1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics RDMA host code.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26
27 #include "nvme.h"
28 #include "fabrics.h"
29
30
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
32
33 #define NVME_RDMA_MAX_SEGMENTS 256
34
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4
36
37 #define NVME_RDMA_DATA_SGL_SIZE \
38 (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39 #define NVME_RDMA_METADATA_SGL_SIZE \
40 (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
41
42 struct nvme_rdma_device {
43 struct ib_device *dev;
44 struct ib_pd *pd;
45 struct kref ref;
46 struct list_head entry;
47 unsigned int num_inline_segments;
48 };
49
50 struct nvme_rdma_qe {
51 struct ib_cqe cqe;
52 void *data;
53 u64 dma;
54 };
55
56 struct nvme_rdma_sgl {
57 int nents;
58 struct sg_table sg_table;
59 };
60
61 struct nvme_rdma_queue;
62 struct nvme_rdma_request {
63 struct nvme_request req;
64 struct ib_mr *mr;
65 struct nvme_rdma_qe sqe;
66 union nvme_result result;
67 __le16 status;
68 refcount_t ref;
69 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
70 u32 num_sge;
71 struct ib_reg_wr reg_wr;
72 struct ib_cqe reg_cqe;
73 struct nvme_rdma_queue *queue;
74 struct nvme_rdma_sgl data_sgl;
75 struct nvme_rdma_sgl *metadata_sgl;
76 bool use_sig_mr;
77 };
78
79 enum nvme_rdma_queue_flags {
80 NVME_RDMA_Q_ALLOCATED = 0,
81 NVME_RDMA_Q_LIVE = 1,
82 NVME_RDMA_Q_TR_READY = 2,
83 };
84
85 struct nvme_rdma_queue {
86 struct nvme_rdma_qe *rsp_ring;
87 int queue_size;
88 size_t cmnd_capsule_len;
89 struct nvme_rdma_ctrl *ctrl;
90 struct nvme_rdma_device *device;
91 struct ib_cq *ib_cq;
92 struct ib_qp *qp;
93
94 unsigned long flags;
95 struct rdma_cm_id *cm_id;
96 int cm_error;
97 struct completion cm_done;
98 bool pi_support;
99 int cq_size;
100 struct mutex queue_lock;
101 };
102
103 struct nvme_rdma_ctrl {
104 /* read only in the hot path */
105 struct nvme_rdma_queue *queues;
106
107 /* other member variables */
108 struct blk_mq_tag_set tag_set;
109 struct work_struct err_work;
110
111 struct nvme_rdma_qe async_event_sqe;
112
113 struct delayed_work reconnect_work;
114
115 struct list_head list;
116
117 struct blk_mq_tag_set admin_tag_set;
118 struct nvme_rdma_device *device;
119
120 u32 max_fr_pages;
121
122 struct sockaddr_storage addr;
123 struct sockaddr_storage src_addr;
124
125 struct nvme_ctrl ctrl;
126 bool use_inline_data;
127 u32 io_queues[HCTX_MAX_TYPES];
128 };
129
to_rdma_ctrl(struct nvme_ctrl *ctrl)130 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
131 {
132 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
133 }
134
135 static LIST_HEAD(device_list);
136 static DEFINE_MUTEX(device_list_mutex);
137
138 static LIST_HEAD(nvme_rdma_ctrl_list);
139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
140
141 /*
142 * Disabling this option makes small I/O goes faster, but is fundamentally
143 * unsafe. With it turned off we will have to register a global rkey that
144 * allows read and write access to all physical memory.
145 */
146 static bool register_always = true;
147 module_param(register_always, bool, 0444);
148 MODULE_PARM_DESC(register_always,
149 "Use memory registration even for contiguous memory regions");
150
151 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152 struct rdma_cm_event *event);
153 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154 static void nvme_rdma_complete_rq(struct request *rq);
155
156 static const struct blk_mq_ops nvme_rdma_mq_ops;
157 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
158
nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
160 {
161 return queue - queue->ctrl->queues;
162 }
163
nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)164 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
165 {
166 return nvme_rdma_queue_idx(queue) >
167 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
168 queue->ctrl->io_queues[HCTX_TYPE_READ];
169 }
170
nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)171 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
172 {
173 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175
nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, size_t capsule_size, enum dma_data_direction dir)176 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177 size_t capsule_size, enum dma_data_direction dir)
178 {
179 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
180 kfree(qe->data);
181 }
182
nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, size_t capsule_size, enum dma_data_direction dir)183 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184 size_t capsule_size, enum dma_data_direction dir)
185 {
186 qe->data = kzalloc(capsule_size, GFP_KERNEL);
187 if (!qe->data)
188 return -ENOMEM;
189
190 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
191 if (ib_dma_mapping_error(ibdev, qe->dma)) {
192 kfree(qe->data);
193 qe->data = NULL;
194 return -ENOMEM;
195 }
196
197 return 0;
198 }
199
nvme_rdma_free_ring(struct ib_device *ibdev, struct nvme_rdma_qe *ring, size_t ib_queue_size, size_t capsule_size, enum dma_data_direction dir)200 static void nvme_rdma_free_ring(struct ib_device *ibdev,
201 struct nvme_rdma_qe *ring, size_t ib_queue_size,
202 size_t capsule_size, enum dma_data_direction dir)
203 {
204 int i;
205
206 for (i = 0; i < ib_queue_size; i++)
207 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
208 kfree(ring);
209 }
210
nvme_rdma_alloc_ring(struct ib_device *ibdev, size_t ib_queue_size, size_t capsule_size, enum dma_data_direction dir)211 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
212 size_t ib_queue_size, size_t capsule_size,
213 enum dma_data_direction dir)
214 {
215 struct nvme_rdma_qe *ring;
216 int i;
217
218 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
219 if (!ring)
220 return NULL;
221
222 /*
223 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
224 * lifetime. It's safe, since any chage in the underlying RDMA device
225 * will issue error recovery and queue re-creation.
226 */
227 for (i = 0; i < ib_queue_size; i++) {
228 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
229 goto out_free_ring;
230 }
231
232 return ring;
233
234 out_free_ring:
235 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
236 return NULL;
237 }
238
nvme_rdma_qp_event(struct ib_event *event, void *context)239 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
240 {
241 pr_debug("QP event %s (%d)\n",
242 ib_event_msg(event->event), event->event);
243
244 }
245
nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)246 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
247 {
248 int ret;
249
250 ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
251 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
252 if (ret < 0)
253 return ret;
254 if (ret == 0)
255 return -ETIMEDOUT;
256 WARN_ON_ONCE(queue->cm_error > 0);
257 return queue->cm_error;
258 }
259
nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)260 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
261 {
262 struct nvme_rdma_device *dev = queue->device;
263 struct ib_qp_init_attr init_attr;
264 int ret;
265
266 memset(&init_attr, 0, sizeof(init_attr));
267 init_attr.event_handler = nvme_rdma_qp_event;
268 /* +1 for drain */
269 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
270 /* +1 for drain */
271 init_attr.cap.max_recv_wr = queue->queue_size + 1;
272 init_attr.cap.max_recv_sge = 1;
273 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
274 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
275 init_attr.qp_type = IB_QPT_RC;
276 init_attr.send_cq = queue->ib_cq;
277 init_attr.recv_cq = queue->ib_cq;
278 if (queue->pi_support)
279 init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
280 init_attr.qp_context = queue;
281
282 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
283
284 queue->qp = queue->cm_id->qp;
285 return ret;
286 }
287
nvme_rdma_exit_request(struct blk_mq_tag_set *set, struct request *rq, unsigned int hctx_idx)288 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
289 struct request *rq, unsigned int hctx_idx)
290 {
291 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
292
293 kfree(req->sqe.data);
294 }
295
nvme_rdma_init_request(struct blk_mq_tag_set *set, struct request *rq, unsigned int hctx_idx, unsigned int numa_node)296 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
297 struct request *rq, unsigned int hctx_idx,
298 unsigned int numa_node)
299 {
300 struct nvme_rdma_ctrl *ctrl = set->driver_data;
301 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
302 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
303 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
304
305 nvme_req(rq)->ctrl = &ctrl->ctrl;
306 req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
307 if (!req->sqe.data)
308 return -ENOMEM;
309
310 /* metadata nvme_rdma_sgl struct is located after command's data SGL */
311 if (queue->pi_support)
312 req->metadata_sgl = (void *)nvme_req(rq) +
313 sizeof(struct nvme_rdma_request) +
314 NVME_RDMA_DATA_SGL_SIZE;
315
316 req->queue = queue;
317
318 return 0;
319 }
320
nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx)321 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
322 unsigned int hctx_idx)
323 {
324 struct nvme_rdma_ctrl *ctrl = data;
325 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
326
327 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
328
329 hctx->driver_data = queue;
330 return 0;
331 }
332
nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx)333 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
334 unsigned int hctx_idx)
335 {
336 struct nvme_rdma_ctrl *ctrl = data;
337 struct nvme_rdma_queue *queue = &ctrl->queues[0];
338
339 BUG_ON(hctx_idx != 0);
340
341 hctx->driver_data = queue;
342 return 0;
343 }
344
nvme_rdma_free_dev(struct kref *ref)345 static void nvme_rdma_free_dev(struct kref *ref)
346 {
347 struct nvme_rdma_device *ndev =
348 container_of(ref, struct nvme_rdma_device, ref);
349
350 mutex_lock(&device_list_mutex);
351 list_del(&ndev->entry);
352 mutex_unlock(&device_list_mutex);
353
354 ib_dealloc_pd(ndev->pd);
355 kfree(ndev);
356 }
357
nvme_rdma_dev_put(struct nvme_rdma_device *dev)358 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
359 {
360 kref_put(&dev->ref, nvme_rdma_free_dev);
361 }
362
nvme_rdma_dev_get(struct nvme_rdma_device *dev)363 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
364 {
365 return kref_get_unless_zero(&dev->ref);
366 }
367
368 static struct nvme_rdma_device *
nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)369 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
370 {
371 struct nvme_rdma_device *ndev;
372
373 mutex_lock(&device_list_mutex);
374 list_for_each_entry(ndev, &device_list, entry) {
375 if (ndev->dev->node_guid == cm_id->device->node_guid &&
376 nvme_rdma_dev_get(ndev))
377 goto out_unlock;
378 }
379
380 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
381 if (!ndev)
382 goto out_err;
383
384 ndev->dev = cm_id->device;
385 kref_init(&ndev->ref);
386
387 ndev->pd = ib_alloc_pd(ndev->dev,
388 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
389 if (IS_ERR(ndev->pd))
390 goto out_free_dev;
391
392 if (!(ndev->dev->attrs.device_cap_flags &
393 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
394 dev_err(&ndev->dev->dev,
395 "Memory registrations not supported.\n");
396 goto out_free_pd;
397 }
398
399 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
400 ndev->dev->attrs.max_send_sge - 1);
401 list_add(&ndev->entry, &device_list);
402 out_unlock:
403 mutex_unlock(&device_list_mutex);
404 return ndev;
405
406 out_free_pd:
407 ib_dealloc_pd(ndev->pd);
408 out_free_dev:
409 kfree(ndev);
410 out_err:
411 mutex_unlock(&device_list_mutex);
412 return NULL;
413 }
414
nvme_rdma_free_cq(struct nvme_rdma_queue *queue)415 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
416 {
417 if (nvme_rdma_poll_queue(queue))
418 ib_free_cq(queue->ib_cq);
419 else
420 ib_cq_pool_put(queue->ib_cq, queue->cq_size);
421 }
422
nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)423 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
424 {
425 struct nvme_rdma_device *dev;
426 struct ib_device *ibdev;
427
428 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
429 return;
430
431 dev = queue->device;
432 ibdev = dev->dev;
433
434 if (queue->pi_support)
435 ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
436 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
437
438 /*
439 * The cm_id object might have been destroyed during RDMA connection
440 * establishment error flow to avoid getting other cma events, thus
441 * the destruction of the QP shouldn't use rdma_cm API.
442 */
443 ib_destroy_qp(queue->qp);
444 nvme_rdma_free_cq(queue);
445
446 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
447 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
448
449 nvme_rdma_dev_put(dev);
450 }
451
nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)452 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
453 {
454 u32 max_page_list_len;
455
456 if (pi_support)
457 max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
458 else
459 max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
460
461 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
462 }
463
nvme_rdma_create_cq(struct ib_device *ibdev, struct nvme_rdma_queue *queue)464 static int nvme_rdma_create_cq(struct ib_device *ibdev,
465 struct nvme_rdma_queue *queue)
466 {
467 int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
468 enum ib_poll_context poll_ctx;
469
470 /*
471 * Spread I/O queues completion vectors according their queue index.
472 * Admin queues can always go on completion vector 0.
473 */
474 comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
475
476 /* Polling queues need direct cq polling context */
477 if (nvme_rdma_poll_queue(queue)) {
478 poll_ctx = IB_POLL_DIRECT;
479 queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
480 comp_vector, poll_ctx);
481 } else {
482 poll_ctx = IB_POLL_SOFTIRQ;
483 queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
484 comp_vector, poll_ctx);
485 }
486
487 if (IS_ERR(queue->ib_cq)) {
488 ret = PTR_ERR(queue->ib_cq);
489 return ret;
490 }
491
492 return 0;
493 }
494
nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)495 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
496 {
497 struct ib_device *ibdev;
498 const int send_wr_factor = 3; /* MR, SEND, INV */
499 const int cq_factor = send_wr_factor + 1; /* + RECV */
500 int ret, pages_per_mr;
501
502 queue->device = nvme_rdma_find_get_device(queue->cm_id);
503 if (!queue->device) {
504 dev_err(queue->cm_id->device->dev.parent,
505 "no client data found!\n");
506 return -ECONNREFUSED;
507 }
508 ibdev = queue->device->dev;
509
510 /* +1 for ib_stop_cq */
511 queue->cq_size = cq_factor * queue->queue_size + 1;
512
513 ret = nvme_rdma_create_cq(ibdev, queue);
514 if (ret)
515 goto out_put_dev;
516
517 ret = nvme_rdma_create_qp(queue, send_wr_factor);
518 if (ret)
519 goto out_destroy_ib_cq;
520
521 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
522 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
523 if (!queue->rsp_ring) {
524 ret = -ENOMEM;
525 goto out_destroy_qp;
526 }
527
528 /*
529 * Currently we don't use SG_GAPS MR's so if the first entry is
530 * misaligned we'll end up using two entries for a single data page,
531 * so one additional entry is required.
532 */
533 pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
534 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
535 queue->queue_size,
536 IB_MR_TYPE_MEM_REG,
537 pages_per_mr, 0);
538 if (ret) {
539 dev_err(queue->ctrl->ctrl.device,
540 "failed to initialize MR pool sized %d for QID %d\n",
541 queue->queue_size, nvme_rdma_queue_idx(queue));
542 goto out_destroy_ring;
543 }
544
545 if (queue->pi_support) {
546 ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
547 queue->queue_size, IB_MR_TYPE_INTEGRITY,
548 pages_per_mr, pages_per_mr);
549 if (ret) {
550 dev_err(queue->ctrl->ctrl.device,
551 "failed to initialize PI MR pool sized %d for QID %d\n",
552 queue->queue_size, nvme_rdma_queue_idx(queue));
553 goto out_destroy_mr_pool;
554 }
555 }
556
557 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
558
559 return 0;
560
561 out_destroy_mr_pool:
562 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
563 out_destroy_ring:
564 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
565 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
566 out_destroy_qp:
567 rdma_destroy_qp(queue->cm_id);
568 out_destroy_ib_cq:
569 nvme_rdma_free_cq(queue);
570 out_put_dev:
571 nvme_rdma_dev_put(queue->device);
572 return ret;
573 }
574
nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, int idx, size_t queue_size)575 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
576 int idx, size_t queue_size)
577 {
578 struct nvme_rdma_queue *queue;
579 struct sockaddr *src_addr = NULL;
580 int ret;
581
582 queue = &ctrl->queues[idx];
583 mutex_init(&queue->queue_lock);
584 queue->ctrl = ctrl;
585 if (idx && ctrl->ctrl.max_integrity_segments)
586 queue->pi_support = true;
587 else
588 queue->pi_support = false;
589 init_completion(&queue->cm_done);
590
591 if (idx > 0)
592 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
593 else
594 queue->cmnd_capsule_len = sizeof(struct nvme_command);
595
596 queue->queue_size = queue_size;
597
598 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
599 RDMA_PS_TCP, IB_QPT_RC);
600 if (IS_ERR(queue->cm_id)) {
601 dev_info(ctrl->ctrl.device,
602 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
603 ret = PTR_ERR(queue->cm_id);
604 goto out_destroy_mutex;
605 }
606
607 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
608 src_addr = (struct sockaddr *)&ctrl->src_addr;
609
610 queue->cm_error = -ETIMEDOUT;
611 ret = rdma_resolve_addr(queue->cm_id, src_addr,
612 (struct sockaddr *)&ctrl->addr,
613 NVME_RDMA_CONNECT_TIMEOUT_MS);
614 if (ret) {
615 dev_info(ctrl->ctrl.device,
616 "rdma_resolve_addr failed (%d).\n", ret);
617 goto out_destroy_cm_id;
618 }
619
620 ret = nvme_rdma_wait_for_cm(queue);
621 if (ret) {
622 dev_info(ctrl->ctrl.device,
623 "rdma connection establishment failed (%d)\n", ret);
624 goto out_destroy_cm_id;
625 }
626
627 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
628
629 return 0;
630
631 out_destroy_cm_id:
632 rdma_destroy_id(queue->cm_id);
633 nvme_rdma_destroy_queue_ib(queue);
634 out_destroy_mutex:
635 mutex_destroy(&queue->queue_lock);
636 return ret;
637 }
638
__nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)639 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
640 {
641 rdma_disconnect(queue->cm_id);
642 ib_drain_qp(queue->qp);
643 }
644
nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)645 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
646 {
647 if (!test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
648 return;
649
650 mutex_lock(&queue->queue_lock);
651 if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
652 __nvme_rdma_stop_queue(queue);
653 mutex_unlock(&queue->queue_lock);
654 }
655
nvme_rdma_free_queue(struct nvme_rdma_queue *queue)656 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
657 {
658 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
659 return;
660
661 rdma_destroy_id(queue->cm_id);
662 nvme_rdma_destroy_queue_ib(queue);
663 mutex_destroy(&queue->queue_lock);
664 }
665
nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)666 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
667 {
668 int i;
669
670 for (i = 1; i < ctrl->ctrl.queue_count; i++)
671 nvme_rdma_free_queue(&ctrl->queues[i]);
672 }
673
nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)674 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
675 {
676 int i;
677
678 for (i = 1; i < ctrl->ctrl.queue_count; i++)
679 nvme_rdma_stop_queue(&ctrl->queues[i]);
680 }
681
nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)682 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
683 {
684 struct nvme_rdma_queue *queue = &ctrl->queues[idx];
685 bool poll = nvme_rdma_poll_queue(queue);
686 int ret;
687
688 if (idx)
689 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
690 else
691 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
692
693 if (!ret) {
694 set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
695 } else {
696 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
697 __nvme_rdma_stop_queue(queue);
698 dev_info(ctrl->ctrl.device,
699 "failed to connect queue: %d ret=%d\n", idx, ret);
700 }
701 return ret;
702 }
703
nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)704 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
705 {
706 int i, ret = 0;
707
708 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
709 ret = nvme_rdma_start_queue(ctrl, i);
710 if (ret)
711 goto out_stop_queues;
712 }
713
714 return 0;
715
716 out_stop_queues:
717 for (i--; i >= 1; i--)
718 nvme_rdma_stop_queue(&ctrl->queues[i]);
719 return ret;
720 }
721
nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)722 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
723 {
724 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
725 struct ib_device *ibdev = ctrl->device->dev;
726 unsigned int nr_io_queues, nr_default_queues;
727 unsigned int nr_read_queues, nr_poll_queues;
728 int i, ret;
729
730 nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
731 min(opts->nr_io_queues, num_online_cpus()));
732 nr_default_queues = min_t(unsigned int, ibdev->num_comp_vectors,
733 min(opts->nr_write_queues, num_online_cpus()));
734 nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
735 nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
736
737 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
738 if (ret)
739 return ret;
740
741 if (nr_io_queues == 0) {
742 dev_err(ctrl->ctrl.device,
743 "unable to set any I/O queues\n");
744 return -ENOMEM;
745 }
746
747 ctrl->ctrl.queue_count = nr_io_queues + 1;
748 dev_info(ctrl->ctrl.device,
749 "creating %d I/O queues.\n", nr_io_queues);
750
751 if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
752 /*
753 * separate read/write queues
754 * hand out dedicated default queues only after we have
755 * sufficient read queues.
756 */
757 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
758 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
759 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
760 min(nr_default_queues, nr_io_queues);
761 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
762 } else {
763 /*
764 * shared read/write queues
765 * either no write queues were requested, or we don't have
766 * sufficient queue count to have dedicated default queues.
767 */
768 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
769 min(nr_read_queues, nr_io_queues);
770 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
771 }
772
773 if (opts->nr_poll_queues && nr_io_queues) {
774 /* map dedicated poll queues only if we have queues left */
775 ctrl->io_queues[HCTX_TYPE_POLL] =
776 min(nr_poll_queues, nr_io_queues);
777 }
778
779 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
780 ret = nvme_rdma_alloc_queue(ctrl, i,
781 ctrl->ctrl.sqsize + 1);
782 if (ret)
783 goto out_free_queues;
784 }
785
786 return 0;
787
788 out_free_queues:
789 for (i--; i >= 1; i--)
790 nvme_rdma_free_queue(&ctrl->queues[i]);
791
792 return ret;
793 }
794
nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, bool admin)795 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
796 bool admin)
797 {
798 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
799 struct blk_mq_tag_set *set;
800 int ret;
801
802 if (admin) {
803 set = &ctrl->admin_tag_set;
804 memset(set, 0, sizeof(*set));
805 set->ops = &nvme_rdma_admin_mq_ops;
806 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
807 set->reserved_tags = 2; /* connect + keep-alive */
808 set->numa_node = nctrl->numa_node;
809 set->cmd_size = sizeof(struct nvme_rdma_request) +
810 NVME_RDMA_DATA_SGL_SIZE;
811 set->driver_data = ctrl;
812 set->nr_hw_queues = 1;
813 set->timeout = ADMIN_TIMEOUT;
814 set->flags = BLK_MQ_F_NO_SCHED;
815 } else {
816 set = &ctrl->tag_set;
817 memset(set, 0, sizeof(*set));
818 set->ops = &nvme_rdma_mq_ops;
819 set->queue_depth = nctrl->sqsize + 1;
820 set->reserved_tags = 1; /* fabric connect */
821 set->numa_node = nctrl->numa_node;
822 set->flags = BLK_MQ_F_SHOULD_MERGE;
823 set->cmd_size = sizeof(struct nvme_rdma_request) +
824 NVME_RDMA_DATA_SGL_SIZE;
825 if (nctrl->max_integrity_segments)
826 set->cmd_size += sizeof(struct nvme_rdma_sgl) +
827 NVME_RDMA_METADATA_SGL_SIZE;
828 set->driver_data = ctrl;
829 set->nr_hw_queues = nctrl->queue_count - 1;
830 set->timeout = NVME_IO_TIMEOUT;
831 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
832 }
833
834 ret = blk_mq_alloc_tag_set(set);
835 if (ret)
836 return ERR_PTR(ret);
837
838 return set;
839 }
840
nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, bool remove)841 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
842 bool remove)
843 {
844 if (remove) {
845 blk_cleanup_queue(ctrl->ctrl.admin_q);
846 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
847 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
848 }
849 if (ctrl->async_event_sqe.data) {
850 cancel_work_sync(&ctrl->ctrl.async_event_work);
851 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
852 sizeof(struct nvme_command), DMA_TO_DEVICE);
853 ctrl->async_event_sqe.data = NULL;
854 }
855 nvme_rdma_free_queue(&ctrl->queues[0]);
856 }
857
nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, bool new)858 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
859 bool new)
860 {
861 bool pi_capable = false;
862 int error;
863
864 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
865 if (error)
866 return error;
867
868 ctrl->device = ctrl->queues[0].device;
869 ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
870
871 /* T10-PI support */
872 if (ctrl->device->dev->attrs.device_cap_flags &
873 IB_DEVICE_INTEGRITY_HANDOVER)
874 pi_capable = true;
875
876 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
877 pi_capable);
878
879 /*
880 * Bind the async event SQE DMA mapping to the admin queue lifetime.
881 * It's safe, since any chage in the underlying RDMA device will issue
882 * error recovery and queue re-creation.
883 */
884 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
885 sizeof(struct nvme_command), DMA_TO_DEVICE);
886 if (error)
887 goto out_free_queue;
888
889 if (new) {
890 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
891 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
892 error = PTR_ERR(ctrl->ctrl.admin_tagset);
893 goto out_free_async_qe;
894 }
895
896 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
897 if (IS_ERR(ctrl->ctrl.fabrics_q)) {
898 error = PTR_ERR(ctrl->ctrl.fabrics_q);
899 goto out_free_tagset;
900 }
901
902 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
903 if (IS_ERR(ctrl->ctrl.admin_q)) {
904 error = PTR_ERR(ctrl->ctrl.admin_q);
905 goto out_cleanup_fabrics_q;
906 }
907 }
908
909 error = nvme_rdma_start_queue(ctrl, 0);
910 if (error)
911 goto out_cleanup_queue;
912
913 error = nvme_enable_ctrl(&ctrl->ctrl);
914 if (error)
915 goto out_stop_queue;
916
917 ctrl->ctrl.max_segments = ctrl->max_fr_pages;
918 ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
919 if (pi_capable)
920 ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
921 else
922 ctrl->ctrl.max_integrity_segments = 0;
923
924 nvme_start_admin_queue(&ctrl->ctrl);
925
926 error = nvme_init_identify(&ctrl->ctrl);
927 if (error)
928 goto out_quiesce_queue;
929
930 return 0;
931
932 out_quiesce_queue:
933 nvme_stop_admin_queue(&ctrl->ctrl);
934 blk_sync_queue(ctrl->ctrl.admin_q);
935 out_stop_queue:
936 nvme_rdma_stop_queue(&ctrl->queues[0]);
937 nvme_cancel_admin_tagset(&ctrl->ctrl);
938 out_cleanup_queue:
939 if (new)
940 blk_cleanup_queue(ctrl->ctrl.admin_q);
941 out_cleanup_fabrics_q:
942 if (new)
943 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
944 out_free_tagset:
945 if (new)
946 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
947 out_free_async_qe:
948 if (ctrl->async_event_sqe.data) {
949 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
950 sizeof(struct nvme_command), DMA_TO_DEVICE);
951 ctrl->async_event_sqe.data = NULL;
952 }
953 out_free_queue:
954 nvme_rdma_free_queue(&ctrl->queues[0]);
955 return error;
956 }
957
nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, bool remove)958 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
959 bool remove)
960 {
961 if (remove) {
962 blk_cleanup_queue(ctrl->ctrl.connect_q);
963 blk_mq_free_tag_set(ctrl->ctrl.tagset);
964 }
965 nvme_rdma_free_io_queues(ctrl);
966 }
967
nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)968 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
969 {
970 int ret;
971
972 ret = nvme_rdma_alloc_io_queues(ctrl);
973 if (ret)
974 return ret;
975
976 if (new) {
977 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
978 if (IS_ERR(ctrl->ctrl.tagset)) {
979 ret = PTR_ERR(ctrl->ctrl.tagset);
980 goto out_free_io_queues;
981 }
982
983 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
984 if (IS_ERR(ctrl->ctrl.connect_q)) {
985 ret = PTR_ERR(ctrl->ctrl.connect_q);
986 goto out_free_tag_set;
987 }
988 }
989
990 ret = nvme_rdma_start_io_queues(ctrl);
991 if (ret)
992 goto out_cleanup_connect_q;
993
994 if (!new) {
995 nvme_start_freeze(&ctrl->ctrl);
996 nvme_start_queues(&ctrl->ctrl);
997 if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
998 /*
999 * If we timed out waiting for freeze we are likely to
1000 * be stuck. Fail the controller initialization just
1001 * to be safe.
1002 */
1003 ret = -ENODEV;
1004 nvme_unfreeze(&ctrl->ctrl);
1005 goto out_wait_freeze_timed_out;
1006 }
1007 blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
1008 ctrl->ctrl.queue_count - 1);
1009 nvme_unfreeze(&ctrl->ctrl);
1010 }
1011
1012 return 0;
1013
1014 out_wait_freeze_timed_out:
1015 nvme_stop_queues(&ctrl->ctrl);
1016 nvme_sync_io_queues(&ctrl->ctrl);
1017 nvme_rdma_stop_io_queues(ctrl);
1018 out_cleanup_connect_q:
1019 nvme_cancel_tagset(&ctrl->ctrl);
1020 if (new)
1021 blk_cleanup_queue(ctrl->ctrl.connect_q);
1022 out_free_tag_set:
1023 if (new)
1024 blk_mq_free_tag_set(ctrl->ctrl.tagset);
1025 out_free_io_queues:
1026 nvme_rdma_free_io_queues(ctrl);
1027 return ret;
1028 }
1029
nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl, bool remove)1030 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
1031 bool remove)
1032 {
1033 nvme_stop_admin_queue(&ctrl->ctrl);
1034 blk_sync_queue(ctrl->ctrl.admin_q);
1035 nvme_rdma_stop_queue(&ctrl->queues[0]);
1036 if (ctrl->ctrl.admin_tagset) {
1037 blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
1038 nvme_cancel_request, &ctrl->ctrl);
1039 blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset);
1040 }
1041 if (remove)
1042 nvme_start_admin_queue(&ctrl->ctrl);
1043 nvme_rdma_destroy_admin_queue(ctrl, remove);
1044 }
1045
nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl, bool remove)1046 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
1047 bool remove)
1048 {
1049 if (ctrl->ctrl.queue_count > 1) {
1050 nvme_stop_queues(&ctrl->ctrl);
1051 nvme_sync_io_queues(&ctrl->ctrl);
1052 nvme_rdma_stop_io_queues(ctrl);
1053 if (ctrl->ctrl.tagset) {
1054 blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
1055 nvme_cancel_request, &ctrl->ctrl);
1056 blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset);
1057 }
1058 if (remove)
1059 nvme_start_queues(&ctrl->ctrl);
1060 nvme_rdma_destroy_io_queues(ctrl, remove);
1061 }
1062 }
1063
nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)1064 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
1065 {
1066 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1067
1068 cancel_work_sync(&ctrl->err_work);
1069 cancel_delayed_work_sync(&ctrl->reconnect_work);
1070 }
1071
nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)1072 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
1073 {
1074 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1075
1076 if (list_empty(&ctrl->list))
1077 goto free_ctrl;
1078
1079 mutex_lock(&nvme_rdma_ctrl_mutex);
1080 list_del(&ctrl->list);
1081 mutex_unlock(&nvme_rdma_ctrl_mutex);
1082
1083 nvmf_free_options(nctrl->opts);
1084 free_ctrl:
1085 kfree(ctrl->queues);
1086 kfree(ctrl);
1087 }
1088
nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)1089 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
1090 {
1091 /* If we are resetting/deleting then do nothing */
1092 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
1093 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
1094 ctrl->ctrl.state == NVME_CTRL_LIVE);
1095 return;
1096 }
1097
1098 if (nvmf_should_reconnect(&ctrl->ctrl)) {
1099 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
1100 ctrl->ctrl.opts->reconnect_delay);
1101 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
1102 ctrl->ctrl.opts->reconnect_delay * HZ);
1103 } else {
1104 nvme_delete_ctrl(&ctrl->ctrl);
1105 }
1106 }
1107
nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)1108 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1109 {
1110 int ret = -EINVAL;
1111 bool changed;
1112
1113 ret = nvme_rdma_configure_admin_queue(ctrl, new);
1114 if (ret)
1115 return ret;
1116
1117 if (ctrl->ctrl.icdoff) {
1118 ret = -EOPNOTSUPP;
1119 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1120 goto destroy_admin;
1121 }
1122
1123 if (!(ctrl->ctrl.sgls & (1 << 2))) {
1124 ret = -EOPNOTSUPP;
1125 dev_err(ctrl->ctrl.device,
1126 "Mandatory keyed sgls are not supported!\n");
1127 goto destroy_admin;
1128 }
1129
1130 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1131 dev_warn(ctrl->ctrl.device,
1132 "queue_size %zu > ctrl sqsize %u, clamping down\n",
1133 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1134 }
1135
1136 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1137 dev_warn(ctrl->ctrl.device,
1138 "sqsize %u > ctrl maxcmd %u, clamping down\n",
1139 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1140 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1141 }
1142
1143 if (ctrl->ctrl.sgls & (1 << 20))
1144 ctrl->use_inline_data = true;
1145
1146 if (ctrl->ctrl.queue_count > 1) {
1147 ret = nvme_rdma_configure_io_queues(ctrl, new);
1148 if (ret)
1149 goto destroy_admin;
1150 }
1151
1152 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1153 if (!changed) {
1154 /*
1155 * state change failure is ok if we started ctrl delete,
1156 * unless we're during creation of a new controller to
1157 * avoid races with teardown flow.
1158 */
1159 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1160 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1161 WARN_ON_ONCE(new);
1162 ret = -EINVAL;
1163 goto destroy_io;
1164 }
1165
1166 nvme_start_ctrl(&ctrl->ctrl);
1167 return 0;
1168
1169 destroy_io:
1170 if (ctrl->ctrl.queue_count > 1) {
1171 nvme_stop_queues(&ctrl->ctrl);
1172 nvme_sync_io_queues(&ctrl->ctrl);
1173 nvme_rdma_stop_io_queues(ctrl);
1174 nvme_cancel_tagset(&ctrl->ctrl);
1175 nvme_rdma_destroy_io_queues(ctrl, new);
1176 }
1177 destroy_admin:
1178 nvme_stop_admin_queue(&ctrl->ctrl);
1179 blk_sync_queue(ctrl->ctrl.admin_q);
1180 nvme_rdma_stop_queue(&ctrl->queues[0]);
1181 nvme_cancel_admin_tagset(&ctrl->ctrl);
1182 nvme_rdma_destroy_admin_queue(ctrl, new);
1183 return ret;
1184 }
1185
nvme_rdma_reconnect_ctrl_work(struct work_struct *work)1186 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1187 {
1188 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1189 struct nvme_rdma_ctrl, reconnect_work);
1190
1191 ++ctrl->ctrl.nr_reconnects;
1192
1193 if (nvme_rdma_setup_ctrl(ctrl, false))
1194 goto requeue;
1195
1196 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1197 ctrl->ctrl.nr_reconnects);
1198
1199 ctrl->ctrl.nr_reconnects = 0;
1200
1201 return;
1202
1203 requeue:
1204 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1205 ctrl->ctrl.nr_reconnects);
1206 nvme_rdma_reconnect_or_remove(ctrl);
1207 }
1208
nvme_rdma_error_recovery_work(struct work_struct *work)1209 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1210 {
1211 struct nvme_rdma_ctrl *ctrl = container_of(work,
1212 struct nvme_rdma_ctrl, err_work);
1213
1214 nvme_stop_keep_alive(&ctrl->ctrl);
1215 flush_work(&ctrl->ctrl.async_event_work);
1216 nvme_rdma_teardown_io_queues(ctrl, false);
1217 nvme_start_queues(&ctrl->ctrl);
1218 nvme_rdma_teardown_admin_queue(ctrl, false);
1219 nvme_start_admin_queue(&ctrl->ctrl);
1220
1221 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1222 /* state change failure is ok if we started ctrl delete */
1223 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1224 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1225 return;
1226 }
1227
1228 nvme_rdma_reconnect_or_remove(ctrl);
1229 }
1230
nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)1231 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1232 {
1233 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1234 return;
1235
1236 dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1237 queue_work(nvme_reset_wq, &ctrl->err_work);
1238 }
1239
nvme_rdma_end_request(struct nvme_rdma_request *req)1240 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1241 {
1242 struct request *rq = blk_mq_rq_from_pdu(req);
1243
1244 if (!refcount_dec_and_test(&req->ref))
1245 return;
1246 if (!nvme_try_complete_req(rq, req->status, req->result))
1247 nvme_rdma_complete_rq(rq);
1248 }
1249
nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, const char *op)1250 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1251 const char *op)
1252 {
1253 struct nvme_rdma_queue *queue = wc->qp->qp_context;
1254 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1255
1256 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1257 dev_info(ctrl->ctrl.device,
1258 "%s for CQE 0x%p failed with status %s (%d)\n",
1259 op, wc->wr_cqe,
1260 ib_wc_status_msg(wc->status), wc->status);
1261 nvme_rdma_error_recovery(ctrl);
1262 }
1263
nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)1264 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1265 {
1266 if (unlikely(wc->status != IB_WC_SUCCESS))
1267 nvme_rdma_wr_error(cq, wc, "MEMREG");
1268 }
1269
nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)1270 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1271 {
1272 struct nvme_rdma_request *req =
1273 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1274
1275 if (unlikely(wc->status != IB_WC_SUCCESS))
1276 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1277 else
1278 nvme_rdma_end_request(req);
1279 }
1280
nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, struct nvme_rdma_request *req)1281 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1282 struct nvme_rdma_request *req)
1283 {
1284 struct ib_send_wr wr = {
1285 .opcode = IB_WR_LOCAL_INV,
1286 .next = NULL,
1287 .num_sge = 0,
1288 .send_flags = IB_SEND_SIGNALED,
1289 .ex.invalidate_rkey = req->mr->rkey,
1290 };
1291
1292 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1293 wr.wr_cqe = &req->reg_cqe;
1294
1295 return ib_post_send(queue->qp, &wr, NULL);
1296 }
1297
nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, struct request *rq)1298 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1299 struct request *rq)
1300 {
1301 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1302 struct nvme_rdma_device *dev = queue->device;
1303 struct ib_device *ibdev = dev->dev;
1304 struct list_head *pool = &queue->qp->rdma_mrs;
1305
1306 if (!blk_rq_nr_phys_segments(rq))
1307 return;
1308
1309 if (blk_integrity_rq(rq)) {
1310 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1311 req->metadata_sgl->nents, rq_dma_dir(rq));
1312 sg_free_table_chained(&req->metadata_sgl->sg_table,
1313 NVME_INLINE_METADATA_SG_CNT);
1314 }
1315
1316 if (req->use_sig_mr)
1317 pool = &queue->qp->sig_mrs;
1318
1319 if (req->mr) {
1320 ib_mr_pool_put(queue->qp, pool, req->mr);
1321 req->mr = NULL;
1322 }
1323
1324 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1325 rq_dma_dir(rq));
1326 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1327 }
1328
nvme_rdma_set_sg_null(struct nvme_command *c)1329 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1330 {
1331 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1332
1333 sg->addr = 0;
1334 put_unaligned_le24(0, sg->length);
1335 put_unaligned_le32(0, sg->key);
1336 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1337 return 0;
1338 }
1339
nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, struct nvme_rdma_request *req, struct nvme_command *c, int count)1340 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1341 struct nvme_rdma_request *req, struct nvme_command *c,
1342 int count)
1343 {
1344 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1345 struct ib_sge *sge = &req->sge[1];
1346 struct scatterlist *sgl;
1347 u32 len = 0;
1348 int i;
1349
1350 for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
1351 sge->addr = sg_dma_address(sgl);
1352 sge->length = sg_dma_len(sgl);
1353 sge->lkey = queue->device->pd->local_dma_lkey;
1354 len += sge->length;
1355 sge++;
1356 }
1357
1358 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1359 sg->length = cpu_to_le32(len);
1360 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1361
1362 req->num_sge += count;
1363 return 0;
1364 }
1365
nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, struct nvme_rdma_request *req, struct nvme_command *c)1366 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1367 struct nvme_rdma_request *req, struct nvme_command *c)
1368 {
1369 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1370
1371 sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1372 put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1373 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1374 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1375 return 0;
1376 }
1377
nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, struct nvme_rdma_request *req, struct nvme_command *c, int count)1378 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1379 struct nvme_rdma_request *req, struct nvme_command *c,
1380 int count)
1381 {
1382 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1383 int nr;
1384
1385 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1386 if (WARN_ON_ONCE(!req->mr))
1387 return -EAGAIN;
1388
1389 /*
1390 * Align the MR to a 4K page size to match the ctrl page size and
1391 * the block virtual boundary.
1392 */
1393 nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1394 SZ_4K);
1395 if (unlikely(nr < count)) {
1396 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1397 req->mr = NULL;
1398 if (nr < 0)
1399 return nr;
1400 return -EINVAL;
1401 }
1402
1403 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1404
1405 req->reg_cqe.done = nvme_rdma_memreg_done;
1406 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1407 req->reg_wr.wr.opcode = IB_WR_REG_MR;
1408 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1409 req->reg_wr.wr.num_sge = 0;
1410 req->reg_wr.mr = req->mr;
1411 req->reg_wr.key = req->mr->rkey;
1412 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1413 IB_ACCESS_REMOTE_READ |
1414 IB_ACCESS_REMOTE_WRITE;
1415
1416 sg->addr = cpu_to_le64(req->mr->iova);
1417 put_unaligned_le24(req->mr->length, sg->length);
1418 put_unaligned_le32(req->mr->rkey, sg->key);
1419 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1420 NVME_SGL_FMT_INVALIDATE;
1421
1422 return 0;
1423 }
1424
nvme_rdma_set_sig_domain(struct blk_integrity *bi, struct nvme_command *cmd, struct ib_sig_domain *domain, u16 control, u8 pi_type)1425 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1426 struct nvme_command *cmd, struct ib_sig_domain *domain,
1427 u16 control, u8 pi_type)
1428 {
1429 domain->sig_type = IB_SIG_TYPE_T10_DIF;
1430 domain->sig.dif.bg_type = IB_T10DIF_CRC;
1431 domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1432 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1433 if (control & NVME_RW_PRINFO_PRCHK_REF)
1434 domain->sig.dif.ref_remap = true;
1435
1436 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1437 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1438 domain->sig.dif.app_escape = true;
1439 if (pi_type == NVME_NS_DPS_PI_TYPE3)
1440 domain->sig.dif.ref_escape = true;
1441 }
1442
nvme_rdma_set_sig_attrs(struct blk_integrity *bi, struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs, u8 pi_type)1443 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1444 struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1445 u8 pi_type)
1446 {
1447 u16 control = le16_to_cpu(cmd->rw.control);
1448
1449 memset(sig_attrs, 0, sizeof(*sig_attrs));
1450 if (control & NVME_RW_PRINFO_PRACT) {
1451 /* for WRITE_INSERT/READ_STRIP no memory domain */
1452 sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1453 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1454 pi_type);
1455 /* Clear the PRACT bit since HCA will generate/verify the PI */
1456 control &= ~NVME_RW_PRINFO_PRACT;
1457 cmd->rw.control = cpu_to_le16(control);
1458 } else {
1459 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1460 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1461 pi_type);
1462 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1463 pi_type);
1464 }
1465 }
1466
nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)1467 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1468 {
1469 *mask = 0;
1470 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1471 *mask |= IB_SIG_CHECK_REFTAG;
1472 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1473 *mask |= IB_SIG_CHECK_GUARD;
1474 }
1475
nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)1476 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1477 {
1478 if (unlikely(wc->status != IB_WC_SUCCESS))
1479 nvme_rdma_wr_error(cq, wc, "SIG");
1480 }
1481
nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue, struct nvme_rdma_request *req, struct nvme_command *c, int count, int pi_count)1482 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1483 struct nvme_rdma_request *req, struct nvme_command *c,
1484 int count, int pi_count)
1485 {
1486 struct nvme_rdma_sgl *sgl = &req->data_sgl;
1487 struct ib_reg_wr *wr = &req->reg_wr;
1488 struct request *rq = blk_mq_rq_from_pdu(req);
1489 struct nvme_ns *ns = rq->q->queuedata;
1490 struct bio *bio = rq->bio;
1491 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1492 int nr;
1493
1494 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1495 if (WARN_ON_ONCE(!req->mr))
1496 return -EAGAIN;
1497
1498 nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1499 req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1500 SZ_4K);
1501 if (unlikely(nr))
1502 goto mr_put;
1503
1504 nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_disk), c,
1505 req->mr->sig_attrs, ns->pi_type);
1506 nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1507
1508 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1509
1510 req->reg_cqe.done = nvme_rdma_sig_done;
1511 memset(wr, 0, sizeof(*wr));
1512 wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1513 wr->wr.wr_cqe = &req->reg_cqe;
1514 wr->wr.num_sge = 0;
1515 wr->wr.send_flags = 0;
1516 wr->mr = req->mr;
1517 wr->key = req->mr->rkey;
1518 wr->access = IB_ACCESS_LOCAL_WRITE |
1519 IB_ACCESS_REMOTE_READ |
1520 IB_ACCESS_REMOTE_WRITE;
1521
1522 sg->addr = cpu_to_le64(req->mr->iova);
1523 put_unaligned_le24(req->mr->length, sg->length);
1524 put_unaligned_le32(req->mr->rkey, sg->key);
1525 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1526
1527 return 0;
1528
1529 mr_put:
1530 ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1531 req->mr = NULL;
1532 if (nr < 0)
1533 return nr;
1534 return -EINVAL;
1535 }
1536
nvme_rdma_map_data(struct nvme_rdma_queue *queue, struct request *rq, struct nvme_command *c)1537 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1538 struct request *rq, struct nvme_command *c)
1539 {
1540 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1541 struct nvme_rdma_device *dev = queue->device;
1542 struct ib_device *ibdev = dev->dev;
1543 int pi_count = 0;
1544 int count, ret;
1545
1546 req->num_sge = 1;
1547 refcount_set(&req->ref, 2); /* send and recv completions */
1548
1549 c->common.flags |= NVME_CMD_SGL_METABUF;
1550
1551 if (!blk_rq_nr_phys_segments(rq))
1552 return nvme_rdma_set_sg_null(c);
1553
1554 req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1555 ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1556 blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1557 NVME_INLINE_SG_CNT);
1558 if (ret)
1559 return -ENOMEM;
1560
1561 req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1562 req->data_sgl.sg_table.sgl);
1563
1564 count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1565 req->data_sgl.nents, rq_dma_dir(rq));
1566 if (unlikely(count <= 0)) {
1567 ret = -EIO;
1568 goto out_free_table;
1569 }
1570
1571 if (blk_integrity_rq(rq)) {
1572 req->metadata_sgl->sg_table.sgl =
1573 (struct scatterlist *)(req->metadata_sgl + 1);
1574 ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1575 blk_rq_count_integrity_sg(rq->q, rq->bio),
1576 req->metadata_sgl->sg_table.sgl,
1577 NVME_INLINE_METADATA_SG_CNT);
1578 if (unlikely(ret)) {
1579 ret = -ENOMEM;
1580 goto out_unmap_sg;
1581 }
1582
1583 req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1584 rq->bio, req->metadata_sgl->sg_table.sgl);
1585 pi_count = ib_dma_map_sg(ibdev,
1586 req->metadata_sgl->sg_table.sgl,
1587 req->metadata_sgl->nents,
1588 rq_dma_dir(rq));
1589 if (unlikely(pi_count <= 0)) {
1590 ret = -EIO;
1591 goto out_free_pi_table;
1592 }
1593 }
1594
1595 if (req->use_sig_mr) {
1596 ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1597 goto out;
1598 }
1599
1600 if (count <= dev->num_inline_segments) {
1601 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1602 queue->ctrl->use_inline_data &&
1603 blk_rq_payload_bytes(rq) <=
1604 nvme_rdma_inline_data_size(queue)) {
1605 ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1606 goto out;
1607 }
1608
1609 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1610 ret = nvme_rdma_map_sg_single(queue, req, c);
1611 goto out;
1612 }
1613 }
1614
1615 ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1616 out:
1617 if (unlikely(ret))
1618 goto out_unmap_pi_sg;
1619
1620 return 0;
1621
1622 out_unmap_pi_sg:
1623 if (blk_integrity_rq(rq))
1624 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1625 req->metadata_sgl->nents, rq_dma_dir(rq));
1626 out_free_pi_table:
1627 if (blk_integrity_rq(rq))
1628 sg_free_table_chained(&req->metadata_sgl->sg_table,
1629 NVME_INLINE_METADATA_SG_CNT);
1630 out_unmap_sg:
1631 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1632 rq_dma_dir(rq));
1633 out_free_table:
1634 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1635 return ret;
1636 }
1637
nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)1638 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1639 {
1640 struct nvme_rdma_qe *qe =
1641 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1642 struct nvme_rdma_request *req =
1643 container_of(qe, struct nvme_rdma_request, sqe);
1644
1645 if (unlikely(wc->status != IB_WC_SUCCESS))
1646 nvme_rdma_wr_error(cq, wc, "SEND");
1647 else
1648 nvme_rdma_end_request(req);
1649 }
1650
nvme_rdma_post_send(struct nvme_rdma_queue *queue, struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, struct ib_send_wr *first)1651 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1652 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1653 struct ib_send_wr *first)
1654 {
1655 struct ib_send_wr wr;
1656 int ret;
1657
1658 sge->addr = qe->dma;
1659 sge->length = sizeof(struct nvme_command);
1660 sge->lkey = queue->device->pd->local_dma_lkey;
1661
1662 wr.next = NULL;
1663 wr.wr_cqe = &qe->cqe;
1664 wr.sg_list = sge;
1665 wr.num_sge = num_sge;
1666 wr.opcode = IB_WR_SEND;
1667 wr.send_flags = IB_SEND_SIGNALED;
1668
1669 if (first)
1670 first->next = ≀
1671 else
1672 first = ≀
1673
1674 ret = ib_post_send(queue->qp, first, NULL);
1675 if (unlikely(ret)) {
1676 dev_err(queue->ctrl->ctrl.device,
1677 "%s failed with error code %d\n", __func__, ret);
1678 }
1679 return ret;
1680 }
1681
nvme_rdma_post_recv(struct nvme_rdma_queue *queue, struct nvme_rdma_qe *qe)1682 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1683 struct nvme_rdma_qe *qe)
1684 {
1685 struct ib_recv_wr wr;
1686 struct ib_sge list;
1687 int ret;
1688
1689 list.addr = qe->dma;
1690 list.length = sizeof(struct nvme_completion);
1691 list.lkey = queue->device->pd->local_dma_lkey;
1692
1693 qe->cqe.done = nvme_rdma_recv_done;
1694
1695 wr.next = NULL;
1696 wr.wr_cqe = &qe->cqe;
1697 wr.sg_list = &list;
1698 wr.num_sge = 1;
1699
1700 ret = ib_post_recv(queue->qp, &wr, NULL);
1701 if (unlikely(ret)) {
1702 dev_err(queue->ctrl->ctrl.device,
1703 "%s failed with error code %d\n", __func__, ret);
1704 }
1705 return ret;
1706 }
1707
nvme_rdma_tagset(struct nvme_rdma_queue *queue)1708 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1709 {
1710 u32 queue_idx = nvme_rdma_queue_idx(queue);
1711
1712 if (queue_idx == 0)
1713 return queue->ctrl->admin_tag_set.tags[queue_idx];
1714 return queue->ctrl->tag_set.tags[queue_idx - 1];
1715 }
1716
nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)1717 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1718 {
1719 if (unlikely(wc->status != IB_WC_SUCCESS))
1720 nvme_rdma_wr_error(cq, wc, "ASYNC");
1721 }
1722
nvme_rdma_submit_async_event(struct nvme_ctrl *arg)1723 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1724 {
1725 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1726 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1727 struct ib_device *dev = queue->device->dev;
1728 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1729 struct nvme_command *cmd = sqe->data;
1730 struct ib_sge sge;
1731 int ret;
1732
1733 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1734
1735 memset(cmd, 0, sizeof(*cmd));
1736 cmd->common.opcode = nvme_admin_async_event;
1737 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1738 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1739 nvme_rdma_set_sg_null(cmd);
1740
1741 sqe->cqe.done = nvme_rdma_async_done;
1742
1743 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1744 DMA_TO_DEVICE);
1745
1746 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1747 WARN_ON_ONCE(ret);
1748 }
1749
nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, struct nvme_completion *cqe, struct ib_wc *wc)1750 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1751 struct nvme_completion *cqe, struct ib_wc *wc)
1752 {
1753 struct request *rq;
1754 struct nvme_rdma_request *req;
1755
1756 rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id);
1757 if (!rq) {
1758 dev_err(queue->ctrl->ctrl.device,
1759 "got bad command_id %#x on QP %#x\n",
1760 cqe->command_id, queue->qp->qp_num);
1761 nvme_rdma_error_recovery(queue->ctrl);
1762 return;
1763 }
1764 req = blk_mq_rq_to_pdu(rq);
1765
1766 req->status = cqe->status;
1767 req->result = cqe->result;
1768
1769 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1770 if (unlikely(!req->mr ||
1771 wc->ex.invalidate_rkey != req->mr->rkey)) {
1772 dev_err(queue->ctrl->ctrl.device,
1773 "Bogus remote invalidation for rkey %#x\n",
1774 req->mr ? req->mr->rkey : 0);
1775 nvme_rdma_error_recovery(queue->ctrl);
1776 }
1777 } else if (req->mr) {
1778 int ret;
1779
1780 ret = nvme_rdma_inv_rkey(queue, req);
1781 if (unlikely(ret < 0)) {
1782 dev_err(queue->ctrl->ctrl.device,
1783 "Queueing INV WR for rkey %#x failed (%d)\n",
1784 req->mr->rkey, ret);
1785 nvme_rdma_error_recovery(queue->ctrl);
1786 }
1787 /* the local invalidation completion will end the request */
1788 return;
1789 }
1790
1791 nvme_rdma_end_request(req);
1792 }
1793
nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)1794 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1795 {
1796 struct nvme_rdma_qe *qe =
1797 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1798 struct nvme_rdma_queue *queue = wc->qp->qp_context;
1799 struct ib_device *ibdev = queue->device->dev;
1800 struct nvme_completion *cqe = qe->data;
1801 const size_t len = sizeof(struct nvme_completion);
1802
1803 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1804 nvme_rdma_wr_error(cq, wc, "RECV");
1805 return;
1806 }
1807
1808 /* sanity checking for received data length */
1809 if (unlikely(wc->byte_len < len)) {
1810 dev_err(queue->ctrl->ctrl.device,
1811 "Unexpected nvme completion length(%d)\n", wc->byte_len);
1812 nvme_rdma_error_recovery(queue->ctrl);
1813 return;
1814 }
1815
1816 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1817 /*
1818 * AEN requests are special as they don't time out and can
1819 * survive any kind of queue freeze and often don't respond to
1820 * aborts. We don't even bother to allocate a struct request
1821 * for them but rather special case them here.
1822 */
1823 if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1824 cqe->command_id)))
1825 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1826 &cqe->result);
1827 else
1828 nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1829 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1830
1831 nvme_rdma_post_recv(queue, qe);
1832 }
1833
nvme_rdma_conn_established(struct nvme_rdma_queue *queue)1834 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1835 {
1836 int ret, i;
1837
1838 for (i = 0; i < queue->queue_size; i++) {
1839 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1840 if (ret)
1841 return ret;
1842 }
1843
1844 return 0;
1845 }
1846
nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, struct rdma_cm_event *ev)1847 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1848 struct rdma_cm_event *ev)
1849 {
1850 struct rdma_cm_id *cm_id = queue->cm_id;
1851 int status = ev->status;
1852 const char *rej_msg;
1853 const struct nvme_rdma_cm_rej *rej_data;
1854 u8 rej_data_len;
1855
1856 rej_msg = rdma_reject_msg(cm_id, status);
1857 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1858
1859 if (rej_data && rej_data_len >= sizeof(u16)) {
1860 u16 sts = le16_to_cpu(rej_data->sts);
1861
1862 dev_err(queue->ctrl->ctrl.device,
1863 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1864 status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1865 } else {
1866 dev_err(queue->ctrl->ctrl.device,
1867 "Connect rejected: status %d (%s).\n", status, rej_msg);
1868 }
1869
1870 return -ECONNRESET;
1871 }
1872
nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)1873 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1874 {
1875 struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1876 int ret;
1877
1878 ret = nvme_rdma_create_queue_ib(queue);
1879 if (ret)
1880 return ret;
1881
1882 if (ctrl->opts->tos >= 0)
1883 rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1884 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1885 if (ret) {
1886 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1887 queue->cm_error);
1888 goto out_destroy_queue;
1889 }
1890
1891 return 0;
1892
1893 out_destroy_queue:
1894 nvme_rdma_destroy_queue_ib(queue);
1895 return ret;
1896 }
1897
nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)1898 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1899 {
1900 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1901 struct rdma_conn_param param = { };
1902 struct nvme_rdma_cm_req priv = { };
1903 int ret;
1904
1905 param.qp_num = queue->qp->qp_num;
1906 param.flow_control = 1;
1907
1908 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1909 /* maximum retry count */
1910 param.retry_count = 7;
1911 param.rnr_retry_count = 7;
1912 param.private_data = &priv;
1913 param.private_data_len = sizeof(priv);
1914
1915 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1916 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1917 /*
1918 * set the admin queue depth to the minimum size
1919 * specified by the Fabrics standard.
1920 */
1921 if (priv.qid == 0) {
1922 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1923 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1924 } else {
1925 /*
1926 * current interpretation of the fabrics spec
1927 * is at minimum you make hrqsize sqsize+1, or a
1928 * 1's based representation of sqsize.
1929 */
1930 priv.hrqsize = cpu_to_le16(queue->queue_size);
1931 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1932 }
1933
1934 ret = rdma_connect_locked(queue->cm_id, ¶m);
1935 if (ret) {
1936 dev_err(ctrl->ctrl.device,
1937 "rdma_connect_locked failed (%d).\n", ret);
1938 return ret;
1939 }
1940
1941 return 0;
1942 }
1943
nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, struct rdma_cm_event *ev)1944 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1945 struct rdma_cm_event *ev)
1946 {
1947 struct nvme_rdma_queue *queue = cm_id->context;
1948 int cm_error = 0;
1949
1950 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1951 rdma_event_msg(ev->event), ev->event,
1952 ev->status, cm_id);
1953
1954 switch (ev->event) {
1955 case RDMA_CM_EVENT_ADDR_RESOLVED:
1956 cm_error = nvme_rdma_addr_resolved(queue);
1957 break;
1958 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1959 cm_error = nvme_rdma_route_resolved(queue);
1960 break;
1961 case RDMA_CM_EVENT_ESTABLISHED:
1962 queue->cm_error = nvme_rdma_conn_established(queue);
1963 /* complete cm_done regardless of success/failure */
1964 complete(&queue->cm_done);
1965 return 0;
1966 case RDMA_CM_EVENT_REJECTED:
1967 cm_error = nvme_rdma_conn_rejected(queue, ev);
1968 break;
1969 case RDMA_CM_EVENT_ROUTE_ERROR:
1970 case RDMA_CM_EVENT_CONNECT_ERROR:
1971 case RDMA_CM_EVENT_UNREACHABLE:
1972 case RDMA_CM_EVENT_ADDR_ERROR:
1973 dev_dbg(queue->ctrl->ctrl.device,
1974 "CM error event %d\n", ev->event);
1975 cm_error = -ECONNRESET;
1976 break;
1977 case RDMA_CM_EVENT_DISCONNECTED:
1978 case RDMA_CM_EVENT_ADDR_CHANGE:
1979 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1980 dev_dbg(queue->ctrl->ctrl.device,
1981 "disconnect received - connection closed\n");
1982 nvme_rdma_error_recovery(queue->ctrl);
1983 break;
1984 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1985 /* device removal is handled via the ib_client API */
1986 break;
1987 default:
1988 dev_err(queue->ctrl->ctrl.device,
1989 "Unexpected RDMA CM event (%d)\n", ev->event);
1990 nvme_rdma_error_recovery(queue->ctrl);
1991 break;
1992 }
1993
1994 if (cm_error) {
1995 queue->cm_error = cm_error;
1996 complete(&queue->cm_done);
1997 }
1998
1999 return 0;
2000 }
2001
nvme_rdma_complete_timed_out(struct request *rq)2002 static void nvme_rdma_complete_timed_out(struct request *rq)
2003 {
2004 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2005 struct nvme_rdma_queue *queue = req->queue;
2006
2007 nvme_rdma_stop_queue(queue);
2008 if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2009 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2010 blk_mq_complete_request(rq);
2011 }
2012 }
2013
2014 static enum blk_eh_timer_return
nvme_rdma_timeout(struct request *rq, bool reserved)2015 nvme_rdma_timeout(struct request *rq, bool reserved)
2016 {
2017 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2018 struct nvme_rdma_queue *queue = req->queue;
2019 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
2020
2021 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
2022 rq->tag, nvme_rdma_queue_idx(queue));
2023
2024 if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
2025 /*
2026 * If we are resetting, connecting or deleting we should
2027 * complete immediately because we may block controller
2028 * teardown or setup sequence
2029 * - ctrl disable/shutdown fabrics requests
2030 * - connect requests
2031 * - initialization admin requests
2032 * - I/O requests that entered after unquiescing and
2033 * the controller stopped responding
2034 *
2035 * All other requests should be cancelled by the error
2036 * recovery work, so it's fine that we fail it here.
2037 */
2038 nvme_rdma_complete_timed_out(rq);
2039 return BLK_EH_DONE;
2040 }
2041
2042 /*
2043 * LIVE state should trigger the normal error recovery which will
2044 * handle completing this request.
2045 */
2046 nvme_rdma_error_recovery(ctrl);
2047 return BLK_EH_RESET_TIMER;
2048 }
2049
nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *bd)2050 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
2051 const struct blk_mq_queue_data *bd)
2052 {
2053 struct nvme_ns *ns = hctx->queue->queuedata;
2054 struct nvme_rdma_queue *queue = hctx->driver_data;
2055 struct request *rq = bd->rq;
2056 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2057 struct nvme_rdma_qe *sqe = &req->sqe;
2058 struct nvme_command *c = sqe->data;
2059 struct ib_device *dev;
2060 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
2061 blk_status_t ret;
2062 int err;
2063
2064 WARN_ON_ONCE(rq->tag < 0);
2065
2066 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2067 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2068
2069 dev = queue->device->dev;
2070
2071 req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
2072 sizeof(struct nvme_command),
2073 DMA_TO_DEVICE);
2074 err = ib_dma_mapping_error(dev, req->sqe.dma);
2075 if (unlikely(err))
2076 return BLK_STS_RESOURCE;
2077
2078 ib_dma_sync_single_for_cpu(dev, sqe->dma,
2079 sizeof(struct nvme_command), DMA_TO_DEVICE);
2080
2081 ret = nvme_setup_cmd(ns, rq, c);
2082 if (ret)
2083 goto unmap_qe;
2084
2085 blk_mq_start_request(rq);
2086
2087 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2088 queue->pi_support &&
2089 (c->common.opcode == nvme_cmd_write ||
2090 c->common.opcode == nvme_cmd_read) &&
2091 nvme_ns_has_pi(ns))
2092 req->use_sig_mr = true;
2093 else
2094 req->use_sig_mr = false;
2095
2096 err = nvme_rdma_map_data(queue, rq, c);
2097 if (unlikely(err < 0)) {
2098 dev_err(queue->ctrl->ctrl.device,
2099 "Failed to map data (%d)\n", err);
2100 goto err;
2101 }
2102
2103 sqe->cqe.done = nvme_rdma_send_done;
2104
2105 ib_dma_sync_single_for_device(dev, sqe->dma,
2106 sizeof(struct nvme_command), DMA_TO_DEVICE);
2107
2108 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2109 req->mr ? &req->reg_wr.wr : NULL);
2110 if (unlikely(err))
2111 goto err_unmap;
2112
2113 return BLK_STS_OK;
2114
2115 err_unmap:
2116 nvme_rdma_unmap_data(queue, rq);
2117 err:
2118 if (err == -ENOMEM || err == -EAGAIN)
2119 ret = BLK_STS_RESOURCE;
2120 else
2121 ret = BLK_STS_IOERR;
2122 nvme_cleanup_cmd(rq);
2123 unmap_qe:
2124 ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2125 DMA_TO_DEVICE);
2126 return ret;
2127 }
2128
nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)2129 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
2130 {
2131 struct nvme_rdma_queue *queue = hctx->driver_data;
2132
2133 return ib_process_cq_direct(queue->ib_cq, -1);
2134 }
2135
nvme_rdma_check_pi_status(struct nvme_rdma_request *req)2136 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2137 {
2138 struct request *rq = blk_mq_rq_from_pdu(req);
2139 struct ib_mr_status mr_status;
2140 int ret;
2141
2142 ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2143 if (ret) {
2144 pr_err("ib_check_mr_status failed, ret %d\n", ret);
2145 nvme_req(rq)->status = NVME_SC_INVALID_PI;
2146 return;
2147 }
2148
2149 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2150 switch (mr_status.sig_err.err_type) {
2151 case IB_SIG_BAD_GUARD:
2152 nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2153 break;
2154 case IB_SIG_BAD_REFTAG:
2155 nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2156 break;
2157 case IB_SIG_BAD_APPTAG:
2158 nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2159 break;
2160 }
2161 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2162 mr_status.sig_err.err_type, mr_status.sig_err.expected,
2163 mr_status.sig_err.actual);
2164 }
2165 }
2166
nvme_rdma_complete_rq(struct request *rq)2167 static void nvme_rdma_complete_rq(struct request *rq)
2168 {
2169 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2170 struct nvme_rdma_queue *queue = req->queue;
2171 struct ib_device *ibdev = queue->device->dev;
2172
2173 if (req->use_sig_mr)
2174 nvme_rdma_check_pi_status(req);
2175
2176 nvme_rdma_unmap_data(queue, rq);
2177 ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2178 DMA_TO_DEVICE);
2179 nvme_complete_rq(rq);
2180 }
2181
nvme_rdma_map_queues(struct blk_mq_tag_set *set)2182 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2183 {
2184 struct nvme_rdma_ctrl *ctrl = set->driver_data;
2185 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2186
2187 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2188 /* separate read/write queues */
2189 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2190 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2191 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2192 set->map[HCTX_TYPE_READ].nr_queues =
2193 ctrl->io_queues[HCTX_TYPE_READ];
2194 set->map[HCTX_TYPE_READ].queue_offset =
2195 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2196 } else {
2197 /* shared read/write queues */
2198 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2199 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2200 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2201 set->map[HCTX_TYPE_READ].nr_queues =
2202 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2203 set->map[HCTX_TYPE_READ].queue_offset = 0;
2204 }
2205 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
2206 ctrl->device->dev, 0);
2207 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
2208 ctrl->device->dev, 0);
2209
2210 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2211 /* map dedicated poll queues only if we have queues left */
2212 set->map[HCTX_TYPE_POLL].nr_queues =
2213 ctrl->io_queues[HCTX_TYPE_POLL];
2214 set->map[HCTX_TYPE_POLL].queue_offset =
2215 ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2216 ctrl->io_queues[HCTX_TYPE_READ];
2217 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2218 }
2219
2220 dev_info(ctrl->ctrl.device,
2221 "mapped %d/%d/%d default/read/poll queues.\n",
2222 ctrl->io_queues[HCTX_TYPE_DEFAULT],
2223 ctrl->io_queues[HCTX_TYPE_READ],
2224 ctrl->io_queues[HCTX_TYPE_POLL]);
2225
2226 return 0;
2227 }
2228
2229 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2230 .queue_rq = nvme_rdma_queue_rq,
2231 .complete = nvme_rdma_complete_rq,
2232 .init_request = nvme_rdma_init_request,
2233 .exit_request = nvme_rdma_exit_request,
2234 .init_hctx = nvme_rdma_init_hctx,
2235 .timeout = nvme_rdma_timeout,
2236 .map_queues = nvme_rdma_map_queues,
2237 .poll = nvme_rdma_poll,
2238 };
2239
2240 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2241 .queue_rq = nvme_rdma_queue_rq,
2242 .complete = nvme_rdma_complete_rq,
2243 .init_request = nvme_rdma_init_request,
2244 .exit_request = nvme_rdma_exit_request,
2245 .init_hctx = nvme_rdma_init_admin_hctx,
2246 .timeout = nvme_rdma_timeout,
2247 };
2248
nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)2249 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2250 {
2251 nvme_rdma_teardown_io_queues(ctrl, shutdown);
2252 nvme_stop_admin_queue(&ctrl->ctrl);
2253 if (shutdown)
2254 nvme_shutdown_ctrl(&ctrl->ctrl);
2255 else
2256 nvme_disable_ctrl(&ctrl->ctrl);
2257 nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2258 }
2259
nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)2260 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2261 {
2262 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2263 }
2264
nvme_rdma_reset_ctrl_work(struct work_struct *work)2265 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2266 {
2267 struct nvme_rdma_ctrl *ctrl =
2268 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2269
2270 nvme_stop_ctrl(&ctrl->ctrl);
2271 nvme_rdma_shutdown_ctrl(ctrl, false);
2272
2273 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2274 /* state change failure should never happen */
2275 WARN_ON_ONCE(1);
2276 return;
2277 }
2278
2279 if (nvme_rdma_setup_ctrl(ctrl, false))
2280 goto out_fail;
2281
2282 return;
2283
2284 out_fail:
2285 ++ctrl->ctrl.nr_reconnects;
2286 nvme_rdma_reconnect_or_remove(ctrl);
2287 }
2288
2289 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2290 .name = "rdma",
2291 .module = THIS_MODULE,
2292 .flags = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2293 .reg_read32 = nvmf_reg_read32,
2294 .reg_read64 = nvmf_reg_read64,
2295 .reg_write32 = nvmf_reg_write32,
2296 .free_ctrl = nvme_rdma_free_ctrl,
2297 .submit_async_event = nvme_rdma_submit_async_event,
2298 .delete_ctrl = nvme_rdma_delete_ctrl,
2299 .get_address = nvmf_get_address,
2300 .stop_ctrl = nvme_rdma_stop_ctrl,
2301 };
2302
2303 /*
2304 * Fails a connection request if it matches an existing controller
2305 * (association) with the same tuple:
2306 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2307 *
2308 * if local address is not specified in the request, it will match an
2309 * existing controller with all the other parameters the same and no
2310 * local port address specified as well.
2311 *
2312 * The ports don't need to be compared as they are intrinsically
2313 * already matched by the port pointers supplied.
2314 */
2315 static bool
nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)2316 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2317 {
2318 struct nvme_rdma_ctrl *ctrl;
2319 bool found = false;
2320
2321 mutex_lock(&nvme_rdma_ctrl_mutex);
2322 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2323 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2324 if (found)
2325 break;
2326 }
2327 mutex_unlock(&nvme_rdma_ctrl_mutex);
2328
2329 return found;
2330 }
2331
nvme_rdma_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)2332 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2333 struct nvmf_ctrl_options *opts)
2334 {
2335 struct nvme_rdma_ctrl *ctrl;
2336 int ret;
2337 bool changed;
2338
2339 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2340 if (!ctrl)
2341 return ERR_PTR(-ENOMEM);
2342 ctrl->ctrl.opts = opts;
2343 INIT_LIST_HEAD(&ctrl->list);
2344
2345 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2346 opts->trsvcid =
2347 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2348 if (!opts->trsvcid) {
2349 ret = -ENOMEM;
2350 goto out_free_ctrl;
2351 }
2352 opts->mask |= NVMF_OPT_TRSVCID;
2353 }
2354
2355 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2356 opts->traddr, opts->trsvcid, &ctrl->addr);
2357 if (ret) {
2358 pr_err("malformed address passed: %s:%s\n",
2359 opts->traddr, opts->trsvcid);
2360 goto out_free_ctrl;
2361 }
2362
2363 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2364 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2365 opts->host_traddr, NULL, &ctrl->src_addr);
2366 if (ret) {
2367 pr_err("malformed src address passed: %s\n",
2368 opts->host_traddr);
2369 goto out_free_ctrl;
2370 }
2371 }
2372
2373 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2374 ret = -EALREADY;
2375 goto out_free_ctrl;
2376 }
2377
2378 INIT_DELAYED_WORK(&ctrl->reconnect_work,
2379 nvme_rdma_reconnect_ctrl_work);
2380 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2381 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2382
2383 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2384 opts->nr_poll_queues + 1;
2385 ctrl->ctrl.sqsize = opts->queue_size - 1;
2386 ctrl->ctrl.kato = opts->kato;
2387
2388 ret = -ENOMEM;
2389 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2390 GFP_KERNEL);
2391 if (!ctrl->queues)
2392 goto out_free_ctrl;
2393
2394 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2395 0 /* no quirks, we're perfect! */);
2396 if (ret)
2397 goto out_kfree_queues;
2398
2399 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2400 WARN_ON_ONCE(!changed);
2401
2402 ret = nvme_rdma_setup_ctrl(ctrl, true);
2403 if (ret)
2404 goto out_uninit_ctrl;
2405
2406 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2407 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2408
2409 mutex_lock(&nvme_rdma_ctrl_mutex);
2410 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2411 mutex_unlock(&nvme_rdma_ctrl_mutex);
2412
2413 return &ctrl->ctrl;
2414
2415 out_uninit_ctrl:
2416 nvme_uninit_ctrl(&ctrl->ctrl);
2417 nvme_put_ctrl(&ctrl->ctrl);
2418 if (ret > 0)
2419 ret = -EIO;
2420 return ERR_PTR(ret);
2421 out_kfree_queues:
2422 kfree(ctrl->queues);
2423 out_free_ctrl:
2424 kfree(ctrl);
2425 return ERR_PTR(ret);
2426 }
2427
2428 static struct nvmf_transport_ops nvme_rdma_transport = {
2429 .name = "rdma",
2430 .module = THIS_MODULE,
2431 .required_opts = NVMF_OPT_TRADDR,
2432 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2433 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2434 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2435 NVMF_OPT_TOS,
2436 .create_ctrl = nvme_rdma_create_ctrl,
2437 };
2438
nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)2439 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2440 {
2441 struct nvme_rdma_ctrl *ctrl;
2442 struct nvme_rdma_device *ndev;
2443 bool found = false;
2444
2445 mutex_lock(&device_list_mutex);
2446 list_for_each_entry(ndev, &device_list, entry) {
2447 if (ndev->dev == ib_device) {
2448 found = true;
2449 break;
2450 }
2451 }
2452 mutex_unlock(&device_list_mutex);
2453
2454 if (!found)
2455 return;
2456
2457 /* Delete all controllers using this device */
2458 mutex_lock(&nvme_rdma_ctrl_mutex);
2459 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2460 if (ctrl->device->dev != ib_device)
2461 continue;
2462 nvme_delete_ctrl(&ctrl->ctrl);
2463 }
2464 mutex_unlock(&nvme_rdma_ctrl_mutex);
2465
2466 flush_workqueue(nvme_delete_wq);
2467 }
2468
2469 static struct ib_client nvme_rdma_ib_client = {
2470 .name = "nvme_rdma",
2471 .remove = nvme_rdma_remove_one
2472 };
2473
nvme_rdma_init_module(void)2474 static int __init nvme_rdma_init_module(void)
2475 {
2476 int ret;
2477
2478 ret = ib_register_client(&nvme_rdma_ib_client);
2479 if (ret)
2480 return ret;
2481
2482 ret = nvmf_register_transport(&nvme_rdma_transport);
2483 if (ret)
2484 goto err_unreg_client;
2485
2486 return 0;
2487
2488 err_unreg_client:
2489 ib_unregister_client(&nvme_rdma_ib_client);
2490 return ret;
2491 }
2492
nvme_rdma_cleanup_module(void)2493 static void __exit nvme_rdma_cleanup_module(void)
2494 {
2495 struct nvme_rdma_ctrl *ctrl;
2496
2497 nvmf_unregister_transport(&nvme_rdma_transport);
2498 ib_unregister_client(&nvme_rdma_ib_client);
2499
2500 mutex_lock(&nvme_rdma_ctrl_mutex);
2501 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2502 nvme_delete_ctrl(&ctrl->ctrl);
2503 mutex_unlock(&nvme_rdma_ctrl_mutex);
2504 flush_workqueue(nvme_delete_wq);
2505 }
2506
2507 module_init(nvme_rdma_init_module);
2508 module_exit(nvme_rdma_cleanup_module);
2509
2510 MODULE_LICENSE("GPL v2");
2511