xref: /kernel/linux/linux-5.10/drivers/nvmem/core.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * nvmem framework core.
4 *
5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7 */
8
9#include <linux/device.h>
10#include <linux/export.h>
11#include <linux/fs.h>
12#include <linux/idr.h>
13#include <linux/init.h>
14#include <linux/kref.h>
15#include <linux/module.h>
16#include <linux/nvmem-consumer.h>
17#include <linux/nvmem-provider.h>
18#include <linux/gpio/consumer.h>
19#include <linux/of.h>
20#include <linux/slab.h>
21
22struct nvmem_device {
23	struct module		*owner;
24	struct device		dev;
25	int			stride;
26	int			word_size;
27	int			id;
28	struct kref		refcnt;
29	size_t			size;
30	bool			read_only;
31	bool			root_only;
32	int			flags;
33	enum nvmem_type		type;
34	struct bin_attribute	eeprom;
35	struct device		*base_dev;
36	struct list_head	cells;
37	nvmem_reg_read_t	reg_read;
38	nvmem_reg_write_t	reg_write;
39	struct gpio_desc	*wp_gpio;
40	void *priv;
41};
42
43#define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
44
45#define FLAG_COMPAT		BIT(0)
46
47struct nvmem_cell {
48	const char		*name;
49	int			offset;
50	int			bytes;
51	int			bit_offset;
52	int			nbits;
53	struct device_node	*np;
54	struct nvmem_device	*nvmem;
55	struct list_head	node;
56};
57
58static DEFINE_MUTEX(nvmem_mutex);
59static DEFINE_IDA(nvmem_ida);
60
61static DEFINE_MUTEX(nvmem_cell_mutex);
62static LIST_HEAD(nvmem_cell_tables);
63
64static DEFINE_MUTEX(nvmem_lookup_mutex);
65static LIST_HEAD(nvmem_lookup_list);
66
67static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
68
69static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
70			  void *val, size_t bytes)
71{
72	if (nvmem->reg_read)
73		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
74
75	return -EINVAL;
76}
77
78static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
79			   void *val, size_t bytes)
80{
81	int ret;
82
83	if (nvmem->reg_write) {
84		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
85		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
86		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
87		return ret;
88	}
89
90	return -EINVAL;
91}
92
93#ifdef CONFIG_NVMEM_SYSFS
94static const char * const nvmem_type_str[] = {
95	[NVMEM_TYPE_UNKNOWN] = "Unknown",
96	[NVMEM_TYPE_EEPROM] = "EEPROM",
97	[NVMEM_TYPE_OTP] = "OTP",
98	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
99};
100
101#ifdef CONFIG_DEBUG_LOCK_ALLOC
102static struct lock_class_key eeprom_lock_key;
103#endif
104
105static ssize_t type_show(struct device *dev,
106			 struct device_attribute *attr, char *buf)
107{
108	struct nvmem_device *nvmem = to_nvmem_device(dev);
109
110	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
111}
112
113static DEVICE_ATTR_RO(type);
114
115static struct attribute *nvmem_attrs[] = {
116	&dev_attr_type.attr,
117	NULL,
118};
119
120static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
121				   struct bin_attribute *attr, char *buf,
122				   loff_t pos, size_t count)
123{
124	struct device *dev;
125	struct nvmem_device *nvmem;
126	int rc;
127
128	if (attr->private)
129		dev = attr->private;
130	else
131		dev = kobj_to_dev(kobj);
132	nvmem = to_nvmem_device(dev);
133
134	/* Stop the user from reading */
135	if (pos >= nvmem->size)
136		return 0;
137
138	if (!IS_ALIGNED(pos, nvmem->stride))
139		return -EINVAL;
140
141	if (count < nvmem->word_size)
142		return -EINVAL;
143
144	if (pos + count > nvmem->size)
145		count = nvmem->size - pos;
146
147	count = round_down(count, nvmem->word_size);
148
149	if (!nvmem->reg_read)
150		return -EPERM;
151
152	rc = nvmem_reg_read(nvmem, pos, buf, count);
153
154	if (rc)
155		return rc;
156
157	return count;
158}
159
160static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
161				    struct bin_attribute *attr, char *buf,
162				    loff_t pos, size_t count)
163{
164	struct device *dev;
165	struct nvmem_device *nvmem;
166	int rc;
167
168	if (attr->private)
169		dev = attr->private;
170	else
171		dev = kobj_to_dev(kobj);
172	nvmem = to_nvmem_device(dev);
173
174	/* Stop the user from writing */
175	if (pos >= nvmem->size)
176		return -EFBIG;
177
178	if (!IS_ALIGNED(pos, nvmem->stride))
179		return -EINVAL;
180
181	if (count < nvmem->word_size)
182		return -EINVAL;
183
184	if (pos + count > nvmem->size)
185		count = nvmem->size - pos;
186
187	count = round_down(count, nvmem->word_size);
188
189	if (!nvmem->reg_write)
190		return -EPERM;
191
192	rc = nvmem_reg_write(nvmem, pos, buf, count);
193
194	if (rc)
195		return rc;
196
197	return count;
198}
199
200static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
201{
202	umode_t mode = 0400;
203
204	if (!nvmem->root_only)
205		mode |= 0044;
206
207	if (!nvmem->read_only)
208		mode |= 0200;
209
210	if (!nvmem->reg_write)
211		mode &= ~0200;
212
213	if (!nvmem->reg_read)
214		mode &= ~0444;
215
216	return mode;
217}
218
219static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
220					 struct bin_attribute *attr, int i)
221{
222	struct device *dev = kobj_to_dev(kobj);
223	struct nvmem_device *nvmem = to_nvmem_device(dev);
224
225	attr->size = nvmem->size;
226
227	return nvmem_bin_attr_get_umode(nvmem);
228}
229
230/* default read/write permissions */
231static struct bin_attribute bin_attr_rw_nvmem = {
232	.attr	= {
233		.name	= "nvmem",
234		.mode	= 0644,
235	},
236	.read	= bin_attr_nvmem_read,
237	.write	= bin_attr_nvmem_write,
238};
239
240static struct bin_attribute *nvmem_bin_attributes[] = {
241	&bin_attr_rw_nvmem,
242	NULL,
243};
244
245static const struct attribute_group nvmem_bin_group = {
246	.bin_attrs	= nvmem_bin_attributes,
247	.attrs		= nvmem_attrs,
248	.is_bin_visible = nvmem_bin_attr_is_visible,
249};
250
251static const struct attribute_group *nvmem_dev_groups[] = {
252	&nvmem_bin_group,
253	NULL,
254};
255
256static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
257	.attr	= {
258		.name	= "eeprom",
259	},
260	.read	= bin_attr_nvmem_read,
261	.write	= bin_attr_nvmem_write,
262};
263
264/*
265 * nvmem_setup_compat() - Create an additional binary entry in
266 * drivers sys directory, to be backwards compatible with the older
267 * drivers/misc/eeprom drivers.
268 */
269static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
270				    const struct nvmem_config *config)
271{
272	int rval;
273
274	if (!config->compat)
275		return 0;
276
277	if (!config->base_dev)
278		return -EINVAL;
279
280	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
281	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
282	nvmem->eeprom.size = nvmem->size;
283#ifdef CONFIG_DEBUG_LOCK_ALLOC
284	nvmem->eeprom.attr.key = &eeprom_lock_key;
285#endif
286	nvmem->eeprom.private = &nvmem->dev;
287	nvmem->base_dev = config->base_dev;
288
289	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
290	if (rval) {
291		dev_err(&nvmem->dev,
292			"Failed to create eeprom binary file %d\n", rval);
293		return rval;
294	}
295
296	nvmem->flags |= FLAG_COMPAT;
297
298	return 0;
299}
300
301static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
302			      const struct nvmem_config *config)
303{
304	if (config->compat)
305		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
306}
307
308#else /* CONFIG_NVMEM_SYSFS */
309
310static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
311				    const struct nvmem_config *config)
312{
313	return -ENOSYS;
314}
315static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
316				      const struct nvmem_config *config)
317{
318}
319
320#endif /* CONFIG_NVMEM_SYSFS */
321
322static void nvmem_release(struct device *dev)
323{
324	struct nvmem_device *nvmem = to_nvmem_device(dev);
325
326	ida_free(&nvmem_ida, nvmem->id);
327	gpiod_put(nvmem->wp_gpio);
328	kfree(nvmem);
329}
330
331static const struct device_type nvmem_provider_type = {
332	.release	= nvmem_release,
333};
334
335static struct bus_type nvmem_bus_type = {
336	.name		= "nvmem",
337};
338
339static void nvmem_cell_drop(struct nvmem_cell *cell)
340{
341	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
342	mutex_lock(&nvmem_mutex);
343	list_del(&cell->node);
344	mutex_unlock(&nvmem_mutex);
345	of_node_put(cell->np);
346	kfree_const(cell->name);
347	kfree(cell);
348}
349
350static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
351{
352	struct nvmem_cell *cell, *p;
353
354	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
355		nvmem_cell_drop(cell);
356}
357
358static void nvmem_cell_add(struct nvmem_cell *cell)
359{
360	mutex_lock(&nvmem_mutex);
361	list_add_tail(&cell->node, &cell->nvmem->cells);
362	mutex_unlock(&nvmem_mutex);
363	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
364}
365
366static int nvmem_cell_info_to_nvmem_cell_nodup(struct nvmem_device *nvmem,
367					const struct nvmem_cell_info *info,
368					struct nvmem_cell *cell)
369{
370	cell->nvmem = nvmem;
371	cell->offset = info->offset;
372	cell->bytes = info->bytes;
373	cell->name = info->name;
374
375	cell->bit_offset = info->bit_offset;
376	cell->nbits = info->nbits;
377
378	if (cell->nbits)
379		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
380					   BITS_PER_BYTE);
381
382	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
383		dev_err(&nvmem->dev,
384			"cell %s unaligned to nvmem stride %d\n",
385			cell->name ?: "<unknown>", nvmem->stride);
386		return -EINVAL;
387	}
388
389	return 0;
390}
391
392static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
393				const struct nvmem_cell_info *info,
394				struct nvmem_cell *cell)
395{
396	int err;
397
398	err = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, cell);
399	if (err)
400		return err;
401
402	cell->name = kstrdup_const(info->name, GFP_KERNEL);
403	if (!cell->name)
404		return -ENOMEM;
405
406	return 0;
407}
408
409/**
410 * nvmem_add_cells() - Add cell information to an nvmem device
411 *
412 * @nvmem: nvmem device to add cells to.
413 * @info: nvmem cell info to add to the device
414 * @ncells: number of cells in info
415 *
416 * Return: 0 or negative error code on failure.
417 */
418static int nvmem_add_cells(struct nvmem_device *nvmem,
419		    const struct nvmem_cell_info *info,
420		    int ncells)
421{
422	struct nvmem_cell **cells;
423	int i, rval;
424
425	cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
426	if (!cells)
427		return -ENOMEM;
428
429	for (i = 0; i < ncells; i++) {
430		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
431		if (!cells[i]) {
432			rval = -ENOMEM;
433			goto err;
434		}
435
436		rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
437		if (rval) {
438			kfree(cells[i]);
439			goto err;
440		}
441
442		nvmem_cell_add(cells[i]);
443	}
444
445	/* remove tmp array */
446	kfree(cells);
447
448	return 0;
449err:
450	while (i--)
451		nvmem_cell_drop(cells[i]);
452
453	kfree(cells);
454
455	return rval;
456}
457
458/**
459 * nvmem_register_notifier() - Register a notifier block for nvmem events.
460 *
461 * @nb: notifier block to be called on nvmem events.
462 *
463 * Return: 0 on success, negative error number on failure.
464 */
465int nvmem_register_notifier(struct notifier_block *nb)
466{
467	return blocking_notifier_chain_register(&nvmem_notifier, nb);
468}
469EXPORT_SYMBOL_GPL(nvmem_register_notifier);
470
471/**
472 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
473 *
474 * @nb: notifier block to be unregistered.
475 *
476 * Return: 0 on success, negative error number on failure.
477 */
478int nvmem_unregister_notifier(struct notifier_block *nb)
479{
480	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
481}
482EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
483
484static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
485{
486	const struct nvmem_cell_info *info;
487	struct nvmem_cell_table *table;
488	struct nvmem_cell *cell;
489	int rval = 0, i;
490
491	mutex_lock(&nvmem_cell_mutex);
492	list_for_each_entry(table, &nvmem_cell_tables, node) {
493		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
494			for (i = 0; i < table->ncells; i++) {
495				info = &table->cells[i];
496
497				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
498				if (!cell) {
499					rval = -ENOMEM;
500					goto out;
501				}
502
503				rval = nvmem_cell_info_to_nvmem_cell(nvmem,
504								     info,
505								     cell);
506				if (rval) {
507					kfree(cell);
508					goto out;
509				}
510
511				nvmem_cell_add(cell);
512			}
513		}
514	}
515
516out:
517	mutex_unlock(&nvmem_cell_mutex);
518	return rval;
519}
520
521static struct nvmem_cell *
522nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
523{
524	struct nvmem_cell *iter, *cell = NULL;
525
526	mutex_lock(&nvmem_mutex);
527	list_for_each_entry(iter, &nvmem->cells, node) {
528		if (strcmp(cell_id, iter->name) == 0) {
529			cell = iter;
530			break;
531		}
532	}
533	mutex_unlock(&nvmem_mutex);
534
535	return cell;
536}
537
538static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
539{
540	struct device_node *parent, *child;
541	struct device *dev = &nvmem->dev;
542	struct nvmem_cell *cell;
543	const __be32 *addr;
544	int len;
545
546	parent = dev->of_node;
547
548	for_each_child_of_node(parent, child) {
549		addr = of_get_property(child, "reg", &len);
550		if (!addr)
551			continue;
552		if (len < 2 * sizeof(u32)) {
553			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
554			of_node_put(child);
555			return -EINVAL;
556		}
557
558		cell = kzalloc(sizeof(*cell), GFP_KERNEL);
559		if (!cell) {
560			of_node_put(child);
561			return -ENOMEM;
562		}
563
564		cell->nvmem = nvmem;
565		cell->offset = be32_to_cpup(addr++);
566		cell->bytes = be32_to_cpup(addr);
567		cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
568
569		addr = of_get_property(child, "bits", &len);
570		if (addr && len == (2 * sizeof(u32))) {
571			cell->bit_offset = be32_to_cpup(addr++);
572			cell->nbits = be32_to_cpup(addr);
573		}
574
575		if (cell->nbits)
576			cell->bytes = DIV_ROUND_UP(
577					cell->nbits + cell->bit_offset,
578					BITS_PER_BYTE);
579
580		if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
581			dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
582				cell->name, nvmem->stride);
583			/* Cells already added will be freed later. */
584			kfree_const(cell->name);
585			kfree(cell);
586			of_node_put(child);
587			return -EINVAL;
588		}
589
590		cell->np = of_node_get(child);
591		nvmem_cell_add(cell);
592	}
593
594	return 0;
595}
596
597/**
598 * nvmem_register() - Register a nvmem device for given nvmem_config.
599 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
600 *
601 * @config: nvmem device configuration with which nvmem device is created.
602 *
603 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
604 * on success.
605 */
606
607struct nvmem_device *nvmem_register(const struct nvmem_config *config)
608{
609	struct nvmem_device *nvmem;
610	int rval;
611
612	if (!config->dev)
613		return ERR_PTR(-EINVAL);
614
615	if (!config->reg_read && !config->reg_write)
616		return ERR_PTR(-EINVAL);
617
618	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
619	if (!nvmem)
620		return ERR_PTR(-ENOMEM);
621
622	rval  = ida_alloc(&nvmem_ida, GFP_KERNEL);
623	if (rval < 0) {
624		kfree(nvmem);
625		return ERR_PTR(rval);
626	}
627
628	nvmem->id = rval;
629
630	nvmem->dev.type = &nvmem_provider_type;
631	nvmem->dev.bus = &nvmem_bus_type;
632	nvmem->dev.parent = config->dev;
633
634	device_initialize(&nvmem->dev);
635
636	if (!config->ignore_wp)
637		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
638						    GPIOD_OUT_HIGH);
639	if (IS_ERR(nvmem->wp_gpio)) {
640		rval = PTR_ERR(nvmem->wp_gpio);
641		nvmem->wp_gpio = NULL;
642		goto err_put_device;
643	}
644
645	kref_init(&nvmem->refcnt);
646	INIT_LIST_HEAD(&nvmem->cells);
647
648	nvmem->owner = config->owner;
649	if (!nvmem->owner && config->dev->driver)
650		nvmem->owner = config->dev->driver->owner;
651	nvmem->stride = config->stride ?: 1;
652	nvmem->word_size = config->word_size ?: 1;
653	nvmem->size = config->size;
654	nvmem->root_only = config->root_only;
655	nvmem->priv = config->priv;
656	nvmem->type = config->type;
657	nvmem->reg_read = config->reg_read;
658	nvmem->reg_write = config->reg_write;
659	if (!config->no_of_node)
660		nvmem->dev.of_node = config->dev->of_node;
661
662	switch (config->id) {
663	case NVMEM_DEVID_NONE:
664		rval = dev_set_name(&nvmem->dev, "%s", config->name);
665		break;
666	case NVMEM_DEVID_AUTO:
667		rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
668		break;
669	default:
670		rval = dev_set_name(&nvmem->dev, "%s%d",
671			     config->name ? : "nvmem",
672			     config->name ? config->id : nvmem->id);
673		break;
674	}
675
676	if (rval)
677		goto err_put_device;
678
679	nvmem->read_only = device_property_present(config->dev, "read-only") ||
680			   config->read_only || !nvmem->reg_write;
681
682#ifdef CONFIG_NVMEM_SYSFS
683	nvmem->dev.groups = nvmem_dev_groups;
684#endif
685
686	if (config->compat) {
687		rval = nvmem_sysfs_setup_compat(nvmem, config);
688		if (rval)
689			goto err_put_device;
690	}
691
692	if (config->cells) {
693		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
694		if (rval)
695			goto err_remove_cells;
696	}
697
698	rval = nvmem_add_cells_from_table(nvmem);
699	if (rval)
700		goto err_remove_cells;
701
702	rval = nvmem_add_cells_from_of(nvmem);
703	if (rval)
704		goto err_remove_cells;
705
706	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
707
708	rval = device_add(&nvmem->dev);
709	if (rval)
710		goto err_remove_cells;
711
712	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
713
714	return nvmem;
715
716err_remove_cells:
717	nvmem_device_remove_all_cells(nvmem);
718	if (config->compat)
719		nvmem_sysfs_remove_compat(nvmem, config);
720err_put_device:
721	put_device(&nvmem->dev);
722
723	return ERR_PTR(rval);
724}
725EXPORT_SYMBOL_GPL(nvmem_register);
726
727static void nvmem_device_release(struct kref *kref)
728{
729	struct nvmem_device *nvmem;
730
731	nvmem = container_of(kref, struct nvmem_device, refcnt);
732
733	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
734
735	if (nvmem->flags & FLAG_COMPAT)
736		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
737
738	nvmem_device_remove_all_cells(nvmem);
739	device_unregister(&nvmem->dev);
740}
741
742/**
743 * nvmem_unregister() - Unregister previously registered nvmem device
744 *
745 * @nvmem: Pointer to previously registered nvmem device.
746 */
747void nvmem_unregister(struct nvmem_device *nvmem)
748{
749	kref_put(&nvmem->refcnt, nvmem_device_release);
750}
751EXPORT_SYMBOL_GPL(nvmem_unregister);
752
753static void devm_nvmem_release(struct device *dev, void *res)
754{
755	nvmem_unregister(*(struct nvmem_device **)res);
756}
757
758/**
759 * devm_nvmem_register() - Register a managed nvmem device for given
760 * nvmem_config.
761 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
762 *
763 * @dev: Device that uses the nvmem device.
764 * @config: nvmem device configuration with which nvmem device is created.
765 *
766 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
767 * on success.
768 */
769struct nvmem_device *devm_nvmem_register(struct device *dev,
770					 const struct nvmem_config *config)
771{
772	struct nvmem_device **ptr, *nvmem;
773
774	ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
775	if (!ptr)
776		return ERR_PTR(-ENOMEM);
777
778	nvmem = nvmem_register(config);
779
780	if (!IS_ERR(nvmem)) {
781		*ptr = nvmem;
782		devres_add(dev, ptr);
783	} else {
784		devres_free(ptr);
785	}
786
787	return nvmem;
788}
789EXPORT_SYMBOL_GPL(devm_nvmem_register);
790
791static int devm_nvmem_match(struct device *dev, void *res, void *data)
792{
793	struct nvmem_device **r = res;
794
795	return *r == data;
796}
797
798/**
799 * devm_nvmem_unregister() - Unregister previously registered managed nvmem
800 * device.
801 *
802 * @dev: Device that uses the nvmem device.
803 * @nvmem: Pointer to previously registered nvmem device.
804 *
805 * Return: Will be negative on error or zero on success.
806 */
807int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
808{
809	return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
810}
811EXPORT_SYMBOL(devm_nvmem_unregister);
812
813static struct nvmem_device *__nvmem_device_get(void *data,
814			int (*match)(struct device *dev, const void *data))
815{
816	struct nvmem_device *nvmem = NULL;
817	struct device *dev;
818
819	mutex_lock(&nvmem_mutex);
820	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
821	if (dev)
822		nvmem = to_nvmem_device(dev);
823	mutex_unlock(&nvmem_mutex);
824	if (!nvmem)
825		return ERR_PTR(-EPROBE_DEFER);
826
827	if (!try_module_get(nvmem->owner)) {
828		dev_err(&nvmem->dev,
829			"could not increase module refcount for cell %s\n",
830			nvmem_dev_name(nvmem));
831
832		put_device(&nvmem->dev);
833		return ERR_PTR(-EINVAL);
834	}
835
836	kref_get(&nvmem->refcnt);
837
838	return nvmem;
839}
840
841static void __nvmem_device_put(struct nvmem_device *nvmem)
842{
843	put_device(&nvmem->dev);
844	module_put(nvmem->owner);
845	kref_put(&nvmem->refcnt, nvmem_device_release);
846}
847
848#if IS_ENABLED(CONFIG_OF)
849/**
850 * of_nvmem_device_get() - Get nvmem device from a given id
851 *
852 * @np: Device tree node that uses the nvmem device.
853 * @id: nvmem name from nvmem-names property.
854 *
855 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
856 * on success.
857 */
858struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
859{
860
861	struct device_node *nvmem_np;
862	struct nvmem_device *nvmem;
863	int index = 0;
864
865	if (id)
866		index = of_property_match_string(np, "nvmem-names", id);
867
868	nvmem_np = of_parse_phandle(np, "nvmem", index);
869	if (!nvmem_np)
870		return ERR_PTR(-ENOENT);
871
872	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
873	of_node_put(nvmem_np);
874	return nvmem;
875}
876EXPORT_SYMBOL_GPL(of_nvmem_device_get);
877#endif
878
879/**
880 * nvmem_device_get() - Get nvmem device from a given id
881 *
882 * @dev: Device that uses the nvmem device.
883 * @dev_name: name of the requested nvmem device.
884 *
885 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
886 * on success.
887 */
888struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
889{
890	if (dev->of_node) { /* try dt first */
891		struct nvmem_device *nvmem;
892
893		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
894
895		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
896			return nvmem;
897
898	}
899
900	return __nvmem_device_get((void *)dev_name, device_match_name);
901}
902EXPORT_SYMBOL_GPL(nvmem_device_get);
903
904/**
905 * nvmem_device_find() - Find nvmem device with matching function
906 *
907 * @data: Data to pass to match function
908 * @match: Callback function to check device
909 *
910 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
911 * on success.
912 */
913struct nvmem_device *nvmem_device_find(void *data,
914			int (*match)(struct device *dev, const void *data))
915{
916	return __nvmem_device_get(data, match);
917}
918EXPORT_SYMBOL_GPL(nvmem_device_find);
919
920static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
921{
922	struct nvmem_device **nvmem = res;
923
924	if (WARN_ON(!nvmem || !*nvmem))
925		return 0;
926
927	return *nvmem == data;
928}
929
930static void devm_nvmem_device_release(struct device *dev, void *res)
931{
932	nvmem_device_put(*(struct nvmem_device **)res);
933}
934
935/**
936 * devm_nvmem_device_put() - put alredy got nvmem device
937 *
938 * @dev: Device that uses the nvmem device.
939 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
940 * that needs to be released.
941 */
942void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
943{
944	int ret;
945
946	ret = devres_release(dev, devm_nvmem_device_release,
947			     devm_nvmem_device_match, nvmem);
948
949	WARN_ON(ret);
950}
951EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
952
953/**
954 * nvmem_device_put() - put alredy got nvmem device
955 *
956 * @nvmem: pointer to nvmem device that needs to be released.
957 */
958void nvmem_device_put(struct nvmem_device *nvmem)
959{
960	__nvmem_device_put(nvmem);
961}
962EXPORT_SYMBOL_GPL(nvmem_device_put);
963
964/**
965 * devm_nvmem_device_get() - Get nvmem cell of device form a given id
966 *
967 * @dev: Device that requests the nvmem device.
968 * @id: name id for the requested nvmem device.
969 *
970 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
971 * on success.  The nvmem_cell will be freed by the automatically once the
972 * device is freed.
973 */
974struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
975{
976	struct nvmem_device **ptr, *nvmem;
977
978	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
979	if (!ptr)
980		return ERR_PTR(-ENOMEM);
981
982	nvmem = nvmem_device_get(dev, id);
983	if (!IS_ERR(nvmem)) {
984		*ptr = nvmem;
985		devres_add(dev, ptr);
986	} else {
987		devres_free(ptr);
988	}
989
990	return nvmem;
991}
992EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
993
994static struct nvmem_cell *
995nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
996{
997	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
998	struct nvmem_cell_lookup *lookup;
999	struct nvmem_device *nvmem;
1000	const char *dev_id;
1001
1002	if (!dev)
1003		return ERR_PTR(-EINVAL);
1004
1005	dev_id = dev_name(dev);
1006
1007	mutex_lock(&nvmem_lookup_mutex);
1008
1009	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1010		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1011		    (strcmp(lookup->con_id, con_id) == 0)) {
1012			/* This is the right entry. */
1013			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1014						   device_match_name);
1015			if (IS_ERR(nvmem)) {
1016				/* Provider may not be registered yet. */
1017				cell = ERR_CAST(nvmem);
1018				break;
1019			}
1020
1021			cell = nvmem_find_cell_by_name(nvmem,
1022						       lookup->cell_name);
1023			if (!cell) {
1024				__nvmem_device_put(nvmem);
1025				cell = ERR_PTR(-ENOENT);
1026			}
1027			break;
1028		}
1029	}
1030
1031	mutex_unlock(&nvmem_lookup_mutex);
1032	return cell;
1033}
1034
1035#if IS_ENABLED(CONFIG_OF)
1036static struct nvmem_cell *
1037nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
1038{
1039	struct nvmem_cell *iter, *cell = NULL;
1040
1041	mutex_lock(&nvmem_mutex);
1042	list_for_each_entry(iter, &nvmem->cells, node) {
1043		if (np == iter->np) {
1044			cell = iter;
1045			break;
1046		}
1047	}
1048	mutex_unlock(&nvmem_mutex);
1049
1050	return cell;
1051}
1052
1053/**
1054 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1055 *
1056 * @np: Device tree node that uses the nvmem cell.
1057 * @id: nvmem cell name from nvmem-cell-names property, or NULL
1058 *      for the cell at index 0 (the lone cell with no accompanying
1059 *      nvmem-cell-names property).
1060 *
1061 * Return: Will be an ERR_PTR() on error or a valid pointer
1062 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1063 * nvmem_cell_put().
1064 */
1065struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1066{
1067	struct device_node *cell_np, *nvmem_np;
1068	struct nvmem_device *nvmem;
1069	struct nvmem_cell *cell;
1070	int index = 0;
1071
1072	/* if cell name exists, find index to the name */
1073	if (id)
1074		index = of_property_match_string(np, "nvmem-cell-names", id);
1075
1076	cell_np = of_parse_phandle(np, "nvmem-cells", index);
1077	if (!cell_np)
1078		return ERR_PTR(-ENOENT);
1079
1080	nvmem_np = of_get_next_parent(cell_np);
1081	if (!nvmem_np)
1082		return ERR_PTR(-EINVAL);
1083
1084	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1085	of_node_put(nvmem_np);
1086	if (IS_ERR(nvmem))
1087		return ERR_CAST(nvmem);
1088
1089	cell = nvmem_find_cell_by_node(nvmem, cell_np);
1090	if (!cell) {
1091		__nvmem_device_put(nvmem);
1092		return ERR_PTR(-ENOENT);
1093	}
1094
1095	return cell;
1096}
1097EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1098#endif
1099
1100/**
1101 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1102 *
1103 * @dev: Device that requests the nvmem cell.
1104 * @id: nvmem cell name to get (this corresponds with the name from the
1105 *      nvmem-cell-names property for DT systems and with the con_id from
1106 *      the lookup entry for non-DT systems).
1107 *
1108 * Return: Will be an ERR_PTR() on error or a valid pointer
1109 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1110 * nvmem_cell_put().
1111 */
1112struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1113{
1114	struct nvmem_cell *cell;
1115
1116	if (dev->of_node) { /* try dt first */
1117		cell = of_nvmem_cell_get(dev->of_node, id);
1118		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1119			return cell;
1120	}
1121
1122	/* NULL cell id only allowed for device tree; invalid otherwise */
1123	if (!id)
1124		return ERR_PTR(-EINVAL);
1125
1126	return nvmem_cell_get_from_lookup(dev, id);
1127}
1128EXPORT_SYMBOL_GPL(nvmem_cell_get);
1129
1130static void devm_nvmem_cell_release(struct device *dev, void *res)
1131{
1132	nvmem_cell_put(*(struct nvmem_cell **)res);
1133}
1134
1135/**
1136 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1137 *
1138 * @dev: Device that requests the nvmem cell.
1139 * @id: nvmem cell name id to get.
1140 *
1141 * Return: Will be an ERR_PTR() on error or a valid pointer
1142 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1143 * automatically once the device is freed.
1144 */
1145struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1146{
1147	struct nvmem_cell **ptr, *cell;
1148
1149	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1150	if (!ptr)
1151		return ERR_PTR(-ENOMEM);
1152
1153	cell = nvmem_cell_get(dev, id);
1154	if (!IS_ERR(cell)) {
1155		*ptr = cell;
1156		devres_add(dev, ptr);
1157	} else {
1158		devres_free(ptr);
1159	}
1160
1161	return cell;
1162}
1163EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1164
1165static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1166{
1167	struct nvmem_cell **c = res;
1168
1169	if (WARN_ON(!c || !*c))
1170		return 0;
1171
1172	return *c == data;
1173}
1174
1175/**
1176 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1177 * from devm_nvmem_cell_get.
1178 *
1179 * @dev: Device that requests the nvmem cell.
1180 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1181 */
1182void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1183{
1184	int ret;
1185
1186	ret = devres_release(dev, devm_nvmem_cell_release,
1187				devm_nvmem_cell_match, cell);
1188
1189	WARN_ON(ret);
1190}
1191EXPORT_SYMBOL(devm_nvmem_cell_put);
1192
1193/**
1194 * nvmem_cell_put() - Release previously allocated nvmem cell.
1195 *
1196 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1197 */
1198void nvmem_cell_put(struct nvmem_cell *cell)
1199{
1200	struct nvmem_device *nvmem = cell->nvmem;
1201
1202	__nvmem_device_put(nvmem);
1203}
1204EXPORT_SYMBOL_GPL(nvmem_cell_put);
1205
1206static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1207{
1208	u8 *p, *b;
1209	int i, extra, bit_offset = cell->bit_offset;
1210
1211	p = b = buf;
1212	if (bit_offset) {
1213		/* First shift */
1214		*b++ >>= bit_offset;
1215
1216		/* setup rest of the bytes if any */
1217		for (i = 1; i < cell->bytes; i++) {
1218			/* Get bits from next byte and shift them towards msb */
1219			*p |= *b << (BITS_PER_BYTE - bit_offset);
1220
1221			p = b;
1222			*b++ >>= bit_offset;
1223		}
1224	} else {
1225		/* point to the msb */
1226		p += cell->bytes - 1;
1227	}
1228
1229	/* result fits in less bytes */
1230	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1231	while (--extra >= 0)
1232		*p-- = 0;
1233
1234	/* clear msb bits if any leftover in the last byte */
1235	if (cell->nbits % BITS_PER_BYTE)
1236		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1237}
1238
1239static int __nvmem_cell_read(struct nvmem_device *nvmem,
1240		      struct nvmem_cell *cell,
1241		      void *buf, size_t *len)
1242{
1243	int rc;
1244
1245	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1246
1247	if (rc)
1248		return rc;
1249
1250	/* shift bits in-place */
1251	if (cell->bit_offset || cell->nbits)
1252		nvmem_shift_read_buffer_in_place(cell, buf);
1253
1254	if (len)
1255		*len = cell->bytes;
1256
1257	return 0;
1258}
1259
1260/**
1261 * nvmem_cell_read() - Read a given nvmem cell
1262 *
1263 * @cell: nvmem cell to be read.
1264 * @len: pointer to length of cell which will be populated on successful read;
1265 *	 can be NULL.
1266 *
1267 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1268 * buffer should be freed by the consumer with a kfree().
1269 */
1270void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1271{
1272	struct nvmem_device *nvmem = cell->nvmem;
1273	u8 *buf;
1274	int rc;
1275
1276	if (!nvmem)
1277		return ERR_PTR(-EINVAL);
1278
1279	buf = kzalloc(cell->bytes, GFP_KERNEL);
1280	if (!buf)
1281		return ERR_PTR(-ENOMEM);
1282
1283	rc = __nvmem_cell_read(nvmem, cell, buf, len);
1284	if (rc) {
1285		kfree(buf);
1286		return ERR_PTR(rc);
1287	}
1288
1289	return buf;
1290}
1291EXPORT_SYMBOL_GPL(nvmem_cell_read);
1292
1293static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1294					     u8 *_buf, int len)
1295{
1296	struct nvmem_device *nvmem = cell->nvmem;
1297	int i, rc, nbits, bit_offset = cell->bit_offset;
1298	u8 v, *p, *buf, *b, pbyte, pbits;
1299
1300	nbits = cell->nbits;
1301	buf = kzalloc(cell->bytes, GFP_KERNEL);
1302	if (!buf)
1303		return ERR_PTR(-ENOMEM);
1304
1305	memcpy(buf, _buf, len);
1306	p = b = buf;
1307
1308	if (bit_offset) {
1309		pbyte = *b;
1310		*b <<= bit_offset;
1311
1312		/* setup the first byte with lsb bits from nvmem */
1313		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1314		if (rc)
1315			goto err;
1316		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1317
1318		/* setup rest of the byte if any */
1319		for (i = 1; i < cell->bytes; i++) {
1320			/* Get last byte bits and shift them towards lsb */
1321			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1322			pbyte = *b;
1323			p = b;
1324			*b <<= bit_offset;
1325			*b++ |= pbits;
1326		}
1327	}
1328
1329	/* if it's not end on byte boundary */
1330	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1331		/* setup the last byte with msb bits from nvmem */
1332		rc = nvmem_reg_read(nvmem,
1333				    cell->offset + cell->bytes - 1, &v, 1);
1334		if (rc)
1335			goto err;
1336		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1337
1338	}
1339
1340	return buf;
1341err:
1342	kfree(buf);
1343	return ERR_PTR(rc);
1344}
1345
1346/**
1347 * nvmem_cell_write() - Write to a given nvmem cell
1348 *
1349 * @cell: nvmem cell to be written.
1350 * @buf: Buffer to be written.
1351 * @len: length of buffer to be written to nvmem cell.
1352 *
1353 * Return: length of bytes written or negative on failure.
1354 */
1355int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1356{
1357	struct nvmem_device *nvmem = cell->nvmem;
1358	int rc;
1359
1360	if (!nvmem || nvmem->read_only ||
1361	    (cell->bit_offset == 0 && len != cell->bytes))
1362		return -EINVAL;
1363
1364	if (cell->bit_offset || cell->nbits) {
1365		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1366		if (IS_ERR(buf))
1367			return PTR_ERR(buf);
1368	}
1369
1370	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1371
1372	/* free the tmp buffer */
1373	if (cell->bit_offset || cell->nbits)
1374		kfree(buf);
1375
1376	if (rc)
1377		return rc;
1378
1379	return len;
1380}
1381EXPORT_SYMBOL_GPL(nvmem_cell_write);
1382
1383static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1384				  void *val, size_t count)
1385{
1386	struct nvmem_cell *cell;
1387	void *buf;
1388	size_t len;
1389
1390	cell = nvmem_cell_get(dev, cell_id);
1391	if (IS_ERR(cell))
1392		return PTR_ERR(cell);
1393
1394	buf = nvmem_cell_read(cell, &len);
1395	if (IS_ERR(buf)) {
1396		nvmem_cell_put(cell);
1397		return PTR_ERR(buf);
1398	}
1399	if (len != count) {
1400		kfree(buf);
1401		nvmem_cell_put(cell);
1402		return -EINVAL;
1403	}
1404	memcpy(val, buf, count);
1405	kfree(buf);
1406	nvmem_cell_put(cell);
1407
1408	return 0;
1409}
1410
1411/**
1412 * nvmem_cell_read_u8() - Read a cell value as a u8
1413 *
1414 * @dev: Device that requests the nvmem cell.
1415 * @cell_id: Name of nvmem cell to read.
1416 * @val: pointer to output value.
1417 *
1418 * Return: 0 on success or negative errno.
1419 */
1420int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1421{
1422	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1423}
1424EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1425
1426/**
1427 * nvmem_cell_read_u16() - Read a cell value as a u16
1428 *
1429 * @dev: Device that requests the nvmem cell.
1430 * @cell_id: Name of nvmem cell to read.
1431 * @val: pointer to output value.
1432 *
1433 * Return: 0 on success or negative errno.
1434 */
1435int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1436{
1437	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1438}
1439EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1440
1441/**
1442 * nvmem_cell_read_u32() - Read a cell value as a u32
1443 *
1444 * @dev: Device that requests the nvmem cell.
1445 * @cell_id: Name of nvmem cell to read.
1446 * @val: pointer to output value.
1447 *
1448 * Return: 0 on success or negative errno.
1449 */
1450int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1451{
1452	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1453}
1454EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1455
1456/**
1457 * nvmem_cell_read_u64() - Read a cell value as a u64
1458 *
1459 * @dev: Device that requests the nvmem cell.
1460 * @cell_id: Name of nvmem cell to read.
1461 * @val: pointer to output value.
1462 *
1463 * Return: 0 on success or negative errno.
1464 */
1465int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1466{
1467	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1468}
1469EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1470
1471/**
1472 * nvmem_device_cell_read() - Read a given nvmem device and cell
1473 *
1474 * @nvmem: nvmem device to read from.
1475 * @info: nvmem cell info to be read.
1476 * @buf: buffer pointer which will be populated on successful read.
1477 *
1478 * Return: length of successful bytes read on success and negative
1479 * error code on error.
1480 */
1481ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1482			   struct nvmem_cell_info *info, void *buf)
1483{
1484	struct nvmem_cell cell;
1485	int rc;
1486	ssize_t len;
1487
1488	if (!nvmem)
1489		return -EINVAL;
1490
1491	rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1492	if (rc)
1493		return rc;
1494
1495	rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1496	if (rc)
1497		return rc;
1498
1499	return len;
1500}
1501EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1502
1503/**
1504 * nvmem_device_cell_write() - Write cell to a given nvmem device
1505 *
1506 * @nvmem: nvmem device to be written to.
1507 * @info: nvmem cell info to be written.
1508 * @buf: buffer to be written to cell.
1509 *
1510 * Return: length of bytes written or negative error code on failure.
1511 */
1512int nvmem_device_cell_write(struct nvmem_device *nvmem,
1513			    struct nvmem_cell_info *info, void *buf)
1514{
1515	struct nvmem_cell cell;
1516	int rc;
1517
1518	if (!nvmem)
1519		return -EINVAL;
1520
1521	rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1522	if (rc)
1523		return rc;
1524
1525	return nvmem_cell_write(&cell, buf, cell.bytes);
1526}
1527EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1528
1529/**
1530 * nvmem_device_read() - Read from a given nvmem device
1531 *
1532 * @nvmem: nvmem device to read from.
1533 * @offset: offset in nvmem device.
1534 * @bytes: number of bytes to read.
1535 * @buf: buffer pointer which will be populated on successful read.
1536 *
1537 * Return: length of successful bytes read on success and negative
1538 * error code on error.
1539 */
1540int nvmem_device_read(struct nvmem_device *nvmem,
1541		      unsigned int offset,
1542		      size_t bytes, void *buf)
1543{
1544	int rc;
1545
1546	if (!nvmem)
1547		return -EINVAL;
1548
1549	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1550
1551	if (rc)
1552		return rc;
1553
1554	return bytes;
1555}
1556EXPORT_SYMBOL_GPL(nvmem_device_read);
1557
1558/**
1559 * nvmem_device_write() - Write cell to a given nvmem device
1560 *
1561 * @nvmem: nvmem device to be written to.
1562 * @offset: offset in nvmem device.
1563 * @bytes: number of bytes to write.
1564 * @buf: buffer to be written.
1565 *
1566 * Return: length of bytes written or negative error code on failure.
1567 */
1568int nvmem_device_write(struct nvmem_device *nvmem,
1569		       unsigned int offset,
1570		       size_t bytes, void *buf)
1571{
1572	int rc;
1573
1574	if (!nvmem)
1575		return -EINVAL;
1576
1577	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1578
1579	if (rc)
1580		return rc;
1581
1582
1583	return bytes;
1584}
1585EXPORT_SYMBOL_GPL(nvmem_device_write);
1586
1587/**
1588 * nvmem_add_cell_table() - register a table of cell info entries
1589 *
1590 * @table: table of cell info entries
1591 */
1592void nvmem_add_cell_table(struct nvmem_cell_table *table)
1593{
1594	mutex_lock(&nvmem_cell_mutex);
1595	list_add_tail(&table->node, &nvmem_cell_tables);
1596	mutex_unlock(&nvmem_cell_mutex);
1597}
1598EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1599
1600/**
1601 * nvmem_del_cell_table() - remove a previously registered cell info table
1602 *
1603 * @table: table of cell info entries
1604 */
1605void nvmem_del_cell_table(struct nvmem_cell_table *table)
1606{
1607	mutex_lock(&nvmem_cell_mutex);
1608	list_del(&table->node);
1609	mutex_unlock(&nvmem_cell_mutex);
1610}
1611EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1612
1613/**
1614 * nvmem_add_cell_lookups() - register a list of cell lookup entries
1615 *
1616 * @entries: array of cell lookup entries
1617 * @nentries: number of cell lookup entries in the array
1618 */
1619void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1620{
1621	int i;
1622
1623	mutex_lock(&nvmem_lookup_mutex);
1624	for (i = 0; i < nentries; i++)
1625		list_add_tail(&entries[i].node, &nvmem_lookup_list);
1626	mutex_unlock(&nvmem_lookup_mutex);
1627}
1628EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1629
1630/**
1631 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1632 *                            entries
1633 *
1634 * @entries: array of cell lookup entries
1635 * @nentries: number of cell lookup entries in the array
1636 */
1637void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1638{
1639	int i;
1640
1641	mutex_lock(&nvmem_lookup_mutex);
1642	for (i = 0; i < nentries; i++)
1643		list_del(&entries[i].node);
1644	mutex_unlock(&nvmem_lookup_mutex);
1645}
1646EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1647
1648/**
1649 * nvmem_dev_name() - Get the name of a given nvmem device.
1650 *
1651 * @nvmem: nvmem device.
1652 *
1653 * Return: name of the nvmem device.
1654 */
1655const char *nvmem_dev_name(struct nvmem_device *nvmem)
1656{
1657	return dev_name(&nvmem->dev);
1658}
1659EXPORT_SYMBOL_GPL(nvmem_dev_name);
1660
1661static int __init nvmem_init(void)
1662{
1663	return bus_register(&nvmem_bus_type);
1664}
1665
1666static void __exit nvmem_exit(void)
1667{
1668	bus_unregister(&nvmem_bus_type);
1669}
1670
1671subsys_initcall(nvmem_init);
1672module_exit(nvmem_exit);
1673
1674MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1675MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1676MODULE_DESCRIPTION("nvmem Driver Core");
1677MODULE_LICENSE("GPL v2");
1678