1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA host code.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22 
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 
30 
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
32 
33 #define NVME_RDMA_MAX_SEGMENTS		256
34 
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS	4
36 
37 #define NVME_RDMA_DATA_SGL_SIZE \
38 	(sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39 #define NVME_RDMA_METADATA_SGL_SIZE \
40 	(sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
41 
42 struct nvme_rdma_device {
43 	struct ib_device	*dev;
44 	struct ib_pd		*pd;
45 	struct kref		ref;
46 	struct list_head	entry;
47 	unsigned int		num_inline_segments;
48 };
49 
50 struct nvme_rdma_qe {
51 	struct ib_cqe		cqe;
52 	void			*data;
53 	u64			dma;
54 };
55 
56 struct nvme_rdma_sgl {
57 	int			nents;
58 	struct sg_table		sg_table;
59 };
60 
61 struct nvme_rdma_queue;
62 struct nvme_rdma_request {
63 	struct nvme_request	req;
64 	struct ib_mr		*mr;
65 	struct nvme_rdma_qe	sqe;
66 	union nvme_result	result;
67 	__le16			status;
68 	refcount_t		ref;
69 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
70 	u32			num_sge;
71 	struct ib_reg_wr	reg_wr;
72 	struct ib_cqe		reg_cqe;
73 	struct nvme_rdma_queue  *queue;
74 	struct nvme_rdma_sgl	data_sgl;
75 	struct nvme_rdma_sgl	*metadata_sgl;
76 	bool			use_sig_mr;
77 };
78 
79 enum nvme_rdma_queue_flags {
80 	NVME_RDMA_Q_ALLOCATED		= 0,
81 	NVME_RDMA_Q_LIVE		= 1,
82 	NVME_RDMA_Q_TR_READY		= 2,
83 };
84 
85 struct nvme_rdma_queue {
86 	struct nvme_rdma_qe	*rsp_ring;
87 	int			queue_size;
88 	size_t			cmnd_capsule_len;
89 	struct nvme_rdma_ctrl	*ctrl;
90 	struct nvme_rdma_device	*device;
91 	struct ib_cq		*ib_cq;
92 	struct ib_qp		*qp;
93 
94 	unsigned long		flags;
95 	struct rdma_cm_id	*cm_id;
96 	int			cm_error;
97 	struct completion	cm_done;
98 	bool			pi_support;
99 	int			cq_size;
100 	struct mutex		queue_lock;
101 };
102 
103 struct nvme_rdma_ctrl {
104 	/* read only in the hot path */
105 	struct nvme_rdma_queue	*queues;
106 
107 	/* other member variables */
108 	struct blk_mq_tag_set	tag_set;
109 	struct work_struct	err_work;
110 
111 	struct nvme_rdma_qe	async_event_sqe;
112 
113 	struct delayed_work	reconnect_work;
114 
115 	struct list_head	list;
116 
117 	struct blk_mq_tag_set	admin_tag_set;
118 	struct nvme_rdma_device	*device;
119 
120 	u32			max_fr_pages;
121 
122 	struct sockaddr_storage addr;
123 	struct sockaddr_storage src_addr;
124 
125 	struct nvme_ctrl	ctrl;
126 	bool			use_inline_data;
127 	u32			io_queues[HCTX_MAX_TYPES];
128 };
129 
to_rdma_ctrl(struct nvme_ctrl *ctrl)130 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
131 {
132 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
133 }
134 
135 static LIST_HEAD(device_list);
136 static DEFINE_MUTEX(device_list_mutex);
137 
138 static LIST_HEAD(nvme_rdma_ctrl_list);
139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
140 
141 /*
142  * Disabling this option makes small I/O goes faster, but is fundamentally
143  * unsafe.  With it turned off we will have to register a global rkey that
144  * allows read and write access to all physical memory.
145  */
146 static bool register_always = true;
147 module_param(register_always, bool, 0444);
148 MODULE_PARM_DESC(register_always,
149 	 "Use memory registration even for contiguous memory regions");
150 
151 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152 		struct rdma_cm_event *event);
153 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154 static void nvme_rdma_complete_rq(struct request *rq);
155 
156 static const struct blk_mq_ops nvme_rdma_mq_ops;
157 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
158 
nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
160 {
161 	return queue - queue->ctrl->queues;
162 }
163 
nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)164 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
165 {
166 	return nvme_rdma_queue_idx(queue) >
167 		queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
168 		queue->ctrl->io_queues[HCTX_TYPE_READ];
169 }
170 
nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)171 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
172 {
173 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175 
nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, size_t capsule_size, enum dma_data_direction dir)176 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177 		size_t capsule_size, enum dma_data_direction dir)
178 {
179 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
180 	kfree(qe->data);
181 }
182 
nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, size_t capsule_size, enum dma_data_direction dir)183 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184 		size_t capsule_size, enum dma_data_direction dir)
185 {
186 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
187 	if (!qe->data)
188 		return -ENOMEM;
189 
190 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
191 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
192 		kfree(qe->data);
193 		qe->data = NULL;
194 		return -ENOMEM;
195 	}
196 
197 	return 0;
198 }
199 
nvme_rdma_free_ring(struct ib_device *ibdev, struct nvme_rdma_qe *ring, size_t ib_queue_size, size_t capsule_size, enum dma_data_direction dir)200 static void nvme_rdma_free_ring(struct ib_device *ibdev,
201 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
202 		size_t capsule_size, enum dma_data_direction dir)
203 {
204 	int i;
205 
206 	for (i = 0; i < ib_queue_size; i++)
207 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
208 	kfree(ring);
209 }
210 
nvme_rdma_alloc_ring(struct ib_device *ibdev, size_t ib_queue_size, size_t capsule_size, enum dma_data_direction dir)211 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
212 		size_t ib_queue_size, size_t capsule_size,
213 		enum dma_data_direction dir)
214 {
215 	struct nvme_rdma_qe *ring;
216 	int i;
217 
218 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
219 	if (!ring)
220 		return NULL;
221 
222 	/*
223 	 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
224 	 * lifetime. It's safe, since any chage in the underlying RDMA device
225 	 * will issue error recovery and queue re-creation.
226 	 */
227 	for (i = 0; i < ib_queue_size; i++) {
228 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
229 			goto out_free_ring;
230 	}
231 
232 	return ring;
233 
234 out_free_ring:
235 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
236 	return NULL;
237 }
238 
nvme_rdma_qp_event(struct ib_event *event, void *context)239 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
240 {
241 	pr_debug("QP event %s (%d)\n",
242 		 ib_event_msg(event->event), event->event);
243 
244 }
245 
nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)246 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
247 {
248 	int ret;
249 
250 	ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
251 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
252 	if (ret < 0)
253 		return ret;
254 	if (ret == 0)
255 		return -ETIMEDOUT;
256 	WARN_ON_ONCE(queue->cm_error > 0);
257 	return queue->cm_error;
258 }
259 
nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)260 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
261 {
262 	struct nvme_rdma_device *dev = queue->device;
263 	struct ib_qp_init_attr init_attr;
264 	int ret;
265 
266 	memset(&init_attr, 0, sizeof(init_attr));
267 	init_attr.event_handler = nvme_rdma_qp_event;
268 	/* +1 for drain */
269 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
270 	/* +1 for drain */
271 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
272 	init_attr.cap.max_recv_sge = 1;
273 	init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
274 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
275 	init_attr.qp_type = IB_QPT_RC;
276 	init_attr.send_cq = queue->ib_cq;
277 	init_attr.recv_cq = queue->ib_cq;
278 	if (queue->pi_support)
279 		init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
280 	init_attr.qp_context = queue;
281 
282 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
283 
284 	queue->qp = queue->cm_id->qp;
285 	return ret;
286 }
287 
nvme_rdma_exit_request(struct blk_mq_tag_set *set, struct request *rq, unsigned int hctx_idx)288 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
289 		struct request *rq, unsigned int hctx_idx)
290 {
291 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
292 
293 	kfree(req->sqe.data);
294 }
295 
nvme_rdma_init_request(struct blk_mq_tag_set *set, struct request *rq, unsigned int hctx_idx, unsigned int numa_node)296 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
297 		struct request *rq, unsigned int hctx_idx,
298 		unsigned int numa_node)
299 {
300 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
301 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
302 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
303 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
304 
305 	nvme_req(rq)->ctrl = &ctrl->ctrl;
306 	req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
307 	if (!req->sqe.data)
308 		return -ENOMEM;
309 
310 	/* metadata nvme_rdma_sgl struct is located after command's data SGL */
311 	if (queue->pi_support)
312 		req->metadata_sgl = (void *)nvme_req(rq) +
313 			sizeof(struct nvme_rdma_request) +
314 			NVME_RDMA_DATA_SGL_SIZE;
315 
316 	req->queue = queue;
317 
318 	return 0;
319 }
320 
nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx)321 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
322 		unsigned int hctx_idx)
323 {
324 	struct nvme_rdma_ctrl *ctrl = data;
325 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
326 
327 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
328 
329 	hctx->driver_data = queue;
330 	return 0;
331 }
332 
nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx)333 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
334 		unsigned int hctx_idx)
335 {
336 	struct nvme_rdma_ctrl *ctrl = data;
337 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
338 
339 	BUG_ON(hctx_idx != 0);
340 
341 	hctx->driver_data = queue;
342 	return 0;
343 }
344 
nvme_rdma_free_dev(struct kref *ref)345 static void nvme_rdma_free_dev(struct kref *ref)
346 {
347 	struct nvme_rdma_device *ndev =
348 		container_of(ref, struct nvme_rdma_device, ref);
349 
350 	mutex_lock(&device_list_mutex);
351 	list_del(&ndev->entry);
352 	mutex_unlock(&device_list_mutex);
353 
354 	ib_dealloc_pd(ndev->pd);
355 	kfree(ndev);
356 }
357 
nvme_rdma_dev_put(struct nvme_rdma_device *dev)358 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
359 {
360 	kref_put(&dev->ref, nvme_rdma_free_dev);
361 }
362 
nvme_rdma_dev_get(struct nvme_rdma_device *dev)363 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
364 {
365 	return kref_get_unless_zero(&dev->ref);
366 }
367 
368 static struct nvme_rdma_device *
nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)369 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
370 {
371 	struct nvme_rdma_device *ndev;
372 
373 	mutex_lock(&device_list_mutex);
374 	list_for_each_entry(ndev, &device_list, entry) {
375 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
376 		    nvme_rdma_dev_get(ndev))
377 			goto out_unlock;
378 	}
379 
380 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
381 	if (!ndev)
382 		goto out_err;
383 
384 	ndev->dev = cm_id->device;
385 	kref_init(&ndev->ref);
386 
387 	ndev->pd = ib_alloc_pd(ndev->dev,
388 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
389 	if (IS_ERR(ndev->pd))
390 		goto out_free_dev;
391 
392 	if (!(ndev->dev->attrs.device_cap_flags &
393 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
394 		dev_err(&ndev->dev->dev,
395 			"Memory registrations not supported.\n");
396 		goto out_free_pd;
397 	}
398 
399 	ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
400 					ndev->dev->attrs.max_send_sge - 1);
401 	list_add(&ndev->entry, &device_list);
402 out_unlock:
403 	mutex_unlock(&device_list_mutex);
404 	return ndev;
405 
406 out_free_pd:
407 	ib_dealloc_pd(ndev->pd);
408 out_free_dev:
409 	kfree(ndev);
410 out_err:
411 	mutex_unlock(&device_list_mutex);
412 	return NULL;
413 }
414 
nvme_rdma_free_cq(struct nvme_rdma_queue *queue)415 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
416 {
417 	if (nvme_rdma_poll_queue(queue))
418 		ib_free_cq(queue->ib_cq);
419 	else
420 		ib_cq_pool_put(queue->ib_cq, queue->cq_size);
421 }
422 
nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)423 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
424 {
425 	struct nvme_rdma_device *dev;
426 	struct ib_device *ibdev;
427 
428 	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
429 		return;
430 
431 	dev = queue->device;
432 	ibdev = dev->dev;
433 
434 	if (queue->pi_support)
435 		ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
436 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
437 
438 	/*
439 	 * The cm_id object might have been destroyed during RDMA connection
440 	 * establishment error flow to avoid getting other cma events, thus
441 	 * the destruction of the QP shouldn't use rdma_cm API.
442 	 */
443 	ib_destroy_qp(queue->qp);
444 	nvme_rdma_free_cq(queue);
445 
446 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
447 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
448 
449 	nvme_rdma_dev_put(dev);
450 }
451 
nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)452 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
453 {
454 	u32 max_page_list_len;
455 
456 	if (pi_support)
457 		max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
458 	else
459 		max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
460 
461 	return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
462 }
463 
nvme_rdma_create_cq(struct ib_device *ibdev, struct nvme_rdma_queue *queue)464 static int nvme_rdma_create_cq(struct ib_device *ibdev,
465 		struct nvme_rdma_queue *queue)
466 {
467 	int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
468 	enum ib_poll_context poll_ctx;
469 
470 	/*
471 	 * Spread I/O queues completion vectors according their queue index.
472 	 * Admin queues can always go on completion vector 0.
473 	 */
474 	comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
475 
476 	/* Polling queues need direct cq polling context */
477 	if (nvme_rdma_poll_queue(queue)) {
478 		poll_ctx = IB_POLL_DIRECT;
479 		queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
480 					   comp_vector, poll_ctx);
481 	} else {
482 		poll_ctx = IB_POLL_SOFTIRQ;
483 		queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
484 					      comp_vector, poll_ctx);
485 	}
486 
487 	if (IS_ERR(queue->ib_cq)) {
488 		ret = PTR_ERR(queue->ib_cq);
489 		return ret;
490 	}
491 
492 	return 0;
493 }
494 
nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)495 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
496 {
497 	struct ib_device *ibdev;
498 	const int send_wr_factor = 3;			/* MR, SEND, INV */
499 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
500 	int ret, pages_per_mr;
501 
502 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
503 	if (!queue->device) {
504 		dev_err(queue->cm_id->device->dev.parent,
505 			"no client data found!\n");
506 		return -ECONNREFUSED;
507 	}
508 	ibdev = queue->device->dev;
509 
510 	/* +1 for ib_stop_cq */
511 	queue->cq_size = cq_factor * queue->queue_size + 1;
512 
513 	ret = nvme_rdma_create_cq(ibdev, queue);
514 	if (ret)
515 		goto out_put_dev;
516 
517 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
518 	if (ret)
519 		goto out_destroy_ib_cq;
520 
521 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
522 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
523 	if (!queue->rsp_ring) {
524 		ret = -ENOMEM;
525 		goto out_destroy_qp;
526 	}
527 
528 	/*
529 	 * Currently we don't use SG_GAPS MR's so if the first entry is
530 	 * misaligned we'll end up using two entries for a single data page,
531 	 * so one additional entry is required.
532 	 */
533 	pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
534 	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
535 			      queue->queue_size,
536 			      IB_MR_TYPE_MEM_REG,
537 			      pages_per_mr, 0);
538 	if (ret) {
539 		dev_err(queue->ctrl->ctrl.device,
540 			"failed to initialize MR pool sized %d for QID %d\n",
541 			queue->queue_size, nvme_rdma_queue_idx(queue));
542 		goto out_destroy_ring;
543 	}
544 
545 	if (queue->pi_support) {
546 		ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
547 				      queue->queue_size, IB_MR_TYPE_INTEGRITY,
548 				      pages_per_mr, pages_per_mr);
549 		if (ret) {
550 			dev_err(queue->ctrl->ctrl.device,
551 				"failed to initialize PI MR pool sized %d for QID %d\n",
552 				queue->queue_size, nvme_rdma_queue_idx(queue));
553 			goto out_destroy_mr_pool;
554 		}
555 	}
556 
557 	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
558 
559 	return 0;
560 
561 out_destroy_mr_pool:
562 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
563 out_destroy_ring:
564 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
565 			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
566 out_destroy_qp:
567 	rdma_destroy_qp(queue->cm_id);
568 out_destroy_ib_cq:
569 	nvme_rdma_free_cq(queue);
570 out_put_dev:
571 	nvme_rdma_dev_put(queue->device);
572 	return ret;
573 }
574 
nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, int idx, size_t queue_size)575 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
576 		int idx, size_t queue_size)
577 {
578 	struct nvme_rdma_queue *queue;
579 	struct sockaddr *src_addr = NULL;
580 	int ret;
581 
582 	queue = &ctrl->queues[idx];
583 	mutex_init(&queue->queue_lock);
584 	queue->ctrl = ctrl;
585 	if (idx && ctrl->ctrl.max_integrity_segments)
586 		queue->pi_support = true;
587 	else
588 		queue->pi_support = false;
589 	init_completion(&queue->cm_done);
590 
591 	if (idx > 0)
592 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
593 	else
594 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
595 
596 	queue->queue_size = queue_size;
597 
598 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
599 			RDMA_PS_TCP, IB_QPT_RC);
600 	if (IS_ERR(queue->cm_id)) {
601 		dev_info(ctrl->ctrl.device,
602 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
603 		ret = PTR_ERR(queue->cm_id);
604 		goto out_destroy_mutex;
605 	}
606 
607 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
608 		src_addr = (struct sockaddr *)&ctrl->src_addr;
609 
610 	queue->cm_error = -ETIMEDOUT;
611 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
612 			(struct sockaddr *)&ctrl->addr,
613 			NVME_RDMA_CONNECT_TIMEOUT_MS);
614 	if (ret) {
615 		dev_info(ctrl->ctrl.device,
616 			"rdma_resolve_addr failed (%d).\n", ret);
617 		goto out_destroy_cm_id;
618 	}
619 
620 	ret = nvme_rdma_wait_for_cm(queue);
621 	if (ret) {
622 		dev_info(ctrl->ctrl.device,
623 			"rdma connection establishment failed (%d)\n", ret);
624 		goto out_destroy_cm_id;
625 	}
626 
627 	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
628 
629 	return 0;
630 
631 out_destroy_cm_id:
632 	rdma_destroy_id(queue->cm_id);
633 	nvme_rdma_destroy_queue_ib(queue);
634 out_destroy_mutex:
635 	mutex_destroy(&queue->queue_lock);
636 	return ret;
637 }
638 
__nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)639 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
640 {
641 	rdma_disconnect(queue->cm_id);
642 	ib_drain_qp(queue->qp);
643 }
644 
nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)645 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
646 {
647 	if (!test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
648 		return;
649 
650 	mutex_lock(&queue->queue_lock);
651 	if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
652 		__nvme_rdma_stop_queue(queue);
653 	mutex_unlock(&queue->queue_lock);
654 }
655 
nvme_rdma_free_queue(struct nvme_rdma_queue *queue)656 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
657 {
658 	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
659 		return;
660 
661 	rdma_destroy_id(queue->cm_id);
662 	nvme_rdma_destroy_queue_ib(queue);
663 	mutex_destroy(&queue->queue_lock);
664 }
665 
nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)666 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
667 {
668 	int i;
669 
670 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
671 		nvme_rdma_free_queue(&ctrl->queues[i]);
672 }
673 
nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)674 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
675 {
676 	int i;
677 
678 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
679 		nvme_rdma_stop_queue(&ctrl->queues[i]);
680 }
681 
nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)682 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
683 {
684 	struct nvme_rdma_queue *queue = &ctrl->queues[idx];
685 	bool poll = nvme_rdma_poll_queue(queue);
686 	int ret;
687 
688 	if (idx)
689 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
690 	else
691 		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
692 
693 	if (!ret) {
694 		set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
695 	} else {
696 		if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
697 			__nvme_rdma_stop_queue(queue);
698 		dev_info(ctrl->ctrl.device,
699 			"failed to connect queue: %d ret=%d\n", idx, ret);
700 	}
701 	return ret;
702 }
703 
nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)704 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
705 {
706 	int i, ret = 0;
707 
708 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
709 		ret = nvme_rdma_start_queue(ctrl, i);
710 		if (ret)
711 			goto out_stop_queues;
712 	}
713 
714 	return 0;
715 
716 out_stop_queues:
717 	for (i--; i >= 1; i--)
718 		nvme_rdma_stop_queue(&ctrl->queues[i]);
719 	return ret;
720 }
721 
nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)722 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
723 {
724 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
725 	struct ib_device *ibdev = ctrl->device->dev;
726 	unsigned int nr_io_queues, nr_default_queues;
727 	unsigned int nr_read_queues, nr_poll_queues;
728 	int i, ret;
729 
730 	nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
731 				min(opts->nr_io_queues, num_online_cpus()));
732 	nr_default_queues =  min_t(unsigned int, ibdev->num_comp_vectors,
733 				min(opts->nr_write_queues, num_online_cpus()));
734 	nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
735 	nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
736 
737 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
738 	if (ret)
739 		return ret;
740 
741 	if (nr_io_queues == 0) {
742 		dev_err(ctrl->ctrl.device,
743 			"unable to set any I/O queues\n");
744 		return -ENOMEM;
745 	}
746 
747 	ctrl->ctrl.queue_count = nr_io_queues + 1;
748 	dev_info(ctrl->ctrl.device,
749 		"creating %d I/O queues.\n", nr_io_queues);
750 
751 	if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
752 		/*
753 		 * separate read/write queues
754 		 * hand out dedicated default queues only after we have
755 		 * sufficient read queues.
756 		 */
757 		ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
758 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
759 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
760 			min(nr_default_queues, nr_io_queues);
761 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
762 	} else {
763 		/*
764 		 * shared read/write queues
765 		 * either no write queues were requested, or we don't have
766 		 * sufficient queue count to have dedicated default queues.
767 		 */
768 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
769 			min(nr_read_queues, nr_io_queues);
770 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
771 	}
772 
773 	if (opts->nr_poll_queues && nr_io_queues) {
774 		/* map dedicated poll queues only if we have queues left */
775 		ctrl->io_queues[HCTX_TYPE_POLL] =
776 			min(nr_poll_queues, nr_io_queues);
777 	}
778 
779 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
780 		ret = nvme_rdma_alloc_queue(ctrl, i,
781 				ctrl->ctrl.sqsize + 1);
782 		if (ret)
783 			goto out_free_queues;
784 	}
785 
786 	return 0;
787 
788 out_free_queues:
789 	for (i--; i >= 1; i--)
790 		nvme_rdma_free_queue(&ctrl->queues[i]);
791 
792 	return ret;
793 }
794 
nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, bool admin)795 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
796 		bool admin)
797 {
798 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
799 	struct blk_mq_tag_set *set;
800 	int ret;
801 
802 	if (admin) {
803 		set = &ctrl->admin_tag_set;
804 		memset(set, 0, sizeof(*set));
805 		set->ops = &nvme_rdma_admin_mq_ops;
806 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
807 		set->reserved_tags = 2; /* connect + keep-alive */
808 		set->numa_node = nctrl->numa_node;
809 		set->cmd_size = sizeof(struct nvme_rdma_request) +
810 				NVME_RDMA_DATA_SGL_SIZE;
811 		set->driver_data = ctrl;
812 		set->nr_hw_queues = 1;
813 		set->timeout = ADMIN_TIMEOUT;
814 		set->flags = BLK_MQ_F_NO_SCHED;
815 	} else {
816 		set = &ctrl->tag_set;
817 		memset(set, 0, sizeof(*set));
818 		set->ops = &nvme_rdma_mq_ops;
819 		set->queue_depth = nctrl->sqsize + 1;
820 		set->reserved_tags = 1; /* fabric connect */
821 		set->numa_node = nctrl->numa_node;
822 		set->flags = BLK_MQ_F_SHOULD_MERGE;
823 		set->cmd_size = sizeof(struct nvme_rdma_request) +
824 				NVME_RDMA_DATA_SGL_SIZE;
825 		if (nctrl->max_integrity_segments)
826 			set->cmd_size += sizeof(struct nvme_rdma_sgl) +
827 					 NVME_RDMA_METADATA_SGL_SIZE;
828 		set->driver_data = ctrl;
829 		set->nr_hw_queues = nctrl->queue_count - 1;
830 		set->timeout = NVME_IO_TIMEOUT;
831 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
832 	}
833 
834 	ret = blk_mq_alloc_tag_set(set);
835 	if (ret)
836 		return ERR_PTR(ret);
837 
838 	return set;
839 }
840 
nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, bool remove)841 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
842 		bool remove)
843 {
844 	if (remove) {
845 		blk_cleanup_queue(ctrl->ctrl.admin_q);
846 		blk_cleanup_queue(ctrl->ctrl.fabrics_q);
847 		blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
848 	}
849 	if (ctrl->async_event_sqe.data) {
850 		cancel_work_sync(&ctrl->ctrl.async_event_work);
851 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
852 				sizeof(struct nvme_command), DMA_TO_DEVICE);
853 		ctrl->async_event_sqe.data = NULL;
854 	}
855 	nvme_rdma_free_queue(&ctrl->queues[0]);
856 }
857 
nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, bool new)858 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
859 		bool new)
860 {
861 	bool pi_capable = false;
862 	int error;
863 
864 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
865 	if (error)
866 		return error;
867 
868 	ctrl->device = ctrl->queues[0].device;
869 	ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
870 
871 	/* T10-PI support */
872 	if (ctrl->device->dev->attrs.device_cap_flags &
873 	    IB_DEVICE_INTEGRITY_HANDOVER)
874 		pi_capable = true;
875 
876 	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
877 							pi_capable);
878 
879 	/*
880 	 * Bind the async event SQE DMA mapping to the admin queue lifetime.
881 	 * It's safe, since any chage in the underlying RDMA device will issue
882 	 * error recovery and queue re-creation.
883 	 */
884 	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
885 			sizeof(struct nvme_command), DMA_TO_DEVICE);
886 	if (error)
887 		goto out_free_queue;
888 
889 	if (new) {
890 		ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
891 		if (IS_ERR(ctrl->ctrl.admin_tagset)) {
892 			error = PTR_ERR(ctrl->ctrl.admin_tagset);
893 			goto out_free_async_qe;
894 		}
895 
896 		ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
897 		if (IS_ERR(ctrl->ctrl.fabrics_q)) {
898 			error = PTR_ERR(ctrl->ctrl.fabrics_q);
899 			goto out_free_tagset;
900 		}
901 
902 		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
903 		if (IS_ERR(ctrl->ctrl.admin_q)) {
904 			error = PTR_ERR(ctrl->ctrl.admin_q);
905 			goto out_cleanup_fabrics_q;
906 		}
907 	}
908 
909 	error = nvme_rdma_start_queue(ctrl, 0);
910 	if (error)
911 		goto out_cleanup_queue;
912 
913 	error = nvme_enable_ctrl(&ctrl->ctrl);
914 	if (error)
915 		goto out_stop_queue;
916 
917 	ctrl->ctrl.max_segments = ctrl->max_fr_pages;
918 	ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
919 	if (pi_capable)
920 		ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
921 	else
922 		ctrl->ctrl.max_integrity_segments = 0;
923 
924 	nvme_start_admin_queue(&ctrl->ctrl);
925 
926 	error = nvme_init_identify(&ctrl->ctrl);
927 	if (error)
928 		goto out_quiesce_queue;
929 
930 	return 0;
931 
932 out_quiesce_queue:
933 	nvme_stop_admin_queue(&ctrl->ctrl);
934 	blk_sync_queue(ctrl->ctrl.admin_q);
935 out_stop_queue:
936 	nvme_rdma_stop_queue(&ctrl->queues[0]);
937 	nvme_cancel_admin_tagset(&ctrl->ctrl);
938 out_cleanup_queue:
939 	if (new)
940 		blk_cleanup_queue(ctrl->ctrl.admin_q);
941 out_cleanup_fabrics_q:
942 	if (new)
943 		blk_cleanup_queue(ctrl->ctrl.fabrics_q);
944 out_free_tagset:
945 	if (new)
946 		blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
947 out_free_async_qe:
948 	if (ctrl->async_event_sqe.data) {
949 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
950 			sizeof(struct nvme_command), DMA_TO_DEVICE);
951 		ctrl->async_event_sqe.data = NULL;
952 	}
953 out_free_queue:
954 	nvme_rdma_free_queue(&ctrl->queues[0]);
955 	return error;
956 }
957 
nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, bool remove)958 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
959 		bool remove)
960 {
961 	if (remove) {
962 		blk_cleanup_queue(ctrl->ctrl.connect_q);
963 		blk_mq_free_tag_set(ctrl->ctrl.tagset);
964 	}
965 	nvme_rdma_free_io_queues(ctrl);
966 }
967 
nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)968 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
969 {
970 	int ret;
971 
972 	ret = nvme_rdma_alloc_io_queues(ctrl);
973 	if (ret)
974 		return ret;
975 
976 	if (new) {
977 		ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
978 		if (IS_ERR(ctrl->ctrl.tagset)) {
979 			ret = PTR_ERR(ctrl->ctrl.tagset);
980 			goto out_free_io_queues;
981 		}
982 
983 		ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
984 		if (IS_ERR(ctrl->ctrl.connect_q)) {
985 			ret = PTR_ERR(ctrl->ctrl.connect_q);
986 			goto out_free_tag_set;
987 		}
988 	}
989 
990 	ret = nvme_rdma_start_io_queues(ctrl);
991 	if (ret)
992 		goto out_cleanup_connect_q;
993 
994 	if (!new) {
995 		nvme_start_freeze(&ctrl->ctrl);
996 		nvme_start_queues(&ctrl->ctrl);
997 		if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
998 			/*
999 			 * If we timed out waiting for freeze we are likely to
1000 			 * be stuck.  Fail the controller initialization just
1001 			 * to be safe.
1002 			 */
1003 			ret = -ENODEV;
1004 			nvme_unfreeze(&ctrl->ctrl);
1005 			goto out_wait_freeze_timed_out;
1006 		}
1007 		blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
1008 			ctrl->ctrl.queue_count - 1);
1009 		nvme_unfreeze(&ctrl->ctrl);
1010 	}
1011 
1012 	return 0;
1013 
1014 out_wait_freeze_timed_out:
1015 	nvme_stop_queues(&ctrl->ctrl);
1016 	nvme_sync_io_queues(&ctrl->ctrl);
1017 	nvme_rdma_stop_io_queues(ctrl);
1018 out_cleanup_connect_q:
1019 	nvme_cancel_tagset(&ctrl->ctrl);
1020 	if (new)
1021 		blk_cleanup_queue(ctrl->ctrl.connect_q);
1022 out_free_tag_set:
1023 	if (new)
1024 		blk_mq_free_tag_set(ctrl->ctrl.tagset);
1025 out_free_io_queues:
1026 	nvme_rdma_free_io_queues(ctrl);
1027 	return ret;
1028 }
1029 
nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl, bool remove)1030 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
1031 		bool remove)
1032 {
1033 	nvme_stop_admin_queue(&ctrl->ctrl);
1034 	blk_sync_queue(ctrl->ctrl.admin_q);
1035 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1036 	if (ctrl->ctrl.admin_tagset) {
1037 		blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
1038 			nvme_cancel_request, &ctrl->ctrl);
1039 		blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset);
1040 	}
1041 	if (remove)
1042 		nvme_start_admin_queue(&ctrl->ctrl);
1043 	nvme_rdma_destroy_admin_queue(ctrl, remove);
1044 }
1045 
nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl, bool remove)1046 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
1047 		bool remove)
1048 {
1049 	if (ctrl->ctrl.queue_count > 1) {
1050 		nvme_stop_queues(&ctrl->ctrl);
1051 		nvme_sync_io_queues(&ctrl->ctrl);
1052 		nvme_rdma_stop_io_queues(ctrl);
1053 		if (ctrl->ctrl.tagset) {
1054 			blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
1055 				nvme_cancel_request, &ctrl->ctrl);
1056 			blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset);
1057 		}
1058 		if (remove)
1059 			nvme_start_queues(&ctrl->ctrl);
1060 		nvme_rdma_destroy_io_queues(ctrl, remove);
1061 	}
1062 }
1063 
nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)1064 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
1065 {
1066 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1067 
1068 	cancel_work_sync(&ctrl->err_work);
1069 	cancel_delayed_work_sync(&ctrl->reconnect_work);
1070 }
1071 
nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)1072 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
1073 {
1074 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1075 
1076 	if (list_empty(&ctrl->list))
1077 		goto free_ctrl;
1078 
1079 	mutex_lock(&nvme_rdma_ctrl_mutex);
1080 	list_del(&ctrl->list);
1081 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1082 
1083 	nvmf_free_options(nctrl->opts);
1084 free_ctrl:
1085 	kfree(ctrl->queues);
1086 	kfree(ctrl);
1087 }
1088 
nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)1089 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
1090 {
1091 	/* If we are resetting/deleting then do nothing */
1092 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
1093 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
1094 			ctrl->ctrl.state == NVME_CTRL_LIVE);
1095 		return;
1096 	}
1097 
1098 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
1099 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
1100 			ctrl->ctrl.opts->reconnect_delay);
1101 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
1102 				ctrl->ctrl.opts->reconnect_delay * HZ);
1103 	} else {
1104 		nvme_delete_ctrl(&ctrl->ctrl);
1105 	}
1106 }
1107 
nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)1108 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1109 {
1110 	int ret = -EINVAL;
1111 	bool changed;
1112 
1113 	ret = nvme_rdma_configure_admin_queue(ctrl, new);
1114 	if (ret)
1115 		return ret;
1116 
1117 	if (ctrl->ctrl.icdoff) {
1118 		ret = -EOPNOTSUPP;
1119 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1120 		goto destroy_admin;
1121 	}
1122 
1123 	if (!(ctrl->ctrl.sgls & (1 << 2))) {
1124 		ret = -EOPNOTSUPP;
1125 		dev_err(ctrl->ctrl.device,
1126 			"Mandatory keyed sgls are not supported!\n");
1127 		goto destroy_admin;
1128 	}
1129 
1130 	if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1131 		dev_warn(ctrl->ctrl.device,
1132 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1133 			ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1134 	}
1135 
1136 	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1137 		dev_warn(ctrl->ctrl.device,
1138 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1139 			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1140 		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1141 	}
1142 
1143 	if (ctrl->ctrl.sgls & (1 << 20))
1144 		ctrl->use_inline_data = true;
1145 
1146 	if (ctrl->ctrl.queue_count > 1) {
1147 		ret = nvme_rdma_configure_io_queues(ctrl, new);
1148 		if (ret)
1149 			goto destroy_admin;
1150 	}
1151 
1152 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1153 	if (!changed) {
1154 		/*
1155 		 * state change failure is ok if we started ctrl delete,
1156 		 * unless we're during creation of a new controller to
1157 		 * avoid races with teardown flow.
1158 		 */
1159 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1160 			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1161 		WARN_ON_ONCE(new);
1162 		ret = -EINVAL;
1163 		goto destroy_io;
1164 	}
1165 
1166 	nvme_start_ctrl(&ctrl->ctrl);
1167 	return 0;
1168 
1169 destroy_io:
1170 	if (ctrl->ctrl.queue_count > 1) {
1171 		nvme_stop_queues(&ctrl->ctrl);
1172 		nvme_sync_io_queues(&ctrl->ctrl);
1173 		nvme_rdma_stop_io_queues(ctrl);
1174 		nvme_cancel_tagset(&ctrl->ctrl);
1175 		nvme_rdma_destroy_io_queues(ctrl, new);
1176 	}
1177 destroy_admin:
1178 	nvme_stop_admin_queue(&ctrl->ctrl);
1179 	blk_sync_queue(ctrl->ctrl.admin_q);
1180 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1181 	nvme_cancel_admin_tagset(&ctrl->ctrl);
1182 	nvme_rdma_destroy_admin_queue(ctrl, new);
1183 	return ret;
1184 }
1185 
nvme_rdma_reconnect_ctrl_work(struct work_struct *work)1186 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1187 {
1188 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1189 			struct nvme_rdma_ctrl, reconnect_work);
1190 
1191 	++ctrl->ctrl.nr_reconnects;
1192 
1193 	if (nvme_rdma_setup_ctrl(ctrl, false))
1194 		goto requeue;
1195 
1196 	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1197 			ctrl->ctrl.nr_reconnects);
1198 
1199 	ctrl->ctrl.nr_reconnects = 0;
1200 
1201 	return;
1202 
1203 requeue:
1204 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1205 			ctrl->ctrl.nr_reconnects);
1206 	nvme_rdma_reconnect_or_remove(ctrl);
1207 }
1208 
nvme_rdma_error_recovery_work(struct work_struct *work)1209 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1210 {
1211 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1212 			struct nvme_rdma_ctrl, err_work);
1213 
1214 	nvme_stop_keep_alive(&ctrl->ctrl);
1215 	flush_work(&ctrl->ctrl.async_event_work);
1216 	nvme_rdma_teardown_io_queues(ctrl, false);
1217 	nvme_start_queues(&ctrl->ctrl);
1218 	nvme_rdma_teardown_admin_queue(ctrl, false);
1219 	nvme_start_admin_queue(&ctrl->ctrl);
1220 
1221 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1222 		/* state change failure is ok if we started ctrl delete */
1223 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1224 			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1225 		return;
1226 	}
1227 
1228 	nvme_rdma_reconnect_or_remove(ctrl);
1229 }
1230 
nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)1231 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1232 {
1233 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1234 		return;
1235 
1236 	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1237 	queue_work(nvme_reset_wq, &ctrl->err_work);
1238 }
1239 
nvme_rdma_end_request(struct nvme_rdma_request *req)1240 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1241 {
1242 	struct request *rq = blk_mq_rq_from_pdu(req);
1243 
1244 	if (!refcount_dec_and_test(&req->ref))
1245 		return;
1246 	if (!nvme_try_complete_req(rq, req->status, req->result))
1247 		nvme_rdma_complete_rq(rq);
1248 }
1249 
nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, const char *op)1250 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1251 		const char *op)
1252 {
1253 	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1254 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1255 
1256 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1257 		dev_info(ctrl->ctrl.device,
1258 			     "%s for CQE 0x%p failed with status %s (%d)\n",
1259 			     op, wc->wr_cqe,
1260 			     ib_wc_status_msg(wc->status), wc->status);
1261 	nvme_rdma_error_recovery(ctrl);
1262 }
1263 
nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)1264 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1265 {
1266 	if (unlikely(wc->status != IB_WC_SUCCESS))
1267 		nvme_rdma_wr_error(cq, wc, "MEMREG");
1268 }
1269 
nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)1270 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1271 {
1272 	struct nvme_rdma_request *req =
1273 		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1274 
1275 	if (unlikely(wc->status != IB_WC_SUCCESS))
1276 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1277 	else
1278 		nvme_rdma_end_request(req);
1279 }
1280 
nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, struct nvme_rdma_request *req)1281 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1282 		struct nvme_rdma_request *req)
1283 {
1284 	struct ib_send_wr wr = {
1285 		.opcode		    = IB_WR_LOCAL_INV,
1286 		.next		    = NULL,
1287 		.num_sge	    = 0,
1288 		.send_flags	    = IB_SEND_SIGNALED,
1289 		.ex.invalidate_rkey = req->mr->rkey,
1290 	};
1291 
1292 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1293 	wr.wr_cqe = &req->reg_cqe;
1294 
1295 	return ib_post_send(queue->qp, &wr, NULL);
1296 }
1297 
nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, struct request *rq)1298 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1299 		struct request *rq)
1300 {
1301 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1302 	struct nvme_rdma_device *dev = queue->device;
1303 	struct ib_device *ibdev = dev->dev;
1304 	struct list_head *pool = &queue->qp->rdma_mrs;
1305 
1306 	if (!blk_rq_nr_phys_segments(rq))
1307 		return;
1308 
1309 	if (blk_integrity_rq(rq)) {
1310 		ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1311 				req->metadata_sgl->nents, rq_dma_dir(rq));
1312 		sg_free_table_chained(&req->metadata_sgl->sg_table,
1313 				      NVME_INLINE_METADATA_SG_CNT);
1314 	}
1315 
1316 	if (req->use_sig_mr)
1317 		pool = &queue->qp->sig_mrs;
1318 
1319 	if (req->mr) {
1320 		ib_mr_pool_put(queue->qp, pool, req->mr);
1321 		req->mr = NULL;
1322 	}
1323 
1324 	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1325 			rq_dma_dir(rq));
1326 	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1327 }
1328 
nvme_rdma_set_sg_null(struct nvme_command *c)1329 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1330 {
1331 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1332 
1333 	sg->addr = 0;
1334 	put_unaligned_le24(0, sg->length);
1335 	put_unaligned_le32(0, sg->key);
1336 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1337 	return 0;
1338 }
1339 
nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, struct nvme_rdma_request *req, struct nvme_command *c, int count)1340 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1341 		struct nvme_rdma_request *req, struct nvme_command *c,
1342 		int count)
1343 {
1344 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1345 	struct ib_sge *sge = &req->sge[1];
1346 	struct scatterlist *sgl;
1347 	u32 len = 0;
1348 	int i;
1349 
1350 	for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
1351 		sge->addr = sg_dma_address(sgl);
1352 		sge->length = sg_dma_len(sgl);
1353 		sge->lkey = queue->device->pd->local_dma_lkey;
1354 		len += sge->length;
1355 		sge++;
1356 	}
1357 
1358 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1359 	sg->length = cpu_to_le32(len);
1360 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1361 
1362 	req->num_sge += count;
1363 	return 0;
1364 }
1365 
nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, struct nvme_rdma_request *req, struct nvme_command *c)1366 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1367 		struct nvme_rdma_request *req, struct nvme_command *c)
1368 {
1369 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1370 
1371 	sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1372 	put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1373 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1374 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1375 	return 0;
1376 }
1377 
nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, struct nvme_rdma_request *req, struct nvme_command *c, int count)1378 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1379 		struct nvme_rdma_request *req, struct nvme_command *c,
1380 		int count)
1381 {
1382 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1383 	int nr;
1384 
1385 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1386 	if (WARN_ON_ONCE(!req->mr))
1387 		return -EAGAIN;
1388 
1389 	/*
1390 	 * Align the MR to a 4K page size to match the ctrl page size and
1391 	 * the block virtual boundary.
1392 	 */
1393 	nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1394 			  SZ_4K);
1395 	if (unlikely(nr < count)) {
1396 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1397 		req->mr = NULL;
1398 		if (nr < 0)
1399 			return nr;
1400 		return -EINVAL;
1401 	}
1402 
1403 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1404 
1405 	req->reg_cqe.done = nvme_rdma_memreg_done;
1406 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1407 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1408 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1409 	req->reg_wr.wr.num_sge = 0;
1410 	req->reg_wr.mr = req->mr;
1411 	req->reg_wr.key = req->mr->rkey;
1412 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1413 			     IB_ACCESS_REMOTE_READ |
1414 			     IB_ACCESS_REMOTE_WRITE;
1415 
1416 	sg->addr = cpu_to_le64(req->mr->iova);
1417 	put_unaligned_le24(req->mr->length, sg->length);
1418 	put_unaligned_le32(req->mr->rkey, sg->key);
1419 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1420 			NVME_SGL_FMT_INVALIDATE;
1421 
1422 	return 0;
1423 }
1424 
nvme_rdma_set_sig_domain(struct blk_integrity *bi, struct nvme_command *cmd, struct ib_sig_domain *domain, u16 control, u8 pi_type)1425 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1426 		struct nvme_command *cmd, struct ib_sig_domain *domain,
1427 		u16 control, u8 pi_type)
1428 {
1429 	domain->sig_type = IB_SIG_TYPE_T10_DIF;
1430 	domain->sig.dif.bg_type = IB_T10DIF_CRC;
1431 	domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1432 	domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1433 	if (control & NVME_RW_PRINFO_PRCHK_REF)
1434 		domain->sig.dif.ref_remap = true;
1435 
1436 	domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1437 	domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1438 	domain->sig.dif.app_escape = true;
1439 	if (pi_type == NVME_NS_DPS_PI_TYPE3)
1440 		domain->sig.dif.ref_escape = true;
1441 }
1442 
nvme_rdma_set_sig_attrs(struct blk_integrity *bi, struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs, u8 pi_type)1443 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1444 		struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1445 		u8 pi_type)
1446 {
1447 	u16 control = le16_to_cpu(cmd->rw.control);
1448 
1449 	memset(sig_attrs, 0, sizeof(*sig_attrs));
1450 	if (control & NVME_RW_PRINFO_PRACT) {
1451 		/* for WRITE_INSERT/READ_STRIP no memory domain */
1452 		sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1453 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1454 					 pi_type);
1455 		/* Clear the PRACT bit since HCA will generate/verify the PI */
1456 		control &= ~NVME_RW_PRINFO_PRACT;
1457 		cmd->rw.control = cpu_to_le16(control);
1458 	} else {
1459 		/* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1460 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1461 					 pi_type);
1462 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1463 					 pi_type);
1464 	}
1465 }
1466 
nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)1467 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1468 {
1469 	*mask = 0;
1470 	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1471 		*mask |= IB_SIG_CHECK_REFTAG;
1472 	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1473 		*mask |= IB_SIG_CHECK_GUARD;
1474 }
1475 
nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)1476 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1477 {
1478 	if (unlikely(wc->status != IB_WC_SUCCESS))
1479 		nvme_rdma_wr_error(cq, wc, "SIG");
1480 }
1481 
nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue, struct nvme_rdma_request *req, struct nvme_command *c, int count, int pi_count)1482 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1483 		struct nvme_rdma_request *req, struct nvme_command *c,
1484 		int count, int pi_count)
1485 {
1486 	struct nvme_rdma_sgl *sgl = &req->data_sgl;
1487 	struct ib_reg_wr *wr = &req->reg_wr;
1488 	struct request *rq = blk_mq_rq_from_pdu(req);
1489 	struct nvme_ns *ns = rq->q->queuedata;
1490 	struct bio *bio = rq->bio;
1491 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1492 	int nr;
1493 
1494 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1495 	if (WARN_ON_ONCE(!req->mr))
1496 		return -EAGAIN;
1497 
1498 	nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1499 			     req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1500 			     SZ_4K);
1501 	if (unlikely(nr))
1502 		goto mr_put;
1503 
1504 	nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_disk), c,
1505 				req->mr->sig_attrs, ns->pi_type);
1506 	nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1507 
1508 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1509 
1510 	req->reg_cqe.done = nvme_rdma_sig_done;
1511 	memset(wr, 0, sizeof(*wr));
1512 	wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1513 	wr->wr.wr_cqe = &req->reg_cqe;
1514 	wr->wr.num_sge = 0;
1515 	wr->wr.send_flags = 0;
1516 	wr->mr = req->mr;
1517 	wr->key = req->mr->rkey;
1518 	wr->access = IB_ACCESS_LOCAL_WRITE |
1519 		     IB_ACCESS_REMOTE_READ |
1520 		     IB_ACCESS_REMOTE_WRITE;
1521 
1522 	sg->addr = cpu_to_le64(req->mr->iova);
1523 	put_unaligned_le24(req->mr->length, sg->length);
1524 	put_unaligned_le32(req->mr->rkey, sg->key);
1525 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1526 
1527 	return 0;
1528 
1529 mr_put:
1530 	ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1531 	req->mr = NULL;
1532 	if (nr < 0)
1533 		return nr;
1534 	return -EINVAL;
1535 }
1536 
nvme_rdma_map_data(struct nvme_rdma_queue *queue, struct request *rq, struct nvme_command *c)1537 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1538 		struct request *rq, struct nvme_command *c)
1539 {
1540 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1541 	struct nvme_rdma_device *dev = queue->device;
1542 	struct ib_device *ibdev = dev->dev;
1543 	int pi_count = 0;
1544 	int count, ret;
1545 
1546 	req->num_sge = 1;
1547 	refcount_set(&req->ref, 2); /* send and recv completions */
1548 
1549 	c->common.flags |= NVME_CMD_SGL_METABUF;
1550 
1551 	if (!blk_rq_nr_phys_segments(rq))
1552 		return nvme_rdma_set_sg_null(c);
1553 
1554 	req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1555 	ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1556 			blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1557 			NVME_INLINE_SG_CNT);
1558 	if (ret)
1559 		return -ENOMEM;
1560 
1561 	req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1562 					    req->data_sgl.sg_table.sgl);
1563 
1564 	count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1565 			      req->data_sgl.nents, rq_dma_dir(rq));
1566 	if (unlikely(count <= 0)) {
1567 		ret = -EIO;
1568 		goto out_free_table;
1569 	}
1570 
1571 	if (blk_integrity_rq(rq)) {
1572 		req->metadata_sgl->sg_table.sgl =
1573 			(struct scatterlist *)(req->metadata_sgl + 1);
1574 		ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1575 				blk_rq_count_integrity_sg(rq->q, rq->bio),
1576 				req->metadata_sgl->sg_table.sgl,
1577 				NVME_INLINE_METADATA_SG_CNT);
1578 		if (unlikely(ret)) {
1579 			ret = -ENOMEM;
1580 			goto out_unmap_sg;
1581 		}
1582 
1583 		req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1584 				rq->bio, req->metadata_sgl->sg_table.sgl);
1585 		pi_count = ib_dma_map_sg(ibdev,
1586 					 req->metadata_sgl->sg_table.sgl,
1587 					 req->metadata_sgl->nents,
1588 					 rq_dma_dir(rq));
1589 		if (unlikely(pi_count <= 0)) {
1590 			ret = -EIO;
1591 			goto out_free_pi_table;
1592 		}
1593 	}
1594 
1595 	if (req->use_sig_mr) {
1596 		ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1597 		goto out;
1598 	}
1599 
1600 	if (count <= dev->num_inline_segments) {
1601 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1602 		    queue->ctrl->use_inline_data &&
1603 		    blk_rq_payload_bytes(rq) <=
1604 				nvme_rdma_inline_data_size(queue)) {
1605 			ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1606 			goto out;
1607 		}
1608 
1609 		if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1610 			ret = nvme_rdma_map_sg_single(queue, req, c);
1611 			goto out;
1612 		}
1613 	}
1614 
1615 	ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1616 out:
1617 	if (unlikely(ret))
1618 		goto out_unmap_pi_sg;
1619 
1620 	return 0;
1621 
1622 out_unmap_pi_sg:
1623 	if (blk_integrity_rq(rq))
1624 		ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1625 				req->metadata_sgl->nents, rq_dma_dir(rq));
1626 out_free_pi_table:
1627 	if (blk_integrity_rq(rq))
1628 		sg_free_table_chained(&req->metadata_sgl->sg_table,
1629 				      NVME_INLINE_METADATA_SG_CNT);
1630 out_unmap_sg:
1631 	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1632 			rq_dma_dir(rq));
1633 out_free_table:
1634 	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1635 	return ret;
1636 }
1637 
nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)1638 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1639 {
1640 	struct nvme_rdma_qe *qe =
1641 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1642 	struct nvme_rdma_request *req =
1643 		container_of(qe, struct nvme_rdma_request, sqe);
1644 
1645 	if (unlikely(wc->status != IB_WC_SUCCESS))
1646 		nvme_rdma_wr_error(cq, wc, "SEND");
1647 	else
1648 		nvme_rdma_end_request(req);
1649 }
1650 
nvme_rdma_post_send(struct nvme_rdma_queue *queue, struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, struct ib_send_wr *first)1651 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1652 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1653 		struct ib_send_wr *first)
1654 {
1655 	struct ib_send_wr wr;
1656 	int ret;
1657 
1658 	sge->addr   = qe->dma;
1659 	sge->length = sizeof(struct nvme_command);
1660 	sge->lkey   = queue->device->pd->local_dma_lkey;
1661 
1662 	wr.next       = NULL;
1663 	wr.wr_cqe     = &qe->cqe;
1664 	wr.sg_list    = sge;
1665 	wr.num_sge    = num_sge;
1666 	wr.opcode     = IB_WR_SEND;
1667 	wr.send_flags = IB_SEND_SIGNALED;
1668 
1669 	if (first)
1670 		first->next = &wr;
1671 	else
1672 		first = &wr;
1673 
1674 	ret = ib_post_send(queue->qp, first, NULL);
1675 	if (unlikely(ret)) {
1676 		dev_err(queue->ctrl->ctrl.device,
1677 			     "%s failed with error code %d\n", __func__, ret);
1678 	}
1679 	return ret;
1680 }
1681 
nvme_rdma_post_recv(struct nvme_rdma_queue *queue, struct nvme_rdma_qe *qe)1682 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1683 		struct nvme_rdma_qe *qe)
1684 {
1685 	struct ib_recv_wr wr;
1686 	struct ib_sge list;
1687 	int ret;
1688 
1689 	list.addr   = qe->dma;
1690 	list.length = sizeof(struct nvme_completion);
1691 	list.lkey   = queue->device->pd->local_dma_lkey;
1692 
1693 	qe->cqe.done = nvme_rdma_recv_done;
1694 
1695 	wr.next     = NULL;
1696 	wr.wr_cqe   = &qe->cqe;
1697 	wr.sg_list  = &list;
1698 	wr.num_sge  = 1;
1699 
1700 	ret = ib_post_recv(queue->qp, &wr, NULL);
1701 	if (unlikely(ret)) {
1702 		dev_err(queue->ctrl->ctrl.device,
1703 			"%s failed with error code %d\n", __func__, ret);
1704 	}
1705 	return ret;
1706 }
1707 
nvme_rdma_tagset(struct nvme_rdma_queue *queue)1708 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1709 {
1710 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1711 
1712 	if (queue_idx == 0)
1713 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1714 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1715 }
1716 
nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)1717 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1718 {
1719 	if (unlikely(wc->status != IB_WC_SUCCESS))
1720 		nvme_rdma_wr_error(cq, wc, "ASYNC");
1721 }
1722 
nvme_rdma_submit_async_event(struct nvme_ctrl *arg)1723 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1724 {
1725 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1726 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1727 	struct ib_device *dev = queue->device->dev;
1728 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1729 	struct nvme_command *cmd = sqe->data;
1730 	struct ib_sge sge;
1731 	int ret;
1732 
1733 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1734 
1735 	memset(cmd, 0, sizeof(*cmd));
1736 	cmd->common.opcode = nvme_admin_async_event;
1737 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1738 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1739 	nvme_rdma_set_sg_null(cmd);
1740 
1741 	sqe->cqe.done = nvme_rdma_async_done;
1742 
1743 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1744 			DMA_TO_DEVICE);
1745 
1746 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1747 	WARN_ON_ONCE(ret);
1748 }
1749 
nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, struct nvme_completion *cqe, struct ib_wc *wc)1750 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1751 		struct nvme_completion *cqe, struct ib_wc *wc)
1752 {
1753 	struct request *rq;
1754 	struct nvme_rdma_request *req;
1755 
1756 	rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id);
1757 	if (!rq) {
1758 		dev_err(queue->ctrl->ctrl.device,
1759 			"got bad command_id %#x on QP %#x\n",
1760 			cqe->command_id, queue->qp->qp_num);
1761 		nvme_rdma_error_recovery(queue->ctrl);
1762 		return;
1763 	}
1764 	req = blk_mq_rq_to_pdu(rq);
1765 
1766 	req->status = cqe->status;
1767 	req->result = cqe->result;
1768 
1769 	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1770 		if (unlikely(!req->mr ||
1771 			     wc->ex.invalidate_rkey != req->mr->rkey)) {
1772 			dev_err(queue->ctrl->ctrl.device,
1773 				"Bogus remote invalidation for rkey %#x\n",
1774 				req->mr ? req->mr->rkey : 0);
1775 			nvme_rdma_error_recovery(queue->ctrl);
1776 		}
1777 	} else if (req->mr) {
1778 		int ret;
1779 
1780 		ret = nvme_rdma_inv_rkey(queue, req);
1781 		if (unlikely(ret < 0)) {
1782 			dev_err(queue->ctrl->ctrl.device,
1783 				"Queueing INV WR for rkey %#x failed (%d)\n",
1784 				req->mr->rkey, ret);
1785 			nvme_rdma_error_recovery(queue->ctrl);
1786 		}
1787 		/* the local invalidation completion will end the request */
1788 		return;
1789 	}
1790 
1791 	nvme_rdma_end_request(req);
1792 }
1793 
nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)1794 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1795 {
1796 	struct nvme_rdma_qe *qe =
1797 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1798 	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1799 	struct ib_device *ibdev = queue->device->dev;
1800 	struct nvme_completion *cqe = qe->data;
1801 	const size_t len = sizeof(struct nvme_completion);
1802 
1803 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1804 		nvme_rdma_wr_error(cq, wc, "RECV");
1805 		return;
1806 	}
1807 
1808 	/* sanity checking for received data length */
1809 	if (unlikely(wc->byte_len < len)) {
1810 		dev_err(queue->ctrl->ctrl.device,
1811 			"Unexpected nvme completion length(%d)\n", wc->byte_len);
1812 		nvme_rdma_error_recovery(queue->ctrl);
1813 		return;
1814 	}
1815 
1816 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1817 	/*
1818 	 * AEN requests are special as they don't time out and can
1819 	 * survive any kind of queue freeze and often don't respond to
1820 	 * aborts.  We don't even bother to allocate a struct request
1821 	 * for them but rather special case them here.
1822 	 */
1823 	if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1824 				     cqe->command_id)))
1825 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1826 				&cqe->result);
1827 	else
1828 		nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1829 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1830 
1831 	nvme_rdma_post_recv(queue, qe);
1832 }
1833 
nvme_rdma_conn_established(struct nvme_rdma_queue *queue)1834 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1835 {
1836 	int ret, i;
1837 
1838 	for (i = 0; i < queue->queue_size; i++) {
1839 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1840 		if (ret)
1841 			return ret;
1842 	}
1843 
1844 	return 0;
1845 }
1846 
nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, struct rdma_cm_event *ev)1847 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1848 		struct rdma_cm_event *ev)
1849 {
1850 	struct rdma_cm_id *cm_id = queue->cm_id;
1851 	int status = ev->status;
1852 	const char *rej_msg;
1853 	const struct nvme_rdma_cm_rej *rej_data;
1854 	u8 rej_data_len;
1855 
1856 	rej_msg = rdma_reject_msg(cm_id, status);
1857 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1858 
1859 	if (rej_data && rej_data_len >= sizeof(u16)) {
1860 		u16 sts = le16_to_cpu(rej_data->sts);
1861 
1862 		dev_err(queue->ctrl->ctrl.device,
1863 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1864 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1865 	} else {
1866 		dev_err(queue->ctrl->ctrl.device,
1867 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1868 	}
1869 
1870 	return -ECONNRESET;
1871 }
1872 
nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)1873 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1874 {
1875 	struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1876 	int ret;
1877 
1878 	ret = nvme_rdma_create_queue_ib(queue);
1879 	if (ret)
1880 		return ret;
1881 
1882 	if (ctrl->opts->tos >= 0)
1883 		rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1884 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1885 	if (ret) {
1886 		dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1887 			queue->cm_error);
1888 		goto out_destroy_queue;
1889 	}
1890 
1891 	return 0;
1892 
1893 out_destroy_queue:
1894 	nvme_rdma_destroy_queue_ib(queue);
1895 	return ret;
1896 }
1897 
nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)1898 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1899 {
1900 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1901 	struct rdma_conn_param param = { };
1902 	struct nvme_rdma_cm_req priv = { };
1903 	int ret;
1904 
1905 	param.qp_num = queue->qp->qp_num;
1906 	param.flow_control = 1;
1907 
1908 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1909 	/* maximum retry count */
1910 	param.retry_count = 7;
1911 	param.rnr_retry_count = 7;
1912 	param.private_data = &priv;
1913 	param.private_data_len = sizeof(priv);
1914 
1915 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1916 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1917 	/*
1918 	 * set the admin queue depth to the minimum size
1919 	 * specified by the Fabrics standard.
1920 	 */
1921 	if (priv.qid == 0) {
1922 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1923 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1924 	} else {
1925 		/*
1926 		 * current interpretation of the fabrics spec
1927 		 * is at minimum you make hrqsize sqsize+1, or a
1928 		 * 1's based representation of sqsize.
1929 		 */
1930 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1931 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1932 	}
1933 
1934 	ret = rdma_connect_locked(queue->cm_id, &param);
1935 	if (ret) {
1936 		dev_err(ctrl->ctrl.device,
1937 			"rdma_connect_locked failed (%d).\n", ret);
1938 		return ret;
1939 	}
1940 
1941 	return 0;
1942 }
1943 
nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, struct rdma_cm_event *ev)1944 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1945 		struct rdma_cm_event *ev)
1946 {
1947 	struct nvme_rdma_queue *queue = cm_id->context;
1948 	int cm_error = 0;
1949 
1950 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1951 		rdma_event_msg(ev->event), ev->event,
1952 		ev->status, cm_id);
1953 
1954 	switch (ev->event) {
1955 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1956 		cm_error = nvme_rdma_addr_resolved(queue);
1957 		break;
1958 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1959 		cm_error = nvme_rdma_route_resolved(queue);
1960 		break;
1961 	case RDMA_CM_EVENT_ESTABLISHED:
1962 		queue->cm_error = nvme_rdma_conn_established(queue);
1963 		/* complete cm_done regardless of success/failure */
1964 		complete(&queue->cm_done);
1965 		return 0;
1966 	case RDMA_CM_EVENT_REJECTED:
1967 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1968 		break;
1969 	case RDMA_CM_EVENT_ROUTE_ERROR:
1970 	case RDMA_CM_EVENT_CONNECT_ERROR:
1971 	case RDMA_CM_EVENT_UNREACHABLE:
1972 	case RDMA_CM_EVENT_ADDR_ERROR:
1973 		dev_dbg(queue->ctrl->ctrl.device,
1974 			"CM error event %d\n", ev->event);
1975 		cm_error = -ECONNRESET;
1976 		break;
1977 	case RDMA_CM_EVENT_DISCONNECTED:
1978 	case RDMA_CM_EVENT_ADDR_CHANGE:
1979 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1980 		dev_dbg(queue->ctrl->ctrl.device,
1981 			"disconnect received - connection closed\n");
1982 		nvme_rdma_error_recovery(queue->ctrl);
1983 		break;
1984 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1985 		/* device removal is handled via the ib_client API */
1986 		break;
1987 	default:
1988 		dev_err(queue->ctrl->ctrl.device,
1989 			"Unexpected RDMA CM event (%d)\n", ev->event);
1990 		nvme_rdma_error_recovery(queue->ctrl);
1991 		break;
1992 	}
1993 
1994 	if (cm_error) {
1995 		queue->cm_error = cm_error;
1996 		complete(&queue->cm_done);
1997 	}
1998 
1999 	return 0;
2000 }
2001 
nvme_rdma_complete_timed_out(struct request *rq)2002 static void nvme_rdma_complete_timed_out(struct request *rq)
2003 {
2004 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2005 	struct nvme_rdma_queue *queue = req->queue;
2006 
2007 	nvme_rdma_stop_queue(queue);
2008 	if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2009 		nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2010 		blk_mq_complete_request(rq);
2011 	}
2012 }
2013 
2014 static enum blk_eh_timer_return
nvme_rdma_timeout(struct request *rq, bool reserved)2015 nvme_rdma_timeout(struct request *rq, bool reserved)
2016 {
2017 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2018 	struct nvme_rdma_queue *queue = req->queue;
2019 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
2020 
2021 	dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
2022 		 rq->tag, nvme_rdma_queue_idx(queue));
2023 
2024 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
2025 		/*
2026 		 * If we are resetting, connecting or deleting we should
2027 		 * complete immediately because we may block controller
2028 		 * teardown or setup sequence
2029 		 * - ctrl disable/shutdown fabrics requests
2030 		 * - connect requests
2031 		 * - initialization admin requests
2032 		 * - I/O requests that entered after unquiescing and
2033 		 *   the controller stopped responding
2034 		 *
2035 		 * All other requests should be cancelled by the error
2036 		 * recovery work, so it's fine that we fail it here.
2037 		 */
2038 		nvme_rdma_complete_timed_out(rq);
2039 		return BLK_EH_DONE;
2040 	}
2041 
2042 	/*
2043 	 * LIVE state should trigger the normal error recovery which will
2044 	 * handle completing this request.
2045 	 */
2046 	nvme_rdma_error_recovery(ctrl);
2047 	return BLK_EH_RESET_TIMER;
2048 }
2049 
nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *bd)2050 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
2051 		const struct blk_mq_queue_data *bd)
2052 {
2053 	struct nvme_ns *ns = hctx->queue->queuedata;
2054 	struct nvme_rdma_queue *queue = hctx->driver_data;
2055 	struct request *rq = bd->rq;
2056 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2057 	struct nvme_rdma_qe *sqe = &req->sqe;
2058 	struct nvme_command *c = sqe->data;
2059 	struct ib_device *dev;
2060 	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
2061 	blk_status_t ret;
2062 	int err;
2063 
2064 	WARN_ON_ONCE(rq->tag < 0);
2065 
2066 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2067 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2068 
2069 	dev = queue->device->dev;
2070 
2071 	req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
2072 					 sizeof(struct nvme_command),
2073 					 DMA_TO_DEVICE);
2074 	err = ib_dma_mapping_error(dev, req->sqe.dma);
2075 	if (unlikely(err))
2076 		return BLK_STS_RESOURCE;
2077 
2078 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
2079 			sizeof(struct nvme_command), DMA_TO_DEVICE);
2080 
2081 	ret = nvme_setup_cmd(ns, rq, c);
2082 	if (ret)
2083 		goto unmap_qe;
2084 
2085 	blk_mq_start_request(rq);
2086 
2087 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2088 	    queue->pi_support &&
2089 	    (c->common.opcode == nvme_cmd_write ||
2090 	     c->common.opcode == nvme_cmd_read) &&
2091 	    nvme_ns_has_pi(ns))
2092 		req->use_sig_mr = true;
2093 	else
2094 		req->use_sig_mr = false;
2095 
2096 	err = nvme_rdma_map_data(queue, rq, c);
2097 	if (unlikely(err < 0)) {
2098 		dev_err(queue->ctrl->ctrl.device,
2099 			     "Failed to map data (%d)\n", err);
2100 		goto err;
2101 	}
2102 
2103 	sqe->cqe.done = nvme_rdma_send_done;
2104 
2105 	ib_dma_sync_single_for_device(dev, sqe->dma,
2106 			sizeof(struct nvme_command), DMA_TO_DEVICE);
2107 
2108 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2109 			req->mr ? &req->reg_wr.wr : NULL);
2110 	if (unlikely(err))
2111 		goto err_unmap;
2112 
2113 	return BLK_STS_OK;
2114 
2115 err_unmap:
2116 	nvme_rdma_unmap_data(queue, rq);
2117 err:
2118 	if (err == -ENOMEM || err == -EAGAIN)
2119 		ret = BLK_STS_RESOURCE;
2120 	else
2121 		ret = BLK_STS_IOERR;
2122 	nvme_cleanup_cmd(rq);
2123 unmap_qe:
2124 	ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2125 			    DMA_TO_DEVICE);
2126 	return ret;
2127 }
2128 
nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)2129 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
2130 {
2131 	struct nvme_rdma_queue *queue = hctx->driver_data;
2132 
2133 	return ib_process_cq_direct(queue->ib_cq, -1);
2134 }
2135 
nvme_rdma_check_pi_status(struct nvme_rdma_request *req)2136 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2137 {
2138 	struct request *rq = blk_mq_rq_from_pdu(req);
2139 	struct ib_mr_status mr_status;
2140 	int ret;
2141 
2142 	ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2143 	if (ret) {
2144 		pr_err("ib_check_mr_status failed, ret %d\n", ret);
2145 		nvme_req(rq)->status = NVME_SC_INVALID_PI;
2146 		return;
2147 	}
2148 
2149 	if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2150 		switch (mr_status.sig_err.err_type) {
2151 		case IB_SIG_BAD_GUARD:
2152 			nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2153 			break;
2154 		case IB_SIG_BAD_REFTAG:
2155 			nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2156 			break;
2157 		case IB_SIG_BAD_APPTAG:
2158 			nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2159 			break;
2160 		}
2161 		pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2162 		       mr_status.sig_err.err_type, mr_status.sig_err.expected,
2163 		       mr_status.sig_err.actual);
2164 	}
2165 }
2166 
nvme_rdma_complete_rq(struct request *rq)2167 static void nvme_rdma_complete_rq(struct request *rq)
2168 {
2169 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2170 	struct nvme_rdma_queue *queue = req->queue;
2171 	struct ib_device *ibdev = queue->device->dev;
2172 
2173 	if (req->use_sig_mr)
2174 		nvme_rdma_check_pi_status(req);
2175 
2176 	nvme_rdma_unmap_data(queue, rq);
2177 	ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2178 			    DMA_TO_DEVICE);
2179 	nvme_complete_rq(rq);
2180 }
2181 
nvme_rdma_map_queues(struct blk_mq_tag_set *set)2182 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2183 {
2184 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
2185 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2186 
2187 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2188 		/* separate read/write queues */
2189 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2190 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2191 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2192 		set->map[HCTX_TYPE_READ].nr_queues =
2193 			ctrl->io_queues[HCTX_TYPE_READ];
2194 		set->map[HCTX_TYPE_READ].queue_offset =
2195 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2196 	} else {
2197 		/* shared read/write queues */
2198 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2199 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2200 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2201 		set->map[HCTX_TYPE_READ].nr_queues =
2202 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2203 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2204 	}
2205 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
2206 			ctrl->device->dev, 0);
2207 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
2208 			ctrl->device->dev, 0);
2209 
2210 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2211 		/* map dedicated poll queues only if we have queues left */
2212 		set->map[HCTX_TYPE_POLL].nr_queues =
2213 				ctrl->io_queues[HCTX_TYPE_POLL];
2214 		set->map[HCTX_TYPE_POLL].queue_offset =
2215 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2216 			ctrl->io_queues[HCTX_TYPE_READ];
2217 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2218 	}
2219 
2220 	dev_info(ctrl->ctrl.device,
2221 		"mapped %d/%d/%d default/read/poll queues.\n",
2222 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2223 		ctrl->io_queues[HCTX_TYPE_READ],
2224 		ctrl->io_queues[HCTX_TYPE_POLL]);
2225 
2226 	return 0;
2227 }
2228 
2229 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2230 	.queue_rq	= nvme_rdma_queue_rq,
2231 	.complete	= nvme_rdma_complete_rq,
2232 	.init_request	= nvme_rdma_init_request,
2233 	.exit_request	= nvme_rdma_exit_request,
2234 	.init_hctx	= nvme_rdma_init_hctx,
2235 	.timeout	= nvme_rdma_timeout,
2236 	.map_queues	= nvme_rdma_map_queues,
2237 	.poll		= nvme_rdma_poll,
2238 };
2239 
2240 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2241 	.queue_rq	= nvme_rdma_queue_rq,
2242 	.complete	= nvme_rdma_complete_rq,
2243 	.init_request	= nvme_rdma_init_request,
2244 	.exit_request	= nvme_rdma_exit_request,
2245 	.init_hctx	= nvme_rdma_init_admin_hctx,
2246 	.timeout	= nvme_rdma_timeout,
2247 };
2248 
nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)2249 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2250 {
2251 	nvme_rdma_teardown_io_queues(ctrl, shutdown);
2252 	nvme_stop_admin_queue(&ctrl->ctrl);
2253 	if (shutdown)
2254 		nvme_shutdown_ctrl(&ctrl->ctrl);
2255 	else
2256 		nvme_disable_ctrl(&ctrl->ctrl);
2257 	nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2258 }
2259 
nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)2260 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2261 {
2262 	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2263 }
2264 
nvme_rdma_reset_ctrl_work(struct work_struct *work)2265 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2266 {
2267 	struct nvme_rdma_ctrl *ctrl =
2268 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2269 
2270 	nvme_stop_ctrl(&ctrl->ctrl);
2271 	nvme_rdma_shutdown_ctrl(ctrl, false);
2272 
2273 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2274 		/* state change failure should never happen */
2275 		WARN_ON_ONCE(1);
2276 		return;
2277 	}
2278 
2279 	if (nvme_rdma_setup_ctrl(ctrl, false))
2280 		goto out_fail;
2281 
2282 	return;
2283 
2284 out_fail:
2285 	++ctrl->ctrl.nr_reconnects;
2286 	nvme_rdma_reconnect_or_remove(ctrl);
2287 }
2288 
2289 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2290 	.name			= "rdma",
2291 	.module			= THIS_MODULE,
2292 	.flags			= NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2293 	.reg_read32		= nvmf_reg_read32,
2294 	.reg_read64		= nvmf_reg_read64,
2295 	.reg_write32		= nvmf_reg_write32,
2296 	.free_ctrl		= nvme_rdma_free_ctrl,
2297 	.submit_async_event	= nvme_rdma_submit_async_event,
2298 	.delete_ctrl		= nvme_rdma_delete_ctrl,
2299 	.get_address		= nvmf_get_address,
2300 	.stop_ctrl		= nvme_rdma_stop_ctrl,
2301 };
2302 
2303 /*
2304  * Fails a connection request if it matches an existing controller
2305  * (association) with the same tuple:
2306  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2307  *
2308  * if local address is not specified in the request, it will match an
2309  * existing controller with all the other parameters the same and no
2310  * local port address specified as well.
2311  *
2312  * The ports don't need to be compared as they are intrinsically
2313  * already matched by the port pointers supplied.
2314  */
2315 static bool
nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)2316 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2317 {
2318 	struct nvme_rdma_ctrl *ctrl;
2319 	bool found = false;
2320 
2321 	mutex_lock(&nvme_rdma_ctrl_mutex);
2322 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2323 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2324 		if (found)
2325 			break;
2326 	}
2327 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2328 
2329 	return found;
2330 }
2331 
nvme_rdma_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)2332 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2333 		struct nvmf_ctrl_options *opts)
2334 {
2335 	struct nvme_rdma_ctrl *ctrl;
2336 	int ret;
2337 	bool changed;
2338 
2339 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2340 	if (!ctrl)
2341 		return ERR_PTR(-ENOMEM);
2342 	ctrl->ctrl.opts = opts;
2343 	INIT_LIST_HEAD(&ctrl->list);
2344 
2345 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2346 		opts->trsvcid =
2347 			kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2348 		if (!opts->trsvcid) {
2349 			ret = -ENOMEM;
2350 			goto out_free_ctrl;
2351 		}
2352 		opts->mask |= NVMF_OPT_TRSVCID;
2353 	}
2354 
2355 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2356 			opts->traddr, opts->trsvcid, &ctrl->addr);
2357 	if (ret) {
2358 		pr_err("malformed address passed: %s:%s\n",
2359 			opts->traddr, opts->trsvcid);
2360 		goto out_free_ctrl;
2361 	}
2362 
2363 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2364 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2365 			opts->host_traddr, NULL, &ctrl->src_addr);
2366 		if (ret) {
2367 			pr_err("malformed src address passed: %s\n",
2368 			       opts->host_traddr);
2369 			goto out_free_ctrl;
2370 		}
2371 	}
2372 
2373 	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2374 		ret = -EALREADY;
2375 		goto out_free_ctrl;
2376 	}
2377 
2378 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
2379 			nvme_rdma_reconnect_ctrl_work);
2380 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2381 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2382 
2383 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2384 				opts->nr_poll_queues + 1;
2385 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2386 	ctrl->ctrl.kato = opts->kato;
2387 
2388 	ret = -ENOMEM;
2389 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2390 				GFP_KERNEL);
2391 	if (!ctrl->queues)
2392 		goto out_free_ctrl;
2393 
2394 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2395 				0 /* no quirks, we're perfect! */);
2396 	if (ret)
2397 		goto out_kfree_queues;
2398 
2399 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2400 	WARN_ON_ONCE(!changed);
2401 
2402 	ret = nvme_rdma_setup_ctrl(ctrl, true);
2403 	if (ret)
2404 		goto out_uninit_ctrl;
2405 
2406 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2407 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2408 
2409 	mutex_lock(&nvme_rdma_ctrl_mutex);
2410 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2411 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2412 
2413 	return &ctrl->ctrl;
2414 
2415 out_uninit_ctrl:
2416 	nvme_uninit_ctrl(&ctrl->ctrl);
2417 	nvme_put_ctrl(&ctrl->ctrl);
2418 	if (ret > 0)
2419 		ret = -EIO;
2420 	return ERR_PTR(ret);
2421 out_kfree_queues:
2422 	kfree(ctrl->queues);
2423 out_free_ctrl:
2424 	kfree(ctrl);
2425 	return ERR_PTR(ret);
2426 }
2427 
2428 static struct nvmf_transport_ops nvme_rdma_transport = {
2429 	.name		= "rdma",
2430 	.module		= THIS_MODULE,
2431 	.required_opts	= NVMF_OPT_TRADDR,
2432 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2433 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2434 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2435 			  NVMF_OPT_TOS,
2436 	.create_ctrl	= nvme_rdma_create_ctrl,
2437 };
2438 
nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)2439 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2440 {
2441 	struct nvme_rdma_ctrl *ctrl;
2442 	struct nvme_rdma_device *ndev;
2443 	bool found = false;
2444 
2445 	mutex_lock(&device_list_mutex);
2446 	list_for_each_entry(ndev, &device_list, entry) {
2447 		if (ndev->dev == ib_device) {
2448 			found = true;
2449 			break;
2450 		}
2451 	}
2452 	mutex_unlock(&device_list_mutex);
2453 
2454 	if (!found)
2455 		return;
2456 
2457 	/* Delete all controllers using this device */
2458 	mutex_lock(&nvme_rdma_ctrl_mutex);
2459 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2460 		if (ctrl->device->dev != ib_device)
2461 			continue;
2462 		nvme_delete_ctrl(&ctrl->ctrl);
2463 	}
2464 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2465 
2466 	flush_workqueue(nvme_delete_wq);
2467 }
2468 
2469 static struct ib_client nvme_rdma_ib_client = {
2470 	.name   = "nvme_rdma",
2471 	.remove = nvme_rdma_remove_one
2472 };
2473 
nvme_rdma_init_module(void)2474 static int __init nvme_rdma_init_module(void)
2475 {
2476 	int ret;
2477 
2478 	ret = ib_register_client(&nvme_rdma_ib_client);
2479 	if (ret)
2480 		return ret;
2481 
2482 	ret = nvmf_register_transport(&nvme_rdma_transport);
2483 	if (ret)
2484 		goto err_unreg_client;
2485 
2486 	return 0;
2487 
2488 err_unreg_client:
2489 	ib_unregister_client(&nvme_rdma_ib_client);
2490 	return ret;
2491 }
2492 
nvme_rdma_cleanup_module(void)2493 static void __exit nvme_rdma_cleanup_module(void)
2494 {
2495 	struct nvme_rdma_ctrl *ctrl;
2496 
2497 	nvmf_unregister_transport(&nvme_rdma_transport);
2498 	ib_unregister_client(&nvme_rdma_ib_client);
2499 
2500 	mutex_lock(&nvme_rdma_ctrl_mutex);
2501 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2502 		nvme_delete_ctrl(&ctrl->ctrl);
2503 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2504 	flush_workqueue(nvme_delete_wq);
2505 }
2506 
2507 module_init(nvme_rdma_init_module);
2508 module_exit(nvme_rdma_cleanup_module);
2509 
2510 MODULE_LICENSE("GPL v2");
2511