1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) Microsoft Corporation.
4  *
5  * Author:
6  *   Jake Oshins <jakeo@microsoft.com>
7  *
8  * This driver acts as a paravirtual front-end for PCI Express root buses.
9  * When a PCI Express function (either an entire device or an SR-IOV
10  * Virtual Function) is being passed through to the VM, this driver exposes
11  * a new bus to the guest VM.  This is modeled as a root PCI bus because
12  * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
13  * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14  * until a device as been exposed using this driver.
15  *
16  * Each root PCI bus has its own PCI domain, which is called "Segment" in
17  * the PCI Firmware Specifications.  Thus while each device passed through
18  * to the VM using this front-end will appear at "device 0", the domain will
19  * be unique.  Typically, each bus will have one PCI function on it, though
20  * this driver does support more than one.
21  *
22  * In order to map the interrupts from the device through to the guest VM,
23  * this driver also implements an IRQ Domain, which handles interrupts (either
24  * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
25  * set up, torn down, or reaffined, this driver communicates with the
26  * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27  * interrupt will be delivered to the correct virtual processor at the right
28  * vector.  This driver does not support level-triggered (line-based)
29  * interrupts, and will report that the Interrupt Line register in the
30  * function's configuration space is zero.
31  *
32  * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33  * facilities.  For instance, the configuration space of a function exposed
34  * by Hyper-V is mapped into a single page of memory space, and the
35  * read and write handlers for config space must be aware of this mechanism.
36  * Similarly, device setup and teardown involves messages sent to and from
37  * the PCI back-end driver in Hyper-V.
38  */
39 
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/delay.h>
44 #include <linux/semaphore.h>
45 #include <linux/irqdomain.h>
46 #include <asm/irqdomain.h>
47 #include <asm/apic.h>
48 #include <linux/irq.h>
49 #include <linux/msi.h>
50 #include <linux/hyperv.h>
51 #include <linux/refcount.h>
52 #include <asm/mshyperv.h>
53 
54 /*
55  * Protocol versions. The low word is the minor version, the high word the
56  * major version.
57  */
58 
59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
62 
63 enum pci_protocol_version_t {
64 	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
65 	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
66 	PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3),	/* Vibranium */
67 };
68 
69 #define CPU_AFFINITY_ALL	-1ULL
70 
71 /*
72  * Supported protocol versions in the order of probing - highest go
73  * first.
74  */
75 static enum pci_protocol_version_t pci_protocol_versions[] = {
76 	PCI_PROTOCOL_VERSION_1_3,
77 	PCI_PROTOCOL_VERSION_1_2,
78 	PCI_PROTOCOL_VERSION_1_1,
79 };
80 
81 #define PCI_CONFIG_MMIO_LENGTH	0x2000
82 #define CFG_PAGE_OFFSET 0x1000
83 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
84 
85 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
86 
87 #define STATUS_REVISION_MISMATCH 0xC0000059
88 
89 /* space for 32bit serial number as string */
90 #define SLOT_NAME_SIZE 11
91 
92 /*
93  * Message Types
94  */
95 
96 enum pci_message_type {
97 	/*
98 	 * Version 1.1
99 	 */
100 	PCI_MESSAGE_BASE                = 0x42490000,
101 	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
102 	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
103 	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
104 	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
105 	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
106 	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
107 	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
108 	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
109 	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
110 	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
111 	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
112 	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
113 	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
114 	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
115 	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
116 	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
117 	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
118 	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
119 	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
120 	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
121 	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
122 	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
123 	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
124 	PCI_BUS_RELATIONS2		= PCI_MESSAGE_BASE + 0x19,
125 	PCI_MESSAGE_MAXIMUM
126 };
127 
128 /*
129  * Structures defining the virtual PCI Express protocol.
130  */
131 
132 union pci_version {
133 	struct {
134 		u16 minor_version;
135 		u16 major_version;
136 	} parts;
137 	u32 version;
138 } __packed;
139 
140 /*
141  * Function numbers are 8-bits wide on Express, as interpreted through ARI,
142  * which is all this driver does.  This representation is the one used in
143  * Windows, which is what is expected when sending this back and forth with
144  * the Hyper-V parent partition.
145  */
146 union win_slot_encoding {
147 	struct {
148 		u32	dev:5;
149 		u32	func:3;
150 		u32	reserved:24;
151 	} bits;
152 	u32 slot;
153 } __packed;
154 
155 /*
156  * Pretty much as defined in the PCI Specifications.
157  */
158 struct pci_function_description {
159 	u16	v_id;	/* vendor ID */
160 	u16	d_id;	/* device ID */
161 	u8	rev;
162 	u8	prog_intf;
163 	u8	subclass;
164 	u8	base_class;
165 	u32	subsystem_id;
166 	union win_slot_encoding win_slot;
167 	u32	ser;	/* serial number */
168 } __packed;
169 
170 enum pci_device_description_flags {
171 	HV_PCI_DEVICE_FLAG_NONE			= 0x0,
172 	HV_PCI_DEVICE_FLAG_NUMA_AFFINITY	= 0x1,
173 };
174 
175 struct pci_function_description2 {
176 	u16	v_id;	/* vendor ID */
177 	u16	d_id;	/* device ID */
178 	u8	rev;
179 	u8	prog_intf;
180 	u8	subclass;
181 	u8	base_class;
182 	u32	subsystem_id;
183 	union	win_slot_encoding win_slot;
184 	u32	ser;	/* serial number */
185 	u32	flags;
186 	u16	virtual_numa_node;
187 	u16	reserved;
188 } __packed;
189 
190 /**
191  * struct hv_msi_desc
192  * @vector:		IDT entry
193  * @delivery_mode:	As defined in Intel's Programmer's
194  *			Reference Manual, Volume 3, Chapter 8.
195  * @vector_count:	Number of contiguous entries in the
196  *			Interrupt Descriptor Table that are
197  *			occupied by this Message-Signaled
198  *			Interrupt. For "MSI", as first defined
199  *			in PCI 2.2, this can be between 1 and
200  *			32. For "MSI-X," as first defined in PCI
201  *			3.0, this must be 1, as each MSI-X table
202  *			entry would have its own descriptor.
203  * @reserved:		Empty space
204  * @cpu_mask:		All the target virtual processors.
205  */
206 struct hv_msi_desc {
207 	u8	vector;
208 	u8	delivery_mode;
209 	u16	vector_count;
210 	u32	reserved;
211 	u64	cpu_mask;
212 } __packed;
213 
214 /**
215  * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
216  * @vector:		IDT entry
217  * @delivery_mode:	As defined in Intel's Programmer's
218  *			Reference Manual, Volume 3, Chapter 8.
219  * @vector_count:	Number of contiguous entries in the
220  *			Interrupt Descriptor Table that are
221  *			occupied by this Message-Signaled
222  *			Interrupt. For "MSI", as first defined
223  *			in PCI 2.2, this can be between 1 and
224  *			32. For "MSI-X," as first defined in PCI
225  *			3.0, this must be 1, as each MSI-X table
226  *			entry would have its own descriptor.
227  * @processor_count:	number of bits enabled in array.
228  * @processor_array:	All the target virtual processors.
229  */
230 struct hv_msi_desc2 {
231 	u8	vector;
232 	u8	delivery_mode;
233 	u16	vector_count;
234 	u16	processor_count;
235 	u16	processor_array[32];
236 } __packed;
237 
238 /**
239  * struct tran_int_desc
240  * @reserved:		unused, padding
241  * @vector_count:	same as in hv_msi_desc
242  * @data:		This is the "data payload" value that is
243  *			written by the device when it generates
244  *			a message-signaled interrupt, either MSI
245  *			or MSI-X.
246  * @address:		This is the address to which the data
247  *			payload is written on interrupt
248  *			generation.
249  */
250 struct tran_int_desc {
251 	u16	reserved;
252 	u16	vector_count;
253 	u32	data;
254 	u64	address;
255 } __packed;
256 
257 /*
258  * A generic message format for virtual PCI.
259  * Specific message formats are defined later in the file.
260  */
261 
262 struct pci_message {
263 	u32 type;
264 } __packed;
265 
266 struct pci_child_message {
267 	struct pci_message message_type;
268 	union win_slot_encoding wslot;
269 } __packed;
270 
271 struct pci_incoming_message {
272 	struct vmpacket_descriptor hdr;
273 	struct pci_message message_type;
274 } __packed;
275 
276 struct pci_response {
277 	struct vmpacket_descriptor hdr;
278 	s32 status;			/* negative values are failures */
279 } __packed;
280 
281 struct pci_packet {
282 	void (*completion_func)(void *context, struct pci_response *resp,
283 				int resp_packet_size);
284 	void *compl_ctxt;
285 
286 	struct pci_message message[];
287 };
288 
289 /*
290  * Specific message types supporting the PCI protocol.
291  */
292 
293 /*
294  * Version negotiation message. Sent from the guest to the host.
295  * The guest is free to try different versions until the host
296  * accepts the version.
297  *
298  * pci_version: The protocol version requested.
299  * is_last_attempt: If TRUE, this is the last version guest will request.
300  * reservedz: Reserved field, set to zero.
301  */
302 
303 struct pci_version_request {
304 	struct pci_message message_type;
305 	u32 protocol_version;
306 } __packed;
307 
308 /*
309  * Bus D0 Entry.  This is sent from the guest to the host when the virtual
310  * bus (PCI Express port) is ready for action.
311  */
312 
313 struct pci_bus_d0_entry {
314 	struct pci_message message_type;
315 	u32 reserved;
316 	u64 mmio_base;
317 } __packed;
318 
319 struct pci_bus_relations {
320 	struct pci_incoming_message incoming;
321 	u32 device_count;
322 	struct pci_function_description func[];
323 } __packed;
324 
325 struct pci_bus_relations2 {
326 	struct pci_incoming_message incoming;
327 	u32 device_count;
328 	struct pci_function_description2 func[];
329 } __packed;
330 
331 struct pci_q_res_req_response {
332 	struct vmpacket_descriptor hdr;
333 	s32 status;			/* negative values are failures */
334 	u32 probed_bar[PCI_STD_NUM_BARS];
335 } __packed;
336 
337 struct pci_set_power {
338 	struct pci_message message_type;
339 	union win_slot_encoding wslot;
340 	u32 power_state;		/* In Windows terms */
341 	u32 reserved;
342 } __packed;
343 
344 struct pci_set_power_response {
345 	struct vmpacket_descriptor hdr;
346 	s32 status;			/* negative values are failures */
347 	union win_slot_encoding wslot;
348 	u32 resultant_state;		/* In Windows terms */
349 	u32 reserved;
350 } __packed;
351 
352 struct pci_resources_assigned {
353 	struct pci_message message_type;
354 	union win_slot_encoding wslot;
355 	u8 memory_range[0x14][6];	/* not used here */
356 	u32 msi_descriptors;
357 	u32 reserved[4];
358 } __packed;
359 
360 struct pci_resources_assigned2 {
361 	struct pci_message message_type;
362 	union win_slot_encoding wslot;
363 	u8 memory_range[0x14][6];	/* not used here */
364 	u32 msi_descriptor_count;
365 	u8 reserved[70];
366 } __packed;
367 
368 struct pci_create_interrupt {
369 	struct pci_message message_type;
370 	union win_slot_encoding wslot;
371 	struct hv_msi_desc int_desc;
372 } __packed;
373 
374 struct pci_create_int_response {
375 	struct pci_response response;
376 	u32 reserved;
377 	struct tran_int_desc int_desc;
378 } __packed;
379 
380 struct pci_create_interrupt2 {
381 	struct pci_message message_type;
382 	union win_slot_encoding wslot;
383 	struct hv_msi_desc2 int_desc;
384 } __packed;
385 
386 struct pci_delete_interrupt {
387 	struct pci_message message_type;
388 	union win_slot_encoding wslot;
389 	struct tran_int_desc int_desc;
390 } __packed;
391 
392 /*
393  * Note: the VM must pass a valid block id, wslot and bytes_requested.
394  */
395 struct pci_read_block {
396 	struct pci_message message_type;
397 	u32 block_id;
398 	union win_slot_encoding wslot;
399 	u32 bytes_requested;
400 } __packed;
401 
402 struct pci_read_block_response {
403 	struct vmpacket_descriptor hdr;
404 	u32 status;
405 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
406 } __packed;
407 
408 /*
409  * Note: the VM must pass a valid block id, wslot and byte_count.
410  */
411 struct pci_write_block {
412 	struct pci_message message_type;
413 	u32 block_id;
414 	union win_slot_encoding wslot;
415 	u32 byte_count;
416 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
417 } __packed;
418 
419 struct pci_dev_inval_block {
420 	struct pci_incoming_message incoming;
421 	union win_slot_encoding wslot;
422 	u64 block_mask;
423 } __packed;
424 
425 struct pci_dev_incoming {
426 	struct pci_incoming_message incoming;
427 	union win_slot_encoding wslot;
428 } __packed;
429 
430 struct pci_eject_response {
431 	struct pci_message message_type;
432 	union win_slot_encoding wslot;
433 	u32 status;
434 } __packed;
435 
436 static int pci_ring_size = (4 * PAGE_SIZE);
437 
438 /*
439  * Driver specific state.
440  */
441 
442 enum hv_pcibus_state {
443 	hv_pcibus_init = 0,
444 	hv_pcibus_probed,
445 	hv_pcibus_installed,
446 	hv_pcibus_removing,
447 	hv_pcibus_maximum
448 };
449 
450 struct hv_pcibus_device {
451 	struct pci_sysdata sysdata;
452 	/* Protocol version negotiated with the host */
453 	enum pci_protocol_version_t protocol_version;
454 	enum hv_pcibus_state state;
455 	refcount_t remove_lock;
456 	struct hv_device *hdev;
457 	resource_size_t low_mmio_space;
458 	resource_size_t high_mmio_space;
459 	struct resource *mem_config;
460 	struct resource *low_mmio_res;
461 	struct resource *high_mmio_res;
462 	struct completion *survey_event;
463 	struct completion remove_event;
464 	struct pci_bus *pci_bus;
465 	spinlock_t config_lock;	/* Avoid two threads writing index page */
466 	spinlock_t device_list_lock;	/* Protect lists below */
467 	void __iomem *cfg_addr;
468 
469 	struct list_head resources_for_children;
470 
471 	struct list_head children;
472 	struct list_head dr_list;
473 
474 	struct msi_domain_info msi_info;
475 	struct msi_controller msi_chip;
476 	struct irq_domain *irq_domain;
477 
478 	spinlock_t retarget_msi_interrupt_lock;
479 
480 	struct workqueue_struct *wq;
481 
482 	/* Highest slot of child device with resources allocated */
483 	int wslot_res_allocated;
484 
485 	/* hypercall arg, must not cross page boundary */
486 	struct hv_retarget_device_interrupt retarget_msi_interrupt_params;
487 
488 	/*
489 	 * Don't put anything here: retarget_msi_interrupt_params must be last
490 	 */
491 };
492 
493 /*
494  * Tracks "Device Relations" messages from the host, which must be both
495  * processed in order and deferred so that they don't run in the context
496  * of the incoming packet callback.
497  */
498 struct hv_dr_work {
499 	struct work_struct wrk;
500 	struct hv_pcibus_device *bus;
501 };
502 
503 struct hv_pcidev_description {
504 	u16	v_id;	/* vendor ID */
505 	u16	d_id;	/* device ID */
506 	u8	rev;
507 	u8	prog_intf;
508 	u8	subclass;
509 	u8	base_class;
510 	u32	subsystem_id;
511 	union	win_slot_encoding win_slot;
512 	u32	ser;	/* serial number */
513 	u32	flags;
514 	u16	virtual_numa_node;
515 };
516 
517 struct hv_dr_state {
518 	struct list_head list_entry;
519 	u32 device_count;
520 	struct hv_pcidev_description func[];
521 };
522 
523 struct hv_pci_dev {
524 	/* List protected by pci_rescan_remove_lock */
525 	struct list_head list_entry;
526 	refcount_t refs;
527 	struct pci_slot *pci_slot;
528 	struct hv_pcidev_description desc;
529 	bool reported_missing;
530 	struct hv_pcibus_device *hbus;
531 	struct work_struct wrk;
532 
533 	void (*block_invalidate)(void *context, u64 block_mask);
534 	void *invalidate_context;
535 
536 	/*
537 	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
538 	 * read it back, for each of the BAR offsets within config space.
539 	 */
540 	u32 probed_bar[PCI_STD_NUM_BARS];
541 };
542 
543 struct hv_pci_compl {
544 	struct completion host_event;
545 	s32 completion_status;
546 };
547 
548 static void hv_pci_onchannelcallback(void *context);
549 
550 /**
551  * hv_pci_generic_compl() - Invoked for a completion packet
552  * @context:		Set up by the sender of the packet.
553  * @resp:		The response packet
554  * @resp_packet_size:	Size in bytes of the packet
555  *
556  * This function is used to trigger an event and report status
557  * for any message for which the completion packet contains a
558  * status and nothing else.
559  */
hv_pci_generic_compl(void *context, struct pci_response *resp, int resp_packet_size)560 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
561 				 int resp_packet_size)
562 {
563 	struct hv_pci_compl *comp_pkt = context;
564 
565 	if (resp_packet_size >= offsetofend(struct pci_response, status))
566 		comp_pkt->completion_status = resp->status;
567 	else
568 		comp_pkt->completion_status = -1;
569 
570 	complete(&comp_pkt->host_event);
571 }
572 
573 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
574 						u32 wslot);
575 
get_pcichild(struct hv_pci_dev *hpdev)576 static void get_pcichild(struct hv_pci_dev *hpdev)
577 {
578 	refcount_inc(&hpdev->refs);
579 }
580 
put_pcichild(struct hv_pci_dev *hpdev)581 static void put_pcichild(struct hv_pci_dev *hpdev)
582 {
583 	if (refcount_dec_and_test(&hpdev->refs))
584 		kfree(hpdev);
585 }
586 
587 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus);
588 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus);
589 
590 /*
591  * There is no good way to get notified from vmbus_onoffer_rescind(),
592  * so let's use polling here, since this is not a hot path.
593  */
wait_for_response(struct hv_device *hdev, struct completion *comp)594 static int wait_for_response(struct hv_device *hdev,
595 			     struct completion *comp)
596 {
597 	while (true) {
598 		if (hdev->channel->rescind) {
599 			dev_warn_once(&hdev->device, "The device is gone.\n");
600 			return -ENODEV;
601 		}
602 
603 		if (wait_for_completion_timeout(comp, HZ / 10))
604 			break;
605 	}
606 
607 	return 0;
608 }
609 
610 /**
611  * devfn_to_wslot() - Convert from Linux PCI slot to Windows
612  * @devfn:	The Linux representation of PCI slot
613  *
614  * Windows uses a slightly different representation of PCI slot.
615  *
616  * Return: The Windows representation
617  */
devfn_to_wslot(int devfn)618 static u32 devfn_to_wslot(int devfn)
619 {
620 	union win_slot_encoding wslot;
621 
622 	wslot.slot = 0;
623 	wslot.bits.dev = PCI_SLOT(devfn);
624 	wslot.bits.func = PCI_FUNC(devfn);
625 
626 	return wslot.slot;
627 }
628 
629 /**
630  * wslot_to_devfn() - Convert from Windows PCI slot to Linux
631  * @wslot:	The Windows representation of PCI slot
632  *
633  * Windows uses a slightly different representation of PCI slot.
634  *
635  * Return: The Linux representation
636  */
wslot_to_devfn(u32 wslot)637 static int wslot_to_devfn(u32 wslot)
638 {
639 	union win_slot_encoding slot_no;
640 
641 	slot_no.slot = wslot;
642 	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
643 }
644 
645 /*
646  * PCI Configuration Space for these root PCI buses is implemented as a pair
647  * of pages in memory-mapped I/O space.  Writing to the first page chooses
648  * the PCI function being written or read.  Once the first page has been
649  * written to, the following page maps in the entire configuration space of
650  * the function.
651  */
652 
653 /**
654  * _hv_pcifront_read_config() - Internal PCI config read
655  * @hpdev:	The PCI driver's representation of the device
656  * @where:	Offset within config space
657  * @size:	Size of the transfer
658  * @val:	Pointer to the buffer receiving the data
659  */
_hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where, int size, u32 *val)660 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
661 				     int size, u32 *val)
662 {
663 	unsigned long flags;
664 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
665 
666 	/*
667 	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
668 	 */
669 	if (where + size <= PCI_COMMAND) {
670 		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
671 	} else if (where >= PCI_CLASS_REVISION && where + size <=
672 		   PCI_CACHE_LINE_SIZE) {
673 		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
674 		       PCI_CLASS_REVISION, size);
675 	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
676 		   PCI_ROM_ADDRESS) {
677 		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
678 		       PCI_SUBSYSTEM_VENDOR_ID, size);
679 	} else if (where >= PCI_ROM_ADDRESS && where + size <=
680 		   PCI_CAPABILITY_LIST) {
681 		/* ROM BARs are unimplemented */
682 		*val = 0;
683 	} else if (where >= PCI_INTERRUPT_LINE && where + size <=
684 		   PCI_INTERRUPT_PIN) {
685 		/*
686 		 * Interrupt Line and Interrupt PIN are hard-wired to zero
687 		 * because this front-end only supports message-signaled
688 		 * interrupts.
689 		 */
690 		*val = 0;
691 	} else if (where + size <= CFG_PAGE_SIZE) {
692 		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
693 		/* Choose the function to be read. (See comment above) */
694 		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
695 		/* Make sure the function was chosen before we start reading. */
696 		mb();
697 		/* Read from that function's config space. */
698 		switch (size) {
699 		case 1:
700 			*val = readb(addr);
701 			break;
702 		case 2:
703 			*val = readw(addr);
704 			break;
705 		default:
706 			*val = readl(addr);
707 			break;
708 		}
709 		/*
710 		 * Make sure the read was done before we release the spinlock
711 		 * allowing consecutive reads/writes.
712 		 */
713 		mb();
714 		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
715 	} else {
716 		dev_err(&hpdev->hbus->hdev->device,
717 			"Attempt to read beyond a function's config space.\n");
718 	}
719 }
720 
hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)721 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
722 {
723 	u16 ret;
724 	unsigned long flags;
725 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
726 			     PCI_VENDOR_ID;
727 
728 	spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
729 
730 	/* Choose the function to be read. (See comment above) */
731 	writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
732 	/* Make sure the function was chosen before we start reading. */
733 	mb();
734 	/* Read from that function's config space. */
735 	ret = readw(addr);
736 	/*
737 	 * mb() is not required here, because the spin_unlock_irqrestore()
738 	 * is a barrier.
739 	 */
740 
741 	spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
742 
743 	return ret;
744 }
745 
746 /**
747  * _hv_pcifront_write_config() - Internal PCI config write
748  * @hpdev:	The PCI driver's representation of the device
749  * @where:	Offset within config space
750  * @size:	Size of the transfer
751  * @val:	The data being transferred
752  */
_hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where, int size, u32 val)753 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
754 				      int size, u32 val)
755 {
756 	unsigned long flags;
757 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
758 
759 	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
760 	    where + size <= PCI_CAPABILITY_LIST) {
761 		/* SSIDs and ROM BARs are read-only */
762 	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
763 		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
764 		/* Choose the function to be written. (See comment above) */
765 		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
766 		/* Make sure the function was chosen before we start writing. */
767 		wmb();
768 		/* Write to that function's config space. */
769 		switch (size) {
770 		case 1:
771 			writeb(val, addr);
772 			break;
773 		case 2:
774 			writew(val, addr);
775 			break;
776 		default:
777 			writel(val, addr);
778 			break;
779 		}
780 		/*
781 		 * Make sure the write was done before we release the spinlock
782 		 * allowing consecutive reads/writes.
783 		 */
784 		mb();
785 		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
786 	} else {
787 		dev_err(&hpdev->hbus->hdev->device,
788 			"Attempt to write beyond a function's config space.\n");
789 	}
790 }
791 
792 /**
793  * hv_pcifront_read_config() - Read configuration space
794  * @bus: PCI Bus structure
795  * @devfn: Device/function
796  * @where: Offset from base
797  * @size: Byte/word/dword
798  * @val: Value to be read
799  *
800  * Return: PCIBIOS_SUCCESSFUL on success
801  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
802  */
hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val)803 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
804 				   int where, int size, u32 *val)
805 {
806 	struct hv_pcibus_device *hbus =
807 		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
808 	struct hv_pci_dev *hpdev;
809 
810 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
811 	if (!hpdev)
812 		return PCIBIOS_DEVICE_NOT_FOUND;
813 
814 	_hv_pcifront_read_config(hpdev, where, size, val);
815 
816 	put_pcichild(hpdev);
817 	return PCIBIOS_SUCCESSFUL;
818 }
819 
820 /**
821  * hv_pcifront_write_config() - Write configuration space
822  * @bus: PCI Bus structure
823  * @devfn: Device/function
824  * @where: Offset from base
825  * @size: Byte/word/dword
826  * @val: Value to be written to device
827  *
828  * Return: PCIBIOS_SUCCESSFUL on success
829  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
830  */
hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val)831 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
832 				    int where, int size, u32 val)
833 {
834 	struct hv_pcibus_device *hbus =
835 	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
836 	struct hv_pci_dev *hpdev;
837 
838 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
839 	if (!hpdev)
840 		return PCIBIOS_DEVICE_NOT_FOUND;
841 
842 	_hv_pcifront_write_config(hpdev, where, size, val);
843 
844 	put_pcichild(hpdev);
845 	return PCIBIOS_SUCCESSFUL;
846 }
847 
848 /* PCIe operations */
849 static struct pci_ops hv_pcifront_ops = {
850 	.read  = hv_pcifront_read_config,
851 	.write = hv_pcifront_write_config,
852 };
853 
854 /*
855  * Paravirtual backchannel
856  *
857  * Hyper-V SR-IOV provides a backchannel mechanism in software for
858  * communication between a VF driver and a PF driver.  These
859  * "configuration blocks" are similar in concept to PCI configuration space,
860  * but instead of doing reads and writes in 32-bit chunks through a very slow
861  * path, packets of up to 128 bytes can be sent or received asynchronously.
862  *
863  * Nearly every SR-IOV device contains just such a communications channel in
864  * hardware, so using this one in software is usually optional.  Using the
865  * software channel, however, allows driver implementers to leverage software
866  * tools that fuzz the communications channel looking for vulnerabilities.
867  *
868  * The usage model for these packets puts the responsibility for reading or
869  * writing on the VF driver.  The VF driver sends a read or a write packet,
870  * indicating which "block" is being referred to by number.
871  *
872  * If the PF driver wishes to initiate communication, it can "invalidate" one or
873  * more of the first 64 blocks.  This invalidation is delivered via a callback
874  * supplied by the VF driver by this driver.
875  *
876  * No protocol is implied, except that supplied by the PF and VF drivers.
877  */
878 
879 struct hv_read_config_compl {
880 	struct hv_pci_compl comp_pkt;
881 	void *buf;
882 	unsigned int len;
883 	unsigned int bytes_returned;
884 };
885 
886 /**
887  * hv_pci_read_config_compl() - Invoked when a response packet
888  * for a read config block operation arrives.
889  * @context:		Identifies the read config operation
890  * @resp:		The response packet itself
891  * @resp_packet_size:	Size in bytes of the response packet
892  */
hv_pci_read_config_compl(void *context, struct pci_response *resp, int resp_packet_size)893 static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
894 				     int resp_packet_size)
895 {
896 	struct hv_read_config_compl *comp = context;
897 	struct pci_read_block_response *read_resp =
898 		(struct pci_read_block_response *)resp;
899 	unsigned int data_len, hdr_len;
900 
901 	hdr_len = offsetof(struct pci_read_block_response, bytes);
902 	if (resp_packet_size < hdr_len) {
903 		comp->comp_pkt.completion_status = -1;
904 		goto out;
905 	}
906 
907 	data_len = resp_packet_size - hdr_len;
908 	if (data_len > 0 && read_resp->status == 0) {
909 		comp->bytes_returned = min(comp->len, data_len);
910 		memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
911 	} else {
912 		comp->bytes_returned = 0;
913 	}
914 
915 	comp->comp_pkt.completion_status = read_resp->status;
916 out:
917 	complete(&comp->comp_pkt.host_event);
918 }
919 
920 /**
921  * hv_read_config_block() - Sends a read config block request to
922  * the back-end driver running in the Hyper-V parent partition.
923  * @pdev:		The PCI driver's representation for this device.
924  * @buf:		Buffer into which the config block will be copied.
925  * @len:		Size in bytes of buf.
926  * @block_id:		Identifies the config block which has been requested.
927  * @bytes_returned:	Size which came back from the back-end driver.
928  *
929  * Return: 0 on success, -errno on failure
930  */
hv_read_config_block(struct pci_dev *pdev, void *buf, unsigned int len, unsigned int block_id, unsigned int *bytes_returned)931 static int hv_read_config_block(struct pci_dev *pdev, void *buf,
932 				unsigned int len, unsigned int block_id,
933 				unsigned int *bytes_returned)
934 {
935 	struct hv_pcibus_device *hbus =
936 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
937 			     sysdata);
938 	struct {
939 		struct pci_packet pkt;
940 		char buf[sizeof(struct pci_read_block)];
941 	} pkt;
942 	struct hv_read_config_compl comp_pkt;
943 	struct pci_read_block *read_blk;
944 	int ret;
945 
946 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
947 		return -EINVAL;
948 
949 	init_completion(&comp_pkt.comp_pkt.host_event);
950 	comp_pkt.buf = buf;
951 	comp_pkt.len = len;
952 
953 	memset(&pkt, 0, sizeof(pkt));
954 	pkt.pkt.completion_func = hv_pci_read_config_compl;
955 	pkt.pkt.compl_ctxt = &comp_pkt;
956 	read_blk = (struct pci_read_block *)&pkt.pkt.message;
957 	read_blk->message_type.type = PCI_READ_BLOCK;
958 	read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
959 	read_blk->block_id = block_id;
960 	read_blk->bytes_requested = len;
961 
962 	ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
963 			       sizeof(*read_blk), (unsigned long)&pkt.pkt,
964 			       VM_PKT_DATA_INBAND,
965 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
966 	if (ret)
967 		return ret;
968 
969 	ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
970 	if (ret)
971 		return ret;
972 
973 	if (comp_pkt.comp_pkt.completion_status != 0 ||
974 	    comp_pkt.bytes_returned == 0) {
975 		dev_err(&hbus->hdev->device,
976 			"Read Config Block failed: 0x%x, bytes_returned=%d\n",
977 			comp_pkt.comp_pkt.completion_status,
978 			comp_pkt.bytes_returned);
979 		return -EIO;
980 	}
981 
982 	*bytes_returned = comp_pkt.bytes_returned;
983 	return 0;
984 }
985 
986 /**
987  * hv_pci_write_config_compl() - Invoked when a response packet for a write
988  * config block operation arrives.
989  * @context:		Identifies the write config operation
990  * @resp:		The response packet itself
991  * @resp_packet_size:	Size in bytes of the response packet
992  */
hv_pci_write_config_compl(void *context, struct pci_response *resp, int resp_packet_size)993 static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
994 				      int resp_packet_size)
995 {
996 	struct hv_pci_compl *comp_pkt = context;
997 
998 	comp_pkt->completion_status = resp->status;
999 	complete(&comp_pkt->host_event);
1000 }
1001 
1002 /**
1003  * hv_write_config_block() - Sends a write config block request to the
1004  * back-end driver running in the Hyper-V parent partition.
1005  * @pdev:		The PCI driver's representation for this device.
1006  * @buf:		Buffer from which the config block will	be copied.
1007  * @len:		Size in bytes of buf.
1008  * @block_id:		Identifies the config block which is being written.
1009  *
1010  * Return: 0 on success, -errno on failure
1011  */
hv_write_config_block(struct pci_dev *pdev, void *buf, unsigned int len, unsigned int block_id)1012 static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1013 				unsigned int len, unsigned int block_id)
1014 {
1015 	struct hv_pcibus_device *hbus =
1016 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1017 			     sysdata);
1018 	struct {
1019 		struct pci_packet pkt;
1020 		char buf[sizeof(struct pci_write_block)];
1021 		u32 reserved;
1022 	} pkt;
1023 	struct hv_pci_compl comp_pkt;
1024 	struct pci_write_block *write_blk;
1025 	u32 pkt_size;
1026 	int ret;
1027 
1028 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1029 		return -EINVAL;
1030 
1031 	init_completion(&comp_pkt.host_event);
1032 
1033 	memset(&pkt, 0, sizeof(pkt));
1034 	pkt.pkt.completion_func = hv_pci_write_config_compl;
1035 	pkt.pkt.compl_ctxt = &comp_pkt;
1036 	write_blk = (struct pci_write_block *)&pkt.pkt.message;
1037 	write_blk->message_type.type = PCI_WRITE_BLOCK;
1038 	write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1039 	write_blk->block_id = block_id;
1040 	write_blk->byte_count = len;
1041 	memcpy(write_blk->bytes, buf, len);
1042 	pkt_size = offsetof(struct pci_write_block, bytes) + len;
1043 	/*
1044 	 * This quirk is required on some hosts shipped around 2018, because
1045 	 * these hosts don't check the pkt_size correctly (new hosts have been
1046 	 * fixed since early 2019). The quirk is also safe on very old hosts
1047 	 * and new hosts, because, on them, what really matters is the length
1048 	 * specified in write_blk->byte_count.
1049 	 */
1050 	pkt_size += sizeof(pkt.reserved);
1051 
1052 	ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1053 			       (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1054 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1055 	if (ret)
1056 		return ret;
1057 
1058 	ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1059 	if (ret)
1060 		return ret;
1061 
1062 	if (comp_pkt.completion_status != 0) {
1063 		dev_err(&hbus->hdev->device,
1064 			"Write Config Block failed: 0x%x\n",
1065 			comp_pkt.completion_status);
1066 		return -EIO;
1067 	}
1068 
1069 	return 0;
1070 }
1071 
1072 /**
1073  * hv_register_block_invalidate() - Invoked when a config block invalidation
1074  * arrives from the back-end driver.
1075  * @pdev:		The PCI driver's representation for this device.
1076  * @context:		Identifies the device.
1077  * @block_invalidate:	Identifies all of the blocks being invalidated.
1078  *
1079  * Return: 0 on success, -errno on failure
1080  */
hv_register_block_invalidate(struct pci_dev *pdev, void *context, void (*block_invalidate)(void *context, u64 block_mask))1081 static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1082 					void (*block_invalidate)(void *context,
1083 								 u64 block_mask))
1084 {
1085 	struct hv_pcibus_device *hbus =
1086 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1087 			     sysdata);
1088 	struct hv_pci_dev *hpdev;
1089 
1090 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1091 	if (!hpdev)
1092 		return -ENODEV;
1093 
1094 	hpdev->block_invalidate = block_invalidate;
1095 	hpdev->invalidate_context = context;
1096 
1097 	put_pcichild(hpdev);
1098 	return 0;
1099 
1100 }
1101 
1102 /* Interrupt management hooks */
hv_int_desc_free(struct hv_pci_dev *hpdev, struct tran_int_desc *int_desc)1103 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1104 			     struct tran_int_desc *int_desc)
1105 {
1106 	struct pci_delete_interrupt *int_pkt;
1107 	struct {
1108 		struct pci_packet pkt;
1109 		u8 buffer[sizeof(struct pci_delete_interrupt)];
1110 	} ctxt;
1111 
1112 	if (!int_desc->vector_count) {
1113 		kfree(int_desc);
1114 		return;
1115 	}
1116 	memset(&ctxt, 0, sizeof(ctxt));
1117 	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1118 	int_pkt->message_type.type =
1119 		PCI_DELETE_INTERRUPT_MESSAGE;
1120 	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1121 	int_pkt->int_desc = *int_desc;
1122 	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1123 			 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
1124 	kfree(int_desc);
1125 }
1126 
1127 /**
1128  * hv_msi_free() - Free the MSI.
1129  * @domain:	The interrupt domain pointer
1130  * @info:	Extra MSI-related context
1131  * @irq:	Identifies the IRQ.
1132  *
1133  * The Hyper-V parent partition and hypervisor are tracking the
1134  * messages that are in use, keeping the interrupt redirection
1135  * table up to date.  This callback sends a message that frees
1136  * the IRT entry and related tracking nonsense.
1137  */
hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info, unsigned int irq)1138 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1139 			unsigned int irq)
1140 {
1141 	struct hv_pcibus_device *hbus;
1142 	struct hv_pci_dev *hpdev;
1143 	struct pci_dev *pdev;
1144 	struct tran_int_desc *int_desc;
1145 	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1146 	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1147 
1148 	pdev = msi_desc_to_pci_dev(msi);
1149 	hbus = info->data;
1150 	int_desc = irq_data_get_irq_chip_data(irq_data);
1151 	if (!int_desc)
1152 		return;
1153 
1154 	irq_data->chip_data = NULL;
1155 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1156 	if (!hpdev) {
1157 		kfree(int_desc);
1158 		return;
1159 	}
1160 
1161 	hv_int_desc_free(hpdev, int_desc);
1162 	put_pcichild(hpdev);
1163 }
1164 
hv_set_affinity(struct irq_data *data, const struct cpumask *dest, bool force)1165 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
1166 			   bool force)
1167 {
1168 	struct irq_data *parent = data->parent_data;
1169 
1170 	return parent->chip->irq_set_affinity(parent, dest, force);
1171 }
1172 
hv_irq_mask(struct irq_data *data)1173 static void hv_irq_mask(struct irq_data *data)
1174 {
1175 	pci_msi_mask_irq(data);
1176 }
1177 
hv_msi_get_int_vector(struct irq_data *data)1178 static unsigned int hv_msi_get_int_vector(struct irq_data *data)
1179 {
1180 	struct irq_cfg *cfg = irqd_cfg(data);
1181 
1182 	return cfg->vector;
1183 }
1184 
hv_msi_prepare(struct irq_domain *domain, struct device *dev, int nvec, msi_alloc_info_t *info)1185 static int hv_msi_prepare(struct irq_domain *domain, struct device *dev,
1186 			  int nvec, msi_alloc_info_t *info)
1187 {
1188 	int ret = pci_msi_prepare(domain, dev, nvec, info);
1189 
1190 	/*
1191 	 * By using the interrupt remapper in the hypervisor IOMMU, contiguous
1192 	 * CPU vectors is not needed for multi-MSI
1193 	 */
1194 	if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI)
1195 		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
1196 
1197 	return ret;
1198 }
1199 
1200 /**
1201  * hv_irq_unmask() - "Unmask" the IRQ by setting its current
1202  * affinity.
1203  * @data:	Describes the IRQ
1204  *
1205  * Build new a destination for the MSI and make a hypercall to
1206  * update the Interrupt Redirection Table. "Device Logical ID"
1207  * is built out of this PCI bus's instance GUID and the function
1208  * number of the device.
1209  */
hv_irq_unmask(struct irq_data *data)1210 static void hv_irq_unmask(struct irq_data *data)
1211 {
1212 	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
1213 	struct irq_cfg *cfg = irqd_cfg(data);
1214 	struct hv_retarget_device_interrupt *params;
1215 	struct tran_int_desc *int_desc;
1216 	struct hv_pcibus_device *hbus;
1217 	struct cpumask *dest;
1218 	cpumask_var_t tmp;
1219 	struct pci_bus *pbus;
1220 	struct pci_dev *pdev;
1221 	unsigned long flags;
1222 	u32 var_size = 0;
1223 	int cpu, nr_bank;
1224 	u64 res;
1225 
1226 	dest = irq_data_get_effective_affinity_mask(data);
1227 	pdev = msi_desc_to_pci_dev(msi_desc);
1228 	pbus = pdev->bus;
1229 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1230 	int_desc = data->chip_data;
1231 	if (!int_desc) {
1232 		dev_warn(&hbus->hdev->device, "%s() can not unmask irq %u\n",
1233 			 __func__, data->irq);
1234 		return;
1235 	}
1236 
1237 	spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
1238 
1239 	params = &hbus->retarget_msi_interrupt_params;
1240 	memset(params, 0, sizeof(*params));
1241 	params->partition_id = HV_PARTITION_ID_SELF;
1242 	params->int_entry.source = 1; /* MSI(-X) */
1243 	params->int_entry.msi_entry.address = int_desc->address & 0xffffffff;
1244 	params->int_entry.msi_entry.data = int_desc->data;
1245 	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
1246 			   (hbus->hdev->dev_instance.b[4] << 16) |
1247 			   (hbus->hdev->dev_instance.b[7] << 8) |
1248 			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
1249 			   PCI_FUNC(pdev->devfn);
1250 	params->int_target.vector = cfg->vector;
1251 
1252 	/*
1253 	 * Honoring apic->irq_delivery_mode set to dest_Fixed by
1254 	 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
1255 	 * spurious interrupt storm. Not doing so does not seem to have a
1256 	 * negative effect (yet?).
1257 	 */
1258 
1259 	if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
1260 		/*
1261 		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
1262 		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
1263 		 * with >64 VP support.
1264 		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
1265 		 * is not sufficient for this hypercall.
1266 		 */
1267 		params->int_target.flags |=
1268 			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
1269 
1270 		if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
1271 			res = 1;
1272 			goto exit_unlock;
1273 		}
1274 
1275 		cpumask_and(tmp, dest, cpu_online_mask);
1276 		nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
1277 		free_cpumask_var(tmp);
1278 
1279 		if (nr_bank <= 0) {
1280 			res = 1;
1281 			goto exit_unlock;
1282 		}
1283 
1284 		/*
1285 		 * var-sized hypercall, var-size starts after vp_mask (thus
1286 		 * vp_set.format does not count, but vp_set.valid_bank_mask
1287 		 * does).
1288 		 */
1289 		var_size = 1 + nr_bank;
1290 	} else {
1291 		for_each_cpu_and(cpu, dest, cpu_online_mask) {
1292 			params->int_target.vp_mask |=
1293 				(1ULL << hv_cpu_number_to_vp_number(cpu));
1294 		}
1295 	}
1296 
1297 	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
1298 			      params, NULL);
1299 
1300 exit_unlock:
1301 	spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
1302 
1303 	/*
1304 	 * During hibernation, when a CPU is offlined, the kernel tries
1305 	 * to move the interrupt to the remaining CPUs that haven't
1306 	 * been offlined yet. In this case, the below hv_do_hypercall()
1307 	 * always fails since the vmbus channel has been closed:
1308 	 * refer to cpu_disable_common() -> fixup_irqs() ->
1309 	 * irq_migrate_all_off_this_cpu() -> migrate_one_irq().
1310 	 *
1311 	 * Suppress the error message for hibernation because the failure
1312 	 * during hibernation does not matter (at this time all the devices
1313 	 * have been frozen). Note: the correct affinity info is still updated
1314 	 * into the irqdata data structure in migrate_one_irq() ->
1315 	 * irq_do_set_affinity() -> hv_set_affinity(), so later when the VM
1316 	 * resumes, hv_pci_restore_msi_state() is able to correctly restore
1317 	 * the interrupt with the correct affinity.
1318 	 */
1319 	if (res && hbus->state != hv_pcibus_removing)
1320 		dev_err(&hbus->hdev->device,
1321 			"%s() failed: %#llx", __func__, res);
1322 
1323 	pci_msi_unmask_irq(data);
1324 }
1325 
1326 struct compose_comp_ctxt {
1327 	struct hv_pci_compl comp_pkt;
1328 	struct tran_int_desc int_desc;
1329 };
1330 
hv_pci_compose_compl(void *context, struct pci_response *resp, int resp_packet_size)1331 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1332 				 int resp_packet_size)
1333 {
1334 	struct compose_comp_ctxt *comp_pkt = context;
1335 	struct pci_create_int_response *int_resp =
1336 		(struct pci_create_int_response *)resp;
1337 
1338 	comp_pkt->comp_pkt.completion_status = resp->status;
1339 	comp_pkt->int_desc = int_resp->int_desc;
1340 	complete(&comp_pkt->comp_pkt.host_event);
1341 }
1342 
hv_compose_msi_req_v1( struct pci_create_interrupt *int_pkt, struct cpumask *affinity, u32 slot, u8 vector, u8 vector_count)1343 static u32 hv_compose_msi_req_v1(
1344 	struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1345 	u32 slot, u8 vector, u8 vector_count)
1346 {
1347 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1348 	int_pkt->wslot.slot = slot;
1349 	int_pkt->int_desc.vector = vector;
1350 	int_pkt->int_desc.vector_count = vector_count;
1351 	int_pkt->int_desc.delivery_mode = dest_Fixed;
1352 
1353 	/*
1354 	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1355 	 * hv_irq_unmask().
1356 	 */
1357 	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1358 
1359 	return sizeof(*int_pkt);
1360 }
1361 
hv_compose_msi_req_v2( struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity, u32 slot, u8 vector, u8 vector_count)1362 static u32 hv_compose_msi_req_v2(
1363 	struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1364 	u32 slot, u8 vector, u8 vector_count)
1365 {
1366 	int cpu;
1367 
1368 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1369 	int_pkt->wslot.slot = slot;
1370 	int_pkt->int_desc.vector = vector;
1371 	int_pkt->int_desc.vector_count = vector_count;
1372 	int_pkt->int_desc.delivery_mode = dest_Fixed;
1373 
1374 	/*
1375 	 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1376 	 * by subsequent retarget in hv_irq_unmask().
1377 	 */
1378 	cpu = cpumask_first_and(affinity, cpu_online_mask);
1379 	int_pkt->int_desc.processor_array[0] =
1380 		hv_cpu_number_to_vp_number(cpu);
1381 	int_pkt->int_desc.processor_count = 1;
1382 
1383 	return sizeof(*int_pkt);
1384 }
1385 
1386 /**
1387  * hv_compose_msi_msg() - Supplies a valid MSI address/data
1388  * @data:	Everything about this MSI
1389  * @msg:	Buffer that is filled in by this function
1390  *
1391  * This function unpacks the IRQ looking for target CPU set, IDT
1392  * vector and mode and sends a message to the parent partition
1393  * asking for a mapping for that tuple in this partition.  The
1394  * response supplies a data value and address to which that data
1395  * should be written to trigger that interrupt.
1396  */
hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)1397 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1398 {
1399 	struct hv_pcibus_device *hbus;
1400 	struct vmbus_channel *channel;
1401 	struct hv_pci_dev *hpdev;
1402 	struct pci_bus *pbus;
1403 	struct pci_dev *pdev;
1404 	struct cpumask *dest;
1405 	struct compose_comp_ctxt comp;
1406 	struct tran_int_desc *int_desc;
1407 	struct msi_desc *msi_desc;
1408 	u8 vector, vector_count;
1409 	struct {
1410 		struct pci_packet pci_pkt;
1411 		union {
1412 			struct pci_create_interrupt v1;
1413 			struct pci_create_interrupt2 v2;
1414 		} int_pkts;
1415 	} __packed ctxt;
1416 
1417 	u32 size;
1418 	int ret;
1419 
1420 	/* Reuse the previous allocation */
1421 	if (data->chip_data) {
1422 		int_desc = data->chip_data;
1423 		msg->address_hi = int_desc->address >> 32;
1424 		msg->address_lo = int_desc->address & 0xffffffff;
1425 		msg->data = int_desc->data;
1426 		return;
1427 	}
1428 
1429 	msi_desc  = irq_data_get_msi_desc(data);
1430 	pdev = msi_desc_to_pci_dev(msi_desc);
1431 	dest = irq_data_get_effective_affinity_mask(data);
1432 	pbus = pdev->bus;
1433 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1434 	channel = hbus->hdev->channel;
1435 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1436 	if (!hpdev)
1437 		goto return_null_message;
1438 
1439 	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1440 	if (!int_desc)
1441 		goto drop_reference;
1442 
1443 	if (!msi_desc->msi_attrib.is_msix && msi_desc->nvec_used > 1) {
1444 		/*
1445 		 * If this is not the first MSI of Multi MSI, we already have
1446 		 * a mapping.  Can exit early.
1447 		 */
1448 		if (msi_desc->irq != data->irq) {
1449 			data->chip_data = int_desc;
1450 			int_desc->address = msi_desc->msg.address_lo |
1451 					    (u64)msi_desc->msg.address_hi << 32;
1452 			int_desc->data = msi_desc->msg.data +
1453 					 (data->irq - msi_desc->irq);
1454 			msg->address_hi = msi_desc->msg.address_hi;
1455 			msg->address_lo = msi_desc->msg.address_lo;
1456 			msg->data = int_desc->data;
1457 			put_pcichild(hpdev);
1458 			return;
1459 		}
1460 		/*
1461 		 * The vector we select here is a dummy value.  The correct
1462 		 * value gets sent to the hypervisor in unmask().  This needs
1463 		 * to be aligned with the count, and also not zero.  Multi-msi
1464 		 * is powers of 2 up to 32, so 32 will always work here.
1465 		 */
1466 		vector = 32;
1467 		vector_count = msi_desc->nvec_used;
1468 	} else {
1469 		vector = hv_msi_get_int_vector(data);
1470 		vector_count = 1;
1471 	}
1472 
1473 	memset(&ctxt, 0, sizeof(ctxt));
1474 	init_completion(&comp.comp_pkt.host_event);
1475 	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1476 	ctxt.pci_pkt.compl_ctxt = &comp;
1477 
1478 	switch (hbus->protocol_version) {
1479 	case PCI_PROTOCOL_VERSION_1_1:
1480 		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1481 					dest,
1482 					hpdev->desc.win_slot.slot,
1483 					vector,
1484 					vector_count);
1485 		break;
1486 
1487 	case PCI_PROTOCOL_VERSION_1_2:
1488 	case PCI_PROTOCOL_VERSION_1_3:
1489 		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1490 					dest,
1491 					hpdev->desc.win_slot.slot,
1492 					vector,
1493 					vector_count);
1494 		break;
1495 
1496 	default:
1497 		/* As we only negotiate protocol versions known to this driver,
1498 		 * this path should never hit. However, this is it not a hot
1499 		 * path so we print a message to aid future updates.
1500 		 */
1501 		dev_err(&hbus->hdev->device,
1502 			"Unexpected vPCI protocol, update driver.");
1503 		goto free_int_desc;
1504 	}
1505 
1506 	ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1507 			       size, (unsigned long)&ctxt.pci_pkt,
1508 			       VM_PKT_DATA_INBAND,
1509 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1510 	if (ret) {
1511 		dev_err(&hbus->hdev->device,
1512 			"Sending request for interrupt failed: 0x%x",
1513 			comp.comp_pkt.completion_status);
1514 		goto free_int_desc;
1515 	}
1516 
1517 	/*
1518 	 * Prevents hv_pci_onchannelcallback() from running concurrently
1519 	 * in the tasklet.
1520 	 */
1521 	tasklet_disable(&channel->callback_event);
1522 
1523 	/*
1524 	 * Since this function is called with IRQ locks held, can't
1525 	 * do normal wait for completion; instead poll.
1526 	 */
1527 	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1528 		unsigned long flags;
1529 
1530 		/* 0xFFFF means an invalid PCI VENDOR ID. */
1531 		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1532 			dev_err_once(&hbus->hdev->device,
1533 				     "the device has gone\n");
1534 			goto enable_tasklet;
1535 		}
1536 
1537 		/*
1538 		 * Make sure that the ring buffer data structure doesn't get
1539 		 * freed while we dereference the ring buffer pointer.  Test
1540 		 * for the channel's onchannel_callback being NULL within a
1541 		 * sched_lock critical section.  See also the inline comments
1542 		 * in vmbus_reset_channel_cb().
1543 		 */
1544 		spin_lock_irqsave(&channel->sched_lock, flags);
1545 		if (unlikely(channel->onchannel_callback == NULL)) {
1546 			spin_unlock_irqrestore(&channel->sched_lock, flags);
1547 			goto enable_tasklet;
1548 		}
1549 		hv_pci_onchannelcallback(hbus);
1550 		spin_unlock_irqrestore(&channel->sched_lock, flags);
1551 
1552 		udelay(100);
1553 	}
1554 
1555 	tasklet_enable(&channel->callback_event);
1556 
1557 	if (comp.comp_pkt.completion_status < 0) {
1558 		dev_err(&hbus->hdev->device,
1559 			"Request for interrupt failed: 0x%x",
1560 			comp.comp_pkt.completion_status);
1561 		goto free_int_desc;
1562 	}
1563 
1564 	/*
1565 	 * Record the assignment so that this can be unwound later. Using
1566 	 * irq_set_chip_data() here would be appropriate, but the lock it takes
1567 	 * is already held.
1568 	 */
1569 	*int_desc = comp.int_desc;
1570 	data->chip_data = int_desc;
1571 
1572 	/* Pass up the result. */
1573 	msg->address_hi = comp.int_desc.address >> 32;
1574 	msg->address_lo = comp.int_desc.address & 0xffffffff;
1575 	msg->data = comp.int_desc.data;
1576 
1577 	put_pcichild(hpdev);
1578 	return;
1579 
1580 enable_tasklet:
1581 	tasklet_enable(&channel->callback_event);
1582 free_int_desc:
1583 	kfree(int_desc);
1584 drop_reference:
1585 	put_pcichild(hpdev);
1586 return_null_message:
1587 	msg->address_hi = 0;
1588 	msg->address_lo = 0;
1589 	msg->data = 0;
1590 }
1591 
1592 /* HW Interrupt Chip Descriptor */
1593 static struct irq_chip hv_msi_irq_chip = {
1594 	.name			= "Hyper-V PCIe MSI",
1595 	.irq_compose_msi_msg	= hv_compose_msi_msg,
1596 	.irq_set_affinity	= hv_set_affinity,
1597 	.irq_ack		= irq_chip_ack_parent,
1598 	.irq_mask		= hv_irq_mask,
1599 	.irq_unmask		= hv_irq_unmask,
1600 };
1601 
1602 static struct msi_domain_ops hv_msi_ops = {
1603 	.msi_prepare	= hv_msi_prepare,
1604 	.msi_free	= hv_msi_free,
1605 };
1606 
1607 /**
1608  * hv_pcie_init_irq_domain() - Initialize IRQ domain
1609  * @hbus:	The root PCI bus
1610  *
1611  * This function creates an IRQ domain which will be used for
1612  * interrupts from devices that have been passed through.  These
1613  * devices only support MSI and MSI-X, not line-based interrupts
1614  * or simulations of line-based interrupts through PCIe's
1615  * fabric-layer messages.  Because interrupts are remapped, we
1616  * can support multi-message MSI here.
1617  *
1618  * Return: '0' on success and error value on failure
1619  */
hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)1620 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1621 {
1622 	hbus->msi_info.chip = &hv_msi_irq_chip;
1623 	hbus->msi_info.ops = &hv_msi_ops;
1624 	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1625 		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1626 		MSI_FLAG_PCI_MSIX);
1627 	hbus->msi_info.handler = handle_edge_irq;
1628 	hbus->msi_info.handler_name = "edge";
1629 	hbus->msi_info.data = hbus;
1630 	hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1631 						     &hbus->msi_info,
1632 						     x86_vector_domain);
1633 	if (!hbus->irq_domain) {
1634 		dev_err(&hbus->hdev->device,
1635 			"Failed to build an MSI IRQ domain\n");
1636 		return -ENODEV;
1637 	}
1638 
1639 	return 0;
1640 }
1641 
1642 /**
1643  * get_bar_size() - Get the address space consumed by a BAR
1644  * @bar_val:	Value that a BAR returned after -1 was written
1645  *              to it.
1646  *
1647  * This function returns the size of the BAR, rounded up to 1
1648  * page.  It has to be rounded up because the hypervisor's page
1649  * table entry that maps the BAR into the VM can't specify an
1650  * offset within a page.  The invariant is that the hypervisor
1651  * must place any BARs of smaller than page length at the
1652  * beginning of a page.
1653  *
1654  * Return:	Size in bytes of the consumed MMIO space.
1655  */
get_bar_size(u64 bar_val)1656 static u64 get_bar_size(u64 bar_val)
1657 {
1658 	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1659 			PAGE_SIZE);
1660 }
1661 
1662 /**
1663  * survey_child_resources() - Total all MMIO requirements
1664  * @hbus:	Root PCI bus, as understood by this driver
1665  */
survey_child_resources(struct hv_pcibus_device *hbus)1666 static void survey_child_resources(struct hv_pcibus_device *hbus)
1667 {
1668 	struct hv_pci_dev *hpdev;
1669 	resource_size_t bar_size = 0;
1670 	unsigned long flags;
1671 	struct completion *event;
1672 	u64 bar_val;
1673 	int i;
1674 
1675 	/* If nobody is waiting on the answer, don't compute it. */
1676 	event = xchg(&hbus->survey_event, NULL);
1677 	if (!event)
1678 		return;
1679 
1680 	/* If the answer has already been computed, go with it. */
1681 	if (hbus->low_mmio_space || hbus->high_mmio_space) {
1682 		complete(event);
1683 		return;
1684 	}
1685 
1686 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1687 
1688 	/*
1689 	 * Due to an interesting quirk of the PCI spec, all memory regions
1690 	 * for a child device are a power of 2 in size and aligned in memory,
1691 	 * so it's sufficient to just add them up without tracking alignment.
1692 	 */
1693 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1694 		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1695 			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1696 				dev_err(&hbus->hdev->device,
1697 					"There's an I/O BAR in this list!\n");
1698 
1699 			if (hpdev->probed_bar[i] != 0) {
1700 				/*
1701 				 * A probed BAR has all the upper bits set that
1702 				 * can be changed.
1703 				 */
1704 
1705 				bar_val = hpdev->probed_bar[i];
1706 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1707 					bar_val |=
1708 					((u64)hpdev->probed_bar[++i] << 32);
1709 				else
1710 					bar_val |= 0xffffffff00000000ULL;
1711 
1712 				bar_size = get_bar_size(bar_val);
1713 
1714 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1715 					hbus->high_mmio_space += bar_size;
1716 				else
1717 					hbus->low_mmio_space += bar_size;
1718 			}
1719 		}
1720 	}
1721 
1722 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1723 	complete(event);
1724 }
1725 
1726 /**
1727  * prepopulate_bars() - Fill in BARs with defaults
1728  * @hbus:	Root PCI bus, as understood by this driver
1729  *
1730  * The core PCI driver code seems much, much happier if the BARs
1731  * for a device have values upon first scan. So fill them in.
1732  * The algorithm below works down from large sizes to small,
1733  * attempting to pack the assignments optimally. The assumption,
1734  * enforced in other parts of the code, is that the beginning of
1735  * the memory-mapped I/O space will be aligned on the largest
1736  * BAR size.
1737  */
prepopulate_bars(struct hv_pcibus_device *hbus)1738 static void prepopulate_bars(struct hv_pcibus_device *hbus)
1739 {
1740 	resource_size_t high_size = 0;
1741 	resource_size_t low_size = 0;
1742 	resource_size_t high_base = 0;
1743 	resource_size_t low_base = 0;
1744 	resource_size_t bar_size;
1745 	struct hv_pci_dev *hpdev;
1746 	unsigned long flags;
1747 	u64 bar_val;
1748 	u32 command;
1749 	bool high;
1750 	int i;
1751 
1752 	if (hbus->low_mmio_space) {
1753 		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1754 		low_base = hbus->low_mmio_res->start;
1755 	}
1756 
1757 	if (hbus->high_mmio_space) {
1758 		high_size = 1ULL <<
1759 			(63 - __builtin_clzll(hbus->high_mmio_space));
1760 		high_base = hbus->high_mmio_res->start;
1761 	}
1762 
1763 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1764 
1765 	/*
1766 	 * Clear the memory enable bit, in case it's already set. This occurs
1767 	 * in the suspend path of hibernation, where the device is suspended,
1768 	 * resumed and suspended again: see hibernation_snapshot() and
1769 	 * hibernation_platform_enter().
1770 	 *
1771 	 * If the memory enable bit is already set, Hyper-V sliently ignores
1772 	 * the below BAR updates, and the related PCI device driver can not
1773 	 * work, because reading from the device register(s) always returns
1774 	 * 0xFFFFFFFF.
1775 	 */
1776 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1777 		_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
1778 		command &= ~PCI_COMMAND_MEMORY;
1779 		_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
1780 	}
1781 
1782 	/* Pick addresses for the BARs. */
1783 	do {
1784 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
1785 			for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1786 				bar_val = hpdev->probed_bar[i];
1787 				if (bar_val == 0)
1788 					continue;
1789 				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1790 				if (high) {
1791 					bar_val |=
1792 						((u64)hpdev->probed_bar[i + 1]
1793 						 << 32);
1794 				} else {
1795 					bar_val |= 0xffffffffULL << 32;
1796 				}
1797 				bar_size = get_bar_size(bar_val);
1798 				if (high) {
1799 					if (high_size != bar_size) {
1800 						i++;
1801 						continue;
1802 					}
1803 					_hv_pcifront_write_config(hpdev,
1804 						PCI_BASE_ADDRESS_0 + (4 * i),
1805 						4,
1806 						(u32)(high_base & 0xffffff00));
1807 					i++;
1808 					_hv_pcifront_write_config(hpdev,
1809 						PCI_BASE_ADDRESS_0 + (4 * i),
1810 						4, (u32)(high_base >> 32));
1811 					high_base += bar_size;
1812 				} else {
1813 					if (low_size != bar_size)
1814 						continue;
1815 					_hv_pcifront_write_config(hpdev,
1816 						PCI_BASE_ADDRESS_0 + (4 * i),
1817 						4,
1818 						(u32)(low_base & 0xffffff00));
1819 					low_base += bar_size;
1820 				}
1821 			}
1822 			if (high_size <= 1 && low_size <= 1) {
1823 				/* Set the memory enable bit. */
1824 				_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1825 							 &command);
1826 				command |= PCI_COMMAND_MEMORY;
1827 				_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1828 							  command);
1829 				break;
1830 			}
1831 		}
1832 
1833 		high_size >>= 1;
1834 		low_size >>= 1;
1835 	}  while (high_size || low_size);
1836 
1837 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1838 }
1839 
1840 /*
1841  * Assign entries in sysfs pci slot directory.
1842  *
1843  * Note that this function does not need to lock the children list
1844  * because it is called from pci_devices_present_work which
1845  * is serialized with hv_eject_device_work because they are on the
1846  * same ordered workqueue. Therefore hbus->children list will not change
1847  * even when pci_create_slot sleeps.
1848  */
hv_pci_assign_slots(struct hv_pcibus_device *hbus)1849 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
1850 {
1851 	struct hv_pci_dev *hpdev;
1852 	char name[SLOT_NAME_SIZE];
1853 	int slot_nr;
1854 
1855 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1856 		if (hpdev->pci_slot)
1857 			continue;
1858 
1859 		slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
1860 		snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
1861 		hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr,
1862 					  name, NULL);
1863 		if (IS_ERR(hpdev->pci_slot)) {
1864 			pr_warn("pci_create slot %s failed\n", name);
1865 			hpdev->pci_slot = NULL;
1866 		}
1867 	}
1868 }
1869 
1870 /*
1871  * Remove entries in sysfs pci slot directory.
1872  */
hv_pci_remove_slots(struct hv_pcibus_device *hbus)1873 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
1874 {
1875 	struct hv_pci_dev *hpdev;
1876 
1877 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1878 		if (!hpdev->pci_slot)
1879 			continue;
1880 		pci_destroy_slot(hpdev->pci_slot);
1881 		hpdev->pci_slot = NULL;
1882 	}
1883 }
1884 
1885 /*
1886  * Set NUMA node for the devices on the bus
1887  */
hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)1888 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
1889 {
1890 	struct pci_dev *dev;
1891 	struct pci_bus *bus = hbus->pci_bus;
1892 	struct hv_pci_dev *hv_dev;
1893 
1894 	list_for_each_entry(dev, &bus->devices, bus_list) {
1895 		hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
1896 		if (!hv_dev)
1897 			continue;
1898 
1899 		if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY &&
1900 		    hv_dev->desc.virtual_numa_node < num_possible_nodes())
1901 			/*
1902 			 * The kernel may boot with some NUMA nodes offline
1903 			 * (e.g. in a KDUMP kernel) or with NUMA disabled via
1904 			 * "numa=off". In those cases, adjust the host provided
1905 			 * NUMA node to a valid NUMA node used by the kernel.
1906 			 */
1907 			set_dev_node(&dev->dev,
1908 				     numa_map_to_online_node(
1909 					     hv_dev->desc.virtual_numa_node));
1910 
1911 		put_pcichild(hv_dev);
1912 	}
1913 }
1914 
1915 /**
1916  * create_root_hv_pci_bus() - Expose a new root PCI bus
1917  * @hbus:	Root PCI bus, as understood by this driver
1918  *
1919  * Return: 0 on success, -errno on failure
1920  */
create_root_hv_pci_bus(struct hv_pcibus_device *hbus)1921 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1922 {
1923 	/* Register the device */
1924 	hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1925 					    0, /* bus number is always zero */
1926 					    &hv_pcifront_ops,
1927 					    &hbus->sysdata,
1928 					    &hbus->resources_for_children);
1929 	if (!hbus->pci_bus)
1930 		return -ENODEV;
1931 
1932 	hbus->pci_bus->msi = &hbus->msi_chip;
1933 	hbus->pci_bus->msi->dev = &hbus->hdev->device;
1934 
1935 	pci_lock_rescan_remove();
1936 	pci_scan_child_bus(hbus->pci_bus);
1937 	hv_pci_assign_numa_node(hbus);
1938 	pci_bus_assign_resources(hbus->pci_bus);
1939 	hv_pci_assign_slots(hbus);
1940 	pci_bus_add_devices(hbus->pci_bus);
1941 	pci_unlock_rescan_remove();
1942 	hbus->state = hv_pcibus_installed;
1943 	return 0;
1944 }
1945 
1946 struct q_res_req_compl {
1947 	struct completion host_event;
1948 	struct hv_pci_dev *hpdev;
1949 };
1950 
1951 /**
1952  * q_resource_requirements() - Query Resource Requirements
1953  * @context:		The completion context.
1954  * @resp:		The response that came from the host.
1955  * @resp_packet_size:	The size in bytes of resp.
1956  *
1957  * This function is invoked on completion of a Query Resource
1958  * Requirements packet.
1959  */
q_resource_requirements(void *context, struct pci_response *resp, int resp_packet_size)1960 static void q_resource_requirements(void *context, struct pci_response *resp,
1961 				    int resp_packet_size)
1962 {
1963 	struct q_res_req_compl *completion = context;
1964 	struct pci_q_res_req_response *q_res_req =
1965 		(struct pci_q_res_req_response *)resp;
1966 	int i;
1967 
1968 	if (resp->status < 0) {
1969 		dev_err(&completion->hpdev->hbus->hdev->device,
1970 			"query resource requirements failed: %x\n",
1971 			resp->status);
1972 	} else {
1973 		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1974 			completion->hpdev->probed_bar[i] =
1975 				q_res_req->probed_bar[i];
1976 		}
1977 	}
1978 
1979 	complete(&completion->host_event);
1980 }
1981 
1982 /**
1983  * new_pcichild_device() - Create a new child device
1984  * @hbus:	The internal struct tracking this root PCI bus.
1985  * @desc:	The information supplied so far from the host
1986  *              about the device.
1987  *
1988  * This function creates the tracking structure for a new child
1989  * device and kicks off the process of figuring out what it is.
1990  *
1991  * Return: Pointer to the new tracking struct
1992  */
new_pcichild_device(struct hv_pcibus_device *hbus, struct hv_pcidev_description *desc)1993 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1994 		struct hv_pcidev_description *desc)
1995 {
1996 	struct hv_pci_dev *hpdev;
1997 	struct pci_child_message *res_req;
1998 	struct q_res_req_compl comp_pkt;
1999 	struct {
2000 		struct pci_packet init_packet;
2001 		u8 buffer[sizeof(struct pci_child_message)];
2002 	} pkt;
2003 	unsigned long flags;
2004 	int ret;
2005 
2006 	hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
2007 	if (!hpdev)
2008 		return NULL;
2009 
2010 	hpdev->hbus = hbus;
2011 
2012 	memset(&pkt, 0, sizeof(pkt));
2013 	init_completion(&comp_pkt.host_event);
2014 	comp_pkt.hpdev = hpdev;
2015 	pkt.init_packet.compl_ctxt = &comp_pkt;
2016 	pkt.init_packet.completion_func = q_resource_requirements;
2017 	res_req = (struct pci_child_message *)&pkt.init_packet.message;
2018 	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
2019 	res_req->wslot.slot = desc->win_slot.slot;
2020 
2021 	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
2022 			       sizeof(struct pci_child_message),
2023 			       (unsigned long)&pkt.init_packet,
2024 			       VM_PKT_DATA_INBAND,
2025 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2026 	if (ret)
2027 		goto error;
2028 
2029 	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
2030 		goto error;
2031 
2032 	hpdev->desc = *desc;
2033 	refcount_set(&hpdev->refs, 1);
2034 	get_pcichild(hpdev);
2035 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2036 
2037 	list_add_tail(&hpdev->list_entry, &hbus->children);
2038 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2039 	return hpdev;
2040 
2041 error:
2042 	kfree(hpdev);
2043 	return NULL;
2044 }
2045 
2046 /**
2047  * get_pcichild_wslot() - Find device from slot
2048  * @hbus:	Root PCI bus, as understood by this driver
2049  * @wslot:	Location on the bus
2050  *
2051  * This function looks up a PCI device and returns the internal
2052  * representation of it.  It acquires a reference on it, so that
2053  * the device won't be deleted while somebody is using it.  The
2054  * caller is responsible for calling put_pcichild() to release
2055  * this reference.
2056  *
2057  * Return:	Internal representation of a PCI device
2058  */
get_pcichild_wslot(struct hv_pcibus_device *hbus, u32 wslot)2059 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
2060 					     u32 wslot)
2061 {
2062 	unsigned long flags;
2063 	struct hv_pci_dev *iter, *hpdev = NULL;
2064 
2065 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2066 	list_for_each_entry(iter, &hbus->children, list_entry) {
2067 		if (iter->desc.win_slot.slot == wslot) {
2068 			hpdev = iter;
2069 			get_pcichild(hpdev);
2070 			break;
2071 		}
2072 	}
2073 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2074 
2075 	return hpdev;
2076 }
2077 
2078 /**
2079  * pci_devices_present_work() - Handle new list of child devices
2080  * @work:	Work struct embedded in struct hv_dr_work
2081  *
2082  * "Bus Relations" is the Windows term for "children of this
2083  * bus."  The terminology is preserved here for people trying to
2084  * debug the interaction between Hyper-V and Linux.  This
2085  * function is called when the parent partition reports a list
2086  * of functions that should be observed under this PCI Express
2087  * port (bus).
2088  *
2089  * This function updates the list, and must tolerate being
2090  * called multiple times with the same information.  The typical
2091  * number of child devices is one, with very atypical cases
2092  * involving three or four, so the algorithms used here can be
2093  * simple and inefficient.
2094  *
2095  * It must also treat the omission of a previously observed device as
2096  * notification that the device no longer exists.
2097  *
2098  * Note that this function is serialized with hv_eject_device_work(),
2099  * because both are pushed to the ordered workqueue hbus->wq.
2100  */
pci_devices_present_work(struct work_struct *work)2101 static void pci_devices_present_work(struct work_struct *work)
2102 {
2103 	u32 child_no;
2104 	bool found;
2105 	struct hv_pcidev_description *new_desc;
2106 	struct hv_pci_dev *hpdev;
2107 	struct hv_pcibus_device *hbus;
2108 	struct list_head removed;
2109 	struct hv_dr_work *dr_wrk;
2110 	struct hv_dr_state *dr = NULL;
2111 	unsigned long flags;
2112 
2113 	dr_wrk = container_of(work, struct hv_dr_work, wrk);
2114 	hbus = dr_wrk->bus;
2115 	kfree(dr_wrk);
2116 
2117 	INIT_LIST_HEAD(&removed);
2118 
2119 	/* Pull this off the queue and process it if it was the last one. */
2120 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2121 	while (!list_empty(&hbus->dr_list)) {
2122 		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2123 				      list_entry);
2124 		list_del(&dr->list_entry);
2125 
2126 		/* Throw this away if the list still has stuff in it. */
2127 		if (!list_empty(&hbus->dr_list)) {
2128 			kfree(dr);
2129 			continue;
2130 		}
2131 	}
2132 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2133 
2134 	if (!dr) {
2135 		put_hvpcibus(hbus);
2136 		return;
2137 	}
2138 
2139 	/* First, mark all existing children as reported missing. */
2140 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2141 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2142 		hpdev->reported_missing = true;
2143 	}
2144 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2145 
2146 	/* Next, add back any reported devices. */
2147 	for (child_no = 0; child_no < dr->device_count; child_no++) {
2148 		found = false;
2149 		new_desc = &dr->func[child_no];
2150 
2151 		spin_lock_irqsave(&hbus->device_list_lock, flags);
2152 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2153 			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2154 			    (hpdev->desc.v_id == new_desc->v_id) &&
2155 			    (hpdev->desc.d_id == new_desc->d_id) &&
2156 			    (hpdev->desc.ser == new_desc->ser)) {
2157 				hpdev->reported_missing = false;
2158 				found = true;
2159 			}
2160 		}
2161 		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2162 
2163 		if (!found) {
2164 			hpdev = new_pcichild_device(hbus, new_desc);
2165 			if (!hpdev)
2166 				dev_err(&hbus->hdev->device,
2167 					"couldn't record a child device.\n");
2168 		}
2169 	}
2170 
2171 	/* Move missing children to a list on the stack. */
2172 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2173 	do {
2174 		found = false;
2175 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2176 			if (hpdev->reported_missing) {
2177 				found = true;
2178 				put_pcichild(hpdev);
2179 				list_move_tail(&hpdev->list_entry, &removed);
2180 				break;
2181 			}
2182 		}
2183 	} while (found);
2184 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2185 
2186 	/* Delete everything that should no longer exist. */
2187 	while (!list_empty(&removed)) {
2188 		hpdev = list_first_entry(&removed, struct hv_pci_dev,
2189 					 list_entry);
2190 		list_del(&hpdev->list_entry);
2191 
2192 		if (hpdev->pci_slot)
2193 			pci_destroy_slot(hpdev->pci_slot);
2194 
2195 		put_pcichild(hpdev);
2196 	}
2197 
2198 	switch (hbus->state) {
2199 	case hv_pcibus_installed:
2200 		/*
2201 		 * Tell the core to rescan bus
2202 		 * because there may have been changes.
2203 		 */
2204 		pci_lock_rescan_remove();
2205 		pci_scan_child_bus(hbus->pci_bus);
2206 		hv_pci_assign_numa_node(hbus);
2207 		hv_pci_assign_slots(hbus);
2208 		pci_unlock_rescan_remove();
2209 		break;
2210 
2211 	case hv_pcibus_init:
2212 	case hv_pcibus_probed:
2213 		survey_child_resources(hbus);
2214 		break;
2215 
2216 	default:
2217 		break;
2218 	}
2219 
2220 	put_hvpcibus(hbus);
2221 	kfree(dr);
2222 }
2223 
2224 /**
2225  * hv_pci_start_relations_work() - Queue work to start device discovery
2226  * @hbus:	Root PCI bus, as understood by this driver
2227  * @dr:		The list of children returned from host
2228  *
2229  * Return:  0 on success, -errno on failure
2230  */
hv_pci_start_relations_work(struct hv_pcibus_device *hbus, struct hv_dr_state *dr)2231 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2232 				       struct hv_dr_state *dr)
2233 {
2234 	struct hv_dr_work *dr_wrk;
2235 	unsigned long flags;
2236 	bool pending_dr;
2237 
2238 	if (hbus->state == hv_pcibus_removing) {
2239 		dev_info(&hbus->hdev->device,
2240 			 "PCI VMBus BUS_RELATIONS: ignored\n");
2241 		return -ENOENT;
2242 	}
2243 
2244 	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2245 	if (!dr_wrk)
2246 		return -ENOMEM;
2247 
2248 	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2249 	dr_wrk->bus = hbus;
2250 
2251 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2252 	/*
2253 	 * If pending_dr is true, we have already queued a work,
2254 	 * which will see the new dr. Otherwise, we need to
2255 	 * queue a new work.
2256 	 */
2257 	pending_dr = !list_empty(&hbus->dr_list);
2258 	list_add_tail(&dr->list_entry, &hbus->dr_list);
2259 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2260 
2261 	if (pending_dr) {
2262 		kfree(dr_wrk);
2263 	} else {
2264 		get_hvpcibus(hbus);
2265 		queue_work(hbus->wq, &dr_wrk->wrk);
2266 	}
2267 
2268 	return 0;
2269 }
2270 
2271 /**
2272  * hv_pci_devices_present() - Handle list of new children
2273  * @hbus:      Root PCI bus, as understood by this driver
2274  * @relations: Packet from host listing children
2275  *
2276  * Process a new list of devices on the bus. The list of devices is
2277  * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2278  * whenever a new list of devices for this bus appears.
2279  */
hv_pci_devices_present(struct hv_pcibus_device *hbus, struct pci_bus_relations *relations)2280 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2281 				   struct pci_bus_relations *relations)
2282 {
2283 	struct hv_dr_state *dr;
2284 	int i;
2285 
2286 	dr = kzalloc(struct_size(dr, func, relations->device_count),
2287 		     GFP_NOWAIT);
2288 	if (!dr)
2289 		return;
2290 
2291 	dr->device_count = relations->device_count;
2292 	for (i = 0; i < dr->device_count; i++) {
2293 		dr->func[i].v_id = relations->func[i].v_id;
2294 		dr->func[i].d_id = relations->func[i].d_id;
2295 		dr->func[i].rev = relations->func[i].rev;
2296 		dr->func[i].prog_intf = relations->func[i].prog_intf;
2297 		dr->func[i].subclass = relations->func[i].subclass;
2298 		dr->func[i].base_class = relations->func[i].base_class;
2299 		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2300 		dr->func[i].win_slot = relations->func[i].win_slot;
2301 		dr->func[i].ser = relations->func[i].ser;
2302 	}
2303 
2304 	if (hv_pci_start_relations_work(hbus, dr))
2305 		kfree(dr);
2306 }
2307 
2308 /**
2309  * hv_pci_devices_present2() - Handle list of new children
2310  * @hbus:	Root PCI bus, as understood by this driver
2311  * @relations:	Packet from host listing children
2312  *
2313  * This function is the v2 version of hv_pci_devices_present()
2314  */
hv_pci_devices_present2(struct hv_pcibus_device *hbus, struct pci_bus_relations2 *relations)2315 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2316 				    struct pci_bus_relations2 *relations)
2317 {
2318 	struct hv_dr_state *dr;
2319 	int i;
2320 
2321 	dr = kzalloc(struct_size(dr, func, relations->device_count),
2322 		     GFP_NOWAIT);
2323 	if (!dr)
2324 		return;
2325 
2326 	dr->device_count = relations->device_count;
2327 	for (i = 0; i < dr->device_count; i++) {
2328 		dr->func[i].v_id = relations->func[i].v_id;
2329 		dr->func[i].d_id = relations->func[i].d_id;
2330 		dr->func[i].rev = relations->func[i].rev;
2331 		dr->func[i].prog_intf = relations->func[i].prog_intf;
2332 		dr->func[i].subclass = relations->func[i].subclass;
2333 		dr->func[i].base_class = relations->func[i].base_class;
2334 		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2335 		dr->func[i].win_slot = relations->func[i].win_slot;
2336 		dr->func[i].ser = relations->func[i].ser;
2337 		dr->func[i].flags = relations->func[i].flags;
2338 		dr->func[i].virtual_numa_node =
2339 			relations->func[i].virtual_numa_node;
2340 	}
2341 
2342 	if (hv_pci_start_relations_work(hbus, dr))
2343 		kfree(dr);
2344 }
2345 
2346 /**
2347  * hv_eject_device_work() - Asynchronously handles ejection
2348  * @work:	Work struct embedded in internal device struct
2349  *
2350  * This function handles ejecting a device.  Windows will
2351  * attempt to gracefully eject a device, waiting 60 seconds to
2352  * hear back from the guest OS that this completed successfully.
2353  * If this timer expires, the device will be forcibly removed.
2354  */
hv_eject_device_work(struct work_struct *work)2355 static void hv_eject_device_work(struct work_struct *work)
2356 {
2357 	struct pci_eject_response *ejct_pkt;
2358 	struct hv_pcibus_device *hbus;
2359 	struct hv_pci_dev *hpdev;
2360 	struct pci_dev *pdev;
2361 	unsigned long flags;
2362 	int wslot;
2363 	struct {
2364 		struct pci_packet pkt;
2365 		u8 buffer[sizeof(struct pci_eject_response)];
2366 	} ctxt;
2367 
2368 	hpdev = container_of(work, struct hv_pci_dev, wrk);
2369 	hbus = hpdev->hbus;
2370 
2371 	/*
2372 	 * Ejection can come before or after the PCI bus has been set up, so
2373 	 * attempt to find it and tear down the bus state, if it exists.  This
2374 	 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
2375 	 * because hbus->pci_bus may not exist yet.
2376 	 */
2377 	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2378 	pdev = pci_get_domain_bus_and_slot(hbus->sysdata.domain, 0, wslot);
2379 	if (pdev) {
2380 		pci_lock_rescan_remove();
2381 		pci_stop_and_remove_bus_device(pdev);
2382 		pci_dev_put(pdev);
2383 		pci_unlock_rescan_remove();
2384 	}
2385 
2386 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2387 	list_del(&hpdev->list_entry);
2388 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2389 
2390 	if (hpdev->pci_slot)
2391 		pci_destroy_slot(hpdev->pci_slot);
2392 
2393 	memset(&ctxt, 0, sizeof(ctxt));
2394 	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2395 	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2396 	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2397 	vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2398 			 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
2399 			 VM_PKT_DATA_INBAND, 0);
2400 
2401 	/* For the get_pcichild() in hv_pci_eject_device() */
2402 	put_pcichild(hpdev);
2403 	/* For the two refs got in new_pcichild_device() */
2404 	put_pcichild(hpdev);
2405 	put_pcichild(hpdev);
2406 	/* hpdev has been freed. Do not use it any more. */
2407 
2408 	put_hvpcibus(hbus);
2409 }
2410 
2411 /**
2412  * hv_pci_eject_device() - Handles device ejection
2413  * @hpdev:	Internal device tracking struct
2414  *
2415  * This function is invoked when an ejection packet arrives.  It
2416  * just schedules work so that we don't re-enter the packet
2417  * delivery code handling the ejection.
2418  */
hv_pci_eject_device(struct hv_pci_dev *hpdev)2419 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2420 {
2421 	struct hv_pcibus_device *hbus = hpdev->hbus;
2422 	struct hv_device *hdev = hbus->hdev;
2423 
2424 	if (hbus->state == hv_pcibus_removing) {
2425 		dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2426 		return;
2427 	}
2428 
2429 	get_pcichild(hpdev);
2430 	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2431 	get_hvpcibus(hbus);
2432 	queue_work(hbus->wq, &hpdev->wrk);
2433 }
2434 
2435 /**
2436  * hv_pci_onchannelcallback() - Handles incoming packets
2437  * @context:	Internal bus tracking struct
2438  *
2439  * This function is invoked whenever the host sends a packet to
2440  * this channel (which is private to this root PCI bus).
2441  */
hv_pci_onchannelcallback(void *context)2442 static void hv_pci_onchannelcallback(void *context)
2443 {
2444 	const int packet_size = 0x100;
2445 	int ret;
2446 	struct hv_pcibus_device *hbus = context;
2447 	u32 bytes_recvd;
2448 	u64 req_id;
2449 	struct vmpacket_descriptor *desc;
2450 	unsigned char *buffer;
2451 	int bufferlen = packet_size;
2452 	struct pci_packet *comp_packet;
2453 	struct pci_response *response;
2454 	struct pci_incoming_message *new_message;
2455 	struct pci_bus_relations *bus_rel;
2456 	struct pci_bus_relations2 *bus_rel2;
2457 	struct pci_dev_inval_block *inval;
2458 	struct pci_dev_incoming *dev_message;
2459 	struct hv_pci_dev *hpdev;
2460 
2461 	buffer = kmalloc(bufferlen, GFP_ATOMIC);
2462 	if (!buffer)
2463 		return;
2464 
2465 	while (1) {
2466 		ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
2467 					   bufferlen, &bytes_recvd, &req_id);
2468 
2469 		if (ret == -ENOBUFS) {
2470 			kfree(buffer);
2471 			/* Handle large packet */
2472 			bufferlen = bytes_recvd;
2473 			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2474 			if (!buffer)
2475 				return;
2476 			continue;
2477 		}
2478 
2479 		/* Zero length indicates there are no more packets. */
2480 		if (ret || !bytes_recvd)
2481 			break;
2482 
2483 		/*
2484 		 * All incoming packets must be at least as large as a
2485 		 * response.
2486 		 */
2487 		if (bytes_recvd <= sizeof(struct pci_response))
2488 			continue;
2489 		desc = (struct vmpacket_descriptor *)buffer;
2490 
2491 		switch (desc->type) {
2492 		case VM_PKT_COMP:
2493 
2494 			/*
2495 			 * The host is trusted, and thus it's safe to interpret
2496 			 * this transaction ID as a pointer.
2497 			 */
2498 			comp_packet = (struct pci_packet *)req_id;
2499 			response = (struct pci_response *)buffer;
2500 			comp_packet->completion_func(comp_packet->compl_ctxt,
2501 						     response,
2502 						     bytes_recvd);
2503 			break;
2504 
2505 		case VM_PKT_DATA_INBAND:
2506 
2507 			new_message = (struct pci_incoming_message *)buffer;
2508 			switch (new_message->message_type.type) {
2509 			case PCI_BUS_RELATIONS:
2510 
2511 				bus_rel = (struct pci_bus_relations *)buffer;
2512 				if (bytes_recvd <
2513 					struct_size(bus_rel, func,
2514 						    bus_rel->device_count)) {
2515 					dev_err(&hbus->hdev->device,
2516 						"bus relations too small\n");
2517 					break;
2518 				}
2519 
2520 				hv_pci_devices_present(hbus, bus_rel);
2521 				break;
2522 
2523 			case PCI_BUS_RELATIONS2:
2524 
2525 				bus_rel2 = (struct pci_bus_relations2 *)buffer;
2526 				if (bytes_recvd <
2527 					struct_size(bus_rel2, func,
2528 						    bus_rel2->device_count)) {
2529 					dev_err(&hbus->hdev->device,
2530 						"bus relations v2 too small\n");
2531 					break;
2532 				}
2533 
2534 				hv_pci_devices_present2(hbus, bus_rel2);
2535 				break;
2536 
2537 			case PCI_EJECT:
2538 
2539 				dev_message = (struct pci_dev_incoming *)buffer;
2540 				hpdev = get_pcichild_wslot(hbus,
2541 						      dev_message->wslot.slot);
2542 				if (hpdev) {
2543 					hv_pci_eject_device(hpdev);
2544 					put_pcichild(hpdev);
2545 				}
2546 				break;
2547 
2548 			case PCI_INVALIDATE_BLOCK:
2549 
2550 				inval = (struct pci_dev_inval_block *)buffer;
2551 				hpdev = get_pcichild_wslot(hbus,
2552 							   inval->wslot.slot);
2553 				if (hpdev) {
2554 					if (hpdev->block_invalidate) {
2555 						hpdev->block_invalidate(
2556 						    hpdev->invalidate_context,
2557 						    inval->block_mask);
2558 					}
2559 					put_pcichild(hpdev);
2560 				}
2561 				break;
2562 
2563 			default:
2564 				dev_warn(&hbus->hdev->device,
2565 					"Unimplemented protocol message %x\n",
2566 					new_message->message_type.type);
2567 				break;
2568 			}
2569 			break;
2570 
2571 		default:
2572 			dev_err(&hbus->hdev->device,
2573 				"unhandled packet type %d, tid %llx len %d\n",
2574 				desc->type, req_id, bytes_recvd);
2575 			break;
2576 		}
2577 	}
2578 
2579 	kfree(buffer);
2580 }
2581 
2582 /**
2583  * hv_pci_protocol_negotiation() - Set up protocol
2584  * @hdev:		VMBus's tracking struct for this root PCI bus.
2585  * @version:		Array of supported channel protocol versions in
2586  *			the order of probing - highest go first.
2587  * @num_version:	Number of elements in the version array.
2588  *
2589  * This driver is intended to support running on Windows 10
2590  * (server) and later versions. It will not run on earlier
2591  * versions, as they assume that many of the operations which
2592  * Linux needs accomplished with a spinlock held were done via
2593  * asynchronous messaging via VMBus.  Windows 10 increases the
2594  * surface area of PCI emulation so that these actions can take
2595  * place by suspending a virtual processor for their duration.
2596  *
2597  * This function negotiates the channel protocol version,
2598  * failing if the host doesn't support the necessary protocol
2599  * level.
2600  */
hv_pci_protocol_negotiation(struct hv_device *hdev, enum pci_protocol_version_t version[], int num_version)2601 static int hv_pci_protocol_negotiation(struct hv_device *hdev,
2602 				       enum pci_protocol_version_t version[],
2603 				       int num_version)
2604 {
2605 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2606 	struct pci_version_request *version_req;
2607 	struct hv_pci_compl comp_pkt;
2608 	struct pci_packet *pkt;
2609 	int ret;
2610 	int i;
2611 
2612 	/*
2613 	 * Initiate the handshake with the host and negotiate
2614 	 * a version that the host can support. We start with the
2615 	 * highest version number and go down if the host cannot
2616 	 * support it.
2617 	 */
2618 	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2619 	if (!pkt)
2620 		return -ENOMEM;
2621 
2622 	init_completion(&comp_pkt.host_event);
2623 	pkt->completion_func = hv_pci_generic_compl;
2624 	pkt->compl_ctxt = &comp_pkt;
2625 	version_req = (struct pci_version_request *)&pkt->message;
2626 	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2627 
2628 	for (i = 0; i < num_version; i++) {
2629 		version_req->protocol_version = version[i];
2630 		ret = vmbus_sendpacket(hdev->channel, version_req,
2631 				sizeof(struct pci_version_request),
2632 				(unsigned long)pkt, VM_PKT_DATA_INBAND,
2633 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2634 		if (!ret)
2635 			ret = wait_for_response(hdev, &comp_pkt.host_event);
2636 
2637 		if (ret) {
2638 			dev_err(&hdev->device,
2639 				"PCI Pass-through VSP failed to request version: %d",
2640 				ret);
2641 			goto exit;
2642 		}
2643 
2644 		if (comp_pkt.completion_status >= 0) {
2645 			hbus->protocol_version = version[i];
2646 			dev_info(&hdev->device,
2647 				"PCI VMBus probing: Using version %#x\n",
2648 				hbus->protocol_version);
2649 			goto exit;
2650 		}
2651 
2652 		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2653 			dev_err(&hdev->device,
2654 				"PCI Pass-through VSP failed version request: %#x",
2655 				comp_pkt.completion_status);
2656 			ret = -EPROTO;
2657 			goto exit;
2658 		}
2659 
2660 		reinit_completion(&comp_pkt.host_event);
2661 	}
2662 
2663 	dev_err(&hdev->device,
2664 		"PCI pass-through VSP failed to find supported version");
2665 	ret = -EPROTO;
2666 
2667 exit:
2668 	kfree(pkt);
2669 	return ret;
2670 }
2671 
2672 /**
2673  * hv_pci_free_bridge_windows() - Release memory regions for the
2674  * bus
2675  * @hbus:	Root PCI bus, as understood by this driver
2676  */
hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)2677 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2678 {
2679 	/*
2680 	 * Set the resources back to the way they looked when they
2681 	 * were allocated by setting IORESOURCE_BUSY again.
2682 	 */
2683 
2684 	if (hbus->low_mmio_space && hbus->low_mmio_res) {
2685 		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2686 		vmbus_free_mmio(hbus->low_mmio_res->start,
2687 				resource_size(hbus->low_mmio_res));
2688 	}
2689 
2690 	if (hbus->high_mmio_space && hbus->high_mmio_res) {
2691 		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2692 		vmbus_free_mmio(hbus->high_mmio_res->start,
2693 				resource_size(hbus->high_mmio_res));
2694 	}
2695 }
2696 
2697 /**
2698  * hv_pci_allocate_bridge_windows() - Allocate memory regions
2699  * for the bus
2700  * @hbus:	Root PCI bus, as understood by this driver
2701  *
2702  * This function calls vmbus_allocate_mmio(), which is itself a
2703  * bit of a compromise.  Ideally, we might change the pnp layer
2704  * in the kernel such that it comprehends either PCI devices
2705  * which are "grandchildren of ACPI," with some intermediate bus
2706  * node (in this case, VMBus) or change it such that it
2707  * understands VMBus.  The pnp layer, however, has been declared
2708  * deprecated, and not subject to change.
2709  *
2710  * The workaround, implemented here, is to ask VMBus to allocate
2711  * MMIO space for this bus.  VMBus itself knows which ranges are
2712  * appropriate by looking at its own ACPI objects.  Then, after
2713  * these ranges are claimed, they're modified to look like they
2714  * would have looked if the ACPI and pnp code had allocated
2715  * bridge windows.  These descriptors have to exist in this form
2716  * in order to satisfy the code which will get invoked when the
2717  * endpoint PCI function driver calls request_mem_region() or
2718  * request_mem_region_exclusive().
2719  *
2720  * Return: 0 on success, -errno on failure
2721  */
hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)2722 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2723 {
2724 	resource_size_t align;
2725 	int ret;
2726 
2727 	if (hbus->low_mmio_space) {
2728 		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2729 		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2730 					  (u64)(u32)0xffffffff,
2731 					  hbus->low_mmio_space,
2732 					  align, false);
2733 		if (ret) {
2734 			dev_err(&hbus->hdev->device,
2735 				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2736 				hbus->low_mmio_space);
2737 			return ret;
2738 		}
2739 
2740 		/* Modify this resource to become a bridge window. */
2741 		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2742 		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2743 		pci_add_resource(&hbus->resources_for_children,
2744 				 hbus->low_mmio_res);
2745 	}
2746 
2747 	if (hbus->high_mmio_space) {
2748 		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2749 		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2750 					  0x100000000, -1,
2751 					  hbus->high_mmio_space, align,
2752 					  false);
2753 		if (ret) {
2754 			dev_err(&hbus->hdev->device,
2755 				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2756 				hbus->high_mmio_space);
2757 			goto release_low_mmio;
2758 		}
2759 
2760 		/* Modify this resource to become a bridge window. */
2761 		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2762 		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2763 		pci_add_resource(&hbus->resources_for_children,
2764 				 hbus->high_mmio_res);
2765 	}
2766 
2767 	return 0;
2768 
2769 release_low_mmio:
2770 	if (hbus->low_mmio_res) {
2771 		vmbus_free_mmio(hbus->low_mmio_res->start,
2772 				resource_size(hbus->low_mmio_res));
2773 	}
2774 
2775 	return ret;
2776 }
2777 
2778 /**
2779  * hv_allocate_config_window() - Find MMIO space for PCI Config
2780  * @hbus:	Root PCI bus, as understood by this driver
2781  *
2782  * This function claims memory-mapped I/O space for accessing
2783  * configuration space for the functions on this bus.
2784  *
2785  * Return: 0 on success, -errno on failure
2786  */
hv_allocate_config_window(struct hv_pcibus_device *hbus)2787 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2788 {
2789 	int ret;
2790 
2791 	/*
2792 	 * Set up a region of MMIO space to use for accessing configuration
2793 	 * space.
2794 	 */
2795 	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2796 				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2797 	if (ret)
2798 		return ret;
2799 
2800 	/*
2801 	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2802 	 * resource claims (those which cannot be overlapped) and the ranges
2803 	 * which are valid for the children of this bus, which are intended
2804 	 * to be overlapped by those children.  Set the flag on this claim
2805 	 * meaning that this region can't be overlapped.
2806 	 */
2807 
2808 	hbus->mem_config->flags |= IORESOURCE_BUSY;
2809 
2810 	return 0;
2811 }
2812 
hv_free_config_window(struct hv_pcibus_device *hbus)2813 static void hv_free_config_window(struct hv_pcibus_device *hbus)
2814 {
2815 	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2816 }
2817 
2818 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
2819 
2820 /**
2821  * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2822  * @hdev:	VMBus's tracking struct for this root PCI bus
2823  *
2824  * Return: 0 on success, -errno on failure
2825  */
hv_pci_enter_d0(struct hv_device *hdev)2826 static int hv_pci_enter_d0(struct hv_device *hdev)
2827 {
2828 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2829 	struct pci_bus_d0_entry *d0_entry;
2830 	struct hv_pci_compl comp_pkt;
2831 	struct pci_packet *pkt;
2832 	bool retry = true;
2833 	int ret;
2834 
2835 enter_d0_retry:
2836 	/*
2837 	 * Tell the host that the bus is ready to use, and moved into the
2838 	 * powered-on state.  This includes telling the host which region
2839 	 * of memory-mapped I/O space has been chosen for configuration space
2840 	 * access.
2841 	 */
2842 	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2843 	if (!pkt)
2844 		return -ENOMEM;
2845 
2846 	init_completion(&comp_pkt.host_event);
2847 	pkt->completion_func = hv_pci_generic_compl;
2848 	pkt->compl_ctxt = &comp_pkt;
2849 	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2850 	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2851 	d0_entry->mmio_base = hbus->mem_config->start;
2852 
2853 	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2854 			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
2855 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2856 	if (!ret)
2857 		ret = wait_for_response(hdev, &comp_pkt.host_event);
2858 
2859 	if (ret)
2860 		goto exit;
2861 
2862 	/*
2863 	 * In certain case (Kdump) the pci device of interest was
2864 	 * not cleanly shut down and resource is still held on host
2865 	 * side, the host could return invalid device status.
2866 	 * We need to explicitly request host to release the resource
2867 	 * and try to enter D0 again.
2868 	 */
2869 	if (comp_pkt.completion_status < 0 && retry) {
2870 		retry = false;
2871 
2872 		dev_err(&hdev->device, "Retrying D0 Entry\n");
2873 
2874 		/*
2875 		 * Hv_pci_bus_exit() calls hv_send_resource_released()
2876 		 * to free up resources of its child devices.
2877 		 * In the kdump kernel we need to set the
2878 		 * wslot_res_allocated to 255 so it scans all child
2879 		 * devices to release resources allocated in the
2880 		 * normal kernel before panic happened.
2881 		 */
2882 		hbus->wslot_res_allocated = 255;
2883 
2884 		ret = hv_pci_bus_exit(hdev, true);
2885 
2886 		if (ret == 0) {
2887 			kfree(pkt);
2888 			goto enter_d0_retry;
2889 		}
2890 		dev_err(&hdev->device,
2891 			"Retrying D0 failed with ret %d\n", ret);
2892 	}
2893 
2894 	if (comp_pkt.completion_status < 0) {
2895 		dev_err(&hdev->device,
2896 			"PCI Pass-through VSP failed D0 Entry with status %x\n",
2897 			comp_pkt.completion_status);
2898 		ret = -EPROTO;
2899 		goto exit;
2900 	}
2901 
2902 	ret = 0;
2903 
2904 exit:
2905 	kfree(pkt);
2906 	return ret;
2907 }
2908 
2909 /**
2910  * hv_pci_query_relations() - Ask host to send list of child
2911  * devices
2912  * @hdev:	VMBus's tracking struct for this root PCI bus
2913  *
2914  * Return: 0 on success, -errno on failure
2915  */
hv_pci_query_relations(struct hv_device *hdev)2916 static int hv_pci_query_relations(struct hv_device *hdev)
2917 {
2918 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2919 	struct pci_message message;
2920 	struct completion comp;
2921 	int ret;
2922 
2923 	/* Ask the host to send along the list of child devices */
2924 	init_completion(&comp);
2925 	if (cmpxchg(&hbus->survey_event, NULL, &comp))
2926 		return -ENOTEMPTY;
2927 
2928 	memset(&message, 0, sizeof(message));
2929 	message.type = PCI_QUERY_BUS_RELATIONS;
2930 
2931 	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2932 			       0, VM_PKT_DATA_INBAND, 0);
2933 	if (!ret)
2934 		ret = wait_for_response(hdev, &comp);
2935 
2936 	/*
2937 	 * In the case of fast device addition/removal, it's possible that
2938 	 * vmbus_sendpacket() or wait_for_response() returns -ENODEV but we
2939 	 * already got a PCI_BUS_RELATIONS* message from the host and the
2940 	 * channel callback already scheduled a work to hbus->wq, which can be
2941 	 * running pci_devices_present_work() -> survey_child_resources() ->
2942 	 * complete(&hbus->survey_event), even after hv_pci_query_relations()
2943 	 * exits and the stack variable 'comp' is no longer valid; as a result,
2944 	 * a hang or a page fault may happen when the complete() calls
2945 	 * raw_spin_lock_irqsave(). Flush hbus->wq before we exit from
2946 	 * hv_pci_query_relations() to avoid the issues. Note: if 'ret' is
2947 	 * -ENODEV, there can't be any more work item scheduled to hbus->wq
2948 	 * after the flush_workqueue(): see vmbus_onoffer_rescind() ->
2949 	 * vmbus_reset_channel_cb(), vmbus_rescind_cleanup() ->
2950 	 * channel->rescind = true.
2951 	 */
2952 	flush_workqueue(hbus->wq);
2953 
2954 	return ret;
2955 }
2956 
2957 /**
2958  * hv_send_resources_allocated() - Report local resource choices
2959  * @hdev:	VMBus's tracking struct for this root PCI bus
2960  *
2961  * The host OS is expecting to be sent a request as a message
2962  * which contains all the resources that the device will use.
2963  * The response contains those same resources, "translated"
2964  * which is to say, the values which should be used by the
2965  * hardware, when it delivers an interrupt.  (MMIO resources are
2966  * used in local terms.)  This is nice for Windows, and lines up
2967  * with the FDO/PDO split, which doesn't exist in Linux.  Linux
2968  * is deeply expecting to scan an emulated PCI configuration
2969  * space.  So this message is sent here only to drive the state
2970  * machine on the host forward.
2971  *
2972  * Return: 0 on success, -errno on failure
2973  */
hv_send_resources_allocated(struct hv_device *hdev)2974 static int hv_send_resources_allocated(struct hv_device *hdev)
2975 {
2976 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2977 	struct pci_resources_assigned *res_assigned;
2978 	struct pci_resources_assigned2 *res_assigned2;
2979 	struct hv_pci_compl comp_pkt;
2980 	struct hv_pci_dev *hpdev;
2981 	struct pci_packet *pkt;
2982 	size_t size_res;
2983 	int wslot;
2984 	int ret;
2985 
2986 	size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
2987 			? sizeof(*res_assigned) : sizeof(*res_assigned2);
2988 
2989 	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2990 	if (!pkt)
2991 		return -ENOMEM;
2992 
2993 	ret = 0;
2994 
2995 	for (wslot = 0; wslot < 256; wslot++) {
2996 		hpdev = get_pcichild_wslot(hbus, wslot);
2997 		if (!hpdev)
2998 			continue;
2999 
3000 		memset(pkt, 0, sizeof(*pkt) + size_res);
3001 		init_completion(&comp_pkt.host_event);
3002 		pkt->completion_func = hv_pci_generic_compl;
3003 		pkt->compl_ctxt = &comp_pkt;
3004 
3005 		if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
3006 			res_assigned =
3007 				(struct pci_resources_assigned *)&pkt->message;
3008 			res_assigned->message_type.type =
3009 				PCI_RESOURCES_ASSIGNED;
3010 			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
3011 		} else {
3012 			res_assigned2 =
3013 				(struct pci_resources_assigned2 *)&pkt->message;
3014 			res_assigned2->message_type.type =
3015 				PCI_RESOURCES_ASSIGNED2;
3016 			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
3017 		}
3018 		put_pcichild(hpdev);
3019 
3020 		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
3021 				size_res, (unsigned long)pkt,
3022 				VM_PKT_DATA_INBAND,
3023 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3024 		if (!ret)
3025 			ret = wait_for_response(hdev, &comp_pkt.host_event);
3026 		if (ret)
3027 			break;
3028 
3029 		if (comp_pkt.completion_status < 0) {
3030 			ret = -EPROTO;
3031 			dev_err(&hdev->device,
3032 				"resource allocated returned 0x%x",
3033 				comp_pkt.completion_status);
3034 			break;
3035 		}
3036 
3037 		hbus->wslot_res_allocated = wslot;
3038 	}
3039 
3040 	kfree(pkt);
3041 	return ret;
3042 }
3043 
3044 /**
3045  * hv_send_resources_released() - Report local resources
3046  * released
3047  * @hdev:	VMBus's tracking struct for this root PCI bus
3048  *
3049  * Return: 0 on success, -errno on failure
3050  */
hv_send_resources_released(struct hv_device *hdev)3051 static int hv_send_resources_released(struct hv_device *hdev)
3052 {
3053 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3054 	struct pci_child_message pkt;
3055 	struct hv_pci_dev *hpdev;
3056 	int wslot;
3057 	int ret;
3058 
3059 	for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
3060 		hpdev = get_pcichild_wslot(hbus, wslot);
3061 		if (!hpdev)
3062 			continue;
3063 
3064 		memset(&pkt, 0, sizeof(pkt));
3065 		pkt.message_type.type = PCI_RESOURCES_RELEASED;
3066 		pkt.wslot.slot = hpdev->desc.win_slot.slot;
3067 
3068 		put_pcichild(hpdev);
3069 
3070 		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
3071 				       VM_PKT_DATA_INBAND, 0);
3072 		if (ret)
3073 			return ret;
3074 
3075 		hbus->wslot_res_allocated = wslot - 1;
3076 	}
3077 
3078 	hbus->wslot_res_allocated = -1;
3079 
3080 	return 0;
3081 }
3082 
get_hvpcibus(struct hv_pcibus_device *hbus)3083 static void get_hvpcibus(struct hv_pcibus_device *hbus)
3084 {
3085 	refcount_inc(&hbus->remove_lock);
3086 }
3087 
put_hvpcibus(struct hv_pcibus_device *hbus)3088 static void put_hvpcibus(struct hv_pcibus_device *hbus)
3089 {
3090 	if (refcount_dec_and_test(&hbus->remove_lock))
3091 		complete(&hbus->remove_event);
3092 }
3093 
3094 #define HVPCI_DOM_MAP_SIZE (64 * 1024)
3095 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
3096 
3097 /*
3098  * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
3099  * as invalid for passthrough PCI devices of this driver.
3100  */
3101 #define HVPCI_DOM_INVALID 0
3102 
3103 /**
3104  * hv_get_dom_num() - Get a valid PCI domain number
3105  * Check if the PCI domain number is in use, and return another number if
3106  * it is in use.
3107  *
3108  * @dom: Requested domain number
3109  *
3110  * return: domain number on success, HVPCI_DOM_INVALID on failure
3111  */
hv_get_dom_num(u16 dom)3112 static u16 hv_get_dom_num(u16 dom)
3113 {
3114 	unsigned int i;
3115 
3116 	if (test_and_set_bit(dom, hvpci_dom_map) == 0)
3117 		return dom;
3118 
3119 	for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
3120 		if (test_and_set_bit(i, hvpci_dom_map) == 0)
3121 			return i;
3122 	}
3123 
3124 	return HVPCI_DOM_INVALID;
3125 }
3126 
3127 /**
3128  * hv_put_dom_num() - Mark the PCI domain number as free
3129  * @dom: Domain number to be freed
3130  */
hv_put_dom_num(u16 dom)3131 static void hv_put_dom_num(u16 dom)
3132 {
3133 	clear_bit(dom, hvpci_dom_map);
3134 }
3135 
3136 /**
3137  * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
3138  * @hdev:	VMBus's tracking struct for this root PCI bus
3139  * @dev_id:	Identifies the device itself
3140  *
3141  * Return: 0 on success, -errno on failure
3142  */
hv_pci_probe(struct hv_device *hdev, const struct hv_vmbus_device_id *dev_id)3143 static int hv_pci_probe(struct hv_device *hdev,
3144 			const struct hv_vmbus_device_id *dev_id)
3145 {
3146 	struct hv_pcibus_device *hbus;
3147 	u16 dom_req, dom;
3148 	char *name;
3149 	int ret;
3150 
3151 	/*
3152 	 * hv_pcibus_device contains the hypercall arguments for retargeting in
3153 	 * hv_irq_unmask(). Those must not cross a page boundary.
3154 	 */
3155 	BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE);
3156 
3157 	/*
3158 	 * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural
3159 	 * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate
3160 	 * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and
3161 	 * alignment of hbus is important because hbus's field
3162 	 * retarget_msi_interrupt_params must not cross a 4KB page boundary.
3163 	 *
3164 	 * Here we prefer kzalloc to get_zeroed_page(), because a buffer
3165 	 * allocated by the latter is not tracked and scanned by kmemleak, and
3166 	 * hence kmemleak reports the pointer contained in the hbus buffer
3167 	 * (i.e. the hpdev struct, which is created in new_pcichild_device() and
3168 	 * is tracked by hbus->children) as memory leak (false positive).
3169 	 *
3170 	 * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be
3171 	 * used to allocate the hbus buffer and we can avoid the kmemleak false
3172 	 * positive by using kmemleak_alloc() and kmemleak_free() to ask
3173 	 * kmemleak to track and scan the hbus buffer.
3174 	 */
3175 	hbus = kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
3176 	if (!hbus)
3177 		return -ENOMEM;
3178 	hbus->state = hv_pcibus_init;
3179 	hbus->wslot_res_allocated = -1;
3180 
3181 	/*
3182 	 * The PCI bus "domain" is what is called "segment" in ACPI and other
3183 	 * specs. Pull it from the instance ID, to get something usually
3184 	 * unique. In rare cases of collision, we will find out another number
3185 	 * not in use.
3186 	 *
3187 	 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3188 	 * together with this guest driver can guarantee that (1) The only
3189 	 * domain used by Gen1 VMs for something that looks like a physical
3190 	 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3191 	 * (2) There will be no overlap between domains (after fixing possible
3192 	 * collisions) in the same VM.
3193 	 */
3194 	dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3195 	dom = hv_get_dom_num(dom_req);
3196 
3197 	if (dom == HVPCI_DOM_INVALID) {
3198 		dev_err(&hdev->device,
3199 			"Unable to use dom# 0x%hx or other numbers", dom_req);
3200 		ret = -EINVAL;
3201 		goto free_bus;
3202 	}
3203 
3204 	if (dom != dom_req)
3205 		dev_info(&hdev->device,
3206 			 "PCI dom# 0x%hx has collision, using 0x%hx",
3207 			 dom_req, dom);
3208 
3209 	hbus->sysdata.domain = dom;
3210 
3211 	hbus->hdev = hdev;
3212 	refcount_set(&hbus->remove_lock, 1);
3213 	INIT_LIST_HEAD(&hbus->children);
3214 	INIT_LIST_HEAD(&hbus->dr_list);
3215 	INIT_LIST_HEAD(&hbus->resources_for_children);
3216 	spin_lock_init(&hbus->config_lock);
3217 	spin_lock_init(&hbus->device_list_lock);
3218 	spin_lock_init(&hbus->retarget_msi_interrupt_lock);
3219 	init_completion(&hbus->remove_event);
3220 	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3221 					   hbus->sysdata.domain);
3222 	if (!hbus->wq) {
3223 		ret = -ENOMEM;
3224 		goto free_dom;
3225 	}
3226 
3227 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3228 			 hv_pci_onchannelcallback, hbus);
3229 	if (ret)
3230 		goto destroy_wq;
3231 
3232 	hv_set_drvdata(hdev, hbus);
3233 
3234 	ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3235 					  ARRAY_SIZE(pci_protocol_versions));
3236 	if (ret)
3237 		goto close;
3238 
3239 	ret = hv_allocate_config_window(hbus);
3240 	if (ret)
3241 		goto close;
3242 
3243 	hbus->cfg_addr = ioremap(hbus->mem_config->start,
3244 				 PCI_CONFIG_MMIO_LENGTH);
3245 	if (!hbus->cfg_addr) {
3246 		dev_err(&hdev->device,
3247 			"Unable to map a virtual address for config space\n");
3248 		ret = -ENOMEM;
3249 		goto free_config;
3250 	}
3251 
3252 	name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3253 	if (!name) {
3254 		ret = -ENOMEM;
3255 		goto unmap;
3256 	}
3257 
3258 	hbus->sysdata.fwnode = irq_domain_alloc_named_fwnode(name);
3259 	kfree(name);
3260 	if (!hbus->sysdata.fwnode) {
3261 		ret = -ENOMEM;
3262 		goto unmap;
3263 	}
3264 
3265 	ret = hv_pcie_init_irq_domain(hbus);
3266 	if (ret)
3267 		goto free_fwnode;
3268 
3269 	ret = hv_pci_query_relations(hdev);
3270 	if (ret)
3271 		goto free_irq_domain;
3272 
3273 	ret = hv_pci_enter_d0(hdev);
3274 	if (ret)
3275 		goto free_irq_domain;
3276 
3277 	ret = hv_pci_allocate_bridge_windows(hbus);
3278 	if (ret)
3279 		goto exit_d0;
3280 
3281 	ret = hv_send_resources_allocated(hdev);
3282 	if (ret)
3283 		goto free_windows;
3284 
3285 	prepopulate_bars(hbus);
3286 
3287 	hbus->state = hv_pcibus_probed;
3288 
3289 	ret = create_root_hv_pci_bus(hbus);
3290 	if (ret)
3291 		goto free_windows;
3292 
3293 	return 0;
3294 
3295 free_windows:
3296 	hv_pci_free_bridge_windows(hbus);
3297 exit_d0:
3298 	(void) hv_pci_bus_exit(hdev, true);
3299 free_irq_domain:
3300 	irq_domain_remove(hbus->irq_domain);
3301 free_fwnode:
3302 	irq_domain_free_fwnode(hbus->sysdata.fwnode);
3303 unmap:
3304 	iounmap(hbus->cfg_addr);
3305 free_config:
3306 	hv_free_config_window(hbus);
3307 close:
3308 	vmbus_close(hdev->channel);
3309 destroy_wq:
3310 	destroy_workqueue(hbus->wq);
3311 free_dom:
3312 	hv_put_dom_num(hbus->sysdata.domain);
3313 free_bus:
3314 	kfree(hbus);
3315 	return ret;
3316 }
3317 
hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)3318 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3319 {
3320 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3321 	struct {
3322 		struct pci_packet teardown_packet;
3323 		u8 buffer[sizeof(struct pci_message)];
3324 	} pkt;
3325 	struct hv_pci_compl comp_pkt;
3326 	struct hv_pci_dev *hpdev, *tmp;
3327 	unsigned long flags;
3328 	int ret;
3329 
3330 	/*
3331 	 * After the host sends the RESCIND_CHANNEL message, it doesn't
3332 	 * access the per-channel ringbuffer any longer.
3333 	 */
3334 	if (hdev->channel->rescind)
3335 		return 0;
3336 
3337 	if (!keep_devs) {
3338 		struct list_head removed;
3339 
3340 		/* Move all present children to the list on stack */
3341 		INIT_LIST_HEAD(&removed);
3342 		spin_lock_irqsave(&hbus->device_list_lock, flags);
3343 		list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry)
3344 			list_move_tail(&hpdev->list_entry, &removed);
3345 		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
3346 
3347 		/* Remove all children in the list */
3348 		list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) {
3349 			list_del(&hpdev->list_entry);
3350 			if (hpdev->pci_slot)
3351 				pci_destroy_slot(hpdev->pci_slot);
3352 			/* For the two refs got in new_pcichild_device() */
3353 			put_pcichild(hpdev);
3354 			put_pcichild(hpdev);
3355 		}
3356 	}
3357 
3358 	ret = hv_send_resources_released(hdev);
3359 	if (ret) {
3360 		dev_err(&hdev->device,
3361 			"Couldn't send resources released packet(s)\n");
3362 		return ret;
3363 	}
3364 
3365 	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3366 	init_completion(&comp_pkt.host_event);
3367 	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3368 	pkt.teardown_packet.compl_ctxt = &comp_pkt;
3369 	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3370 
3371 	ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
3372 			       sizeof(struct pci_message),
3373 			       (unsigned long)&pkt.teardown_packet,
3374 			       VM_PKT_DATA_INBAND,
3375 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3376 	if (ret)
3377 		return ret;
3378 
3379 	if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0)
3380 		return -ETIMEDOUT;
3381 
3382 	return 0;
3383 }
3384 
3385 /**
3386  * hv_pci_remove() - Remove routine for this VMBus channel
3387  * @hdev:	VMBus's tracking struct for this root PCI bus
3388  *
3389  * Return: 0 on success, -errno on failure
3390  */
hv_pci_remove(struct hv_device *hdev)3391 static int hv_pci_remove(struct hv_device *hdev)
3392 {
3393 	struct hv_pcibus_device *hbus;
3394 	int ret;
3395 
3396 	hbus = hv_get_drvdata(hdev);
3397 	if (hbus->state == hv_pcibus_installed) {
3398 		tasklet_disable(&hdev->channel->callback_event);
3399 		hbus->state = hv_pcibus_removing;
3400 		tasklet_enable(&hdev->channel->callback_event);
3401 		destroy_workqueue(hbus->wq);
3402 		hbus->wq = NULL;
3403 		/*
3404 		 * At this point, no work is running or can be scheduled
3405 		 * on hbus-wq. We can't race with hv_pci_devices_present()
3406 		 * or hv_pci_eject_device(), it's safe to proceed.
3407 		 */
3408 
3409 		/* Remove the bus from PCI's point of view. */
3410 		pci_lock_rescan_remove();
3411 		pci_stop_root_bus(hbus->pci_bus);
3412 		hv_pci_remove_slots(hbus);
3413 		pci_remove_root_bus(hbus->pci_bus);
3414 		pci_unlock_rescan_remove();
3415 	}
3416 
3417 	ret = hv_pci_bus_exit(hdev, false);
3418 
3419 	vmbus_close(hdev->channel);
3420 
3421 	iounmap(hbus->cfg_addr);
3422 	hv_free_config_window(hbus);
3423 	pci_free_resource_list(&hbus->resources_for_children);
3424 	hv_pci_free_bridge_windows(hbus);
3425 	irq_domain_remove(hbus->irq_domain);
3426 	irq_domain_free_fwnode(hbus->sysdata.fwnode);
3427 	put_hvpcibus(hbus);
3428 	wait_for_completion(&hbus->remove_event);
3429 
3430 	hv_put_dom_num(hbus->sysdata.domain);
3431 
3432 	kfree(hbus);
3433 	return ret;
3434 }
3435 
hv_pci_suspend(struct hv_device *hdev)3436 static int hv_pci_suspend(struct hv_device *hdev)
3437 {
3438 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3439 	enum hv_pcibus_state old_state;
3440 	int ret;
3441 
3442 	/*
3443 	 * hv_pci_suspend() must make sure there are no pending work items
3444 	 * before calling vmbus_close(), since it runs in a process context
3445 	 * as a callback in dpm_suspend().  When it starts to run, the channel
3446 	 * callback hv_pci_onchannelcallback(), which runs in a tasklet
3447 	 * context, can be still running concurrently and scheduling new work
3448 	 * items onto hbus->wq in hv_pci_devices_present() and
3449 	 * hv_pci_eject_device(), and the work item handlers can access the
3450 	 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3451 	 * the work item handler pci_devices_present_work() ->
3452 	 * new_pcichild_device() writes to the vmbus channel.
3453 	 *
3454 	 * To eliminate the race, hv_pci_suspend() disables the channel
3455 	 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3456 	 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3457 	 * it knows that no new work item can be scheduled, and then it flushes
3458 	 * hbus->wq and safely closes the vmbus channel.
3459 	 */
3460 	tasklet_disable(&hdev->channel->callback_event);
3461 
3462 	/* Change the hbus state to prevent new work items. */
3463 	old_state = hbus->state;
3464 	if (hbus->state == hv_pcibus_installed)
3465 		hbus->state = hv_pcibus_removing;
3466 
3467 	tasklet_enable(&hdev->channel->callback_event);
3468 
3469 	if (old_state != hv_pcibus_installed)
3470 		return -EINVAL;
3471 
3472 	flush_workqueue(hbus->wq);
3473 
3474 	ret = hv_pci_bus_exit(hdev, true);
3475 	if (ret)
3476 		return ret;
3477 
3478 	vmbus_close(hdev->channel);
3479 
3480 	return 0;
3481 }
3482 
hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)3483 static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
3484 {
3485 	struct msi_desc *entry;
3486 	struct irq_data *irq_data;
3487 
3488 	for_each_pci_msi_entry(entry, pdev) {
3489 		irq_data = irq_get_irq_data(entry->irq);
3490 		if (WARN_ON_ONCE(!irq_data))
3491 			return -EINVAL;
3492 
3493 		hv_compose_msi_msg(irq_data, &entry->msg);
3494 	}
3495 
3496 	return 0;
3497 }
3498 
3499 /*
3500  * Upon resume, pci_restore_msi_state() -> ... ->  __pci_write_msi_msg()
3501  * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
3502  * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
3503  * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
3504  * Table entries.
3505  */
hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)3506 static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
3507 {
3508 	pci_walk_bus(hbus->pci_bus, hv_pci_restore_msi_msg, NULL);
3509 }
3510 
hv_pci_resume(struct hv_device *hdev)3511 static int hv_pci_resume(struct hv_device *hdev)
3512 {
3513 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3514 	enum pci_protocol_version_t version[1];
3515 	int ret;
3516 
3517 	hbus->state = hv_pcibus_init;
3518 
3519 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3520 			 hv_pci_onchannelcallback, hbus);
3521 	if (ret)
3522 		return ret;
3523 
3524 	/* Only use the version that was in use before hibernation. */
3525 	version[0] = hbus->protocol_version;
3526 	ret = hv_pci_protocol_negotiation(hdev, version, 1);
3527 	if (ret)
3528 		goto out;
3529 
3530 	ret = hv_pci_query_relations(hdev);
3531 	if (ret)
3532 		goto out;
3533 
3534 	ret = hv_pci_enter_d0(hdev);
3535 	if (ret)
3536 		goto out;
3537 
3538 	ret = hv_send_resources_allocated(hdev);
3539 	if (ret)
3540 		goto out;
3541 
3542 	prepopulate_bars(hbus);
3543 
3544 	hv_pci_restore_msi_state(hbus);
3545 
3546 	hbus->state = hv_pcibus_installed;
3547 	return 0;
3548 out:
3549 	vmbus_close(hdev->channel);
3550 	return ret;
3551 }
3552 
3553 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
3554 	/* PCI Pass-through Class ID */
3555 	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
3556 	{ HV_PCIE_GUID, },
3557 	{ },
3558 };
3559 
3560 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
3561 
3562 static struct hv_driver hv_pci_drv = {
3563 	.name		= "hv_pci",
3564 	.id_table	= hv_pci_id_table,
3565 	.probe		= hv_pci_probe,
3566 	.remove		= hv_pci_remove,
3567 	.suspend	= hv_pci_suspend,
3568 	.resume		= hv_pci_resume,
3569 };
3570 
exit_hv_pci_drv(void)3571 static void __exit exit_hv_pci_drv(void)
3572 {
3573 	vmbus_driver_unregister(&hv_pci_drv);
3574 
3575 	hvpci_block_ops.read_block = NULL;
3576 	hvpci_block_ops.write_block = NULL;
3577 	hvpci_block_ops.reg_blk_invalidate = NULL;
3578 }
3579 
init_hv_pci_drv(void)3580 static int __init init_hv_pci_drv(void)
3581 {
3582 	if (!hv_is_hyperv_initialized())
3583 		return -ENODEV;
3584 
3585 	/* Set the invalid domain number's bit, so it will not be used */
3586 	set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
3587 
3588 	/* Initialize PCI block r/w interface */
3589 	hvpci_block_ops.read_block = hv_read_config_block;
3590 	hvpci_block_ops.write_block = hv_write_config_block;
3591 	hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
3592 
3593 	return vmbus_driver_register(&hv_pci_drv);
3594 }
3595 
3596 module_init(init_hv_pci_drv);
3597 module_exit(exit_hv_pci_drv);
3598 
3599 MODULE_DESCRIPTION("Hyper-V PCI");
3600 MODULE_LICENSE("GPL v2");
3601