1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics TCP target.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/inet.h>
15 #include <linux/llist.h>
16 #include <crypto/hash.h>
17
18 #include "nvmet.h"
19
20 #define NVMET_TCP_DEF_INLINE_DATA_SIZE (4 * PAGE_SIZE)
21 #define NVMET_TCP_MAXH2CDATA 0x400000 /* 16M arbitrary limit */
22
23 /* Define the socket priority to use for connections were it is desirable
24 * that the NIC consider performing optimized packet processing or filtering.
25 * A non-zero value being sufficient to indicate general consideration of any
26 * possible optimization. Making it a module param allows for alternative
27 * values that may be unique for some NIC implementations.
28 */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority");
32
33 #define NVMET_TCP_RECV_BUDGET 8
34 #define NVMET_TCP_SEND_BUDGET 8
35 #define NVMET_TCP_IO_WORK_BUDGET 64
36
37 enum nvmet_tcp_send_state {
38 NVMET_TCP_SEND_DATA_PDU,
39 NVMET_TCP_SEND_DATA,
40 NVMET_TCP_SEND_R2T,
41 NVMET_TCP_SEND_DDGST,
42 NVMET_TCP_SEND_RESPONSE
43 };
44
45 enum nvmet_tcp_recv_state {
46 NVMET_TCP_RECV_PDU,
47 NVMET_TCP_RECV_DATA,
48 NVMET_TCP_RECV_DDGST,
49 NVMET_TCP_RECV_ERR,
50 };
51
52 enum {
53 NVMET_TCP_F_INIT_FAILED = (1 << 0),
54 };
55
56 struct nvmet_tcp_cmd {
57 struct nvmet_tcp_queue *queue;
58 struct nvmet_req req;
59
60 struct nvme_tcp_cmd_pdu *cmd_pdu;
61 struct nvme_tcp_rsp_pdu *rsp_pdu;
62 struct nvme_tcp_data_pdu *data_pdu;
63 struct nvme_tcp_r2t_pdu *r2t_pdu;
64
65 u32 rbytes_done;
66 u32 wbytes_done;
67
68 u32 pdu_len;
69 u32 pdu_recv;
70 int sg_idx;
71 int nr_mapped;
72 struct msghdr recv_msg;
73 struct kvec *iov;
74 u32 flags;
75
76 struct list_head entry;
77 struct llist_node lentry;
78
79 /* send state */
80 u32 offset;
81 struct scatterlist *cur_sg;
82 enum nvmet_tcp_send_state state;
83
84 __le32 exp_ddgst;
85 __le32 recv_ddgst;
86 };
87
88 enum nvmet_tcp_queue_state {
89 NVMET_TCP_Q_CONNECTING,
90 NVMET_TCP_Q_LIVE,
91 NVMET_TCP_Q_DISCONNECTING,
92 };
93
94 struct nvmet_tcp_queue {
95 struct socket *sock;
96 struct nvmet_tcp_port *port;
97 struct work_struct io_work;
98 struct nvmet_cq nvme_cq;
99 struct nvmet_sq nvme_sq;
100
101 /* send state */
102 struct nvmet_tcp_cmd *cmds;
103 unsigned int nr_cmds;
104 struct list_head free_list;
105 struct llist_head resp_list;
106 struct list_head resp_send_list;
107 int send_list_len;
108 struct nvmet_tcp_cmd *snd_cmd;
109
110 /* recv state */
111 int offset;
112 int left;
113 enum nvmet_tcp_recv_state rcv_state;
114 struct nvmet_tcp_cmd *cmd;
115 union nvme_tcp_pdu pdu;
116
117 /* digest state */
118 bool hdr_digest;
119 bool data_digest;
120 struct ahash_request *snd_hash;
121 struct ahash_request *rcv_hash;
122
123 spinlock_t state_lock;
124 enum nvmet_tcp_queue_state state;
125
126 struct sockaddr_storage sockaddr;
127 struct sockaddr_storage sockaddr_peer;
128 struct work_struct release_work;
129
130 int idx;
131 struct list_head queue_list;
132
133 struct nvmet_tcp_cmd connect;
134
135 struct page_frag_cache pf_cache;
136
137 void (*data_ready)(struct sock *);
138 void (*state_change)(struct sock *);
139 void (*write_space)(struct sock *);
140 };
141
142 struct nvmet_tcp_port {
143 struct socket *sock;
144 struct work_struct accept_work;
145 struct nvmet_port *nport;
146 struct sockaddr_storage addr;
147 void (*data_ready)(struct sock *);
148 };
149
150 static DEFINE_IDA(nvmet_tcp_queue_ida);
151 static LIST_HEAD(nvmet_tcp_queue_list);
152 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
153
154 static struct workqueue_struct *nvmet_tcp_wq;
155 static const struct nvmet_fabrics_ops nvmet_tcp_ops;
156 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
157 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd);
158
nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue, struct nvmet_tcp_cmd *cmd)159 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
160 struct nvmet_tcp_cmd *cmd)
161 {
162 if (unlikely(!queue->nr_cmds)) {
163 /* We didn't allocate cmds yet, send 0xffff */
164 return USHRT_MAX;
165 }
166
167 return cmd - queue->cmds;
168 }
169
nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)170 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
171 {
172 return nvme_is_write(cmd->req.cmd) &&
173 cmd->rbytes_done < cmd->req.transfer_len;
174 }
175
nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)176 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
177 {
178 return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
179 }
180
nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)181 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
182 {
183 return !nvme_is_write(cmd->req.cmd) &&
184 cmd->req.transfer_len > 0 &&
185 !cmd->req.cqe->status;
186 }
187
nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)188 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
189 {
190 return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
191 !cmd->rbytes_done;
192 }
193
194 static inline struct nvmet_tcp_cmd *
nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)195 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
196 {
197 struct nvmet_tcp_cmd *cmd;
198
199 cmd = list_first_entry_or_null(&queue->free_list,
200 struct nvmet_tcp_cmd, entry);
201 if (!cmd)
202 return NULL;
203 list_del_init(&cmd->entry);
204
205 cmd->rbytes_done = cmd->wbytes_done = 0;
206 cmd->pdu_len = 0;
207 cmd->pdu_recv = 0;
208 cmd->iov = NULL;
209 cmd->flags = 0;
210 return cmd;
211 }
212
nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)213 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
214 {
215 if (unlikely(cmd == &cmd->queue->connect))
216 return;
217
218 list_add_tail(&cmd->entry, &cmd->queue->free_list);
219 }
220
queue_cpu(struct nvmet_tcp_queue *queue)221 static inline int queue_cpu(struct nvmet_tcp_queue *queue)
222 {
223 return queue->sock->sk->sk_incoming_cpu;
224 }
225
nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)226 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
227 {
228 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
229 }
230
nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)231 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
232 {
233 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
234 }
235
nvmet_tcp_hdgst(struct ahash_request *hash, void *pdu, size_t len)236 static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
237 void *pdu, size_t len)
238 {
239 struct scatterlist sg;
240
241 sg_init_one(&sg, pdu, len);
242 ahash_request_set_crypt(hash, &sg, pdu + len, len);
243 crypto_ahash_digest(hash);
244 }
245
nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue, void *pdu, size_t len)246 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
247 void *pdu, size_t len)
248 {
249 struct nvme_tcp_hdr *hdr = pdu;
250 __le32 recv_digest;
251 __le32 exp_digest;
252
253 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
254 pr_err("queue %d: header digest enabled but no header digest\n",
255 queue->idx);
256 return -EPROTO;
257 }
258
259 recv_digest = *(__le32 *)(pdu + hdr->hlen);
260 nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
261 exp_digest = *(__le32 *)(pdu + hdr->hlen);
262 if (recv_digest != exp_digest) {
263 pr_err("queue %d: header digest error: recv %#x expected %#x\n",
264 queue->idx, le32_to_cpu(recv_digest),
265 le32_to_cpu(exp_digest));
266 return -EPROTO;
267 }
268
269 return 0;
270 }
271
nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)272 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
273 {
274 struct nvme_tcp_hdr *hdr = pdu;
275 u8 digest_len = nvmet_tcp_hdgst_len(queue);
276 u32 len;
277
278 len = le32_to_cpu(hdr->plen) - hdr->hlen -
279 (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
280
281 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
282 pr_err("queue %d: data digest flag is cleared\n", queue->idx);
283 return -EPROTO;
284 }
285
286 return 0;
287 }
288
nvmet_tcp_unmap_pdu_iovec(struct nvmet_tcp_cmd *cmd)289 static void nvmet_tcp_unmap_pdu_iovec(struct nvmet_tcp_cmd *cmd)
290 {
291 struct scatterlist *sg;
292 int i;
293
294 sg = &cmd->req.sg[cmd->sg_idx];
295
296 for (i = 0; i < cmd->nr_mapped; i++)
297 kunmap(sg_page(&sg[i]));
298 }
299
nvmet_tcp_map_pdu_iovec(struct nvmet_tcp_cmd *cmd)300 static void nvmet_tcp_map_pdu_iovec(struct nvmet_tcp_cmd *cmd)
301 {
302 struct kvec *iov = cmd->iov;
303 struct scatterlist *sg;
304 u32 length, offset, sg_offset;
305
306 length = cmd->pdu_len;
307 cmd->nr_mapped = DIV_ROUND_UP(length, PAGE_SIZE);
308 offset = cmd->rbytes_done;
309 cmd->sg_idx = offset / PAGE_SIZE;
310 sg_offset = offset % PAGE_SIZE;
311 sg = &cmd->req.sg[cmd->sg_idx];
312
313 while (length) {
314 u32 iov_len = min_t(u32, length, sg->length - sg_offset);
315
316 iov->iov_base = kmap(sg_page(sg)) + sg->offset + sg_offset;
317 iov->iov_len = iov_len;
318
319 length -= iov_len;
320 sg = sg_next(sg);
321 iov++;
322 sg_offset = 0;
323 }
324
325 iov_iter_kvec(&cmd->recv_msg.msg_iter, READ, cmd->iov,
326 cmd->nr_mapped, cmd->pdu_len);
327 }
328
nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)329 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
330 {
331 queue->rcv_state = NVMET_TCP_RECV_ERR;
332 if (queue->nvme_sq.ctrl)
333 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
334 else
335 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
336 }
337
nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)338 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
339 {
340 queue->rcv_state = NVMET_TCP_RECV_ERR;
341 if (status == -EPIPE || status == -ECONNRESET)
342 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
343 else
344 nvmet_tcp_fatal_error(queue);
345 }
346
nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)347 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
348 {
349 struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
350 u32 len = le32_to_cpu(sgl->length);
351
352 if (!len)
353 return 0;
354
355 if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
356 NVME_SGL_FMT_OFFSET)) {
357 if (!nvme_is_write(cmd->req.cmd))
358 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
359
360 if (len > cmd->req.port->inline_data_size)
361 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
362 cmd->pdu_len = len;
363 }
364 cmd->req.transfer_len += len;
365
366 cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
367 if (!cmd->req.sg)
368 return NVME_SC_INTERNAL;
369 cmd->cur_sg = cmd->req.sg;
370
371 if (nvmet_tcp_has_data_in(cmd)) {
372 cmd->iov = kmalloc_array(cmd->req.sg_cnt,
373 sizeof(*cmd->iov), GFP_KERNEL);
374 if (!cmd->iov)
375 goto err;
376 }
377
378 return 0;
379 err:
380 sgl_free(cmd->req.sg);
381 return NVME_SC_INTERNAL;
382 }
383
nvmet_tcp_send_ddgst(struct ahash_request *hash, struct nvmet_tcp_cmd *cmd)384 static void nvmet_tcp_send_ddgst(struct ahash_request *hash,
385 struct nvmet_tcp_cmd *cmd)
386 {
387 ahash_request_set_crypt(hash, cmd->req.sg,
388 (void *)&cmd->exp_ddgst, cmd->req.transfer_len);
389 crypto_ahash_digest(hash);
390 }
391
nvmet_tcp_recv_ddgst(struct ahash_request *hash, struct nvmet_tcp_cmd *cmd)392 static void nvmet_tcp_recv_ddgst(struct ahash_request *hash,
393 struct nvmet_tcp_cmd *cmd)
394 {
395 struct scatterlist sg;
396 struct kvec *iov;
397 int i;
398
399 crypto_ahash_init(hash);
400 for (i = 0, iov = cmd->iov; i < cmd->nr_mapped; i++, iov++) {
401 sg_init_one(&sg, iov->iov_base, iov->iov_len);
402 ahash_request_set_crypt(hash, &sg, NULL, iov->iov_len);
403 crypto_ahash_update(hash);
404 }
405 ahash_request_set_crypt(hash, NULL, (void *)&cmd->exp_ddgst, 0);
406 crypto_ahash_final(hash);
407 }
408
nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)409 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
410 {
411 struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
412 struct nvmet_tcp_queue *queue = cmd->queue;
413 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
414 u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
415
416 cmd->offset = 0;
417 cmd->state = NVMET_TCP_SEND_DATA_PDU;
418
419 pdu->hdr.type = nvme_tcp_c2h_data;
420 pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
421 NVME_TCP_F_DATA_SUCCESS : 0);
422 pdu->hdr.hlen = sizeof(*pdu);
423 pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
424 pdu->hdr.plen =
425 cpu_to_le32(pdu->hdr.hlen + hdgst +
426 cmd->req.transfer_len + ddgst);
427 pdu->command_id = cmd->req.cqe->command_id;
428 pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
429 pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
430
431 if (queue->data_digest) {
432 pdu->hdr.flags |= NVME_TCP_F_DDGST;
433 nvmet_tcp_send_ddgst(queue->snd_hash, cmd);
434 }
435
436 if (cmd->queue->hdr_digest) {
437 pdu->hdr.flags |= NVME_TCP_F_HDGST;
438 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
439 }
440 }
441
nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)442 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
443 {
444 struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
445 struct nvmet_tcp_queue *queue = cmd->queue;
446 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
447
448 cmd->offset = 0;
449 cmd->state = NVMET_TCP_SEND_R2T;
450
451 pdu->hdr.type = nvme_tcp_r2t;
452 pdu->hdr.flags = 0;
453 pdu->hdr.hlen = sizeof(*pdu);
454 pdu->hdr.pdo = 0;
455 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
456
457 pdu->command_id = cmd->req.cmd->common.command_id;
458 pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
459 pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
460 pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
461 if (cmd->queue->hdr_digest) {
462 pdu->hdr.flags |= NVME_TCP_F_HDGST;
463 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
464 }
465 }
466
nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)467 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
468 {
469 struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
470 struct nvmet_tcp_queue *queue = cmd->queue;
471 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
472
473 cmd->offset = 0;
474 cmd->state = NVMET_TCP_SEND_RESPONSE;
475
476 pdu->hdr.type = nvme_tcp_rsp;
477 pdu->hdr.flags = 0;
478 pdu->hdr.hlen = sizeof(*pdu);
479 pdu->hdr.pdo = 0;
480 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
481 if (cmd->queue->hdr_digest) {
482 pdu->hdr.flags |= NVME_TCP_F_HDGST;
483 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
484 }
485 }
486
nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)487 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
488 {
489 struct llist_node *node;
490 struct nvmet_tcp_cmd *cmd;
491
492 for (node = llist_del_all(&queue->resp_list); node; node = node->next) {
493 cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
494 list_add(&cmd->entry, &queue->resp_send_list);
495 queue->send_list_len++;
496 }
497 }
498
nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)499 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
500 {
501 queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
502 struct nvmet_tcp_cmd, entry);
503 if (!queue->snd_cmd) {
504 nvmet_tcp_process_resp_list(queue);
505 queue->snd_cmd =
506 list_first_entry_or_null(&queue->resp_send_list,
507 struct nvmet_tcp_cmd, entry);
508 if (unlikely(!queue->snd_cmd))
509 return NULL;
510 }
511
512 list_del_init(&queue->snd_cmd->entry);
513 queue->send_list_len--;
514
515 if (nvmet_tcp_need_data_out(queue->snd_cmd))
516 nvmet_setup_c2h_data_pdu(queue->snd_cmd);
517 else if (nvmet_tcp_need_data_in(queue->snd_cmd))
518 nvmet_setup_r2t_pdu(queue->snd_cmd);
519 else
520 nvmet_setup_response_pdu(queue->snd_cmd);
521
522 return queue->snd_cmd;
523 }
524
nvmet_tcp_queue_response(struct nvmet_req *req)525 static void nvmet_tcp_queue_response(struct nvmet_req *req)
526 {
527 struct nvmet_tcp_cmd *cmd =
528 container_of(req, struct nvmet_tcp_cmd, req);
529 struct nvmet_tcp_queue *queue = cmd->queue;
530 struct nvme_sgl_desc *sgl;
531 u32 len;
532
533 if (unlikely(cmd == queue->cmd)) {
534 sgl = &cmd->req.cmd->common.dptr.sgl;
535 len = le32_to_cpu(sgl->length);
536
537 /*
538 * Wait for inline data before processing the response.
539 * Avoid using helpers, this might happen before
540 * nvmet_req_init is completed.
541 */
542 if (queue->rcv_state == NVMET_TCP_RECV_PDU &&
543 len && len <= cmd->req.port->inline_data_size &&
544 nvme_is_write(cmd->req.cmd))
545 return;
546 }
547
548 llist_add(&cmd->lentry, &queue->resp_list);
549 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work);
550 }
551
nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd)552 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd)
553 {
554 if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED))
555 nvmet_tcp_queue_response(&cmd->req);
556 else
557 cmd->req.execute(&cmd->req);
558 }
559
nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)560 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
561 {
562 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
563 int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
564 int ret;
565
566 ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->data_pdu),
567 offset_in_page(cmd->data_pdu) + cmd->offset,
568 left, MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
569 if (ret <= 0)
570 return ret;
571
572 cmd->offset += ret;
573 left -= ret;
574
575 if (left)
576 return -EAGAIN;
577
578 cmd->state = NVMET_TCP_SEND_DATA;
579 cmd->offset = 0;
580 return 1;
581 }
582
nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)583 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
584 {
585 struct nvmet_tcp_queue *queue = cmd->queue;
586 int ret;
587
588 while (cmd->cur_sg) {
589 struct page *page = sg_page(cmd->cur_sg);
590 u32 left = cmd->cur_sg->length - cmd->offset;
591 int flags = MSG_DONTWAIT;
592
593 if ((!last_in_batch && cmd->queue->send_list_len) ||
594 cmd->wbytes_done + left < cmd->req.transfer_len ||
595 queue->data_digest || !queue->nvme_sq.sqhd_disabled)
596 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
597
598 ret = kernel_sendpage(cmd->queue->sock, page, cmd->offset,
599 left, flags);
600 if (ret <= 0)
601 return ret;
602
603 cmd->offset += ret;
604 cmd->wbytes_done += ret;
605
606 /* Done with sg?*/
607 if (cmd->offset == cmd->cur_sg->length) {
608 cmd->cur_sg = sg_next(cmd->cur_sg);
609 cmd->offset = 0;
610 }
611 }
612
613 if (queue->data_digest) {
614 cmd->state = NVMET_TCP_SEND_DDGST;
615 cmd->offset = 0;
616 } else {
617 if (queue->nvme_sq.sqhd_disabled) {
618 cmd->queue->snd_cmd = NULL;
619 nvmet_tcp_put_cmd(cmd);
620 } else {
621 nvmet_setup_response_pdu(cmd);
622 }
623 }
624
625 if (queue->nvme_sq.sqhd_disabled) {
626 kfree(cmd->iov);
627 sgl_free(cmd->req.sg);
628 }
629
630 return 1;
631
632 }
633
nvmet_try_send_response(struct nvmet_tcp_cmd *cmd, bool last_in_batch)634 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
635 bool last_in_batch)
636 {
637 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
638 int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
639 int flags = MSG_DONTWAIT;
640 int ret;
641
642 if (!last_in_batch && cmd->queue->send_list_len)
643 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
644 else
645 flags |= MSG_EOR;
646
647 ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->rsp_pdu),
648 offset_in_page(cmd->rsp_pdu) + cmd->offset, left, flags);
649 if (ret <= 0)
650 return ret;
651 cmd->offset += ret;
652 left -= ret;
653
654 if (left)
655 return -EAGAIN;
656
657 kfree(cmd->iov);
658 sgl_free(cmd->req.sg);
659 cmd->queue->snd_cmd = NULL;
660 nvmet_tcp_put_cmd(cmd);
661 return 1;
662 }
663
nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)664 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
665 {
666 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
667 int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
668 int flags = MSG_DONTWAIT;
669 int ret;
670
671 if (!last_in_batch && cmd->queue->send_list_len)
672 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
673 else
674 flags |= MSG_EOR;
675
676 ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->r2t_pdu),
677 offset_in_page(cmd->r2t_pdu) + cmd->offset, left, flags);
678 if (ret <= 0)
679 return ret;
680 cmd->offset += ret;
681 left -= ret;
682
683 if (left)
684 return -EAGAIN;
685
686 cmd->queue->snd_cmd = NULL;
687 return 1;
688 }
689
nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)690 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
691 {
692 struct nvmet_tcp_queue *queue = cmd->queue;
693 int left = NVME_TCP_DIGEST_LENGTH - cmd->offset;
694 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
695 struct kvec iov = {
696 .iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset,
697 .iov_len = left
698 };
699 int ret;
700
701 if (!last_in_batch && cmd->queue->send_list_len)
702 msg.msg_flags |= MSG_MORE;
703 else
704 msg.msg_flags |= MSG_EOR;
705
706 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
707 if (unlikely(ret <= 0))
708 return ret;
709
710 cmd->offset += ret;
711 left -= ret;
712
713 if (left)
714 return -EAGAIN;
715
716 if (queue->nvme_sq.sqhd_disabled) {
717 cmd->queue->snd_cmd = NULL;
718 nvmet_tcp_put_cmd(cmd);
719 } else {
720 nvmet_setup_response_pdu(cmd);
721 }
722 return 1;
723 }
724
nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue, bool last_in_batch)725 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
726 bool last_in_batch)
727 {
728 struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
729 int ret = 0;
730
731 if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
732 cmd = nvmet_tcp_fetch_cmd(queue);
733 if (unlikely(!cmd))
734 return 0;
735 }
736
737 if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
738 ret = nvmet_try_send_data_pdu(cmd);
739 if (ret <= 0)
740 goto done_send;
741 }
742
743 if (cmd->state == NVMET_TCP_SEND_DATA) {
744 ret = nvmet_try_send_data(cmd, last_in_batch);
745 if (ret <= 0)
746 goto done_send;
747 }
748
749 if (cmd->state == NVMET_TCP_SEND_DDGST) {
750 ret = nvmet_try_send_ddgst(cmd, last_in_batch);
751 if (ret <= 0)
752 goto done_send;
753 }
754
755 if (cmd->state == NVMET_TCP_SEND_R2T) {
756 ret = nvmet_try_send_r2t(cmd, last_in_batch);
757 if (ret <= 0)
758 goto done_send;
759 }
760
761 if (cmd->state == NVMET_TCP_SEND_RESPONSE)
762 ret = nvmet_try_send_response(cmd, last_in_batch);
763
764 done_send:
765 if (ret < 0) {
766 if (ret == -EAGAIN)
767 return 0;
768 return ret;
769 }
770
771 return 1;
772 }
773
nvmet_tcp_try_send(struct nvmet_tcp_queue *queue, int budget, int *sends)774 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
775 int budget, int *sends)
776 {
777 int i, ret = 0;
778
779 for (i = 0; i < budget; i++) {
780 ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
781 if (unlikely(ret < 0)) {
782 nvmet_tcp_socket_error(queue, ret);
783 goto done;
784 } else if (ret == 0) {
785 break;
786 }
787 (*sends)++;
788 }
789 done:
790 return ret;
791 }
792
nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)793 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
794 {
795 queue->offset = 0;
796 queue->left = sizeof(struct nvme_tcp_hdr);
797 queue->cmd = NULL;
798 queue->rcv_state = NVMET_TCP_RECV_PDU;
799 }
800
nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)801 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
802 {
803 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
804
805 ahash_request_free(queue->rcv_hash);
806 ahash_request_free(queue->snd_hash);
807 crypto_free_ahash(tfm);
808 }
809
nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)810 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
811 {
812 struct crypto_ahash *tfm;
813
814 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
815 if (IS_ERR(tfm))
816 return PTR_ERR(tfm);
817
818 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
819 if (!queue->snd_hash)
820 goto free_tfm;
821 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
822
823 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
824 if (!queue->rcv_hash)
825 goto free_snd_hash;
826 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
827
828 return 0;
829 free_snd_hash:
830 ahash_request_free(queue->snd_hash);
831 free_tfm:
832 crypto_free_ahash(tfm);
833 return -ENOMEM;
834 }
835
836
nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)837 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
838 {
839 struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
840 struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
841 struct msghdr msg = {};
842 struct kvec iov;
843 int ret;
844
845 if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
846 pr_err("bad nvme-tcp pdu length (%d)\n",
847 le32_to_cpu(icreq->hdr.plen));
848 nvmet_tcp_fatal_error(queue);
849 }
850
851 if (icreq->pfv != NVME_TCP_PFV_1_0) {
852 pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
853 return -EPROTO;
854 }
855
856 if (icreq->hpda != 0) {
857 pr_err("queue %d: unsupported hpda %d\n", queue->idx,
858 icreq->hpda);
859 return -EPROTO;
860 }
861
862 queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
863 queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
864 if (queue->hdr_digest || queue->data_digest) {
865 ret = nvmet_tcp_alloc_crypto(queue);
866 if (ret)
867 return ret;
868 }
869
870 memset(icresp, 0, sizeof(*icresp));
871 icresp->hdr.type = nvme_tcp_icresp;
872 icresp->hdr.hlen = sizeof(*icresp);
873 icresp->hdr.pdo = 0;
874 icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
875 icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
876 icresp->maxdata = cpu_to_le32(NVMET_TCP_MAXH2CDATA);
877 icresp->cpda = 0;
878 if (queue->hdr_digest)
879 icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
880 if (queue->data_digest)
881 icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
882
883 iov.iov_base = icresp;
884 iov.iov_len = sizeof(*icresp);
885 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
886 if (ret < 0)
887 return ret; /* queue removal will cleanup */
888
889 queue->state = NVMET_TCP_Q_LIVE;
890 nvmet_prepare_receive_pdu(queue);
891 return 0;
892 }
893
nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue, struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)894 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
895 struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
896 {
897 size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
898 int ret;
899
900 if (!nvme_is_write(cmd->req.cmd) ||
901 data_len > cmd->req.port->inline_data_size) {
902 nvmet_prepare_receive_pdu(queue);
903 return;
904 }
905
906 ret = nvmet_tcp_map_data(cmd);
907 if (unlikely(ret)) {
908 pr_err("queue %d: failed to map data\n", queue->idx);
909 nvmet_tcp_fatal_error(queue);
910 return;
911 }
912
913 queue->rcv_state = NVMET_TCP_RECV_DATA;
914 nvmet_tcp_map_pdu_iovec(cmd);
915 cmd->flags |= NVMET_TCP_F_INIT_FAILED;
916 }
917
nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)918 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
919 {
920 struct nvme_tcp_data_pdu *data = &queue->pdu.data;
921 struct nvmet_tcp_cmd *cmd;
922 unsigned int exp_data_len;
923
924 if (likely(queue->nr_cmds)) {
925 if (unlikely(data->ttag >= queue->nr_cmds)) {
926 pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n",
927 queue->idx, data->ttag, queue->nr_cmds);
928 nvmet_tcp_fatal_error(queue);
929 return -EPROTO;
930 }
931 cmd = &queue->cmds[data->ttag];
932 } else {
933 cmd = &queue->connect;
934 }
935
936 if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
937 pr_err("ttag %u unexpected data offset %u (expected %u)\n",
938 data->ttag, le32_to_cpu(data->data_offset),
939 cmd->rbytes_done);
940 /* FIXME: use path and transport errors */
941 nvmet_tcp_fatal_error(queue);
942 return -EPROTO;
943 }
944
945 exp_data_len = le32_to_cpu(data->hdr.plen) -
946 nvmet_tcp_hdgst_len(queue) -
947 nvmet_tcp_ddgst_len(queue) -
948 sizeof(*data);
949
950 cmd->pdu_len = le32_to_cpu(data->data_length);
951 if (unlikely(cmd->pdu_len != exp_data_len ||
952 cmd->pdu_len == 0 ||
953 cmd->pdu_len > NVMET_TCP_MAXH2CDATA)) {
954 pr_err("H2CData PDU len %u is invalid\n", cmd->pdu_len);
955 /* FIXME: use proper transport errors */
956 nvmet_tcp_fatal_error(queue);
957 return -EPROTO;
958 }
959 cmd->pdu_recv = 0;
960 nvmet_tcp_map_pdu_iovec(cmd);
961 queue->cmd = cmd;
962 queue->rcv_state = NVMET_TCP_RECV_DATA;
963
964 return 0;
965 }
966
nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)967 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
968 {
969 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
970 struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
971 struct nvmet_req *req;
972 int ret;
973
974 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
975 if (hdr->type != nvme_tcp_icreq) {
976 pr_err("unexpected pdu type (%d) before icreq\n",
977 hdr->type);
978 nvmet_tcp_fatal_error(queue);
979 return -EPROTO;
980 }
981 return nvmet_tcp_handle_icreq(queue);
982 }
983
984 if (hdr->type == nvme_tcp_h2c_data) {
985 ret = nvmet_tcp_handle_h2c_data_pdu(queue);
986 if (unlikely(ret))
987 return ret;
988 return 0;
989 }
990
991 queue->cmd = nvmet_tcp_get_cmd(queue);
992 if (unlikely(!queue->cmd)) {
993 /* This should never happen */
994 pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
995 queue->idx, queue->nr_cmds, queue->send_list_len,
996 nvme_cmd->common.opcode);
997 nvmet_tcp_fatal_error(queue);
998 return -ENOMEM;
999 }
1000
1001 req = &queue->cmd->req;
1002 memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
1003
1004 if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
1005 &queue->nvme_sq, &nvmet_tcp_ops))) {
1006 pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
1007 req->cmd, req->cmd->common.command_id,
1008 req->cmd->common.opcode,
1009 le32_to_cpu(req->cmd->common.dptr.sgl.length));
1010
1011 nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
1012 return 0;
1013 }
1014
1015 ret = nvmet_tcp_map_data(queue->cmd);
1016 if (unlikely(ret)) {
1017 pr_err("queue %d: failed to map data\n", queue->idx);
1018 if (nvmet_tcp_has_inline_data(queue->cmd))
1019 nvmet_tcp_fatal_error(queue);
1020 else
1021 nvmet_req_complete(req, ret);
1022 ret = -EAGAIN;
1023 goto out;
1024 }
1025
1026 if (nvmet_tcp_need_data_in(queue->cmd)) {
1027 if (nvmet_tcp_has_inline_data(queue->cmd)) {
1028 queue->rcv_state = NVMET_TCP_RECV_DATA;
1029 nvmet_tcp_map_pdu_iovec(queue->cmd);
1030 return 0;
1031 }
1032 /* send back R2T */
1033 nvmet_tcp_queue_response(&queue->cmd->req);
1034 goto out;
1035 }
1036
1037 queue->cmd->req.execute(&queue->cmd->req);
1038 out:
1039 nvmet_prepare_receive_pdu(queue);
1040 return ret;
1041 }
1042
1043 static const u8 nvme_tcp_pdu_sizes[] = {
1044 [nvme_tcp_icreq] = sizeof(struct nvme_tcp_icreq_pdu),
1045 [nvme_tcp_cmd] = sizeof(struct nvme_tcp_cmd_pdu),
1046 [nvme_tcp_h2c_data] = sizeof(struct nvme_tcp_data_pdu),
1047 };
1048
nvmet_tcp_pdu_size(u8 type)1049 static inline u8 nvmet_tcp_pdu_size(u8 type)
1050 {
1051 size_t idx = type;
1052
1053 return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
1054 nvme_tcp_pdu_sizes[idx]) ?
1055 nvme_tcp_pdu_sizes[idx] : 0;
1056 }
1057
nvmet_tcp_pdu_valid(u8 type)1058 static inline bool nvmet_tcp_pdu_valid(u8 type)
1059 {
1060 switch (type) {
1061 case nvme_tcp_icreq:
1062 case nvme_tcp_cmd:
1063 case nvme_tcp_h2c_data:
1064 /* fallthru */
1065 return true;
1066 }
1067
1068 return false;
1069 }
1070
nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)1071 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
1072 {
1073 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1074 int len;
1075 struct kvec iov;
1076 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1077
1078 recv:
1079 iov.iov_base = (void *)&queue->pdu + queue->offset;
1080 iov.iov_len = queue->left;
1081 len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1082 iov.iov_len, msg.msg_flags);
1083 if (unlikely(len < 0))
1084 return len;
1085
1086 queue->offset += len;
1087 queue->left -= len;
1088 if (queue->left)
1089 return -EAGAIN;
1090
1091 if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1092 u8 hdgst = nvmet_tcp_hdgst_len(queue);
1093
1094 if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1095 pr_err("unexpected pdu type %d\n", hdr->type);
1096 nvmet_tcp_fatal_error(queue);
1097 return -EIO;
1098 }
1099
1100 if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1101 pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1102 return -EIO;
1103 }
1104
1105 queue->left = hdr->hlen - queue->offset + hdgst;
1106 goto recv;
1107 }
1108
1109 if (queue->hdr_digest &&
1110 nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) {
1111 nvmet_tcp_fatal_error(queue); /* fatal */
1112 return -EPROTO;
1113 }
1114
1115 if (queue->data_digest &&
1116 nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1117 nvmet_tcp_fatal_error(queue); /* fatal */
1118 return -EPROTO;
1119 }
1120
1121 return nvmet_tcp_done_recv_pdu(queue);
1122 }
1123
nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)1124 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1125 {
1126 struct nvmet_tcp_queue *queue = cmd->queue;
1127
1128 nvmet_tcp_recv_ddgst(queue->rcv_hash, cmd);
1129 queue->offset = 0;
1130 queue->left = NVME_TCP_DIGEST_LENGTH;
1131 queue->rcv_state = NVMET_TCP_RECV_DDGST;
1132 }
1133
nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)1134 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1135 {
1136 struct nvmet_tcp_cmd *cmd = queue->cmd;
1137 int ret;
1138
1139 while (msg_data_left(&cmd->recv_msg)) {
1140 ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1141 cmd->recv_msg.msg_flags);
1142 if (ret <= 0)
1143 return ret;
1144
1145 cmd->pdu_recv += ret;
1146 cmd->rbytes_done += ret;
1147 }
1148
1149 nvmet_tcp_unmap_pdu_iovec(cmd);
1150 if (queue->data_digest) {
1151 nvmet_tcp_prep_recv_ddgst(cmd);
1152 return 0;
1153 }
1154
1155 if (cmd->rbytes_done == cmd->req.transfer_len)
1156 nvmet_tcp_execute_request(cmd);
1157
1158 nvmet_prepare_receive_pdu(queue);
1159 return 0;
1160 }
1161
nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)1162 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1163 {
1164 struct nvmet_tcp_cmd *cmd = queue->cmd;
1165 int ret;
1166 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1167 struct kvec iov = {
1168 .iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1169 .iov_len = queue->left
1170 };
1171
1172 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1173 iov.iov_len, msg.msg_flags);
1174 if (unlikely(ret < 0))
1175 return ret;
1176
1177 queue->offset += ret;
1178 queue->left -= ret;
1179 if (queue->left)
1180 return -EAGAIN;
1181
1182 if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1183 pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1184 queue->idx, cmd->req.cmd->common.command_id,
1185 queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1186 le32_to_cpu(cmd->exp_ddgst));
1187 nvmet_tcp_finish_cmd(cmd);
1188 nvmet_tcp_fatal_error(queue);
1189 ret = -EPROTO;
1190 goto out;
1191 }
1192
1193 if (cmd->rbytes_done == cmd->req.transfer_len)
1194 nvmet_tcp_execute_request(cmd);
1195
1196 ret = 0;
1197 out:
1198 nvmet_prepare_receive_pdu(queue);
1199 return ret;
1200 }
1201
nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)1202 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1203 {
1204 int result = 0;
1205
1206 if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1207 return 0;
1208
1209 if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1210 result = nvmet_tcp_try_recv_pdu(queue);
1211 if (result != 0)
1212 goto done_recv;
1213 }
1214
1215 if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1216 result = nvmet_tcp_try_recv_data(queue);
1217 if (result != 0)
1218 goto done_recv;
1219 }
1220
1221 if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1222 result = nvmet_tcp_try_recv_ddgst(queue);
1223 if (result != 0)
1224 goto done_recv;
1225 }
1226
1227 done_recv:
1228 if (result < 0) {
1229 if (result == -EAGAIN)
1230 return 0;
1231 return result;
1232 }
1233 return 1;
1234 }
1235
nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue, int budget, int *recvs)1236 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1237 int budget, int *recvs)
1238 {
1239 int i, ret = 0;
1240
1241 for (i = 0; i < budget; i++) {
1242 ret = nvmet_tcp_try_recv_one(queue);
1243 if (unlikely(ret < 0)) {
1244 nvmet_tcp_socket_error(queue, ret);
1245 goto done;
1246 } else if (ret == 0) {
1247 break;
1248 }
1249 (*recvs)++;
1250 }
1251 done:
1252 return ret;
1253 }
1254
nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)1255 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1256 {
1257 spin_lock(&queue->state_lock);
1258 if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1259 queue->state = NVMET_TCP_Q_DISCONNECTING;
1260 schedule_work(&queue->release_work);
1261 }
1262 spin_unlock(&queue->state_lock);
1263 }
1264
nvmet_tcp_io_work(struct work_struct *w)1265 static void nvmet_tcp_io_work(struct work_struct *w)
1266 {
1267 struct nvmet_tcp_queue *queue =
1268 container_of(w, struct nvmet_tcp_queue, io_work);
1269 bool pending;
1270 int ret, ops = 0;
1271
1272 do {
1273 pending = false;
1274
1275 ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1276 if (ret > 0)
1277 pending = true;
1278 else if (ret < 0)
1279 return;
1280
1281 ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1282 if (ret > 0)
1283 pending = true;
1284 else if (ret < 0)
1285 return;
1286
1287 } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1288
1289 /*
1290 * We exahusted our budget, requeue our selves
1291 */
1292 if (pending)
1293 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1294 }
1295
nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue, struct nvmet_tcp_cmd *c)1296 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1297 struct nvmet_tcp_cmd *c)
1298 {
1299 u8 hdgst = nvmet_tcp_hdgst_len(queue);
1300
1301 c->queue = queue;
1302 c->req.port = queue->port->nport;
1303
1304 c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1305 sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1306 if (!c->cmd_pdu)
1307 return -ENOMEM;
1308 c->req.cmd = &c->cmd_pdu->cmd;
1309
1310 c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1311 sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1312 if (!c->rsp_pdu)
1313 goto out_free_cmd;
1314 c->req.cqe = &c->rsp_pdu->cqe;
1315
1316 c->data_pdu = page_frag_alloc(&queue->pf_cache,
1317 sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1318 if (!c->data_pdu)
1319 goto out_free_rsp;
1320
1321 c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1322 sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1323 if (!c->r2t_pdu)
1324 goto out_free_data;
1325
1326 c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1327
1328 list_add_tail(&c->entry, &queue->free_list);
1329
1330 return 0;
1331 out_free_data:
1332 page_frag_free(c->data_pdu);
1333 out_free_rsp:
1334 page_frag_free(c->rsp_pdu);
1335 out_free_cmd:
1336 page_frag_free(c->cmd_pdu);
1337 return -ENOMEM;
1338 }
1339
nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)1340 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1341 {
1342 page_frag_free(c->r2t_pdu);
1343 page_frag_free(c->data_pdu);
1344 page_frag_free(c->rsp_pdu);
1345 page_frag_free(c->cmd_pdu);
1346 }
1347
nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)1348 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1349 {
1350 struct nvmet_tcp_cmd *cmds;
1351 int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1352
1353 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1354 if (!cmds)
1355 goto out;
1356
1357 for (i = 0; i < nr_cmds; i++) {
1358 ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1359 if (ret)
1360 goto out_free;
1361 }
1362
1363 queue->cmds = cmds;
1364
1365 return 0;
1366 out_free:
1367 while (--i >= 0)
1368 nvmet_tcp_free_cmd(cmds + i);
1369 kfree(cmds);
1370 out:
1371 return ret;
1372 }
1373
nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)1374 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1375 {
1376 struct nvmet_tcp_cmd *cmds = queue->cmds;
1377 int i;
1378
1379 for (i = 0; i < queue->nr_cmds; i++)
1380 nvmet_tcp_free_cmd(cmds + i);
1381
1382 nvmet_tcp_free_cmd(&queue->connect);
1383 kfree(cmds);
1384 }
1385
nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)1386 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1387 {
1388 struct socket *sock = queue->sock;
1389
1390 write_lock_bh(&sock->sk->sk_callback_lock);
1391 sock->sk->sk_data_ready = queue->data_ready;
1392 sock->sk->sk_state_change = queue->state_change;
1393 sock->sk->sk_write_space = queue->write_space;
1394 sock->sk->sk_user_data = NULL;
1395 write_unlock_bh(&sock->sk->sk_callback_lock);
1396 }
1397
nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd)1398 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd)
1399 {
1400 nvmet_req_uninit(&cmd->req);
1401 nvmet_tcp_unmap_pdu_iovec(cmd);
1402 kfree(cmd->iov);
1403 sgl_free(cmd->req.sg);
1404 }
1405
nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)1406 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1407 {
1408 struct nvmet_tcp_cmd *cmd = queue->cmds;
1409 int i;
1410
1411 for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1412 if (nvmet_tcp_need_data_in(cmd))
1413 nvmet_tcp_finish_cmd(cmd);
1414 }
1415
1416 if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1417 /* failed in connect */
1418 nvmet_tcp_finish_cmd(&queue->connect);
1419 }
1420 }
1421
nvmet_tcp_release_queue_work(struct work_struct *w)1422 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1423 {
1424 struct page *page;
1425 struct nvmet_tcp_queue *queue =
1426 container_of(w, struct nvmet_tcp_queue, release_work);
1427
1428 mutex_lock(&nvmet_tcp_queue_mutex);
1429 list_del_init(&queue->queue_list);
1430 mutex_unlock(&nvmet_tcp_queue_mutex);
1431
1432 nvmet_tcp_restore_socket_callbacks(queue);
1433 flush_work(&queue->io_work);
1434
1435 nvmet_tcp_uninit_data_in_cmds(queue);
1436 nvmet_sq_destroy(&queue->nvme_sq);
1437 cancel_work_sync(&queue->io_work);
1438 sock_release(queue->sock);
1439 nvmet_tcp_free_cmds(queue);
1440 if (queue->hdr_digest || queue->data_digest)
1441 nvmet_tcp_free_crypto(queue);
1442 ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx);
1443
1444 page = virt_to_head_page(queue->pf_cache.va);
1445 __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1446 kfree(queue);
1447 }
1448
nvmet_tcp_data_ready(struct sock *sk)1449 static void nvmet_tcp_data_ready(struct sock *sk)
1450 {
1451 struct nvmet_tcp_queue *queue;
1452
1453 read_lock_bh(&sk->sk_callback_lock);
1454 queue = sk->sk_user_data;
1455 if (likely(queue))
1456 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1457 read_unlock_bh(&sk->sk_callback_lock);
1458 }
1459
nvmet_tcp_write_space(struct sock *sk)1460 static void nvmet_tcp_write_space(struct sock *sk)
1461 {
1462 struct nvmet_tcp_queue *queue;
1463
1464 read_lock_bh(&sk->sk_callback_lock);
1465 queue = sk->sk_user_data;
1466 if (unlikely(!queue))
1467 goto out;
1468
1469 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1470 queue->write_space(sk);
1471 goto out;
1472 }
1473
1474 if (sk_stream_is_writeable(sk)) {
1475 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1476 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1477 }
1478 out:
1479 read_unlock_bh(&sk->sk_callback_lock);
1480 }
1481
nvmet_tcp_state_change(struct sock *sk)1482 static void nvmet_tcp_state_change(struct sock *sk)
1483 {
1484 struct nvmet_tcp_queue *queue;
1485
1486 read_lock_bh(&sk->sk_callback_lock);
1487 queue = sk->sk_user_data;
1488 if (!queue)
1489 goto done;
1490
1491 switch (sk->sk_state) {
1492 case TCP_FIN_WAIT2:
1493 case TCP_LAST_ACK:
1494 break;
1495 case TCP_FIN_WAIT1:
1496 case TCP_CLOSE_WAIT:
1497 case TCP_CLOSE:
1498 /* FALLTHRU */
1499 nvmet_tcp_schedule_release_queue(queue);
1500 break;
1501 default:
1502 pr_warn("queue %d unhandled state %d\n",
1503 queue->idx, sk->sk_state);
1504 }
1505 done:
1506 read_unlock_bh(&sk->sk_callback_lock);
1507 }
1508
nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)1509 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1510 {
1511 struct socket *sock = queue->sock;
1512 struct inet_sock *inet = inet_sk(sock->sk);
1513 int ret;
1514
1515 ret = kernel_getsockname(sock,
1516 (struct sockaddr *)&queue->sockaddr);
1517 if (ret < 0)
1518 return ret;
1519
1520 ret = kernel_getpeername(sock,
1521 (struct sockaddr *)&queue->sockaddr_peer);
1522 if (ret < 0)
1523 return ret;
1524
1525 /*
1526 * Cleanup whatever is sitting in the TCP transmit queue on socket
1527 * close. This is done to prevent stale data from being sent should
1528 * the network connection be restored before TCP times out.
1529 */
1530 sock_no_linger(sock->sk);
1531
1532 if (so_priority > 0)
1533 sock_set_priority(sock->sk, so_priority);
1534
1535 /* Set socket type of service */
1536 if (inet->rcv_tos > 0)
1537 ip_sock_set_tos(sock->sk, inet->rcv_tos);
1538
1539 ret = 0;
1540 write_lock_bh(&sock->sk->sk_callback_lock);
1541 if (sock->sk->sk_state != TCP_ESTABLISHED) {
1542 /*
1543 * If the socket is already closing, don't even start
1544 * consuming it
1545 */
1546 ret = -ENOTCONN;
1547 } else {
1548 sock->sk->sk_user_data = queue;
1549 queue->data_ready = sock->sk->sk_data_ready;
1550 sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1551 queue->state_change = sock->sk->sk_state_change;
1552 sock->sk->sk_state_change = nvmet_tcp_state_change;
1553 queue->write_space = sock->sk->sk_write_space;
1554 sock->sk->sk_write_space = nvmet_tcp_write_space;
1555 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1556 }
1557 write_unlock_bh(&sock->sk->sk_callback_lock);
1558
1559 return ret;
1560 }
1561
nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port, struct socket *newsock)1562 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1563 struct socket *newsock)
1564 {
1565 struct nvmet_tcp_queue *queue;
1566 int ret;
1567
1568 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1569 if (!queue)
1570 return -ENOMEM;
1571
1572 INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1573 INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1574 queue->sock = newsock;
1575 queue->port = port;
1576 queue->nr_cmds = 0;
1577 spin_lock_init(&queue->state_lock);
1578 queue->state = NVMET_TCP_Q_CONNECTING;
1579 INIT_LIST_HEAD(&queue->free_list);
1580 init_llist_head(&queue->resp_list);
1581 INIT_LIST_HEAD(&queue->resp_send_list);
1582
1583 queue->idx = ida_simple_get(&nvmet_tcp_queue_ida, 0, 0, GFP_KERNEL);
1584 if (queue->idx < 0) {
1585 ret = queue->idx;
1586 goto out_free_queue;
1587 }
1588
1589 ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1590 if (ret)
1591 goto out_ida_remove;
1592
1593 ret = nvmet_sq_init(&queue->nvme_sq);
1594 if (ret)
1595 goto out_free_connect;
1596
1597 nvmet_prepare_receive_pdu(queue);
1598
1599 mutex_lock(&nvmet_tcp_queue_mutex);
1600 list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1601 mutex_unlock(&nvmet_tcp_queue_mutex);
1602
1603 ret = nvmet_tcp_set_queue_sock(queue);
1604 if (ret)
1605 goto out_destroy_sq;
1606
1607 return 0;
1608 out_destroy_sq:
1609 mutex_lock(&nvmet_tcp_queue_mutex);
1610 list_del_init(&queue->queue_list);
1611 mutex_unlock(&nvmet_tcp_queue_mutex);
1612 nvmet_sq_destroy(&queue->nvme_sq);
1613 out_free_connect:
1614 nvmet_tcp_free_cmd(&queue->connect);
1615 out_ida_remove:
1616 ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx);
1617 out_free_queue:
1618 kfree(queue);
1619 return ret;
1620 }
1621
nvmet_tcp_accept_work(struct work_struct *w)1622 static void nvmet_tcp_accept_work(struct work_struct *w)
1623 {
1624 struct nvmet_tcp_port *port =
1625 container_of(w, struct nvmet_tcp_port, accept_work);
1626 struct socket *newsock;
1627 int ret;
1628
1629 while (true) {
1630 ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1631 if (ret < 0) {
1632 if (ret != -EAGAIN)
1633 pr_warn("failed to accept err=%d\n", ret);
1634 return;
1635 }
1636 ret = nvmet_tcp_alloc_queue(port, newsock);
1637 if (ret) {
1638 pr_err("failed to allocate queue\n");
1639 sock_release(newsock);
1640 }
1641 }
1642 }
1643
nvmet_tcp_listen_data_ready(struct sock *sk)1644 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1645 {
1646 struct nvmet_tcp_port *port;
1647
1648 read_lock_bh(&sk->sk_callback_lock);
1649 port = sk->sk_user_data;
1650 if (!port)
1651 goto out;
1652
1653 if (sk->sk_state == TCP_LISTEN)
1654 schedule_work(&port->accept_work);
1655 out:
1656 read_unlock_bh(&sk->sk_callback_lock);
1657 }
1658
nvmet_tcp_add_port(struct nvmet_port *nport)1659 static int nvmet_tcp_add_port(struct nvmet_port *nport)
1660 {
1661 struct nvmet_tcp_port *port;
1662 __kernel_sa_family_t af;
1663 int ret;
1664
1665 port = kzalloc(sizeof(*port), GFP_KERNEL);
1666 if (!port)
1667 return -ENOMEM;
1668
1669 switch (nport->disc_addr.adrfam) {
1670 case NVMF_ADDR_FAMILY_IP4:
1671 af = AF_INET;
1672 break;
1673 case NVMF_ADDR_FAMILY_IP6:
1674 af = AF_INET6;
1675 break;
1676 default:
1677 pr_err("address family %d not supported\n",
1678 nport->disc_addr.adrfam);
1679 ret = -EINVAL;
1680 goto err_port;
1681 }
1682
1683 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1684 nport->disc_addr.trsvcid, &port->addr);
1685 if (ret) {
1686 pr_err("malformed ip/port passed: %s:%s\n",
1687 nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1688 goto err_port;
1689 }
1690
1691 port->nport = nport;
1692 INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
1693 if (port->nport->inline_data_size < 0)
1694 port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
1695
1696 ret = sock_create(port->addr.ss_family, SOCK_STREAM,
1697 IPPROTO_TCP, &port->sock);
1698 if (ret) {
1699 pr_err("failed to create a socket\n");
1700 goto err_port;
1701 }
1702
1703 port->sock->sk->sk_user_data = port;
1704 port->data_ready = port->sock->sk->sk_data_ready;
1705 port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
1706 sock_set_reuseaddr(port->sock->sk);
1707 tcp_sock_set_nodelay(port->sock->sk);
1708 if (so_priority > 0)
1709 sock_set_priority(port->sock->sk, so_priority);
1710
1711 ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
1712 sizeof(port->addr));
1713 if (ret) {
1714 pr_err("failed to bind port socket %d\n", ret);
1715 goto err_sock;
1716 }
1717
1718 ret = kernel_listen(port->sock, 128);
1719 if (ret) {
1720 pr_err("failed to listen %d on port sock\n", ret);
1721 goto err_sock;
1722 }
1723
1724 nport->priv = port;
1725 pr_info("enabling port %d (%pISpc)\n",
1726 le16_to_cpu(nport->disc_addr.portid), &port->addr);
1727
1728 return 0;
1729
1730 err_sock:
1731 sock_release(port->sock);
1732 err_port:
1733 kfree(port);
1734 return ret;
1735 }
1736
nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port)1737 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port)
1738 {
1739 struct nvmet_tcp_queue *queue;
1740
1741 mutex_lock(&nvmet_tcp_queue_mutex);
1742 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1743 if (queue->port == port)
1744 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1745 mutex_unlock(&nvmet_tcp_queue_mutex);
1746 }
1747
nvmet_tcp_remove_port(struct nvmet_port *nport)1748 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
1749 {
1750 struct nvmet_tcp_port *port = nport->priv;
1751
1752 write_lock_bh(&port->sock->sk->sk_callback_lock);
1753 port->sock->sk->sk_data_ready = port->data_ready;
1754 port->sock->sk->sk_user_data = NULL;
1755 write_unlock_bh(&port->sock->sk->sk_callback_lock);
1756 cancel_work_sync(&port->accept_work);
1757 /*
1758 * Destroy the remaining queues, which are not belong to any
1759 * controller yet.
1760 */
1761 nvmet_tcp_destroy_port_queues(port);
1762
1763 sock_release(port->sock);
1764 kfree(port);
1765 }
1766
nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)1767 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
1768 {
1769 struct nvmet_tcp_queue *queue;
1770
1771 mutex_lock(&nvmet_tcp_queue_mutex);
1772 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1773 if (queue->nvme_sq.ctrl == ctrl)
1774 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1775 mutex_unlock(&nvmet_tcp_queue_mutex);
1776 }
1777
nvmet_tcp_install_queue(struct nvmet_sq *sq)1778 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
1779 {
1780 struct nvmet_tcp_queue *queue =
1781 container_of(sq, struct nvmet_tcp_queue, nvme_sq);
1782
1783 if (sq->qid == 0) {
1784 /* Let inflight controller teardown complete */
1785 flush_scheduled_work();
1786 }
1787
1788 queue->nr_cmds = sq->size * 2;
1789 if (nvmet_tcp_alloc_cmds(queue)) {
1790 queue->nr_cmds = 0;
1791 return NVME_SC_INTERNAL;
1792 }
1793 return 0;
1794 }
1795
nvmet_tcp_disc_port_addr(struct nvmet_req *req, struct nvmet_port *nport, char *traddr)1796 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
1797 struct nvmet_port *nport, char *traddr)
1798 {
1799 struct nvmet_tcp_port *port = nport->priv;
1800
1801 if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
1802 struct nvmet_tcp_cmd *cmd =
1803 container_of(req, struct nvmet_tcp_cmd, req);
1804 struct nvmet_tcp_queue *queue = cmd->queue;
1805
1806 sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
1807 } else {
1808 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1809 }
1810 }
1811
1812 static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
1813 .owner = THIS_MODULE,
1814 .type = NVMF_TRTYPE_TCP,
1815 .msdbd = 1,
1816 .add_port = nvmet_tcp_add_port,
1817 .remove_port = nvmet_tcp_remove_port,
1818 .queue_response = nvmet_tcp_queue_response,
1819 .delete_ctrl = nvmet_tcp_delete_ctrl,
1820 .install_queue = nvmet_tcp_install_queue,
1821 .disc_traddr = nvmet_tcp_disc_port_addr,
1822 };
1823
nvmet_tcp_init(void)1824 static int __init nvmet_tcp_init(void)
1825 {
1826 int ret;
1827
1828 nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq",
1829 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1830 if (!nvmet_tcp_wq)
1831 return -ENOMEM;
1832
1833 ret = nvmet_register_transport(&nvmet_tcp_ops);
1834 if (ret)
1835 goto err;
1836
1837 return 0;
1838 err:
1839 destroy_workqueue(nvmet_tcp_wq);
1840 return ret;
1841 }
1842
nvmet_tcp_exit(void)1843 static void __exit nvmet_tcp_exit(void)
1844 {
1845 struct nvmet_tcp_queue *queue;
1846
1847 nvmet_unregister_transport(&nvmet_tcp_ops);
1848
1849 flush_scheduled_work();
1850 mutex_lock(&nvmet_tcp_queue_mutex);
1851 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1852 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1853 mutex_unlock(&nvmet_tcp_queue_mutex);
1854 flush_scheduled_work();
1855
1856 destroy_workqueue(nvmet_tcp_wq);
1857 }
1858
1859 module_init(nvmet_tcp_init);
1860 module_exit(nvmet_tcp_exit);
1861
1862 MODULE_LICENSE("GPL v2");
1863 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */
1864