1// SPDX-License-Identifier: GPL-2.0 2/* 3 * NVMe over Fabrics RDMA host code. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7#include <linux/module.h> 8#include <linux/init.h> 9#include <linux/slab.h> 10#include <rdma/mr_pool.h> 11#include <linux/err.h> 12#include <linux/string.h> 13#include <linux/atomic.h> 14#include <linux/blk-mq.h> 15#include <linux/blk-mq-rdma.h> 16#include <linux/types.h> 17#include <linux/list.h> 18#include <linux/mutex.h> 19#include <linux/scatterlist.h> 20#include <linux/nvme.h> 21#include <asm/unaligned.h> 22 23#include <rdma/ib_verbs.h> 24#include <rdma/rdma_cm.h> 25#include <linux/nvme-rdma.h> 26 27#include "nvme.h" 28#include "fabrics.h" 29 30 31#define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */ 32 33#define NVME_RDMA_MAX_SEGMENTS 256 34 35#define NVME_RDMA_MAX_INLINE_SEGMENTS 4 36 37#define NVME_RDMA_DATA_SGL_SIZE \ 38 (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT) 39#define NVME_RDMA_METADATA_SGL_SIZE \ 40 (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT) 41 42struct nvme_rdma_device { 43 struct ib_device *dev; 44 struct ib_pd *pd; 45 struct kref ref; 46 struct list_head entry; 47 unsigned int num_inline_segments; 48}; 49 50struct nvme_rdma_qe { 51 struct ib_cqe cqe; 52 void *data; 53 u64 dma; 54}; 55 56struct nvme_rdma_sgl { 57 int nents; 58 struct sg_table sg_table; 59}; 60 61struct nvme_rdma_queue; 62struct nvme_rdma_request { 63 struct nvme_request req; 64 struct ib_mr *mr; 65 struct nvme_rdma_qe sqe; 66 union nvme_result result; 67 __le16 status; 68 refcount_t ref; 69 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 70 u32 num_sge; 71 struct ib_reg_wr reg_wr; 72 struct ib_cqe reg_cqe; 73 struct nvme_rdma_queue *queue; 74 struct nvme_rdma_sgl data_sgl; 75 struct nvme_rdma_sgl *metadata_sgl; 76 bool use_sig_mr; 77}; 78 79enum nvme_rdma_queue_flags { 80 NVME_RDMA_Q_ALLOCATED = 0, 81 NVME_RDMA_Q_LIVE = 1, 82 NVME_RDMA_Q_TR_READY = 2, 83}; 84 85struct nvme_rdma_queue { 86 struct nvme_rdma_qe *rsp_ring; 87 int queue_size; 88 size_t cmnd_capsule_len; 89 struct nvme_rdma_ctrl *ctrl; 90 struct nvme_rdma_device *device; 91 struct ib_cq *ib_cq; 92 struct ib_qp *qp; 93 94 unsigned long flags; 95 struct rdma_cm_id *cm_id; 96 int cm_error; 97 struct completion cm_done; 98 bool pi_support; 99 int cq_size; 100 struct mutex queue_lock; 101}; 102 103struct nvme_rdma_ctrl { 104 /* read only in the hot path */ 105 struct nvme_rdma_queue *queues; 106 107 /* other member variables */ 108 struct blk_mq_tag_set tag_set; 109 struct work_struct err_work; 110 111 struct nvme_rdma_qe async_event_sqe; 112 113 struct delayed_work reconnect_work; 114 115 struct list_head list; 116 117 struct blk_mq_tag_set admin_tag_set; 118 struct nvme_rdma_device *device; 119 120 u32 max_fr_pages; 121 122 struct sockaddr_storage addr; 123 struct sockaddr_storage src_addr; 124 125 struct nvme_ctrl ctrl; 126 bool use_inline_data; 127 u32 io_queues[HCTX_MAX_TYPES]; 128}; 129 130static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 131{ 132 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 133} 134 135static LIST_HEAD(device_list); 136static DEFINE_MUTEX(device_list_mutex); 137 138static LIST_HEAD(nvme_rdma_ctrl_list); 139static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 140 141/* 142 * Disabling this option makes small I/O goes faster, but is fundamentally 143 * unsafe. With it turned off we will have to register a global rkey that 144 * allows read and write access to all physical memory. 145 */ 146static bool register_always = true; 147module_param(register_always, bool, 0444); 148MODULE_PARM_DESC(register_always, 149 "Use memory registration even for contiguous memory regions"); 150 151static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 152 struct rdma_cm_event *event); 153static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 154static void nvme_rdma_complete_rq(struct request *rq); 155 156static const struct blk_mq_ops nvme_rdma_mq_ops; 157static const struct blk_mq_ops nvme_rdma_admin_mq_ops; 158 159static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 160{ 161 return queue - queue->ctrl->queues; 162} 163 164static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue) 165{ 166 return nvme_rdma_queue_idx(queue) > 167 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] + 168 queue->ctrl->io_queues[HCTX_TYPE_READ]; 169} 170 171static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 172{ 173 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 174} 175 176static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 177 size_t capsule_size, enum dma_data_direction dir) 178{ 179 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 180 kfree(qe->data); 181} 182 183static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 184 size_t capsule_size, enum dma_data_direction dir) 185{ 186 qe->data = kzalloc(capsule_size, GFP_KERNEL); 187 if (!qe->data) 188 return -ENOMEM; 189 190 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 191 if (ib_dma_mapping_error(ibdev, qe->dma)) { 192 kfree(qe->data); 193 qe->data = NULL; 194 return -ENOMEM; 195 } 196 197 return 0; 198} 199 200static void nvme_rdma_free_ring(struct ib_device *ibdev, 201 struct nvme_rdma_qe *ring, size_t ib_queue_size, 202 size_t capsule_size, enum dma_data_direction dir) 203{ 204 int i; 205 206 for (i = 0; i < ib_queue_size; i++) 207 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 208 kfree(ring); 209} 210 211static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 212 size_t ib_queue_size, size_t capsule_size, 213 enum dma_data_direction dir) 214{ 215 struct nvme_rdma_qe *ring; 216 int i; 217 218 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 219 if (!ring) 220 return NULL; 221 222 /* 223 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue 224 * lifetime. It's safe, since any chage in the underlying RDMA device 225 * will issue error recovery and queue re-creation. 226 */ 227 for (i = 0; i < ib_queue_size; i++) { 228 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 229 goto out_free_ring; 230 } 231 232 return ring; 233 234out_free_ring: 235 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 236 return NULL; 237} 238 239static void nvme_rdma_qp_event(struct ib_event *event, void *context) 240{ 241 pr_debug("QP event %s (%d)\n", 242 ib_event_msg(event->event), event->event); 243 244} 245 246static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 247{ 248 int ret; 249 250 ret = wait_for_completion_interruptible_timeout(&queue->cm_done, 251 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 252 if (ret < 0) 253 return ret; 254 if (ret == 0) 255 return -ETIMEDOUT; 256 WARN_ON_ONCE(queue->cm_error > 0); 257 return queue->cm_error; 258} 259 260static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 261{ 262 struct nvme_rdma_device *dev = queue->device; 263 struct ib_qp_init_attr init_attr; 264 int ret; 265 266 memset(&init_attr, 0, sizeof(init_attr)); 267 init_attr.event_handler = nvme_rdma_qp_event; 268 /* +1 for drain */ 269 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 270 /* +1 for drain */ 271 init_attr.cap.max_recv_wr = queue->queue_size + 1; 272 init_attr.cap.max_recv_sge = 1; 273 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments; 274 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 275 init_attr.qp_type = IB_QPT_RC; 276 init_attr.send_cq = queue->ib_cq; 277 init_attr.recv_cq = queue->ib_cq; 278 if (queue->pi_support) 279 init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN; 280 init_attr.qp_context = queue; 281 282 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 283 284 queue->qp = queue->cm_id->qp; 285 return ret; 286} 287 288static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 289 struct request *rq, unsigned int hctx_idx) 290{ 291 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 292 293 kfree(req->sqe.data); 294} 295 296static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 297 struct request *rq, unsigned int hctx_idx, 298 unsigned int numa_node) 299{ 300 struct nvme_rdma_ctrl *ctrl = set->driver_data; 301 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 302 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 303 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 304 305 nvme_req(rq)->ctrl = &ctrl->ctrl; 306 req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL); 307 if (!req->sqe.data) 308 return -ENOMEM; 309 310 /* metadata nvme_rdma_sgl struct is located after command's data SGL */ 311 if (queue->pi_support) 312 req->metadata_sgl = (void *)nvme_req(rq) + 313 sizeof(struct nvme_rdma_request) + 314 NVME_RDMA_DATA_SGL_SIZE; 315 316 req->queue = queue; 317 318 return 0; 319} 320 321static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 322 unsigned int hctx_idx) 323{ 324 struct nvme_rdma_ctrl *ctrl = data; 325 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 326 327 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 328 329 hctx->driver_data = queue; 330 return 0; 331} 332 333static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 334 unsigned int hctx_idx) 335{ 336 struct nvme_rdma_ctrl *ctrl = data; 337 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 338 339 BUG_ON(hctx_idx != 0); 340 341 hctx->driver_data = queue; 342 return 0; 343} 344 345static void nvme_rdma_free_dev(struct kref *ref) 346{ 347 struct nvme_rdma_device *ndev = 348 container_of(ref, struct nvme_rdma_device, ref); 349 350 mutex_lock(&device_list_mutex); 351 list_del(&ndev->entry); 352 mutex_unlock(&device_list_mutex); 353 354 ib_dealloc_pd(ndev->pd); 355 kfree(ndev); 356} 357 358static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 359{ 360 kref_put(&dev->ref, nvme_rdma_free_dev); 361} 362 363static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 364{ 365 return kref_get_unless_zero(&dev->ref); 366} 367 368static struct nvme_rdma_device * 369nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 370{ 371 struct nvme_rdma_device *ndev; 372 373 mutex_lock(&device_list_mutex); 374 list_for_each_entry(ndev, &device_list, entry) { 375 if (ndev->dev->node_guid == cm_id->device->node_guid && 376 nvme_rdma_dev_get(ndev)) 377 goto out_unlock; 378 } 379 380 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 381 if (!ndev) 382 goto out_err; 383 384 ndev->dev = cm_id->device; 385 kref_init(&ndev->ref); 386 387 ndev->pd = ib_alloc_pd(ndev->dev, 388 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 389 if (IS_ERR(ndev->pd)) 390 goto out_free_dev; 391 392 if (!(ndev->dev->attrs.device_cap_flags & 393 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 394 dev_err(&ndev->dev->dev, 395 "Memory registrations not supported.\n"); 396 goto out_free_pd; 397 } 398 399 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS, 400 ndev->dev->attrs.max_send_sge - 1); 401 list_add(&ndev->entry, &device_list); 402out_unlock: 403 mutex_unlock(&device_list_mutex); 404 return ndev; 405 406out_free_pd: 407 ib_dealloc_pd(ndev->pd); 408out_free_dev: 409 kfree(ndev); 410out_err: 411 mutex_unlock(&device_list_mutex); 412 return NULL; 413} 414 415static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue) 416{ 417 if (nvme_rdma_poll_queue(queue)) 418 ib_free_cq(queue->ib_cq); 419 else 420 ib_cq_pool_put(queue->ib_cq, queue->cq_size); 421} 422 423static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 424{ 425 struct nvme_rdma_device *dev; 426 struct ib_device *ibdev; 427 428 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags)) 429 return; 430 431 dev = queue->device; 432 ibdev = dev->dev; 433 434 if (queue->pi_support) 435 ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs); 436 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 437 438 /* 439 * The cm_id object might have been destroyed during RDMA connection 440 * establishment error flow to avoid getting other cma events, thus 441 * the destruction of the QP shouldn't use rdma_cm API. 442 */ 443 ib_destroy_qp(queue->qp); 444 nvme_rdma_free_cq(queue); 445 446 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 447 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 448 449 nvme_rdma_dev_put(dev); 450} 451 452static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support) 453{ 454 u32 max_page_list_len; 455 456 if (pi_support) 457 max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len; 458 else 459 max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len; 460 461 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1); 462} 463 464static int nvme_rdma_create_cq(struct ib_device *ibdev, 465 struct nvme_rdma_queue *queue) 466{ 467 int ret, comp_vector, idx = nvme_rdma_queue_idx(queue); 468 enum ib_poll_context poll_ctx; 469 470 /* 471 * Spread I/O queues completion vectors according their queue index. 472 * Admin queues can always go on completion vector 0. 473 */ 474 comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors; 475 476 /* Polling queues need direct cq polling context */ 477 if (nvme_rdma_poll_queue(queue)) { 478 poll_ctx = IB_POLL_DIRECT; 479 queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size, 480 comp_vector, poll_ctx); 481 } else { 482 poll_ctx = IB_POLL_SOFTIRQ; 483 queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size, 484 comp_vector, poll_ctx); 485 } 486 487 if (IS_ERR(queue->ib_cq)) { 488 ret = PTR_ERR(queue->ib_cq); 489 return ret; 490 } 491 492 return 0; 493} 494 495static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 496{ 497 struct ib_device *ibdev; 498 const int send_wr_factor = 3; /* MR, SEND, INV */ 499 const int cq_factor = send_wr_factor + 1; /* + RECV */ 500 int ret, pages_per_mr; 501 502 queue->device = nvme_rdma_find_get_device(queue->cm_id); 503 if (!queue->device) { 504 dev_err(queue->cm_id->device->dev.parent, 505 "no client data found!\n"); 506 return -ECONNREFUSED; 507 } 508 ibdev = queue->device->dev; 509 510 /* +1 for ib_stop_cq */ 511 queue->cq_size = cq_factor * queue->queue_size + 1; 512 513 ret = nvme_rdma_create_cq(ibdev, queue); 514 if (ret) 515 goto out_put_dev; 516 517 ret = nvme_rdma_create_qp(queue, send_wr_factor); 518 if (ret) 519 goto out_destroy_ib_cq; 520 521 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 522 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 523 if (!queue->rsp_ring) { 524 ret = -ENOMEM; 525 goto out_destroy_qp; 526 } 527 528 /* 529 * Currently we don't use SG_GAPS MR's so if the first entry is 530 * misaligned we'll end up using two entries for a single data page, 531 * so one additional entry is required. 532 */ 533 pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1; 534 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs, 535 queue->queue_size, 536 IB_MR_TYPE_MEM_REG, 537 pages_per_mr, 0); 538 if (ret) { 539 dev_err(queue->ctrl->ctrl.device, 540 "failed to initialize MR pool sized %d for QID %d\n", 541 queue->queue_size, nvme_rdma_queue_idx(queue)); 542 goto out_destroy_ring; 543 } 544 545 if (queue->pi_support) { 546 ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs, 547 queue->queue_size, IB_MR_TYPE_INTEGRITY, 548 pages_per_mr, pages_per_mr); 549 if (ret) { 550 dev_err(queue->ctrl->ctrl.device, 551 "failed to initialize PI MR pool sized %d for QID %d\n", 552 queue->queue_size, nvme_rdma_queue_idx(queue)); 553 goto out_destroy_mr_pool; 554 } 555 } 556 557 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags); 558 559 return 0; 560 561out_destroy_mr_pool: 562 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 563out_destroy_ring: 564 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 565 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 566out_destroy_qp: 567 rdma_destroy_qp(queue->cm_id); 568out_destroy_ib_cq: 569 nvme_rdma_free_cq(queue); 570out_put_dev: 571 nvme_rdma_dev_put(queue->device); 572 return ret; 573} 574 575static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, 576 int idx, size_t queue_size) 577{ 578 struct nvme_rdma_queue *queue; 579 struct sockaddr *src_addr = NULL; 580 int ret; 581 582 queue = &ctrl->queues[idx]; 583 mutex_init(&queue->queue_lock); 584 queue->ctrl = ctrl; 585 if (idx && ctrl->ctrl.max_integrity_segments) 586 queue->pi_support = true; 587 else 588 queue->pi_support = false; 589 init_completion(&queue->cm_done); 590 591 if (idx > 0) 592 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 593 else 594 queue->cmnd_capsule_len = sizeof(struct nvme_command); 595 596 queue->queue_size = queue_size; 597 598 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 599 RDMA_PS_TCP, IB_QPT_RC); 600 if (IS_ERR(queue->cm_id)) { 601 dev_info(ctrl->ctrl.device, 602 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 603 ret = PTR_ERR(queue->cm_id); 604 goto out_destroy_mutex; 605 } 606 607 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 608 src_addr = (struct sockaddr *)&ctrl->src_addr; 609 610 queue->cm_error = -ETIMEDOUT; 611 ret = rdma_resolve_addr(queue->cm_id, src_addr, 612 (struct sockaddr *)&ctrl->addr, 613 NVME_RDMA_CONNECT_TIMEOUT_MS); 614 if (ret) { 615 dev_info(ctrl->ctrl.device, 616 "rdma_resolve_addr failed (%d).\n", ret); 617 goto out_destroy_cm_id; 618 } 619 620 ret = nvme_rdma_wait_for_cm(queue); 621 if (ret) { 622 dev_info(ctrl->ctrl.device, 623 "rdma connection establishment failed (%d)\n", ret); 624 goto out_destroy_cm_id; 625 } 626 627 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags); 628 629 return 0; 630 631out_destroy_cm_id: 632 rdma_destroy_id(queue->cm_id); 633 nvme_rdma_destroy_queue_ib(queue); 634out_destroy_mutex: 635 mutex_destroy(&queue->queue_lock); 636 return ret; 637} 638 639static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 640{ 641 rdma_disconnect(queue->cm_id); 642 ib_drain_qp(queue->qp); 643} 644 645static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 646{ 647 if (!test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 648 return; 649 650 mutex_lock(&queue->queue_lock); 651 if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) 652 __nvme_rdma_stop_queue(queue); 653 mutex_unlock(&queue->queue_lock); 654} 655 656static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 657{ 658 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 659 return; 660 661 rdma_destroy_id(queue->cm_id); 662 nvme_rdma_destroy_queue_ib(queue); 663 mutex_destroy(&queue->queue_lock); 664} 665 666static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 667{ 668 int i; 669 670 for (i = 1; i < ctrl->ctrl.queue_count; i++) 671 nvme_rdma_free_queue(&ctrl->queues[i]); 672} 673 674static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) 675{ 676 int i; 677 678 for (i = 1; i < ctrl->ctrl.queue_count; i++) 679 nvme_rdma_stop_queue(&ctrl->queues[i]); 680} 681 682static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) 683{ 684 struct nvme_rdma_queue *queue = &ctrl->queues[idx]; 685 bool poll = nvme_rdma_poll_queue(queue); 686 int ret; 687 688 if (idx) 689 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll); 690 else 691 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 692 693 if (!ret) { 694 set_bit(NVME_RDMA_Q_LIVE, &queue->flags); 695 } else { 696 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 697 __nvme_rdma_stop_queue(queue); 698 dev_info(ctrl->ctrl.device, 699 "failed to connect queue: %d ret=%d\n", idx, ret); 700 } 701 return ret; 702} 703 704static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl) 705{ 706 int i, ret = 0; 707 708 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 709 ret = nvme_rdma_start_queue(ctrl, i); 710 if (ret) 711 goto out_stop_queues; 712 } 713 714 return 0; 715 716out_stop_queues: 717 for (i--; i >= 1; i--) 718 nvme_rdma_stop_queue(&ctrl->queues[i]); 719 return ret; 720} 721 722static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) 723{ 724 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 725 struct ib_device *ibdev = ctrl->device->dev; 726 unsigned int nr_io_queues, nr_default_queues; 727 unsigned int nr_read_queues, nr_poll_queues; 728 int i, ret; 729 730 nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors, 731 min(opts->nr_io_queues, num_online_cpus())); 732 nr_default_queues = min_t(unsigned int, ibdev->num_comp_vectors, 733 min(opts->nr_write_queues, num_online_cpus())); 734 nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus()); 735 nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues; 736 737 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 738 if (ret) 739 return ret; 740 741 if (nr_io_queues == 0) { 742 dev_err(ctrl->ctrl.device, 743 "unable to set any I/O queues\n"); 744 return -ENOMEM; 745 } 746 747 ctrl->ctrl.queue_count = nr_io_queues + 1; 748 dev_info(ctrl->ctrl.device, 749 "creating %d I/O queues.\n", nr_io_queues); 750 751 if (opts->nr_write_queues && nr_read_queues < nr_io_queues) { 752 /* 753 * separate read/write queues 754 * hand out dedicated default queues only after we have 755 * sufficient read queues. 756 */ 757 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues; 758 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 759 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 760 min(nr_default_queues, nr_io_queues); 761 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 762 } else { 763 /* 764 * shared read/write queues 765 * either no write queues were requested, or we don't have 766 * sufficient queue count to have dedicated default queues. 767 */ 768 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 769 min(nr_read_queues, nr_io_queues); 770 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 771 } 772 773 if (opts->nr_poll_queues && nr_io_queues) { 774 /* map dedicated poll queues only if we have queues left */ 775 ctrl->io_queues[HCTX_TYPE_POLL] = 776 min(nr_poll_queues, nr_io_queues); 777 } 778 779 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 780 ret = nvme_rdma_alloc_queue(ctrl, i, 781 ctrl->ctrl.sqsize + 1); 782 if (ret) 783 goto out_free_queues; 784 } 785 786 return 0; 787 788out_free_queues: 789 for (i--; i >= 1; i--) 790 nvme_rdma_free_queue(&ctrl->queues[i]); 791 792 return ret; 793} 794 795static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, 796 bool admin) 797{ 798 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 799 struct blk_mq_tag_set *set; 800 int ret; 801 802 if (admin) { 803 set = &ctrl->admin_tag_set; 804 memset(set, 0, sizeof(*set)); 805 set->ops = &nvme_rdma_admin_mq_ops; 806 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 807 set->reserved_tags = 2; /* connect + keep-alive */ 808 set->numa_node = nctrl->numa_node; 809 set->cmd_size = sizeof(struct nvme_rdma_request) + 810 NVME_RDMA_DATA_SGL_SIZE; 811 set->driver_data = ctrl; 812 set->nr_hw_queues = 1; 813 set->timeout = ADMIN_TIMEOUT; 814 set->flags = BLK_MQ_F_NO_SCHED; 815 } else { 816 set = &ctrl->tag_set; 817 memset(set, 0, sizeof(*set)); 818 set->ops = &nvme_rdma_mq_ops; 819 set->queue_depth = nctrl->sqsize + 1; 820 set->reserved_tags = 1; /* fabric connect */ 821 set->numa_node = nctrl->numa_node; 822 set->flags = BLK_MQ_F_SHOULD_MERGE; 823 set->cmd_size = sizeof(struct nvme_rdma_request) + 824 NVME_RDMA_DATA_SGL_SIZE; 825 if (nctrl->max_integrity_segments) 826 set->cmd_size += sizeof(struct nvme_rdma_sgl) + 827 NVME_RDMA_METADATA_SGL_SIZE; 828 set->driver_data = ctrl; 829 set->nr_hw_queues = nctrl->queue_count - 1; 830 set->timeout = NVME_IO_TIMEOUT; 831 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 832 } 833 834 ret = blk_mq_alloc_tag_set(set); 835 if (ret) 836 return ERR_PTR(ret); 837 838 return set; 839} 840 841static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, 842 bool remove) 843{ 844 if (remove) { 845 blk_cleanup_queue(ctrl->ctrl.admin_q); 846 blk_cleanup_queue(ctrl->ctrl.fabrics_q); 847 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset); 848 } 849 if (ctrl->async_event_sqe.data) { 850 cancel_work_sync(&ctrl->ctrl.async_event_work); 851 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 852 sizeof(struct nvme_command), DMA_TO_DEVICE); 853 ctrl->async_event_sqe.data = NULL; 854 } 855 nvme_rdma_free_queue(&ctrl->queues[0]); 856} 857 858static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, 859 bool new) 860{ 861 bool pi_capable = false; 862 int error; 863 864 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 865 if (error) 866 return error; 867 868 ctrl->device = ctrl->queues[0].device; 869 ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev); 870 871 /* T10-PI support */ 872 if (ctrl->device->dev->attrs.device_cap_flags & 873 IB_DEVICE_INTEGRITY_HANDOVER) 874 pi_capable = true; 875 876 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev, 877 pi_capable); 878 879 /* 880 * Bind the async event SQE DMA mapping to the admin queue lifetime. 881 * It's safe, since any chage in the underlying RDMA device will issue 882 * error recovery and queue re-creation. 883 */ 884 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe, 885 sizeof(struct nvme_command), DMA_TO_DEVICE); 886 if (error) 887 goto out_free_queue; 888 889 if (new) { 890 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true); 891 if (IS_ERR(ctrl->ctrl.admin_tagset)) { 892 error = PTR_ERR(ctrl->ctrl.admin_tagset); 893 goto out_free_async_qe; 894 } 895 896 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set); 897 if (IS_ERR(ctrl->ctrl.fabrics_q)) { 898 error = PTR_ERR(ctrl->ctrl.fabrics_q); 899 goto out_free_tagset; 900 } 901 902 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 903 if (IS_ERR(ctrl->ctrl.admin_q)) { 904 error = PTR_ERR(ctrl->ctrl.admin_q); 905 goto out_cleanup_fabrics_q; 906 } 907 } 908 909 error = nvme_rdma_start_queue(ctrl, 0); 910 if (error) 911 goto out_cleanup_queue; 912 913 error = nvme_enable_ctrl(&ctrl->ctrl); 914 if (error) 915 goto out_stop_queue; 916 917 ctrl->ctrl.max_segments = ctrl->max_fr_pages; 918 ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9); 919 if (pi_capable) 920 ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages; 921 else 922 ctrl->ctrl.max_integrity_segments = 0; 923 924 nvme_start_admin_queue(&ctrl->ctrl); 925 926 error = nvme_init_identify(&ctrl->ctrl); 927 if (error) 928 goto out_quiesce_queue; 929 930 return 0; 931 932out_quiesce_queue: 933 nvme_stop_admin_queue(&ctrl->ctrl); 934 blk_sync_queue(ctrl->ctrl.admin_q); 935out_stop_queue: 936 nvme_rdma_stop_queue(&ctrl->queues[0]); 937 nvme_cancel_admin_tagset(&ctrl->ctrl); 938out_cleanup_queue: 939 if (new) 940 blk_cleanup_queue(ctrl->ctrl.admin_q); 941out_cleanup_fabrics_q: 942 if (new) 943 blk_cleanup_queue(ctrl->ctrl.fabrics_q); 944out_free_tagset: 945 if (new) 946 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset); 947out_free_async_qe: 948 if (ctrl->async_event_sqe.data) { 949 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 950 sizeof(struct nvme_command), DMA_TO_DEVICE); 951 ctrl->async_event_sqe.data = NULL; 952 } 953out_free_queue: 954 nvme_rdma_free_queue(&ctrl->queues[0]); 955 return error; 956} 957 958static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, 959 bool remove) 960{ 961 if (remove) { 962 blk_cleanup_queue(ctrl->ctrl.connect_q); 963 blk_mq_free_tag_set(ctrl->ctrl.tagset); 964 } 965 nvme_rdma_free_io_queues(ctrl); 966} 967 968static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) 969{ 970 int ret; 971 972 ret = nvme_rdma_alloc_io_queues(ctrl); 973 if (ret) 974 return ret; 975 976 if (new) { 977 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false); 978 if (IS_ERR(ctrl->ctrl.tagset)) { 979 ret = PTR_ERR(ctrl->ctrl.tagset); 980 goto out_free_io_queues; 981 } 982 983 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 984 if (IS_ERR(ctrl->ctrl.connect_q)) { 985 ret = PTR_ERR(ctrl->ctrl.connect_q); 986 goto out_free_tag_set; 987 } 988 } 989 990 ret = nvme_rdma_start_io_queues(ctrl); 991 if (ret) 992 goto out_cleanup_connect_q; 993 994 if (!new) { 995 nvme_start_freeze(&ctrl->ctrl); 996 nvme_start_queues(&ctrl->ctrl); 997 if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) { 998 /* 999 * If we timed out waiting for freeze we are likely to 1000 * be stuck. Fail the controller initialization just 1001 * to be safe. 1002 */ 1003 ret = -ENODEV; 1004 nvme_unfreeze(&ctrl->ctrl); 1005 goto out_wait_freeze_timed_out; 1006 } 1007 blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset, 1008 ctrl->ctrl.queue_count - 1); 1009 nvme_unfreeze(&ctrl->ctrl); 1010 } 1011 1012 return 0; 1013 1014out_wait_freeze_timed_out: 1015 nvme_stop_queues(&ctrl->ctrl); 1016 nvme_sync_io_queues(&ctrl->ctrl); 1017 nvme_rdma_stop_io_queues(ctrl); 1018out_cleanup_connect_q: 1019 nvme_cancel_tagset(&ctrl->ctrl); 1020 if (new) 1021 blk_cleanup_queue(ctrl->ctrl.connect_q); 1022out_free_tag_set: 1023 if (new) 1024 blk_mq_free_tag_set(ctrl->ctrl.tagset); 1025out_free_io_queues: 1026 nvme_rdma_free_io_queues(ctrl); 1027 return ret; 1028} 1029 1030static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl, 1031 bool remove) 1032{ 1033 nvme_stop_admin_queue(&ctrl->ctrl); 1034 blk_sync_queue(ctrl->ctrl.admin_q); 1035 nvme_rdma_stop_queue(&ctrl->queues[0]); 1036 if (ctrl->ctrl.admin_tagset) { 1037 blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset, 1038 nvme_cancel_request, &ctrl->ctrl); 1039 blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset); 1040 } 1041 if (remove) 1042 nvme_start_admin_queue(&ctrl->ctrl); 1043 nvme_rdma_destroy_admin_queue(ctrl, remove); 1044} 1045 1046static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl, 1047 bool remove) 1048{ 1049 if (ctrl->ctrl.queue_count > 1) { 1050 nvme_stop_queues(&ctrl->ctrl); 1051 nvme_sync_io_queues(&ctrl->ctrl); 1052 nvme_rdma_stop_io_queues(ctrl); 1053 if (ctrl->ctrl.tagset) { 1054 blk_mq_tagset_busy_iter(ctrl->ctrl.tagset, 1055 nvme_cancel_request, &ctrl->ctrl); 1056 blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset); 1057 } 1058 if (remove) 1059 nvme_start_queues(&ctrl->ctrl); 1060 nvme_rdma_destroy_io_queues(ctrl, remove); 1061 } 1062} 1063 1064static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl) 1065{ 1066 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1067 1068 cancel_work_sync(&ctrl->err_work); 1069 cancel_delayed_work_sync(&ctrl->reconnect_work); 1070} 1071 1072static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 1073{ 1074 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1075 1076 if (list_empty(&ctrl->list)) 1077 goto free_ctrl; 1078 1079 mutex_lock(&nvme_rdma_ctrl_mutex); 1080 list_del(&ctrl->list); 1081 mutex_unlock(&nvme_rdma_ctrl_mutex); 1082 1083 nvmf_free_options(nctrl->opts); 1084free_ctrl: 1085 kfree(ctrl->queues); 1086 kfree(ctrl); 1087} 1088 1089static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 1090{ 1091 /* If we are resetting/deleting then do nothing */ 1092 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) { 1093 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 1094 ctrl->ctrl.state == NVME_CTRL_LIVE); 1095 return; 1096 } 1097 1098 if (nvmf_should_reconnect(&ctrl->ctrl)) { 1099 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 1100 ctrl->ctrl.opts->reconnect_delay); 1101 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 1102 ctrl->ctrl.opts->reconnect_delay * HZ); 1103 } else { 1104 nvme_delete_ctrl(&ctrl->ctrl); 1105 } 1106} 1107 1108static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new) 1109{ 1110 int ret = -EINVAL; 1111 bool changed; 1112 1113 ret = nvme_rdma_configure_admin_queue(ctrl, new); 1114 if (ret) 1115 return ret; 1116 1117 if (ctrl->ctrl.icdoff) { 1118 ret = -EOPNOTSUPP; 1119 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1120 goto destroy_admin; 1121 } 1122 1123 if (!(ctrl->ctrl.sgls & (1 << 2))) { 1124 ret = -EOPNOTSUPP; 1125 dev_err(ctrl->ctrl.device, 1126 "Mandatory keyed sgls are not supported!\n"); 1127 goto destroy_admin; 1128 } 1129 1130 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) { 1131 dev_warn(ctrl->ctrl.device, 1132 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1133 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1); 1134 } 1135 1136 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) { 1137 dev_warn(ctrl->ctrl.device, 1138 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1139 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd); 1140 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1; 1141 } 1142 1143 if (ctrl->ctrl.sgls & (1 << 20)) 1144 ctrl->use_inline_data = true; 1145 1146 if (ctrl->ctrl.queue_count > 1) { 1147 ret = nvme_rdma_configure_io_queues(ctrl, new); 1148 if (ret) 1149 goto destroy_admin; 1150 } 1151 1152 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1153 if (!changed) { 1154 /* 1155 * state change failure is ok if we started ctrl delete, 1156 * unless we're during creation of a new controller to 1157 * avoid races with teardown flow. 1158 */ 1159 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING && 1160 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO); 1161 WARN_ON_ONCE(new); 1162 ret = -EINVAL; 1163 goto destroy_io; 1164 } 1165 1166 nvme_start_ctrl(&ctrl->ctrl); 1167 return 0; 1168 1169destroy_io: 1170 if (ctrl->ctrl.queue_count > 1) { 1171 nvme_stop_queues(&ctrl->ctrl); 1172 nvme_sync_io_queues(&ctrl->ctrl); 1173 nvme_rdma_stop_io_queues(ctrl); 1174 nvme_cancel_tagset(&ctrl->ctrl); 1175 nvme_rdma_destroy_io_queues(ctrl, new); 1176 } 1177destroy_admin: 1178 nvme_stop_admin_queue(&ctrl->ctrl); 1179 blk_sync_queue(ctrl->ctrl.admin_q); 1180 nvme_rdma_stop_queue(&ctrl->queues[0]); 1181 nvme_cancel_admin_tagset(&ctrl->ctrl); 1182 nvme_rdma_destroy_admin_queue(ctrl, new); 1183 return ret; 1184} 1185 1186static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 1187{ 1188 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 1189 struct nvme_rdma_ctrl, reconnect_work); 1190 1191 ++ctrl->ctrl.nr_reconnects; 1192 1193 if (nvme_rdma_setup_ctrl(ctrl, false)) 1194 goto requeue; 1195 1196 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n", 1197 ctrl->ctrl.nr_reconnects); 1198 1199 ctrl->ctrl.nr_reconnects = 0; 1200 1201 return; 1202 1203requeue: 1204 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 1205 ctrl->ctrl.nr_reconnects); 1206 nvme_rdma_reconnect_or_remove(ctrl); 1207} 1208 1209static void nvme_rdma_error_recovery_work(struct work_struct *work) 1210{ 1211 struct nvme_rdma_ctrl *ctrl = container_of(work, 1212 struct nvme_rdma_ctrl, err_work); 1213 1214 nvme_stop_keep_alive(&ctrl->ctrl); 1215 flush_work(&ctrl->ctrl.async_event_work); 1216 nvme_rdma_teardown_io_queues(ctrl, false); 1217 nvme_start_queues(&ctrl->ctrl); 1218 nvme_rdma_teardown_admin_queue(ctrl, false); 1219 nvme_start_admin_queue(&ctrl->ctrl); 1220 1221 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1222 /* state change failure is ok if we started ctrl delete */ 1223 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING && 1224 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO); 1225 return; 1226 } 1227 1228 nvme_rdma_reconnect_or_remove(ctrl); 1229} 1230 1231static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 1232{ 1233 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 1234 return; 1235 1236 dev_warn(ctrl->ctrl.device, "starting error recovery\n"); 1237 queue_work(nvme_reset_wq, &ctrl->err_work); 1238} 1239 1240static void nvme_rdma_end_request(struct nvme_rdma_request *req) 1241{ 1242 struct request *rq = blk_mq_rq_from_pdu(req); 1243 1244 if (!refcount_dec_and_test(&req->ref)) 1245 return; 1246 if (!nvme_try_complete_req(rq, req->status, req->result)) 1247 nvme_rdma_complete_rq(rq); 1248} 1249 1250static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 1251 const char *op) 1252{ 1253 struct nvme_rdma_queue *queue = wc->qp->qp_context; 1254 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1255 1256 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 1257 dev_info(ctrl->ctrl.device, 1258 "%s for CQE 0x%p failed with status %s (%d)\n", 1259 op, wc->wr_cqe, 1260 ib_wc_status_msg(wc->status), wc->status); 1261 nvme_rdma_error_recovery(ctrl); 1262} 1263 1264static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 1265{ 1266 if (unlikely(wc->status != IB_WC_SUCCESS)) 1267 nvme_rdma_wr_error(cq, wc, "MEMREG"); 1268} 1269 1270static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1271{ 1272 struct nvme_rdma_request *req = 1273 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe); 1274 1275 if (unlikely(wc->status != IB_WC_SUCCESS)) 1276 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 1277 else 1278 nvme_rdma_end_request(req); 1279} 1280 1281static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 1282 struct nvme_rdma_request *req) 1283{ 1284 struct ib_send_wr wr = { 1285 .opcode = IB_WR_LOCAL_INV, 1286 .next = NULL, 1287 .num_sge = 0, 1288 .send_flags = IB_SEND_SIGNALED, 1289 .ex.invalidate_rkey = req->mr->rkey, 1290 }; 1291 1292 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 1293 wr.wr_cqe = &req->reg_cqe; 1294 1295 return ib_post_send(queue->qp, &wr, NULL); 1296} 1297 1298static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 1299 struct request *rq) 1300{ 1301 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1302 struct nvme_rdma_device *dev = queue->device; 1303 struct ib_device *ibdev = dev->dev; 1304 struct list_head *pool = &queue->qp->rdma_mrs; 1305 1306 if (!blk_rq_nr_phys_segments(rq)) 1307 return; 1308 1309 if (blk_integrity_rq(rq)) { 1310 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl, 1311 req->metadata_sgl->nents, rq_dma_dir(rq)); 1312 sg_free_table_chained(&req->metadata_sgl->sg_table, 1313 NVME_INLINE_METADATA_SG_CNT); 1314 } 1315 1316 if (req->use_sig_mr) 1317 pool = &queue->qp->sig_mrs; 1318 1319 if (req->mr) { 1320 ib_mr_pool_put(queue->qp, pool, req->mr); 1321 req->mr = NULL; 1322 } 1323 1324 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents, 1325 rq_dma_dir(rq)); 1326 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT); 1327} 1328 1329static int nvme_rdma_set_sg_null(struct nvme_command *c) 1330{ 1331 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1332 1333 sg->addr = 0; 1334 put_unaligned_le24(0, sg->length); 1335 put_unaligned_le32(0, sg->key); 1336 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1337 return 0; 1338} 1339 1340static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 1341 struct nvme_rdma_request *req, struct nvme_command *c, 1342 int count) 1343{ 1344 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1345 struct ib_sge *sge = &req->sge[1]; 1346 struct scatterlist *sgl; 1347 u32 len = 0; 1348 int i; 1349 1350 for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) { 1351 sge->addr = sg_dma_address(sgl); 1352 sge->length = sg_dma_len(sgl); 1353 sge->lkey = queue->device->pd->local_dma_lkey; 1354 len += sge->length; 1355 sge++; 1356 } 1357 1358 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1359 sg->length = cpu_to_le32(len); 1360 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1361 1362 req->num_sge += count; 1363 return 0; 1364} 1365 1366static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 1367 struct nvme_rdma_request *req, struct nvme_command *c) 1368{ 1369 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1370 1371 sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl)); 1372 put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length); 1373 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 1374 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1375 return 0; 1376} 1377 1378static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 1379 struct nvme_rdma_request *req, struct nvme_command *c, 1380 int count) 1381{ 1382 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1383 int nr; 1384 1385 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs); 1386 if (WARN_ON_ONCE(!req->mr)) 1387 return -EAGAIN; 1388 1389 /* 1390 * Align the MR to a 4K page size to match the ctrl page size and 1391 * the block virtual boundary. 1392 */ 1393 nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL, 1394 SZ_4K); 1395 if (unlikely(nr < count)) { 1396 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1397 req->mr = NULL; 1398 if (nr < 0) 1399 return nr; 1400 return -EINVAL; 1401 } 1402 1403 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1404 1405 req->reg_cqe.done = nvme_rdma_memreg_done; 1406 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 1407 req->reg_wr.wr.opcode = IB_WR_REG_MR; 1408 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 1409 req->reg_wr.wr.num_sge = 0; 1410 req->reg_wr.mr = req->mr; 1411 req->reg_wr.key = req->mr->rkey; 1412 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 1413 IB_ACCESS_REMOTE_READ | 1414 IB_ACCESS_REMOTE_WRITE; 1415 1416 sg->addr = cpu_to_le64(req->mr->iova); 1417 put_unaligned_le24(req->mr->length, sg->length); 1418 put_unaligned_le32(req->mr->rkey, sg->key); 1419 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 1420 NVME_SGL_FMT_INVALIDATE; 1421 1422 return 0; 1423} 1424 1425static void nvme_rdma_set_sig_domain(struct blk_integrity *bi, 1426 struct nvme_command *cmd, struct ib_sig_domain *domain, 1427 u16 control, u8 pi_type) 1428{ 1429 domain->sig_type = IB_SIG_TYPE_T10_DIF; 1430 domain->sig.dif.bg_type = IB_T10DIF_CRC; 1431 domain->sig.dif.pi_interval = 1 << bi->interval_exp; 1432 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag); 1433 if (control & NVME_RW_PRINFO_PRCHK_REF) 1434 domain->sig.dif.ref_remap = true; 1435 1436 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag); 1437 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask); 1438 domain->sig.dif.app_escape = true; 1439 if (pi_type == NVME_NS_DPS_PI_TYPE3) 1440 domain->sig.dif.ref_escape = true; 1441} 1442 1443static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi, 1444 struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs, 1445 u8 pi_type) 1446{ 1447 u16 control = le16_to_cpu(cmd->rw.control); 1448 1449 memset(sig_attrs, 0, sizeof(*sig_attrs)); 1450 if (control & NVME_RW_PRINFO_PRACT) { 1451 /* for WRITE_INSERT/READ_STRIP no memory domain */ 1452 sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE; 1453 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control, 1454 pi_type); 1455 /* Clear the PRACT bit since HCA will generate/verify the PI */ 1456 control &= ~NVME_RW_PRINFO_PRACT; 1457 cmd->rw.control = cpu_to_le16(control); 1458 } else { 1459 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */ 1460 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control, 1461 pi_type); 1462 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control, 1463 pi_type); 1464 } 1465} 1466 1467static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask) 1468{ 1469 *mask = 0; 1470 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF) 1471 *mask |= IB_SIG_CHECK_REFTAG; 1472 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD) 1473 *mask |= IB_SIG_CHECK_GUARD; 1474} 1475 1476static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc) 1477{ 1478 if (unlikely(wc->status != IB_WC_SUCCESS)) 1479 nvme_rdma_wr_error(cq, wc, "SIG"); 1480} 1481 1482static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue, 1483 struct nvme_rdma_request *req, struct nvme_command *c, 1484 int count, int pi_count) 1485{ 1486 struct nvme_rdma_sgl *sgl = &req->data_sgl; 1487 struct ib_reg_wr *wr = &req->reg_wr; 1488 struct request *rq = blk_mq_rq_from_pdu(req); 1489 struct nvme_ns *ns = rq->q->queuedata; 1490 struct bio *bio = rq->bio; 1491 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1492 int nr; 1493 1494 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs); 1495 if (WARN_ON_ONCE(!req->mr)) 1496 return -EAGAIN; 1497 1498 nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL, 1499 req->metadata_sgl->sg_table.sgl, pi_count, NULL, 1500 SZ_4K); 1501 if (unlikely(nr)) 1502 goto mr_put; 1503 1504 nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_disk), c, 1505 req->mr->sig_attrs, ns->pi_type); 1506 nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask); 1507 1508 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1509 1510 req->reg_cqe.done = nvme_rdma_sig_done; 1511 memset(wr, 0, sizeof(*wr)); 1512 wr->wr.opcode = IB_WR_REG_MR_INTEGRITY; 1513 wr->wr.wr_cqe = &req->reg_cqe; 1514 wr->wr.num_sge = 0; 1515 wr->wr.send_flags = 0; 1516 wr->mr = req->mr; 1517 wr->key = req->mr->rkey; 1518 wr->access = IB_ACCESS_LOCAL_WRITE | 1519 IB_ACCESS_REMOTE_READ | 1520 IB_ACCESS_REMOTE_WRITE; 1521 1522 sg->addr = cpu_to_le64(req->mr->iova); 1523 put_unaligned_le24(req->mr->length, sg->length); 1524 put_unaligned_le32(req->mr->rkey, sg->key); 1525 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1526 1527 return 0; 1528 1529mr_put: 1530 ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr); 1531 req->mr = NULL; 1532 if (nr < 0) 1533 return nr; 1534 return -EINVAL; 1535} 1536 1537static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 1538 struct request *rq, struct nvme_command *c) 1539{ 1540 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1541 struct nvme_rdma_device *dev = queue->device; 1542 struct ib_device *ibdev = dev->dev; 1543 int pi_count = 0; 1544 int count, ret; 1545 1546 req->num_sge = 1; 1547 refcount_set(&req->ref, 2); /* send and recv completions */ 1548 1549 c->common.flags |= NVME_CMD_SGL_METABUF; 1550 1551 if (!blk_rq_nr_phys_segments(rq)) 1552 return nvme_rdma_set_sg_null(c); 1553 1554 req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1); 1555 ret = sg_alloc_table_chained(&req->data_sgl.sg_table, 1556 blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl, 1557 NVME_INLINE_SG_CNT); 1558 if (ret) 1559 return -ENOMEM; 1560 1561 req->data_sgl.nents = blk_rq_map_sg(rq->q, rq, 1562 req->data_sgl.sg_table.sgl); 1563 1564 count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl, 1565 req->data_sgl.nents, rq_dma_dir(rq)); 1566 if (unlikely(count <= 0)) { 1567 ret = -EIO; 1568 goto out_free_table; 1569 } 1570 1571 if (blk_integrity_rq(rq)) { 1572 req->metadata_sgl->sg_table.sgl = 1573 (struct scatterlist *)(req->metadata_sgl + 1); 1574 ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table, 1575 blk_rq_count_integrity_sg(rq->q, rq->bio), 1576 req->metadata_sgl->sg_table.sgl, 1577 NVME_INLINE_METADATA_SG_CNT); 1578 if (unlikely(ret)) { 1579 ret = -ENOMEM; 1580 goto out_unmap_sg; 1581 } 1582 1583 req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q, 1584 rq->bio, req->metadata_sgl->sg_table.sgl); 1585 pi_count = ib_dma_map_sg(ibdev, 1586 req->metadata_sgl->sg_table.sgl, 1587 req->metadata_sgl->nents, 1588 rq_dma_dir(rq)); 1589 if (unlikely(pi_count <= 0)) { 1590 ret = -EIO; 1591 goto out_free_pi_table; 1592 } 1593 } 1594 1595 if (req->use_sig_mr) { 1596 ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count); 1597 goto out; 1598 } 1599 1600 if (count <= dev->num_inline_segments) { 1601 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1602 queue->ctrl->use_inline_data && 1603 blk_rq_payload_bytes(rq) <= 1604 nvme_rdma_inline_data_size(queue)) { 1605 ret = nvme_rdma_map_sg_inline(queue, req, c, count); 1606 goto out; 1607 } 1608 1609 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 1610 ret = nvme_rdma_map_sg_single(queue, req, c); 1611 goto out; 1612 } 1613 } 1614 1615 ret = nvme_rdma_map_sg_fr(queue, req, c, count); 1616out: 1617 if (unlikely(ret)) 1618 goto out_unmap_pi_sg; 1619 1620 return 0; 1621 1622out_unmap_pi_sg: 1623 if (blk_integrity_rq(rq)) 1624 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl, 1625 req->metadata_sgl->nents, rq_dma_dir(rq)); 1626out_free_pi_table: 1627 if (blk_integrity_rq(rq)) 1628 sg_free_table_chained(&req->metadata_sgl->sg_table, 1629 NVME_INLINE_METADATA_SG_CNT); 1630out_unmap_sg: 1631 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents, 1632 rq_dma_dir(rq)); 1633out_free_table: 1634 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT); 1635 return ret; 1636} 1637 1638static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1639{ 1640 struct nvme_rdma_qe *qe = 1641 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1642 struct nvme_rdma_request *req = 1643 container_of(qe, struct nvme_rdma_request, sqe); 1644 1645 if (unlikely(wc->status != IB_WC_SUCCESS)) 1646 nvme_rdma_wr_error(cq, wc, "SEND"); 1647 else 1648 nvme_rdma_end_request(req); 1649} 1650 1651static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1652 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1653 struct ib_send_wr *first) 1654{ 1655 struct ib_send_wr wr; 1656 int ret; 1657 1658 sge->addr = qe->dma; 1659 sge->length = sizeof(struct nvme_command); 1660 sge->lkey = queue->device->pd->local_dma_lkey; 1661 1662 wr.next = NULL; 1663 wr.wr_cqe = &qe->cqe; 1664 wr.sg_list = sge; 1665 wr.num_sge = num_sge; 1666 wr.opcode = IB_WR_SEND; 1667 wr.send_flags = IB_SEND_SIGNALED; 1668 1669 if (first) 1670 first->next = ≀ 1671 else 1672 first = ≀ 1673 1674 ret = ib_post_send(queue->qp, first, NULL); 1675 if (unlikely(ret)) { 1676 dev_err(queue->ctrl->ctrl.device, 1677 "%s failed with error code %d\n", __func__, ret); 1678 } 1679 return ret; 1680} 1681 1682static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1683 struct nvme_rdma_qe *qe) 1684{ 1685 struct ib_recv_wr wr; 1686 struct ib_sge list; 1687 int ret; 1688 1689 list.addr = qe->dma; 1690 list.length = sizeof(struct nvme_completion); 1691 list.lkey = queue->device->pd->local_dma_lkey; 1692 1693 qe->cqe.done = nvme_rdma_recv_done; 1694 1695 wr.next = NULL; 1696 wr.wr_cqe = &qe->cqe; 1697 wr.sg_list = &list; 1698 wr.num_sge = 1; 1699 1700 ret = ib_post_recv(queue->qp, &wr, NULL); 1701 if (unlikely(ret)) { 1702 dev_err(queue->ctrl->ctrl.device, 1703 "%s failed with error code %d\n", __func__, ret); 1704 } 1705 return ret; 1706} 1707 1708static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1709{ 1710 u32 queue_idx = nvme_rdma_queue_idx(queue); 1711 1712 if (queue_idx == 0) 1713 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1714 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1715} 1716 1717static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc) 1718{ 1719 if (unlikely(wc->status != IB_WC_SUCCESS)) 1720 nvme_rdma_wr_error(cq, wc, "ASYNC"); 1721} 1722 1723static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) 1724{ 1725 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1726 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1727 struct ib_device *dev = queue->device->dev; 1728 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1729 struct nvme_command *cmd = sqe->data; 1730 struct ib_sge sge; 1731 int ret; 1732 1733 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1734 1735 memset(cmd, 0, sizeof(*cmd)); 1736 cmd->common.opcode = nvme_admin_async_event; 1737 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1738 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1739 nvme_rdma_set_sg_null(cmd); 1740 1741 sqe->cqe.done = nvme_rdma_async_done; 1742 1743 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1744 DMA_TO_DEVICE); 1745 1746 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL); 1747 WARN_ON_ONCE(ret); 1748} 1749 1750static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1751 struct nvme_completion *cqe, struct ib_wc *wc) 1752{ 1753 struct request *rq; 1754 struct nvme_rdma_request *req; 1755 1756 rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id); 1757 if (!rq) { 1758 dev_err(queue->ctrl->ctrl.device, 1759 "got bad command_id %#x on QP %#x\n", 1760 cqe->command_id, queue->qp->qp_num); 1761 nvme_rdma_error_recovery(queue->ctrl); 1762 return; 1763 } 1764 req = blk_mq_rq_to_pdu(rq); 1765 1766 req->status = cqe->status; 1767 req->result = cqe->result; 1768 1769 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) { 1770 if (unlikely(!req->mr || 1771 wc->ex.invalidate_rkey != req->mr->rkey)) { 1772 dev_err(queue->ctrl->ctrl.device, 1773 "Bogus remote invalidation for rkey %#x\n", 1774 req->mr ? req->mr->rkey : 0); 1775 nvme_rdma_error_recovery(queue->ctrl); 1776 } 1777 } else if (req->mr) { 1778 int ret; 1779 1780 ret = nvme_rdma_inv_rkey(queue, req); 1781 if (unlikely(ret < 0)) { 1782 dev_err(queue->ctrl->ctrl.device, 1783 "Queueing INV WR for rkey %#x failed (%d)\n", 1784 req->mr->rkey, ret); 1785 nvme_rdma_error_recovery(queue->ctrl); 1786 } 1787 /* the local invalidation completion will end the request */ 1788 return; 1789 } 1790 1791 nvme_rdma_end_request(req); 1792} 1793 1794static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1795{ 1796 struct nvme_rdma_qe *qe = 1797 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1798 struct nvme_rdma_queue *queue = wc->qp->qp_context; 1799 struct ib_device *ibdev = queue->device->dev; 1800 struct nvme_completion *cqe = qe->data; 1801 const size_t len = sizeof(struct nvme_completion); 1802 1803 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1804 nvme_rdma_wr_error(cq, wc, "RECV"); 1805 return; 1806 } 1807 1808 /* sanity checking for received data length */ 1809 if (unlikely(wc->byte_len < len)) { 1810 dev_err(queue->ctrl->ctrl.device, 1811 "Unexpected nvme completion length(%d)\n", wc->byte_len); 1812 nvme_rdma_error_recovery(queue->ctrl); 1813 return; 1814 } 1815 1816 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1817 /* 1818 * AEN requests are special as they don't time out and can 1819 * survive any kind of queue freeze and often don't respond to 1820 * aborts. We don't even bother to allocate a struct request 1821 * for them but rather special case them here. 1822 */ 1823 if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue), 1824 cqe->command_id))) 1825 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1826 &cqe->result); 1827 else 1828 nvme_rdma_process_nvme_rsp(queue, cqe, wc); 1829 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1830 1831 nvme_rdma_post_recv(queue, qe); 1832} 1833 1834static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1835{ 1836 int ret, i; 1837 1838 for (i = 0; i < queue->queue_size; i++) { 1839 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1840 if (ret) 1841 return ret; 1842 } 1843 1844 return 0; 1845} 1846 1847static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1848 struct rdma_cm_event *ev) 1849{ 1850 struct rdma_cm_id *cm_id = queue->cm_id; 1851 int status = ev->status; 1852 const char *rej_msg; 1853 const struct nvme_rdma_cm_rej *rej_data; 1854 u8 rej_data_len; 1855 1856 rej_msg = rdma_reject_msg(cm_id, status); 1857 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1858 1859 if (rej_data && rej_data_len >= sizeof(u16)) { 1860 u16 sts = le16_to_cpu(rej_data->sts); 1861 1862 dev_err(queue->ctrl->ctrl.device, 1863 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1864 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1865 } else { 1866 dev_err(queue->ctrl->ctrl.device, 1867 "Connect rejected: status %d (%s).\n", status, rej_msg); 1868 } 1869 1870 return -ECONNRESET; 1871} 1872 1873static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1874{ 1875 struct nvme_ctrl *ctrl = &queue->ctrl->ctrl; 1876 int ret; 1877 1878 ret = nvme_rdma_create_queue_ib(queue); 1879 if (ret) 1880 return ret; 1881 1882 if (ctrl->opts->tos >= 0) 1883 rdma_set_service_type(queue->cm_id, ctrl->opts->tos); 1884 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1885 if (ret) { 1886 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n", 1887 queue->cm_error); 1888 goto out_destroy_queue; 1889 } 1890 1891 return 0; 1892 1893out_destroy_queue: 1894 nvme_rdma_destroy_queue_ib(queue); 1895 return ret; 1896} 1897 1898static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1899{ 1900 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1901 struct rdma_conn_param param = { }; 1902 struct nvme_rdma_cm_req priv = { }; 1903 int ret; 1904 1905 param.qp_num = queue->qp->qp_num; 1906 param.flow_control = 1; 1907 1908 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1909 /* maximum retry count */ 1910 param.retry_count = 7; 1911 param.rnr_retry_count = 7; 1912 param.private_data = &priv; 1913 param.private_data_len = sizeof(priv); 1914 1915 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1916 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1917 /* 1918 * set the admin queue depth to the minimum size 1919 * specified by the Fabrics standard. 1920 */ 1921 if (priv.qid == 0) { 1922 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1923 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1924 } else { 1925 /* 1926 * current interpretation of the fabrics spec 1927 * is at minimum you make hrqsize sqsize+1, or a 1928 * 1's based representation of sqsize. 1929 */ 1930 priv.hrqsize = cpu_to_le16(queue->queue_size); 1931 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1932 } 1933 1934 ret = rdma_connect_locked(queue->cm_id, ¶m); 1935 if (ret) { 1936 dev_err(ctrl->ctrl.device, 1937 "rdma_connect_locked failed (%d).\n", ret); 1938 return ret; 1939 } 1940 1941 return 0; 1942} 1943 1944static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1945 struct rdma_cm_event *ev) 1946{ 1947 struct nvme_rdma_queue *queue = cm_id->context; 1948 int cm_error = 0; 1949 1950 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1951 rdma_event_msg(ev->event), ev->event, 1952 ev->status, cm_id); 1953 1954 switch (ev->event) { 1955 case RDMA_CM_EVENT_ADDR_RESOLVED: 1956 cm_error = nvme_rdma_addr_resolved(queue); 1957 break; 1958 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1959 cm_error = nvme_rdma_route_resolved(queue); 1960 break; 1961 case RDMA_CM_EVENT_ESTABLISHED: 1962 queue->cm_error = nvme_rdma_conn_established(queue); 1963 /* complete cm_done regardless of success/failure */ 1964 complete(&queue->cm_done); 1965 return 0; 1966 case RDMA_CM_EVENT_REJECTED: 1967 cm_error = nvme_rdma_conn_rejected(queue, ev); 1968 break; 1969 case RDMA_CM_EVENT_ROUTE_ERROR: 1970 case RDMA_CM_EVENT_CONNECT_ERROR: 1971 case RDMA_CM_EVENT_UNREACHABLE: 1972 case RDMA_CM_EVENT_ADDR_ERROR: 1973 dev_dbg(queue->ctrl->ctrl.device, 1974 "CM error event %d\n", ev->event); 1975 cm_error = -ECONNRESET; 1976 break; 1977 case RDMA_CM_EVENT_DISCONNECTED: 1978 case RDMA_CM_EVENT_ADDR_CHANGE: 1979 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1980 dev_dbg(queue->ctrl->ctrl.device, 1981 "disconnect received - connection closed\n"); 1982 nvme_rdma_error_recovery(queue->ctrl); 1983 break; 1984 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1985 /* device removal is handled via the ib_client API */ 1986 break; 1987 default: 1988 dev_err(queue->ctrl->ctrl.device, 1989 "Unexpected RDMA CM event (%d)\n", ev->event); 1990 nvme_rdma_error_recovery(queue->ctrl); 1991 break; 1992 } 1993 1994 if (cm_error) { 1995 queue->cm_error = cm_error; 1996 complete(&queue->cm_done); 1997 } 1998 1999 return 0; 2000} 2001 2002static void nvme_rdma_complete_timed_out(struct request *rq) 2003{ 2004 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 2005 struct nvme_rdma_queue *queue = req->queue; 2006 2007 nvme_rdma_stop_queue(queue); 2008 if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) { 2009 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD; 2010 blk_mq_complete_request(rq); 2011 } 2012} 2013 2014static enum blk_eh_timer_return 2015nvme_rdma_timeout(struct request *rq, bool reserved) 2016{ 2017 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 2018 struct nvme_rdma_queue *queue = req->queue; 2019 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 2020 2021 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n", 2022 rq->tag, nvme_rdma_queue_idx(queue)); 2023 2024 if (ctrl->ctrl.state != NVME_CTRL_LIVE) { 2025 /* 2026 * If we are resetting, connecting or deleting we should 2027 * complete immediately because we may block controller 2028 * teardown or setup sequence 2029 * - ctrl disable/shutdown fabrics requests 2030 * - connect requests 2031 * - initialization admin requests 2032 * - I/O requests that entered after unquiescing and 2033 * the controller stopped responding 2034 * 2035 * All other requests should be cancelled by the error 2036 * recovery work, so it's fine that we fail it here. 2037 */ 2038 nvme_rdma_complete_timed_out(rq); 2039 return BLK_EH_DONE; 2040 } 2041 2042 /* 2043 * LIVE state should trigger the normal error recovery which will 2044 * handle completing this request. 2045 */ 2046 nvme_rdma_error_recovery(ctrl); 2047 return BLK_EH_RESET_TIMER; 2048} 2049 2050static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 2051 const struct blk_mq_queue_data *bd) 2052{ 2053 struct nvme_ns *ns = hctx->queue->queuedata; 2054 struct nvme_rdma_queue *queue = hctx->driver_data; 2055 struct request *rq = bd->rq; 2056 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 2057 struct nvme_rdma_qe *sqe = &req->sqe; 2058 struct nvme_command *c = sqe->data; 2059 struct ib_device *dev; 2060 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags); 2061 blk_status_t ret; 2062 int err; 2063 2064 WARN_ON_ONCE(rq->tag < 0); 2065 2066 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2067 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 2068 2069 dev = queue->device->dev; 2070 2071 req->sqe.dma = ib_dma_map_single(dev, req->sqe.data, 2072 sizeof(struct nvme_command), 2073 DMA_TO_DEVICE); 2074 err = ib_dma_mapping_error(dev, req->sqe.dma); 2075 if (unlikely(err)) 2076 return BLK_STS_RESOURCE; 2077 2078 ib_dma_sync_single_for_cpu(dev, sqe->dma, 2079 sizeof(struct nvme_command), DMA_TO_DEVICE); 2080 2081 ret = nvme_setup_cmd(ns, rq, c); 2082 if (ret) 2083 goto unmap_qe; 2084 2085 blk_mq_start_request(rq); 2086 2087 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 2088 queue->pi_support && 2089 (c->common.opcode == nvme_cmd_write || 2090 c->common.opcode == nvme_cmd_read) && 2091 nvme_ns_has_pi(ns)) 2092 req->use_sig_mr = true; 2093 else 2094 req->use_sig_mr = false; 2095 2096 err = nvme_rdma_map_data(queue, rq, c); 2097 if (unlikely(err < 0)) { 2098 dev_err(queue->ctrl->ctrl.device, 2099 "Failed to map data (%d)\n", err); 2100 goto err; 2101 } 2102 2103 sqe->cqe.done = nvme_rdma_send_done; 2104 2105 ib_dma_sync_single_for_device(dev, sqe->dma, 2106 sizeof(struct nvme_command), DMA_TO_DEVICE); 2107 2108 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 2109 req->mr ? &req->reg_wr.wr : NULL); 2110 if (unlikely(err)) 2111 goto err_unmap; 2112 2113 return BLK_STS_OK; 2114 2115err_unmap: 2116 nvme_rdma_unmap_data(queue, rq); 2117err: 2118 if (err == -ENOMEM || err == -EAGAIN) 2119 ret = BLK_STS_RESOURCE; 2120 else 2121 ret = BLK_STS_IOERR; 2122 nvme_cleanup_cmd(rq); 2123unmap_qe: 2124 ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command), 2125 DMA_TO_DEVICE); 2126 return ret; 2127} 2128 2129static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx) 2130{ 2131 struct nvme_rdma_queue *queue = hctx->driver_data; 2132 2133 return ib_process_cq_direct(queue->ib_cq, -1); 2134} 2135 2136static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req) 2137{ 2138 struct request *rq = blk_mq_rq_from_pdu(req); 2139 struct ib_mr_status mr_status; 2140 int ret; 2141 2142 ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status); 2143 if (ret) { 2144 pr_err("ib_check_mr_status failed, ret %d\n", ret); 2145 nvme_req(rq)->status = NVME_SC_INVALID_PI; 2146 return; 2147 } 2148 2149 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) { 2150 switch (mr_status.sig_err.err_type) { 2151 case IB_SIG_BAD_GUARD: 2152 nvme_req(rq)->status = NVME_SC_GUARD_CHECK; 2153 break; 2154 case IB_SIG_BAD_REFTAG: 2155 nvme_req(rq)->status = NVME_SC_REFTAG_CHECK; 2156 break; 2157 case IB_SIG_BAD_APPTAG: 2158 nvme_req(rq)->status = NVME_SC_APPTAG_CHECK; 2159 break; 2160 } 2161 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n", 2162 mr_status.sig_err.err_type, mr_status.sig_err.expected, 2163 mr_status.sig_err.actual); 2164 } 2165} 2166 2167static void nvme_rdma_complete_rq(struct request *rq) 2168{ 2169 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 2170 struct nvme_rdma_queue *queue = req->queue; 2171 struct ib_device *ibdev = queue->device->dev; 2172 2173 if (req->use_sig_mr) 2174 nvme_rdma_check_pi_status(req); 2175 2176 nvme_rdma_unmap_data(queue, rq); 2177 ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command), 2178 DMA_TO_DEVICE); 2179 nvme_complete_rq(rq); 2180} 2181 2182static int nvme_rdma_map_queues(struct blk_mq_tag_set *set) 2183{ 2184 struct nvme_rdma_ctrl *ctrl = set->driver_data; 2185 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2186 2187 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2188 /* separate read/write queues */ 2189 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2190 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2191 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2192 set->map[HCTX_TYPE_READ].nr_queues = 2193 ctrl->io_queues[HCTX_TYPE_READ]; 2194 set->map[HCTX_TYPE_READ].queue_offset = 2195 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2196 } else { 2197 /* shared read/write queues */ 2198 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2199 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2200 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2201 set->map[HCTX_TYPE_READ].nr_queues = 2202 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2203 set->map[HCTX_TYPE_READ].queue_offset = 0; 2204 } 2205 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT], 2206 ctrl->device->dev, 0); 2207 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ], 2208 ctrl->device->dev, 0); 2209 2210 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 2211 /* map dedicated poll queues only if we have queues left */ 2212 set->map[HCTX_TYPE_POLL].nr_queues = 2213 ctrl->io_queues[HCTX_TYPE_POLL]; 2214 set->map[HCTX_TYPE_POLL].queue_offset = 2215 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 2216 ctrl->io_queues[HCTX_TYPE_READ]; 2217 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 2218 } 2219 2220 dev_info(ctrl->ctrl.device, 2221 "mapped %d/%d/%d default/read/poll queues.\n", 2222 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2223 ctrl->io_queues[HCTX_TYPE_READ], 2224 ctrl->io_queues[HCTX_TYPE_POLL]); 2225 2226 return 0; 2227} 2228 2229static const struct blk_mq_ops nvme_rdma_mq_ops = { 2230 .queue_rq = nvme_rdma_queue_rq, 2231 .complete = nvme_rdma_complete_rq, 2232 .init_request = nvme_rdma_init_request, 2233 .exit_request = nvme_rdma_exit_request, 2234 .init_hctx = nvme_rdma_init_hctx, 2235 .timeout = nvme_rdma_timeout, 2236 .map_queues = nvme_rdma_map_queues, 2237 .poll = nvme_rdma_poll, 2238}; 2239 2240static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 2241 .queue_rq = nvme_rdma_queue_rq, 2242 .complete = nvme_rdma_complete_rq, 2243 .init_request = nvme_rdma_init_request, 2244 .exit_request = nvme_rdma_exit_request, 2245 .init_hctx = nvme_rdma_init_admin_hctx, 2246 .timeout = nvme_rdma_timeout, 2247}; 2248 2249static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 2250{ 2251 nvme_rdma_teardown_io_queues(ctrl, shutdown); 2252 nvme_stop_admin_queue(&ctrl->ctrl); 2253 if (shutdown) 2254 nvme_shutdown_ctrl(&ctrl->ctrl); 2255 else 2256 nvme_disable_ctrl(&ctrl->ctrl); 2257 nvme_rdma_teardown_admin_queue(ctrl, shutdown); 2258} 2259 2260static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) 2261{ 2262 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true); 2263} 2264 2265static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 2266{ 2267 struct nvme_rdma_ctrl *ctrl = 2268 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 2269 2270 nvme_stop_ctrl(&ctrl->ctrl); 2271 nvme_rdma_shutdown_ctrl(ctrl, false); 2272 2273 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2274 /* state change failure should never happen */ 2275 WARN_ON_ONCE(1); 2276 return; 2277 } 2278 2279 if (nvme_rdma_setup_ctrl(ctrl, false)) 2280 goto out_fail; 2281 2282 return; 2283 2284out_fail: 2285 ++ctrl->ctrl.nr_reconnects; 2286 nvme_rdma_reconnect_or_remove(ctrl); 2287} 2288 2289static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 2290 .name = "rdma", 2291 .module = THIS_MODULE, 2292 .flags = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED, 2293 .reg_read32 = nvmf_reg_read32, 2294 .reg_read64 = nvmf_reg_read64, 2295 .reg_write32 = nvmf_reg_write32, 2296 .free_ctrl = nvme_rdma_free_ctrl, 2297 .submit_async_event = nvme_rdma_submit_async_event, 2298 .delete_ctrl = nvme_rdma_delete_ctrl, 2299 .get_address = nvmf_get_address, 2300 .stop_ctrl = nvme_rdma_stop_ctrl, 2301}; 2302 2303/* 2304 * Fails a connection request if it matches an existing controller 2305 * (association) with the same tuple: 2306 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN> 2307 * 2308 * if local address is not specified in the request, it will match an 2309 * existing controller with all the other parameters the same and no 2310 * local port address specified as well. 2311 * 2312 * The ports don't need to be compared as they are intrinsically 2313 * already matched by the port pointers supplied. 2314 */ 2315static bool 2316nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) 2317{ 2318 struct nvme_rdma_ctrl *ctrl; 2319 bool found = false; 2320 2321 mutex_lock(&nvme_rdma_ctrl_mutex); 2322 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2323 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2324 if (found) 2325 break; 2326 } 2327 mutex_unlock(&nvme_rdma_ctrl_mutex); 2328 2329 return found; 2330} 2331 2332static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 2333 struct nvmf_ctrl_options *opts) 2334{ 2335 struct nvme_rdma_ctrl *ctrl; 2336 int ret; 2337 bool changed; 2338 2339 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2340 if (!ctrl) 2341 return ERR_PTR(-ENOMEM); 2342 ctrl->ctrl.opts = opts; 2343 INIT_LIST_HEAD(&ctrl->list); 2344 2345 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2346 opts->trsvcid = 2347 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL); 2348 if (!opts->trsvcid) { 2349 ret = -ENOMEM; 2350 goto out_free_ctrl; 2351 } 2352 opts->mask |= NVMF_OPT_TRSVCID; 2353 } 2354 2355 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2356 opts->traddr, opts->trsvcid, &ctrl->addr); 2357 if (ret) { 2358 pr_err("malformed address passed: %s:%s\n", 2359 opts->traddr, opts->trsvcid); 2360 goto out_free_ctrl; 2361 } 2362 2363 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2364 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2365 opts->host_traddr, NULL, &ctrl->src_addr); 2366 if (ret) { 2367 pr_err("malformed src address passed: %s\n", 2368 opts->host_traddr); 2369 goto out_free_ctrl; 2370 } 2371 } 2372 2373 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { 2374 ret = -EALREADY; 2375 goto out_free_ctrl; 2376 } 2377 2378 INIT_DELAYED_WORK(&ctrl->reconnect_work, 2379 nvme_rdma_reconnect_ctrl_work); 2380 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 2381 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 2382 2383 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2384 opts->nr_poll_queues + 1; 2385 ctrl->ctrl.sqsize = opts->queue_size - 1; 2386 ctrl->ctrl.kato = opts->kato; 2387 2388 ret = -ENOMEM; 2389 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2390 GFP_KERNEL); 2391 if (!ctrl->queues) 2392 goto out_free_ctrl; 2393 2394 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 2395 0 /* no quirks, we're perfect! */); 2396 if (ret) 2397 goto out_kfree_queues; 2398 2399 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING); 2400 WARN_ON_ONCE(!changed); 2401 2402 ret = nvme_rdma_setup_ctrl(ctrl, true); 2403 if (ret) 2404 goto out_uninit_ctrl; 2405 2406 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 2407 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2408 2409 mutex_lock(&nvme_rdma_ctrl_mutex); 2410 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 2411 mutex_unlock(&nvme_rdma_ctrl_mutex); 2412 2413 return &ctrl->ctrl; 2414 2415out_uninit_ctrl: 2416 nvme_uninit_ctrl(&ctrl->ctrl); 2417 nvme_put_ctrl(&ctrl->ctrl); 2418 if (ret > 0) 2419 ret = -EIO; 2420 return ERR_PTR(ret); 2421out_kfree_queues: 2422 kfree(ctrl->queues); 2423out_free_ctrl: 2424 kfree(ctrl); 2425 return ERR_PTR(ret); 2426} 2427 2428static struct nvmf_transport_ops nvme_rdma_transport = { 2429 .name = "rdma", 2430 .module = THIS_MODULE, 2431 .required_opts = NVMF_OPT_TRADDR, 2432 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2433 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2434 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2435 NVMF_OPT_TOS, 2436 .create_ctrl = nvme_rdma_create_ctrl, 2437}; 2438 2439static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2440{ 2441 struct nvme_rdma_ctrl *ctrl; 2442 struct nvme_rdma_device *ndev; 2443 bool found = false; 2444 2445 mutex_lock(&device_list_mutex); 2446 list_for_each_entry(ndev, &device_list, entry) { 2447 if (ndev->dev == ib_device) { 2448 found = true; 2449 break; 2450 } 2451 } 2452 mutex_unlock(&device_list_mutex); 2453 2454 if (!found) 2455 return; 2456 2457 /* Delete all controllers using this device */ 2458 mutex_lock(&nvme_rdma_ctrl_mutex); 2459 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2460 if (ctrl->device->dev != ib_device) 2461 continue; 2462 nvme_delete_ctrl(&ctrl->ctrl); 2463 } 2464 mutex_unlock(&nvme_rdma_ctrl_mutex); 2465 2466 flush_workqueue(nvme_delete_wq); 2467} 2468 2469static struct ib_client nvme_rdma_ib_client = { 2470 .name = "nvme_rdma", 2471 .remove = nvme_rdma_remove_one 2472}; 2473 2474static int __init nvme_rdma_init_module(void) 2475{ 2476 int ret; 2477 2478 ret = ib_register_client(&nvme_rdma_ib_client); 2479 if (ret) 2480 return ret; 2481 2482 ret = nvmf_register_transport(&nvme_rdma_transport); 2483 if (ret) 2484 goto err_unreg_client; 2485 2486 return 0; 2487 2488err_unreg_client: 2489 ib_unregister_client(&nvme_rdma_ib_client); 2490 return ret; 2491} 2492 2493static void __exit nvme_rdma_cleanup_module(void) 2494{ 2495 struct nvme_rdma_ctrl *ctrl; 2496 2497 nvmf_unregister_transport(&nvme_rdma_transport); 2498 ib_unregister_client(&nvme_rdma_ib_client); 2499 2500 mutex_lock(&nvme_rdma_ctrl_mutex); 2501 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) 2502 nvme_delete_ctrl(&ctrl->ctrl); 2503 mutex_unlock(&nvme_rdma_ctrl_mutex); 2504 flush_workqueue(nvme_delete_wq); 2505} 2506 2507module_init(nvme_rdma_init_module); 2508module_exit(nvme_rdma_cleanup_module); 2509 2510MODULE_LICENSE("GPL v2"); 2511