE_DEFER)
1920 goto out;
1921
1922 if (have_full_constraints()) {
1923 r = dummy_regulator_rdev;
1924 get_device(&r->dev);
1925 } else {
1926 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1927 rdev->supply_name, rdev->desc->name);
1928 ret = -EPROBE_DEFER;
1929 goto out;
1930 }
1931 }
1932
1933 if (r == rdev) {
1934 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1935 rdev->desc->name, rdev->supply_name);
1936 if (!have_full_constraints()) {
1937 ret = -EINVAL;
1938 goto out;
1939 }
1940 r = dummy_regulator_rdev;
1941 get_device(&r->dev);
1942 }
1943
1944 /*
1945 * If the supply's parent device is not the same as the
1946 * regulator's parent device, then ensure the parent device
1947 * is bound before we resolve the supply, in case the parent
1948 * device get probe deferred and unregisters the supply.
1949 */
1950 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1951 if (!device_is_bound(r->dev.parent)) {
1952 put_device(&r->dev);
1953 ret = -EPROBE_DEFER;
1954 goto out;
1955 }
1956 }
1957
1958 /* Recursively resolve the supply of the supply */
1959 ret = regulator_resolve_supply(r);
1960 if (ret < 0) {
1961 put_device(&r->dev);
1962 goto out;
1963 }
1964
1965 /*
1966 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1967 * between rdev->supply null check and setting rdev->supply in
1968 * set_supply() from concurrent tasks.
1969 */
1970 regulator_lock_two(rdev, r, &ww_ctx);
1971
1972 /* Supply just resolved by a concurrent task? */
1973 if (rdev->supply) {
1974 regulator_unlock_two(rdev, r, &ww_ctx);
1975 put_device(&r->dev);
1976 goto out;
1977 }
1978
1979 ret = set_supply(rdev, r);
1980 if (ret < 0) {
1981 regulator_unlock_two(rdev, r, &ww_ctx);
1982 put_device(&r->dev);
1983 goto out;
1984 }
1985
1986 regulator_unlock_two(rdev, r, &ww_ctx);
1987
1988 /*
1989 * In set_machine_constraints() we may have turned this regulator on
1990 * but we couldn't propagate to the supply if it hadn't been resolved
1991 * yet. Do it now.
1992 */
1993 if (rdev->use_count) {
1994 ret = regulator_enable(rdev->supply);
1995 if (ret < 0) {
1996 _regulator_put(rdev->supply);
1997 rdev->supply = NULL;
1998 goto out;
1999 }
2000 }
2001
2002 out:
2003 return ret;
2004 }
2005
2006 /* Internal regulator request function */
_regulator_get(struct device *dev, const char *id, enum regulator_get_type get_type)2007 struct regulator *_regulator_get(struct device *dev, const char *id,
2008 enum regulator_get_type get_type)
2009 {
2010 struct regulator_dev *rdev;
2011 struct regulator *regulator;
2012 struct device_link *link;
2013 int ret;
2014
2015 if (get_type >= MAX_GET_TYPE) {
2016 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2017 return ERR_PTR(-EINVAL);
2018 }
2019
2020 if (id == NULL) {
2021 pr_err("get() with no identifier\n");
2022 return ERR_PTR(-EINVAL);
2023 }
2024
2025 rdev = regulator_dev_lookup(dev, id);
2026 if (IS_ERR(rdev)) {
2027 ret = PTR_ERR(rdev);
2028
2029 /*
2030 * If regulator_dev_lookup() fails with error other
2031 * than -ENODEV our job here is done, we simply return it.
2032 */
2033 if (ret != -ENODEV)
2034 return ERR_PTR(ret);
2035
2036 if (!have_full_constraints()) {
2037 dev_warn(dev,
2038 "incomplete constraints, dummy supplies not allowed\n");
2039 return ERR_PTR(-ENODEV);
2040 }
2041
2042 switch (get_type) {
2043 case NORMAL_GET:
2044 /*
2045 * Assume that a regulator is physically present and
2046 * enabled, even if it isn't hooked up, and just
2047 * provide a dummy.
2048 */
2049 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2050 rdev = dummy_regulator_rdev;
2051 get_device(&rdev->dev);
2052 break;
2053
2054 case EXCLUSIVE_GET:
2055 dev_warn(dev,
2056 "dummy supplies not allowed for exclusive requests\n");
2057 fallthrough;
2058
2059 default:
2060 return ERR_PTR(-ENODEV);
2061 }
2062 }
2063
2064 if (rdev->exclusive) {
2065 regulator = ERR_PTR(-EPERM);
2066 put_device(&rdev->dev);
2067 return regulator;
2068 }
2069
2070 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2071 regulator = ERR_PTR(-EBUSY);
2072 put_device(&rdev->dev);
2073 return regulator;
2074 }
2075
2076 mutex_lock(®ulator_list_mutex);
2077 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2078 mutex_unlock(®ulator_list_mutex);
2079
2080 if (ret != 0) {
2081 regulator = ERR_PTR(-EPROBE_DEFER);
2082 put_device(&rdev->dev);
2083 return regulator;
2084 }
2085
2086 ret = regulator_resolve_supply(rdev);
2087 if (ret < 0) {
2088 regulator = ERR_PTR(ret);
2089 put_device(&rdev->dev);
2090 return regulator;
2091 }
2092
2093 if (!try_module_get(rdev->owner)) {
2094 regulator = ERR_PTR(-EPROBE_DEFER);
2095 put_device(&rdev->dev);
2096 return regulator;
2097 }
2098
2099 regulator_lock(rdev);
2100 regulator = create_regulator(rdev, dev, id);
2101 regulator_unlock(rdev);
2102 if (regulator == NULL) {
2103 regulator = ERR_PTR(-ENOMEM);
2104 module_put(rdev->owner);
2105 put_device(&rdev->dev);
2106 return regulator;
2107 }
2108
2109 rdev->open_count++;
2110 if (get_type == EXCLUSIVE_GET) {
2111 rdev->exclusive = 1;
2112
2113 ret = _regulator_is_enabled(rdev);
2114 if (ret > 0) {
2115 rdev->use_count = 1;
2116 regulator->enable_count = 1;
2117 } else {
2118 rdev->use_count = 0;
2119 regulator->enable_count = 0;
2120 }
2121 }
2122
2123 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2124 if (!IS_ERR_OR_NULL(link))
2125 regulator->device_link = true;
2126
2127 return regulator;
2128 }
2129
2130 /**
2131 * regulator_get - lookup and obtain a reference to a regulator.
2132 * @dev: device for regulator "consumer"
2133 * @id: Supply name or regulator ID.
2134 *
2135 * Returns a struct regulator corresponding to the regulator producer,
2136 * or IS_ERR() condition containing errno.
2137 *
2138 * Use of supply names configured via regulator_set_device_supply() is
2139 * strongly encouraged. It is recommended that the supply name used
2140 * should match the name used for the supply and/or the relevant
2141 * device pins in the datasheet.
2142 */
regulator_get(struct device *dev, const char *id)2143 struct regulator *regulator_get(struct device *dev, const char *id)
2144 {
2145 return _regulator_get(dev, id, NORMAL_GET);
2146 }
2147 EXPORT_SYMBOL_GPL(regulator_get);
2148
2149 /**
2150 * regulator_get_exclusive - obtain exclusive access to a regulator.
2151 * @dev: device for regulator "consumer"
2152 * @id: Supply name or regulator ID.
2153 *
2154 * Returns a struct regulator corresponding to the regulator producer,
2155 * or IS_ERR() condition containing errno. Other consumers will be
2156 * unable to obtain this regulator while this reference is held and the
2157 * use count for the regulator will be initialised to reflect the current
2158 * state of the regulator.
2159 *
2160 * This is intended for use by consumers which cannot tolerate shared
2161 * use of the regulator such as those which need to force the
2162 * regulator off for correct operation of the hardware they are
2163 * controlling.
2164 *
2165 * Use of supply names configured via regulator_set_device_supply() is
2166 * strongly encouraged. It is recommended that the supply name used
2167 * should match the name used for the supply and/or the relevant
2168 * device pins in the datasheet.
2169 */
regulator_get_exclusive(struct device *dev, const char *id)2170 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2171 {
2172 return _regulator_get(dev, id, EXCLUSIVE_GET);
2173 }
2174 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2175
2176 /**
2177 * regulator_get_optional - obtain optional access to a regulator.
2178 * @dev: device for regulator "consumer"
2179 * @id: Supply name or regulator ID.
2180 *
2181 * Returns a struct regulator corresponding to the regulator producer,
2182 * or IS_ERR() condition containing errno.
2183 *
2184 * This is intended for use by consumers for devices which can have
2185 * some supplies unconnected in normal use, such as some MMC devices.
2186 * It can allow the regulator core to provide stub supplies for other
2187 * supplies requested using normal regulator_get() calls without
2188 * disrupting the operation of drivers that can handle absent
2189 * supplies.
2190 *
2191 * Use of supply names configured via regulator_set_device_supply() is
2192 * strongly encouraged. It is recommended that the supply name used
2193 * should match the name used for the supply and/or the relevant
2194 * device pins in the datasheet.
2195 */
regulator_get_optional(struct device *dev, const char *id)2196 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2197 {
2198 return _regulator_get(dev, id, OPTIONAL_GET);
2199 }
2200 EXPORT_SYMBOL_GPL(regulator_get_optional);
2201
destroy_regulator(struct regulator *regulator)2202 static void destroy_regulator(struct regulator *regulator)
2203 {
2204 struct regulator_dev *rdev = regulator->rdev;
2205
2206 debugfs_remove_recursive(regulator->debugfs);
2207
2208 if (regulator->dev) {
2209 if (regulator->device_link)
2210 device_link_remove(regulator->dev, &rdev->dev);
2211
2212 /* remove any sysfs entries */
2213 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2214 }
2215
2216 regulator_lock(rdev);
2217 list_del(®ulator->list);
2218
2219 rdev->open_count--;
2220 rdev->exclusive = 0;
2221 regulator_unlock(rdev);
2222
2223 kfree_const(regulator->supply_name);
2224 kfree(regulator);
2225 }
2226
2227 /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator *regulator)2228 static void _regulator_put(struct regulator *regulator)
2229 {
2230 struct regulator_dev *rdev;
2231
2232 if (IS_ERR_OR_NULL(regulator))
2233 return;
2234
2235 lockdep_assert_held_once(®ulator_list_mutex);
2236
2237 /* Docs say you must disable before calling regulator_put() */
2238 WARN_ON(regulator->enable_count);
2239
2240 rdev = regulator->rdev;
2241
2242 destroy_regulator(regulator);
2243
2244 module_put(rdev->owner);
2245 put_device(&rdev->dev);
2246 }
2247
2248 /**
2249 * regulator_put - "free" the regulator source
2250 * @regulator: regulator source
2251 *
2252 * Note: drivers must ensure that all regulator_enable calls made on this
2253 * regulator source are balanced by regulator_disable calls prior to calling
2254 * this function.
2255 */
regulator_put(struct regulator *regulator)2256 void regulator_put(struct regulator *regulator)
2257 {
2258 mutex_lock(®ulator_list_mutex);
2259 _regulator_put(regulator);
2260 mutex_unlock(®ulator_list_mutex);
2261 }
2262 EXPORT_SYMBOL_GPL(regulator_put);
2263
2264 /**
2265 * regulator_register_supply_alias - Provide device alias for supply lookup
2266 *
2267 * @dev: device that will be given as the regulator "consumer"
2268 * @id: Supply name or regulator ID
2269 * @alias_dev: device that should be used to lookup the supply
2270 * @alias_id: Supply name or regulator ID that should be used to lookup the
2271 * supply
2272 *
2273 * All lookups for id on dev will instead be conducted for alias_id on
2274 * alias_dev.
2275 */
regulator_register_supply_alias(struct device *dev, const char *id, struct device *alias_dev, const char *alias_id)2276 int regulator_register_supply_alias(struct device *dev, const char *id,
2277 struct device *alias_dev,
2278 const char *alias_id)
2279 {
2280 struct regulator_supply_alias *map;
2281
2282 map = regulator_find_supply_alias(dev, id);
2283 if (map)
2284 return -EEXIST;
2285
2286 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2287 if (!map)
2288 return -ENOMEM;
2289
2290 map->src_dev = dev;
2291 map->src_supply = id;
2292 map->alias_dev = alias_dev;
2293 map->alias_supply = alias_id;
2294
2295 list_add(&map->list, ®ulator_supply_alias_list);
2296
2297 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2298 id, dev_name(dev), alias_id, dev_name(alias_dev));
2299
2300 return 0;
2301 }
2302 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2303
2304 /**
2305 * regulator_unregister_supply_alias - Remove device alias
2306 *
2307 * @dev: device that will be given as the regulator "consumer"
2308 * @id: Supply name or regulator ID
2309 *
2310 * Remove a lookup alias if one exists for id on dev.
2311 */
regulator_unregister_supply_alias(struct device *dev, const char *id)2312 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2313 {
2314 struct regulator_supply_alias *map;
2315
2316 map = regulator_find_supply_alias(dev, id);
2317 if (map) {
2318 list_del(&map->list);
2319 kfree(map);
2320 }
2321 }
2322 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2323
2324 /**
2325 * regulator_bulk_register_supply_alias - register multiple aliases
2326 *
2327 * @dev: device that will be given as the regulator "consumer"
2328 * @id: List of supply names or regulator IDs
2329 * @alias_dev: device that should be used to lookup the supply
2330 * @alias_id: List of supply names or regulator IDs that should be used to
2331 * lookup the supply
2332 * @num_id: Number of aliases to register
2333 *
2334 * @return 0 on success, an errno on failure.
2335 *
2336 * This helper function allows drivers to register several supply
2337 * aliases in one operation. If any of the aliases cannot be
2338 * registered any aliases that were registered will be removed
2339 * before returning to the caller.
2340 */
regulator_bulk_register_supply_alias(struct device *dev, const char *const *id, struct device *alias_dev, const char *const *alias_id, int num_id)2341 int regulator_bulk_register_supply_alias(struct device *dev,
2342 const char *const *id,
2343 struct device *alias_dev,
2344 const char *const *alias_id,
2345 int num_id)
2346 {
2347 int i;
2348 int ret;
2349
2350 for (i = 0; i < num_id; ++i) {
2351 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2352 alias_id[i]);
2353 if (ret < 0)
2354 goto err;
2355 }
2356
2357 return 0;
2358
2359 err:
2360 dev_err(dev,
2361 "Failed to create supply alias %s,%s -> %s,%s\n",
2362 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2363
2364 while (--i >= 0)
2365 regulator_unregister_supply_alias(dev, id[i]);
2366
2367 return ret;
2368 }
2369 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2370
2371 /**
2372 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2373 *
2374 * @dev: device that will be given as the regulator "consumer"
2375 * @id: List of supply names or regulator IDs
2376 * @num_id: Number of aliases to unregister
2377 *
2378 * This helper function allows drivers to unregister several supply
2379 * aliases in one operation.
2380 */
regulator_bulk_unregister_supply_alias(struct device *dev, const char *const *id, int num_id)2381 void regulator_bulk_unregister_supply_alias(struct device *dev,
2382 const char *const *id,
2383 int num_id)
2384 {
2385 int i;
2386
2387 for (i = 0; i < num_id; ++i)
2388 regulator_unregister_supply_alias(dev, id[i]);
2389 }
2390 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2391
2392
2393 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev *rdev, const struct regulator_config *config)2394 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2395 const struct regulator_config *config)
2396 {
2397 struct regulator_enable_gpio *pin, *new_pin;
2398 struct gpio_desc *gpiod;
2399
2400 gpiod = config->ena_gpiod;
2401 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2402
2403 mutex_lock(®ulator_list_mutex);
2404
2405 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2406 if (pin->gpiod == gpiod) {
2407 rdev_dbg(rdev, "GPIO is already used\n");
2408 goto update_ena_gpio_to_rdev;
2409 }
2410 }
2411
2412 if (new_pin == NULL) {
2413 mutex_unlock(®ulator_list_mutex);
2414 return -ENOMEM;
2415 }
2416
2417 pin = new_pin;
2418 new_pin = NULL;
2419
2420 pin->gpiod = gpiod;
2421 list_add(&pin->list, ®ulator_ena_gpio_list);
2422
2423 update_ena_gpio_to_rdev:
2424 pin->request_count++;
2425 rdev->ena_pin = pin;
2426
2427 mutex_unlock(®ulator_list_mutex);
2428 kfree(new_pin);
2429
2430 return 0;
2431 }
2432
regulator_ena_gpio_free(struct regulator_dev *rdev)2433 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2434 {
2435 struct regulator_enable_gpio *pin, *n;
2436
2437 if (!rdev->ena_pin)
2438 return;
2439
2440 /* Free the GPIO only in case of no use */
2441 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2442 if (pin != rdev->ena_pin)
2443 continue;
2444
2445 if (--pin->request_count)
2446 break;
2447
2448 gpiod_put(pin->gpiod);
2449 list_del(&pin->list);
2450 kfree(pin);
2451 break;
2452 }
2453
2454 rdev->ena_pin = NULL;
2455 }
2456
2457 /**
2458 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2459 * @rdev: regulator_dev structure
2460 * @enable: enable GPIO at initial use?
2461 *
2462 * GPIO is enabled in case of initial use. (enable_count is 0)
2463 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2464 */
regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)2465 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2466 {
2467 struct regulator_enable_gpio *pin = rdev->ena_pin;
2468
2469 if (!pin)
2470 return -EINVAL;
2471
2472 if (enable) {
2473 /* Enable GPIO at initial use */
2474 if (pin->enable_count == 0)
2475 gpiod_set_value_cansleep(pin->gpiod, 1);
2476
2477 pin->enable_count++;
2478 } else {
2479 if (pin->enable_count > 1) {
2480 pin->enable_count--;
2481 return 0;
2482 }
2483
2484 /* Disable GPIO if not used */
2485 if (pin->enable_count <= 1) {
2486 gpiod_set_value_cansleep(pin->gpiod, 0);
2487 pin->enable_count = 0;
2488 }
2489 }
2490
2491 return 0;
2492 }
2493
2494 /**
2495 * _regulator_enable_delay - a delay helper function
2496 * @delay: time to delay in microseconds
2497 *
2498 * Delay for the requested amount of time as per the guidelines in:
2499 *
2500 * Documentation/timers/timers-howto.rst
2501 *
2502 * The assumption here is that regulators will never be enabled in
2503 * atomic context and therefore sleeping functions can be used.
2504 */
_regulator_enable_delay(unsigned int delay)2505 static void _regulator_enable_delay(unsigned int delay)
2506 {
2507 unsigned int ms = delay / 1000;
2508 unsigned int us = delay % 1000;
2509
2510 if (ms > 0) {
2511 /*
2512 * For small enough values, handle super-millisecond
2513 * delays in the usleep_range() call below.
2514 */
2515 if (ms < 20)
2516 us += ms * 1000;
2517 else
2518 msleep(ms);
2519 }
2520
2521 /*
2522 * Give the scheduler some room to coalesce with any other
2523 * wakeup sources. For delays shorter than 10 us, don't even
2524 * bother setting up high-resolution timers and just busy-
2525 * loop.
2526 */
2527 if (us >= 10)
2528 usleep_range(us, us + 100);
2529 else
2530 udelay(us);
2531 }
2532
2533 /**
2534 * _regulator_check_status_enabled
2535 *
2536 * A helper function to check if the regulator status can be interpreted
2537 * as 'regulator is enabled'.
2538 * @rdev: the regulator device to check
2539 *
2540 * Return:
2541 * * 1 - if status shows regulator is in enabled state
2542 * * 0 - if not enabled state
2543 * * Error Value - as received from ops->get_status()
2544 */
_regulator_check_status_enabled(struct regulator_dev *rdev)2545 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2546 {
2547 int ret = rdev->desc->ops->get_status(rdev);
2548
2549 if (ret < 0) {
2550 rdev_info(rdev, "get_status returned error: %d\n", ret);
2551 return ret;
2552 }
2553
2554 switch (ret) {
2555 case REGULATOR_STATUS_OFF:
2556 case REGULATOR_STATUS_ERROR:
2557 case REGULATOR_STATUS_UNDEFINED:
2558 return 0;
2559 default:
2560 return 1;
2561 }
2562 }
2563
_regulator_do_enable(struct regulator_dev *rdev)2564 static int _regulator_do_enable(struct regulator_dev *rdev)
2565 {
2566 int ret, delay;
2567
2568 /* Query before enabling in case configuration dependent. */
2569 ret = _regulator_get_enable_time(rdev);
2570 if (ret >= 0) {
2571 delay = ret;
2572 } else {
2573 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2574 delay = 0;
2575 }
2576
2577 trace_regulator_enable(rdev_get_name(rdev));
2578
2579 if (rdev->desc->off_on_delay) {
2580 /* if needed, keep a distance of off_on_delay from last time
2581 * this regulator was disabled.
2582 */
2583 unsigned long start_jiffy = jiffies;
2584 unsigned long intended, max_delay, remaining;
2585
2586 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2587 intended = rdev->last_off_jiffy + max_delay;
2588
2589 if (time_before(start_jiffy, intended)) {
2590 /* calc remaining jiffies to deal with one-time
2591 * timer wrapping.
2592 * in case of multiple timer wrapping, either it can be
2593 * detected by out-of-range remaining, or it cannot be
2594 * detected and we get a penalty of
2595 * _regulator_enable_delay().
2596 */
2597 remaining = intended - start_jiffy;
2598 if (remaining <= max_delay)
2599 _regulator_enable_delay(
2600 jiffies_to_usecs(remaining));
2601 }
2602 }
2603
2604 if (rdev->ena_pin) {
2605 if (!rdev->ena_gpio_state) {
2606 ret = regulator_ena_gpio_ctrl(rdev, true);
2607 if (ret < 0)
2608 return ret;
2609 rdev->ena_gpio_state = 1;
2610 }
2611 } else if (rdev->desc->ops->enable) {
2612 ret = rdev->desc->ops->enable(rdev);
2613 if (ret < 0)
2614 return ret;
2615 } else {
2616 return -EINVAL;
2617 }
2618
2619 /* Allow the regulator to ramp; it would be useful to extend
2620 * this for bulk operations so that the regulators can ramp
2621 * together. */
2622 trace_regulator_enable_delay(rdev_get_name(rdev));
2623
2624 /* If poll_enabled_time is set, poll upto the delay calculated
2625 * above, delaying poll_enabled_time uS to check if the regulator
2626 * actually got enabled.
2627 * If the regulator isn't enabled after enable_delay has
2628 * expired, return -ETIMEDOUT.
2629 */
2630 if (rdev->desc->poll_enabled_time) {
2631 int time_remaining = delay;
2632
2633 while (time_remaining > 0) {
2634 _regulator_enable_delay(rdev->desc->poll_enabled_time);
2635
2636 if (rdev->desc->ops->get_status) {
2637 ret = _regulator_check_status_enabled(rdev);
2638 if (ret < 0)
2639 return ret;
2640 else if (ret)
2641 break;
2642 } else if (rdev->desc->ops->is_enabled(rdev))
2643 break;
2644
2645 time_remaining -= rdev->desc->poll_enabled_time;
2646 }
2647
2648 if (time_remaining <= 0) {
2649 rdev_err(rdev, "Enabled check timed out\n");
2650 return -ETIMEDOUT;
2651 }
2652 } else {
2653 _regulator_enable_delay(delay);
2654 }
2655
2656 trace_regulator_enable_complete(rdev_get_name(rdev));
2657
2658 return 0;
2659 }
2660
2661 /**
2662 * _regulator_handle_consumer_enable - handle that a consumer enabled
2663 * @regulator: regulator source
2664 *
2665 * Some things on a regulator consumer (like the contribution towards total
2666 * load on the regulator) only have an effect when the consumer wants the
2667 * regulator enabled. Explained in example with two consumers of the same
2668 * regulator:
2669 * consumer A: set_load(100); => total load = 0
2670 * consumer A: regulator_enable(); => total load = 100
2671 * consumer B: set_load(1000); => total load = 100
2672 * consumer B: regulator_enable(); => total load = 1100
2673 * consumer A: regulator_disable(); => total_load = 1000
2674 *
2675 * This function (together with _regulator_handle_consumer_disable) is
2676 * responsible for keeping track of the refcount for a given regulator consumer
2677 * and applying / unapplying these things.
2678 *
2679 * Returns 0 upon no error; -error upon error.
2680 */
_regulator_handle_consumer_enable(struct regulator *regulator)2681 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2682 {
2683 int ret;
2684 struct regulator_dev *rdev = regulator->rdev;
2685
2686 lockdep_assert_held_once(&rdev->mutex.base);
2687
2688 regulator->enable_count++;
2689 if (regulator->uA_load && regulator->enable_count == 1) {
2690 ret = drms_uA_update(rdev);
2691 if (ret)
2692 regulator->enable_count--;
2693 return ret;
2694 }
2695
2696 return 0;
2697 }
2698
2699 /**
2700 * _regulator_handle_consumer_disable - handle that a consumer disabled
2701 * @regulator: regulator source
2702 *
2703 * The opposite of _regulator_handle_consumer_enable().
2704 *
2705 * Returns 0 upon no error; -error upon error.
2706 */
_regulator_handle_consumer_disable(struct regulator *regulator)2707 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2708 {
2709 struct regulator_dev *rdev = regulator->rdev;
2710
2711 lockdep_assert_held_once(&rdev->mutex.base);
2712
2713 if (!regulator->enable_count) {
2714 rdev_err(rdev, "Underflow of regulator enable count\n");
2715 return -EINVAL;
2716 }
2717
2718 regulator->enable_count--;
2719 if (regulator->uA_load && regulator->enable_count == 0)
2720 return drms_uA_update(rdev);
2721
2722 return 0;
2723 }
2724
2725 /* locks held by regulator_enable() */
_regulator_enable(struct regulator *regulator)2726 static int _regulator_enable(struct regulator *regulator)
2727 {
2728 struct regulator_dev *rdev = regulator->rdev;
2729 int ret;
2730
2731 lockdep_assert_held_once(&rdev->mutex.base);
2732
2733 if (rdev->use_count == 0 && rdev->supply) {
2734 ret = _regulator_enable(rdev->supply);
2735 if (ret < 0)
2736 return ret;
2737 }
2738
2739 /* balance only if there are regulators coupled */
2740 if (rdev->coupling_desc.n_coupled > 1) {
2741 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2742 if (ret < 0)
2743 goto err_disable_supply;
2744 }
2745
2746 ret = _regulator_handle_consumer_enable(regulator);
2747 if (ret < 0)
2748 goto err_disable_supply;
2749
2750 if (rdev->use_count == 0) {
2751 /* The regulator may on if it's not switchable or left on */
2752 ret = _regulator_is_enabled(rdev);
2753 if (ret == -EINVAL || ret == 0) {
2754 if (!regulator_ops_is_valid(rdev,
2755 REGULATOR_CHANGE_STATUS)) {
2756 ret = -EPERM;
2757 goto err_consumer_disable;
2758 }
2759
2760 ret = _regulator_do_enable(rdev);
2761 if (ret < 0)
2762 goto err_consumer_disable;
2763
2764 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2765 NULL);
2766 } else if (ret < 0) {
2767 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2768 goto err_consumer_disable;
2769 }
2770 /* Fallthrough on positive return values - already enabled */
2771 }
2772
2773 if (regulator->enable_count == 1)
2774 rdev->use_count++;
2775
2776 return 0;
2777
2778 err_consumer_disable:
2779 _regulator_handle_consumer_disable(regulator);
2780
2781 err_disable_supply:
2782 if (rdev->use_count == 0 && rdev->supply)
2783 _regulator_disable(rdev->supply);
2784
2785 return ret;
2786 }
2787
2788 /**
2789 * regulator_enable - enable regulator output
2790 * @regulator: regulator source
2791 *
2792 * Request that the regulator be enabled with the regulator output at
2793 * the predefined voltage or current value. Calls to regulator_enable()
2794 * must be balanced with calls to regulator_disable().
2795 *
2796 * NOTE: the output value can be set by other drivers, boot loader or may be
2797 * hardwired in the regulator.
2798 */
regulator_enable(struct regulator *regulator)2799 int regulator_enable(struct regulator *regulator)
2800 {
2801 struct regulator_dev *rdev = regulator->rdev;
2802 struct ww_acquire_ctx ww_ctx;
2803 int ret;
2804
2805 regulator_lock_dependent(rdev, &ww_ctx);
2806 ret = _regulator_enable(regulator);
2807 regulator_unlock_dependent(rdev, &ww_ctx);
2808
2809 return ret;
2810 }
2811 EXPORT_SYMBOL_GPL(regulator_enable);
2812
_regulator_do_disable(struct regulator_dev *rdev)2813 static int _regulator_do_disable(struct regulator_dev *rdev)
2814 {
2815 int ret;
2816
2817 trace_regulator_disable(rdev_get_name(rdev));
2818
2819 if (rdev->ena_pin) {
2820 if (rdev->ena_gpio_state) {
2821 ret = regulator_ena_gpio_ctrl(rdev, false);
2822 if (ret < 0)
2823 return ret;
2824 rdev->ena_gpio_state = 0;
2825 }
2826
2827 } else if (rdev->desc->ops->disable) {
2828 ret = rdev->desc->ops->disable(rdev);
2829 if (ret != 0)
2830 return ret;
2831 }
2832
2833 /* cares about last_off_jiffy only if off_on_delay is required by
2834 * device.
2835 */
2836 if (rdev->desc->off_on_delay)
2837 rdev->last_off_jiffy = jiffies;
2838
2839 trace_regulator_disable_complete(rdev_get_name(rdev));
2840
2841 return 0;
2842 }
2843
2844 /* locks held by regulator_disable() */
_regulator_disable(struct regulator *regulator)2845 static int _regulator_disable(struct regulator *regulator)
2846 {
2847 struct regulator_dev *rdev = regulator->rdev;
2848 int ret = 0;
2849
2850 lockdep_assert_held_once(&rdev->mutex.base);
2851
2852 if (WARN(regulator->enable_count == 0,
2853 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2854 return -EIO;
2855
2856 if (regulator->enable_count == 1) {
2857 /* disabling last enable_count from this regulator */
2858 /* are we the last user and permitted to disable ? */
2859 if (rdev->use_count == 1 &&
2860 (rdev->constraints && !rdev->constraints->always_on)) {
2861
2862 /* we are last user */
2863 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2864 ret = _notifier_call_chain(rdev,
2865 REGULATOR_EVENT_PRE_DISABLE,
2866 NULL);
2867 if (ret & NOTIFY_STOP_MASK)
2868 return -EINVAL;
2869
2870 ret = _regulator_do_disable(rdev);
2871 if (ret < 0) {
2872 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2873 _notifier_call_chain(rdev,
2874 REGULATOR_EVENT_ABORT_DISABLE,
2875 NULL);
2876 return ret;
2877 }
2878 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2879 NULL);
2880 }
2881
2882 rdev->use_count = 0;
2883 } else if (rdev->use_count > 1) {
2884 rdev->use_count--;
2885 }
2886 }
2887
2888 if (ret == 0)
2889 ret = _regulator_handle_consumer_disable(regulator);
2890
2891 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2892 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2893
2894 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2895 ret = _regulator_disable(rdev->supply);
2896
2897 return ret;
2898 }
2899
2900 /**
2901 * regulator_disable - disable regulator output
2902 * @regulator: regulator source
2903 *
2904 * Disable the regulator output voltage or current. Calls to
2905 * regulator_enable() must be balanced with calls to
2906 * regulator_disable().
2907 *
2908 * NOTE: this will only disable the regulator output if no other consumer
2909 * devices have it enabled, the regulator device supports disabling and
2910 * machine constraints permit this operation.
2911 */
regulator_disable(struct regulator *regulator)2912 int regulator_disable(struct regulator *regulator)
2913 {
2914 struct regulator_dev *rdev = regulator->rdev;
2915 struct ww_acquire_ctx ww_ctx;
2916 int ret;
2917
2918 regulator_lock_dependent(rdev, &ww_ctx);
2919 ret = _regulator_disable(regulator);
2920 regulator_unlock_dependent(rdev, &ww_ctx);
2921
2922 return ret;
2923 }
2924 EXPORT_SYMBOL_GPL(regulator_disable);
2925
2926 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev *rdev)2927 static int _regulator_force_disable(struct regulator_dev *rdev)
2928 {
2929 int ret = 0;
2930
2931 lockdep_assert_held_once(&rdev->mutex.base);
2932
2933 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2934 REGULATOR_EVENT_PRE_DISABLE, NULL);
2935 if (ret & NOTIFY_STOP_MASK)
2936 return -EINVAL;
2937
2938 ret = _regulator_do_disable(rdev);
2939 if (ret < 0) {
2940 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2941 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2942 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2943 return ret;
2944 }
2945
2946 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2947 REGULATOR_EVENT_DISABLE, NULL);
2948
2949 return 0;
2950 }
2951
2952 /**
2953 * regulator_force_disable - force disable regulator output
2954 * @regulator: regulator source
2955 *
2956 * Forcibly disable the regulator output voltage or current.
2957 * NOTE: this *will* disable the regulator output even if other consumer
2958 * devices have it enabled. This should be used for situations when device
2959 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2960 */
regulator_force_disable(struct regulator *regulator)2961 int regulator_force_disable(struct regulator *regulator)
2962 {
2963 struct regulator_dev *rdev = regulator->rdev;
2964 struct ww_acquire_ctx ww_ctx;
2965 int ret;
2966
2967 regulator_lock_dependent(rdev, &ww_ctx);
2968
2969 ret = _regulator_force_disable(regulator->rdev);
2970
2971 if (rdev->coupling_desc.n_coupled > 1)
2972 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2973
2974 if (regulator->uA_load) {
2975 regulator->uA_load = 0;
2976 ret = drms_uA_update(rdev);
2977 }
2978
2979 if (rdev->use_count != 0 && rdev->supply)
2980 _regulator_disable(rdev->supply);
2981
2982 regulator_unlock_dependent(rdev, &ww_ctx);
2983
2984 return ret;
2985 }
2986 EXPORT_SYMBOL_GPL(regulator_force_disable);
2987
regulator_disable_work(struct work_struct *work)2988 static void regulator_disable_work(struct work_struct *work)
2989 {
2990 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2991 disable_work.work);
2992 struct ww_acquire_ctx ww_ctx;
2993 int count, i, ret;
2994 struct regulator *regulator;
2995 int total_count = 0;
2996
2997 regulator_lock_dependent(rdev, &ww_ctx);
2998
2999 /*
3000 * Workqueue functions queue the new work instance while the previous
3001 * work instance is being processed. Cancel the queued work instance
3002 * as the work instance under processing does the job of the queued
3003 * work instance.
3004 */
3005 cancel_delayed_work(&rdev->disable_work);
3006
3007 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3008 count = regulator->deferred_disables;
3009
3010 if (!count)
3011 continue;
3012
3013 total_count += count;
3014 regulator->deferred_disables = 0;
3015
3016 for (i = 0; i < count; i++) {
3017 ret = _regulator_disable(regulator);
3018 if (ret != 0)
3019 rdev_err(rdev, "Deferred disable failed: %pe\n",
3020 ERR_PTR(ret));
3021 }
3022 }
3023 WARN_ON(!total_count);
3024
3025 if (rdev->coupling_desc.n_coupled > 1)
3026 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3027
3028 regulator_unlock_dependent(rdev, &ww_ctx);
3029 }
3030
3031 /**
3032 * regulator_disable_deferred - disable regulator output with delay
3033 * @regulator: regulator source
3034 * @ms: milliseconds until the regulator is disabled
3035 *
3036 * Execute regulator_disable() on the regulator after a delay. This
3037 * is intended for use with devices that require some time to quiesce.
3038 *
3039 * NOTE: this will only disable the regulator output if no other consumer
3040 * devices have it enabled, the regulator device supports disabling and
3041 * machine constraints permit this operation.
3042 */
regulator_disable_deferred(struct regulator *regulator, int ms)3043 int regulator_disable_deferred(struct regulator *regulator, int ms)
3044 {
3045 struct regulator_dev *rdev = regulator->rdev;
3046
3047 if (!ms)
3048 return regulator_disable(regulator);
3049
3050 regulator_lock(rdev);
3051 regulator->deferred_disables++;
3052 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3053 msecs_to_jiffies(ms));
3054 regulator_unlock(rdev);
3055
3056 return 0;
3057 }
3058 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3059
_regulator_is_enabled(struct regulator_dev *rdev)3060 static int _regulator_is_enabled(struct regulator_dev *rdev)
3061 {
3062 /* A GPIO control always takes precedence */
3063 if (rdev->ena_pin)
3064 return rdev->ena_gpio_state;
3065
3066 /* If we don't know then assume that the regulator is always on */
3067 if (!rdev->desc->ops->is_enabled)
3068 return 1;
3069
3070 return rdev->desc->ops->is_enabled(rdev);
3071 }
3072
_regulator_list_voltage(struct regulator_dev *rdev, unsigned selector, int lock)3073 static int _regulator_list_voltage(struct regulator_dev *rdev,
3074 unsigned selector, int lock)
3075 {
3076 const struct regulator_ops *ops = rdev->desc->ops;
3077 int ret;
3078
3079 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3080 return rdev->desc->fixed_uV;
3081
3082 if (ops->list_voltage) {
3083 if (selector >= rdev->desc->n_voltages)
3084 return -EINVAL;
3085 if (lock)
3086 regulator_lock(rdev);
3087 ret = ops->list_voltage(rdev, selector);
3088 if (lock)
3089 regulator_unlock(rdev);
3090 } else if (rdev->is_switch && rdev->supply) {
3091 ret = _regulator_list_voltage(rdev->supply->rdev,
3092 selector, lock);
3093 } else {
3094 return -EINVAL;
3095 }
3096
3097 if (ret > 0) {
3098 if (ret < rdev->constraints->min_uV)
3099 ret = 0;
3100 else if (ret > rdev->constraints->max_uV)
3101 ret = 0;
3102 }
3103
3104 return ret;
3105 }
3106
3107 /**
3108 * regulator_is_enabled - is the regulator output enabled
3109 * @regulator: regulator source
3110 *
3111 * Returns positive if the regulator driver backing the source/client
3112 * has requested that the device be enabled, zero if it hasn't, else a
3113 * negative errno code.
3114 *
3115 * Note that the device backing this regulator handle can have multiple
3116 * users, so it might be enabled even if regulator_enable() was never
3117 * called for this particular source.
3118 */
regulator_is_enabled(struct regulator *regulator)3119 int regulator_is_enabled(struct regulator *regulator)
3120 {
3121 int ret;
3122
3123 if (regulator->always_on)
3124 return 1;
3125
3126 regulator_lock(regulator->rdev);
3127 ret = _regulator_is_enabled(regulator->rdev);
3128 regulator_unlock(regulator->rdev);
3129
3130 return ret;
3131 }
3132 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3133
3134 /**
3135 * regulator_count_voltages - count regulator_list_voltage() selectors
3136 * @regulator: regulator source
3137 *
3138 * Returns number of selectors, or negative errno. Selectors are
3139 * numbered starting at zero, and typically correspond to bitfields
3140 * in hardware registers.
3141 */
regulator_count_voltages(struct regulator *regulator)3142 int regulator_count_voltages(struct regulator *regulator)
3143 {
3144 struct regulator_dev *rdev = regulator->rdev;
3145
3146 if (rdev->desc->n_voltages)
3147 return rdev->desc->n_voltages;
3148
3149 if (!rdev->is_switch || !rdev->supply)
3150 return -EINVAL;
3151
3152 return regulator_count_voltages(rdev->supply);
3153 }
3154 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3155
3156 /**
3157 * regulator_list_voltage - enumerate supported voltages
3158 * @regulator: regulator source
3159 * @selector: identify voltage to list
3160 * Context: can sleep
3161 *
3162 * Returns a voltage that can be passed to @regulator_set_voltage(),
3163 * zero if this selector code can't be used on this system, or a
3164 * negative errno.
3165 */
regulator_list_voltage(struct regulator *regulator, unsigned selector)3166 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3167 {
3168 return _regulator_list_voltage(regulator->rdev, selector, 1);
3169 }
3170 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3171
3172 /**
3173 * regulator_get_regmap - get the regulator's register map
3174 * @regulator: regulator source
3175 *
3176 * Returns the register map for the given regulator, or an ERR_PTR value
3177 * if the regulator doesn't use regmap.
3178 */
regulator_get_regmap(struct regulator *regulator)3179 struct regmap *regulator_get_regmap(struct regulator *regulator)
3180 {
3181 struct regmap *map = regulator->rdev->regmap;
3182
3183 return map ? map : ERR_PTR(-EOPNOTSUPP);
3184 }
3185
3186 /**
3187 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3188 * @regulator: regulator source
3189 * @vsel_reg: voltage selector register, output parameter
3190 * @vsel_mask: mask for voltage selector bitfield, output parameter
3191 *
3192 * Returns the hardware register offset and bitmask used for setting the
3193 * regulator voltage. This might be useful when configuring voltage-scaling
3194 * hardware or firmware that can make I2C requests behind the kernel's back,
3195 * for example.
3196 *
3197 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3198 * and 0 is returned, otherwise a negative errno is returned.
3199 */
regulator_get_hardware_vsel_register(struct regulator *regulator, unsigned *vsel_reg, unsigned *vsel_mask)3200 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3201 unsigned *vsel_reg,
3202 unsigned *vsel_mask)
3203 {
3204 struct regulator_dev *rdev = regulator->rdev;
3205 const struct regulator_ops *ops = rdev->desc->ops;
3206
3207 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3208 return -EOPNOTSUPP;
3209
3210 *vsel_reg = rdev->desc->vsel_reg;
3211 *vsel_mask = rdev->desc->vsel_mask;
3212
3213 return 0;
3214 }
3215 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3216
3217 /**
3218 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3219 * @regulator: regulator source
3220 * @selector: identify voltage to list
3221 *
3222 * Converts the selector to a hardware-specific voltage selector that can be
3223 * directly written to the regulator registers. The address of the voltage
3224 * register can be determined by calling @regulator_get_hardware_vsel_register.
3225 *
3226 * On error a negative errno is returned.
3227 */
regulator_list_hardware_vsel(struct regulator *regulator, unsigned selector)3228 int regulator_list_hardware_vsel(struct regulator *regulator,
3229 unsigned selector)
3230 {
3231 struct regulator_dev *rdev = regulator->rdev;
3232 const struct regulator_ops *ops = rdev->desc->ops;
3233
3234 if (selector >= rdev->desc->n_voltages)
3235 return -EINVAL;
3236 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3237 return -EOPNOTSUPP;
3238
3239 return selector;
3240 }
3241 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3242
3243 /**
3244 * regulator_get_linear_step - return the voltage step size between VSEL values
3245 * @regulator: regulator source
3246 *
3247 * Returns the voltage step size between VSEL values for linear
3248 * regulators, or return 0 if the regulator isn't a linear regulator.
3249 */
regulator_get_linear_step(struct regulator *regulator)3250 unsigned int regulator_get_linear_step(struct regulator *regulator)
3251 {
3252 struct regulator_dev *rdev = regulator->rdev;
3253
3254 return rdev->desc->uV_step;
3255 }
3256 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3257
3258 /**
3259 * regulator_is_supported_voltage - check if a voltage range can be supported
3260 *
3261 * @regulator: Regulator to check.
3262 * @min_uV: Minimum required voltage in uV.
3263 * @max_uV: Maximum required voltage in uV.
3264 *
3265 * Returns a boolean.
3266 */
regulator_is_supported_voltage(struct regulator *regulator, int min_uV, int max_uV)3267 int regulator_is_supported_voltage(struct regulator *regulator,
3268 int min_uV, int max_uV)
3269 {
3270 struct regulator_dev *rdev = regulator->rdev;
3271 int i, voltages, ret;
3272
3273 /* If we can't change voltage check the current voltage */
3274 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3275 ret = regulator_get_voltage(regulator);
3276 if (ret >= 0)
3277 return min_uV <= ret && ret <= max_uV;
3278 else
3279 return ret;
3280 }
3281
3282 /* Any voltage within constrains range is fine? */
3283 if (rdev->desc->continuous_voltage_range)
3284 return min_uV >= rdev->constraints->min_uV &&
3285 max_uV <= rdev->constraints->max_uV;
3286
3287 ret = regulator_count_voltages(regulator);
3288 if (ret < 0)
3289 return 0;
3290 voltages = ret;
3291
3292 for (i = 0; i < voltages; i++) {
3293 ret = regulator_list_voltage(regulator, i);
3294
3295 if (ret >= min_uV && ret <= max_uV)
3296 return 1;
3297 }
3298
3299 return 0;
3300 }
3301 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3302
regulator_map_voltage(struct regulator_dev *rdev, int min_uV, int max_uV)3303 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3304 int max_uV)
3305 {
3306 const struct regulator_desc *desc = rdev->desc;
3307
3308 if (desc->ops->map_voltage)
3309 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3310
3311 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3312 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3313
3314 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3315 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3316
3317 if (desc->ops->list_voltage ==
3318 regulator_list_voltage_pickable_linear_range)
3319 return regulator_map_voltage_pickable_linear_range(rdev,
3320 min_uV, max_uV);
3321
3322 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3323 }
3324
_regulator_call_set_voltage(struct regulator_dev *rdev, int min_uV, int max_uV, unsigned *selector)3325 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3326 int min_uV, int max_uV,
3327 unsigned *selector)
3328 {
3329 struct pre_voltage_change_data data;
3330 int ret;
3331
3332 data.old_uV = regulator_get_voltage_rdev(rdev);
3333 data.min_uV = min_uV;
3334 data.max_uV = max_uV;
3335 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3336 &data);
3337 if (ret & NOTIFY_STOP_MASK)
3338 return -EINVAL;
3339
3340 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3341 if (ret >= 0)
3342 return ret;
3343
3344 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3345 (void *)data.old_uV);
3346
3347 return ret;
3348 }
3349
_regulator_call_set_voltage_sel(struct regulator_dev *rdev, int uV, unsigned selector)3350 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3351 int uV, unsigned selector)
3352 {
3353 struct pre_voltage_change_data data;
3354 int ret;
3355
3356 data.old_uV = regulator_get_voltage_rdev(rdev);
3357 data.min_uV = uV;
3358 data.max_uV = uV;
3359 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3360 &data);
3361 if (ret & NOTIFY_STOP_MASK)
3362 return -EINVAL;
3363
3364 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3365 if (ret >= 0)
3366 return ret;
3367
3368 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3369 (void *)data.old_uV);
3370
3371 return ret;
3372 }
3373
_regulator_set_voltage_sel_step(struct regulator_dev *rdev, int uV, int new_selector)3374 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3375 int uV, int new_selector)
3376 {
3377 const struct regulator_ops *ops = rdev->desc->ops;
3378 int diff, old_sel, curr_sel, ret;
3379
3380 /* Stepping is only needed if the regulator is enabled. */
3381 if (!_regulator_is_enabled(rdev))
3382 goto final_set;
3383
3384 if (!ops->get_voltage_sel)
3385 return -EINVAL;
3386
3387 old_sel = ops->get_voltage_sel(rdev);
3388 if (old_sel < 0)
3389 return old_sel;
3390
3391 diff = new_selector - old_sel;
3392 if (diff == 0)
3393 return 0; /* No change needed. */
3394
3395 if (diff > 0) {
3396 /* Stepping up. */
3397 for (curr_sel = old_sel + rdev->desc->vsel_step;
3398 curr_sel < new_selector;
3399 curr_sel += rdev->desc->vsel_step) {
3400 /*
3401 * Call the callback directly instead of using
3402 * _regulator_call_set_voltage_sel() as we don't
3403 * want to notify anyone yet. Same in the branch
3404 * below.
3405 */
3406 ret = ops->set_voltage_sel(rdev, curr_sel);
3407 if (ret)
3408 goto try_revert;
3409 }
3410 } else {
3411 /* Stepping down. */
3412 for (curr_sel = old_sel - rdev->desc->vsel_step;
3413 curr_sel > new_selector;
3414 curr_sel -= rdev->desc->vsel_step) {
3415 ret = ops->set_voltage_sel(rdev, curr_sel);
3416 if (ret)
3417 goto try_revert;
3418 }
3419 }
3420
3421 final_set:
3422 /* The final selector will trigger the notifiers. */
3423 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3424
3425 try_revert:
3426 /*
3427 * At least try to return to the previous voltage if setting a new
3428 * one failed.
3429 */
3430 (void)ops->set_voltage_sel(rdev, old_sel);
3431 return ret;
3432 }
3433
_regulator_set_voltage_time(struct regulator_dev *rdev, int old_uV, int new_uV)3434 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3435 int old_uV, int new_uV)
3436 {
3437 unsigned int ramp_delay = 0;
3438
3439 if (rdev->constraints->ramp_delay)
3440 ramp_delay = rdev->constraints->ramp_delay;
3441 else if (rdev->desc->ramp_delay)
3442 ramp_delay = rdev->desc->ramp_delay;
3443 else if (rdev->constraints->settling_time)
3444 return rdev->constraints->settling_time;
3445 else if (rdev->constraints->settling_time_up &&
3446 (new_uV > old_uV))
3447 return rdev->constraints->settling_time_up;
3448 else if (rdev->constraints->settling_time_down &&
3449 (new_uV < old_uV))
3450 return rdev->constraints->settling_time_down;
3451
3452 if (ramp_delay == 0) {
3453 rdev_dbg(rdev, "ramp_delay not set\n");
3454 return 0;
3455 }
3456
3457 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3458 }
3459
_regulator_do_set_voltage(struct regulator_dev *rdev, int min_uV, int max_uV)3460 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3461 int min_uV, int max_uV)
3462 {
3463 int ret;
3464 int delay = 0;
3465 int best_val = 0;
3466 unsigned int selector;
3467 int old_selector = -1;
3468 const struct regulator_ops *ops = rdev->desc->ops;
3469 int old_uV = regulator_get_voltage_rdev(rdev);
3470
3471 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3472
3473 min_uV += rdev->constraints->uV_offset;
3474 max_uV += rdev->constraints->uV_offset;
3475
3476 /*
3477 * If we can't obtain the old selector there is not enough
3478 * info to call set_voltage_time_sel().
3479 */
3480 if (_regulator_is_enabled(rdev) &&
3481 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3482 old_selector = ops->get_voltage_sel(rdev);
3483 if (old_selector < 0)
3484 return old_selector;
3485 }
3486
3487 if (ops->set_voltage) {
3488 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3489 &selector);
3490
3491 if (ret >= 0) {
3492 if (ops->list_voltage)
3493 best_val = ops->list_voltage(rdev,
3494 selector);
3495 else
3496 best_val = regulator_get_voltage_rdev(rdev);
3497 }
3498
3499 } else if (ops->set_voltage_sel) {
3500 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3501 if (ret >= 0) {
3502 best_val = ops->list_voltage(rdev, ret);
3503 if (min_uV <= best_val && max_uV >= best_val) {
3504 selector = ret;
3505 if (old_selector == selector)
3506 ret = 0;
3507 else if (rdev->desc->vsel_step)
3508 ret = _regulator_set_voltage_sel_step(
3509 rdev, best_val, selector);
3510 else
3511 ret = _regulator_call_set_voltage_sel(
3512 rdev, best_val, selector);
3513 } else {
3514 ret = -EINVAL;
3515 }
3516 }
3517 } else {
3518 ret = -EINVAL;
3519 }
3520
3521 if (ret)
3522 goto out;
3523
3524 if (ops->set_voltage_time_sel) {
3525 /*
3526 * Call set_voltage_time_sel if successfully obtained
3527 * old_selector
3528 */
3529 if (old_selector >= 0 && old_selector != selector)
3530 delay = ops->set_voltage_time_sel(rdev, old_selector,
3531 selector);
3532 } else {
3533 if (old_uV != best_val) {
3534 if (ops->set_voltage_time)
3535 delay = ops->set_voltage_time(rdev, old_uV,
3536 best_val);
3537 else
3538 delay = _regulator_set_voltage_time(rdev,
3539 old_uV,
3540 best_val);
3541 }
3542 }
3543
3544 if (delay < 0) {
3545 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3546 delay = 0;
3547 }
3548
3549 /* Insert any necessary delays */
3550 if (delay >= 1000) {
3551 mdelay(delay / 1000);
3552 udelay(delay % 1000);
3553 } else if (delay) {
3554 udelay(delay);
3555 }
3556
3557 if (best_val >= 0) {
3558 unsigned long data = best_val;
3559
3560 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3561 (void *)data);
3562 }
3563
3564 out:
3565 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3566
3567 return ret;
3568 }
3569
_regulator_do_set_suspend_voltage(struct regulator_dev *rdev, int min_uV, int max_uV, suspend_state_t state)3570 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3571 int min_uV, int max_uV, suspend_state_t state)
3572 {
3573 struct regulator_state *rstate;
3574 int uV, sel;
3575
3576 rstate = regulator_get_suspend_state(rdev, state);
3577 if (rstate == NULL)
3578 return -EINVAL;
3579
3580 if (min_uV < rstate->min_uV)
3581 min_uV = rstate->min_uV;
3582 if (max_uV > rstate->max_uV)
3583 max_uV = rstate->max_uV;
3584
3585 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3586 if (sel < 0)
3587 return sel;
3588
3589 uV = rdev->desc->ops->list_voltage(rdev, sel);
3590 if (uV >= min_uV && uV <= max_uV)
3591 rstate->uV = uV;
3592
3593 return 0;
3594 }
3595
regulator_set_voltage_unlocked(struct regulator *regulator, int min_uV, int max_uV, suspend_state_t state)3596 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3597 int min_uV, int max_uV,
3598 suspend_state_t state)
3599 {
3600 struct regulator_dev *rdev = regulator->rdev;
3601 struct regulator_voltage *voltage = ®ulator->voltage[state];
3602 int ret = 0;
3603 int old_min_uV, old_max_uV;
3604 int current_uV;
3605
3606 /* If we're setting the same range as last time the change
3607 * should be a noop (some cpufreq implementations use the same
3608 * voltage for multiple frequencies, for example).
3609 */
3610 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3611 goto out;
3612
3613 /* If we're trying to set a range that overlaps the current voltage,
3614 * return successfully even though the regulator does not support
3615 * changing the voltage.
3616 */
3617 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3618 current_uV = regulator_get_voltage_rdev(rdev);
3619 if (min_uV <= current_uV && current_uV <= max_uV) {
3620 voltage->min_uV = min_uV;
3621 voltage->max_uV = max_uV;
3622 goto out;
3623 }
3624 }
3625
3626 /* sanity check */
3627 if (!rdev->desc->ops->set_voltage &&
3628 !rdev->desc->ops->set_voltage_sel) {
3629 ret = -EINVAL;
3630 goto out;
3631 }
3632
3633 /* constraints check */
3634 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3635 if (ret < 0)
3636 goto out;
3637
3638 /* restore original values in case of error */
3639 old_min_uV = voltage->min_uV;
3640 old_max_uV = voltage->max_uV;
3641 voltage->min_uV = min_uV;
3642 voltage->max_uV = max_uV;
3643
3644 /* for not coupled regulators this will just set the voltage */
3645 ret = regulator_balance_voltage(rdev, state);
3646 if (ret < 0) {
3647 voltage->min_uV = old_min_uV;
3648 voltage->max_uV = old_max_uV;
3649 }
3650
3651 out:
3652 return ret;
3653 }
3654
regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV, int max_uV, suspend_state_t state)3655 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3656 int max_uV, suspend_state_t state)
3657 {
3658 int best_supply_uV = 0;
3659 int supply_change_uV = 0;
3660 int ret;
3661
3662 if (rdev->supply &&
3663 regulator_ops_is_valid(rdev->supply->rdev,
3664 REGULATOR_CHANGE_VOLTAGE) &&
3665 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3666 rdev->desc->ops->get_voltage_sel))) {
3667 int current_supply_uV;
3668 int selector;
3669
3670 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3671 if (selector < 0) {
3672 ret = selector;
3673 goto out;
3674 }
3675
3676 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3677 if (best_supply_uV < 0) {
3678 ret = best_supply_uV;
3679 goto out;
3680 }
3681
3682 best_supply_uV += rdev->desc->min_dropout_uV;
3683
3684 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3685 if (current_supply_uV < 0) {
3686 ret = current_supply_uV;
3687 goto out;
3688 }
3689
3690 supply_change_uV = best_supply_uV - current_supply_uV;
3691 }
3692
3693 if (supply_change_uV > 0) {
3694 ret = regulator_set_voltage_unlocked(rdev->supply,
3695 best_supply_uV, INT_MAX, state);
3696 if (ret) {
3697 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3698 ERR_PTR(ret));
3699 goto out;
3700 }
3701 }
3702
3703 if (state == PM_SUSPEND_ON)
3704 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3705 else
3706 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3707 max_uV, state);
3708 if (ret < 0)
3709 goto out;
3710
3711 if (supply_change_uV < 0) {
3712 ret = regulator_set_voltage_unlocked(rdev->supply,
3713 best_supply_uV, INT_MAX, state);
3714 if (ret)
3715 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3716 ERR_PTR(ret));
3717 /* No need to fail here */
3718 ret = 0;
3719 }
3720
3721 out:
3722 return ret;
3723 }
3724 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3725
regulator_limit_voltage_step(struct regulator_dev *rdev, int *current_uV, int *min_uV)3726 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3727 int *current_uV, int *min_uV)
3728 {
3729 struct regulation_constraints *constraints = rdev->constraints;
3730
3731 /* Limit voltage change only if necessary */
3732 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3733 return 1;
3734
3735 if (*current_uV < 0) {
3736 *current_uV = regulator_get_voltage_rdev(rdev);
3737
3738 if (*current_uV < 0)
3739 return *current_uV;
3740 }
3741
3742 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3743 return 1;
3744
3745 /* Clamp target voltage within the given step */
3746 if (*current_uV < *min_uV)
3747 *min_uV = min(*current_uV + constraints->max_uV_step,
3748 *min_uV);
3749 else
3750 *min_uV = max(*current_uV - constraints->max_uV_step,
3751 *min_uV);
3752
3753 return 0;
3754 }
3755
regulator_get_optimal_voltage(struct regulator_dev *rdev, int *current_uV, int *min_uV, int *max_uV, suspend_state_t state, int n_coupled)3756 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3757 int *current_uV,
3758 int *min_uV, int *max_uV,
3759 suspend_state_t state,
3760 int n_coupled)
3761 {
3762 struct coupling_desc *c_desc = &rdev->coupling_desc;
3763 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3764 struct regulation_constraints *constraints = rdev->constraints;
3765 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3766 int max_current_uV = 0, min_current_uV = INT_MAX;
3767 int highest_min_uV = 0, target_uV, possible_uV;
3768 int i, ret, max_spread;
3769 bool done;
3770
3771 *current_uV = -1;
3772
3773 /*
3774 * If there are no coupled regulators, simply set the voltage
3775 * demanded by consumers.
3776 */
3777 if (n_coupled == 1) {
3778 /*
3779 * If consumers don't provide any demands, set voltage
3780 * to min_uV
3781 */
3782 desired_min_uV = constraints->min_uV;
3783 desired_max_uV = constraints->max_uV;
3784
3785 ret = regulator_check_consumers(rdev,
3786 &desired_min_uV,
3787 &desired_max_uV, state);
3788 if (ret < 0)
3789 return ret;
3790
3791 possible_uV = desired_min_uV;
3792 done = true;
3793
3794 goto finish;
3795 }
3796
3797 /* Find highest min desired voltage */
3798 for (i = 0; i < n_coupled; i++) {
3799 int tmp_min = 0;
3800 int tmp_max = INT_MAX;
3801
3802 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3803
3804 ret = regulator_check_consumers(c_rdevs[i],
3805 &tmp_min,
3806 &tmp_max, state);
3807 if (ret < 0)
3808 return ret;
3809
3810 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3811 if (ret < 0)
3812 return ret;
3813
3814 highest_min_uV = max(highest_min_uV, tmp_min);
3815
3816 if (i == 0) {
3817 desired_min_uV = tmp_min;
3818 desired_max_uV = tmp_max;
3819 }
3820 }
3821
3822 max_spread = constraints->max_spread[0];
3823
3824 /*
3825 * Let target_uV be equal to the desired one if possible.
3826 * If not, set it to minimum voltage, allowed by other coupled
3827 * regulators.
3828 */
3829 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3830
3831 /*
3832 * Find min and max voltages, which currently aren't violating
3833 * max_spread.
3834 */
3835 for (i = 1; i < n_coupled; i++) {
3836 int tmp_act;
3837
3838 if (!_regulator_is_enabled(c_rdevs[i]))
3839 continue;
3840
3841 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3842 if (tmp_act < 0)
3843 return tmp_act;
3844
3845 min_current_uV = min(tmp_act, min_current_uV);
3846 max_current_uV = max(tmp_act, max_current_uV);
3847 }
3848
3849 /* There aren't any other regulators enabled */
3850 if (max_current_uV == 0) {
3851 possible_uV = target_uV;
3852 } else {
3853 /*
3854 * Correct target voltage, so as it currently isn't
3855 * violating max_spread
3856 */
3857 possible_uV = max(target_uV, max_current_uV - max_spread);
3858 possible_uV = min(possible_uV, min_current_uV + max_spread);
3859 }
3860
3861 if (possible_uV > desired_max_uV)
3862 return -EINVAL;
3863
3864 done = (possible_uV == target_uV);
3865 desired_min_uV = possible_uV;
3866
3867 finish:
3868 /* Apply max_uV_step constraint if necessary */
3869 if (state == PM_SUSPEND_ON) {
3870 ret = regulator_limit_voltage_step(rdev, current_uV,
3871 &desired_min_uV);
3872 if (ret < 0)
3873 return ret;
3874
3875 if (ret == 0)
3876 done = false;
3877 }
3878
3879 /* Set current_uV if wasn't done earlier in the code and if necessary */
3880 if (n_coupled > 1 && *current_uV == -1) {
3881
3882 if (_regulator_is_enabled(rdev)) {
3883 ret = regulator_get_voltage_rdev(rdev);
3884 if (ret < 0)
3885 return ret;
3886
3887 *current_uV = ret;
3888 } else {
3889 *current_uV = desired_min_uV;
3890 }
3891 }
3892
3893 *min_uV = desired_min_uV;
3894 *max_uV = desired_max_uV;
3895
3896 return done;
3897 }
3898
regulator_do_balance_voltage(struct regulator_dev *rdev, suspend_state_t state, bool skip_coupled)3899 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3900 suspend_state_t state, bool skip_coupled)
3901 {
3902 struct regulator_dev **c_rdevs;
3903 struct regulator_dev *best_rdev;
3904 struct coupling_desc *c_desc = &rdev->coupling_desc;
3905 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3906 unsigned int delta, best_delta;
3907 unsigned long c_rdev_done = 0;
3908 bool best_c_rdev_done;
3909
3910 c_rdevs = c_desc->coupled_rdevs;
3911 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3912
3913 /*
3914 * Find the best possible voltage change on each loop. Leave the loop
3915 * if there isn't any possible change.
3916 */
3917 do {
3918 best_c_rdev_done = false;
3919 best_delta = 0;
3920 best_min_uV = 0;
3921 best_max_uV = 0;
3922 best_c_rdev = 0;
3923 best_rdev = NULL;
3924
3925 /*
3926 * Find highest difference between optimal voltage
3927 * and current voltage.
3928 */
3929 for (i = 0; i < n_coupled; i++) {
3930 /*
3931 * optimal_uV is the best voltage that can be set for
3932 * i-th regulator at the moment without violating
3933 * max_spread constraint in order to balance
3934 * the coupled voltages.
3935 */
3936 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3937
3938 if (test_bit(i, &c_rdev_done))
3939 continue;
3940
3941 ret = regulator_get_optimal_voltage(c_rdevs[i],
3942 ¤t_uV,
3943 &optimal_uV,
3944 &optimal_max_uV,
3945 state, n_coupled);
3946 if (ret < 0)
3947 goto out;
3948
3949 delta = abs(optimal_uV - current_uV);
3950
3951 if (delta && best_delta <= delta) {
3952 best_c_rdev_done = ret;
3953 best_delta = delta;
3954 best_rdev = c_rdevs[i];
3955 best_min_uV = optimal_uV;
3956 best_max_uV = optimal_max_uV;
3957 best_c_rdev = i;
3958 }
3959 }
3960
3961 /* Nothing to change, return successfully */
3962 if (!best_rdev) {
3963 ret = 0;
3964 goto out;
3965 }
3966
3967 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3968 best_max_uV, state);
3969
3970 if (ret < 0)
3971 goto out;
3972
3973 if (best_c_rdev_done)
3974 set_bit(best_c_rdev, &c_rdev_done);
3975
3976 } while (n_coupled > 1);
3977
3978 out:
3979 return ret;
3980 }
3981
regulator_balance_voltage(struct regulator_dev *rdev, suspend_state_t state)3982 static int regulator_balance_voltage(struct regulator_dev *rdev,
3983 suspend_state_t state)
3984 {
3985 struct coupling_desc *c_desc = &rdev->coupling_desc;
3986 struct regulator_coupler *coupler = c_desc->coupler;
3987 bool skip_coupled = false;
3988
3989 /*
3990 * If system is in a state other than PM_SUSPEND_ON, don't check
3991 * other coupled regulators.
3992 */
3993 if (state != PM_SUSPEND_ON)
3994 skip_coupled = true;
3995
3996 if (c_desc->n_resolved < c_desc->n_coupled) {
3997 rdev_err(rdev, "Not all coupled regulators registered\n");
3998 return -EPERM;
3999 }
4000
4001 /* Invoke custom balancer for customized couplers */
4002 if (coupler && coupler->balance_voltage)
4003 return coupler->balance_voltage(coupler, rdev, state);
4004
4005 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4006 }
4007
4008 /**
4009 * regulator_set_voltage - set regulator output voltage
4010 * @regulator: regulator source
4011 * @min_uV: Minimum required voltage in uV
4012 * @max_uV: Maximum acceptable voltage in uV
4013 *
4014 * Sets a voltage regulator to the desired output voltage. This can be set
4015 * during any regulator state. IOW, regulator can be disabled or enabled.
4016 *
4017 * If the regulator is enabled then the voltage will change to the new value
4018 * immediately otherwise if the regulator is disabled the regulator will
4019 * output at the new voltage when enabled.
4020 *
4021 * NOTE: If the regulator is shared between several devices then the lowest
4022 * request voltage that meets the system constraints will be used.
4023 * Regulator system constraints must be set for this regulator before
4024 * calling this function otherwise this call will fail.
4025 */
regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)4026 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4027 {
4028 struct ww_acquire_ctx ww_ctx;
4029 int ret;
4030
4031 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4032
4033 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4034 PM_SUSPEND_ON);
4035
4036 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4037
4038 return ret;
4039 }
4040 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4041
regulator_suspend_toggle(struct regulator_dev *rdev, suspend_state_t state, bool en)4042 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4043 suspend_state_t state, bool en)
4044 {
4045 struct regulator_state *rstate;
4046
4047 rstate = regulator_get_suspend_state(rdev, state);
4048 if (rstate == NULL)
4049 return -EINVAL;
4050
4051 if (!rstate->changeable)
4052 return -EPERM;
4053
4054 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4055
4056 return 0;
4057 }
4058
regulator_suspend_enable(struct regulator_dev *rdev, suspend_state_t state)4059 int regulator_suspend_enable(struct regulator_dev *rdev,
4060 suspend_state_t state)
4061 {
4062 return regulator_suspend_toggle(rdev, state, true);
4063 }
4064 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4065
regulator_suspend_disable(struct regulator_dev *rdev, suspend_state_t state)4066 int regulator_suspend_disable(struct regulator_dev *rdev,
4067 suspend_state_t state)
4068 {
4069 struct regulator *regulator;
4070 struct regulator_voltage *voltage;
4071
4072 /*
4073 * if any consumer wants this regulator device keeping on in
4074 * suspend states, don't set it as disabled.
4075 */
4076 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4077 voltage = ®ulator->voltage[state];
4078 if (voltage->min_uV || voltage->max_uV)
4079 return 0;
4080 }
4081
4082 return regulator_suspend_toggle(rdev, state, false);
4083 }
4084 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4085
_regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, int max_uV, suspend_state_t state)4086 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4087 int min_uV, int max_uV,
4088 suspend_state_t state)
4089 {
4090 struct regulator_dev *rdev = regulator->rdev;
4091 struct regulator_state *rstate;
4092
4093 rstate = regulator_get_suspend_state(rdev, state);
4094 if (rstate == NULL)
4095 return -EINVAL;
4096
4097 if (rstate->min_uV == rstate->max_uV) {
4098 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4099 return -EPERM;
4100 }
4101
4102 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4103 }
4104
regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, int max_uV, suspend_state_t state)4105 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4106 int max_uV, suspend_state_t state)
4107 {
4108 struct ww_acquire_ctx ww_ctx;
4109 int ret;
4110
4111 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4112 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4113 return -EINVAL;
4114
4115 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4116
4117 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4118 max_uV, state);
4119
4120 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4121
4122 return ret;
4123 }
4124 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4125
4126 /**
4127 * regulator_set_voltage_time - get raise/fall time
4128 * @regulator: regulator source
4129 * @old_uV: starting voltage in microvolts
4130 * @new_uV: target voltage in microvolts
4131 *
4132 * Provided with the starting and ending voltage, this function attempts to
4133 * calculate the time in microseconds required to rise or fall to this new
4134 * voltage.
4135 */
regulator_set_voltage_time(struct regulator *regulator, int old_uV, int new_uV)4136 int regulator_set_voltage_time(struct regulator *regulator,
4137 int old_uV, int new_uV)
4138 {
4139 struct regulator_dev *rdev = regulator->rdev;
4140 const struct regulator_ops *ops = rdev->desc->ops;
4141 int old_sel = -1;
4142 int new_sel = -1;
4143 int voltage;
4144 int i;
4145
4146 if (ops->set_voltage_time)
4147 return ops->set_voltage_time(rdev, old_uV, new_uV);
4148 else if (!ops->set_voltage_time_sel)
4149 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4150
4151 /* Currently requires operations to do this */
4152 if (!ops->list_voltage || !rdev->desc->n_voltages)
4153 return -EINVAL;
4154
4155 for (i = 0; i < rdev->desc->n_voltages; i++) {
4156 /* We only look for exact voltage matches here */
4157
4158 if (old_sel >= 0 && new_sel >= 0)
4159 break;
4160
4161 voltage = regulator_list_voltage(regulator, i);
4162 if (voltage < 0)
4163 return -EINVAL;
4164 if (voltage == 0)
4165 continue;
4166 if (voltage == old_uV)
4167 old_sel = i;
4168 if (voltage == new_uV)
4169 new_sel = i;
4170 }
4171
4172 if (old_sel < 0 || new_sel < 0)
4173 return -EINVAL;
4174
4175 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4176 }
4177 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4178
4179 /**
4180 * regulator_set_voltage_time_sel - get raise/fall time
4181 * @rdev: regulator source device
4182 * @old_selector: selector for starting voltage
4183 * @new_selector: selector for target voltage
4184 *
4185 * Provided with the starting and target voltage selectors, this function
4186 * returns time in microseconds required to rise or fall to this new voltage
4187 *
4188 * Drivers providing ramp_delay in regulation_constraints can use this as their
4189 * set_voltage_time_sel() operation.
4190 */
regulator_set_voltage_time_sel(struct regulator_dev *rdev, unsigned int old_selector, unsigned int new_selector)4191 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4192 unsigned int old_selector,
4193 unsigned int new_selector)
4194 {
4195 int old_volt, new_volt;
4196
4197 /* sanity check */
4198 if (!rdev->desc->ops->list_voltage)
4199 return -EINVAL;
4200
4201 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4202 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4203
4204 if (rdev->desc->ops->set_voltage_time)
4205 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4206 new_volt);
4207 else
4208 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4209 }
4210 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4211
4212 /**
4213 * regulator_sync_voltage - re-apply last regulator output voltage
4214 * @regulator: regulator source
4215 *
4216 * Re-apply the last configured voltage. This is intended to be used
4217 * where some external control source the consumer is cooperating with
4218 * has caused the configured voltage to change.
4219 */
regulator_sync_voltage(struct regulator *regulator)4220 int regulator_sync_voltage(struct regulator *regulator)
4221 {
4222 struct regulator_dev *rdev = regulator->rdev;
4223 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4224 int ret, min_uV, max_uV;
4225
4226 regulator_lock(rdev);
4227
4228 if (!rdev->desc->ops->set_voltage &&
4229 !rdev->desc->ops->set_voltage_sel) {
4230 ret = -EINVAL;
4231 goto out;
4232 }
4233
4234 /* This is only going to work if we've had a voltage configured. */
4235 if (!voltage->min_uV && !voltage->max_uV) {
4236 ret = -EINVAL;
4237 goto out;
4238 }
4239
4240 min_uV = voltage->min_uV;
4241 max_uV = voltage->max_uV;
4242
4243 /* This should be a paranoia check... */
4244 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4245 if (ret < 0)
4246 goto out;
4247
4248 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4249 if (ret < 0)
4250 goto out;
4251
4252 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4253
4254 out:
4255 regulator_unlock(rdev);
4256 return ret;
4257 }
4258 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4259
regulator_get_voltage_rdev(struct regulator_dev *rdev)4260 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4261 {
4262 int sel, ret;
4263 bool bypassed;
4264
4265 if (rdev->desc->ops->get_bypass) {
4266 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4267 if (ret < 0)
4268 return ret;
4269 if (bypassed) {
4270 /* if bypassed the regulator must have a supply */
4271 if (!rdev->supply) {
4272 rdev_err(rdev,
4273 "bypassed regulator has no supply!\n");
4274 return -EPROBE_DEFER;
4275 }
4276
4277 return regulator_get_voltage_rdev(rdev->supply->rdev);
4278 }
4279 }
4280
4281 if (rdev->desc->ops->get_voltage_sel) {
4282 sel = rdev->desc->ops->get_voltage_sel(rdev);
4283 if (sel < 0)
4284 return sel;
4285 ret = rdev->desc->ops->list_voltage(rdev, sel);
4286 } else if (rdev->desc->ops->get_voltage) {
4287 ret = rdev->desc->ops->get_voltage(rdev);
4288 } else if (rdev->desc->ops->list_voltage) {
4289 ret = rdev->desc->ops->list_voltage(rdev, 0);
4290 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4291 ret = rdev->desc->fixed_uV;
4292 } else if (rdev->supply) {
4293 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4294 } else if (rdev->supply_name) {
4295 return -EPROBE_DEFER;
4296 } else {
4297 return -EINVAL;
4298 }
4299
4300 if (ret < 0)
4301 return ret;
4302 return ret - rdev->constraints->uV_offset;
4303 }
4304 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4305
4306 /**
4307 * regulator_get_voltage - get regulator output voltage
4308 * @regulator: regulator source
4309 *
4310 * This returns the current regulator voltage in uV.
4311 *
4312 * NOTE: If the regulator is disabled it will return the voltage value. This
4313 * function should not be used to determine regulator state.
4314 */
regulator_get_voltage(struct regulator *regulator)4315 int regulator_get_voltage(struct regulator *regulator)
4316 {
4317 struct ww_acquire_ctx ww_ctx;
4318 int ret;
4319
4320 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4321 ret = regulator_get_voltage_rdev(regulator->rdev);
4322 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4323
4324 return ret;
4325 }
4326 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4327
4328 /**
4329 * regulator_set_current_limit - set regulator output current limit
4330 * @regulator: regulator source
4331 * @min_uA: Minimum supported current in uA
4332 * @max_uA: Maximum supported current in uA
4333 *
4334 * Sets current sink to the desired output current. This can be set during
4335 * any regulator state. IOW, regulator can be disabled or enabled.
4336 *
4337 * If the regulator is enabled then the current will change to the new value
4338 * immediately otherwise if the regulator is disabled the regulator will
4339 * output at the new current when enabled.
4340 *
4341 * NOTE: Regulator system constraints must be set for this regulator before
4342 * calling this function otherwise this call will fail.
4343 */
regulator_set_current_limit(struct regulator *regulator, int min_uA, int max_uA)4344 int regulator_set_current_limit(struct regulator *regulator,
4345 int min_uA, int max_uA)
4346 {
4347 struct regulator_dev *rdev = regulator->rdev;
4348 int ret;
4349
4350 regulator_lock(rdev);
4351
4352 /* sanity check */
4353 if (!rdev->desc->ops->set_current_limit) {
4354 ret = -EINVAL;
4355 goto out;
4356 }
4357
4358 /* constraints check */
4359 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4360 if (ret < 0)
4361 goto out;
4362
4363 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4364 out:
4365 regulator_unlock(rdev);
4366 return ret;
4367 }
4368 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4369
_regulator_get_current_limit_unlocked(struct regulator_dev *rdev)4370 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4371 {
4372 /* sanity check */
4373 if (!rdev->desc->ops->get_current_limit)
4374 return -EINVAL;
4375
4376 return rdev->desc->ops->get_current_limit(rdev);
4377 }
4378
_regulator_get_current_limit(struct regulator_dev *rdev)4379 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4380 {
4381 int ret;
4382
4383 regulator_lock(rdev);
4384 ret = _regulator_get_current_limit_unlocked(rdev);
4385 regulator_unlock(rdev);
4386
4387 return ret;
4388 }
4389
4390 /**
4391 * regulator_get_current_limit - get regulator output current
4392 * @regulator: regulator source
4393 *
4394 * This returns the current supplied by the specified current sink in uA.
4395 *
4396 * NOTE: If the regulator is disabled it will return the current value. This
4397 * function should not be used to determine regulator state.
4398 */
regulator_get_current_limit(struct regulator *regulator)4399 int regulator_get_current_limit(struct regulator *regulator)
4400 {
4401 return _regulator_get_current_limit(regulator->rdev);
4402 }
4403 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4404
4405 /**
4406 * regulator_set_mode - set regulator operating mode
4407 * @regulator: regulator source
4408 * @mode: operating mode - one of the REGULATOR_MODE constants
4409 *
4410 * Set regulator operating mode to increase regulator efficiency or improve
4411 * regulation performance.
4412 *
4413 * NOTE: Regulator system constraints must be set for this regulator before
4414 * calling this function otherwise this call will fail.
4415 */
regulator_set_mode(struct regulator *regulator, unsigned int mode)4416 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4417 {
4418 struct regulator_dev *rdev = regulator->rdev;
4419 int ret;
4420 int regulator_curr_mode;
4421
4422 regulator_lock(rdev);
4423
4424 /* sanity check */
4425 if (!rdev->desc->ops->set_mode) {
4426 ret = -EINVAL;
4427 goto out;
4428 }
4429
4430 /* return if the same mode is requested */
4431 if (rdev->desc->ops->get_mode) {
4432 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4433 if (regulator_curr_mode == mode) {
4434 ret = 0;
4435 goto out;
4436 }
4437 }
4438
4439 /* constraints check */
4440 ret = regulator_mode_constrain(rdev, &mode);
4441 if (ret < 0)
4442 goto out;
4443
4444 ret = rdev->desc->ops->set_mode(rdev, mode);
4445 out:
4446 regulator_unlock(rdev);
4447 return ret;
4448 }
4449 EXPORT_SYMBOL_GPL(regulator_set_mode);
4450
_regulator_get_mode_unlocked(struct regulator_dev *rdev)4451 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4452 {
4453 /* sanity check */
4454 if (!rdev->desc->ops->get_mode)
4455 return -EINVAL;
4456
4457 return rdev->desc->ops->get_mode(rdev);
4458 }
4459
_regulator_get_mode(struct regulator_dev *rdev)4460 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4461 {
4462 int ret;
4463
4464 regulator_lock(rdev);
4465 ret = _regulator_get_mode_unlocked(rdev);
4466 regulator_unlock(rdev);
4467
4468 return ret;
4469 }
4470
4471 /**
4472 * regulator_get_mode - get regulator operating mode
4473 * @regulator: regulator source
4474 *
4475 * Get the current regulator operating mode.
4476 */
regulator_get_mode(struct regulator *regulator)4477 unsigned int regulator_get_mode(struct regulator *regulator)
4478 {
4479 return _regulator_get_mode(regulator->rdev);
4480 }
4481 EXPORT_SYMBOL_GPL(regulator_get_mode);
4482
_regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags)4483 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4484 unsigned int *flags)
4485 {
4486 int ret;
4487
4488 regulator_lock(rdev);
4489
4490 /* sanity check */
4491 if (!rdev->desc->ops->get_error_flags) {
4492 ret = -EINVAL;
4493 goto out;
4494 }
4495
4496 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4497 out:
4498 regulator_unlock(rdev);
4499 return ret;
4500 }
4501
4502 /**
4503 * regulator_get_error_flags - get regulator error information
4504 * @regulator: regulator source
4505 * @flags: pointer to store error flags
4506 *
4507 * Get the current regulator error information.
4508 */
regulator_get_error_flags(struct regulator *regulator, unsigned int *flags)4509 int regulator_get_error_flags(struct regulator *regulator,
4510 unsigned int *flags)
4511 {
4512 return _regulator_get_error_flags(regulator->rdev, flags);
4513 }
4514 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4515
4516 /**
4517 * regulator_set_load - set regulator load
4518 * @regulator: regulator source
4519 * @uA_load: load current
4520 *
4521 * Notifies the regulator core of a new device load. This is then used by
4522 * DRMS (if enabled by constraints) to set the most efficient regulator
4523 * operating mode for the new regulator loading.
4524 *
4525 * Consumer devices notify their supply regulator of the maximum power
4526 * they will require (can be taken from device datasheet in the power
4527 * consumption tables) when they change operational status and hence power
4528 * state. Examples of operational state changes that can affect power
4529 * consumption are :-
4530 *
4531 * o Device is opened / closed.
4532 * o Device I/O is about to begin or has just finished.
4533 * o Device is idling in between work.
4534 *
4535 * This information is also exported via sysfs to userspace.
4536 *
4537 * DRMS will sum the total requested load on the regulator and change
4538 * to the most efficient operating mode if platform constraints allow.
4539 *
4540 * NOTE: when a regulator consumer requests to have a regulator
4541 * disabled then any load that consumer requested no longer counts
4542 * toward the total requested load. If the regulator is re-enabled
4543 * then the previously requested load will start counting again.
4544 *
4545 * If a regulator is an always-on regulator then an individual consumer's
4546 * load will still be removed if that consumer is fully disabled.
4547 *
4548 * On error a negative errno is returned.
4549 */
regulator_set_load(struct regulator *regulator, int uA_load)4550 int regulator_set_load(struct regulator *regulator, int uA_load)
4551 {
4552 struct regulator_dev *rdev = regulator->rdev;
4553 int old_uA_load;
4554 int ret = 0;
4555
4556 regulator_lock(rdev);
4557 old_uA_load = regulator->uA_load;
4558 regulator->uA_load = uA_load;
4559 if (regulator->enable_count && old_uA_load != uA_load) {
4560 ret = drms_uA_update(rdev);
4561 if (ret < 0)
4562 regulator->uA_load = old_uA_load;
4563 }
4564 regulator_unlock(rdev);
4565
4566 return ret;
4567 }
4568 EXPORT_SYMBOL_GPL(regulator_set_load);
4569
4570 /**
4571 * regulator_allow_bypass - allow the regulator to go into bypass mode
4572 *
4573 * @regulator: Regulator to configure
4574 * @enable: enable or disable bypass mode
4575 *
4576 * Allow the regulator to go into bypass mode if all other consumers
4577 * for the regulator also enable bypass mode and the machine
4578 * constraints allow this. Bypass mode means that the regulator is
4579 * simply passing the input directly to the output with no regulation.
4580 */
regulator_allow_bypass(struct regulator *regulator, bool enable)4581 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4582 {
4583 struct regulator_dev *rdev = regulator->rdev;
4584 const char *name = rdev_get_name(rdev);
4585 int ret = 0;
4586
4587 if (!rdev->desc->ops->set_bypass)
4588 return 0;
4589
4590 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4591 return 0;
4592
4593 regulator_lock(rdev);
4594
4595 if (enable && !regulator->bypass) {
4596 rdev->bypass_count++;
4597
4598 if (rdev->bypass_count == rdev->open_count) {
4599 trace_regulator_bypass_enable(name);
4600
4601 ret = rdev->desc->ops->set_bypass(rdev, enable);
4602 if (ret != 0)
4603 rdev->bypass_count--;
4604 else
4605 trace_regulator_bypass_enable_complete(name);
4606 }
4607
4608 } else if (!enable && regulator->bypass) {
4609 rdev->bypass_count--;
4610
4611 if (rdev->bypass_count != rdev->open_count) {
4612 trace_regulator_bypass_disable(name);
4613
4614 ret = rdev->desc->ops->set_bypass(rdev, enable);
4615 if (ret != 0)
4616 rdev->bypass_count++;
4617 else
4618 trace_regulator_bypass_disable_complete(name);
4619 }
4620 }
4621
4622 if (ret == 0)
4623 regulator->bypass = enable;
4624
4625 regulator_unlock(rdev);
4626
4627 return ret;
4628 }
4629 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4630
4631 /**
4632 * regulator_register_notifier - register regulator event notifier
4633 * @regulator: regulator source
4634 * @nb: notifier block
4635 *
4636 * Register notifier block to receive regulator events.
4637 */
regulator_register_notifier(struct regulator *regulator, struct notifier_block *nb)4638 int regulator_register_notifier(struct regulator *regulator,
4639 struct notifier_block *nb)
4640 {
4641 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4642 nb);
4643 }
4644 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4645
4646 /**
4647 * regulator_unregister_notifier - unregister regulator event notifier
4648 * @regulator: regulator source
4649 * @nb: notifier block
4650 *
4651 * Unregister regulator event notifier block.
4652 */
regulator_unregister_notifier(struct regulator *regulator, struct notifier_block *nb)4653 int regulator_unregister_notifier(struct regulator *regulator,
4654 struct notifier_block *nb)
4655 {
4656 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4657 nb);
4658 }
4659 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4660
4661 /* notify regulator consumers and downstream regulator consumers.
4662 * Note mutex must be held by caller.
4663 */
_notifier_call_chain(struct regulator_dev *rdev, unsigned long event, void *data)4664 static int _notifier_call_chain(struct regulator_dev *rdev,
4665 unsigned long event, void *data)
4666 {
4667 /* call rdev chain first */
4668 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4669 }
4670
4671 /**
4672 * regulator_bulk_get - get multiple regulator consumers
4673 *
4674 * @dev: Device to supply
4675 * @num_consumers: Number of consumers to register
4676 * @consumers: Configuration of consumers; clients are stored here.
4677 *
4678 * @return 0 on success, an errno on failure.
4679 *
4680 * This helper function allows drivers to get several regulator
4681 * consumers in one operation. If any of the regulators cannot be
4682 * acquired then any regulators that were allocated will be freed
4683 * before returning to the caller.
4684 */
regulator_bulk_get(struct device *dev, int num_consumers, struct regulator_bulk_data *consumers)4685 int regulator_bulk_get(struct device *dev, int num_consumers,
4686 struct regulator_bulk_data *consumers)
4687 {
4688 int i;
4689 int ret;
4690
4691 for (i = 0; i < num_consumers; i++)
4692 consumers[i].consumer = NULL;
4693
4694 for (i = 0; i < num_consumers; i++) {
4695 consumers[i].consumer = regulator_get(dev,
4696 consumers[i].supply);
4697 if (IS_ERR(consumers[i].consumer)) {
4698 ret = PTR_ERR(consumers[i].consumer);
4699 consumers[i].consumer = NULL;
4700 goto err;
4701 }
4702 }
4703
4704 return 0;
4705
4706 err:
4707 if (ret != -EPROBE_DEFER)
4708 dev_err(dev, "Failed to get supply '%s': %pe\n",
4709 consumers[i].supply, ERR_PTR(ret));
4710 else
4711 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4712 consumers[i].supply);
4713
4714 while (--i >= 0)
4715 regulator_put(consumers[i].consumer);
4716
4717 return ret;
4718 }
4719 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4720
regulator_bulk_enable_async(void *data, async_cookie_t cookie)4721 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4722 {
4723 struct regulator_bulk_data *bulk = data;
4724
4725 bulk->ret = regulator_enable(bulk->consumer);
4726 }
4727
4728 /**
4729 * regulator_bulk_enable - enable multiple regulator consumers
4730 *
4731 * @num_consumers: Number of consumers
4732 * @consumers: Consumer data; clients are stored here.
4733 * @return 0 on success, an errno on failure
4734 *
4735 * This convenience API allows consumers to enable multiple regulator
4736 * clients in a single API call. If any consumers cannot be enabled
4737 * then any others that were enabled will be disabled again prior to
4738 * return.
4739 */
regulator_bulk_enable(int num_consumers, struct regulator_bulk_data *consumers)4740 int regulator_bulk_enable(int num_consumers,
4741 struct regulator_bulk_data *consumers)
4742 {
4743 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4744 int i;
4745 int ret = 0;
4746
4747 for (i = 0; i < num_consumers; i++) {
4748 async_schedule_domain(regulator_bulk_enable_async,
4749 &consumers[i], &async_domain);
4750 }
4751
4752 async_synchronize_full_domain(&async_domain);
4753
4754 /* If any consumer failed we need to unwind any that succeeded */
4755 for (i = 0; i < num_consumers; i++) {
4756 if (consumers[i].ret != 0) {
4757 ret = consumers[i].ret;
4758 goto err;
4759 }
4760 }
4761
4762 return 0;
4763
4764 err:
4765 for (i = 0; i < num_consumers; i++) {
4766 if (consumers[i].ret < 0)
4767 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4768 ERR_PTR(consumers[i].ret));
4769 else
4770 regulator_disable(consumers[i].consumer);
4771 }
4772
4773 return ret;
4774 }
4775 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4776
4777 /**
4778 * regulator_bulk_disable - disable multiple regulator consumers
4779 *
4780 * @num_consumers: Number of consumers
4781 * @consumers: Consumer data; clients are stored here.
4782 * @return 0 on success, an errno on failure
4783 *
4784 * This convenience API allows consumers to disable multiple regulator
4785 * clients in a single API call. If any consumers cannot be disabled
4786 * then any others that were disabled will be enabled again prior to
4787 * return.
4788 */
regulator_bulk_disable(int num_consumers, struct regulator_bulk_data *consumers)4789 int regulator_bulk_disable(int num_consumers,
4790 struct regulator_bulk_data *consumers)
4791 {
4792 int i;
4793 int ret, r;
4794
4795 for (i = num_consumers - 1; i >= 0; --i) {
4796 ret = regulator_disable(consumers[i].consumer);
4797 if (ret != 0)
4798 goto err;
4799 }
4800
4801 return 0;
4802
4803 err:
4804 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4805 for (++i; i < num_consumers; ++i) {
4806 r = regulator_enable(consumers[i].consumer);
4807 if (r != 0)
4808 pr_err("Failed to re-enable %s: %pe\n",
4809 consumers[i].supply, ERR_PTR(r));
4810 }
4811
4812 return ret;
4813 }
4814 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4815
4816 /**
4817 * regulator_bulk_force_disable - force disable multiple regulator consumers
4818 *
4819 * @num_consumers: Number of consumers
4820 * @consumers: Consumer data; clients are stored here.
4821 * @return 0 on success, an errno on failure
4822 *
4823 * This convenience API allows consumers to forcibly disable multiple regulator
4824 * clients in a single API call.
4825 * NOTE: This should be used for situations when device damage will
4826 * likely occur if the regulators are not disabled (e.g. over temp).
4827 * Although regulator_force_disable function call for some consumers can
4828 * return error numbers, the function is called for all consumers.
4829 */
regulator_bulk_force_disable(int num_consumers, struct regulator_bulk_data *consumers)4830 int regulator_bulk_force_disable(int num_consumers,
4831 struct regulator_bulk_data *consumers)
4832 {
4833 int i;
4834 int ret = 0;
4835
4836 for (i = 0; i < num_consumers; i++) {
4837 consumers[i].ret =
4838 regulator_force_disable(consumers[i].consumer);
4839
4840 /* Store first error for reporting */
4841 if (consumers[i].ret && !ret)
4842 ret = consumers[i].ret;
4843 }
4844
4845 return ret;
4846 }
4847 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4848
4849 /**
4850 * regulator_bulk_free - free multiple regulator consumers
4851 *
4852 * @num_consumers: Number of consumers
4853 * @consumers: Consumer data; clients are stored here.
4854 *
4855 * This convenience API allows consumers to free multiple regulator
4856 * clients in a single API call.
4857 */
regulator_bulk_free(int num_consumers, struct regulator_bulk_data *consumers)4858 void regulator_bulk_free(int num_consumers,
4859 struct regulator_bulk_data *consumers)
4860 {
4861 int i;
4862
4863 for (i = 0; i < num_consumers; i++) {
4864 regulator_put(consumers[i].consumer);
4865 consumers[i].consumer = NULL;
4866 }
4867 }
4868 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4869
4870 /**
4871 * regulator_notifier_call_chain - call regulator event notifier
4872 * @rdev: regulator source
4873 * @event: notifier block
4874 * @data: callback-specific data.
4875 *
4876 * Called by regulator drivers to notify clients a regulator event has
4877 * occurred.
4878 */
regulator_notifier_call_chain(struct regulator_dev *rdev, unsigned long event, void *data)4879 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4880 unsigned long event, void *data)
4881 {
4882 _notifier_call_chain(rdev, event, data);
4883 return NOTIFY_DONE;
4884
4885 }
4886 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4887
4888 /**
4889 * regulator_mode_to_status - convert a regulator mode into a status
4890 *
4891 * @mode: Mode to convert
4892 *
4893 * Convert a regulator mode into a status.
4894 */
regulator_mode_to_status(unsigned int mode)4895 int regulator_mode_to_status(unsigned int mode)
4896 {
4897 switch (mode) {
4898 case REGULATOR_MODE_FAST:
4899 return REGULATOR_STATUS_FAST;
4900 case REGULATOR_MODE_NORMAL:
4901 return REGULATOR_STATUS_NORMAL;
4902 case REGULATOR_MODE_IDLE:
4903 return REGULATOR_STATUS_IDLE;
4904 case REGULATOR_MODE_STANDBY:
4905 return REGULATOR_STATUS_STANDBY;
4906 default:
4907 return REGULATOR_STATUS_UNDEFINED;
4908 }
4909 }
4910 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4911
4912 static struct attribute *regulator_dev_attrs[] = {
4913 &dev_attr_name.attr,
4914 &dev_attr_num_users.attr,
4915 &dev_attr_type.attr,
4916 &dev_attr_microvolts.attr,
4917 &dev_attr_microamps.attr,
4918 &dev_attr_opmode.attr,
4919 &dev_attr_state.attr,
4920 &dev_attr_status.attr,
4921 &dev_attr_bypass.attr,
4922 &dev_attr_requested_microamps.attr,
4923 &dev_attr_min_microvolts.attr,
4924 &dev_attr_max_microvolts.attr,
4925 &dev_attr_min_microamps.attr,
4926 &dev_attr_max_microamps.attr,
4927 &dev_attr_suspend_standby_state.attr,
4928 &dev_attr_suspend_mem_state.attr,
4929 &dev_attr_suspend_disk_state.attr,
4930 &dev_attr_suspend_standby_microvolts.attr,
4931 &dev_attr_suspend_mem_microvolts.attr,
4932 &dev_attr_suspend_disk_microvolts.attr,
4933 &dev_attr_suspend_standby_mode.attr,
4934 &dev_attr_suspend_mem_mode.attr,
4935 &dev_attr_suspend_disk_mode.attr,
4936 NULL
4937 };
4938
4939 /*
4940 * To avoid cluttering sysfs (and memory) with useless state, only
4941 * create attributes that can be meaningfully displayed.
4942 */
regulator_attr_is_visible(struct kobject *kobj, struct attribute *attr, int idx)4943 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4944 struct attribute *attr, int idx)
4945 {
4946 struct device *dev = kobj_to_dev(kobj);
4947 struct regulator_dev *rdev = dev_to_rdev(dev);
4948 const struct regulator_ops *ops = rdev->desc->ops;
4949 umode_t mode = attr->mode;
4950
4951 /* these three are always present */
4952 if (attr == &dev_attr_name.attr ||
4953 attr == &dev_attr_num_users.attr ||
4954 attr == &dev_attr_type.attr)
4955 return mode;
4956
4957 /* some attributes need specific methods to be displayed */
4958 if (attr == &dev_attr_microvolts.attr) {
4959 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4960 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4961 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4962 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4963 return mode;
4964 return 0;
4965 }
4966
4967 if (attr == &dev_attr_microamps.attr)
4968 return ops->get_current_limit ? mode : 0;
4969
4970 if (attr == &dev_attr_opmode.attr)
4971 return ops->get_mode ? mode : 0;
4972
4973 if (attr == &dev_attr_state.attr)
4974 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4975
4976 if (attr == &dev_attr_status.attr)
4977 return ops->get_status ? mode : 0;
4978
4979 if (attr == &dev_attr_bypass.attr)
4980 return ops->get_bypass ? mode : 0;
4981
4982 /* constraints need specific supporting methods */
4983 if (attr == &dev_attr_min_microvolts.attr ||
4984 attr == &dev_attr_max_microvolts.attr)
4985 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4986
4987 if (attr == &dev_attr_min_microamps.attr ||
4988 attr == &dev_attr_max_microamps.attr)
4989 return ops->set_current_limit ? mode : 0;
4990
4991 if (attr == &dev_attr_suspend_standby_state.attr ||
4992 attr == &dev_attr_suspend_mem_state.attr ||
4993 attr == &dev_attr_suspend_disk_state.attr)
4994 return mode;
4995
4996 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4997 attr == &dev_attr_suspend_mem_microvolts.attr ||
4998 attr == &dev_attr_suspend_disk_microvolts.attr)
4999 return ops->set_suspend_voltage ? mode : 0;
5000
5001 if (attr == &dev_attr_suspend_standby_mode.attr ||
5002 attr == &dev_attr_suspend_mem_mode.attr ||
5003 attr == &dev_attr_suspend_disk_mode.attr)
5004 return ops->set_suspend_mode ? mode : 0;
5005
5006 return mode;
5007 }
5008
5009 static const struct attribute_group regulator_dev_group = {
5010 .attrs = regulator_dev_attrs,
5011 .is_visible = regulator_attr_is_visible,
5012 };
5013
5014 static const struct attribute_group *regulator_dev_groups[] = {
5015 ®ulator_dev_group,
5016 NULL
5017 };
5018
regulator_dev_release(struct device *dev)5019 static void regulator_dev_release(struct device *dev)
5020 {
5021 struct regulator_dev *rdev = dev_get_drvdata(dev);
5022
5023 debugfs_remove_recursive(rdev->debugfs);
5024 kfree(rdev->constraints);
5025 of_node_put(rdev->dev.of_node);
5026 kfree(rdev);
5027 }
5028
rdev_init_debugfs(struct regulator_dev *rdev)5029 static void rdev_init_debugfs(struct regulator_dev *rdev)
5030 {
5031 struct device *parent = rdev->dev.parent;
5032 const char *rname = rdev_get_name(rdev);
5033 char name[NAME_MAX];
5034
5035 /* Avoid duplicate debugfs directory names */
5036 if (parent && rname == rdev->desc->name) {
5037 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5038 rname);
5039 rname = name;
5040 }
5041
5042 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5043 if (IS_ERR(rdev->debugfs))
5044 rdev_dbg(rdev, "Failed to create debugfs directory\n");
5045
5046 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5047 &rdev->use_count);
5048 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5049 &rdev->open_count);
5050 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5051 &rdev->bypass_count);
5052 }
5053
regulator_register_resolve_supply(struct device *dev, void *data)5054 static int regulator_register_resolve_supply(struct device *dev, void *data)
5055 {
5056 struct regulator_dev *rdev = dev_to_rdev(dev);
5057
5058 if (regulator_resolve_supply(rdev))
5059 rdev_dbg(rdev, "unable to resolve supply\n");
5060
5061 return 0;
5062 }
5063
regulator_coupler_register(struct regulator_coupler *coupler)5064 int regulator_coupler_register(struct regulator_coupler *coupler)
5065 {
5066 mutex_lock(®ulator_list_mutex);
5067 list_add_tail(&coupler->list, ®ulator_coupler_list);
5068 mutex_unlock(®ulator_list_mutex);
5069
5070 return 0;
5071 }
5072
5073 static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev *rdev)5074 regulator_find_coupler(struct regulator_dev *rdev)
5075 {
5076 struct regulator_coupler *coupler;
5077 int err;
5078
5079 /*
5080 * Note that regulators are appended to the list and the generic
5081 * coupler is registered first, hence it will be attached at last
5082 * if nobody cared.
5083 */
5084 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5085 err = coupler->attach_regulator(coupler, rdev);
5086 if (!err) {
5087 if (!coupler->balance_voltage &&
5088 rdev->coupling_desc.n_coupled > 2)
5089 goto err_unsupported;
5090
5091 return coupler;
5092 }
5093
5094 if (err < 0)
5095 return ERR_PTR(err);
5096
5097 if (err == 1)
5098 continue;
5099
5100 break;
5101 }
5102
5103 return ERR_PTR(-EINVAL);
5104
5105 err_unsupported:
5106 if (coupler->detach_regulator)
5107 coupler->detach_regulator(coupler, rdev);
5108
5109 rdev_err(rdev,
5110 "Voltage balancing for multiple regulator couples is unimplemented\n");
5111
5112 return ERR_PTR(-EPERM);
5113 }
5114
regulator_resolve_coupling(struct regulator_dev *rdev)5115 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5116 {
5117 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5118 struct coupling_desc *c_desc = &rdev->coupling_desc;
5119 int n_coupled = c_desc->n_coupled;
5120 struct regulator_dev *c_rdev;
5121 int i;
5122
5123 for (i = 1; i < n_coupled; i++) {
5124 /* already resolved */
5125 if (c_desc->coupled_rdevs[i])
5126 continue;
5127
5128 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5129
5130 if (!c_rdev)
5131 continue;
5132
5133 if (c_rdev->coupling_desc.coupler != coupler) {
5134 rdev_err(rdev, "coupler mismatch with %s\n",
5135 rdev_get_name(c_rdev));
5136 return;
5137 }
5138
5139 c_desc->coupled_rdevs[i] = c_rdev;
5140 c_desc->n_resolved++;
5141
5142 regulator_resolve_coupling(c_rdev);
5143 }
5144 }
5145
regulator_remove_coupling(struct regulator_dev *rdev)5146 static void regulator_remove_coupling(struct regulator_dev *rdev)
5147 {
5148 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5149 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5150 struct regulator_dev *__c_rdev, *c_rdev;
5151 unsigned int __n_coupled, n_coupled;
5152 int i, k;
5153 int err;
5154
5155 n_coupled = c_desc->n_coupled;
5156
5157 for (i = 1; i < n_coupled; i++) {
5158 c_rdev = c_desc->coupled_rdevs[i];
5159
5160 if (!c_rdev)
5161 continue;
5162
5163 regulator_lock(c_rdev);
5164
5165 __c_desc = &c_rdev->coupling_desc;
5166 __n_coupled = __c_desc->n_coupled;
5167
5168 for (k = 1; k < __n_coupled; k++) {
5169 __c_rdev = __c_desc->coupled_rdevs[k];
5170
5171 if (__c_rdev == rdev) {
5172 __c_desc->coupled_rdevs[k] = NULL;
5173 __c_desc->n_resolved--;
5174 break;
5175 }
5176 }
5177
5178 regulator_unlock(c_rdev);
5179
5180 c_desc->coupled_rdevs[i] = NULL;
5181 c_desc->n_resolved--;
5182 }
5183
5184 if (coupler && coupler->detach_regulator) {
5185 err = coupler->detach_regulator(coupler, rdev);
5186 if (err)
5187 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5188 ERR_PTR(err));
5189 }
5190
5191 kfree(rdev->coupling_desc.coupled_rdevs);
5192 rdev->coupling_desc.coupled_rdevs = NULL;
5193 }
5194
regulator_init_coupling(struct regulator_dev *rdev)5195 static int regulator_init_coupling(struct regulator_dev *rdev)
5196 {
5197 struct regulator_dev **coupled;
5198 int err, n_phandles;
5199
5200 if (!IS_ENABLED(CONFIG_OF))
5201 n_phandles = 0;
5202 else
5203 n_phandles = of_get_n_coupled(rdev);
5204
5205 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5206 if (!coupled)
5207 return -ENOMEM;
5208
5209 rdev->coupling_desc.coupled_rdevs = coupled;
5210
5211 /*
5212 * Every regulator should always have coupling descriptor filled with
5213 * at least pointer to itself.
5214 */
5215 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5216 rdev->coupling_desc.n_coupled = n_phandles + 1;
5217 rdev->coupling_desc.n_resolved++;
5218
5219 /* regulator isn't coupled */
5220 if (n_phandles == 0)
5221 return 0;
5222
5223 if (!of_check_coupling_data(rdev))
5224 return -EPERM;
5225
5226 mutex_lock(®ulator_list_mutex);
5227 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5228 mutex_unlock(®ulator_list_mutex);
5229
5230 if (IS_ERR(rdev->coupling_desc.coupler)) {
5231 err = PTR_ERR(rdev->coupling_desc.coupler);
5232 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5233 return err;
5234 }
5235
5236 return 0;
5237 }
5238
generic_coupler_attach(struct regulator_coupler *coupler, struct regulator_dev *rdev)5239 static int generic_coupler_attach(struct regulator_coupler *coupler,
5240 struct regulator_dev *rdev)
5241 {
5242 if (rdev->coupling_desc.n_coupled > 2) {
5243 rdev_err(rdev,
5244 "Voltage balancing for multiple regulator couples is unimplemented\n");
5245 return -EPERM;
5246 }
5247
5248 if (!rdev->constraints->always_on) {
5249 rdev_err(rdev,
5250 "Coupling of a non always-on regulator is unimplemented\n");
5251 return -ENOTSUPP;
5252 }
5253
5254 return 0;
5255 }
5256
5257 static struct regulator_coupler generic_regulator_coupler = {
5258 .attach_regulator = generic_coupler_attach,
5259 };
5260
5261 /**
5262 * regulator_register - register regulator
5263 * @regulator_desc: regulator to register
5264 * @cfg: runtime configuration for regulator
5265 *
5266 * Called by regulator drivers to register a regulator.
5267 * Returns a valid pointer to struct regulator_dev on success
5268 * or an ERR_PTR() on error.
5269 */
5270 struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc, const struct regulator_config *cfg)5271 regulator_register(const struct regulator_desc *regulator_desc,
5272 const struct regulator_config *cfg)
5273 {
5274 const struct regulator_init_data *init_data;
5275 struct regulator_config *config = NULL;
5276 static atomic_t regulator_no = ATOMIC_INIT(-1);
5277 struct regulator_dev *rdev;
5278 bool dangling_cfg_gpiod = false;
5279 bool dangling_of_gpiod = false;
5280 struct device *dev;
5281 int ret, i;
5282
5283 if (cfg == NULL)
5284 return ERR_PTR(-EINVAL);
5285 if (cfg->ena_gpiod)
5286 dangling_cfg_gpiod = true;
5287 if (regulator_desc == NULL) {
5288 ret = -EINVAL;
5289 goto rinse;
5290 }
5291
5292 dev = cfg->dev;
5293 WARN_ON(!dev);
5294
5295 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5296 ret = -EINVAL;
5297 goto rinse;
5298 }
5299
5300 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5301 regulator_desc->type != REGULATOR_CURRENT) {
5302 ret = -EINVAL;
5303 goto rinse;
5304 }
5305
5306 /* Only one of each should be implemented */
5307 WARN_ON(regulator_desc->ops->get_voltage &&
5308 regulator_desc->ops->get_voltage_sel);
5309 WARN_ON(regulator_desc->ops->set_voltage &&
5310 regulator_desc->ops->set_voltage_sel);
5311
5312 /* If we're using selectors we must implement list_voltage. */
5313 if (regulator_desc->ops->get_voltage_sel &&
5314 !regulator_desc->ops->list_voltage) {
5315 ret = -EINVAL;
5316 goto rinse;
5317 }
5318 if (regulator_desc->ops->set_voltage_sel &&
5319 !regulator_desc->ops->list_voltage) {
5320 ret = -EINVAL;
5321 goto rinse;
5322 }
5323
5324 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5325 if (rdev == NULL) {
5326 ret = -ENOMEM;
5327 goto rinse;
5328 }
5329 device_initialize(&rdev->dev);
5330
5331 /*
5332 * Duplicate the config so the driver could override it after
5333 * parsing init data.
5334 */
5335 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5336 if (config == NULL) {
5337 ret = -ENOMEM;
5338 goto clean;
5339 }
5340
5341 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5342 &rdev->dev.of_node);
5343
5344 /*
5345 * Sometimes not all resources are probed already so we need to take
5346 * that into account. This happens most the time if the ena_gpiod comes
5347 * from a gpio extender or something else.
5348 */
5349 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5350 ret = -EPROBE_DEFER;
5351 goto clean;
5352 }
5353
5354 /*
5355 * We need to keep track of any GPIO descriptor coming from the
5356 * device tree until we have handled it over to the core. If the
5357 * config that was passed in to this function DOES NOT contain
5358 * a descriptor, and the config after this call DOES contain
5359 * a descriptor, we definitely got one from parsing the device
5360 * tree.
5361 */
5362 if (!cfg->ena_gpiod && config->ena_gpiod)
5363 dangling_of_gpiod = true;
5364 if (!init_data) {
5365 init_data = config->init_data;
5366 rdev->dev.of_node = of_node_get(config->of_node);
5367 }
5368
5369 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5370 rdev->reg_data = config->driver_data;
5371 rdev->owner = regulator_desc->owner;
5372 rdev->desc = regulator_desc;
5373 if (config->regmap)
5374 rdev->regmap = config->regmap;
5375 else if (dev_get_regmap(dev, NULL))
5376 rdev->regmap = dev_get_regmap(dev, NULL);
5377 else if (dev->parent)
5378 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5379 INIT_LIST_HEAD(&rdev->consumer_list);
5380 INIT_LIST_HEAD(&rdev->list);
5381 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5382 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5383
5384 /* preform any regulator specific init */
5385 if (init_data && init_data->regulator_init) {
5386 ret = init_data->regulator_init(rdev->reg_data);
5387 if (ret < 0)
5388 goto clean;
5389 }
5390
5391 if (config->ena_gpiod) {
5392 ret = regulator_ena_gpio_request(rdev, config);
5393 if (ret != 0) {
5394 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5395 ERR_PTR(ret));
5396 goto clean;
5397 }
5398 /* The regulator core took over the GPIO descriptor */
5399 dangling_cfg_gpiod = false;
5400 dangling_of_gpiod = false;
5401 }
5402
5403 /* register with sysfs */
5404 rdev->dev.class = ®ulator_class;
5405 rdev->dev.parent = dev;
5406 dev_set_name(&rdev->dev, "regulator.%lu",
5407 (unsigned long) atomic_inc_return(®ulator_no));
5408 dev_set_drvdata(&rdev->dev, rdev);
5409
5410 /* set regulator constraints */
5411 if (init_data)
5412 rdev->constraints = kmemdup(&init_data->constraints,
5413 sizeof(*rdev->constraints),
5414 GFP_KERNEL);
5415 else
5416 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5417 GFP_KERNEL);
5418 if (!rdev->constraints) {
5419 ret = -ENOMEM;
5420 goto wash;
5421 }
5422
5423 if (init_data && init_data->supply_regulator)
5424 rdev->supply_name = init_data->supply_regulator;
5425 else if (regulator_desc->supply_name)
5426 rdev->supply_name = regulator_desc->supply_name;
5427
5428 ret = set_machine_constraints(rdev);
5429 if (ret == -EPROBE_DEFER) {
5430 /* Regulator might be in bypass mode and so needs its supply
5431 * to set the constraints */
5432 /* FIXME: this currently triggers a chicken-and-egg problem
5433 * when creating -SUPPLY symlink in sysfs to a regulator
5434 * that is just being created */
5435 ret = regulator_resolve_supply(rdev);
5436 if (!ret)
5437 ret = set_machine_constraints(rdev);
5438 else
5439 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5440 ERR_PTR(ret));
5441 }
5442 if (ret < 0)
5443 goto wash;
5444
5445 ret = regulator_init_coupling(rdev);
5446 if (ret < 0)
5447 goto wash;
5448
5449 /* add consumers devices */
5450 if (init_data) {
5451 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5452 ret = set_consumer_device_supply(rdev,
5453 init_data->consumer_supplies[i].dev_name,
5454 init_data->consumer_supplies[i].supply);
5455 if (ret < 0) {
5456 dev_err(dev, "Failed to set supply %s\n",
5457 init_data->consumer_supplies[i].supply);
5458 goto unset_supplies;
5459 }
5460 }
5461 }
5462
5463 if (!rdev->desc->ops->get_voltage &&
5464 !rdev->desc->ops->list_voltage &&
5465 !rdev->desc->fixed_uV)
5466 rdev->is_switch = true;
5467
5468 ret = device_add(&rdev->dev);
5469 if (ret != 0)
5470 goto unset_supplies;
5471
5472 rdev_init_debugfs(rdev);
5473
5474 /* try to resolve regulators coupling since a new one was registered */
5475 mutex_lock(®ulator_list_mutex);
5476 regulator_resolve_coupling(rdev);
5477 mutex_unlock(®ulator_list_mutex);
5478
5479 /* try to resolve regulators supply since a new one was registered */
5480 class_for_each_device(®ulator_class, NULL, NULL,
5481 regulator_register_resolve_supply);
5482 kfree(config);
5483 return rdev;
5484
5485 unset_supplies:
5486 mutex_lock(®ulator_list_mutex);
5487 unset_regulator_supplies(rdev);
5488 regulator_remove_coupling(rdev);
5489 mutex_unlock(®ulator_list_mutex);
5490 wash:
5491 regulator_put(rdev->supply);
5492 kfree(rdev->coupling_desc.coupled_rdevs);
5493 mutex_lock(®ulator_list_mutex);
5494 regulator_ena_gpio_free(rdev);
5495 mutex_unlock(®ulator_list_mutex);
5496 clean:
5497 if (dangling_of_gpiod)
5498 gpiod_put(config->ena_gpiod);
5499 kfree(config);
5500 put_device(&rdev->dev);
5501 rinse:
5502 if (dangling_cfg_gpiod)
5503 gpiod_put(cfg->ena_gpiod);
5504 return ERR_PTR(ret);
5505 }
5506 EXPORT_SYMBOL_GPL(regulator_register);
5507
5508 /**
5509 * regulator_unregister - unregister regulator
5510 * @rdev: regulator to unregister
5511 *
5512 * Called by regulator drivers to unregister a regulator.
5513 */
regulator_unregister(struct regulator_dev *rdev)5514 void regulator_unregister(struct regulator_dev *rdev)
5515 {
5516 if (rdev == NULL)
5517 return;
5518
5519 if (rdev->supply) {
5520 while (rdev->use_count--)
5521 regulator_disable(rdev->supply);
5522 regulator_put(rdev->supply);
5523 }
5524
5525 flush_work(&rdev->disable_work.work);
5526
5527 mutex_lock(®ulator_list_mutex);
5528
5529 WARN_ON(rdev->open_count);
5530 regulator_remove_coupling(rdev);
5531 unset_regulator_supplies(rdev);
5532 list_del(&rdev->list);
5533 regulator_ena_gpio_free(rdev);
5534 device_unregister(&rdev->dev);
5535
5536 mutex_unlock(®ulator_list_mutex);
5537 }
5538 EXPORT_SYMBOL_GPL(regulator_unregister);
5539
5540 #ifdef CONFIG_SUSPEND
5541 /**
5542 * regulator_suspend - prepare regulators for system wide suspend
5543 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5544 *
5545 * Configure each regulator with it's suspend operating parameters for state.
5546 */
regulator_suspend(struct device *dev)5547 static int regulator_suspend(struct device *dev)
5548 {
5549 struct regulator_dev *rdev = dev_to_rdev(dev);
5550 suspend_state_t state = pm_suspend_target_state;
5551 int ret;
5552 const struct regulator_state *rstate;
5553
5554 rstate = regulator_get_suspend_state_check(rdev, state);
5555 if (!rstate)
5556 return 0;
5557
5558 regulator_lock(rdev);
5559 ret = __suspend_set_state(rdev, rstate);
5560 regulator_unlock(rdev);
5561
5562 return ret;
5563 }
5564
regulator_resume(struct device *dev)5565 static int regulator_resume(struct device *dev)
5566 {
5567 suspend_state_t state = pm_suspend_target_state;
5568 struct regulator_dev *rdev = dev_to_rdev(dev);
5569 struct regulator_state *rstate;
5570 int ret = 0;
5571
5572 rstate = regulator_get_suspend_state(rdev, state);
5573 if (rstate == NULL)
5574 return 0;
5575
5576 /* Avoid grabbing the lock if we don't need to */
5577 if (!rdev->desc->ops->resume)
5578 return 0;
5579
5580 regulator_lock(rdev);
5581
5582 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5583 rstate->enabled == DISABLE_IN_SUSPEND)
5584 ret = rdev->desc->ops->resume(rdev);
5585
5586 regulator_unlock(rdev);
5587
5588 return ret;
5589 }
5590 #else /* !CONFIG_SUSPEND */
5591
5592 #define regulator_suspend NULL
5593 #define regulator_resume NULL
5594
5595 #endif /* !CONFIG_SUSPEND */
5596
5597 #ifdef CONFIG_PM
5598 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5599 .suspend = regulator_suspend,
5600 .resume = regulator_resume,
5601 };
5602 #endif
5603
5604 struct class regulator_class = {
5605 .name = "regulator",
5606 .dev_release = regulator_dev_release,
5607 .dev_groups = regulator_dev_groups,
5608 #ifdef CONFIG_PM
5609 .pm = ®ulator_pm_ops,
5610 #endif
5611 };
5612 /**
5613 * regulator_has_full_constraints - the system has fully specified constraints
5614 *
5615 * Calling this function will cause the regulator API to disable all
5616 * regulators which have a zero use count and don't have an always_on
5617 * constraint in a late_initcall.
5618 *
5619 * The intention is that this will become the default behaviour in a
5620 * future kernel release so users are encouraged to use this facility
5621 * now.
5622 */
regulator_has_full_constraints(void)5623 void regulator_has_full_constraints(void)
5624 {
5625 has_full_constraints = 1;
5626 }
5627 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5628
5629 /**
5630 * rdev_get_drvdata - get rdev regulator driver data
5631 * @rdev: regulator
5632 *
5633 * Get rdev regulator driver private data. This call can be used in the
5634 * regulator driver context.
5635 */
rdev_get_drvdata(struct regulator_dev *rdev)5636 void *rdev_get_drvdata(struct regulator_dev *rdev)
5637 {
5638 return rdev->reg_data;
5639 }
5640 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5641
5642 /**
5643 * regulator_get_drvdata - get regulator driver data
5644 * @regulator: regulator
5645 *
5646 * Get regulator driver private data. This call can be used in the consumer
5647 * driver context when non API regulator specific functions need to be called.
5648 */
regulator_get_drvdata(struct regulator *regulator)5649 void *regulator_get_drvdata(struct regulator *regulator)
5650 {
5651 return regulator->rdev->reg_data;
5652 }
5653 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5654
5655 /**
5656 * regulator_set_drvdata - set regulator driver data
5657 * @regulator: regulator
5658 * @data: data
5659 */
regulator_set_drvdata(struct regulator *regulator, void *data)5660 void regulator_set_drvdata(struct regulator *regulator, void *data)
5661 {
5662 regulator->rdev->reg_data = data;
5663 }
5664 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5665
5666 /**
5667 * regulator_get_id - get regulator ID
5668 * @rdev: regulator
5669 */
rdev_get_id(struct regulator_dev *rdev)5670 int rdev_get_id(struct regulator_dev *rdev)
5671 {
5672 return rdev->desc->id;
5673 }
5674 EXPORT_SYMBOL_GPL(rdev_get_id);
5675
rdev_get_dev(struct regulator_dev *rdev)5676 struct device *rdev_get_dev(struct regulator_dev *rdev)
5677 {
5678 return &rdev->dev;
5679 }
5680 EXPORT_SYMBOL_GPL(rdev_get_dev);
5681
rdev_get_regmap(struct regulator_dev *rdev)5682 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5683 {
5684 return rdev->regmap;
5685 }
5686 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5687
regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)5688 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5689 {
5690 return reg_init_data->driver_data;
5691 }
5692 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5693
5694 #ifdef CONFIG_DEBUG_FS
supply_map_show(struct seq_file *sf, void *data)5695 static int supply_map_show(struct seq_file *sf, void *data)
5696 {
5697 struct regulator_map *map;
5698
5699 list_for_each_entry(map, ®ulator_map_list, list) {
5700 seq_printf(sf, "%s -> %s.%s\n",
5701 rdev_get_name(map->regulator), map->dev_name,
5702 map->supply);
5703 }
5704
5705 return 0;
5706 }
5707 DEFINE_SHOW_ATTRIBUTE(supply_map);
5708
5709 struct summary_data {
5710 struct seq_file *s;
5711 struct regulator_dev *parent;
5712 int level;
5713 };
5714
5715 static void regulator_summary_show_subtree(struct seq_file *s,
5716 struct regulator_dev *rdev,
5717 int level);
5718
regulator_summary_show_children(struct device *dev, void *data)5719 static int regulator_summary_show_children(struct device *dev, void *data)
5720 {
5721 struct regulator_dev *rdev = dev_to_rdev(dev);
5722 struct summary_data *summary_data = data;
5723
5724 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5725 regulator_summary_show_subtree(summary_data->s, rdev,
5726 summary_data->level + 1);
5727
5728 return 0;
5729 }
5730
regulator_summary_show_subtree(struct seq_file *s, struct regulator_dev *rdev, int level)5731 static void regulator_summary_show_subtree(struct seq_file *s,
5732 struct regulator_dev *rdev,
5733 int level)
5734 {
5735 struct regulation_constraints *c;
5736 struct regulator *consumer;
5737 struct summary_data summary_data;
5738 unsigned int opmode;
5739
5740 if (!rdev)
5741 return;
5742
5743 opmode = _regulator_get_mode_unlocked(rdev);
5744 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5745 level * 3 + 1, "",
5746 30 - level * 3, rdev_get_name(rdev),
5747 rdev->use_count, rdev->open_count, rdev->bypass_count,
5748 regulator_opmode_to_str(opmode));
5749
5750 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5751 seq_printf(s, "%5dmA ",
5752 _regulator_get_current_limit_unlocked(rdev) / 1000);
5753
5754 c = rdev->constraints;
5755 if (c) {
5756 switch (rdev->desc->type) {
5757 case REGULATOR_VOLTAGE:
5758 seq_printf(s, "%5dmV %5dmV ",
5759 c->min_uV / 1000, c->max_uV / 1000);
5760 break;
5761 case REGULATOR_CURRENT:
5762 seq_printf(s, "%5dmA %5dmA ",
5763 c->min_uA / 1000, c->max_uA / 1000);
5764 break;
5765 }
5766 }
5767
5768 seq_puts(s, "\n");
5769
5770 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5771 if (consumer->dev && consumer->dev->class == ®ulator_class)
5772 continue;
5773
5774 seq_printf(s, "%*s%-*s ",
5775 (level + 1) * 3 + 1, "",
5776 30 - (level + 1) * 3,
5777 consumer->supply_name ? consumer->supply_name :
5778 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5779
5780 switch (rdev->desc->type) {
5781 case REGULATOR_VOLTAGE:
5782 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5783 consumer->enable_count,
5784 consumer->uA_load / 1000,
5785 consumer->uA_load && !consumer->enable_count ?
5786 '*' : ' ',
5787 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5788 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5789 break;
5790 case REGULATOR_CURRENT:
5791 break;
5792 }
5793
5794 seq_puts(s, "\n");
5795 }
5796
5797 summary_data.s = s;
5798 summary_data.level = level;
5799 summary_data.parent = rdev;
5800
5801 class_for_each_device(®ulator_class, NULL, &summary_data,
5802 regulator_summary_show_children);
5803 }
5804
5805 struct summary_lock_data {
5806 struct ww_acquire_ctx *ww_ctx;
5807 struct regulator_dev **new_contended_rdev;
5808 struct regulator_dev **old_contended_rdev;
5809 };
5810
regulator_summary_lock_one(struct device *dev, void *data)5811 static int regulator_summary_lock_one(struct device *dev, void *data)
5812 {
5813 struct regulator_dev *rdev = dev_to_rdev(dev);
5814 struct summary_lock_data *lock_data = data;
5815 int ret = 0;
5816
5817 if (rdev != *lock_data->old_contended_rdev) {
5818 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5819
5820 if (ret == -EDEADLK)
5821 *lock_data->new_contended_rdev = rdev;
5822 else
5823 WARN_ON_ONCE(ret);
5824 } else {
5825 *lock_data->old_contended_rdev = NULL;
5826 }
5827
5828 return ret;
5829 }
5830
regulator_summary_unlock_one(struct device *dev, void *data)5831 static int regulator_summary_unlock_one(struct device *dev, void *data)
5832 {
5833 struct regulator_dev *rdev = dev_to_rdev(dev);
5834 struct summary_lock_data *lock_data = data;
5835
5836 if (lock_data) {
5837 if (rdev == *lock_data->new_contended_rdev)
5838 return -EDEADLK;
5839 }
5840
5841 regulator_unlock(rdev);
5842
5843 return 0;
5844 }
5845
regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx, struct regulator_dev **new_contended_rdev, struct regulator_dev **old_contended_rdev)5846 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5847 struct regulator_dev **new_contended_rdev,
5848 struct regulator_dev **old_contended_rdev)
5849 {
5850 struct summary_lock_data lock_data;
5851 int ret;
5852
5853 lock_data.ww_ctx = ww_ctx;
5854 lock_data.new_contended_rdev = new_contended_rdev;
5855 lock_data.old_contended_rdev = old_contended_rdev;
5856
5857 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
5858 regulator_summary_lock_one);
5859 if (ret)
5860 class_for_each_device(®ulator_class, NULL, &lock_data,
5861 regulator_summary_unlock_one);
5862
5863 return ret;
5864 }
5865
regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)5866 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5867 {
5868 struct regulator_dev *new_contended_rdev = NULL;
5869 struct regulator_dev *old_contended_rdev = NULL;
5870 int err;
5871
5872 mutex_lock(®ulator_list_mutex);
5873
5874 ww_acquire_init(ww_ctx, ®ulator_ww_class);
5875
5876 do {
5877 if (new_contended_rdev) {
5878 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5879 old_contended_rdev = new_contended_rdev;
5880 old_contended_rdev->ref_cnt++;
5881 old_contended_rdev->mutex_owner = current;
5882 }
5883
5884 err = regulator_summary_lock_all(ww_ctx,
5885 &new_contended_rdev,
5886 &old_contended_rdev);
5887
5888 if (old_contended_rdev)
5889 regulator_unlock(old_contended_rdev);
5890
5891 } while (err == -EDEADLK);
5892
5893 ww_acquire_done(ww_ctx);
5894 }
5895
regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)5896 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5897 {
5898 class_for_each_device(®ulator_class, NULL, NULL,
5899 regulator_summary_unlock_one);
5900 ww_acquire_fini(ww_ctx);
5901
5902 mutex_unlock(®ulator_list_mutex);
5903 }
5904
regulator_summary_show_roots(struct device *dev, void *data)5905 static int regulator_summary_show_roots(struct device *dev, void *data)
5906 {
5907 struct regulator_dev *rdev = dev_to_rdev(dev);
5908 struct seq_file *s = data;
5909
5910 if (!rdev->supply)
5911 regulator_summary_show_subtree(s, rdev, 0);
5912
5913 return 0;
5914 }
5915
regulator_summary_show(struct seq_file *s, void *data)5916 static int regulator_summary_show(struct seq_file *s, void *data)
5917 {
5918 struct ww_acquire_ctx ww_ctx;
5919
5920 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
5921 seq_puts(s, "---------------------------------------------------------------------------------------\n");
5922
5923 regulator_summary_lock(&ww_ctx);
5924
5925 class_for_each_device(®ulator_class, NULL, s,
5926 regulator_summary_show_roots);
5927
5928 regulator_summary_unlock(&ww_ctx);
5929
5930 return 0;
5931 }
5932 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5933 #endif /* CONFIG_DEBUG_FS */
5934
regulator_init(void)5935 static int __init regulator_init(void)
5936 {
5937 int ret;
5938
5939 ret = class_register(®ulator_class);
5940
5941 debugfs_root = debugfs_create_dir("regulator", NULL);
5942 if (IS_ERR(debugfs_root))
5943 pr_debug("regulator: Failed to create debugfs directory\n");
5944
5945 #ifdef CONFIG_DEBUG_FS
5946 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5947 &supply_map_fops);
5948
5949 debugfs_create_file("regulator_summary", 0444, debugfs_root,
5950 NULL, ®ulator_summary_fops);
5951 #endif
5952 regulator_dummy_init();
5953
5954 regulator_coupler_register(&generic_regulator_coupler);
5955
5956 return ret;
5957 }
5958
5959 /* init early to allow our consumers to complete system booting */
5960 core_initcall(regulator_init);
5961
regulator_late_cleanup(struct device *dev, void *data)5962 static int regulator_late_cleanup(struct device *dev, void *data)
5963 {
5964 struct regulator_dev *rdev = dev_to_rdev(dev);
5965 struct regulation_constraints *c = rdev->constraints;
5966 int ret;
5967
5968 if (c && c->always_on)
5969 return 0;
5970
5971 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5972 return 0;
5973
5974 regulator_lock(rdev);
5975
5976 if (rdev->use_count)
5977 goto unlock;
5978
5979 /* If reading the status failed, assume that it's off. */
5980 if (_regulator_is_enabled(rdev) <= 0)
5981 goto unlock;
5982
5983 if (have_full_constraints()) {
5984 /* We log since this may kill the system if it goes
5985 * wrong. */
5986 rdev_info(rdev, "disabling\n");
5987 ret = _regulator_do_disable(rdev);
5988 if (ret != 0)
5989 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5990 } else {
5991 /* The intention is that in future we will
5992 * assume that full constraints are provided
5993 * so warn even if we aren't going to do
5994 * anything here.
5995 */
5996 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5997 }
5998
5999 unlock:
6000 regulator_unlock(rdev);
6001
6002 return 0;
6003 }
6004
regulator_init_complete_work_function(struct work_struct *work)6005 static void regulator_init_complete_work_function(struct work_struct *work)
6006 {
6007 /*
6008 * Regulators may had failed to resolve their input supplies
6009 * when were registered, either because the input supply was
6010 * not registered yet or because its parent device was not
6011 * bound yet. So attempt to resolve the input supplies for
6012 * pending regulators before trying to disable unused ones.
6013 */
6014 class_for_each_device(®ulator_class, NULL, NULL,
6015 regulator_register_resolve_supply);
6016
6017 /* If we have a full configuration then disable any regulators
6018 * we have permission to change the status for and which are
6019 * not in use or always_on. This is effectively the default
6020 * for DT and ACPI as they have full constraints.
6021 */
6022 class_for_each_device(®ulator_class, NULL, NULL,
6023 regulator_late_cleanup);
6024 }
6025
6026 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6027 regulator_init_complete_work_function);
6028
regulator_init_complete(void)6029 static int __init regulator_init_complete(void)
6030 {
6031 /*
6032 * Since DT doesn't provide an idiomatic mechanism for
6033 * enabling full constraints and since it's much more natural
6034 * with DT to provide them just assume that a DT enabled
6035 * system has full constraints.
6036 */
6037 if (of_have_populated_dt())
6038 has_full_constraints = true;
6039
6040 /*
6041 * We punt completion for an arbitrary amount of time since
6042 * systems like distros will load many drivers from userspace
6043 * so consumers might not always be ready yet, this is
6044 * particularly an issue with laptops where this might bounce
6045 * the display off then on. Ideally we'd get a notification
6046 * from userspace when this happens but we don't so just wait
6047 * a bit and hope we waited long enough. It'd be better if
6048 * we'd only do this on systems that need it, and a kernel
6049 * command line option might be useful.
6050 */
6051 schedule_delayed_work(®ulator_init_complete_work,
6052 msecs_to_jiffies(30000));
6053
6054 return 0;
6055 }
6056 late_initcall_sync(regulator_init_complete);
6057