1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/once.h>
21 #include <linux/pci.h>
22 #include <linux/suspend.h>
23 #include <linux/t10-pi.h>
24 #include <linux/types.h>
25 #include <linux/io-64-nonatomic-lo-hi.h>
26 #include <linux/io-64-nonatomic-hi-lo.h>
27 #include <linux/sed-opal.h>
28 #include <linux/pci-p2pdma.h>
29
30 #include "trace.h"
31 #include "nvme.h"
32
33 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
34 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
35
36 #define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
37
38 /*
39 * These can be higher, but we need to ensure that any command doesn't
40 * require an sg allocation that needs more than a page of data.
41 */
42 #define NVME_MAX_KB_SZ 4096
43 #define NVME_MAX_SEGS 127
44
45 static int use_threaded_interrupts;
46 module_param(use_threaded_interrupts, int, 0);
47
48 static bool use_cmb_sqes = true;
49 module_param(use_cmb_sqes, bool, 0444);
50 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
51
52 static unsigned int max_host_mem_size_mb = 128;
53 module_param(max_host_mem_size_mb, uint, 0444);
54 MODULE_PARM_DESC(max_host_mem_size_mb,
55 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
56
57 static unsigned int sgl_threshold = SZ_32K;
58 module_param(sgl_threshold, uint, 0644);
59 MODULE_PARM_DESC(sgl_threshold,
60 "Use SGLs when average request segment size is larger or equal to "
61 "this size. Use 0 to disable SGLs.");
62
63 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
64 static const struct kernel_param_ops io_queue_depth_ops = {
65 .set = io_queue_depth_set,
66 .get = param_get_uint,
67 };
68
69 static unsigned int io_queue_depth = 1024;
70 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
71 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
72
io_queue_count_set(const char *val, const struct kernel_param *kp)73 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
74 {
75 unsigned int n;
76 int ret;
77
78 ret = kstrtouint(val, 10, &n);
79 if (ret != 0 || n > num_possible_cpus())
80 return -EINVAL;
81 return param_set_uint(val, kp);
82 }
83
84 static const struct kernel_param_ops io_queue_count_ops = {
85 .set = io_queue_count_set,
86 .get = param_get_uint,
87 };
88
89 static unsigned int write_queues;
90 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
91 MODULE_PARM_DESC(write_queues,
92 "Number of queues to use for writes. If not set, reads and writes "
93 "will share a queue set.");
94
95 static unsigned int poll_queues;
96 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
97 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
98
99 static bool noacpi;
100 module_param(noacpi, bool, 0444);
101 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
102
103 struct nvme_dev;
104 struct nvme_queue;
105
106 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
107 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
108
109 /*
110 * Represents an NVM Express device. Each nvme_dev is a PCI function.
111 */
112 struct nvme_dev {
113 struct nvme_queue *queues;
114 struct blk_mq_tag_set tagset;
115 struct blk_mq_tag_set admin_tagset;
116 u32 __iomem *dbs;
117 struct device *dev;
118 struct dma_pool *prp_page_pool;
119 struct dma_pool *prp_small_pool;
120 unsigned online_queues;
121 unsigned max_qid;
122 unsigned io_queues[HCTX_MAX_TYPES];
123 unsigned int num_vecs;
124 u32 q_depth;
125 int io_sqes;
126 u32 db_stride;
127 void __iomem *bar;
128 unsigned long bar_mapped_size;
129 struct work_struct remove_work;
130 struct mutex shutdown_lock;
131 bool subsystem;
132 u64 cmb_size;
133 bool cmb_use_sqes;
134 u32 cmbsz;
135 u32 cmbloc;
136 struct nvme_ctrl ctrl;
137 u32 last_ps;
138
139 mempool_t *iod_mempool;
140
141 /* shadow doorbell buffer support: */
142 __le32 *dbbuf_dbs;
143 dma_addr_t dbbuf_dbs_dma_addr;
144 __le32 *dbbuf_eis;
145 dma_addr_t dbbuf_eis_dma_addr;
146
147 /* host memory buffer support: */
148 u64 host_mem_size;
149 u32 nr_host_mem_descs;
150 dma_addr_t host_mem_descs_dma;
151 struct nvme_host_mem_buf_desc *host_mem_descs;
152 void **host_mem_desc_bufs;
153 unsigned int nr_allocated_queues;
154 unsigned int nr_write_queues;
155 unsigned int nr_poll_queues;
156 };
157
io_queue_depth_set(const char *val, const struct kernel_param *kp)158 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
159 {
160 int ret;
161 u32 n;
162
163 ret = kstrtou32(val, 10, &n);
164 if (ret != 0 || n < 2)
165 return -EINVAL;
166
167 return param_set_uint(val, kp);
168 }
169
sq_idx(unsigned int qid, u32 stride)170 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171 {
172 return qid * 2 * stride;
173 }
174
cq_idx(unsigned int qid, u32 stride)175 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176 {
177 return (qid * 2 + 1) * stride;
178 }
179
to_nvme_dev(struct nvme_ctrl *ctrl)180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181 {
182 return container_of(ctrl, struct nvme_dev, ctrl);
183 }
184
185 /*
186 * An NVM Express queue. Each device has at least two (one for admin
187 * commands and one for I/O commands).
188 */
189 struct nvme_queue {
190 struct nvme_dev *dev;
191 spinlock_t sq_lock;
192 void *sq_cmds;
193 /* only used for poll queues: */
194 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195 struct nvme_completion *cqes;
196 dma_addr_t sq_dma_addr;
197 dma_addr_t cq_dma_addr;
198 u32 __iomem *q_db;
199 u32 q_depth;
200 u16 cq_vector;
201 u16 sq_tail;
202 u16 last_sq_tail;
203 u16 cq_head;
204 u16 qid;
205 u8 cq_phase;
206 u8 sqes;
207 unsigned long flags;
208 #define NVMEQ_ENABLED 0
209 #define NVMEQ_SQ_CMB 1
210 #define NVMEQ_DELETE_ERROR 2
211 #define NVMEQ_POLLED 3
212 __le32 *dbbuf_sq_db;
213 __le32 *dbbuf_cq_db;
214 __le32 *dbbuf_sq_ei;
215 __le32 *dbbuf_cq_ei;
216 struct completion delete_done;
217 };
218
219 /*
220 * The nvme_iod describes the data in an I/O.
221 *
222 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
223 * to the actual struct scatterlist.
224 */
225 struct nvme_iod {
226 struct nvme_request req;
227 struct nvme_command cmd;
228 struct nvme_queue *nvmeq;
229 bool use_sgl;
230 int aborted;
231 int npages; /* In the PRP list. 0 means small pool in use */
232 int nents; /* Used in scatterlist */
233 dma_addr_t first_dma;
234 unsigned int dma_len; /* length of single DMA segment mapping */
235 dma_addr_t meta_dma;
236 struct scatterlist *sg;
237 };
238
nvme_dbbuf_size(struct nvme_dev *dev)239 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
240 {
241 return dev->nr_allocated_queues * 8 * dev->db_stride;
242 }
243
nvme_dbbuf_dma_alloc(struct nvme_dev *dev)244 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
245 {
246 unsigned int mem_size = nvme_dbbuf_size(dev);
247
248 if (dev->dbbuf_dbs)
249 return 0;
250
251 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
252 &dev->dbbuf_dbs_dma_addr,
253 GFP_KERNEL);
254 if (!dev->dbbuf_dbs)
255 return -ENOMEM;
256 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
257 &dev->dbbuf_eis_dma_addr,
258 GFP_KERNEL);
259 if (!dev->dbbuf_eis) {
260 dma_free_coherent(dev->dev, mem_size,
261 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
262 dev->dbbuf_dbs = NULL;
263 return -ENOMEM;
264 }
265
266 return 0;
267 }
268
nvme_dbbuf_dma_free(struct nvme_dev *dev)269 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
270 {
271 unsigned int mem_size = nvme_dbbuf_size(dev);
272
273 if (dev->dbbuf_dbs) {
274 dma_free_coherent(dev->dev, mem_size,
275 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
276 dev->dbbuf_dbs = NULL;
277 }
278 if (dev->dbbuf_eis) {
279 dma_free_coherent(dev->dev, mem_size,
280 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
281 dev->dbbuf_eis = NULL;
282 }
283 }
284
nvme_dbbuf_init(struct nvme_dev *dev, struct nvme_queue *nvmeq, int qid)285 static void nvme_dbbuf_init(struct nvme_dev *dev,
286 struct nvme_queue *nvmeq, int qid)
287 {
288 if (!dev->dbbuf_dbs || !qid)
289 return;
290
291 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
292 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
293 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
294 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
295 }
296
nvme_dbbuf_free(struct nvme_queue *nvmeq)297 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
298 {
299 if (!nvmeq->qid)
300 return;
301
302 nvmeq->dbbuf_sq_db = NULL;
303 nvmeq->dbbuf_cq_db = NULL;
304 nvmeq->dbbuf_sq_ei = NULL;
305 nvmeq->dbbuf_cq_ei = NULL;
306 }
307
nvme_dbbuf_set(struct nvme_dev *dev)308 static void nvme_dbbuf_set(struct nvme_dev *dev)
309 {
310 struct nvme_command c;
311 unsigned int i;
312
313 if (!dev->dbbuf_dbs)
314 return;
315
316 memset(&c, 0, sizeof(c));
317 c.dbbuf.opcode = nvme_admin_dbbuf;
318 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
319 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
320
321 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
322 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
323 /* Free memory and continue on */
324 nvme_dbbuf_dma_free(dev);
325
326 for (i = 1; i <= dev->online_queues; i++)
327 nvme_dbbuf_free(&dev->queues[i]);
328 }
329 }
330
nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)331 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
332 {
333 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
334 }
335
336 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db, volatile __le32 *dbbuf_ei)337 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
338 volatile __le32 *dbbuf_ei)
339 {
340 if (dbbuf_db) {
341 u16 old_value, event_idx;
342
343 /*
344 * Ensure that the queue is written before updating
345 * the doorbell in memory
346 */
347 wmb();
348
349 old_value = le32_to_cpu(*dbbuf_db);
350 *dbbuf_db = cpu_to_le32(value);
351
352 /*
353 * Ensure that the doorbell is updated before reading the event
354 * index from memory. The controller needs to provide similar
355 * ordering to ensure the envent index is updated before reading
356 * the doorbell.
357 */
358 mb();
359
360 event_idx = le32_to_cpu(*dbbuf_ei);
361 if (!nvme_dbbuf_need_event(event_idx, value, old_value))
362 return false;
363 }
364
365 return true;
366 }
367
368 /*
369 * Will slightly overestimate the number of pages needed. This is OK
370 * as it only leads to a small amount of wasted memory for the lifetime of
371 * the I/O.
372 */
nvme_pci_npages_prp(void)373 static int nvme_pci_npages_prp(void)
374 {
375 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
376 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
377 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
378 }
379
380 /*
381 * Calculates the number of pages needed for the SGL segments. For example a 4k
382 * page can accommodate 256 SGL descriptors.
383 */
nvme_pci_npages_sgl(void)384 static int nvme_pci_npages_sgl(void)
385 {
386 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
387 NVME_CTRL_PAGE_SIZE);
388 }
389
nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx)390 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
391 unsigned int hctx_idx)
392 {
393 struct nvme_dev *dev = data;
394 struct nvme_queue *nvmeq = &dev->queues[0];
395
396 WARN_ON(hctx_idx != 0);
397 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
398
399 hctx->driver_data = nvmeq;
400 return 0;
401 }
402
nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx)403 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
404 unsigned int hctx_idx)
405 {
406 struct nvme_dev *dev = data;
407 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
408
409 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
410 hctx->driver_data = nvmeq;
411 return 0;
412 }
413
nvme_init_request(struct blk_mq_tag_set *set, struct request *req, unsigned int hctx_idx, unsigned int numa_node)414 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
415 unsigned int hctx_idx, unsigned int numa_node)
416 {
417 struct nvme_dev *dev = set->driver_data;
418 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
419 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
420 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
421
422 BUG_ON(!nvmeq);
423 iod->nvmeq = nvmeq;
424
425 nvme_req(req)->ctrl = &dev->ctrl;
426 return 0;
427 }
428
queue_irq_offset(struct nvme_dev *dev)429 static int queue_irq_offset(struct nvme_dev *dev)
430 {
431 /* if we have more than 1 vec, admin queue offsets us by 1 */
432 if (dev->num_vecs > 1)
433 return 1;
434
435 return 0;
436 }
437
nvme_pci_map_queues(struct blk_mq_tag_set *set)438 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
439 {
440 struct nvme_dev *dev = set->driver_data;
441 int i, qoff, offset;
442
443 offset = queue_irq_offset(dev);
444 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
445 struct blk_mq_queue_map *map = &set->map[i];
446
447 map->nr_queues = dev->io_queues[i];
448 if (!map->nr_queues) {
449 BUG_ON(i == HCTX_TYPE_DEFAULT);
450 continue;
451 }
452
453 /*
454 * The poll queue(s) doesn't have an IRQ (and hence IRQ
455 * affinity), so use the regular blk-mq cpu mapping
456 */
457 map->queue_offset = qoff;
458 if (i != HCTX_TYPE_POLL && offset)
459 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
460 else
461 blk_mq_map_queues(map);
462 qoff += map->nr_queues;
463 offset += map->nr_queues;
464 }
465
466 return 0;
467 }
468
469 /*
470 * Write sq tail if we are asked to, or if the next command would wrap.
471 */
nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)472 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
473 {
474 if (!write_sq) {
475 u16 next_tail = nvmeq->sq_tail + 1;
476
477 if (next_tail == nvmeq->q_depth)
478 next_tail = 0;
479 if (next_tail != nvmeq->last_sq_tail)
480 return;
481 }
482
483 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
484 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
485 writel(nvmeq->sq_tail, nvmeq->q_db);
486 nvmeq->last_sq_tail = nvmeq->sq_tail;
487 }
488
489 /**
490 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
491 * @nvmeq: The queue to use
492 * @cmd: The command to send
493 * @write_sq: whether to write to the SQ doorbell
494 */
nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd, bool write_sq)495 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
496 bool write_sq)
497 {
498 spin_lock(&nvmeq->sq_lock);
499 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
500 cmd, sizeof(*cmd));
501 if (++nvmeq->sq_tail == nvmeq->q_depth)
502 nvmeq->sq_tail = 0;
503 nvme_write_sq_db(nvmeq, write_sq);
504 spin_unlock(&nvmeq->sq_lock);
505 }
506
nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)507 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
508 {
509 struct nvme_queue *nvmeq = hctx->driver_data;
510
511 spin_lock(&nvmeq->sq_lock);
512 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
513 nvme_write_sq_db(nvmeq, true);
514 spin_unlock(&nvmeq->sq_lock);
515 }
516
nvme_pci_iod_list(struct request *req)517 static void **nvme_pci_iod_list(struct request *req)
518 {
519 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
520 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
521 }
522
nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)523 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
524 {
525 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
526 int nseg = blk_rq_nr_phys_segments(req);
527 unsigned int avg_seg_size;
528
529 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
530
531 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
532 return false;
533 if (!iod->nvmeq->qid)
534 return false;
535 if (!sgl_threshold || avg_seg_size < sgl_threshold)
536 return false;
537 return true;
538 }
539
nvme_free_prps(struct nvme_dev *dev, struct request *req)540 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
541 {
542 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
543 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
544 dma_addr_t dma_addr = iod->first_dma;
545 int i;
546
547 for (i = 0; i < iod->npages; i++) {
548 __le64 *prp_list = nvme_pci_iod_list(req)[i];
549 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
550
551 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
552 dma_addr = next_dma_addr;
553 }
554
555 }
556
nvme_free_sgls(struct nvme_dev *dev, struct request *req)557 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
558 {
559 const int last_sg = SGES_PER_PAGE - 1;
560 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
561 dma_addr_t dma_addr = iod->first_dma;
562 int i;
563
564 for (i = 0; i < iod->npages; i++) {
565 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
566 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
567
568 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
569 dma_addr = next_dma_addr;
570 }
571
572 }
573
nvme_unmap_sg(struct nvme_dev *dev, struct request *req)574 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
575 {
576 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
577
578 if (is_pci_p2pdma_page(sg_page(iod->sg)))
579 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
580 rq_dma_dir(req));
581 else
582 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
583 }
584
nvme_unmap_data(struct nvme_dev *dev, struct request *req)585 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
586 {
587 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
588
589 if (iod->dma_len) {
590 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
591 rq_dma_dir(req));
592 return;
593 }
594
595 WARN_ON_ONCE(!iod->nents);
596
597 nvme_unmap_sg(dev, req);
598 if (iod->npages == 0)
599 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
600 iod->first_dma);
601 else if (iod->use_sgl)
602 nvme_free_sgls(dev, req);
603 else
604 nvme_free_prps(dev, req);
605 mempool_free(iod->sg, dev->iod_mempool);
606 }
607
nvme_print_sgl(struct scatterlist *sgl, int nents)608 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
609 {
610 int i;
611 struct scatterlist *sg;
612
613 for_each_sg(sgl, sg, nents, i) {
614 dma_addr_t phys = sg_phys(sg);
615 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
616 "dma_address:%pad dma_length:%d\n",
617 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
618 sg_dma_len(sg));
619 }
620 }
621
nvme_pci_setup_prps(struct nvme_dev *dev, struct request *req, struct nvme_rw_command *cmnd)622 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
623 struct request *req, struct nvme_rw_command *cmnd)
624 {
625 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
626 struct dma_pool *pool;
627 int length = blk_rq_payload_bytes(req);
628 struct scatterlist *sg = iod->sg;
629 int dma_len = sg_dma_len(sg);
630 u64 dma_addr = sg_dma_address(sg);
631 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
632 __le64 *prp_list;
633 void **list = nvme_pci_iod_list(req);
634 dma_addr_t prp_dma;
635 int nprps, i;
636
637 length -= (NVME_CTRL_PAGE_SIZE - offset);
638 if (length <= 0) {
639 iod->first_dma = 0;
640 goto done;
641 }
642
643 dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
644 if (dma_len) {
645 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
646 } else {
647 sg = sg_next(sg);
648 dma_addr = sg_dma_address(sg);
649 dma_len = sg_dma_len(sg);
650 }
651
652 if (length <= NVME_CTRL_PAGE_SIZE) {
653 iod->first_dma = dma_addr;
654 goto done;
655 }
656
657 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
658 if (nprps <= (256 / 8)) {
659 pool = dev->prp_small_pool;
660 iod->npages = 0;
661 } else {
662 pool = dev->prp_page_pool;
663 iod->npages = 1;
664 }
665
666 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
667 if (!prp_list) {
668 iod->first_dma = dma_addr;
669 iod->npages = -1;
670 return BLK_STS_RESOURCE;
671 }
672 list[0] = prp_list;
673 iod->first_dma = prp_dma;
674 i = 0;
675 for (;;) {
676 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
677 __le64 *old_prp_list = prp_list;
678 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
679 if (!prp_list)
680 goto free_prps;
681 list[iod->npages++] = prp_list;
682 prp_list[0] = old_prp_list[i - 1];
683 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
684 i = 1;
685 }
686 prp_list[i++] = cpu_to_le64(dma_addr);
687 dma_len -= NVME_CTRL_PAGE_SIZE;
688 dma_addr += NVME_CTRL_PAGE_SIZE;
689 length -= NVME_CTRL_PAGE_SIZE;
690 if (length <= 0)
691 break;
692 if (dma_len > 0)
693 continue;
694 if (unlikely(dma_len < 0))
695 goto bad_sgl;
696 sg = sg_next(sg);
697 dma_addr = sg_dma_address(sg);
698 dma_len = sg_dma_len(sg);
699 }
700 done:
701 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
702 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
703 return BLK_STS_OK;
704 free_prps:
705 nvme_free_prps(dev, req);
706 return BLK_STS_RESOURCE;
707 bad_sgl:
708 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
709 "Invalid SGL for payload:%d nents:%d\n",
710 blk_rq_payload_bytes(req), iod->nents);
711 return BLK_STS_IOERR;
712 }
713
nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, struct scatterlist *sg)714 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
715 struct scatterlist *sg)
716 {
717 sge->addr = cpu_to_le64(sg_dma_address(sg));
718 sge->length = cpu_to_le32(sg_dma_len(sg));
719 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
720 }
721
nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, dma_addr_t dma_addr, int entries)722 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
723 dma_addr_t dma_addr, int entries)
724 {
725 sge->addr = cpu_to_le64(dma_addr);
726 if (entries < SGES_PER_PAGE) {
727 sge->length = cpu_to_le32(entries * sizeof(*sge));
728 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
729 } else {
730 sge->length = cpu_to_le32(NVME_CTRL_PAGE_SIZE);
731 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
732 }
733 }
734
nvme_pci_setup_sgls(struct nvme_dev *dev, struct request *req, struct nvme_rw_command *cmd, int entries)735 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
736 struct request *req, struct nvme_rw_command *cmd, int entries)
737 {
738 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
739 struct dma_pool *pool;
740 struct nvme_sgl_desc *sg_list;
741 struct scatterlist *sg = iod->sg;
742 dma_addr_t sgl_dma;
743 int i = 0;
744
745 /* setting the transfer type as SGL */
746 cmd->flags = NVME_CMD_SGL_METABUF;
747
748 if (entries == 1) {
749 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
750 return BLK_STS_OK;
751 }
752
753 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
754 pool = dev->prp_small_pool;
755 iod->npages = 0;
756 } else {
757 pool = dev->prp_page_pool;
758 iod->npages = 1;
759 }
760
761 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
762 if (!sg_list) {
763 iod->npages = -1;
764 return BLK_STS_RESOURCE;
765 }
766
767 nvme_pci_iod_list(req)[0] = sg_list;
768 iod->first_dma = sgl_dma;
769
770 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
771
772 do {
773 if (i == SGES_PER_PAGE) {
774 struct nvme_sgl_desc *old_sg_desc = sg_list;
775 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
776
777 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
778 if (!sg_list)
779 goto free_sgls;
780
781 i = 0;
782 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
783 sg_list[i++] = *link;
784 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
785 }
786
787 nvme_pci_sgl_set_data(&sg_list[i++], sg);
788 sg = sg_next(sg);
789 } while (--entries > 0);
790
791 return BLK_STS_OK;
792 free_sgls:
793 nvme_free_sgls(dev, req);
794 return BLK_STS_RESOURCE;
795 }
796
nvme_setup_prp_simple(struct nvme_dev *dev, struct request *req, struct nvme_rw_command *cmnd, struct bio_vec *bv)797 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
798 struct request *req, struct nvme_rw_command *cmnd,
799 struct bio_vec *bv)
800 {
801 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
802 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
803 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
804
805 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
806 if (dma_mapping_error(dev->dev, iod->first_dma))
807 return BLK_STS_RESOURCE;
808 iod->dma_len = bv->bv_len;
809
810 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
811 if (bv->bv_len > first_prp_len)
812 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
813 else
814 cmnd->dptr.prp2 = 0;
815 return BLK_STS_OK;
816 }
817
nvme_setup_sgl_simple(struct nvme_dev *dev, struct request *req, struct nvme_rw_command *cmnd, struct bio_vec *bv)818 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
819 struct request *req, struct nvme_rw_command *cmnd,
820 struct bio_vec *bv)
821 {
822 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
823
824 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
825 if (dma_mapping_error(dev->dev, iod->first_dma))
826 return BLK_STS_RESOURCE;
827 iod->dma_len = bv->bv_len;
828
829 cmnd->flags = NVME_CMD_SGL_METABUF;
830 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
831 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
832 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
833 return BLK_STS_OK;
834 }
835
nvme_map_data(struct nvme_dev *dev, struct request *req, struct nvme_command *cmnd)836 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
837 struct nvme_command *cmnd)
838 {
839 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
840 blk_status_t ret = BLK_STS_RESOURCE;
841 int nr_mapped;
842
843 if (blk_rq_nr_phys_segments(req) == 1) {
844 struct bio_vec bv = req_bvec(req);
845
846 if (!is_pci_p2pdma_page(bv.bv_page)) {
847 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
848 return nvme_setup_prp_simple(dev, req,
849 &cmnd->rw, &bv);
850
851 if (iod->nvmeq->qid && sgl_threshold &&
852 dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
853 return nvme_setup_sgl_simple(dev, req,
854 &cmnd->rw, &bv);
855 }
856 }
857
858 iod->dma_len = 0;
859 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
860 if (!iod->sg)
861 return BLK_STS_RESOURCE;
862 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
863 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
864 if (!iod->nents)
865 goto out_free_sg;
866
867 if (is_pci_p2pdma_page(sg_page(iod->sg)))
868 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
869 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
870 else
871 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
872 rq_dma_dir(req), DMA_ATTR_NO_WARN);
873 if (!nr_mapped)
874 goto out_free_sg;
875
876 iod->use_sgl = nvme_pci_use_sgls(dev, req);
877 if (iod->use_sgl)
878 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
879 else
880 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
881 if (ret != BLK_STS_OK)
882 goto out_unmap_sg;
883 return BLK_STS_OK;
884
885 out_unmap_sg:
886 nvme_unmap_sg(dev, req);
887 out_free_sg:
888 mempool_free(iod->sg, dev->iod_mempool);
889 return ret;
890 }
891
nvme_map_metadata(struct nvme_dev *dev, struct request *req, struct nvme_command *cmnd)892 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
893 struct nvme_command *cmnd)
894 {
895 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
896
897 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
898 rq_dma_dir(req), 0);
899 if (dma_mapping_error(dev->dev, iod->meta_dma))
900 return BLK_STS_IOERR;
901 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
902 return BLK_STS_OK;
903 }
904
905 /*
906 * NOTE: ns is NULL when called on the admin queue.
907 */
nvme_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *bd)908 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
909 const struct blk_mq_queue_data *bd)
910 {
911 struct nvme_ns *ns = hctx->queue->queuedata;
912 struct nvme_queue *nvmeq = hctx->driver_data;
913 struct nvme_dev *dev = nvmeq->dev;
914 struct request *req = bd->rq;
915 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
916 struct nvme_command *cmnd = &iod->cmd;
917 blk_status_t ret;
918
919 iod->aborted = 0;
920 iod->npages = -1;
921 iod->nents = 0;
922
923 /*
924 * We should not need to do this, but we're still using this to
925 * ensure we can drain requests on a dying queue.
926 */
927 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
928 return BLK_STS_IOERR;
929
930 ret = nvme_setup_cmd(ns, req, cmnd);
931 if (ret)
932 return ret;
933
934 if (blk_rq_nr_phys_segments(req)) {
935 ret = nvme_map_data(dev, req, cmnd);
936 if (ret)
937 goto out_free_cmd;
938 }
939
940 if (blk_integrity_rq(req)) {
941 ret = nvme_map_metadata(dev, req, cmnd);
942 if (ret)
943 goto out_unmap_data;
944 }
945
946 blk_mq_start_request(req);
947 nvme_submit_cmd(nvmeq, cmnd, bd->last);
948 return BLK_STS_OK;
949 out_unmap_data:
950 if (blk_rq_nr_phys_segments(req))
951 nvme_unmap_data(dev, req);
952 out_free_cmd:
953 nvme_cleanup_cmd(req);
954 return ret;
955 }
956
nvme_pci_complete_rq(struct request *req)957 static void nvme_pci_complete_rq(struct request *req)
958 {
959 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
960 struct nvme_dev *dev = iod->nvmeq->dev;
961
962 if (blk_integrity_rq(req))
963 dma_unmap_page(dev->dev, iod->meta_dma,
964 rq_integrity_vec(req)->bv_len, rq_dma_dir(req));
965
966 if (blk_rq_nr_phys_segments(req))
967 nvme_unmap_data(dev, req);
968 nvme_complete_rq(req);
969 }
970
971 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue *nvmeq)972 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
973 {
974 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
975
976 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
977 }
978
nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)979 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
980 {
981 u16 head = nvmeq->cq_head;
982
983 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
984 nvmeq->dbbuf_cq_ei))
985 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
986 }
987
nvme_queue_tagset(struct nvme_queue *nvmeq)988 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
989 {
990 if (!nvmeq->qid)
991 return nvmeq->dev->admin_tagset.tags[0];
992 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
993 }
994
nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)995 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
996 {
997 struct nvme_completion *cqe = &nvmeq->cqes[idx];
998 __u16 command_id = READ_ONCE(cqe->command_id);
999 struct request *req;
1000
1001 /*
1002 * AEN requests are special as they don't time out and can
1003 * survive any kind of queue freeze and often don't respond to
1004 * aborts. We don't even bother to allocate a struct request
1005 * for them but rather special case them here.
1006 */
1007 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1008 nvme_complete_async_event(&nvmeq->dev->ctrl,
1009 cqe->status, &cqe->result);
1010 return;
1011 }
1012
1013 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1014 if (unlikely(!req)) {
1015 dev_warn(nvmeq->dev->ctrl.device,
1016 "invalid id %d completed on queue %d\n",
1017 command_id, le16_to_cpu(cqe->sq_id));
1018 return;
1019 }
1020
1021 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1022 if (!nvme_try_complete_req(req, cqe->status, cqe->result))
1023 nvme_pci_complete_rq(req);
1024 }
1025
nvme_update_cq_head(struct nvme_queue *nvmeq)1026 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1027 {
1028 u32 tmp = nvmeq->cq_head + 1;
1029
1030 if (tmp == nvmeq->q_depth) {
1031 nvmeq->cq_head = 0;
1032 nvmeq->cq_phase ^= 1;
1033 } else {
1034 nvmeq->cq_head = tmp;
1035 }
1036 }
1037
nvme_process_cq(struct nvme_queue *nvmeq)1038 static inline int nvme_process_cq(struct nvme_queue *nvmeq)
1039 {
1040 int found = 0;
1041
1042 while (nvme_cqe_pending(nvmeq)) {
1043 found++;
1044 /*
1045 * load-load control dependency between phase and the rest of
1046 * the cqe requires a full read memory barrier
1047 */
1048 dma_rmb();
1049 nvme_handle_cqe(nvmeq, nvmeq->cq_head);
1050 nvme_update_cq_head(nvmeq);
1051 }
1052
1053 if (found)
1054 nvme_ring_cq_doorbell(nvmeq);
1055 return found;
1056 }
1057
nvme_irq(int irq, void *data)1058 static irqreturn_t nvme_irq(int irq, void *data)
1059 {
1060 struct nvme_queue *nvmeq = data;
1061 irqreturn_t ret = IRQ_NONE;
1062
1063 /*
1064 * The rmb/wmb pair ensures we see all updates from a previous run of
1065 * the irq handler, even if that was on another CPU.
1066 */
1067 rmb();
1068 if (nvme_process_cq(nvmeq))
1069 ret = IRQ_HANDLED;
1070 wmb();
1071
1072 return ret;
1073 }
1074
nvme_irq_check(int irq, void *data)1075 static irqreturn_t nvme_irq_check(int irq, void *data)
1076 {
1077 struct nvme_queue *nvmeq = data;
1078
1079 if (nvme_cqe_pending(nvmeq))
1080 return IRQ_WAKE_THREAD;
1081 return IRQ_NONE;
1082 }
1083
1084 /*
1085 * Poll for completions for any interrupt driven queue
1086 * Can be called from any context.
1087 */
nvme_poll_irqdisable(struct nvme_queue *nvmeq)1088 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1089 {
1090 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1091
1092 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1093
1094 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1095 nvme_process_cq(nvmeq);
1096 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1097 }
1098
nvme_poll(struct blk_mq_hw_ctx *hctx)1099 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1100 {
1101 struct nvme_queue *nvmeq = hctx->driver_data;
1102 bool found;
1103
1104 if (!nvme_cqe_pending(nvmeq))
1105 return 0;
1106
1107 spin_lock(&nvmeq->cq_poll_lock);
1108 found = nvme_process_cq(nvmeq);
1109 spin_unlock(&nvmeq->cq_poll_lock);
1110
1111 return found;
1112 }
1113
nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)1114 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1115 {
1116 struct nvme_dev *dev = to_nvme_dev(ctrl);
1117 struct nvme_queue *nvmeq = &dev->queues[0];
1118 struct nvme_command c;
1119
1120 memset(&c, 0, sizeof(c));
1121 c.common.opcode = nvme_admin_async_event;
1122 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1123 nvme_submit_cmd(nvmeq, &c, true);
1124 }
1125
adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)1126 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1127 {
1128 struct nvme_command c;
1129
1130 memset(&c, 0, sizeof(c));
1131 c.delete_queue.opcode = opcode;
1132 c.delete_queue.qid = cpu_to_le16(id);
1133
1134 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1135 }
1136
adapter_alloc_cq(struct nvme_dev *dev, u16 qid, struct nvme_queue *nvmeq, s16 vector)1137 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1138 struct nvme_queue *nvmeq, s16 vector)
1139 {
1140 struct nvme_command c;
1141 int flags = NVME_QUEUE_PHYS_CONTIG;
1142
1143 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1144 flags |= NVME_CQ_IRQ_ENABLED;
1145
1146 /*
1147 * Note: we (ab)use the fact that the prp fields survive if no data
1148 * is attached to the request.
1149 */
1150 memset(&c, 0, sizeof(c));
1151 c.create_cq.opcode = nvme_admin_create_cq;
1152 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1153 c.create_cq.cqid = cpu_to_le16(qid);
1154 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1155 c.create_cq.cq_flags = cpu_to_le16(flags);
1156 c.create_cq.irq_vector = cpu_to_le16(vector);
1157
1158 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1159 }
1160
adapter_alloc_sq(struct nvme_dev *dev, u16 qid, struct nvme_queue *nvmeq)1161 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1162 struct nvme_queue *nvmeq)
1163 {
1164 struct nvme_ctrl *ctrl = &dev->ctrl;
1165 struct nvme_command c;
1166 int flags = NVME_QUEUE_PHYS_CONTIG;
1167
1168 /*
1169 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1170 * set. Since URGENT priority is zeroes, it makes all queues
1171 * URGENT.
1172 */
1173 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1174 flags |= NVME_SQ_PRIO_MEDIUM;
1175
1176 /*
1177 * Note: we (ab)use the fact that the prp fields survive if no data
1178 * is attached to the request.
1179 */
1180 memset(&c, 0, sizeof(c));
1181 c.create_sq.opcode = nvme_admin_create_sq;
1182 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1183 c.create_sq.sqid = cpu_to_le16(qid);
1184 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1185 c.create_sq.sq_flags = cpu_to_le16(flags);
1186 c.create_sq.cqid = cpu_to_le16(qid);
1187
1188 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1189 }
1190
adapter_delete_cq(struct nvme_dev *dev, u16 cqid)1191 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1192 {
1193 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1194 }
1195
adapter_delete_sq(struct nvme_dev *dev, u16 sqid)1196 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1197 {
1198 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1199 }
1200
abort_endio(struct request *req, blk_status_t error)1201 static void abort_endio(struct request *req, blk_status_t error)
1202 {
1203 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1204 struct nvme_queue *nvmeq = iod->nvmeq;
1205
1206 dev_warn(nvmeq->dev->ctrl.device,
1207 "Abort status: 0x%x", nvme_req(req)->status);
1208 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1209 blk_mq_free_request(req);
1210 }
1211
nvme_should_reset(struct nvme_dev *dev, u32 csts)1212 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1213 {
1214 /* If true, indicates loss of adapter communication, possibly by a
1215 * NVMe Subsystem reset.
1216 */
1217 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1218
1219 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1220 switch (dev->ctrl.state) {
1221 case NVME_CTRL_RESETTING:
1222 case NVME_CTRL_CONNECTING:
1223 return false;
1224 default:
1225 break;
1226 }
1227
1228 /* We shouldn't reset unless the controller is on fatal error state
1229 * _or_ if we lost the communication with it.
1230 */
1231 if (!(csts & NVME_CSTS_CFS) && !nssro)
1232 return false;
1233
1234 return true;
1235 }
1236
nvme_warn_reset(struct nvme_dev *dev, u32 csts)1237 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1238 {
1239 /* Read a config register to help see what died. */
1240 u16 pci_status;
1241 int result;
1242
1243 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1244 &pci_status);
1245 if (result == PCIBIOS_SUCCESSFUL)
1246 dev_warn(dev->ctrl.device,
1247 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1248 csts, pci_status);
1249 else
1250 dev_warn(dev->ctrl.device,
1251 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1252 csts, result);
1253 }
1254
nvme_timeout(struct request *req, bool reserved)1255 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1256 {
1257 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1258 struct nvme_queue *nvmeq = iod->nvmeq;
1259 struct nvme_dev *dev = nvmeq->dev;
1260 struct request *abort_req;
1261 struct nvme_command cmd;
1262 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1263
1264 /* If PCI error recovery process is happening, we cannot reset or
1265 * the recovery mechanism will surely fail.
1266 */
1267 mb();
1268 if (pci_channel_offline(to_pci_dev(dev->dev)))
1269 return BLK_EH_RESET_TIMER;
1270
1271 /*
1272 * Reset immediately if the controller is failed
1273 */
1274 if (nvme_should_reset(dev, csts)) {
1275 nvme_warn_reset(dev, csts);
1276 nvme_dev_disable(dev, false);
1277 nvme_reset_ctrl(&dev->ctrl);
1278 return BLK_EH_DONE;
1279 }
1280
1281 /*
1282 * Did we miss an interrupt?
1283 */
1284 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1285 nvme_poll(req->mq_hctx);
1286 else
1287 nvme_poll_irqdisable(nvmeq);
1288
1289 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1290 dev_warn(dev->ctrl.device,
1291 "I/O %d QID %d timeout, completion polled\n",
1292 req->tag, nvmeq->qid);
1293 return BLK_EH_DONE;
1294 }
1295
1296 /*
1297 * Shutdown immediately if controller times out while starting. The
1298 * reset work will see the pci device disabled when it gets the forced
1299 * cancellation error. All outstanding requests are completed on
1300 * shutdown, so we return BLK_EH_DONE.
1301 */
1302 switch (dev->ctrl.state) {
1303 case NVME_CTRL_CONNECTING:
1304 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1305 fallthrough;
1306 case NVME_CTRL_DELETING:
1307 dev_warn_ratelimited(dev->ctrl.device,
1308 "I/O %d QID %d timeout, disable controller\n",
1309 req->tag, nvmeq->qid);
1310 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1311 nvme_dev_disable(dev, true);
1312 return BLK_EH_DONE;
1313 case NVME_CTRL_RESETTING:
1314 return BLK_EH_RESET_TIMER;
1315 default:
1316 break;
1317 }
1318
1319 /*
1320 * Shutdown the controller immediately and schedule a reset if the
1321 * command was already aborted once before and still hasn't been
1322 * returned to the driver, or if this is the admin queue.
1323 */
1324 if (!nvmeq->qid || iod->aborted) {
1325 dev_warn(dev->ctrl.device,
1326 "I/O %d QID %d timeout, reset controller\n",
1327 req->tag, nvmeq->qid);
1328 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1329 nvme_dev_disable(dev, false);
1330 nvme_reset_ctrl(&dev->ctrl);
1331
1332 return BLK_EH_DONE;
1333 }
1334
1335 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1336 atomic_inc(&dev->ctrl.abort_limit);
1337 return BLK_EH_RESET_TIMER;
1338 }
1339 iod->aborted = 1;
1340
1341 memset(&cmd, 0, sizeof(cmd));
1342 cmd.abort.opcode = nvme_admin_abort_cmd;
1343 cmd.abort.cid = nvme_cid(req);
1344 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1345
1346 dev_warn(nvmeq->dev->ctrl.device,
1347 "I/O %d QID %d timeout, aborting\n",
1348 req->tag, nvmeq->qid);
1349
1350 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1351 BLK_MQ_REQ_NOWAIT);
1352 if (IS_ERR(abort_req)) {
1353 atomic_inc(&dev->ctrl.abort_limit);
1354 return BLK_EH_RESET_TIMER;
1355 }
1356
1357 abort_req->end_io_data = NULL;
1358 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1359
1360 /*
1361 * The aborted req will be completed on receiving the abort req.
1362 * We enable the timer again. If hit twice, it'll cause a device reset,
1363 * as the device then is in a faulty state.
1364 */
1365 return BLK_EH_RESET_TIMER;
1366 }
1367
nvme_free_queue(struct nvme_queue *nvmeq)1368 static void nvme_free_queue(struct nvme_queue *nvmeq)
1369 {
1370 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1371 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1372 if (!nvmeq->sq_cmds)
1373 return;
1374
1375 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1376 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1377 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1378 } else {
1379 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1380 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1381 }
1382 }
1383
nvme_free_queues(struct nvme_dev *dev, int lowest)1384 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1385 {
1386 int i;
1387
1388 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1389 dev->ctrl.queue_count--;
1390 nvme_free_queue(&dev->queues[i]);
1391 }
1392 }
1393
1394 /**
1395 * nvme_suspend_queue - put queue into suspended state
1396 * @nvmeq: queue to suspend
1397 */
nvme_suspend_queue(struct nvme_queue *nvmeq)1398 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1399 {
1400 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1401 return 1;
1402
1403 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1404 mb();
1405
1406 nvmeq->dev->online_queues--;
1407 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1408 nvme_stop_admin_queue(&nvmeq->dev->ctrl);
1409 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1410 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1411 return 0;
1412 }
1413
nvme_suspend_io_queues(struct nvme_dev *dev)1414 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1415 {
1416 int i;
1417
1418 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1419 nvme_suspend_queue(&dev->queues[i]);
1420 }
1421
nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)1422 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1423 {
1424 struct nvme_queue *nvmeq = &dev->queues[0];
1425
1426 if (shutdown)
1427 nvme_shutdown_ctrl(&dev->ctrl);
1428 else
1429 nvme_disable_ctrl(&dev->ctrl);
1430
1431 nvme_poll_irqdisable(nvmeq);
1432 }
1433
1434 /*
1435 * Called only on a device that has been disabled and after all other threads
1436 * that can check this device's completion queues have synced, except
1437 * nvme_poll(). This is the last chance for the driver to see a natural
1438 * completion before nvme_cancel_request() terminates all incomplete requests.
1439 */
nvme_reap_pending_cqes(struct nvme_dev *dev)1440 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1441 {
1442 int i;
1443
1444 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1445 spin_lock(&dev->queues[i].cq_poll_lock);
1446 nvme_process_cq(&dev->queues[i]);
1447 spin_unlock(&dev->queues[i].cq_poll_lock);
1448 }
1449 }
1450
nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, int entry_size)1451 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1452 int entry_size)
1453 {
1454 int q_depth = dev->q_depth;
1455 unsigned q_size_aligned = roundup(q_depth * entry_size,
1456 NVME_CTRL_PAGE_SIZE);
1457
1458 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1459 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1460
1461 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1462 q_depth = div_u64(mem_per_q, entry_size);
1463
1464 /*
1465 * Ensure the reduced q_depth is above some threshold where it
1466 * would be better to map queues in system memory with the
1467 * original depth
1468 */
1469 if (q_depth < 64)
1470 return -ENOMEM;
1471 }
1472
1473 return q_depth;
1474 }
1475
nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, int qid)1476 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1477 int qid)
1478 {
1479 struct pci_dev *pdev = to_pci_dev(dev->dev);
1480
1481 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1482 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1483 if (nvmeq->sq_cmds) {
1484 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1485 nvmeq->sq_cmds);
1486 if (nvmeq->sq_dma_addr) {
1487 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1488 return 0;
1489 }
1490
1491 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1492 }
1493 }
1494
1495 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1496 &nvmeq->sq_dma_addr, GFP_KERNEL);
1497 if (!nvmeq->sq_cmds)
1498 return -ENOMEM;
1499 return 0;
1500 }
1501
nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)1502 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1503 {
1504 struct nvme_queue *nvmeq = &dev->queues[qid];
1505
1506 if (dev->ctrl.queue_count > qid)
1507 return 0;
1508
1509 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1510 nvmeq->q_depth = depth;
1511 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1512 &nvmeq->cq_dma_addr, GFP_KERNEL);
1513 if (!nvmeq->cqes)
1514 goto free_nvmeq;
1515
1516 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1517 goto free_cqdma;
1518
1519 nvmeq->dev = dev;
1520 spin_lock_init(&nvmeq->sq_lock);
1521 spin_lock_init(&nvmeq->cq_poll_lock);
1522 nvmeq->cq_head = 0;
1523 nvmeq->cq_phase = 1;
1524 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1525 nvmeq->qid = qid;
1526 dev->ctrl.queue_count++;
1527
1528 return 0;
1529
1530 free_cqdma:
1531 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1532 nvmeq->cq_dma_addr);
1533 free_nvmeq:
1534 return -ENOMEM;
1535 }
1536
queue_request_irq(struct nvme_queue *nvmeq)1537 static int queue_request_irq(struct nvme_queue *nvmeq)
1538 {
1539 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1540 int nr = nvmeq->dev->ctrl.instance;
1541
1542 if (use_threaded_interrupts) {
1543 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1544 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1545 } else {
1546 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1547 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1548 }
1549 }
1550
nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)1551 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1552 {
1553 struct nvme_dev *dev = nvmeq->dev;
1554
1555 nvmeq->sq_tail = 0;
1556 nvmeq->last_sq_tail = 0;
1557 nvmeq->cq_head = 0;
1558 nvmeq->cq_phase = 1;
1559 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1560 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1561 nvme_dbbuf_init(dev, nvmeq, qid);
1562 dev->online_queues++;
1563 wmb(); /* ensure the first interrupt sees the initialization */
1564 }
1565
nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)1566 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1567 {
1568 struct nvme_dev *dev = nvmeq->dev;
1569 int result;
1570 u16 vector = 0;
1571
1572 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1573
1574 /*
1575 * A queue's vector matches the queue identifier unless the controller
1576 * has only one vector available.
1577 */
1578 if (!polled)
1579 vector = dev->num_vecs == 1 ? 0 : qid;
1580 else
1581 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1582
1583 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1584 if (result)
1585 return result;
1586
1587 result = adapter_alloc_sq(dev, qid, nvmeq);
1588 if (result < 0)
1589 return result;
1590 if (result)
1591 goto release_cq;
1592
1593 nvmeq->cq_vector = vector;
1594 nvme_init_queue(nvmeq, qid);
1595
1596 if (!polled) {
1597 result = queue_request_irq(nvmeq);
1598 if (result < 0)
1599 goto release_sq;
1600 }
1601
1602 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1603 return result;
1604
1605 release_sq:
1606 dev->online_queues--;
1607 adapter_delete_sq(dev, qid);
1608 release_cq:
1609 adapter_delete_cq(dev, qid);
1610 return result;
1611 }
1612
1613 static const struct blk_mq_ops nvme_mq_admin_ops = {
1614 .queue_rq = nvme_queue_rq,
1615 .complete = nvme_pci_complete_rq,
1616 .init_hctx = nvme_admin_init_hctx,
1617 .init_request = nvme_init_request,
1618 .timeout = nvme_timeout,
1619 };
1620
1621 static const struct blk_mq_ops nvme_mq_ops = {
1622 .queue_rq = nvme_queue_rq,
1623 .complete = nvme_pci_complete_rq,
1624 .commit_rqs = nvme_commit_rqs,
1625 .init_hctx = nvme_init_hctx,
1626 .init_request = nvme_init_request,
1627 .map_queues = nvme_pci_map_queues,
1628 .timeout = nvme_timeout,
1629 .poll = nvme_poll,
1630 };
1631
nvme_dev_remove_admin(struct nvme_dev *dev)1632 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1633 {
1634 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1635 /*
1636 * If the controller was reset during removal, it's possible
1637 * user requests may be waiting on a stopped queue. Start the
1638 * queue to flush these to completion.
1639 */
1640 nvme_start_admin_queue(&dev->ctrl);
1641 blk_cleanup_queue(dev->ctrl.admin_q);
1642 blk_mq_free_tag_set(&dev->admin_tagset);
1643 }
1644 }
1645
nvme_alloc_admin_tags(struct nvme_dev *dev)1646 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1647 {
1648 if (!dev->ctrl.admin_q) {
1649 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1650 dev->admin_tagset.nr_hw_queues = 1;
1651
1652 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1653 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1654 dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1655 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1656 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1657 dev->admin_tagset.driver_data = dev;
1658
1659 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1660 return -ENOMEM;
1661 dev->ctrl.admin_tagset = &dev->admin_tagset;
1662
1663 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1664 if (IS_ERR(dev->ctrl.admin_q)) {
1665 blk_mq_free_tag_set(&dev->admin_tagset);
1666 dev->ctrl.admin_q = NULL;
1667 return -ENOMEM;
1668 }
1669 if (!blk_get_queue(dev->ctrl.admin_q)) {
1670 nvme_dev_remove_admin(dev);
1671 dev->ctrl.admin_q = NULL;
1672 return -ENODEV;
1673 }
1674 } else
1675 nvme_start_admin_queue(&dev->ctrl);
1676
1677 return 0;
1678 }
1679
db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)1680 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1681 {
1682 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1683 }
1684
nvme_remap_bar(struct nvme_dev *dev, unsigned long size)1685 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1686 {
1687 struct pci_dev *pdev = to_pci_dev(dev->dev);
1688
1689 if (size <= dev->bar_mapped_size)
1690 return 0;
1691 if (size > pci_resource_len(pdev, 0))
1692 return -ENOMEM;
1693 if (dev->bar)
1694 iounmap(dev->bar);
1695 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1696 if (!dev->bar) {
1697 dev->bar_mapped_size = 0;
1698 return -ENOMEM;
1699 }
1700 dev->bar_mapped_size = size;
1701 dev->dbs = dev->bar + NVME_REG_DBS;
1702
1703 return 0;
1704 }
1705
nvme_pci_configure_admin_queue(struct nvme_dev *dev)1706 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1707 {
1708 int result;
1709 u32 aqa;
1710 struct nvme_queue *nvmeq;
1711
1712 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1713 if (result < 0)
1714 return result;
1715
1716 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1717 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1718
1719 if (dev->subsystem &&
1720 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1721 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1722
1723 result = nvme_disable_ctrl(&dev->ctrl);
1724 if (result < 0)
1725 return result;
1726
1727 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1728 if (result)
1729 return result;
1730
1731 dev->ctrl.numa_node = dev_to_node(dev->dev);
1732
1733 nvmeq = &dev->queues[0];
1734 aqa = nvmeq->q_depth - 1;
1735 aqa |= aqa << 16;
1736
1737 writel(aqa, dev->bar + NVME_REG_AQA);
1738 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1739 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1740
1741 result = nvme_enable_ctrl(&dev->ctrl);
1742 if (result)
1743 return result;
1744
1745 nvmeq->cq_vector = 0;
1746 nvme_init_queue(nvmeq, 0);
1747 result = queue_request_irq(nvmeq);
1748 if (result) {
1749 dev->online_queues--;
1750 return result;
1751 }
1752
1753 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1754 return result;
1755 }
1756
nvme_create_io_queues(struct nvme_dev *dev)1757 static int nvme_create_io_queues(struct nvme_dev *dev)
1758 {
1759 unsigned i, max, rw_queues;
1760 int ret = 0;
1761
1762 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1763 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1764 ret = -ENOMEM;
1765 break;
1766 }
1767 }
1768
1769 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1770 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1771 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1772 dev->io_queues[HCTX_TYPE_READ];
1773 } else {
1774 rw_queues = max;
1775 }
1776
1777 for (i = dev->online_queues; i <= max; i++) {
1778 bool polled = i > rw_queues;
1779
1780 ret = nvme_create_queue(&dev->queues[i], i, polled);
1781 if (ret)
1782 break;
1783 }
1784
1785 /*
1786 * Ignore failing Create SQ/CQ commands, we can continue with less
1787 * than the desired amount of queues, and even a controller without
1788 * I/O queues can still be used to issue admin commands. This might
1789 * be useful to upgrade a buggy firmware for example.
1790 */
1791 return ret >= 0 ? 0 : ret;
1792 }
1793
nvme_cmb_show(struct device *dev, struct device_attribute *attr, char *buf)1794 static ssize_t nvme_cmb_show(struct device *dev,
1795 struct device_attribute *attr,
1796 char *buf)
1797 {
1798 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1799
1800 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1801 ndev->cmbloc, ndev->cmbsz);
1802 }
1803 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1804
nvme_cmb_size_unit(struct nvme_dev *dev)1805 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1806 {
1807 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1808
1809 return 1ULL << (12 + 4 * szu);
1810 }
1811
nvme_cmb_size(struct nvme_dev *dev)1812 static u32 nvme_cmb_size(struct nvme_dev *dev)
1813 {
1814 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1815 }
1816
nvme_map_cmb(struct nvme_dev *dev)1817 static void nvme_map_cmb(struct nvme_dev *dev)
1818 {
1819 u64 size, offset;
1820 resource_size_t bar_size;
1821 struct pci_dev *pdev = to_pci_dev(dev->dev);
1822 int bar;
1823
1824 if (dev->cmb_size)
1825 return;
1826
1827 if (NVME_CAP_CMBS(dev->ctrl.cap))
1828 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1829
1830 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1831 if (!dev->cmbsz)
1832 return;
1833 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1834
1835 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1836 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1837 bar = NVME_CMB_BIR(dev->cmbloc);
1838 bar_size = pci_resource_len(pdev, bar);
1839
1840 if (offset > bar_size)
1841 return;
1842
1843 /*
1844 * Tell the controller about the host side address mapping the CMB,
1845 * and enable CMB decoding for the NVMe 1.4+ scheme:
1846 */
1847 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1848 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1849 (pci_bus_address(pdev, bar) + offset),
1850 dev->bar + NVME_REG_CMBMSC);
1851 }
1852
1853 /*
1854 * Controllers may support a CMB size larger than their BAR,
1855 * for example, due to being behind a bridge. Reduce the CMB to
1856 * the reported size of the BAR
1857 */
1858 if (size > bar_size - offset)
1859 size = bar_size - offset;
1860
1861 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1862 dev_warn(dev->ctrl.device,
1863 "failed to register the CMB\n");
1864 return;
1865 }
1866
1867 dev->cmb_size = size;
1868 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1869
1870 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1871 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1872 pci_p2pmem_publish(pdev, true);
1873
1874 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1875 &dev_attr_cmb.attr, NULL))
1876 dev_warn(dev->ctrl.device,
1877 "failed to add sysfs attribute for CMB\n");
1878 }
1879
nvme_release_cmb(struct nvme_dev *dev)1880 static inline void nvme_release_cmb(struct nvme_dev *dev)
1881 {
1882 if (dev->cmb_size) {
1883 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1884 &dev_attr_cmb.attr, NULL);
1885 dev->cmb_size = 0;
1886 }
1887 }
1888
nvme_set_host_mem(struct nvme_dev *dev, u32 bits)1889 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1890 {
1891 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1892 u64 dma_addr = dev->host_mem_descs_dma;
1893 struct nvme_command c;
1894 int ret;
1895
1896 memset(&c, 0, sizeof(c));
1897 c.features.opcode = nvme_admin_set_features;
1898 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1899 c.features.dword11 = cpu_to_le32(bits);
1900 c.features.dword12 = cpu_to_le32(host_mem_size);
1901 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1902 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1903 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1904
1905 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1906 if (ret) {
1907 dev_warn(dev->ctrl.device,
1908 "failed to set host mem (err %d, flags %#x).\n",
1909 ret, bits);
1910 }
1911 return ret;
1912 }
1913
nvme_free_host_mem(struct nvme_dev *dev)1914 static void nvme_free_host_mem(struct nvme_dev *dev)
1915 {
1916 int i;
1917
1918 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1919 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1920 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1921
1922 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1923 le64_to_cpu(desc->addr),
1924 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1925 }
1926
1927 kfree(dev->host_mem_desc_bufs);
1928 dev->host_mem_desc_bufs = NULL;
1929 dma_free_coherent(dev->dev,
1930 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1931 dev->host_mem_descs, dev->host_mem_descs_dma);
1932 dev->host_mem_descs = NULL;
1933 dev->nr_host_mem_descs = 0;
1934 }
1935
__nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, u32 chunk_size)1936 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1937 u32 chunk_size)
1938 {
1939 struct nvme_host_mem_buf_desc *descs;
1940 u32 max_entries, len;
1941 dma_addr_t descs_dma;
1942 int i = 0;
1943 void **bufs;
1944 u64 size, tmp;
1945
1946 tmp = (preferred + chunk_size - 1);
1947 do_div(tmp, chunk_size);
1948 max_entries = tmp;
1949
1950 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1951 max_entries = dev->ctrl.hmmaxd;
1952
1953 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1954 &descs_dma, GFP_KERNEL);
1955 if (!descs)
1956 goto out;
1957
1958 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1959 if (!bufs)
1960 goto out_free_descs;
1961
1962 for (size = 0; size < preferred && i < max_entries; size += len) {
1963 dma_addr_t dma_addr;
1964
1965 len = min_t(u64, chunk_size, preferred - size);
1966 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1967 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1968 if (!bufs[i])
1969 break;
1970
1971 descs[i].addr = cpu_to_le64(dma_addr);
1972 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1973 i++;
1974 }
1975
1976 if (!size)
1977 goto out_free_bufs;
1978
1979 dev->nr_host_mem_descs = i;
1980 dev->host_mem_size = size;
1981 dev->host_mem_descs = descs;
1982 dev->host_mem_descs_dma = descs_dma;
1983 dev->host_mem_desc_bufs = bufs;
1984 return 0;
1985
1986 out_free_bufs:
1987 while (--i >= 0) {
1988 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1989
1990 dma_free_attrs(dev->dev, size, bufs[i],
1991 le64_to_cpu(descs[i].addr),
1992 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1993 }
1994
1995 kfree(bufs);
1996 out_free_descs:
1997 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1998 descs_dma);
1999 out:
2000 dev->host_mem_descs = NULL;
2001 return -ENOMEM;
2002 }
2003
nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)2004 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2005 {
2006 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2007 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2008 u64 chunk_size;
2009
2010 /* start big and work our way down */
2011 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2012 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2013 if (!min || dev->host_mem_size >= min)
2014 return 0;
2015 nvme_free_host_mem(dev);
2016 }
2017 }
2018
2019 return -ENOMEM;
2020 }
2021
nvme_setup_host_mem(struct nvme_dev *dev)2022 static int nvme_setup_host_mem(struct nvme_dev *dev)
2023 {
2024 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2025 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2026 u64 min = (u64)dev->ctrl.hmmin * 4096;
2027 u32 enable_bits = NVME_HOST_MEM_ENABLE;
2028 int ret;
2029
2030 preferred = min(preferred, max);
2031 if (min > max) {
2032 dev_warn(dev->ctrl.device,
2033 "min host memory (%lld MiB) above limit (%d MiB).\n",
2034 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2035 nvme_free_host_mem(dev);
2036 return 0;
2037 }
2038
2039 /*
2040 * If we already have a buffer allocated check if we can reuse it.
2041 */
2042 if (dev->host_mem_descs) {
2043 if (dev->host_mem_size >= min)
2044 enable_bits |= NVME_HOST_MEM_RETURN;
2045 else
2046 nvme_free_host_mem(dev);
2047 }
2048
2049 if (!dev->host_mem_descs) {
2050 if (nvme_alloc_host_mem(dev, min, preferred)) {
2051 dev_warn(dev->ctrl.device,
2052 "failed to allocate host memory buffer.\n");
2053 return 0; /* controller must work without HMB */
2054 }
2055
2056 dev_info(dev->ctrl.device,
2057 "allocated %lld MiB host memory buffer.\n",
2058 dev->host_mem_size >> ilog2(SZ_1M));
2059 }
2060
2061 ret = nvme_set_host_mem(dev, enable_bits);
2062 if (ret)
2063 nvme_free_host_mem(dev);
2064 return ret;
2065 }
2066
2067 /*
2068 * nirqs is the number of interrupts available for write and read
2069 * queues. The core already reserved an interrupt for the admin queue.
2070 */
nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)2071 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2072 {
2073 struct nvme_dev *dev = affd->priv;
2074 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2075
2076 /*
2077 * If there is no interrupt available for queues, ensure that
2078 * the default queue is set to 1. The affinity set size is
2079 * also set to one, but the irq core ignores it for this case.
2080 *
2081 * If only one interrupt is available or 'write_queue' == 0, combine
2082 * write and read queues.
2083 *
2084 * If 'write_queues' > 0, ensure it leaves room for at least one read
2085 * queue.
2086 */
2087 if (!nrirqs) {
2088 nrirqs = 1;
2089 nr_read_queues = 0;
2090 } else if (nrirqs == 1 || !nr_write_queues) {
2091 nr_read_queues = 0;
2092 } else if (nr_write_queues >= nrirqs) {
2093 nr_read_queues = 1;
2094 } else {
2095 nr_read_queues = nrirqs - nr_write_queues;
2096 }
2097
2098 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2099 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2100 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2101 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2102 affd->nr_sets = nr_read_queues ? 2 : 1;
2103 }
2104
nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)2105 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2106 {
2107 struct pci_dev *pdev = to_pci_dev(dev->dev);
2108 struct irq_affinity affd = {
2109 .pre_vectors = 1,
2110 .calc_sets = nvme_calc_irq_sets,
2111 .priv = dev,
2112 };
2113 unsigned int irq_queues, poll_queues;
2114
2115 /*
2116 * Poll queues don't need interrupts, but we need at least one I/O queue
2117 * left over for non-polled I/O.
2118 */
2119 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2120 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2121
2122 /*
2123 * Initialize for the single interrupt case, will be updated in
2124 * nvme_calc_irq_sets().
2125 */
2126 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2127 dev->io_queues[HCTX_TYPE_READ] = 0;
2128
2129 /*
2130 * We need interrupts for the admin queue and each non-polled I/O queue,
2131 * but some Apple controllers require all queues to use the first
2132 * vector.
2133 */
2134 irq_queues = 1;
2135 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2136 irq_queues += (nr_io_queues - poll_queues);
2137 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2138 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2139 }
2140
nvme_disable_io_queues(struct nvme_dev *dev)2141 static void nvme_disable_io_queues(struct nvme_dev *dev)
2142 {
2143 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2144 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2145 }
2146
nvme_max_io_queues(struct nvme_dev *dev)2147 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2148 {
2149 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2150 }
2151
nvme_setup_io_queues(struct nvme_dev *dev)2152 static int nvme_setup_io_queues(struct nvme_dev *dev)
2153 {
2154 struct nvme_queue *adminq = &dev->queues[0];
2155 struct pci_dev *pdev = to_pci_dev(dev->dev);
2156 unsigned int nr_io_queues;
2157 unsigned long size;
2158 int result;
2159
2160 /*
2161 * Sample the module parameters once at reset time so that we have
2162 * stable values to work with.
2163 */
2164 dev->nr_write_queues = write_queues;
2165 dev->nr_poll_queues = poll_queues;
2166
2167 /*
2168 * If tags are shared with admin queue (Apple bug), then
2169 * make sure we only use one IO queue.
2170 */
2171 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2172 nr_io_queues = 1;
2173 else
2174 nr_io_queues = min(nvme_max_io_queues(dev),
2175 dev->nr_allocated_queues - 1);
2176
2177 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2178 if (result < 0)
2179 return result;
2180
2181 if (nr_io_queues == 0)
2182 return 0;
2183
2184 clear_bit(NVMEQ_ENABLED, &adminq->flags);
2185
2186 if (dev->cmb_use_sqes) {
2187 result = nvme_cmb_qdepth(dev, nr_io_queues,
2188 sizeof(struct nvme_command));
2189 if (result > 0)
2190 dev->q_depth = result;
2191 else
2192 dev->cmb_use_sqes = false;
2193 }
2194
2195 do {
2196 size = db_bar_size(dev, nr_io_queues);
2197 result = nvme_remap_bar(dev, size);
2198 if (!result)
2199 break;
2200 if (!--nr_io_queues)
2201 return -ENOMEM;
2202 } while (1);
2203 adminq->q_db = dev->dbs;
2204
2205 retry:
2206 /* Deregister the admin queue's interrupt */
2207 pci_free_irq(pdev, 0, adminq);
2208
2209 /*
2210 * If we enable msix early due to not intx, disable it again before
2211 * setting up the full range we need.
2212 */
2213 pci_free_irq_vectors(pdev);
2214
2215 result = nvme_setup_irqs(dev, nr_io_queues);
2216 if (result <= 0)
2217 return -EIO;
2218
2219 dev->num_vecs = result;
2220 result = max(result - 1, 1);
2221 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2222
2223 /*
2224 * Should investigate if there's a performance win from allocating
2225 * more queues than interrupt vectors; it might allow the submission
2226 * path to scale better, even if the receive path is limited by the
2227 * number of interrupts.
2228 */
2229 result = queue_request_irq(adminq);
2230 if (result)
2231 return result;
2232 set_bit(NVMEQ_ENABLED, &adminq->flags);
2233
2234 result = nvme_create_io_queues(dev);
2235 if (result || dev->online_queues < 2)
2236 return result;
2237
2238 if (dev->online_queues - 1 < dev->max_qid) {
2239 nr_io_queues = dev->online_queues - 1;
2240 nvme_disable_io_queues(dev);
2241 nvme_suspend_io_queues(dev);
2242 goto retry;
2243 }
2244 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2245 dev->io_queues[HCTX_TYPE_DEFAULT],
2246 dev->io_queues[HCTX_TYPE_READ],
2247 dev->io_queues[HCTX_TYPE_POLL]);
2248 return 0;
2249 }
2250
nvme_del_queue_end(struct request *req, blk_status_t error)2251 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2252 {
2253 struct nvme_queue *nvmeq = req->end_io_data;
2254
2255 blk_mq_free_request(req);
2256 complete(&nvmeq->delete_done);
2257 }
2258
nvme_del_cq_end(struct request *req, blk_status_t error)2259 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2260 {
2261 struct nvme_queue *nvmeq = req->end_io_data;
2262
2263 if (error)
2264 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2265
2266 nvme_del_queue_end(req, error);
2267 }
2268
nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)2269 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2270 {
2271 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2272 struct request *req;
2273 struct nvme_command cmd;
2274
2275 memset(&cmd, 0, sizeof(cmd));
2276 cmd.delete_queue.opcode = opcode;
2277 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2278
2279 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
2280 if (IS_ERR(req))
2281 return PTR_ERR(req);
2282
2283 req->end_io_data = nvmeq;
2284
2285 init_completion(&nvmeq->delete_done);
2286 blk_execute_rq_nowait(q, NULL, req, false,
2287 opcode == nvme_admin_delete_cq ?
2288 nvme_del_cq_end : nvme_del_queue_end);
2289 return 0;
2290 }
2291
__nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)2292 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2293 {
2294 int nr_queues = dev->online_queues - 1, sent = 0;
2295 unsigned long timeout;
2296
2297 retry:
2298 timeout = ADMIN_TIMEOUT;
2299 while (nr_queues > 0) {
2300 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2301 break;
2302 nr_queues--;
2303 sent++;
2304 }
2305 while (sent) {
2306 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2307
2308 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2309 timeout);
2310 if (timeout == 0)
2311 return false;
2312
2313 sent--;
2314 if (nr_queues)
2315 goto retry;
2316 }
2317 return true;
2318 }
2319
nvme_dev_add(struct nvme_dev *dev)2320 static void nvme_dev_add(struct nvme_dev *dev)
2321 {
2322 int ret;
2323
2324 if (!dev->ctrl.tagset) {
2325 dev->tagset.ops = &nvme_mq_ops;
2326 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2327 dev->tagset.nr_maps = 2; /* default + read */
2328 if (dev->io_queues[HCTX_TYPE_POLL])
2329 dev->tagset.nr_maps++;
2330 dev->tagset.timeout = NVME_IO_TIMEOUT;
2331 dev->tagset.numa_node = dev->ctrl.numa_node;
2332 dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2333 BLK_MQ_MAX_DEPTH) - 1;
2334 dev->tagset.cmd_size = sizeof(struct nvme_iod);
2335 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2336 dev->tagset.driver_data = dev;
2337
2338 /*
2339 * Some Apple controllers requires tags to be unique
2340 * across admin and IO queue, so reserve the first 32
2341 * tags of the IO queue.
2342 */
2343 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2344 dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2345
2346 ret = blk_mq_alloc_tag_set(&dev->tagset);
2347 if (ret) {
2348 dev_warn(dev->ctrl.device,
2349 "IO queues tagset allocation failed %d\n", ret);
2350 return;
2351 }
2352 dev->ctrl.tagset = &dev->tagset;
2353 } else {
2354 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2355
2356 /* Free previously allocated queues that are no longer usable */
2357 nvme_free_queues(dev, dev->online_queues);
2358 }
2359
2360 nvme_dbbuf_set(dev);
2361 }
2362
nvme_pci_enable(struct nvme_dev *dev)2363 static int nvme_pci_enable(struct nvme_dev *dev)
2364 {
2365 int result = -ENOMEM;
2366 struct pci_dev *pdev = to_pci_dev(dev->dev);
2367
2368 if (pci_enable_device_mem(pdev))
2369 return result;
2370
2371 pci_set_master(pdev);
2372
2373 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2374 goto disable;
2375
2376 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2377 result = -ENODEV;
2378 goto disable;
2379 }
2380
2381 /*
2382 * Some devices and/or platforms don't advertise or work with INTx
2383 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2384 * adjust this later.
2385 */
2386 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2387 if (result < 0)
2388 return result;
2389
2390 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2391
2392 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2393 io_queue_depth);
2394 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2395 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2396 dev->dbs = dev->bar + 4096;
2397
2398 /*
2399 * Some Apple controllers require a non-standard SQE size.
2400 * Interestingly they also seem to ignore the CC:IOSQES register
2401 * so we don't bother updating it here.
2402 */
2403 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2404 dev->io_sqes = 7;
2405 else
2406 dev->io_sqes = NVME_NVM_IOSQES;
2407
2408 /*
2409 * Temporary fix for the Apple controller found in the MacBook8,1 and
2410 * some MacBook7,1 to avoid controller resets and data loss.
2411 */
2412 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2413 dev->q_depth = 2;
2414 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2415 "set queue depth=%u to work around controller resets\n",
2416 dev->q_depth);
2417 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2418 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2419 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2420 dev->q_depth = 64;
2421 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2422 "set queue depth=%u\n", dev->q_depth);
2423 }
2424
2425 /*
2426 * Controllers with the shared tags quirk need the IO queue to be
2427 * big enough so that we get 32 tags for the admin queue
2428 */
2429 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2430 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2431 dev->q_depth = NVME_AQ_DEPTH + 2;
2432 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2433 dev->q_depth);
2434 }
2435
2436
2437 nvme_map_cmb(dev);
2438
2439 pci_enable_pcie_error_reporting(pdev);
2440 pci_save_state(pdev);
2441 return 0;
2442
2443 disable:
2444 pci_disable_device(pdev);
2445 return result;
2446 }
2447
nvme_dev_unmap(struct nvme_dev *dev)2448 static void nvme_dev_unmap(struct nvme_dev *dev)
2449 {
2450 if (dev->bar)
2451 iounmap(dev->bar);
2452 pci_release_mem_regions(to_pci_dev(dev->dev));
2453 }
2454
nvme_pci_disable(struct nvme_dev *dev)2455 static void nvme_pci_disable(struct nvme_dev *dev)
2456 {
2457 struct pci_dev *pdev = to_pci_dev(dev->dev);
2458
2459 pci_free_irq_vectors(pdev);
2460
2461 if (pci_is_enabled(pdev)) {
2462 pci_disable_pcie_error_reporting(pdev);
2463 pci_disable_device(pdev);
2464 }
2465 }
2466
nvme_dev_disable(struct nvme_dev *dev, bool shutdown)2467 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2468 {
2469 bool dead = true, freeze = false;
2470 struct pci_dev *pdev = to_pci_dev(dev->dev);
2471
2472 mutex_lock(&dev->shutdown_lock);
2473 if (pci_is_enabled(pdev)) {
2474 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2475
2476 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2477 dev->ctrl.state == NVME_CTRL_RESETTING) {
2478 freeze = true;
2479 nvme_start_freeze(&dev->ctrl);
2480 }
2481 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2482 pdev->error_state != pci_channel_io_normal);
2483 }
2484
2485 /*
2486 * Give the controller a chance to complete all entered requests if
2487 * doing a safe shutdown.
2488 */
2489 if (!dead && shutdown && freeze)
2490 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2491
2492 nvme_stop_queues(&dev->ctrl);
2493
2494 if (!dead && dev->ctrl.queue_count > 0) {
2495 nvme_disable_io_queues(dev);
2496 nvme_disable_admin_queue(dev, shutdown);
2497 }
2498 nvme_suspend_io_queues(dev);
2499 nvme_suspend_queue(&dev->queues[0]);
2500 nvme_pci_disable(dev);
2501 nvme_reap_pending_cqes(dev);
2502
2503 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2504 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2505 blk_mq_tagset_wait_completed_request(&dev->tagset);
2506 blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2507
2508 /*
2509 * The driver will not be starting up queues again if shutting down so
2510 * must flush all entered requests to their failed completion to avoid
2511 * deadlocking blk-mq hot-cpu notifier.
2512 */
2513 if (shutdown) {
2514 nvme_start_queues(&dev->ctrl);
2515 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2516 nvme_start_admin_queue(&dev->ctrl);
2517 }
2518 mutex_unlock(&dev->shutdown_lock);
2519 }
2520
nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)2521 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2522 {
2523 if (!nvme_wait_reset(&dev->ctrl))
2524 return -EBUSY;
2525 nvme_dev_disable(dev, shutdown);
2526 return 0;
2527 }
2528
nvme_setup_prp_pools(struct nvme_dev *dev)2529 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2530 {
2531 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2532 NVME_CTRL_PAGE_SIZE,
2533 NVME_CTRL_PAGE_SIZE, 0);
2534 if (!dev->prp_page_pool)
2535 return -ENOMEM;
2536
2537 /* Optimisation for I/Os between 4k and 128k */
2538 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2539 256, 256, 0);
2540 if (!dev->prp_small_pool) {
2541 dma_pool_destroy(dev->prp_page_pool);
2542 return -ENOMEM;
2543 }
2544 return 0;
2545 }
2546
nvme_release_prp_pools(struct nvme_dev *dev)2547 static void nvme_release_prp_pools(struct nvme_dev *dev)
2548 {
2549 dma_pool_destroy(dev->prp_page_pool);
2550 dma_pool_destroy(dev->prp_small_pool);
2551 }
2552
nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)2553 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2554 {
2555 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
2556 size_t alloc_size = sizeof(__le64 *) * npages +
2557 sizeof(struct scatterlist) * NVME_MAX_SEGS;
2558
2559 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2560 dev->iod_mempool = mempool_create_node(1,
2561 mempool_kmalloc, mempool_kfree,
2562 (void *)alloc_size, GFP_KERNEL,
2563 dev_to_node(dev->dev));
2564 if (!dev->iod_mempool)
2565 return -ENOMEM;
2566 return 0;
2567 }
2568
nvme_free_tagset(struct nvme_dev *dev)2569 static void nvme_free_tagset(struct nvme_dev *dev)
2570 {
2571 if (dev->tagset.tags)
2572 blk_mq_free_tag_set(&dev->tagset);
2573 dev->ctrl.tagset = NULL;
2574 }
2575
2576 /* pairs with nvme_pci_alloc_dev */
nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)2577 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2578 {
2579 struct nvme_dev *dev = to_nvme_dev(ctrl);
2580
2581 nvme_dbbuf_dma_free(dev);
2582 nvme_free_tagset(dev);
2583 if (dev->ctrl.admin_q)
2584 blk_put_queue(dev->ctrl.admin_q);
2585 free_opal_dev(dev->ctrl.opal_dev);
2586 mempool_destroy(dev->iod_mempool);
2587 put_device(dev->dev);
2588 kfree(dev->queues);
2589 kfree(dev);
2590 }
2591
nvme_remove_dead_ctrl(struct nvme_dev *dev)2592 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2593 {
2594 /*
2595 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2596 * may be holding this pci_dev's device lock.
2597 */
2598 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2599 nvme_get_ctrl(&dev->ctrl);
2600 nvme_dev_disable(dev, false);
2601 nvme_kill_queues(&dev->ctrl);
2602 if (!queue_work(nvme_wq, &dev->remove_work))
2603 nvme_put_ctrl(&dev->ctrl);
2604 }
2605
nvme_reset_work(struct work_struct *work)2606 static void nvme_reset_work(struct work_struct *work)
2607 {
2608 struct nvme_dev *dev =
2609 container_of(work, struct nvme_dev, ctrl.reset_work);
2610 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2611 int result;
2612
2613 if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2614 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2615 dev->ctrl.state);
2616 result = -ENODEV;
2617 goto out;
2618 }
2619
2620 /*
2621 * If we're called to reset a live controller first shut it down before
2622 * moving on.
2623 */
2624 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2625 nvme_dev_disable(dev, false);
2626 nvme_sync_queues(&dev->ctrl);
2627
2628 mutex_lock(&dev->shutdown_lock);
2629 result = nvme_pci_enable(dev);
2630 if (result)
2631 goto out_unlock;
2632
2633 result = nvme_pci_configure_admin_queue(dev);
2634 if (result)
2635 goto out_unlock;
2636
2637 result = nvme_alloc_admin_tags(dev);
2638 if (result)
2639 goto out_unlock;
2640
2641 dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2642
2643 /*
2644 * Limit the max command size to prevent iod->sg allocations going
2645 * over a single page.
2646 */
2647 dev->ctrl.max_hw_sectors = min_t(u32,
2648 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2649 dev->ctrl.max_segments = NVME_MAX_SEGS;
2650
2651 /*
2652 * Don't limit the IOMMU merged segment size.
2653 */
2654 dma_set_max_seg_size(dev->dev, 0xffffffff);
2655
2656 mutex_unlock(&dev->shutdown_lock);
2657
2658 /*
2659 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2660 * initializing procedure here.
2661 */
2662 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2663 dev_warn(dev->ctrl.device,
2664 "failed to mark controller CONNECTING\n");
2665 result = -EBUSY;
2666 goto out;
2667 }
2668
2669 /*
2670 * We do not support an SGL for metadata (yet), so we are limited to a
2671 * single integrity segment for the separate metadata pointer.
2672 */
2673 dev->ctrl.max_integrity_segments = 1;
2674
2675 result = nvme_init_identify(&dev->ctrl);
2676 if (result)
2677 goto out;
2678
2679 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2680 if (!dev->ctrl.opal_dev)
2681 dev->ctrl.opal_dev =
2682 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2683 else if (was_suspend)
2684 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2685 } else {
2686 free_opal_dev(dev->ctrl.opal_dev);
2687 dev->ctrl.opal_dev = NULL;
2688 }
2689
2690 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2691 result = nvme_dbbuf_dma_alloc(dev);
2692 if (result)
2693 dev_warn(dev->dev,
2694 "unable to allocate dma for dbbuf\n");
2695 }
2696
2697 if (dev->ctrl.hmpre) {
2698 result = nvme_setup_host_mem(dev);
2699 if (result < 0)
2700 goto out;
2701 }
2702
2703 result = nvme_setup_io_queues(dev);
2704 if (result)
2705 goto out;
2706
2707 /*
2708 * Keep the controller around but remove all namespaces if we don't have
2709 * any working I/O queue.
2710 */
2711 if (dev->online_queues < 2) {
2712 dev_warn(dev->ctrl.device, "IO queues not created\n");
2713 nvme_kill_queues(&dev->ctrl);
2714 nvme_remove_namespaces(&dev->ctrl);
2715 nvme_free_tagset(dev);
2716 } else {
2717 nvme_start_queues(&dev->ctrl);
2718 nvme_wait_freeze(&dev->ctrl);
2719 nvme_dev_add(dev);
2720 nvme_unfreeze(&dev->ctrl);
2721 }
2722
2723 /*
2724 * If only admin queue live, keep it to do further investigation or
2725 * recovery.
2726 */
2727 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2728 dev_warn(dev->ctrl.device,
2729 "failed to mark controller live state\n");
2730 result = -ENODEV;
2731 goto out;
2732 }
2733
2734 nvme_start_ctrl(&dev->ctrl);
2735 return;
2736
2737 out_unlock:
2738 mutex_unlock(&dev->shutdown_lock);
2739 out:
2740 if (result)
2741 dev_warn(dev->ctrl.device,
2742 "Removing after probe failure status: %d\n", result);
2743 nvme_remove_dead_ctrl(dev);
2744 }
2745
nvme_remove_dead_ctrl_work(struct work_struct *work)2746 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2747 {
2748 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2749 struct pci_dev *pdev = to_pci_dev(dev->dev);
2750
2751 if (pci_get_drvdata(pdev))
2752 device_release_driver(&pdev->dev);
2753 nvme_put_ctrl(&dev->ctrl);
2754 }
2755
nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)2756 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2757 {
2758 *val = readl(to_nvme_dev(ctrl)->bar + off);
2759 return 0;
2760 }
2761
nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)2762 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2763 {
2764 writel(val, to_nvme_dev(ctrl)->bar + off);
2765 return 0;
2766 }
2767
nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)2768 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2769 {
2770 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2771 return 0;
2772 }
2773
nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)2774 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2775 {
2776 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2777
2778 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2779 }
2780
2781 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2782 .name = "pcie",
2783 .module = THIS_MODULE,
2784 .flags = NVME_F_METADATA_SUPPORTED |
2785 NVME_F_PCI_P2PDMA,
2786 .reg_read32 = nvme_pci_reg_read32,
2787 .reg_write32 = nvme_pci_reg_write32,
2788 .reg_read64 = nvme_pci_reg_read64,
2789 .free_ctrl = nvme_pci_free_ctrl,
2790 .submit_async_event = nvme_pci_submit_async_event,
2791 .get_address = nvme_pci_get_address,
2792 };
2793
nvme_dev_map(struct nvme_dev *dev)2794 static int nvme_dev_map(struct nvme_dev *dev)
2795 {
2796 struct pci_dev *pdev = to_pci_dev(dev->dev);
2797
2798 if (pci_request_mem_regions(pdev, "nvme"))
2799 return -ENODEV;
2800
2801 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2802 goto release;
2803
2804 return 0;
2805 release:
2806 pci_release_mem_regions(pdev);
2807 return -ENODEV;
2808 }
2809
check_vendor_combination_bug(struct pci_dev *pdev)2810 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2811 {
2812 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2813 /*
2814 * Several Samsung devices seem to drop off the PCIe bus
2815 * randomly when APST is on and uses the deepest sleep state.
2816 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2817 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2818 * 950 PRO 256GB", but it seems to be restricted to two Dell
2819 * laptops.
2820 */
2821 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2822 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2823 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2824 return NVME_QUIRK_NO_DEEPEST_PS;
2825 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2826 /*
2827 * Samsung SSD 960 EVO drops off the PCIe bus after system
2828 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2829 * within few minutes after bootup on a Coffee Lake board -
2830 * ASUS PRIME Z370-A
2831 */
2832 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2833 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2834 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2835 return NVME_QUIRK_NO_APST;
2836 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2837 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2838 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2839 /*
2840 * Forcing to use host managed nvme power settings for
2841 * lowest idle power with quick resume latency on
2842 * Samsung and Toshiba SSDs based on suspend behavior
2843 * on Coffee Lake board for LENOVO C640
2844 */
2845 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2846 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2847 return NVME_QUIRK_SIMPLE_SUSPEND;
2848 }
2849
2850 return 0;
2851 }
2852
nvme_async_probe(void *data, async_cookie_t cookie)2853 static void nvme_async_probe(void *data, async_cookie_t cookie)
2854 {
2855 struct nvme_dev *dev = data;
2856
2857 flush_work(&dev->ctrl.reset_work);
2858 flush_work(&dev->ctrl.scan_work);
2859 nvme_put_ctrl(&dev->ctrl);
2860 }
2861
nvme_pci_alloc_dev(struct pci_dev *pdev, const struct pci_device_id *id)2862 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2863 const struct pci_device_id *id)
2864 {
2865 unsigned long quirks = id->driver_data;
2866 int node = dev_to_node(&pdev->dev);
2867 struct nvme_dev *dev;
2868 int ret = -ENOMEM;
2869
2870 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2871 if (!dev)
2872 return ERR_PTR(-ENOMEM);
2873 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2874 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2875 mutex_init(&dev->shutdown_lock);
2876
2877 dev->nr_write_queues = write_queues;
2878 dev->nr_poll_queues = poll_queues;
2879 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2880 dev->queues = kcalloc_node(dev->nr_allocated_queues,
2881 sizeof(struct nvme_queue), GFP_KERNEL, node);
2882 if (!dev->queues)
2883 goto out_free_dev;
2884
2885 dev->dev = get_device(&pdev->dev);
2886
2887 quirks |= check_vendor_combination_bug(pdev);
2888 if (!noacpi && acpi_storage_d3(&pdev->dev)) {
2889 /*
2890 * Some systems use a bios work around to ask for D3 on
2891 * platforms that support kernel managed suspend.
2892 */
2893 dev_info(&pdev->dev,
2894 "platform quirk: setting simple suspend\n");
2895 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2896 }
2897 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2898 quirks);
2899 if (ret)
2900 goto out_put_device;
2901 return dev;
2902
2903 out_put_device:
2904 put_device(dev->dev);
2905 kfree(dev->queues);
2906 out_free_dev:
2907 kfree(dev);
2908 return ERR_PTR(ret);
2909 }
2910
nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)2911 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2912 {
2913 struct nvme_dev *dev;
2914 int result = -ENOMEM;
2915
2916 dev = nvme_pci_alloc_dev(pdev, id);
2917 if (IS_ERR(dev))
2918 return PTR_ERR(dev);
2919
2920 result = nvme_dev_map(dev);
2921 if (result)
2922 goto out_uninit_ctrl;
2923
2924 result = nvme_setup_prp_pools(dev);
2925 if (result)
2926 goto out_dev_unmap;
2927
2928 result = nvme_pci_alloc_iod_mempool(dev);
2929 if (result)
2930 goto out_release_prp_pools;
2931
2932 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2933 pci_set_drvdata(pdev, dev);
2934
2935 nvme_reset_ctrl(&dev->ctrl);
2936 async_schedule(nvme_async_probe, dev);
2937 return 0;
2938
2939 out_release_prp_pools:
2940 nvme_release_prp_pools(dev);
2941 out_dev_unmap:
2942 nvme_dev_unmap(dev);
2943 out_uninit_ctrl:
2944 nvme_uninit_ctrl(&dev->ctrl);
2945 return result;
2946 }
2947
nvme_reset_prepare(struct pci_dev *pdev)2948 static void nvme_reset_prepare(struct pci_dev *pdev)
2949 {
2950 struct nvme_dev *dev = pci_get_drvdata(pdev);
2951
2952 /*
2953 * We don't need to check the return value from waiting for the reset
2954 * state as pci_dev device lock is held, making it impossible to race
2955 * with ->remove().
2956 */
2957 nvme_disable_prepare_reset(dev, false);
2958 nvme_sync_queues(&dev->ctrl);
2959 }
2960
nvme_reset_done(struct pci_dev *pdev)2961 static void nvme_reset_done(struct pci_dev *pdev)
2962 {
2963 struct nvme_dev *dev = pci_get_drvdata(pdev);
2964
2965 if (!nvme_try_sched_reset(&dev->ctrl))
2966 flush_work(&dev->ctrl.reset_work);
2967 }
2968
nvme_shutdown(struct pci_dev *pdev)2969 static void nvme_shutdown(struct pci_dev *pdev)
2970 {
2971 struct nvme_dev *dev = pci_get_drvdata(pdev);
2972
2973 nvme_disable_prepare_reset(dev, true);
2974 }
2975
2976 /*
2977 * The driver's remove may be called on a device in a partially initialized
2978 * state. This function must not have any dependencies on the device state in
2979 * order to proceed.
2980 */
nvme_remove(struct pci_dev *pdev)2981 static void nvme_remove(struct pci_dev *pdev)
2982 {
2983 struct nvme_dev *dev = pci_get_drvdata(pdev);
2984
2985 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2986 pci_set_drvdata(pdev, NULL);
2987
2988 if (!pci_device_is_present(pdev)) {
2989 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2990 nvme_dev_disable(dev, true);
2991 }
2992
2993 flush_work(&dev->ctrl.reset_work);
2994 nvme_stop_ctrl(&dev->ctrl);
2995 nvme_remove_namespaces(&dev->ctrl);
2996 nvme_dev_disable(dev, true);
2997 nvme_release_cmb(dev);
2998 nvme_free_host_mem(dev);
2999 nvme_dev_remove_admin(dev);
3000 nvme_free_queues(dev, 0);
3001 nvme_release_prp_pools(dev);
3002 nvme_dev_unmap(dev);
3003 nvme_uninit_ctrl(&dev->ctrl);
3004 }
3005
3006 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)3007 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3008 {
3009 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3010 }
3011
nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)3012 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3013 {
3014 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3015 }
3016
nvme_resume(struct device *dev)3017 static int nvme_resume(struct device *dev)
3018 {
3019 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3020 struct nvme_ctrl *ctrl = &ndev->ctrl;
3021
3022 if (ndev->last_ps == U32_MAX ||
3023 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3024 return nvme_try_sched_reset(&ndev->ctrl);
3025 return 0;
3026 }
3027
nvme_suspend(struct device *dev)3028 static int nvme_suspend(struct device *dev)
3029 {
3030 struct pci_dev *pdev = to_pci_dev(dev);
3031 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3032 struct nvme_ctrl *ctrl = &ndev->ctrl;
3033 int ret = -EBUSY;
3034
3035 ndev->last_ps = U32_MAX;
3036
3037 /*
3038 * The platform does not remove power for a kernel managed suspend so
3039 * use host managed nvme power settings for lowest idle power if
3040 * possible. This should have quicker resume latency than a full device
3041 * shutdown. But if the firmware is involved after the suspend or the
3042 * device does not support any non-default power states, shut down the
3043 * device fully.
3044 *
3045 * If ASPM is not enabled for the device, shut down the device and allow
3046 * the PCI bus layer to put it into D3 in order to take the PCIe link
3047 * down, so as to allow the platform to achieve its minimum low-power
3048 * state (which may not be possible if the link is up).
3049 *
3050 * If a host memory buffer is enabled, shut down the device as the NVMe
3051 * specification allows the device to access the host memory buffer in
3052 * host DRAM from all power states, but hosts will fail access to DRAM
3053 * during S3.
3054 */
3055 if (pm_suspend_via_firmware() || !ctrl->npss ||
3056 !pcie_aspm_enabled(pdev) ||
3057 ndev->nr_host_mem_descs ||
3058 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3059 return nvme_disable_prepare_reset(ndev, true);
3060
3061 nvme_start_freeze(ctrl);
3062 nvme_wait_freeze(ctrl);
3063 nvme_sync_queues(ctrl);
3064
3065 if (ctrl->state != NVME_CTRL_LIVE)
3066 goto unfreeze;
3067
3068 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3069 if (ret < 0)
3070 goto unfreeze;
3071
3072 /*
3073 * A saved state prevents pci pm from generically controlling the
3074 * device's power. If we're using protocol specific settings, we don't
3075 * want pci interfering.
3076 */
3077 pci_save_state(pdev);
3078
3079 ret = nvme_set_power_state(ctrl, ctrl->npss);
3080 if (ret < 0)
3081 goto unfreeze;
3082
3083 if (ret) {
3084 /* discard the saved state */
3085 pci_load_saved_state(pdev, NULL);
3086
3087 /*
3088 * Clearing npss forces a controller reset on resume. The
3089 * correct value will be rediscovered then.
3090 */
3091 ret = nvme_disable_prepare_reset(ndev, true);
3092 ctrl->npss = 0;
3093 }
3094 unfreeze:
3095 nvme_unfreeze(ctrl);
3096 return ret;
3097 }
3098
nvme_simple_suspend(struct device *dev)3099 static int nvme_simple_suspend(struct device *dev)
3100 {
3101 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3102
3103 return nvme_disable_prepare_reset(ndev, true);
3104 }
3105
nvme_simple_resume(struct device *dev)3106 static int nvme_simple_resume(struct device *dev)
3107 {
3108 struct pci_dev *pdev = to_pci_dev(dev);
3109 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3110
3111 return nvme_try_sched_reset(&ndev->ctrl);
3112 }
3113
3114 static const struct dev_pm_ops nvme_dev_pm_ops = {
3115 .suspend = nvme_suspend,
3116 .resume = nvme_resume,
3117 .freeze = nvme_simple_suspend,
3118 .thaw = nvme_simple_resume,
3119 .poweroff = nvme_simple_suspend,
3120 .restore = nvme_simple_resume,
3121 };
3122 #endif /* CONFIG_PM_SLEEP */
3123
nvme_error_detected(struct pci_dev *pdev, pci_channel_state_t state)3124 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3125 pci_channel_state_t state)
3126 {
3127 struct nvme_dev *dev = pci_get_drvdata(pdev);
3128
3129 /*
3130 * A frozen channel requires a reset. When detected, this method will
3131 * shutdown the controller to quiesce. The controller will be restarted
3132 * after the slot reset through driver's slot_reset callback.
3133 */
3134 switch (state) {
3135 case pci_channel_io_normal:
3136 return PCI_ERS_RESULT_CAN_RECOVER;
3137 case pci_channel_io_frozen:
3138 dev_warn(dev->ctrl.device,
3139 "frozen state error detected, reset controller\n");
3140 nvme_dev_disable(dev, false);
3141 return PCI_ERS_RESULT_NEED_RESET;
3142 case pci_channel_io_perm_failure:
3143 dev_warn(dev->ctrl.device,
3144 "failure state error detected, request disconnect\n");
3145 return PCI_ERS_RESULT_DISCONNECT;
3146 }
3147 return PCI_ERS_RESULT_NEED_RESET;
3148 }
3149
nvme_slot_reset(struct pci_dev *pdev)3150 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3151 {
3152 struct nvme_dev *dev = pci_get_drvdata(pdev);
3153
3154 dev_info(dev->ctrl.device, "restart after slot reset\n");
3155 pci_restore_state(pdev);
3156 nvme_reset_ctrl(&dev->ctrl);
3157 return PCI_ERS_RESULT_RECOVERED;
3158 }
3159
nvme_error_resume(struct pci_dev *pdev)3160 static void nvme_error_resume(struct pci_dev *pdev)
3161 {
3162 struct nvme_dev *dev = pci_get_drvdata(pdev);
3163
3164 flush_work(&dev->ctrl.reset_work);
3165 }
3166
3167 static const struct pci_error_handlers nvme_err_handler = {
3168 .error_detected = nvme_error_detected,
3169 .slot_reset = nvme_slot_reset,
3170 .resume = nvme_error_resume,
3171 .reset_prepare = nvme_reset_prepare,
3172 .reset_done = nvme_reset_done,
3173 };
3174
3175 static const struct pci_device_id nvme_id_table[] = {
3176 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
3177 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3178 NVME_QUIRK_DEALLOCATE_ZEROES, },
3179 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
3180 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3181 NVME_QUIRK_DEALLOCATE_ZEROES, },
3182 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
3183 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3184 NVME_QUIRK_DEALLOCATE_ZEROES |
3185 NVME_QUIRK_IGNORE_DEV_SUBNQN |
3186 NVME_QUIRK_BOGUS_NID, },
3187 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
3188 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3189 NVME_QUIRK_DEALLOCATE_ZEROES, },
3190 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3191 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3192 NVME_QUIRK_MEDIUM_PRIO_SQ |
3193 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3194 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3195 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3196 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3197 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3198 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3199 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3200 NVME_QUIRK_BOGUS_NID, },
3201 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
3202 .driver_data = NVME_QUIRK_BOGUS_NID, },
3203 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3204 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3205 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3206 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3207 NVME_QUIRK_NO_NS_DESC_LIST, },
3208 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3209 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3210 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3211 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3212 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3213 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3214 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3215 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3216 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3217 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3218 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3219 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3220 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
3221 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3222 NVME_QUIRK_BOGUS_NID, },
3223 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3224 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3225 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3226 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
3227 .driver_data = NVME_QUIRK_LIGHTNVM, },
3228 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
3229 .driver_data = NVME_QUIRK_LIGHTNVM, },
3230 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
3231 .driver_data = NVME_QUIRK_LIGHTNVM, },
3232 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3233 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3234 NVME_QUIRK_BOGUS_NID, },
3235 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3236 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3237 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3238 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3239 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3240 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */
3241 .driver_data = NVME_QUIRK_BOGUS_NID, },
3242 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3243 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3244 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3245 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3246 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3247 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3248 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3249 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3250 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3251 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3252 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3253 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3254 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3255 NVME_QUIRK_128_BYTES_SQES |
3256 NVME_QUIRK_SHARED_TAGS |
3257 NVME_QUIRK_SKIP_CID_GEN },
3258 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3259 { 0, }
3260 };
3261 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3262
3263 static struct pci_driver nvme_driver = {
3264 .name = "nvme",
3265 .id_table = nvme_id_table,
3266 .probe = nvme_probe,
3267 .remove = nvme_remove,
3268 .shutdown = nvme_shutdown,
3269 #ifdef CONFIG_PM_SLEEP
3270 .driver = {
3271 .pm = &nvme_dev_pm_ops,
3272 },
3273 #endif
3274 .sriov_configure = pci_sriov_configure_simple,
3275 .err_handler = &nvme_err_handler,
3276 };
3277
nvme_init(void)3278 static int __init nvme_init(void)
3279 {
3280 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3281 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3282 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3283 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3284
3285 return pci_register_driver(&nvme_driver);
3286 }
3287
nvme_exit(void)3288 static void __exit nvme_exit(void)
3289 {
3290 pci_unregister_driver(&nvme_driver);
3291 flush_workqueue(nvme_wq);
3292 }
3293
3294 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3295 MODULE_LICENSE("GPL");
3296 MODULE_VERSION("1.0");
3297 module_init(nvme_init);
3298 module_exit(nvme_exit);
3299