1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 struct nvmem_device {
23 	struct module		*owner;
24 	struct device		dev;
25 	int			stride;
26 	int			word_size;
27 	int			id;
28 	struct kref		refcnt;
29 	size_t			size;
30 	bool			read_only;
31 	bool			root_only;
32 	int			flags;
33 	enum nvmem_type		type;
34 	struct bin_attribute	eeprom;
35 	struct device		*base_dev;
36 	struct list_head	cells;
37 	nvmem_reg_read_t	reg_read;
38 	nvmem_reg_write_t	reg_write;
39 	struct gpio_desc	*wp_gpio;
40 	void *priv;
41 };
42 
43 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
44 
45 #define FLAG_COMPAT		BIT(0)
46 
47 struct nvmem_cell {
48 	const char		*name;
49 	int			offset;
50 	int			bytes;
51 	int			bit_offset;
52 	int			nbits;
53 	struct device_node	*np;
54 	struct nvmem_device	*nvmem;
55 	struct list_head	node;
56 };
57 
58 static DEFINE_MUTEX(nvmem_mutex);
59 static DEFINE_IDA(nvmem_ida);
60 
61 static DEFINE_MUTEX(nvmem_cell_mutex);
62 static LIST_HEAD(nvmem_cell_tables);
63 
64 static DEFINE_MUTEX(nvmem_lookup_mutex);
65 static LIST_HEAD(nvmem_lookup_list);
66 
67 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
68 
nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset, void *val, size_t bytes)69 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
70 			  void *val, size_t bytes)
71 {
72 	if (nvmem->reg_read)
73 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
74 
75 	return -EINVAL;
76 }
77 
nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset, void *val, size_t bytes)78 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
79 			   void *val, size_t bytes)
80 {
81 	int ret;
82 
83 	if (nvmem->reg_write) {
84 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
85 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
86 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
87 		return ret;
88 	}
89 
90 	return -EINVAL;
91 }
92 
93 #ifdef CONFIG_NVMEM_SYSFS
94 static const char * const nvmem_type_str[] = {
95 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
96 	[NVMEM_TYPE_EEPROM] = "EEPROM",
97 	[NVMEM_TYPE_OTP] = "OTP",
98 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
99 };
100 
101 #ifdef CONFIG_DEBUG_LOCK_ALLOC
102 static struct lock_class_key eeprom_lock_key;
103 #endif
104 
type_show(struct device *dev, struct device_attribute *attr, char *buf)105 static ssize_t type_show(struct device *dev,
106 			 struct device_attribute *attr, char *buf)
107 {
108 	struct nvmem_device *nvmem = to_nvmem_device(dev);
109 
110 	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
111 }
112 
113 static DEVICE_ATTR_RO(type);
114 
115 static struct attribute *nvmem_attrs[] = {
116 	&dev_attr_type.attr,
117 	NULL,
118 };
119 
bin_attr_nvmem_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t pos, size_t count)120 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
121 				   struct bin_attribute *attr, char *buf,
122 				   loff_t pos, size_t count)
123 {
124 	struct device *dev;
125 	struct nvmem_device *nvmem;
126 	int rc;
127 
128 	if (attr->private)
129 		dev = attr->private;
130 	else
131 		dev = kobj_to_dev(kobj);
132 	nvmem = to_nvmem_device(dev);
133 
134 	/* Stop the user from reading */
135 	if (pos >= nvmem->size)
136 		return 0;
137 
138 	if (!IS_ALIGNED(pos, nvmem->stride))
139 		return -EINVAL;
140 
141 	if (count < nvmem->word_size)
142 		return -EINVAL;
143 
144 	if (pos + count > nvmem->size)
145 		count = nvmem->size - pos;
146 
147 	count = round_down(count, nvmem->word_size);
148 
149 	if (!nvmem->reg_read)
150 		return -EPERM;
151 
152 	rc = nvmem_reg_read(nvmem, pos, buf, count);
153 
154 	if (rc)
155 		return rc;
156 
157 	return count;
158 }
159 
bin_attr_nvmem_write(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t pos, size_t count)160 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
161 				    struct bin_attribute *attr, char *buf,
162 				    loff_t pos, size_t count)
163 {
164 	struct device *dev;
165 	struct nvmem_device *nvmem;
166 	int rc;
167 
168 	if (attr->private)
169 		dev = attr->private;
170 	else
171 		dev = kobj_to_dev(kobj);
172 	nvmem = to_nvmem_device(dev);
173 
174 	/* Stop the user from writing */
175 	if (pos >= nvmem->size)
176 		return -EFBIG;
177 
178 	if (!IS_ALIGNED(pos, nvmem->stride))
179 		return -EINVAL;
180 
181 	if (count < nvmem->word_size)
182 		return -EINVAL;
183 
184 	if (pos + count > nvmem->size)
185 		count = nvmem->size - pos;
186 
187 	count = round_down(count, nvmem->word_size);
188 
189 	if (!nvmem->reg_write)
190 		return -EPERM;
191 
192 	rc = nvmem_reg_write(nvmem, pos, buf, count);
193 
194 	if (rc)
195 		return rc;
196 
197 	return count;
198 }
199 
nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)200 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
201 {
202 	umode_t mode = 0400;
203 
204 	if (!nvmem->root_only)
205 		mode |= 0044;
206 
207 	if (!nvmem->read_only)
208 		mode |= 0200;
209 
210 	if (!nvmem->reg_write)
211 		mode &= ~0200;
212 
213 	if (!nvmem->reg_read)
214 		mode &= ~0444;
215 
216 	return mode;
217 }
218 
nvmem_bin_attr_is_visible(struct kobject *kobj, struct bin_attribute *attr, int i)219 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
220 					 struct bin_attribute *attr, int i)
221 {
222 	struct device *dev = kobj_to_dev(kobj);
223 	struct nvmem_device *nvmem = to_nvmem_device(dev);
224 
225 	attr->size = nvmem->size;
226 
227 	return nvmem_bin_attr_get_umode(nvmem);
228 }
229 
230 /* default read/write permissions */
231 static struct bin_attribute bin_attr_rw_nvmem = {
232 	.attr	= {
233 		.name	= "nvmem",
234 		.mode	= 0644,
235 	},
236 	.read	= bin_attr_nvmem_read,
237 	.write	= bin_attr_nvmem_write,
238 };
239 
240 static struct bin_attribute *nvmem_bin_attributes[] = {
241 	&bin_attr_rw_nvmem,
242 	NULL,
243 };
244 
245 static const struct attribute_group nvmem_bin_group = {
246 	.bin_attrs	= nvmem_bin_attributes,
247 	.attrs		= nvmem_attrs,
248 	.is_bin_visible = nvmem_bin_attr_is_visible,
249 };
250 
251 static const struct attribute_group *nvmem_dev_groups[] = {
252 	&nvmem_bin_group,
253 	NULL,
254 };
255 
256 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
257 	.attr	= {
258 		.name	= "eeprom",
259 	},
260 	.read	= bin_attr_nvmem_read,
261 	.write	= bin_attr_nvmem_write,
262 };
263 
264 /*
265  * nvmem_setup_compat() - Create an additional binary entry in
266  * drivers sys directory, to be backwards compatible with the older
267  * drivers/misc/eeprom drivers.
268  */
nvmem_sysfs_setup_compat(struct nvmem_device *nvmem, const struct nvmem_config *config)269 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
270 				    const struct nvmem_config *config)
271 {
272 	int rval;
273 
274 	if (!config->compat)
275 		return 0;
276 
277 	if (!config->base_dev)
278 		return -EINVAL;
279 
280 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
281 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
282 	nvmem->eeprom.size = nvmem->size;
283 #ifdef CONFIG_DEBUG_LOCK_ALLOC
284 	nvmem->eeprom.attr.key = &eeprom_lock_key;
285 #endif
286 	nvmem->eeprom.private = &nvmem->dev;
287 	nvmem->base_dev = config->base_dev;
288 
289 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
290 	if (rval) {
291 		dev_err(&nvmem->dev,
292 			"Failed to create eeprom binary file %d\n", rval);
293 		return rval;
294 	}
295 
296 	nvmem->flags |= FLAG_COMPAT;
297 
298 	return 0;
299 }
300 
nvmem_sysfs_remove_compat(struct nvmem_device *nvmem, const struct nvmem_config *config)301 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
302 			      const struct nvmem_config *config)
303 {
304 	if (config->compat)
305 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
306 }
307 
308 #else /* CONFIG_NVMEM_SYSFS */
309 
nvmem_sysfs_setup_compat(struct nvmem_device *nvmem, const struct nvmem_config *config)310 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
311 				    const struct nvmem_config *config)
312 {
313 	return -ENOSYS;
314 }
nvmem_sysfs_remove_compat(struct nvmem_device *nvmem, const struct nvmem_config *config)315 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
316 				      const struct nvmem_config *config)
317 {
318 }
319 
320 #endif /* CONFIG_NVMEM_SYSFS */
321 
nvmem_release(struct device *dev)322 static void nvmem_release(struct device *dev)
323 {
324 	struct nvmem_device *nvmem = to_nvmem_device(dev);
325 
326 	ida_free(&nvmem_ida, nvmem->id);
327 	gpiod_put(nvmem->wp_gpio);
328 	kfree(nvmem);
329 }
330 
331 static const struct device_type nvmem_provider_type = {
332 	.release	= nvmem_release,
333 };
334 
335 static struct bus_type nvmem_bus_type = {
336 	.name		= "nvmem",
337 };
338 
nvmem_cell_drop(struct nvmem_cell *cell)339 static void nvmem_cell_drop(struct nvmem_cell *cell)
340 {
341 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
342 	mutex_lock(&nvmem_mutex);
343 	list_del(&cell->node);
344 	mutex_unlock(&nvmem_mutex);
345 	of_node_put(cell->np);
346 	kfree_const(cell->name);
347 	kfree(cell);
348 }
349 
nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)350 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
351 {
352 	struct nvmem_cell *cell, *p;
353 
354 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
355 		nvmem_cell_drop(cell);
356 }
357 
nvmem_cell_add(struct nvmem_cell *cell)358 static void nvmem_cell_add(struct nvmem_cell *cell)
359 {
360 	mutex_lock(&nvmem_mutex);
361 	list_add_tail(&cell->node, &cell->nvmem->cells);
362 	mutex_unlock(&nvmem_mutex);
363 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
364 }
365 
nvmem_cell_info_to_nvmem_cell_nodup(struct nvmem_device *nvmem, const struct nvmem_cell_info *info, struct nvmem_cell *cell)366 static int nvmem_cell_info_to_nvmem_cell_nodup(struct nvmem_device *nvmem,
367 					const struct nvmem_cell_info *info,
368 					struct nvmem_cell *cell)
369 {
370 	cell->nvmem = nvmem;
371 	cell->offset = info->offset;
372 	cell->bytes = info->bytes;
373 	cell->name = info->name;
374 
375 	cell->bit_offset = info->bit_offset;
376 	cell->nbits = info->nbits;
377 
378 	if (cell->nbits)
379 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
380 					   BITS_PER_BYTE);
381 
382 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
383 		dev_err(&nvmem->dev,
384 			"cell %s unaligned to nvmem stride %d\n",
385 			cell->name ?: "<unknown>", nvmem->stride);
386 		return -EINVAL;
387 	}
388 
389 	return 0;
390 }
391 
nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem, const struct nvmem_cell_info *info, struct nvmem_cell *cell)392 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
393 				const struct nvmem_cell_info *info,
394 				struct nvmem_cell *cell)
395 {
396 	int err;
397 
398 	err = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, cell);
399 	if (err)
400 		return err;
401 
402 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
403 	if (!cell->name)
404 		return -ENOMEM;
405 
406 	return 0;
407 }
408 
409 /**
410  * nvmem_add_cells() - Add cell information to an nvmem device
411  *
412  * @nvmem: nvmem device to add cells to.
413  * @info: nvmem cell info to add to the device
414  * @ncells: number of cells in info
415  *
416  * Return: 0 or negative error code on failure.
417  */
nvmem_add_cells(struct nvmem_device *nvmem, const struct nvmem_cell_info *info, int ncells)418 static int nvmem_add_cells(struct nvmem_device *nvmem,
419 		    const struct nvmem_cell_info *info,
420 		    int ncells)
421 {
422 	struct nvmem_cell **cells;
423 	int i, rval;
424 
425 	cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
426 	if (!cells)
427 		return -ENOMEM;
428 
429 	for (i = 0; i < ncells; i++) {
430 		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
431 		if (!cells[i]) {
432 			rval = -ENOMEM;
433 			goto err;
434 		}
435 
436 		rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
437 		if (rval) {
438 			kfree(cells[i]);
439 			goto err;
440 		}
441 
442 		nvmem_cell_add(cells[i]);
443 	}
444 
445 	/* remove tmp array */
446 	kfree(cells);
447 
448 	return 0;
449 err:
450 	while (i--)
451 		nvmem_cell_drop(cells[i]);
452 
453 	kfree(cells);
454 
455 	return rval;
456 }
457 
458 /**
459  * nvmem_register_notifier() - Register a notifier block for nvmem events.
460  *
461  * @nb: notifier block to be called on nvmem events.
462  *
463  * Return: 0 on success, negative error number on failure.
464  */
nvmem_register_notifier(struct notifier_block *nb)465 int nvmem_register_notifier(struct notifier_block *nb)
466 {
467 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
468 }
469 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
470 
471 /**
472  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
473  *
474  * @nb: notifier block to be unregistered.
475  *
476  * Return: 0 on success, negative error number on failure.
477  */
nvmem_unregister_notifier(struct notifier_block *nb)478 int nvmem_unregister_notifier(struct notifier_block *nb)
479 {
480 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
481 }
482 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
483 
nvmem_add_cells_from_table(struct nvmem_device *nvmem)484 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
485 {
486 	const struct nvmem_cell_info *info;
487 	struct nvmem_cell_table *table;
488 	struct nvmem_cell *cell;
489 	int rval = 0, i;
490 
491 	mutex_lock(&nvmem_cell_mutex);
492 	list_for_each_entry(table, &nvmem_cell_tables, node) {
493 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
494 			for (i = 0; i < table->ncells; i++) {
495 				info = &table->cells[i];
496 
497 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
498 				if (!cell) {
499 					rval = -ENOMEM;
500 					goto out;
501 				}
502 
503 				rval = nvmem_cell_info_to_nvmem_cell(nvmem,
504 								     info,
505 								     cell);
506 				if (rval) {
507 					kfree(cell);
508 					goto out;
509 				}
510 
511 				nvmem_cell_add(cell);
512 			}
513 		}
514 	}
515 
516 out:
517 	mutex_unlock(&nvmem_cell_mutex);
518 	return rval;
519 }
520 
521 static struct nvmem_cell *
nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)522 nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
523 {
524 	struct nvmem_cell *iter, *cell = NULL;
525 
526 	mutex_lock(&nvmem_mutex);
527 	list_for_each_entry(iter, &nvmem->cells, node) {
528 		if (strcmp(cell_id, iter->name) == 0) {
529 			cell = iter;
530 			break;
531 		}
532 	}
533 	mutex_unlock(&nvmem_mutex);
534 
535 	return cell;
536 }
537 
nvmem_add_cells_from_of(struct nvmem_device *nvmem)538 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
539 {
540 	struct device_node *parent, *child;
541 	struct device *dev = &nvmem->dev;
542 	struct nvmem_cell *cell;
543 	const __be32 *addr;
544 	int len;
545 
546 	parent = dev->of_node;
547 
548 	for_each_child_of_node(parent, child) {
549 		addr = of_get_property(child, "reg", &len);
550 		if (!addr)
551 			continue;
552 		if (len < 2 * sizeof(u32)) {
553 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
554 			of_node_put(child);
555 			return -EINVAL;
556 		}
557 
558 		cell = kzalloc(sizeof(*cell), GFP_KERNEL);
559 		if (!cell) {
560 			of_node_put(child);
561 			return -ENOMEM;
562 		}
563 
564 		cell->nvmem = nvmem;
565 		cell->offset = be32_to_cpup(addr++);
566 		cell->bytes = be32_to_cpup(addr);
567 		cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
568 
569 		addr = of_get_property(child, "bits", &len);
570 		if (addr && len == (2 * sizeof(u32))) {
571 			cell->bit_offset = be32_to_cpup(addr++);
572 			cell->nbits = be32_to_cpup(addr);
573 		}
574 
575 		if (cell->nbits)
576 			cell->bytes = DIV_ROUND_UP(
577 					cell->nbits + cell->bit_offset,
578 					BITS_PER_BYTE);
579 
580 		if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
581 			dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
582 				cell->name, nvmem->stride);
583 			/* Cells already added will be freed later. */
584 			kfree_const(cell->name);
585 			kfree(cell);
586 			of_node_put(child);
587 			return -EINVAL;
588 		}
589 
590 		cell->np = of_node_get(child);
591 		nvmem_cell_add(cell);
592 	}
593 
594 	return 0;
595 }
596 
597 /**
598  * nvmem_register() - Register a nvmem device for given nvmem_config.
599  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
600  *
601  * @config: nvmem device configuration with which nvmem device is created.
602  *
603  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
604  * on success.
605  */
606 
nvmem_register(const struct nvmem_config *config)607 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
608 {
609 	struct nvmem_device *nvmem;
610 	int rval;
611 
612 	if (!config->dev)
613 		return ERR_PTR(-EINVAL);
614 
615 	if (!config->reg_read && !config->reg_write)
616 		return ERR_PTR(-EINVAL);
617 
618 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
619 	if (!nvmem)
620 		return ERR_PTR(-ENOMEM);
621 
622 	rval  = ida_alloc(&nvmem_ida, GFP_KERNEL);
623 	if (rval < 0) {
624 		kfree(nvmem);
625 		return ERR_PTR(rval);
626 	}
627 
628 	nvmem->id = rval;
629 
630 	nvmem->dev.type = &nvmem_provider_type;
631 	nvmem->dev.bus = &nvmem_bus_type;
632 	nvmem->dev.parent = config->dev;
633 
634 	device_initialize(&nvmem->dev);
635 
636 	if (!config->ignore_wp)
637 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
638 						    GPIOD_OUT_HIGH);
639 	if (IS_ERR(nvmem->wp_gpio)) {
640 		rval = PTR_ERR(nvmem->wp_gpio);
641 		nvmem->wp_gpio = NULL;
642 		goto err_put_device;
643 	}
644 
645 	kref_init(&nvmem->refcnt);
646 	INIT_LIST_HEAD(&nvmem->cells);
647 
648 	nvmem->owner = config->owner;
649 	if (!nvmem->owner && config->dev->driver)
650 		nvmem->owner = config->dev->driver->owner;
651 	nvmem->stride = config->stride ?: 1;
652 	nvmem->word_size = config->word_size ?: 1;
653 	nvmem->size = config->size;
654 	nvmem->root_only = config->root_only;
655 	nvmem->priv = config->priv;
656 	nvmem->type = config->type;
657 	nvmem->reg_read = config->reg_read;
658 	nvmem->reg_write = config->reg_write;
659 	if (!config->no_of_node)
660 		nvmem->dev.of_node = config->dev->of_node;
661 
662 	switch (config->id) {
663 	case NVMEM_DEVID_NONE:
664 		rval = dev_set_name(&nvmem->dev, "%s", config->name);
665 		break;
666 	case NVMEM_DEVID_AUTO:
667 		rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
668 		break;
669 	default:
670 		rval = dev_set_name(&nvmem->dev, "%s%d",
671 			     config->name ? : "nvmem",
672 			     config->name ? config->id : nvmem->id);
673 		break;
674 	}
675 
676 	if (rval)
677 		goto err_put_device;
678 
679 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
680 			   config->read_only || !nvmem->reg_write;
681 
682 #ifdef CONFIG_NVMEM_SYSFS
683 	nvmem->dev.groups = nvmem_dev_groups;
684 #endif
685 
686 	if (config->compat) {
687 		rval = nvmem_sysfs_setup_compat(nvmem, config);
688 		if (rval)
689 			goto err_put_device;
690 	}
691 
692 	if (config->cells) {
693 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
694 		if (rval)
695 			goto err_remove_cells;
696 	}
697 
698 	rval = nvmem_add_cells_from_table(nvmem);
699 	if (rval)
700 		goto err_remove_cells;
701 
702 	rval = nvmem_add_cells_from_of(nvmem);
703 	if (rval)
704 		goto err_remove_cells;
705 
706 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
707 
708 	rval = device_add(&nvmem->dev);
709 	if (rval)
710 		goto err_remove_cells;
711 
712 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
713 
714 	return nvmem;
715 
716 err_remove_cells:
717 	nvmem_device_remove_all_cells(nvmem);
718 	if (config->compat)
719 		nvmem_sysfs_remove_compat(nvmem, config);
720 err_put_device:
721 	put_device(&nvmem->dev);
722 
723 	return ERR_PTR(rval);
724 }
725 EXPORT_SYMBOL_GPL(nvmem_register);
726 
nvmem_device_release(struct kref *kref)727 static void nvmem_device_release(struct kref *kref)
728 {
729 	struct nvmem_device *nvmem;
730 
731 	nvmem = container_of(kref, struct nvmem_device, refcnt);
732 
733 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
734 
735 	if (nvmem->flags & FLAG_COMPAT)
736 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
737 
738 	nvmem_device_remove_all_cells(nvmem);
739 	device_unregister(&nvmem->dev);
740 }
741 
742 /**
743  * nvmem_unregister() - Unregister previously registered nvmem device
744  *
745  * @nvmem: Pointer to previously registered nvmem device.
746  */
nvmem_unregister(struct nvmem_device *nvmem)747 void nvmem_unregister(struct nvmem_device *nvmem)
748 {
749 	kref_put(&nvmem->refcnt, nvmem_device_release);
750 }
751 EXPORT_SYMBOL_GPL(nvmem_unregister);
752 
devm_nvmem_release(struct device *dev, void *res)753 static void devm_nvmem_release(struct device *dev, void *res)
754 {
755 	nvmem_unregister(*(struct nvmem_device **)res);
756 }
757 
758 /**
759  * devm_nvmem_register() - Register a managed nvmem device for given
760  * nvmem_config.
761  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
762  *
763  * @dev: Device that uses the nvmem device.
764  * @config: nvmem device configuration with which nvmem device is created.
765  *
766  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
767  * on success.
768  */
devm_nvmem_register(struct device *dev, const struct nvmem_config *config)769 struct nvmem_device *devm_nvmem_register(struct device *dev,
770 					 const struct nvmem_config *config)
771 {
772 	struct nvmem_device **ptr, *nvmem;
773 
774 	ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
775 	if (!ptr)
776 		return ERR_PTR(-ENOMEM);
777 
778 	nvmem = nvmem_register(config);
779 
780 	if (!IS_ERR(nvmem)) {
781 		*ptr = nvmem;
782 		devres_add(dev, ptr);
783 	} else {
784 		devres_free(ptr);
785 	}
786 
787 	return nvmem;
788 }
789 EXPORT_SYMBOL_GPL(devm_nvmem_register);
790 
devm_nvmem_match(struct device *dev, void *res, void *data)791 static int devm_nvmem_match(struct device *dev, void *res, void *data)
792 {
793 	struct nvmem_device **r = res;
794 
795 	return *r == data;
796 }
797 
798 /**
799  * devm_nvmem_unregister() - Unregister previously registered managed nvmem
800  * device.
801  *
802  * @dev: Device that uses the nvmem device.
803  * @nvmem: Pointer to previously registered nvmem device.
804  *
805  * Return: Will be negative on error or zero on success.
806  */
devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)807 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
808 {
809 	return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
810 }
811 EXPORT_SYMBOL(devm_nvmem_unregister);
812 
__nvmem_device_get(void *data, int (*match)(struct device *dev, const void *data))813 static struct nvmem_device *__nvmem_device_get(void *data,
814 			int (*match)(struct device *dev, const void *data))
815 {
816 	struct nvmem_device *nvmem = NULL;
817 	struct device *dev;
818 
819 	mutex_lock(&nvmem_mutex);
820 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
821 	if (dev)
822 		nvmem = to_nvmem_device(dev);
823 	mutex_unlock(&nvmem_mutex);
824 	if (!nvmem)
825 		return ERR_PTR(-EPROBE_DEFER);
826 
827 	if (!try_module_get(nvmem->owner)) {
828 		dev_err(&nvmem->dev,
829 			"could not increase module refcount for cell %s\n",
830 			nvmem_dev_name(nvmem));
831 
832 		put_device(&nvmem->dev);
833 		return ERR_PTR(-EINVAL);
834 	}
835 
836 	kref_get(&nvmem->refcnt);
837 
838 	return nvmem;
839 }
840 
__nvmem_device_put(struct nvmem_device *nvmem)841 static void __nvmem_device_put(struct nvmem_device *nvmem)
842 {
843 	put_device(&nvmem->dev);
844 	module_put(nvmem->owner);
845 	kref_put(&nvmem->refcnt, nvmem_device_release);
846 }
847 
848 #if IS_ENABLED(CONFIG_OF)
849 /**
850  * of_nvmem_device_get() - Get nvmem device from a given id
851  *
852  * @np: Device tree node that uses the nvmem device.
853  * @id: nvmem name from nvmem-names property.
854  *
855  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
856  * on success.
857  */
of_nvmem_device_get(struct device_node *np, const char *id)858 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
859 {
860 
861 	struct device_node *nvmem_np;
862 	struct nvmem_device *nvmem;
863 	int index = 0;
864 
865 	if (id)
866 		index = of_property_match_string(np, "nvmem-names", id);
867 
868 	nvmem_np = of_parse_phandle(np, "nvmem", index);
869 	if (!nvmem_np)
870 		return ERR_PTR(-ENOENT);
871 
872 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
873 	of_node_put(nvmem_np);
874 	return nvmem;
875 }
876 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
877 #endif
878 
879 /**
880  * nvmem_device_get() - Get nvmem device from a given id
881  *
882  * @dev: Device that uses the nvmem device.
883  * @dev_name: name of the requested nvmem device.
884  *
885  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
886  * on success.
887  */
nvmem_device_get(struct device *dev, const char *dev_name)888 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
889 {
890 	if (dev->of_node) { /* try dt first */
891 		struct nvmem_device *nvmem;
892 
893 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
894 
895 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
896 			return nvmem;
897 
898 	}
899 
900 	return __nvmem_device_get((void *)dev_name, device_match_name);
901 }
902 EXPORT_SYMBOL_GPL(nvmem_device_get);
903 
904 /**
905  * nvmem_device_find() - Find nvmem device with matching function
906  *
907  * @data: Data to pass to match function
908  * @match: Callback function to check device
909  *
910  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
911  * on success.
912  */
nvmem_device_find(void *data, int (*match)(struct device *dev, const void *data))913 struct nvmem_device *nvmem_device_find(void *data,
914 			int (*match)(struct device *dev, const void *data))
915 {
916 	return __nvmem_device_get(data, match);
917 }
918 EXPORT_SYMBOL_GPL(nvmem_device_find);
919 
devm_nvmem_device_match(struct device *dev, void *res, void *data)920 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
921 {
922 	struct nvmem_device **nvmem = res;
923 
924 	if (WARN_ON(!nvmem || !*nvmem))
925 		return 0;
926 
927 	return *nvmem == data;
928 }
929 
devm_nvmem_device_release(struct device *dev, void *res)930 static void devm_nvmem_device_release(struct device *dev, void *res)
931 {
932 	nvmem_device_put(*(struct nvmem_device **)res);
933 }
934 
935 /**
936  * devm_nvmem_device_put() - put alredy got nvmem device
937  *
938  * @dev: Device that uses the nvmem device.
939  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
940  * that needs to be released.
941  */
devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)942 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
943 {
944 	int ret;
945 
946 	ret = devres_release(dev, devm_nvmem_device_release,
947 			     devm_nvmem_device_match, nvmem);
948 
949 	WARN_ON(ret);
950 }
951 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
952 
953 /**
954  * nvmem_device_put() - put alredy got nvmem device
955  *
956  * @nvmem: pointer to nvmem device that needs to be released.
957  */
nvmem_device_put(struct nvmem_device *nvmem)958 void nvmem_device_put(struct nvmem_device *nvmem)
959 {
960 	__nvmem_device_put(nvmem);
961 }
962 EXPORT_SYMBOL_GPL(nvmem_device_put);
963 
964 /**
965  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
966  *
967  * @dev: Device that requests the nvmem device.
968  * @id: name id for the requested nvmem device.
969  *
970  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
971  * on success.  The nvmem_cell will be freed by the automatically once the
972  * device is freed.
973  */
devm_nvmem_device_get(struct device *dev, const char *id)974 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
975 {
976 	struct nvmem_device **ptr, *nvmem;
977 
978 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
979 	if (!ptr)
980 		return ERR_PTR(-ENOMEM);
981 
982 	nvmem = nvmem_device_get(dev, id);
983 	if (!IS_ERR(nvmem)) {
984 		*ptr = nvmem;
985 		devres_add(dev, ptr);
986 	} else {
987 		devres_free(ptr);
988 	}
989 
990 	return nvmem;
991 }
992 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
993 
994 static struct nvmem_cell *
nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)995 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
996 {
997 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
998 	struct nvmem_cell_lookup *lookup;
999 	struct nvmem_device *nvmem;
1000 	const char *dev_id;
1001 
1002 	if (!dev)
1003 		return ERR_PTR(-EINVAL);
1004 
1005 	dev_id = dev_name(dev);
1006 
1007 	mutex_lock(&nvmem_lookup_mutex);
1008 
1009 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1010 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1011 		    (strcmp(lookup->con_id, con_id) == 0)) {
1012 			/* This is the right entry. */
1013 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1014 						   device_match_name);
1015 			if (IS_ERR(nvmem)) {
1016 				/* Provider may not be registered yet. */
1017 				cell = ERR_CAST(nvmem);
1018 				break;
1019 			}
1020 
1021 			cell = nvmem_find_cell_by_name(nvmem,
1022 						       lookup->cell_name);
1023 			if (!cell) {
1024 				__nvmem_device_put(nvmem);
1025 				cell = ERR_PTR(-ENOENT);
1026 			}
1027 			break;
1028 		}
1029 	}
1030 
1031 	mutex_unlock(&nvmem_lookup_mutex);
1032 	return cell;
1033 }
1034 
1035 #if IS_ENABLED(CONFIG_OF)
1036 static struct nvmem_cell *
nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)1037 nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
1038 {
1039 	struct nvmem_cell *iter, *cell = NULL;
1040 
1041 	mutex_lock(&nvmem_mutex);
1042 	list_for_each_entry(iter, &nvmem->cells, node) {
1043 		if (np == iter->np) {
1044 			cell = iter;
1045 			break;
1046 		}
1047 	}
1048 	mutex_unlock(&nvmem_mutex);
1049 
1050 	return cell;
1051 }
1052 
1053 /**
1054  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1055  *
1056  * @np: Device tree node that uses the nvmem cell.
1057  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1058  *      for the cell at index 0 (the lone cell with no accompanying
1059  *      nvmem-cell-names property).
1060  *
1061  * Return: Will be an ERR_PTR() on error or a valid pointer
1062  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1063  * nvmem_cell_put().
1064  */
of_nvmem_cell_get(struct device_node *np, const char *id)1065 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1066 {
1067 	struct device_node *cell_np, *nvmem_np;
1068 	struct nvmem_device *nvmem;
1069 	struct nvmem_cell *cell;
1070 	int index = 0;
1071 
1072 	/* if cell name exists, find index to the name */
1073 	if (id)
1074 		index = of_property_match_string(np, "nvmem-cell-names", id);
1075 
1076 	cell_np = of_parse_phandle(np, "nvmem-cells", index);
1077 	if (!cell_np)
1078 		return ERR_PTR(-ENOENT);
1079 
1080 	nvmem_np = of_get_next_parent(cell_np);
1081 	if (!nvmem_np)
1082 		return ERR_PTR(-EINVAL);
1083 
1084 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1085 	of_node_put(nvmem_np);
1086 	if (IS_ERR(nvmem))
1087 		return ERR_CAST(nvmem);
1088 
1089 	cell = nvmem_find_cell_by_node(nvmem, cell_np);
1090 	if (!cell) {
1091 		__nvmem_device_put(nvmem);
1092 		return ERR_PTR(-ENOENT);
1093 	}
1094 
1095 	return cell;
1096 }
1097 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1098 #endif
1099 
1100 /**
1101  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1102  *
1103  * @dev: Device that requests the nvmem cell.
1104  * @id: nvmem cell name to get (this corresponds with the name from the
1105  *      nvmem-cell-names property for DT systems and with the con_id from
1106  *      the lookup entry for non-DT systems).
1107  *
1108  * Return: Will be an ERR_PTR() on error or a valid pointer
1109  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1110  * nvmem_cell_put().
1111  */
nvmem_cell_get(struct device *dev, const char *id)1112 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1113 {
1114 	struct nvmem_cell *cell;
1115 
1116 	if (dev->of_node) { /* try dt first */
1117 		cell = of_nvmem_cell_get(dev->of_node, id);
1118 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1119 			return cell;
1120 	}
1121 
1122 	/* NULL cell id only allowed for device tree; invalid otherwise */
1123 	if (!id)
1124 		return ERR_PTR(-EINVAL);
1125 
1126 	return nvmem_cell_get_from_lookup(dev, id);
1127 }
1128 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1129 
devm_nvmem_cell_release(struct device *dev, void *res)1130 static void devm_nvmem_cell_release(struct device *dev, void *res)
1131 {
1132 	nvmem_cell_put(*(struct nvmem_cell **)res);
1133 }
1134 
1135 /**
1136  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1137  *
1138  * @dev: Device that requests the nvmem cell.
1139  * @id: nvmem cell name id to get.
1140  *
1141  * Return: Will be an ERR_PTR() on error or a valid pointer
1142  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1143  * automatically once the device is freed.
1144  */
devm_nvmem_cell_get(struct device *dev, const char *id)1145 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1146 {
1147 	struct nvmem_cell **ptr, *cell;
1148 
1149 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1150 	if (!ptr)
1151 		return ERR_PTR(-ENOMEM);
1152 
1153 	cell = nvmem_cell_get(dev, id);
1154 	if (!IS_ERR(cell)) {
1155 		*ptr = cell;
1156 		devres_add(dev, ptr);
1157 	} else {
1158 		devres_free(ptr);
1159 	}
1160 
1161 	return cell;
1162 }
1163 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1164 
devm_nvmem_cell_match(struct device *dev, void *res, void *data)1165 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1166 {
1167 	struct nvmem_cell **c = res;
1168 
1169 	if (WARN_ON(!c || !*c))
1170 		return 0;
1171 
1172 	return *c == data;
1173 }
1174 
1175 /**
1176  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1177  * from devm_nvmem_cell_get.
1178  *
1179  * @dev: Device that requests the nvmem cell.
1180  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1181  */
devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)1182 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1183 {
1184 	int ret;
1185 
1186 	ret = devres_release(dev, devm_nvmem_cell_release,
1187 				devm_nvmem_cell_match, cell);
1188 
1189 	WARN_ON(ret);
1190 }
1191 EXPORT_SYMBOL(devm_nvmem_cell_put);
1192 
1193 /**
1194  * nvmem_cell_put() - Release previously allocated nvmem cell.
1195  *
1196  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1197  */
nvmem_cell_put(struct nvmem_cell *cell)1198 void nvmem_cell_put(struct nvmem_cell *cell)
1199 {
1200 	struct nvmem_device *nvmem = cell->nvmem;
1201 
1202 	__nvmem_device_put(nvmem);
1203 }
1204 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1205 
nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)1206 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1207 {
1208 	u8 *p, *b;
1209 	int i, extra, bit_offset = cell->bit_offset;
1210 
1211 	p = b = buf;
1212 	if (bit_offset) {
1213 		/* First shift */
1214 		*b++ >>= bit_offset;
1215 
1216 		/* setup rest of the bytes if any */
1217 		for (i = 1; i < cell->bytes; i++) {
1218 			/* Get bits from next byte and shift them towards msb */
1219 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1220 
1221 			p = b;
1222 			*b++ >>= bit_offset;
1223 		}
1224 	} else {
1225 		/* point to the msb */
1226 		p += cell->bytes - 1;
1227 	}
1228 
1229 	/* result fits in less bytes */
1230 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1231 	while (--extra >= 0)
1232 		*p-- = 0;
1233 
1234 	/* clear msb bits if any leftover in the last byte */
1235 	if (cell->nbits % BITS_PER_BYTE)
1236 		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1237 }
1238 
__nvmem_cell_read(struct nvmem_device *nvmem, struct nvmem_cell *cell, void *buf, size_t *len)1239 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1240 		      struct nvmem_cell *cell,
1241 		      void *buf, size_t *len)
1242 {
1243 	int rc;
1244 
1245 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1246 
1247 	if (rc)
1248 		return rc;
1249 
1250 	/* shift bits in-place */
1251 	if (cell->bit_offset || cell->nbits)
1252 		nvmem_shift_read_buffer_in_place(cell, buf);
1253 
1254 	if (len)
1255 		*len = cell->bytes;
1256 
1257 	return 0;
1258 }
1259 
1260 /**
1261  * nvmem_cell_read() - Read a given nvmem cell
1262  *
1263  * @cell: nvmem cell to be read.
1264  * @len: pointer to length of cell which will be populated on successful read;
1265  *	 can be NULL.
1266  *
1267  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1268  * buffer should be freed by the consumer with a kfree().
1269  */
nvmem_cell_read(struct nvmem_cell *cell, size_t *len)1270 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1271 {
1272 	struct nvmem_device *nvmem = cell->nvmem;
1273 	u8 *buf;
1274 	int rc;
1275 
1276 	if (!nvmem)
1277 		return ERR_PTR(-EINVAL);
1278 
1279 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1280 	if (!buf)
1281 		return ERR_PTR(-ENOMEM);
1282 
1283 	rc = __nvmem_cell_read(nvmem, cell, buf, len);
1284 	if (rc) {
1285 		kfree(buf);
1286 		return ERR_PTR(rc);
1287 	}
1288 
1289 	return buf;
1290 }
1291 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1292 
nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell, u8 *_buf, int len)1293 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1294 					     u8 *_buf, int len)
1295 {
1296 	struct nvmem_device *nvmem = cell->nvmem;
1297 	int i, rc, nbits, bit_offset = cell->bit_offset;
1298 	u8 v, *p, *buf, *b, pbyte, pbits;
1299 
1300 	nbits = cell->nbits;
1301 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1302 	if (!buf)
1303 		return ERR_PTR(-ENOMEM);
1304 
1305 	memcpy(buf, _buf, len);
1306 	p = b = buf;
1307 
1308 	if (bit_offset) {
1309 		pbyte = *b;
1310 		*b <<= bit_offset;
1311 
1312 		/* setup the first byte with lsb bits from nvmem */
1313 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1314 		if (rc)
1315 			goto err;
1316 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1317 
1318 		/* setup rest of the byte if any */
1319 		for (i = 1; i < cell->bytes; i++) {
1320 			/* Get last byte bits and shift them towards lsb */
1321 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1322 			pbyte = *b;
1323 			p = b;
1324 			*b <<= bit_offset;
1325 			*b++ |= pbits;
1326 		}
1327 	}
1328 
1329 	/* if it's not end on byte boundary */
1330 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1331 		/* setup the last byte with msb bits from nvmem */
1332 		rc = nvmem_reg_read(nvmem,
1333 				    cell->offset + cell->bytes - 1, &v, 1);
1334 		if (rc)
1335 			goto err;
1336 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1337 
1338 	}
1339 
1340 	return buf;
1341 err:
1342 	kfree(buf);
1343 	return ERR_PTR(rc);
1344 }
1345 
1346 /**
1347  * nvmem_cell_write() - Write to a given nvmem cell
1348  *
1349  * @cell: nvmem cell to be written.
1350  * @buf: Buffer to be written.
1351  * @len: length of buffer to be written to nvmem cell.
1352  *
1353  * Return: length of bytes written or negative on failure.
1354  */
nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)1355 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1356 {
1357 	struct nvmem_device *nvmem = cell->nvmem;
1358 	int rc;
1359 
1360 	if (!nvmem || nvmem->read_only ||
1361 	    (cell->bit_offset == 0 && len != cell->bytes))
1362 		return -EINVAL;
1363 
1364 	if (cell->bit_offset || cell->nbits) {
1365 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1366 		if (IS_ERR(buf))
1367 			return PTR_ERR(buf);
1368 	}
1369 
1370 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1371 
1372 	/* free the tmp buffer */
1373 	if (cell->bit_offset || cell->nbits)
1374 		kfree(buf);
1375 
1376 	if (rc)
1377 		return rc;
1378 
1379 	return len;
1380 }
1381 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1382 
nvmem_cell_read_common(struct device *dev, const char *cell_id, void *val, size_t count)1383 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1384 				  void *val, size_t count)
1385 {
1386 	struct nvmem_cell *cell;
1387 	void *buf;
1388 	size_t len;
1389 
1390 	cell = nvmem_cell_get(dev, cell_id);
1391 	if (IS_ERR(cell))
1392 		return PTR_ERR(cell);
1393 
1394 	buf = nvmem_cell_read(cell, &len);
1395 	if (IS_ERR(buf)) {
1396 		nvmem_cell_put(cell);
1397 		return PTR_ERR(buf);
1398 	}
1399 	if (len != count) {
1400 		kfree(buf);
1401 		nvmem_cell_put(cell);
1402 		return -EINVAL;
1403 	}
1404 	memcpy(val, buf, count);
1405 	kfree(buf);
1406 	nvmem_cell_put(cell);
1407 
1408 	return 0;
1409 }
1410 
1411 /**
1412  * nvmem_cell_read_u8() - Read a cell value as a u8
1413  *
1414  * @dev: Device that requests the nvmem cell.
1415  * @cell_id: Name of nvmem cell to read.
1416  * @val: pointer to output value.
1417  *
1418  * Return: 0 on success or negative errno.
1419  */
nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)1420 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1421 {
1422 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1423 }
1424 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1425 
1426 /**
1427  * nvmem_cell_read_u16() - Read a cell value as a u16
1428  *
1429  * @dev: Device that requests the nvmem cell.
1430  * @cell_id: Name of nvmem cell to read.
1431  * @val: pointer to output value.
1432  *
1433  * Return: 0 on success or negative errno.
1434  */
nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)1435 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1436 {
1437 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1438 }
1439 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1440 
1441 /**
1442  * nvmem_cell_read_u32() - Read a cell value as a u32
1443  *
1444  * @dev: Device that requests the nvmem cell.
1445  * @cell_id: Name of nvmem cell to read.
1446  * @val: pointer to output value.
1447  *
1448  * Return: 0 on success or negative errno.
1449  */
nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)1450 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1451 {
1452 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1453 }
1454 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1455 
1456 /**
1457  * nvmem_cell_read_u64() - Read a cell value as a u64
1458  *
1459  * @dev: Device that requests the nvmem cell.
1460  * @cell_id: Name of nvmem cell to read.
1461  * @val: pointer to output value.
1462  *
1463  * Return: 0 on success or negative errno.
1464  */
nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)1465 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1466 {
1467 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1468 }
1469 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1470 
1471 /**
1472  * nvmem_device_cell_read() - Read a given nvmem device and cell
1473  *
1474  * @nvmem: nvmem device to read from.
1475  * @info: nvmem cell info to be read.
1476  * @buf: buffer pointer which will be populated on successful read.
1477  *
1478  * Return: length of successful bytes read on success and negative
1479  * error code on error.
1480  */
nvmem_device_cell_read(struct nvmem_device *nvmem, struct nvmem_cell_info *info, void *buf)1481 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1482 			   struct nvmem_cell_info *info, void *buf)
1483 {
1484 	struct nvmem_cell cell;
1485 	int rc;
1486 	ssize_t len;
1487 
1488 	if (!nvmem)
1489 		return -EINVAL;
1490 
1491 	rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1492 	if (rc)
1493 		return rc;
1494 
1495 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1496 	if (rc)
1497 		return rc;
1498 
1499 	return len;
1500 }
1501 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1502 
1503 /**
1504  * nvmem_device_cell_write() - Write cell to a given nvmem device
1505  *
1506  * @nvmem: nvmem device to be written to.
1507  * @info: nvmem cell info to be written.
1508  * @buf: buffer to be written to cell.
1509  *
1510  * Return: length of bytes written or negative error code on failure.
1511  */
nvmem_device_cell_write(struct nvmem_device *nvmem, struct nvmem_cell_info *info, void *buf)1512 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1513 			    struct nvmem_cell_info *info, void *buf)
1514 {
1515 	struct nvmem_cell cell;
1516 	int rc;
1517 
1518 	if (!nvmem)
1519 		return -EINVAL;
1520 
1521 	rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1522 	if (rc)
1523 		return rc;
1524 
1525 	return nvmem_cell_write(&cell, buf, cell.bytes);
1526 }
1527 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1528 
1529 /**
1530  * nvmem_device_read() - Read from a given nvmem device
1531  *
1532  * @nvmem: nvmem device to read from.
1533  * @offset: offset in nvmem device.
1534  * @bytes: number of bytes to read.
1535  * @buf: buffer pointer which will be populated on successful read.
1536  *
1537  * Return: length of successful bytes read on success and negative
1538  * error code on error.
1539  */
nvmem_device_read(struct nvmem_device *nvmem, unsigned int offset, size_t bytes, void *buf)1540 int nvmem_device_read(struct nvmem_device *nvmem,
1541 		      unsigned int offset,
1542 		      size_t bytes, void *buf)
1543 {
1544 	int rc;
1545 
1546 	if (!nvmem)
1547 		return -EINVAL;
1548 
1549 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1550 
1551 	if (rc)
1552 		return rc;
1553 
1554 	return bytes;
1555 }
1556 EXPORT_SYMBOL_GPL(nvmem_device_read);
1557 
1558 /**
1559  * nvmem_device_write() - Write cell to a given nvmem device
1560  *
1561  * @nvmem: nvmem device to be written to.
1562  * @offset: offset in nvmem device.
1563  * @bytes: number of bytes to write.
1564  * @buf: buffer to be written.
1565  *
1566  * Return: length of bytes written or negative error code on failure.
1567  */
nvmem_device_write(struct nvmem_device *nvmem, unsigned int offset, size_t bytes, void *buf)1568 int nvmem_device_write(struct nvmem_device *nvmem,
1569 		       unsigned int offset,
1570 		       size_t bytes, void *buf)
1571 {
1572 	int rc;
1573 
1574 	if (!nvmem)
1575 		return -EINVAL;
1576 
1577 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1578 
1579 	if (rc)
1580 		return rc;
1581 
1582 
1583 	return bytes;
1584 }
1585 EXPORT_SYMBOL_GPL(nvmem_device_write);
1586 
1587 /**
1588  * nvmem_add_cell_table() - register a table of cell info entries
1589  *
1590  * @table: table of cell info entries
1591  */
nvmem_add_cell_table(struct nvmem_cell_table *table)1592 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1593 {
1594 	mutex_lock(&nvmem_cell_mutex);
1595 	list_add_tail(&table->node, &nvmem_cell_tables);
1596 	mutex_unlock(&nvmem_cell_mutex);
1597 }
1598 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1599 
1600 /**
1601  * nvmem_del_cell_table() - remove a previously registered cell info table
1602  *
1603  * @table: table of cell info entries
1604  */
nvmem_del_cell_table(struct nvmem_cell_table *table)1605 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1606 {
1607 	mutex_lock(&nvmem_cell_mutex);
1608 	list_del(&table->node);
1609 	mutex_unlock(&nvmem_cell_mutex);
1610 }
1611 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1612 
1613 /**
1614  * nvmem_add_cell_lookups() - register a list of cell lookup entries
1615  *
1616  * @entries: array of cell lookup entries
1617  * @nentries: number of cell lookup entries in the array
1618  */
nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)1619 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1620 {
1621 	int i;
1622 
1623 	mutex_lock(&nvmem_lookup_mutex);
1624 	for (i = 0; i < nentries; i++)
1625 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
1626 	mutex_unlock(&nvmem_lookup_mutex);
1627 }
1628 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1629 
1630 /**
1631  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1632  *                            entries
1633  *
1634  * @entries: array of cell lookup entries
1635  * @nentries: number of cell lookup entries in the array
1636  */
nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)1637 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1638 {
1639 	int i;
1640 
1641 	mutex_lock(&nvmem_lookup_mutex);
1642 	for (i = 0; i < nentries; i++)
1643 		list_del(&entries[i].node);
1644 	mutex_unlock(&nvmem_lookup_mutex);
1645 }
1646 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1647 
1648 /**
1649  * nvmem_dev_name() - Get the name of a given nvmem device.
1650  *
1651  * @nvmem: nvmem device.
1652  *
1653  * Return: name of the nvmem device.
1654  */
nvmem_dev_name(struct nvmem_device *nvmem)1655 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1656 {
1657 	return dev_name(&nvmem->dev);
1658 }
1659 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1660 
nvmem_init(void)1661 static int __init nvmem_init(void)
1662 {
1663 	return bus_register(&nvmem_bus_type);
1664 }
1665 
nvmem_exit(void)1666 static void __exit nvmem_exit(void)
1667 {
1668 	bus_unregister(&nvmem_bus_type);
1669 }
1670 
1671 subsys_initcall(nvmem_init);
1672 module_exit(nvmem_exit);
1673 
1674 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1675 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1676 MODULE_DESCRIPTION("nvmem Driver Core");
1677 MODULE_LICENSE("GPL v2");
1678