1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/once.h>
21 #include <linux/pci.h>
22 #include <linux/suspend.h>
23 #include <linux/t10-pi.h>
24 #include <linux/types.h>
25 #include <linux/io-64-nonatomic-lo-hi.h>
26 #include <linux/io-64-nonatomic-hi-lo.h>
27 #include <linux/sed-opal.h>
28 #include <linux/pci-p2pdma.h>
29 
30 #include "trace.h"
31 #include "nvme.h"
32 
33 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
34 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
35 
36 #define SGES_PER_PAGE	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
37 
38 /*
39  * These can be higher, but we need to ensure that any command doesn't
40  * require an sg allocation that needs more than a page of data.
41  */
42 #define NVME_MAX_KB_SZ	4096
43 #define NVME_MAX_SEGS	127
44 
45 static int use_threaded_interrupts;
46 module_param(use_threaded_interrupts, int, 0);
47 
48 static bool use_cmb_sqes = true;
49 module_param(use_cmb_sqes, bool, 0444);
50 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
51 
52 static unsigned int max_host_mem_size_mb = 128;
53 module_param(max_host_mem_size_mb, uint, 0444);
54 MODULE_PARM_DESC(max_host_mem_size_mb,
55 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
56 
57 static unsigned int sgl_threshold = SZ_32K;
58 module_param(sgl_threshold, uint, 0644);
59 MODULE_PARM_DESC(sgl_threshold,
60 		"Use SGLs when average request segment size is larger or equal to "
61 		"this size. Use 0 to disable SGLs.");
62 
63 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
64 static const struct kernel_param_ops io_queue_depth_ops = {
65 	.set = io_queue_depth_set,
66 	.get = param_get_uint,
67 };
68 
69 static unsigned int io_queue_depth = 1024;
70 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
71 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
72 
io_queue_count_set(const char *val, const struct kernel_param *kp)73 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
74 {
75 	unsigned int n;
76 	int ret;
77 
78 	ret = kstrtouint(val, 10, &n);
79 	if (ret != 0 || n > num_possible_cpus())
80 		return -EINVAL;
81 	return param_set_uint(val, kp);
82 }
83 
84 static const struct kernel_param_ops io_queue_count_ops = {
85 	.set = io_queue_count_set,
86 	.get = param_get_uint,
87 };
88 
89 static unsigned int write_queues;
90 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
91 MODULE_PARM_DESC(write_queues,
92 	"Number of queues to use for writes. If not set, reads and writes "
93 	"will share a queue set.");
94 
95 static unsigned int poll_queues;
96 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
97 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
98 
99 static bool noacpi;
100 module_param(noacpi, bool, 0444);
101 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
102 
103 struct nvme_dev;
104 struct nvme_queue;
105 
106 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
107 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
108 
109 /*
110  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
111  */
112 struct nvme_dev {
113 	struct nvme_queue *queues;
114 	struct blk_mq_tag_set tagset;
115 	struct blk_mq_tag_set admin_tagset;
116 	u32 __iomem *dbs;
117 	struct device *dev;
118 	struct dma_pool *prp_page_pool;
119 	struct dma_pool *prp_small_pool;
120 	unsigned online_queues;
121 	unsigned max_qid;
122 	unsigned io_queues[HCTX_MAX_TYPES];
123 	unsigned int num_vecs;
124 	u32 q_depth;
125 	int io_sqes;
126 	u32 db_stride;
127 	void __iomem *bar;
128 	unsigned long bar_mapped_size;
129 	struct work_struct remove_work;
130 	struct mutex shutdown_lock;
131 	bool subsystem;
132 	u64 cmb_size;
133 	bool cmb_use_sqes;
134 	u32 cmbsz;
135 	u32 cmbloc;
136 	struct nvme_ctrl ctrl;
137 	u32 last_ps;
138 
139 	mempool_t *iod_mempool;
140 
141 	/* shadow doorbell buffer support: */
142 	__le32 *dbbuf_dbs;
143 	dma_addr_t dbbuf_dbs_dma_addr;
144 	__le32 *dbbuf_eis;
145 	dma_addr_t dbbuf_eis_dma_addr;
146 
147 	/* host memory buffer support: */
148 	u64 host_mem_size;
149 	u32 nr_host_mem_descs;
150 	dma_addr_t host_mem_descs_dma;
151 	struct nvme_host_mem_buf_desc *host_mem_descs;
152 	void **host_mem_desc_bufs;
153 	unsigned int nr_allocated_queues;
154 	unsigned int nr_write_queues;
155 	unsigned int nr_poll_queues;
156 };
157 
io_queue_depth_set(const char *val, const struct kernel_param *kp)158 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
159 {
160 	int ret;
161 	u32 n;
162 
163 	ret = kstrtou32(val, 10, &n);
164 	if (ret != 0 || n < 2)
165 		return -EINVAL;
166 
167 	return param_set_uint(val, kp);
168 }
169 
sq_idx(unsigned int qid, u32 stride)170 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171 {
172 	return qid * 2 * stride;
173 }
174 
cq_idx(unsigned int qid, u32 stride)175 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176 {
177 	return (qid * 2 + 1) * stride;
178 }
179 
to_nvme_dev(struct nvme_ctrl *ctrl)180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181 {
182 	return container_of(ctrl, struct nvme_dev, ctrl);
183 }
184 
185 /*
186  * An NVM Express queue.  Each device has at least two (one for admin
187  * commands and one for I/O commands).
188  */
189 struct nvme_queue {
190 	struct nvme_dev *dev;
191 	spinlock_t sq_lock;
192 	void *sq_cmds;
193 	 /* only used for poll queues: */
194 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195 	struct nvme_completion *cqes;
196 	dma_addr_t sq_dma_addr;
197 	dma_addr_t cq_dma_addr;
198 	u32 __iomem *q_db;
199 	u32 q_depth;
200 	u16 cq_vector;
201 	u16 sq_tail;
202 	u16 last_sq_tail;
203 	u16 cq_head;
204 	u16 qid;
205 	u8 cq_phase;
206 	u8 sqes;
207 	unsigned long flags;
208 #define NVMEQ_ENABLED		0
209 #define NVMEQ_SQ_CMB		1
210 #define NVMEQ_DELETE_ERROR	2
211 #define NVMEQ_POLLED		3
212 	__le32 *dbbuf_sq_db;
213 	__le32 *dbbuf_cq_db;
214 	__le32 *dbbuf_sq_ei;
215 	__le32 *dbbuf_cq_ei;
216 	struct completion delete_done;
217 };
218 
219 /*
220  * The nvme_iod describes the data in an I/O.
221  *
222  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
223  * to the actual struct scatterlist.
224  */
225 struct nvme_iod {
226 	struct nvme_request req;
227 	struct nvme_command cmd;
228 	struct nvme_queue *nvmeq;
229 	bool use_sgl;
230 	int aborted;
231 	int npages;		/* In the PRP list. 0 means small pool in use */
232 	int nents;		/* Used in scatterlist */
233 	dma_addr_t first_dma;
234 	unsigned int dma_len;	/* length of single DMA segment mapping */
235 	dma_addr_t meta_dma;
236 	struct scatterlist *sg;
237 };
238 
nvme_dbbuf_size(struct nvme_dev *dev)239 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
240 {
241 	return dev->nr_allocated_queues * 8 * dev->db_stride;
242 }
243 
nvme_dbbuf_dma_alloc(struct nvme_dev *dev)244 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
245 {
246 	unsigned int mem_size = nvme_dbbuf_size(dev);
247 
248 	if (dev->dbbuf_dbs)
249 		return 0;
250 
251 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
252 					    &dev->dbbuf_dbs_dma_addr,
253 					    GFP_KERNEL);
254 	if (!dev->dbbuf_dbs)
255 		return -ENOMEM;
256 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
257 					    &dev->dbbuf_eis_dma_addr,
258 					    GFP_KERNEL);
259 	if (!dev->dbbuf_eis) {
260 		dma_free_coherent(dev->dev, mem_size,
261 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
262 		dev->dbbuf_dbs = NULL;
263 		return -ENOMEM;
264 	}
265 
266 	return 0;
267 }
268 
nvme_dbbuf_dma_free(struct nvme_dev *dev)269 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
270 {
271 	unsigned int mem_size = nvme_dbbuf_size(dev);
272 
273 	if (dev->dbbuf_dbs) {
274 		dma_free_coherent(dev->dev, mem_size,
275 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
276 		dev->dbbuf_dbs = NULL;
277 	}
278 	if (dev->dbbuf_eis) {
279 		dma_free_coherent(dev->dev, mem_size,
280 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
281 		dev->dbbuf_eis = NULL;
282 	}
283 }
284 
nvme_dbbuf_init(struct nvme_dev *dev, struct nvme_queue *nvmeq, int qid)285 static void nvme_dbbuf_init(struct nvme_dev *dev,
286 			    struct nvme_queue *nvmeq, int qid)
287 {
288 	if (!dev->dbbuf_dbs || !qid)
289 		return;
290 
291 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
292 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
293 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
294 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
295 }
296 
nvme_dbbuf_free(struct nvme_queue *nvmeq)297 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
298 {
299 	if (!nvmeq->qid)
300 		return;
301 
302 	nvmeq->dbbuf_sq_db = NULL;
303 	nvmeq->dbbuf_cq_db = NULL;
304 	nvmeq->dbbuf_sq_ei = NULL;
305 	nvmeq->dbbuf_cq_ei = NULL;
306 }
307 
nvme_dbbuf_set(struct nvme_dev *dev)308 static void nvme_dbbuf_set(struct nvme_dev *dev)
309 {
310 	struct nvme_command c;
311 	unsigned int i;
312 
313 	if (!dev->dbbuf_dbs)
314 		return;
315 
316 	memset(&c, 0, sizeof(c));
317 	c.dbbuf.opcode = nvme_admin_dbbuf;
318 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
319 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
320 
321 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
322 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
323 		/* Free memory and continue on */
324 		nvme_dbbuf_dma_free(dev);
325 
326 		for (i = 1; i <= dev->online_queues; i++)
327 			nvme_dbbuf_free(&dev->queues[i]);
328 	}
329 }
330 
nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)331 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
332 {
333 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
334 }
335 
336 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db, volatile __le32 *dbbuf_ei)337 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
338 					      volatile __le32 *dbbuf_ei)
339 {
340 	if (dbbuf_db) {
341 		u16 old_value, event_idx;
342 
343 		/*
344 		 * Ensure that the queue is written before updating
345 		 * the doorbell in memory
346 		 */
347 		wmb();
348 
349 		old_value = le32_to_cpu(*dbbuf_db);
350 		*dbbuf_db = cpu_to_le32(value);
351 
352 		/*
353 		 * Ensure that the doorbell is updated before reading the event
354 		 * index from memory.  The controller needs to provide similar
355 		 * ordering to ensure the envent index is updated before reading
356 		 * the doorbell.
357 		 */
358 		mb();
359 
360 		event_idx = le32_to_cpu(*dbbuf_ei);
361 		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
362 			return false;
363 	}
364 
365 	return true;
366 }
367 
368 /*
369  * Will slightly overestimate the number of pages needed.  This is OK
370  * as it only leads to a small amount of wasted memory for the lifetime of
371  * the I/O.
372  */
nvme_pci_npages_prp(void)373 static int nvme_pci_npages_prp(void)
374 {
375 	unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
376 	unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
377 	return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
378 }
379 
380 /*
381  * Calculates the number of pages needed for the SGL segments. For example a 4k
382  * page can accommodate 256 SGL descriptors.
383  */
nvme_pci_npages_sgl(void)384 static int nvme_pci_npages_sgl(void)
385 {
386 	return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
387 			NVME_CTRL_PAGE_SIZE);
388 }
389 
nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx)390 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
391 				unsigned int hctx_idx)
392 {
393 	struct nvme_dev *dev = data;
394 	struct nvme_queue *nvmeq = &dev->queues[0];
395 
396 	WARN_ON(hctx_idx != 0);
397 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
398 
399 	hctx->driver_data = nvmeq;
400 	return 0;
401 }
402 
nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx)403 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
404 			  unsigned int hctx_idx)
405 {
406 	struct nvme_dev *dev = data;
407 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
408 
409 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
410 	hctx->driver_data = nvmeq;
411 	return 0;
412 }
413 
nvme_init_request(struct blk_mq_tag_set *set, struct request *req, unsigned int hctx_idx, unsigned int numa_node)414 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
415 		unsigned int hctx_idx, unsigned int numa_node)
416 {
417 	struct nvme_dev *dev = set->driver_data;
418 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
419 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
420 	struct nvme_queue *nvmeq = &dev->queues[queue_idx];
421 
422 	BUG_ON(!nvmeq);
423 	iod->nvmeq = nvmeq;
424 
425 	nvme_req(req)->ctrl = &dev->ctrl;
426 	return 0;
427 }
428 
queue_irq_offset(struct nvme_dev *dev)429 static int queue_irq_offset(struct nvme_dev *dev)
430 {
431 	/* if we have more than 1 vec, admin queue offsets us by 1 */
432 	if (dev->num_vecs > 1)
433 		return 1;
434 
435 	return 0;
436 }
437 
nvme_pci_map_queues(struct blk_mq_tag_set *set)438 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
439 {
440 	struct nvme_dev *dev = set->driver_data;
441 	int i, qoff, offset;
442 
443 	offset = queue_irq_offset(dev);
444 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
445 		struct blk_mq_queue_map *map = &set->map[i];
446 
447 		map->nr_queues = dev->io_queues[i];
448 		if (!map->nr_queues) {
449 			BUG_ON(i == HCTX_TYPE_DEFAULT);
450 			continue;
451 		}
452 
453 		/*
454 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
455 		 * affinity), so use the regular blk-mq cpu mapping
456 		 */
457 		map->queue_offset = qoff;
458 		if (i != HCTX_TYPE_POLL && offset)
459 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
460 		else
461 			blk_mq_map_queues(map);
462 		qoff += map->nr_queues;
463 		offset += map->nr_queues;
464 	}
465 
466 	return 0;
467 }
468 
469 /*
470  * Write sq tail if we are asked to, or if the next command would wrap.
471  */
nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)472 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
473 {
474 	if (!write_sq) {
475 		u16 next_tail = nvmeq->sq_tail + 1;
476 
477 		if (next_tail == nvmeq->q_depth)
478 			next_tail = 0;
479 		if (next_tail != nvmeq->last_sq_tail)
480 			return;
481 	}
482 
483 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
484 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
485 		writel(nvmeq->sq_tail, nvmeq->q_db);
486 	nvmeq->last_sq_tail = nvmeq->sq_tail;
487 }
488 
489 /**
490  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
491  * @nvmeq: The queue to use
492  * @cmd: The command to send
493  * @write_sq: whether to write to the SQ doorbell
494  */
nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd, bool write_sq)495 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
496 			    bool write_sq)
497 {
498 	spin_lock(&nvmeq->sq_lock);
499 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
500 	       cmd, sizeof(*cmd));
501 	if (++nvmeq->sq_tail == nvmeq->q_depth)
502 		nvmeq->sq_tail = 0;
503 	nvme_write_sq_db(nvmeq, write_sq);
504 	spin_unlock(&nvmeq->sq_lock);
505 }
506 
nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)507 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
508 {
509 	struct nvme_queue *nvmeq = hctx->driver_data;
510 
511 	spin_lock(&nvmeq->sq_lock);
512 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
513 		nvme_write_sq_db(nvmeq, true);
514 	spin_unlock(&nvmeq->sq_lock);
515 }
516 
nvme_pci_iod_list(struct request *req)517 static void **nvme_pci_iod_list(struct request *req)
518 {
519 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
520 	return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
521 }
522 
nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)523 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
524 {
525 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
526 	int nseg = blk_rq_nr_phys_segments(req);
527 	unsigned int avg_seg_size;
528 
529 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
530 
531 	if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
532 		return false;
533 	if (!iod->nvmeq->qid)
534 		return false;
535 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
536 		return false;
537 	return true;
538 }
539 
nvme_free_prps(struct nvme_dev *dev, struct request *req)540 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
541 {
542 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
543 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
544 	dma_addr_t dma_addr = iod->first_dma;
545 	int i;
546 
547 	for (i = 0; i < iod->npages; i++) {
548 		__le64 *prp_list = nvme_pci_iod_list(req)[i];
549 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
550 
551 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
552 		dma_addr = next_dma_addr;
553 	}
554 
555 }
556 
nvme_free_sgls(struct nvme_dev *dev, struct request *req)557 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
558 {
559 	const int last_sg = SGES_PER_PAGE - 1;
560 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
561 	dma_addr_t dma_addr = iod->first_dma;
562 	int i;
563 
564 	for (i = 0; i < iod->npages; i++) {
565 		struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
566 		dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
567 
568 		dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
569 		dma_addr = next_dma_addr;
570 	}
571 
572 }
573 
nvme_unmap_sg(struct nvme_dev *dev, struct request *req)574 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
575 {
576 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
577 
578 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
579 		pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
580 				    rq_dma_dir(req));
581 	else
582 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
583 }
584 
nvme_unmap_data(struct nvme_dev *dev, struct request *req)585 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
586 {
587 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
588 
589 	if (iod->dma_len) {
590 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
591 			       rq_dma_dir(req));
592 		return;
593 	}
594 
595 	WARN_ON_ONCE(!iod->nents);
596 
597 	nvme_unmap_sg(dev, req);
598 	if (iod->npages == 0)
599 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
600 			      iod->first_dma);
601 	else if (iod->use_sgl)
602 		nvme_free_sgls(dev, req);
603 	else
604 		nvme_free_prps(dev, req);
605 	mempool_free(iod->sg, dev->iod_mempool);
606 }
607 
nvme_print_sgl(struct scatterlist *sgl, int nents)608 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
609 {
610 	int i;
611 	struct scatterlist *sg;
612 
613 	for_each_sg(sgl, sg, nents, i) {
614 		dma_addr_t phys = sg_phys(sg);
615 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
616 			"dma_address:%pad dma_length:%d\n",
617 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
618 			sg_dma_len(sg));
619 	}
620 }
621 
nvme_pci_setup_prps(struct nvme_dev *dev, struct request *req, struct nvme_rw_command *cmnd)622 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
623 		struct request *req, struct nvme_rw_command *cmnd)
624 {
625 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
626 	struct dma_pool *pool;
627 	int length = blk_rq_payload_bytes(req);
628 	struct scatterlist *sg = iod->sg;
629 	int dma_len = sg_dma_len(sg);
630 	u64 dma_addr = sg_dma_address(sg);
631 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
632 	__le64 *prp_list;
633 	void **list = nvme_pci_iod_list(req);
634 	dma_addr_t prp_dma;
635 	int nprps, i;
636 
637 	length -= (NVME_CTRL_PAGE_SIZE - offset);
638 	if (length <= 0) {
639 		iod->first_dma = 0;
640 		goto done;
641 	}
642 
643 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
644 	if (dma_len) {
645 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
646 	} else {
647 		sg = sg_next(sg);
648 		dma_addr = sg_dma_address(sg);
649 		dma_len = sg_dma_len(sg);
650 	}
651 
652 	if (length <= NVME_CTRL_PAGE_SIZE) {
653 		iod->first_dma = dma_addr;
654 		goto done;
655 	}
656 
657 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
658 	if (nprps <= (256 / 8)) {
659 		pool = dev->prp_small_pool;
660 		iod->npages = 0;
661 	} else {
662 		pool = dev->prp_page_pool;
663 		iod->npages = 1;
664 	}
665 
666 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
667 	if (!prp_list) {
668 		iod->first_dma = dma_addr;
669 		iod->npages = -1;
670 		return BLK_STS_RESOURCE;
671 	}
672 	list[0] = prp_list;
673 	iod->first_dma = prp_dma;
674 	i = 0;
675 	for (;;) {
676 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
677 			__le64 *old_prp_list = prp_list;
678 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
679 			if (!prp_list)
680 				goto free_prps;
681 			list[iod->npages++] = prp_list;
682 			prp_list[0] = old_prp_list[i - 1];
683 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
684 			i = 1;
685 		}
686 		prp_list[i++] = cpu_to_le64(dma_addr);
687 		dma_len -= NVME_CTRL_PAGE_SIZE;
688 		dma_addr += NVME_CTRL_PAGE_SIZE;
689 		length -= NVME_CTRL_PAGE_SIZE;
690 		if (length <= 0)
691 			break;
692 		if (dma_len > 0)
693 			continue;
694 		if (unlikely(dma_len < 0))
695 			goto bad_sgl;
696 		sg = sg_next(sg);
697 		dma_addr = sg_dma_address(sg);
698 		dma_len = sg_dma_len(sg);
699 	}
700 done:
701 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
702 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
703 	return BLK_STS_OK;
704 free_prps:
705 	nvme_free_prps(dev, req);
706 	return BLK_STS_RESOURCE;
707 bad_sgl:
708 	WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
709 			"Invalid SGL for payload:%d nents:%d\n",
710 			blk_rq_payload_bytes(req), iod->nents);
711 	return BLK_STS_IOERR;
712 }
713 
nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, struct scatterlist *sg)714 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
715 		struct scatterlist *sg)
716 {
717 	sge->addr = cpu_to_le64(sg_dma_address(sg));
718 	sge->length = cpu_to_le32(sg_dma_len(sg));
719 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
720 }
721 
nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, dma_addr_t dma_addr, int entries)722 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
723 		dma_addr_t dma_addr, int entries)
724 {
725 	sge->addr = cpu_to_le64(dma_addr);
726 	if (entries < SGES_PER_PAGE) {
727 		sge->length = cpu_to_le32(entries * sizeof(*sge));
728 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
729 	} else {
730 		sge->length = cpu_to_le32(NVME_CTRL_PAGE_SIZE);
731 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
732 	}
733 }
734 
nvme_pci_setup_sgls(struct nvme_dev *dev, struct request *req, struct nvme_rw_command *cmd, int entries)735 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
736 		struct request *req, struct nvme_rw_command *cmd, int entries)
737 {
738 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
739 	struct dma_pool *pool;
740 	struct nvme_sgl_desc *sg_list;
741 	struct scatterlist *sg = iod->sg;
742 	dma_addr_t sgl_dma;
743 	int i = 0;
744 
745 	/* setting the transfer type as SGL */
746 	cmd->flags = NVME_CMD_SGL_METABUF;
747 
748 	if (entries == 1) {
749 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
750 		return BLK_STS_OK;
751 	}
752 
753 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
754 		pool = dev->prp_small_pool;
755 		iod->npages = 0;
756 	} else {
757 		pool = dev->prp_page_pool;
758 		iod->npages = 1;
759 	}
760 
761 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
762 	if (!sg_list) {
763 		iod->npages = -1;
764 		return BLK_STS_RESOURCE;
765 	}
766 
767 	nvme_pci_iod_list(req)[0] = sg_list;
768 	iod->first_dma = sgl_dma;
769 
770 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
771 
772 	do {
773 		if (i == SGES_PER_PAGE) {
774 			struct nvme_sgl_desc *old_sg_desc = sg_list;
775 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
776 
777 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
778 			if (!sg_list)
779 				goto free_sgls;
780 
781 			i = 0;
782 			nvme_pci_iod_list(req)[iod->npages++] = sg_list;
783 			sg_list[i++] = *link;
784 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
785 		}
786 
787 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
788 		sg = sg_next(sg);
789 	} while (--entries > 0);
790 
791 	return BLK_STS_OK;
792 free_sgls:
793 	nvme_free_sgls(dev, req);
794 	return BLK_STS_RESOURCE;
795 }
796 
nvme_setup_prp_simple(struct nvme_dev *dev, struct request *req, struct nvme_rw_command *cmnd, struct bio_vec *bv)797 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
798 		struct request *req, struct nvme_rw_command *cmnd,
799 		struct bio_vec *bv)
800 {
801 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
802 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
803 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
804 
805 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
806 	if (dma_mapping_error(dev->dev, iod->first_dma))
807 		return BLK_STS_RESOURCE;
808 	iod->dma_len = bv->bv_len;
809 
810 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
811 	if (bv->bv_len > first_prp_len)
812 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
813 	else
814 		cmnd->dptr.prp2 = 0;
815 	return BLK_STS_OK;
816 }
817 
nvme_setup_sgl_simple(struct nvme_dev *dev, struct request *req, struct nvme_rw_command *cmnd, struct bio_vec *bv)818 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
819 		struct request *req, struct nvme_rw_command *cmnd,
820 		struct bio_vec *bv)
821 {
822 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
823 
824 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
825 	if (dma_mapping_error(dev->dev, iod->first_dma))
826 		return BLK_STS_RESOURCE;
827 	iod->dma_len = bv->bv_len;
828 
829 	cmnd->flags = NVME_CMD_SGL_METABUF;
830 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
831 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
832 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
833 	return BLK_STS_OK;
834 }
835 
nvme_map_data(struct nvme_dev *dev, struct request *req, struct nvme_command *cmnd)836 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
837 		struct nvme_command *cmnd)
838 {
839 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
840 	blk_status_t ret = BLK_STS_RESOURCE;
841 	int nr_mapped;
842 
843 	if (blk_rq_nr_phys_segments(req) == 1) {
844 		struct bio_vec bv = req_bvec(req);
845 
846 		if (!is_pci_p2pdma_page(bv.bv_page)) {
847 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
848 				return nvme_setup_prp_simple(dev, req,
849 							     &cmnd->rw, &bv);
850 
851 			if (iod->nvmeq->qid && sgl_threshold &&
852 			    dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
853 				return nvme_setup_sgl_simple(dev, req,
854 							     &cmnd->rw, &bv);
855 		}
856 	}
857 
858 	iod->dma_len = 0;
859 	iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
860 	if (!iod->sg)
861 		return BLK_STS_RESOURCE;
862 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
863 	iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
864 	if (!iod->nents)
865 		goto out_free_sg;
866 
867 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
868 		nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
869 				iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
870 	else
871 		nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
872 					     rq_dma_dir(req), DMA_ATTR_NO_WARN);
873 	if (!nr_mapped)
874 		goto out_free_sg;
875 
876 	iod->use_sgl = nvme_pci_use_sgls(dev, req);
877 	if (iod->use_sgl)
878 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
879 	else
880 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
881 	if (ret != BLK_STS_OK)
882 		goto out_unmap_sg;
883 	return BLK_STS_OK;
884 
885 out_unmap_sg:
886 	nvme_unmap_sg(dev, req);
887 out_free_sg:
888 	mempool_free(iod->sg, dev->iod_mempool);
889 	return ret;
890 }
891 
nvme_map_metadata(struct nvme_dev *dev, struct request *req, struct nvme_command *cmnd)892 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
893 		struct nvme_command *cmnd)
894 {
895 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
896 
897 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
898 			rq_dma_dir(req), 0);
899 	if (dma_mapping_error(dev->dev, iod->meta_dma))
900 		return BLK_STS_IOERR;
901 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
902 	return BLK_STS_OK;
903 }
904 
905 /*
906  * NOTE: ns is NULL when called on the admin queue.
907  */
nvme_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *bd)908 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
909 			 const struct blk_mq_queue_data *bd)
910 {
911 	struct nvme_ns *ns = hctx->queue->queuedata;
912 	struct nvme_queue *nvmeq = hctx->driver_data;
913 	struct nvme_dev *dev = nvmeq->dev;
914 	struct request *req = bd->rq;
915 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
916 	struct nvme_command *cmnd = &iod->cmd;
917 	blk_status_t ret;
918 
919 	iod->aborted = 0;
920 	iod->npages = -1;
921 	iod->nents = 0;
922 
923 	/*
924 	 * We should not need to do this, but we're still using this to
925 	 * ensure we can drain requests on a dying queue.
926 	 */
927 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
928 		return BLK_STS_IOERR;
929 
930 	ret = nvme_setup_cmd(ns, req, cmnd);
931 	if (ret)
932 		return ret;
933 
934 	if (blk_rq_nr_phys_segments(req)) {
935 		ret = nvme_map_data(dev, req, cmnd);
936 		if (ret)
937 			goto out_free_cmd;
938 	}
939 
940 	if (blk_integrity_rq(req)) {
941 		ret = nvme_map_metadata(dev, req, cmnd);
942 		if (ret)
943 			goto out_unmap_data;
944 	}
945 
946 	blk_mq_start_request(req);
947 	nvme_submit_cmd(nvmeq, cmnd, bd->last);
948 	return BLK_STS_OK;
949 out_unmap_data:
950 	if (blk_rq_nr_phys_segments(req))
951 		nvme_unmap_data(dev, req);
952 out_free_cmd:
953 	nvme_cleanup_cmd(req);
954 	return ret;
955 }
956 
nvme_pci_complete_rq(struct request *req)957 static void nvme_pci_complete_rq(struct request *req)
958 {
959 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
960 	struct nvme_dev *dev = iod->nvmeq->dev;
961 
962 	if (blk_integrity_rq(req))
963 		dma_unmap_page(dev->dev, iod->meta_dma,
964 			       rq_integrity_vec(req)->bv_len, rq_dma_dir(req));
965 
966 	if (blk_rq_nr_phys_segments(req))
967 		nvme_unmap_data(dev, req);
968 	nvme_complete_rq(req);
969 }
970 
971 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue *nvmeq)972 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
973 {
974 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
975 
976 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
977 }
978 
nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)979 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
980 {
981 	u16 head = nvmeq->cq_head;
982 
983 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
984 					      nvmeq->dbbuf_cq_ei))
985 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
986 }
987 
nvme_queue_tagset(struct nvme_queue *nvmeq)988 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
989 {
990 	if (!nvmeq->qid)
991 		return nvmeq->dev->admin_tagset.tags[0];
992 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
993 }
994 
nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)995 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
996 {
997 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
998 	__u16 command_id = READ_ONCE(cqe->command_id);
999 	struct request *req;
1000 
1001 	/*
1002 	 * AEN requests are special as they don't time out and can
1003 	 * survive any kind of queue freeze and often don't respond to
1004 	 * aborts.  We don't even bother to allocate a struct request
1005 	 * for them but rather special case them here.
1006 	 */
1007 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1008 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1009 				cqe->status, &cqe->result);
1010 		return;
1011 	}
1012 
1013 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1014 	if (unlikely(!req)) {
1015 		dev_warn(nvmeq->dev->ctrl.device,
1016 			"invalid id %d completed on queue %d\n",
1017 			command_id, le16_to_cpu(cqe->sq_id));
1018 		return;
1019 	}
1020 
1021 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1022 	if (!nvme_try_complete_req(req, cqe->status, cqe->result))
1023 		nvme_pci_complete_rq(req);
1024 }
1025 
nvme_update_cq_head(struct nvme_queue *nvmeq)1026 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1027 {
1028 	u32 tmp = nvmeq->cq_head + 1;
1029 
1030 	if (tmp == nvmeq->q_depth) {
1031 		nvmeq->cq_head = 0;
1032 		nvmeq->cq_phase ^= 1;
1033 	} else {
1034 		nvmeq->cq_head = tmp;
1035 	}
1036 }
1037 
nvme_process_cq(struct nvme_queue *nvmeq)1038 static inline int nvme_process_cq(struct nvme_queue *nvmeq)
1039 {
1040 	int found = 0;
1041 
1042 	while (nvme_cqe_pending(nvmeq)) {
1043 		found++;
1044 		/*
1045 		 * load-load control dependency between phase and the rest of
1046 		 * the cqe requires a full read memory barrier
1047 		 */
1048 		dma_rmb();
1049 		nvme_handle_cqe(nvmeq, nvmeq->cq_head);
1050 		nvme_update_cq_head(nvmeq);
1051 	}
1052 
1053 	if (found)
1054 		nvme_ring_cq_doorbell(nvmeq);
1055 	return found;
1056 }
1057 
nvme_irq(int irq, void *data)1058 static irqreturn_t nvme_irq(int irq, void *data)
1059 {
1060 	struct nvme_queue *nvmeq = data;
1061 	irqreturn_t ret = IRQ_NONE;
1062 
1063 	/*
1064 	 * The rmb/wmb pair ensures we see all updates from a previous run of
1065 	 * the irq handler, even if that was on another CPU.
1066 	 */
1067 	rmb();
1068 	if (nvme_process_cq(nvmeq))
1069 		ret = IRQ_HANDLED;
1070 	wmb();
1071 
1072 	return ret;
1073 }
1074 
nvme_irq_check(int irq, void *data)1075 static irqreturn_t nvme_irq_check(int irq, void *data)
1076 {
1077 	struct nvme_queue *nvmeq = data;
1078 
1079 	if (nvme_cqe_pending(nvmeq))
1080 		return IRQ_WAKE_THREAD;
1081 	return IRQ_NONE;
1082 }
1083 
1084 /*
1085  * Poll for completions for any interrupt driven queue
1086  * Can be called from any context.
1087  */
nvme_poll_irqdisable(struct nvme_queue *nvmeq)1088 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1089 {
1090 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1091 
1092 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1093 
1094 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1095 	nvme_process_cq(nvmeq);
1096 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1097 }
1098 
nvme_poll(struct blk_mq_hw_ctx *hctx)1099 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1100 {
1101 	struct nvme_queue *nvmeq = hctx->driver_data;
1102 	bool found;
1103 
1104 	if (!nvme_cqe_pending(nvmeq))
1105 		return 0;
1106 
1107 	spin_lock(&nvmeq->cq_poll_lock);
1108 	found = nvme_process_cq(nvmeq);
1109 	spin_unlock(&nvmeq->cq_poll_lock);
1110 
1111 	return found;
1112 }
1113 
nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)1114 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1115 {
1116 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1117 	struct nvme_queue *nvmeq = &dev->queues[0];
1118 	struct nvme_command c;
1119 
1120 	memset(&c, 0, sizeof(c));
1121 	c.common.opcode = nvme_admin_async_event;
1122 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1123 	nvme_submit_cmd(nvmeq, &c, true);
1124 }
1125 
adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)1126 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1127 {
1128 	struct nvme_command c;
1129 
1130 	memset(&c, 0, sizeof(c));
1131 	c.delete_queue.opcode = opcode;
1132 	c.delete_queue.qid = cpu_to_le16(id);
1133 
1134 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1135 }
1136 
adapter_alloc_cq(struct nvme_dev *dev, u16 qid, struct nvme_queue *nvmeq, s16 vector)1137 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1138 		struct nvme_queue *nvmeq, s16 vector)
1139 {
1140 	struct nvme_command c;
1141 	int flags = NVME_QUEUE_PHYS_CONTIG;
1142 
1143 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1144 		flags |= NVME_CQ_IRQ_ENABLED;
1145 
1146 	/*
1147 	 * Note: we (ab)use the fact that the prp fields survive if no data
1148 	 * is attached to the request.
1149 	 */
1150 	memset(&c, 0, sizeof(c));
1151 	c.create_cq.opcode = nvme_admin_create_cq;
1152 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1153 	c.create_cq.cqid = cpu_to_le16(qid);
1154 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1155 	c.create_cq.cq_flags = cpu_to_le16(flags);
1156 	c.create_cq.irq_vector = cpu_to_le16(vector);
1157 
1158 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1159 }
1160 
adapter_alloc_sq(struct nvme_dev *dev, u16 qid, struct nvme_queue *nvmeq)1161 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1162 						struct nvme_queue *nvmeq)
1163 {
1164 	struct nvme_ctrl *ctrl = &dev->ctrl;
1165 	struct nvme_command c;
1166 	int flags = NVME_QUEUE_PHYS_CONTIG;
1167 
1168 	/*
1169 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1170 	 * set. Since URGENT priority is zeroes, it makes all queues
1171 	 * URGENT.
1172 	 */
1173 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1174 		flags |= NVME_SQ_PRIO_MEDIUM;
1175 
1176 	/*
1177 	 * Note: we (ab)use the fact that the prp fields survive if no data
1178 	 * is attached to the request.
1179 	 */
1180 	memset(&c, 0, sizeof(c));
1181 	c.create_sq.opcode = nvme_admin_create_sq;
1182 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1183 	c.create_sq.sqid = cpu_to_le16(qid);
1184 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1185 	c.create_sq.sq_flags = cpu_to_le16(flags);
1186 	c.create_sq.cqid = cpu_to_le16(qid);
1187 
1188 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1189 }
1190 
adapter_delete_cq(struct nvme_dev *dev, u16 cqid)1191 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1192 {
1193 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1194 }
1195 
adapter_delete_sq(struct nvme_dev *dev, u16 sqid)1196 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1197 {
1198 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1199 }
1200 
abort_endio(struct request *req, blk_status_t error)1201 static void abort_endio(struct request *req, blk_status_t error)
1202 {
1203 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1204 	struct nvme_queue *nvmeq = iod->nvmeq;
1205 
1206 	dev_warn(nvmeq->dev->ctrl.device,
1207 		 "Abort status: 0x%x", nvme_req(req)->status);
1208 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1209 	blk_mq_free_request(req);
1210 }
1211 
nvme_should_reset(struct nvme_dev *dev, u32 csts)1212 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1213 {
1214 	/* If true, indicates loss of adapter communication, possibly by a
1215 	 * NVMe Subsystem reset.
1216 	 */
1217 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1218 
1219 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1220 	switch (dev->ctrl.state) {
1221 	case NVME_CTRL_RESETTING:
1222 	case NVME_CTRL_CONNECTING:
1223 		return false;
1224 	default:
1225 		break;
1226 	}
1227 
1228 	/* We shouldn't reset unless the controller is on fatal error state
1229 	 * _or_ if we lost the communication with it.
1230 	 */
1231 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1232 		return false;
1233 
1234 	return true;
1235 }
1236 
nvme_warn_reset(struct nvme_dev *dev, u32 csts)1237 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1238 {
1239 	/* Read a config register to help see what died. */
1240 	u16 pci_status;
1241 	int result;
1242 
1243 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1244 				      &pci_status);
1245 	if (result == PCIBIOS_SUCCESSFUL)
1246 		dev_warn(dev->ctrl.device,
1247 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1248 			 csts, pci_status);
1249 	else
1250 		dev_warn(dev->ctrl.device,
1251 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1252 			 csts, result);
1253 }
1254 
nvme_timeout(struct request *req, bool reserved)1255 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1256 {
1257 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1258 	struct nvme_queue *nvmeq = iod->nvmeq;
1259 	struct nvme_dev *dev = nvmeq->dev;
1260 	struct request *abort_req;
1261 	struct nvme_command cmd;
1262 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1263 
1264 	/* If PCI error recovery process is happening, we cannot reset or
1265 	 * the recovery mechanism will surely fail.
1266 	 */
1267 	mb();
1268 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1269 		return BLK_EH_RESET_TIMER;
1270 
1271 	/*
1272 	 * Reset immediately if the controller is failed
1273 	 */
1274 	if (nvme_should_reset(dev, csts)) {
1275 		nvme_warn_reset(dev, csts);
1276 		nvme_dev_disable(dev, false);
1277 		nvme_reset_ctrl(&dev->ctrl);
1278 		return BLK_EH_DONE;
1279 	}
1280 
1281 	/*
1282 	 * Did we miss an interrupt?
1283 	 */
1284 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1285 		nvme_poll(req->mq_hctx);
1286 	else
1287 		nvme_poll_irqdisable(nvmeq);
1288 
1289 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1290 		dev_warn(dev->ctrl.device,
1291 			 "I/O %d QID %d timeout, completion polled\n",
1292 			 req->tag, nvmeq->qid);
1293 		return BLK_EH_DONE;
1294 	}
1295 
1296 	/*
1297 	 * Shutdown immediately if controller times out while starting. The
1298 	 * reset work will see the pci device disabled when it gets the forced
1299 	 * cancellation error. All outstanding requests are completed on
1300 	 * shutdown, so we return BLK_EH_DONE.
1301 	 */
1302 	switch (dev->ctrl.state) {
1303 	case NVME_CTRL_CONNECTING:
1304 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1305 		fallthrough;
1306 	case NVME_CTRL_DELETING:
1307 		dev_warn_ratelimited(dev->ctrl.device,
1308 			 "I/O %d QID %d timeout, disable controller\n",
1309 			 req->tag, nvmeq->qid);
1310 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1311 		nvme_dev_disable(dev, true);
1312 		return BLK_EH_DONE;
1313 	case NVME_CTRL_RESETTING:
1314 		return BLK_EH_RESET_TIMER;
1315 	default:
1316 		break;
1317 	}
1318 
1319 	/*
1320 	 * Shutdown the controller immediately and schedule a reset if the
1321 	 * command was already aborted once before and still hasn't been
1322 	 * returned to the driver, or if this is the admin queue.
1323 	 */
1324 	if (!nvmeq->qid || iod->aborted) {
1325 		dev_warn(dev->ctrl.device,
1326 			 "I/O %d QID %d timeout, reset controller\n",
1327 			 req->tag, nvmeq->qid);
1328 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1329 		nvme_dev_disable(dev, false);
1330 		nvme_reset_ctrl(&dev->ctrl);
1331 
1332 		return BLK_EH_DONE;
1333 	}
1334 
1335 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1336 		atomic_inc(&dev->ctrl.abort_limit);
1337 		return BLK_EH_RESET_TIMER;
1338 	}
1339 	iod->aborted = 1;
1340 
1341 	memset(&cmd, 0, sizeof(cmd));
1342 	cmd.abort.opcode = nvme_admin_abort_cmd;
1343 	cmd.abort.cid = nvme_cid(req);
1344 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1345 
1346 	dev_warn(nvmeq->dev->ctrl.device,
1347 		"I/O %d QID %d timeout, aborting\n",
1348 		 req->tag, nvmeq->qid);
1349 
1350 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1351 			BLK_MQ_REQ_NOWAIT);
1352 	if (IS_ERR(abort_req)) {
1353 		atomic_inc(&dev->ctrl.abort_limit);
1354 		return BLK_EH_RESET_TIMER;
1355 	}
1356 
1357 	abort_req->end_io_data = NULL;
1358 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1359 
1360 	/*
1361 	 * The aborted req will be completed on receiving the abort req.
1362 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1363 	 * as the device then is in a faulty state.
1364 	 */
1365 	return BLK_EH_RESET_TIMER;
1366 }
1367 
nvme_free_queue(struct nvme_queue *nvmeq)1368 static void nvme_free_queue(struct nvme_queue *nvmeq)
1369 {
1370 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1371 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1372 	if (!nvmeq->sq_cmds)
1373 		return;
1374 
1375 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1376 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1377 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1378 	} else {
1379 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1380 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1381 	}
1382 }
1383 
nvme_free_queues(struct nvme_dev *dev, int lowest)1384 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1385 {
1386 	int i;
1387 
1388 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1389 		dev->ctrl.queue_count--;
1390 		nvme_free_queue(&dev->queues[i]);
1391 	}
1392 }
1393 
1394 /**
1395  * nvme_suspend_queue - put queue into suspended state
1396  * @nvmeq: queue to suspend
1397  */
nvme_suspend_queue(struct nvme_queue *nvmeq)1398 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1399 {
1400 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1401 		return 1;
1402 
1403 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1404 	mb();
1405 
1406 	nvmeq->dev->online_queues--;
1407 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1408 		nvme_stop_admin_queue(&nvmeq->dev->ctrl);
1409 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1410 		pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1411 	return 0;
1412 }
1413 
nvme_suspend_io_queues(struct nvme_dev *dev)1414 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1415 {
1416 	int i;
1417 
1418 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1419 		nvme_suspend_queue(&dev->queues[i]);
1420 }
1421 
nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)1422 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1423 {
1424 	struct nvme_queue *nvmeq = &dev->queues[0];
1425 
1426 	if (shutdown)
1427 		nvme_shutdown_ctrl(&dev->ctrl);
1428 	else
1429 		nvme_disable_ctrl(&dev->ctrl);
1430 
1431 	nvme_poll_irqdisable(nvmeq);
1432 }
1433 
1434 /*
1435  * Called only on a device that has been disabled and after all other threads
1436  * that can check this device's completion queues have synced, except
1437  * nvme_poll(). This is the last chance for the driver to see a natural
1438  * completion before nvme_cancel_request() terminates all incomplete requests.
1439  */
nvme_reap_pending_cqes(struct nvme_dev *dev)1440 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1441 {
1442 	int i;
1443 
1444 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1445 		spin_lock(&dev->queues[i].cq_poll_lock);
1446 		nvme_process_cq(&dev->queues[i]);
1447 		spin_unlock(&dev->queues[i].cq_poll_lock);
1448 	}
1449 }
1450 
nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, int entry_size)1451 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1452 				int entry_size)
1453 {
1454 	int q_depth = dev->q_depth;
1455 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1456 					  NVME_CTRL_PAGE_SIZE);
1457 
1458 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1459 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1460 
1461 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1462 		q_depth = div_u64(mem_per_q, entry_size);
1463 
1464 		/*
1465 		 * Ensure the reduced q_depth is above some threshold where it
1466 		 * would be better to map queues in system memory with the
1467 		 * original depth
1468 		 */
1469 		if (q_depth < 64)
1470 			return -ENOMEM;
1471 	}
1472 
1473 	return q_depth;
1474 }
1475 
nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, int qid)1476 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1477 				int qid)
1478 {
1479 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1480 
1481 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1482 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1483 		if (nvmeq->sq_cmds) {
1484 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1485 							nvmeq->sq_cmds);
1486 			if (nvmeq->sq_dma_addr) {
1487 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1488 				return 0;
1489 			}
1490 
1491 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1492 		}
1493 	}
1494 
1495 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1496 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1497 	if (!nvmeq->sq_cmds)
1498 		return -ENOMEM;
1499 	return 0;
1500 }
1501 
nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)1502 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1503 {
1504 	struct nvme_queue *nvmeq = &dev->queues[qid];
1505 
1506 	if (dev->ctrl.queue_count > qid)
1507 		return 0;
1508 
1509 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1510 	nvmeq->q_depth = depth;
1511 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1512 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1513 	if (!nvmeq->cqes)
1514 		goto free_nvmeq;
1515 
1516 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1517 		goto free_cqdma;
1518 
1519 	nvmeq->dev = dev;
1520 	spin_lock_init(&nvmeq->sq_lock);
1521 	spin_lock_init(&nvmeq->cq_poll_lock);
1522 	nvmeq->cq_head = 0;
1523 	nvmeq->cq_phase = 1;
1524 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1525 	nvmeq->qid = qid;
1526 	dev->ctrl.queue_count++;
1527 
1528 	return 0;
1529 
1530  free_cqdma:
1531 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1532 			  nvmeq->cq_dma_addr);
1533  free_nvmeq:
1534 	return -ENOMEM;
1535 }
1536 
queue_request_irq(struct nvme_queue *nvmeq)1537 static int queue_request_irq(struct nvme_queue *nvmeq)
1538 {
1539 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1540 	int nr = nvmeq->dev->ctrl.instance;
1541 
1542 	if (use_threaded_interrupts) {
1543 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1544 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1545 	} else {
1546 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1547 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1548 	}
1549 }
1550 
nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)1551 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1552 {
1553 	struct nvme_dev *dev = nvmeq->dev;
1554 
1555 	nvmeq->sq_tail = 0;
1556 	nvmeq->last_sq_tail = 0;
1557 	nvmeq->cq_head = 0;
1558 	nvmeq->cq_phase = 1;
1559 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1560 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1561 	nvme_dbbuf_init(dev, nvmeq, qid);
1562 	dev->online_queues++;
1563 	wmb(); /* ensure the first interrupt sees the initialization */
1564 }
1565 
nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)1566 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1567 {
1568 	struct nvme_dev *dev = nvmeq->dev;
1569 	int result;
1570 	u16 vector = 0;
1571 
1572 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1573 
1574 	/*
1575 	 * A queue's vector matches the queue identifier unless the controller
1576 	 * has only one vector available.
1577 	 */
1578 	if (!polled)
1579 		vector = dev->num_vecs == 1 ? 0 : qid;
1580 	else
1581 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1582 
1583 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1584 	if (result)
1585 		return result;
1586 
1587 	result = adapter_alloc_sq(dev, qid, nvmeq);
1588 	if (result < 0)
1589 		return result;
1590 	if (result)
1591 		goto release_cq;
1592 
1593 	nvmeq->cq_vector = vector;
1594 	nvme_init_queue(nvmeq, qid);
1595 
1596 	if (!polled) {
1597 		result = queue_request_irq(nvmeq);
1598 		if (result < 0)
1599 			goto release_sq;
1600 	}
1601 
1602 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1603 	return result;
1604 
1605 release_sq:
1606 	dev->online_queues--;
1607 	adapter_delete_sq(dev, qid);
1608 release_cq:
1609 	adapter_delete_cq(dev, qid);
1610 	return result;
1611 }
1612 
1613 static const struct blk_mq_ops nvme_mq_admin_ops = {
1614 	.queue_rq	= nvme_queue_rq,
1615 	.complete	= nvme_pci_complete_rq,
1616 	.init_hctx	= nvme_admin_init_hctx,
1617 	.init_request	= nvme_init_request,
1618 	.timeout	= nvme_timeout,
1619 };
1620 
1621 static const struct blk_mq_ops nvme_mq_ops = {
1622 	.queue_rq	= nvme_queue_rq,
1623 	.complete	= nvme_pci_complete_rq,
1624 	.commit_rqs	= nvme_commit_rqs,
1625 	.init_hctx	= nvme_init_hctx,
1626 	.init_request	= nvme_init_request,
1627 	.map_queues	= nvme_pci_map_queues,
1628 	.timeout	= nvme_timeout,
1629 	.poll		= nvme_poll,
1630 };
1631 
nvme_dev_remove_admin(struct nvme_dev *dev)1632 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1633 {
1634 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1635 		/*
1636 		 * If the controller was reset during removal, it's possible
1637 		 * user requests may be waiting on a stopped queue. Start the
1638 		 * queue to flush these to completion.
1639 		 */
1640 		nvme_start_admin_queue(&dev->ctrl);
1641 		blk_cleanup_queue(dev->ctrl.admin_q);
1642 		blk_mq_free_tag_set(&dev->admin_tagset);
1643 	}
1644 }
1645 
nvme_alloc_admin_tags(struct nvme_dev *dev)1646 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1647 {
1648 	if (!dev->ctrl.admin_q) {
1649 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1650 		dev->admin_tagset.nr_hw_queues = 1;
1651 
1652 		dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1653 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1654 		dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1655 		dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1656 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1657 		dev->admin_tagset.driver_data = dev;
1658 
1659 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1660 			return -ENOMEM;
1661 		dev->ctrl.admin_tagset = &dev->admin_tagset;
1662 
1663 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1664 		if (IS_ERR(dev->ctrl.admin_q)) {
1665 			blk_mq_free_tag_set(&dev->admin_tagset);
1666 			dev->ctrl.admin_q = NULL;
1667 			return -ENOMEM;
1668 		}
1669 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1670 			nvme_dev_remove_admin(dev);
1671 			dev->ctrl.admin_q = NULL;
1672 			return -ENODEV;
1673 		}
1674 	} else
1675 		nvme_start_admin_queue(&dev->ctrl);
1676 
1677 	return 0;
1678 }
1679 
db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)1680 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1681 {
1682 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1683 }
1684 
nvme_remap_bar(struct nvme_dev *dev, unsigned long size)1685 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1686 {
1687 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1688 
1689 	if (size <= dev->bar_mapped_size)
1690 		return 0;
1691 	if (size > pci_resource_len(pdev, 0))
1692 		return -ENOMEM;
1693 	if (dev->bar)
1694 		iounmap(dev->bar);
1695 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1696 	if (!dev->bar) {
1697 		dev->bar_mapped_size = 0;
1698 		return -ENOMEM;
1699 	}
1700 	dev->bar_mapped_size = size;
1701 	dev->dbs = dev->bar + NVME_REG_DBS;
1702 
1703 	return 0;
1704 }
1705 
nvme_pci_configure_admin_queue(struct nvme_dev *dev)1706 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1707 {
1708 	int result;
1709 	u32 aqa;
1710 	struct nvme_queue *nvmeq;
1711 
1712 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1713 	if (result < 0)
1714 		return result;
1715 
1716 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1717 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1718 
1719 	if (dev->subsystem &&
1720 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1721 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1722 
1723 	result = nvme_disable_ctrl(&dev->ctrl);
1724 	if (result < 0)
1725 		return result;
1726 
1727 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1728 	if (result)
1729 		return result;
1730 
1731 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1732 
1733 	nvmeq = &dev->queues[0];
1734 	aqa = nvmeq->q_depth - 1;
1735 	aqa |= aqa << 16;
1736 
1737 	writel(aqa, dev->bar + NVME_REG_AQA);
1738 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1739 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1740 
1741 	result = nvme_enable_ctrl(&dev->ctrl);
1742 	if (result)
1743 		return result;
1744 
1745 	nvmeq->cq_vector = 0;
1746 	nvme_init_queue(nvmeq, 0);
1747 	result = queue_request_irq(nvmeq);
1748 	if (result) {
1749 		dev->online_queues--;
1750 		return result;
1751 	}
1752 
1753 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1754 	return result;
1755 }
1756 
nvme_create_io_queues(struct nvme_dev *dev)1757 static int nvme_create_io_queues(struct nvme_dev *dev)
1758 {
1759 	unsigned i, max, rw_queues;
1760 	int ret = 0;
1761 
1762 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1763 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1764 			ret = -ENOMEM;
1765 			break;
1766 		}
1767 	}
1768 
1769 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1770 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1771 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1772 				dev->io_queues[HCTX_TYPE_READ];
1773 	} else {
1774 		rw_queues = max;
1775 	}
1776 
1777 	for (i = dev->online_queues; i <= max; i++) {
1778 		bool polled = i > rw_queues;
1779 
1780 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1781 		if (ret)
1782 			break;
1783 	}
1784 
1785 	/*
1786 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1787 	 * than the desired amount of queues, and even a controller without
1788 	 * I/O queues can still be used to issue admin commands.  This might
1789 	 * be useful to upgrade a buggy firmware for example.
1790 	 */
1791 	return ret >= 0 ? 0 : ret;
1792 }
1793 
nvme_cmb_show(struct device *dev, struct device_attribute *attr, char *buf)1794 static ssize_t nvme_cmb_show(struct device *dev,
1795 			     struct device_attribute *attr,
1796 			     char *buf)
1797 {
1798 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1799 
1800 	return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1801 		       ndev->cmbloc, ndev->cmbsz);
1802 }
1803 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1804 
nvme_cmb_size_unit(struct nvme_dev *dev)1805 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1806 {
1807 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1808 
1809 	return 1ULL << (12 + 4 * szu);
1810 }
1811 
nvme_cmb_size(struct nvme_dev *dev)1812 static u32 nvme_cmb_size(struct nvme_dev *dev)
1813 {
1814 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1815 }
1816 
nvme_map_cmb(struct nvme_dev *dev)1817 static void nvme_map_cmb(struct nvme_dev *dev)
1818 {
1819 	u64 size, offset;
1820 	resource_size_t bar_size;
1821 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1822 	int bar;
1823 
1824 	if (dev->cmb_size)
1825 		return;
1826 
1827 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1828 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1829 
1830 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1831 	if (!dev->cmbsz)
1832 		return;
1833 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1834 
1835 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1836 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1837 	bar = NVME_CMB_BIR(dev->cmbloc);
1838 	bar_size = pci_resource_len(pdev, bar);
1839 
1840 	if (offset > bar_size)
1841 		return;
1842 
1843 	/*
1844 	 * Tell the controller about the host side address mapping the CMB,
1845 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1846 	 */
1847 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1848 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1849 			     (pci_bus_address(pdev, bar) + offset),
1850 			     dev->bar + NVME_REG_CMBMSC);
1851 	}
1852 
1853 	/*
1854 	 * Controllers may support a CMB size larger than their BAR,
1855 	 * for example, due to being behind a bridge. Reduce the CMB to
1856 	 * the reported size of the BAR
1857 	 */
1858 	if (size > bar_size - offset)
1859 		size = bar_size - offset;
1860 
1861 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1862 		dev_warn(dev->ctrl.device,
1863 			 "failed to register the CMB\n");
1864 		return;
1865 	}
1866 
1867 	dev->cmb_size = size;
1868 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1869 
1870 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1871 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1872 		pci_p2pmem_publish(pdev, true);
1873 
1874 	if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1875 				    &dev_attr_cmb.attr, NULL))
1876 		dev_warn(dev->ctrl.device,
1877 			 "failed to add sysfs attribute for CMB\n");
1878 }
1879 
nvme_release_cmb(struct nvme_dev *dev)1880 static inline void nvme_release_cmb(struct nvme_dev *dev)
1881 {
1882 	if (dev->cmb_size) {
1883 		sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1884 					     &dev_attr_cmb.attr, NULL);
1885 		dev->cmb_size = 0;
1886 	}
1887 }
1888 
nvme_set_host_mem(struct nvme_dev *dev, u32 bits)1889 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1890 {
1891 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1892 	u64 dma_addr = dev->host_mem_descs_dma;
1893 	struct nvme_command c;
1894 	int ret;
1895 
1896 	memset(&c, 0, sizeof(c));
1897 	c.features.opcode	= nvme_admin_set_features;
1898 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1899 	c.features.dword11	= cpu_to_le32(bits);
1900 	c.features.dword12	= cpu_to_le32(host_mem_size);
1901 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1902 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1903 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1904 
1905 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1906 	if (ret) {
1907 		dev_warn(dev->ctrl.device,
1908 			 "failed to set host mem (err %d, flags %#x).\n",
1909 			 ret, bits);
1910 	}
1911 	return ret;
1912 }
1913 
nvme_free_host_mem(struct nvme_dev *dev)1914 static void nvme_free_host_mem(struct nvme_dev *dev)
1915 {
1916 	int i;
1917 
1918 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1919 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1920 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1921 
1922 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1923 			       le64_to_cpu(desc->addr),
1924 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1925 	}
1926 
1927 	kfree(dev->host_mem_desc_bufs);
1928 	dev->host_mem_desc_bufs = NULL;
1929 	dma_free_coherent(dev->dev,
1930 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1931 			dev->host_mem_descs, dev->host_mem_descs_dma);
1932 	dev->host_mem_descs = NULL;
1933 	dev->nr_host_mem_descs = 0;
1934 }
1935 
__nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, u32 chunk_size)1936 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1937 		u32 chunk_size)
1938 {
1939 	struct nvme_host_mem_buf_desc *descs;
1940 	u32 max_entries, len;
1941 	dma_addr_t descs_dma;
1942 	int i = 0;
1943 	void **bufs;
1944 	u64 size, tmp;
1945 
1946 	tmp = (preferred + chunk_size - 1);
1947 	do_div(tmp, chunk_size);
1948 	max_entries = tmp;
1949 
1950 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1951 		max_entries = dev->ctrl.hmmaxd;
1952 
1953 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1954 				   &descs_dma, GFP_KERNEL);
1955 	if (!descs)
1956 		goto out;
1957 
1958 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1959 	if (!bufs)
1960 		goto out_free_descs;
1961 
1962 	for (size = 0; size < preferred && i < max_entries; size += len) {
1963 		dma_addr_t dma_addr;
1964 
1965 		len = min_t(u64, chunk_size, preferred - size);
1966 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1967 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1968 		if (!bufs[i])
1969 			break;
1970 
1971 		descs[i].addr = cpu_to_le64(dma_addr);
1972 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1973 		i++;
1974 	}
1975 
1976 	if (!size)
1977 		goto out_free_bufs;
1978 
1979 	dev->nr_host_mem_descs = i;
1980 	dev->host_mem_size = size;
1981 	dev->host_mem_descs = descs;
1982 	dev->host_mem_descs_dma = descs_dma;
1983 	dev->host_mem_desc_bufs = bufs;
1984 	return 0;
1985 
1986 out_free_bufs:
1987 	while (--i >= 0) {
1988 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1989 
1990 		dma_free_attrs(dev->dev, size, bufs[i],
1991 			       le64_to_cpu(descs[i].addr),
1992 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1993 	}
1994 
1995 	kfree(bufs);
1996 out_free_descs:
1997 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1998 			descs_dma);
1999 out:
2000 	dev->host_mem_descs = NULL;
2001 	return -ENOMEM;
2002 }
2003 
nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)2004 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2005 {
2006 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2007 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2008 	u64 chunk_size;
2009 
2010 	/* start big and work our way down */
2011 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2012 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2013 			if (!min || dev->host_mem_size >= min)
2014 				return 0;
2015 			nvme_free_host_mem(dev);
2016 		}
2017 	}
2018 
2019 	return -ENOMEM;
2020 }
2021 
nvme_setup_host_mem(struct nvme_dev *dev)2022 static int nvme_setup_host_mem(struct nvme_dev *dev)
2023 {
2024 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2025 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2026 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2027 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2028 	int ret;
2029 
2030 	preferred = min(preferred, max);
2031 	if (min > max) {
2032 		dev_warn(dev->ctrl.device,
2033 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2034 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2035 		nvme_free_host_mem(dev);
2036 		return 0;
2037 	}
2038 
2039 	/*
2040 	 * If we already have a buffer allocated check if we can reuse it.
2041 	 */
2042 	if (dev->host_mem_descs) {
2043 		if (dev->host_mem_size >= min)
2044 			enable_bits |= NVME_HOST_MEM_RETURN;
2045 		else
2046 			nvme_free_host_mem(dev);
2047 	}
2048 
2049 	if (!dev->host_mem_descs) {
2050 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2051 			dev_warn(dev->ctrl.device,
2052 				"failed to allocate host memory buffer.\n");
2053 			return 0; /* controller must work without HMB */
2054 		}
2055 
2056 		dev_info(dev->ctrl.device,
2057 			"allocated %lld MiB host memory buffer.\n",
2058 			dev->host_mem_size >> ilog2(SZ_1M));
2059 	}
2060 
2061 	ret = nvme_set_host_mem(dev, enable_bits);
2062 	if (ret)
2063 		nvme_free_host_mem(dev);
2064 	return ret;
2065 }
2066 
2067 /*
2068  * nirqs is the number of interrupts available for write and read
2069  * queues. The core already reserved an interrupt for the admin queue.
2070  */
nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)2071 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2072 {
2073 	struct nvme_dev *dev = affd->priv;
2074 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2075 
2076 	/*
2077 	 * If there is no interrupt available for queues, ensure that
2078 	 * the default queue is set to 1. The affinity set size is
2079 	 * also set to one, but the irq core ignores it for this case.
2080 	 *
2081 	 * If only one interrupt is available or 'write_queue' == 0, combine
2082 	 * write and read queues.
2083 	 *
2084 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2085 	 * queue.
2086 	 */
2087 	if (!nrirqs) {
2088 		nrirqs = 1;
2089 		nr_read_queues = 0;
2090 	} else if (nrirqs == 1 || !nr_write_queues) {
2091 		nr_read_queues = 0;
2092 	} else if (nr_write_queues >= nrirqs) {
2093 		nr_read_queues = 1;
2094 	} else {
2095 		nr_read_queues = nrirqs - nr_write_queues;
2096 	}
2097 
2098 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2099 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2100 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2101 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2102 	affd->nr_sets = nr_read_queues ? 2 : 1;
2103 }
2104 
nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)2105 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2106 {
2107 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2108 	struct irq_affinity affd = {
2109 		.pre_vectors	= 1,
2110 		.calc_sets	= nvme_calc_irq_sets,
2111 		.priv		= dev,
2112 	};
2113 	unsigned int irq_queues, poll_queues;
2114 
2115 	/*
2116 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2117 	 * left over for non-polled I/O.
2118 	 */
2119 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2120 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2121 
2122 	/*
2123 	 * Initialize for the single interrupt case, will be updated in
2124 	 * nvme_calc_irq_sets().
2125 	 */
2126 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2127 	dev->io_queues[HCTX_TYPE_READ] = 0;
2128 
2129 	/*
2130 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2131 	 * but some Apple controllers require all queues to use the first
2132 	 * vector.
2133 	 */
2134 	irq_queues = 1;
2135 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2136 		irq_queues += (nr_io_queues - poll_queues);
2137 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2138 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2139 }
2140 
nvme_disable_io_queues(struct nvme_dev *dev)2141 static void nvme_disable_io_queues(struct nvme_dev *dev)
2142 {
2143 	if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2144 		__nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2145 }
2146 
nvme_max_io_queues(struct nvme_dev *dev)2147 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2148 {
2149 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2150 }
2151 
nvme_setup_io_queues(struct nvme_dev *dev)2152 static int nvme_setup_io_queues(struct nvme_dev *dev)
2153 {
2154 	struct nvme_queue *adminq = &dev->queues[0];
2155 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2156 	unsigned int nr_io_queues;
2157 	unsigned long size;
2158 	int result;
2159 
2160 	/*
2161 	 * Sample the module parameters once at reset time so that we have
2162 	 * stable values to work with.
2163 	 */
2164 	dev->nr_write_queues = write_queues;
2165 	dev->nr_poll_queues = poll_queues;
2166 
2167 	/*
2168 	 * If tags are shared with admin queue (Apple bug), then
2169 	 * make sure we only use one IO queue.
2170 	 */
2171 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2172 		nr_io_queues = 1;
2173 	else
2174 		nr_io_queues = min(nvme_max_io_queues(dev),
2175 				   dev->nr_allocated_queues - 1);
2176 
2177 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2178 	if (result < 0)
2179 		return result;
2180 
2181 	if (nr_io_queues == 0)
2182 		return 0;
2183 
2184 	clear_bit(NVMEQ_ENABLED, &adminq->flags);
2185 
2186 	if (dev->cmb_use_sqes) {
2187 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2188 				sizeof(struct nvme_command));
2189 		if (result > 0)
2190 			dev->q_depth = result;
2191 		else
2192 			dev->cmb_use_sqes = false;
2193 	}
2194 
2195 	do {
2196 		size = db_bar_size(dev, nr_io_queues);
2197 		result = nvme_remap_bar(dev, size);
2198 		if (!result)
2199 			break;
2200 		if (!--nr_io_queues)
2201 			return -ENOMEM;
2202 	} while (1);
2203 	adminq->q_db = dev->dbs;
2204 
2205  retry:
2206 	/* Deregister the admin queue's interrupt */
2207 	pci_free_irq(pdev, 0, adminq);
2208 
2209 	/*
2210 	 * If we enable msix early due to not intx, disable it again before
2211 	 * setting up the full range we need.
2212 	 */
2213 	pci_free_irq_vectors(pdev);
2214 
2215 	result = nvme_setup_irqs(dev, nr_io_queues);
2216 	if (result <= 0)
2217 		return -EIO;
2218 
2219 	dev->num_vecs = result;
2220 	result = max(result - 1, 1);
2221 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2222 
2223 	/*
2224 	 * Should investigate if there's a performance win from allocating
2225 	 * more queues than interrupt vectors; it might allow the submission
2226 	 * path to scale better, even if the receive path is limited by the
2227 	 * number of interrupts.
2228 	 */
2229 	result = queue_request_irq(adminq);
2230 	if (result)
2231 		return result;
2232 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2233 
2234 	result = nvme_create_io_queues(dev);
2235 	if (result || dev->online_queues < 2)
2236 		return result;
2237 
2238 	if (dev->online_queues - 1 < dev->max_qid) {
2239 		nr_io_queues = dev->online_queues - 1;
2240 		nvme_disable_io_queues(dev);
2241 		nvme_suspend_io_queues(dev);
2242 		goto retry;
2243 	}
2244 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2245 					dev->io_queues[HCTX_TYPE_DEFAULT],
2246 					dev->io_queues[HCTX_TYPE_READ],
2247 					dev->io_queues[HCTX_TYPE_POLL]);
2248 	return 0;
2249 }
2250 
nvme_del_queue_end(struct request *req, blk_status_t error)2251 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2252 {
2253 	struct nvme_queue *nvmeq = req->end_io_data;
2254 
2255 	blk_mq_free_request(req);
2256 	complete(&nvmeq->delete_done);
2257 }
2258 
nvme_del_cq_end(struct request *req, blk_status_t error)2259 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2260 {
2261 	struct nvme_queue *nvmeq = req->end_io_data;
2262 
2263 	if (error)
2264 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2265 
2266 	nvme_del_queue_end(req, error);
2267 }
2268 
nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)2269 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2270 {
2271 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2272 	struct request *req;
2273 	struct nvme_command cmd;
2274 
2275 	memset(&cmd, 0, sizeof(cmd));
2276 	cmd.delete_queue.opcode = opcode;
2277 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2278 
2279 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
2280 	if (IS_ERR(req))
2281 		return PTR_ERR(req);
2282 
2283 	req->end_io_data = nvmeq;
2284 
2285 	init_completion(&nvmeq->delete_done);
2286 	blk_execute_rq_nowait(q, NULL, req, false,
2287 			opcode == nvme_admin_delete_cq ?
2288 				nvme_del_cq_end : nvme_del_queue_end);
2289 	return 0;
2290 }
2291 
__nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)2292 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2293 {
2294 	int nr_queues = dev->online_queues - 1, sent = 0;
2295 	unsigned long timeout;
2296 
2297  retry:
2298 	timeout = ADMIN_TIMEOUT;
2299 	while (nr_queues > 0) {
2300 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2301 			break;
2302 		nr_queues--;
2303 		sent++;
2304 	}
2305 	while (sent) {
2306 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2307 
2308 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2309 				timeout);
2310 		if (timeout == 0)
2311 			return false;
2312 
2313 		sent--;
2314 		if (nr_queues)
2315 			goto retry;
2316 	}
2317 	return true;
2318 }
2319 
nvme_dev_add(struct nvme_dev *dev)2320 static void nvme_dev_add(struct nvme_dev *dev)
2321 {
2322 	int ret;
2323 
2324 	if (!dev->ctrl.tagset) {
2325 		dev->tagset.ops = &nvme_mq_ops;
2326 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
2327 		dev->tagset.nr_maps = 2; /* default + read */
2328 		if (dev->io_queues[HCTX_TYPE_POLL])
2329 			dev->tagset.nr_maps++;
2330 		dev->tagset.timeout = NVME_IO_TIMEOUT;
2331 		dev->tagset.numa_node = dev->ctrl.numa_node;
2332 		dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2333 						BLK_MQ_MAX_DEPTH) - 1;
2334 		dev->tagset.cmd_size = sizeof(struct nvme_iod);
2335 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2336 		dev->tagset.driver_data = dev;
2337 
2338 		/*
2339 		 * Some Apple controllers requires tags to be unique
2340 		 * across admin and IO queue, so reserve the first 32
2341 		 * tags of the IO queue.
2342 		 */
2343 		if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2344 			dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2345 
2346 		ret = blk_mq_alloc_tag_set(&dev->tagset);
2347 		if (ret) {
2348 			dev_warn(dev->ctrl.device,
2349 				"IO queues tagset allocation failed %d\n", ret);
2350 			return;
2351 		}
2352 		dev->ctrl.tagset = &dev->tagset;
2353 	} else {
2354 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2355 
2356 		/* Free previously allocated queues that are no longer usable */
2357 		nvme_free_queues(dev, dev->online_queues);
2358 	}
2359 
2360 	nvme_dbbuf_set(dev);
2361 }
2362 
nvme_pci_enable(struct nvme_dev *dev)2363 static int nvme_pci_enable(struct nvme_dev *dev)
2364 {
2365 	int result = -ENOMEM;
2366 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2367 
2368 	if (pci_enable_device_mem(pdev))
2369 		return result;
2370 
2371 	pci_set_master(pdev);
2372 
2373 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2374 		goto disable;
2375 
2376 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2377 		result = -ENODEV;
2378 		goto disable;
2379 	}
2380 
2381 	/*
2382 	 * Some devices and/or platforms don't advertise or work with INTx
2383 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2384 	 * adjust this later.
2385 	 */
2386 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2387 	if (result < 0)
2388 		return result;
2389 
2390 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2391 
2392 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2393 				io_queue_depth);
2394 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2395 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2396 	dev->dbs = dev->bar + 4096;
2397 
2398 	/*
2399 	 * Some Apple controllers require a non-standard SQE size.
2400 	 * Interestingly they also seem to ignore the CC:IOSQES register
2401 	 * so we don't bother updating it here.
2402 	 */
2403 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2404 		dev->io_sqes = 7;
2405 	else
2406 		dev->io_sqes = NVME_NVM_IOSQES;
2407 
2408 	/*
2409 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2410 	 * some MacBook7,1 to avoid controller resets and data loss.
2411 	 */
2412 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2413 		dev->q_depth = 2;
2414 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2415 			"set queue depth=%u to work around controller resets\n",
2416 			dev->q_depth);
2417 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2418 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2419 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2420 		dev->q_depth = 64;
2421 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2422                         "set queue depth=%u\n", dev->q_depth);
2423 	}
2424 
2425 	/*
2426 	 * Controllers with the shared tags quirk need the IO queue to be
2427 	 * big enough so that we get 32 tags for the admin queue
2428 	 */
2429 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2430 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2431 		dev->q_depth = NVME_AQ_DEPTH + 2;
2432 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2433 			 dev->q_depth);
2434 	}
2435 
2436 
2437 	nvme_map_cmb(dev);
2438 
2439 	pci_enable_pcie_error_reporting(pdev);
2440 	pci_save_state(pdev);
2441 	return 0;
2442 
2443  disable:
2444 	pci_disable_device(pdev);
2445 	return result;
2446 }
2447 
nvme_dev_unmap(struct nvme_dev *dev)2448 static void nvme_dev_unmap(struct nvme_dev *dev)
2449 {
2450 	if (dev->bar)
2451 		iounmap(dev->bar);
2452 	pci_release_mem_regions(to_pci_dev(dev->dev));
2453 }
2454 
nvme_pci_disable(struct nvme_dev *dev)2455 static void nvme_pci_disable(struct nvme_dev *dev)
2456 {
2457 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2458 
2459 	pci_free_irq_vectors(pdev);
2460 
2461 	if (pci_is_enabled(pdev)) {
2462 		pci_disable_pcie_error_reporting(pdev);
2463 		pci_disable_device(pdev);
2464 	}
2465 }
2466 
nvme_dev_disable(struct nvme_dev *dev, bool shutdown)2467 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2468 {
2469 	bool dead = true, freeze = false;
2470 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2471 
2472 	mutex_lock(&dev->shutdown_lock);
2473 	if (pci_is_enabled(pdev)) {
2474 		u32 csts = readl(dev->bar + NVME_REG_CSTS);
2475 
2476 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2477 		    dev->ctrl.state == NVME_CTRL_RESETTING) {
2478 			freeze = true;
2479 			nvme_start_freeze(&dev->ctrl);
2480 		}
2481 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2482 			pdev->error_state  != pci_channel_io_normal);
2483 	}
2484 
2485 	/*
2486 	 * Give the controller a chance to complete all entered requests if
2487 	 * doing a safe shutdown.
2488 	 */
2489 	if (!dead && shutdown && freeze)
2490 		nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2491 
2492 	nvme_stop_queues(&dev->ctrl);
2493 
2494 	if (!dead && dev->ctrl.queue_count > 0) {
2495 		nvme_disable_io_queues(dev);
2496 		nvme_disable_admin_queue(dev, shutdown);
2497 	}
2498 	nvme_suspend_io_queues(dev);
2499 	nvme_suspend_queue(&dev->queues[0]);
2500 	nvme_pci_disable(dev);
2501 	nvme_reap_pending_cqes(dev);
2502 
2503 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2504 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2505 	blk_mq_tagset_wait_completed_request(&dev->tagset);
2506 	blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2507 
2508 	/*
2509 	 * The driver will not be starting up queues again if shutting down so
2510 	 * must flush all entered requests to their failed completion to avoid
2511 	 * deadlocking blk-mq hot-cpu notifier.
2512 	 */
2513 	if (shutdown) {
2514 		nvme_start_queues(&dev->ctrl);
2515 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2516 			nvme_start_admin_queue(&dev->ctrl);
2517 	}
2518 	mutex_unlock(&dev->shutdown_lock);
2519 }
2520 
nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)2521 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2522 {
2523 	if (!nvme_wait_reset(&dev->ctrl))
2524 		return -EBUSY;
2525 	nvme_dev_disable(dev, shutdown);
2526 	return 0;
2527 }
2528 
nvme_setup_prp_pools(struct nvme_dev *dev)2529 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2530 {
2531 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2532 						NVME_CTRL_PAGE_SIZE,
2533 						NVME_CTRL_PAGE_SIZE, 0);
2534 	if (!dev->prp_page_pool)
2535 		return -ENOMEM;
2536 
2537 	/* Optimisation for I/Os between 4k and 128k */
2538 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2539 						256, 256, 0);
2540 	if (!dev->prp_small_pool) {
2541 		dma_pool_destroy(dev->prp_page_pool);
2542 		return -ENOMEM;
2543 	}
2544 	return 0;
2545 }
2546 
nvme_release_prp_pools(struct nvme_dev *dev)2547 static void nvme_release_prp_pools(struct nvme_dev *dev)
2548 {
2549 	dma_pool_destroy(dev->prp_page_pool);
2550 	dma_pool_destroy(dev->prp_small_pool);
2551 }
2552 
nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)2553 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2554 {
2555 	size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
2556 	size_t alloc_size = sizeof(__le64 *) * npages +
2557 			    sizeof(struct scatterlist) * NVME_MAX_SEGS;
2558 
2559 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2560 	dev->iod_mempool = mempool_create_node(1,
2561 			mempool_kmalloc, mempool_kfree,
2562 			(void *)alloc_size, GFP_KERNEL,
2563 			dev_to_node(dev->dev));
2564 	if (!dev->iod_mempool)
2565 		return -ENOMEM;
2566 	return 0;
2567 }
2568 
nvme_free_tagset(struct nvme_dev *dev)2569 static void nvme_free_tagset(struct nvme_dev *dev)
2570 {
2571 	if (dev->tagset.tags)
2572 		blk_mq_free_tag_set(&dev->tagset);
2573 	dev->ctrl.tagset = NULL;
2574 }
2575 
2576 /* pairs with nvme_pci_alloc_dev */
nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)2577 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2578 {
2579 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2580 
2581 	nvme_dbbuf_dma_free(dev);
2582 	nvme_free_tagset(dev);
2583 	if (dev->ctrl.admin_q)
2584 		blk_put_queue(dev->ctrl.admin_q);
2585 	free_opal_dev(dev->ctrl.opal_dev);
2586 	mempool_destroy(dev->iod_mempool);
2587 	put_device(dev->dev);
2588 	kfree(dev->queues);
2589 	kfree(dev);
2590 }
2591 
nvme_remove_dead_ctrl(struct nvme_dev *dev)2592 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2593 {
2594 	/*
2595 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2596 	 * may be holding this pci_dev's device lock.
2597 	 */
2598 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2599 	nvme_get_ctrl(&dev->ctrl);
2600 	nvme_dev_disable(dev, false);
2601 	nvme_kill_queues(&dev->ctrl);
2602 	if (!queue_work(nvme_wq, &dev->remove_work))
2603 		nvme_put_ctrl(&dev->ctrl);
2604 }
2605 
nvme_reset_work(struct work_struct *work)2606 static void nvme_reset_work(struct work_struct *work)
2607 {
2608 	struct nvme_dev *dev =
2609 		container_of(work, struct nvme_dev, ctrl.reset_work);
2610 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2611 	int result;
2612 
2613 	if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2614 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2615 			 dev->ctrl.state);
2616 		result = -ENODEV;
2617 		goto out;
2618 	}
2619 
2620 	/*
2621 	 * If we're called to reset a live controller first shut it down before
2622 	 * moving on.
2623 	 */
2624 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2625 		nvme_dev_disable(dev, false);
2626 	nvme_sync_queues(&dev->ctrl);
2627 
2628 	mutex_lock(&dev->shutdown_lock);
2629 	result = nvme_pci_enable(dev);
2630 	if (result)
2631 		goto out_unlock;
2632 
2633 	result = nvme_pci_configure_admin_queue(dev);
2634 	if (result)
2635 		goto out_unlock;
2636 
2637 	result = nvme_alloc_admin_tags(dev);
2638 	if (result)
2639 		goto out_unlock;
2640 
2641 	dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2642 
2643 	/*
2644 	 * Limit the max command size to prevent iod->sg allocations going
2645 	 * over a single page.
2646 	 */
2647 	dev->ctrl.max_hw_sectors = min_t(u32,
2648 		NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2649 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2650 
2651 	/*
2652 	 * Don't limit the IOMMU merged segment size.
2653 	 */
2654 	dma_set_max_seg_size(dev->dev, 0xffffffff);
2655 
2656 	mutex_unlock(&dev->shutdown_lock);
2657 
2658 	/*
2659 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2660 	 * initializing procedure here.
2661 	 */
2662 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2663 		dev_warn(dev->ctrl.device,
2664 			"failed to mark controller CONNECTING\n");
2665 		result = -EBUSY;
2666 		goto out;
2667 	}
2668 
2669 	/*
2670 	 * We do not support an SGL for metadata (yet), so we are limited to a
2671 	 * single integrity segment for the separate metadata pointer.
2672 	 */
2673 	dev->ctrl.max_integrity_segments = 1;
2674 
2675 	result = nvme_init_identify(&dev->ctrl);
2676 	if (result)
2677 		goto out;
2678 
2679 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2680 		if (!dev->ctrl.opal_dev)
2681 			dev->ctrl.opal_dev =
2682 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2683 		else if (was_suspend)
2684 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2685 	} else {
2686 		free_opal_dev(dev->ctrl.opal_dev);
2687 		dev->ctrl.opal_dev = NULL;
2688 	}
2689 
2690 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2691 		result = nvme_dbbuf_dma_alloc(dev);
2692 		if (result)
2693 			dev_warn(dev->dev,
2694 				 "unable to allocate dma for dbbuf\n");
2695 	}
2696 
2697 	if (dev->ctrl.hmpre) {
2698 		result = nvme_setup_host_mem(dev);
2699 		if (result < 0)
2700 			goto out;
2701 	}
2702 
2703 	result = nvme_setup_io_queues(dev);
2704 	if (result)
2705 		goto out;
2706 
2707 	/*
2708 	 * Keep the controller around but remove all namespaces if we don't have
2709 	 * any working I/O queue.
2710 	 */
2711 	if (dev->online_queues < 2) {
2712 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2713 		nvme_kill_queues(&dev->ctrl);
2714 		nvme_remove_namespaces(&dev->ctrl);
2715 		nvme_free_tagset(dev);
2716 	} else {
2717 		nvme_start_queues(&dev->ctrl);
2718 		nvme_wait_freeze(&dev->ctrl);
2719 		nvme_dev_add(dev);
2720 		nvme_unfreeze(&dev->ctrl);
2721 	}
2722 
2723 	/*
2724 	 * If only admin queue live, keep it to do further investigation or
2725 	 * recovery.
2726 	 */
2727 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2728 		dev_warn(dev->ctrl.device,
2729 			"failed to mark controller live state\n");
2730 		result = -ENODEV;
2731 		goto out;
2732 	}
2733 
2734 	nvme_start_ctrl(&dev->ctrl);
2735 	return;
2736 
2737  out_unlock:
2738 	mutex_unlock(&dev->shutdown_lock);
2739  out:
2740 	if (result)
2741 		dev_warn(dev->ctrl.device,
2742 			 "Removing after probe failure status: %d\n", result);
2743 	nvme_remove_dead_ctrl(dev);
2744 }
2745 
nvme_remove_dead_ctrl_work(struct work_struct *work)2746 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2747 {
2748 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2749 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2750 
2751 	if (pci_get_drvdata(pdev))
2752 		device_release_driver(&pdev->dev);
2753 	nvme_put_ctrl(&dev->ctrl);
2754 }
2755 
nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)2756 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2757 {
2758 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2759 	return 0;
2760 }
2761 
nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)2762 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2763 {
2764 	writel(val, to_nvme_dev(ctrl)->bar + off);
2765 	return 0;
2766 }
2767 
nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)2768 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2769 {
2770 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2771 	return 0;
2772 }
2773 
nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)2774 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2775 {
2776 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2777 
2778 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2779 }
2780 
2781 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2782 	.name			= "pcie",
2783 	.module			= THIS_MODULE,
2784 	.flags			= NVME_F_METADATA_SUPPORTED |
2785 				  NVME_F_PCI_P2PDMA,
2786 	.reg_read32		= nvme_pci_reg_read32,
2787 	.reg_write32		= nvme_pci_reg_write32,
2788 	.reg_read64		= nvme_pci_reg_read64,
2789 	.free_ctrl		= nvme_pci_free_ctrl,
2790 	.submit_async_event	= nvme_pci_submit_async_event,
2791 	.get_address		= nvme_pci_get_address,
2792 };
2793 
nvme_dev_map(struct nvme_dev *dev)2794 static int nvme_dev_map(struct nvme_dev *dev)
2795 {
2796 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2797 
2798 	if (pci_request_mem_regions(pdev, "nvme"))
2799 		return -ENODEV;
2800 
2801 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2802 		goto release;
2803 
2804 	return 0;
2805   release:
2806 	pci_release_mem_regions(pdev);
2807 	return -ENODEV;
2808 }
2809 
check_vendor_combination_bug(struct pci_dev *pdev)2810 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2811 {
2812 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2813 		/*
2814 		 * Several Samsung devices seem to drop off the PCIe bus
2815 		 * randomly when APST is on and uses the deepest sleep state.
2816 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2817 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2818 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2819 		 * laptops.
2820 		 */
2821 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2822 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2823 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2824 			return NVME_QUIRK_NO_DEEPEST_PS;
2825 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2826 		/*
2827 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2828 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2829 		 * within few minutes after bootup on a Coffee Lake board -
2830 		 * ASUS PRIME Z370-A
2831 		 */
2832 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2833 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2834 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2835 			return NVME_QUIRK_NO_APST;
2836 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2837 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2838 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2839 		/*
2840 		 * Forcing to use host managed nvme power settings for
2841 		 * lowest idle power with quick resume latency on
2842 		 * Samsung and Toshiba SSDs based on suspend behavior
2843 		 * on Coffee Lake board for LENOVO C640
2844 		 */
2845 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2846 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2847 			return NVME_QUIRK_SIMPLE_SUSPEND;
2848 	}
2849 
2850 	return 0;
2851 }
2852 
nvme_async_probe(void *data, async_cookie_t cookie)2853 static void nvme_async_probe(void *data, async_cookie_t cookie)
2854 {
2855 	struct nvme_dev *dev = data;
2856 
2857 	flush_work(&dev->ctrl.reset_work);
2858 	flush_work(&dev->ctrl.scan_work);
2859 	nvme_put_ctrl(&dev->ctrl);
2860 }
2861 
nvme_pci_alloc_dev(struct pci_dev *pdev, const struct pci_device_id *id)2862 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2863 		const struct pci_device_id *id)
2864 {
2865 	unsigned long quirks = id->driver_data;
2866 	int node = dev_to_node(&pdev->dev);
2867 	struct nvme_dev *dev;
2868 	int ret = -ENOMEM;
2869 
2870 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2871 	if (!dev)
2872 		return ERR_PTR(-ENOMEM);
2873 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2874 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2875 	mutex_init(&dev->shutdown_lock);
2876 
2877 	dev->nr_write_queues = write_queues;
2878 	dev->nr_poll_queues = poll_queues;
2879 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2880 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
2881 			sizeof(struct nvme_queue), GFP_KERNEL, node);
2882 	if (!dev->queues)
2883 		goto out_free_dev;
2884 
2885 	dev->dev = get_device(&pdev->dev);
2886 
2887 	quirks |= check_vendor_combination_bug(pdev);
2888 	if (!noacpi && acpi_storage_d3(&pdev->dev)) {
2889 		/*
2890 		 * Some systems use a bios work around to ask for D3 on
2891 		 * platforms that support kernel managed suspend.
2892 		 */
2893 		dev_info(&pdev->dev,
2894 			 "platform quirk: setting simple suspend\n");
2895 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2896 	}
2897 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2898 			     quirks);
2899 	if (ret)
2900 		goto out_put_device;
2901 	return dev;
2902 
2903 out_put_device:
2904 	put_device(dev->dev);
2905 	kfree(dev->queues);
2906 out_free_dev:
2907 	kfree(dev);
2908 	return ERR_PTR(ret);
2909 }
2910 
nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)2911 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2912 {
2913 	struct nvme_dev *dev;
2914 	int result = -ENOMEM;
2915 
2916 	dev = nvme_pci_alloc_dev(pdev, id);
2917 	if (IS_ERR(dev))
2918 		return PTR_ERR(dev);
2919 
2920 	result = nvme_dev_map(dev);
2921 	if (result)
2922 		goto out_uninit_ctrl;
2923 
2924 	result = nvme_setup_prp_pools(dev);
2925 	if (result)
2926 		goto out_dev_unmap;
2927 
2928 	result = nvme_pci_alloc_iod_mempool(dev);
2929 	if (result)
2930 		goto out_release_prp_pools;
2931 
2932 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2933 	pci_set_drvdata(pdev, dev);
2934 
2935 	nvme_reset_ctrl(&dev->ctrl);
2936 	async_schedule(nvme_async_probe, dev);
2937 	return 0;
2938 
2939 out_release_prp_pools:
2940 	nvme_release_prp_pools(dev);
2941 out_dev_unmap:
2942 	nvme_dev_unmap(dev);
2943 out_uninit_ctrl:
2944 	nvme_uninit_ctrl(&dev->ctrl);
2945 	return result;
2946 }
2947 
nvme_reset_prepare(struct pci_dev *pdev)2948 static void nvme_reset_prepare(struct pci_dev *pdev)
2949 {
2950 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2951 
2952 	/*
2953 	 * We don't need to check the return value from waiting for the reset
2954 	 * state as pci_dev device lock is held, making it impossible to race
2955 	 * with ->remove().
2956 	 */
2957 	nvme_disable_prepare_reset(dev, false);
2958 	nvme_sync_queues(&dev->ctrl);
2959 }
2960 
nvme_reset_done(struct pci_dev *pdev)2961 static void nvme_reset_done(struct pci_dev *pdev)
2962 {
2963 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2964 
2965 	if (!nvme_try_sched_reset(&dev->ctrl))
2966 		flush_work(&dev->ctrl.reset_work);
2967 }
2968 
nvme_shutdown(struct pci_dev *pdev)2969 static void nvme_shutdown(struct pci_dev *pdev)
2970 {
2971 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2972 
2973 	nvme_disable_prepare_reset(dev, true);
2974 }
2975 
2976 /*
2977  * The driver's remove may be called on a device in a partially initialized
2978  * state. This function must not have any dependencies on the device state in
2979  * order to proceed.
2980  */
nvme_remove(struct pci_dev *pdev)2981 static void nvme_remove(struct pci_dev *pdev)
2982 {
2983 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2984 
2985 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2986 	pci_set_drvdata(pdev, NULL);
2987 
2988 	if (!pci_device_is_present(pdev)) {
2989 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2990 		nvme_dev_disable(dev, true);
2991 	}
2992 
2993 	flush_work(&dev->ctrl.reset_work);
2994 	nvme_stop_ctrl(&dev->ctrl);
2995 	nvme_remove_namespaces(&dev->ctrl);
2996 	nvme_dev_disable(dev, true);
2997 	nvme_release_cmb(dev);
2998 	nvme_free_host_mem(dev);
2999 	nvme_dev_remove_admin(dev);
3000 	nvme_free_queues(dev, 0);
3001 	nvme_release_prp_pools(dev);
3002 	nvme_dev_unmap(dev);
3003 	nvme_uninit_ctrl(&dev->ctrl);
3004 }
3005 
3006 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)3007 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3008 {
3009 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3010 }
3011 
nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)3012 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3013 {
3014 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3015 }
3016 
nvme_resume(struct device *dev)3017 static int nvme_resume(struct device *dev)
3018 {
3019 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3020 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3021 
3022 	if (ndev->last_ps == U32_MAX ||
3023 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3024 		return nvme_try_sched_reset(&ndev->ctrl);
3025 	return 0;
3026 }
3027 
nvme_suspend(struct device *dev)3028 static int nvme_suspend(struct device *dev)
3029 {
3030 	struct pci_dev *pdev = to_pci_dev(dev);
3031 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3032 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3033 	int ret = -EBUSY;
3034 
3035 	ndev->last_ps = U32_MAX;
3036 
3037 	/*
3038 	 * The platform does not remove power for a kernel managed suspend so
3039 	 * use host managed nvme power settings for lowest idle power if
3040 	 * possible. This should have quicker resume latency than a full device
3041 	 * shutdown.  But if the firmware is involved after the suspend or the
3042 	 * device does not support any non-default power states, shut down the
3043 	 * device fully.
3044 	 *
3045 	 * If ASPM is not enabled for the device, shut down the device and allow
3046 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3047 	 * down, so as to allow the platform to achieve its minimum low-power
3048 	 * state (which may not be possible if the link is up).
3049 	 *
3050 	 * If a host memory buffer is enabled, shut down the device as the NVMe
3051 	 * specification allows the device to access the host memory buffer in
3052 	 * host DRAM from all power states, but hosts will fail access to DRAM
3053 	 * during S3.
3054 	 */
3055 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3056 	    !pcie_aspm_enabled(pdev) ||
3057 	    ndev->nr_host_mem_descs ||
3058 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3059 		return nvme_disable_prepare_reset(ndev, true);
3060 
3061 	nvme_start_freeze(ctrl);
3062 	nvme_wait_freeze(ctrl);
3063 	nvme_sync_queues(ctrl);
3064 
3065 	if (ctrl->state != NVME_CTRL_LIVE)
3066 		goto unfreeze;
3067 
3068 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3069 	if (ret < 0)
3070 		goto unfreeze;
3071 
3072 	/*
3073 	 * A saved state prevents pci pm from generically controlling the
3074 	 * device's power. If we're using protocol specific settings, we don't
3075 	 * want pci interfering.
3076 	 */
3077 	pci_save_state(pdev);
3078 
3079 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3080 	if (ret < 0)
3081 		goto unfreeze;
3082 
3083 	if (ret) {
3084 		/* discard the saved state */
3085 		pci_load_saved_state(pdev, NULL);
3086 
3087 		/*
3088 		 * Clearing npss forces a controller reset on resume. The
3089 		 * correct value will be rediscovered then.
3090 		 */
3091 		ret = nvme_disable_prepare_reset(ndev, true);
3092 		ctrl->npss = 0;
3093 	}
3094 unfreeze:
3095 	nvme_unfreeze(ctrl);
3096 	return ret;
3097 }
3098 
nvme_simple_suspend(struct device *dev)3099 static int nvme_simple_suspend(struct device *dev)
3100 {
3101 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3102 
3103 	return nvme_disable_prepare_reset(ndev, true);
3104 }
3105 
nvme_simple_resume(struct device *dev)3106 static int nvme_simple_resume(struct device *dev)
3107 {
3108 	struct pci_dev *pdev = to_pci_dev(dev);
3109 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3110 
3111 	return nvme_try_sched_reset(&ndev->ctrl);
3112 }
3113 
3114 static const struct dev_pm_ops nvme_dev_pm_ops = {
3115 	.suspend	= nvme_suspend,
3116 	.resume		= nvme_resume,
3117 	.freeze		= nvme_simple_suspend,
3118 	.thaw		= nvme_simple_resume,
3119 	.poweroff	= nvme_simple_suspend,
3120 	.restore	= nvme_simple_resume,
3121 };
3122 #endif /* CONFIG_PM_SLEEP */
3123 
nvme_error_detected(struct pci_dev *pdev, pci_channel_state_t state)3124 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3125 						pci_channel_state_t state)
3126 {
3127 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3128 
3129 	/*
3130 	 * A frozen channel requires a reset. When detected, this method will
3131 	 * shutdown the controller to quiesce. The controller will be restarted
3132 	 * after the slot reset through driver's slot_reset callback.
3133 	 */
3134 	switch (state) {
3135 	case pci_channel_io_normal:
3136 		return PCI_ERS_RESULT_CAN_RECOVER;
3137 	case pci_channel_io_frozen:
3138 		dev_warn(dev->ctrl.device,
3139 			"frozen state error detected, reset controller\n");
3140 		nvme_dev_disable(dev, false);
3141 		return PCI_ERS_RESULT_NEED_RESET;
3142 	case pci_channel_io_perm_failure:
3143 		dev_warn(dev->ctrl.device,
3144 			"failure state error detected, request disconnect\n");
3145 		return PCI_ERS_RESULT_DISCONNECT;
3146 	}
3147 	return PCI_ERS_RESULT_NEED_RESET;
3148 }
3149 
nvme_slot_reset(struct pci_dev *pdev)3150 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3151 {
3152 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3153 
3154 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3155 	pci_restore_state(pdev);
3156 	nvme_reset_ctrl(&dev->ctrl);
3157 	return PCI_ERS_RESULT_RECOVERED;
3158 }
3159 
nvme_error_resume(struct pci_dev *pdev)3160 static void nvme_error_resume(struct pci_dev *pdev)
3161 {
3162 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3163 
3164 	flush_work(&dev->ctrl.reset_work);
3165 }
3166 
3167 static const struct pci_error_handlers nvme_err_handler = {
3168 	.error_detected	= nvme_error_detected,
3169 	.slot_reset	= nvme_slot_reset,
3170 	.resume		= nvme_error_resume,
3171 	.reset_prepare	= nvme_reset_prepare,
3172 	.reset_done	= nvme_reset_done,
3173 };
3174 
3175 static const struct pci_device_id nvme_id_table[] = {
3176 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3177 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3178 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3179 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3180 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3181 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3182 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3183 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3184 				NVME_QUIRK_DEALLOCATE_ZEROES |
3185 				NVME_QUIRK_IGNORE_DEV_SUBNQN |
3186 				NVME_QUIRK_BOGUS_NID, },
3187 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3188 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3189 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3190 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3191 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3192 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3193 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3194 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3195 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3196 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3197 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3198 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3199 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3200 				NVME_QUIRK_BOGUS_NID, },
3201 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3202 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3203 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3204 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3205 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3206 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3207 				NVME_QUIRK_NO_NS_DESC_LIST, },
3208 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3209 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3210 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3211 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3212 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3213 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3214 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3215 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3216 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3217 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3218 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3219 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3220 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3221 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3222 				NVME_QUIRK_BOGUS_NID, },
3223 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3224 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3225 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3226 	{ PCI_DEVICE(0x1d1d, 0x1f1f),	/* LighNVM qemu device */
3227 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3228 	{ PCI_DEVICE(0x1d1d, 0x2807),	/* CNEX WL */
3229 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3230 	{ PCI_DEVICE(0x1d1d, 0x2601),	/* CNEX Granby */
3231 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3232 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3233 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3234 				NVME_QUIRK_BOGUS_NID, },
3235 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3236 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3237 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3238 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3239 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3240 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3241 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3242 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3243 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3244 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3245 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3246 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3247 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3248 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3249 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3250 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3251 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3252 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3253 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3254 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3255 				NVME_QUIRK_128_BYTES_SQES |
3256 				NVME_QUIRK_SHARED_TAGS |
3257 				NVME_QUIRK_SKIP_CID_GEN },
3258 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3259 	{ 0, }
3260 };
3261 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3262 
3263 static struct pci_driver nvme_driver = {
3264 	.name		= "nvme",
3265 	.id_table	= nvme_id_table,
3266 	.probe		= nvme_probe,
3267 	.remove		= nvme_remove,
3268 	.shutdown	= nvme_shutdown,
3269 #ifdef CONFIG_PM_SLEEP
3270 	.driver		= {
3271 		.pm	= &nvme_dev_pm_ops,
3272 	},
3273 #endif
3274 	.sriov_configure = pci_sriov_configure_simple,
3275 	.err_handler	= &nvme_err_handler,
3276 };
3277 
nvme_init(void)3278 static int __init nvme_init(void)
3279 {
3280 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3281 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3282 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3283 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3284 
3285 	return pci_register_driver(&nvme_driver);
3286 }
3287 
nvme_exit(void)3288 static void __exit nvme_exit(void)
3289 {
3290 	pci_unregister_driver(&nvme_driver);
3291 	flush_workqueue(nvme_wq);
3292 }
3293 
3294 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3295 MODULE_LICENSE("GPL");
3296 MODULE_VERSION("1.0");
3297 module_init(nvme_init);
3298 module_exit(nvme_exit);
3299