1// SPDX-License-Identifier: ISC
2/*
3 * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
4 */
5
6#include <linux/dma-mapping.h>
7#include "mt76.h"
8#include "dma.h"
9
10static struct mt76_txwi_cache *
11mt76_alloc_txwi(struct mt76_dev *dev)
12{
13	struct mt76_txwi_cache *t;
14	dma_addr_t addr;
15	u8 *txwi;
16	int size;
17
18	size = L1_CACHE_ALIGN(dev->drv->txwi_size + sizeof(*t));
19	txwi = devm_kzalloc(dev->dev, size, GFP_ATOMIC);
20	if (!txwi)
21		return NULL;
22
23	addr = dma_map_single(dev->dev, txwi, dev->drv->txwi_size,
24			      DMA_TO_DEVICE);
25	t = (struct mt76_txwi_cache *)(txwi + dev->drv->txwi_size);
26	t->dma_addr = addr;
27
28	return t;
29}
30
31static struct mt76_txwi_cache *
32__mt76_get_txwi(struct mt76_dev *dev)
33{
34	struct mt76_txwi_cache *t = NULL;
35
36	spin_lock(&dev->lock);
37	if (!list_empty(&dev->txwi_cache)) {
38		t = list_first_entry(&dev->txwi_cache, struct mt76_txwi_cache,
39				     list);
40		list_del(&t->list);
41	}
42	spin_unlock(&dev->lock);
43
44	return t;
45}
46
47static struct mt76_txwi_cache *
48mt76_get_txwi(struct mt76_dev *dev)
49{
50	struct mt76_txwi_cache *t = __mt76_get_txwi(dev);
51
52	if (t)
53		return t;
54
55	return mt76_alloc_txwi(dev);
56}
57
58void
59mt76_put_txwi(struct mt76_dev *dev, struct mt76_txwi_cache *t)
60{
61	if (!t)
62		return;
63
64	spin_lock(&dev->lock);
65	list_add(&t->list, &dev->txwi_cache);
66	spin_unlock(&dev->lock);
67}
68EXPORT_SYMBOL_GPL(mt76_put_txwi);
69
70static void
71mt76_free_pending_txwi(struct mt76_dev *dev)
72{
73	struct mt76_txwi_cache *t;
74
75	local_bh_disable();
76	while ((t = __mt76_get_txwi(dev)) != NULL)
77		dma_unmap_single(dev->dev, t->dma_addr, dev->drv->txwi_size,
78				 DMA_TO_DEVICE);
79	local_bh_enable();
80}
81
82static int
83mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q,
84		     int idx, int n_desc, int bufsize,
85		     u32 ring_base)
86{
87	int size;
88	int i;
89
90	spin_lock_init(&q->lock);
91
92	q->regs = dev->mmio.regs + ring_base + idx * MT_RING_SIZE;
93	q->ndesc = n_desc;
94	q->buf_size = bufsize;
95	q->hw_idx = idx;
96
97	size = q->ndesc * sizeof(struct mt76_desc);
98	q->desc = dmam_alloc_coherent(dev->dev, size, &q->desc_dma, GFP_KERNEL);
99	if (!q->desc)
100		return -ENOMEM;
101
102	size = q->ndesc * sizeof(*q->entry);
103	q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL);
104	if (!q->entry)
105		return -ENOMEM;
106
107	/* clear descriptors */
108	for (i = 0; i < q->ndesc; i++)
109		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
110
111	writel(q->desc_dma, &q->regs->desc_base);
112	writel(0, &q->regs->cpu_idx);
113	writel(0, &q->regs->dma_idx);
114	writel(q->ndesc, &q->regs->ring_size);
115
116	return 0;
117}
118
119static int
120mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q,
121		 struct mt76_queue_buf *buf, int nbufs, u32 info,
122		 struct sk_buff *skb, void *txwi)
123{
124	struct mt76_queue_entry *entry;
125	struct mt76_desc *desc;
126	u32 ctrl;
127	int i, idx = -1;
128
129	if (txwi) {
130		q->entry[q->head].txwi = DMA_DUMMY_DATA;
131		q->entry[q->head].skip_buf0 = true;
132	}
133
134	for (i = 0; i < nbufs; i += 2, buf += 2) {
135		u32 buf0 = buf[0].addr, buf1 = 0;
136
137		idx = q->head;
138		q->head = (q->head + 1) % q->ndesc;
139
140		desc = &q->desc[idx];
141		entry = &q->entry[idx];
142
143		if (buf[0].skip_unmap)
144			entry->skip_buf0 = true;
145		entry->skip_buf1 = i == nbufs - 1;
146
147		entry->dma_addr[0] = buf[0].addr;
148		entry->dma_len[0] = buf[0].len;
149
150		ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len);
151		if (i < nbufs - 1) {
152			entry->dma_addr[1] = buf[1].addr;
153			entry->dma_len[1] = buf[1].len;
154			buf1 = buf[1].addr;
155			ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len);
156			if (buf[1].skip_unmap)
157				entry->skip_buf1 = true;
158		}
159
160		if (i == nbufs - 1)
161			ctrl |= MT_DMA_CTL_LAST_SEC0;
162		else if (i == nbufs - 2)
163			ctrl |= MT_DMA_CTL_LAST_SEC1;
164
165		WRITE_ONCE(desc->buf0, cpu_to_le32(buf0));
166		WRITE_ONCE(desc->buf1, cpu_to_le32(buf1));
167		WRITE_ONCE(desc->info, cpu_to_le32(info));
168		WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl));
169
170		q->queued++;
171	}
172
173	q->entry[idx].txwi = txwi;
174	q->entry[idx].skb = skb;
175
176	return idx;
177}
178
179static void
180mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx,
181			struct mt76_queue_entry *prev_e)
182{
183	struct mt76_queue_entry *e = &q->entry[idx];
184
185	if (!e->skip_buf0)
186		dma_unmap_single(dev->dev, e->dma_addr[0], e->dma_len[0],
187				 DMA_TO_DEVICE);
188
189	if (!e->skip_buf1)
190		dma_unmap_single(dev->dev, e->dma_addr[1], e->dma_len[1],
191				 DMA_TO_DEVICE);
192
193	if (e->txwi == DMA_DUMMY_DATA)
194		e->txwi = NULL;
195
196	if (e->skb == DMA_DUMMY_DATA)
197		e->skb = NULL;
198
199	*prev_e = *e;
200	memset(e, 0, sizeof(*e));
201}
202
203static void
204mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q)
205{
206	writel(q->desc_dma, &q->regs->desc_base);
207	writel(q->ndesc, &q->regs->ring_size);
208	q->head = readl(&q->regs->dma_idx);
209	q->tail = q->head;
210}
211
212static void
213mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q)
214{
215	wmb();
216	writel(q->head, &q->regs->cpu_idx);
217}
218
219static void
220mt76_dma_tx_cleanup(struct mt76_dev *dev, enum mt76_txq_id qid, bool flush)
221{
222	struct mt76_queue *q = dev->q_tx[qid];
223	struct mt76_queue_entry entry;
224	bool wake = false;
225	int last;
226
227	if (!q)
228		return;
229
230	if (flush)
231		last = -1;
232	else
233		last = readl(&q->regs->dma_idx);
234
235	while (q->queued > 0 && q->tail != last) {
236		mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry);
237		mt76_queue_tx_complete(dev, q, &entry);
238
239		if (entry.txwi) {
240			if (!(dev->drv->drv_flags & MT_DRV_TXWI_NO_FREE))
241				mt76_put_txwi(dev, entry.txwi);
242			wake = !flush;
243		}
244
245		if (!flush && q->tail == last)
246			last = readl(&q->regs->dma_idx);
247
248	}
249
250	if (flush) {
251		spin_lock_bh(&q->lock);
252		mt76_dma_sync_idx(dev, q);
253		mt76_dma_kick_queue(dev, q);
254		spin_unlock_bh(&q->lock);
255	}
256
257	wake = wake && q->stopped &&
258	       qid < IEEE80211_NUM_ACS && q->queued < q->ndesc - 8;
259	if (wake)
260		q->stopped = false;
261
262	if (!q->queued)
263		wake_up(&dev->tx_wait);
264
265	if (wake)
266		ieee80211_wake_queue(dev->hw, qid);
267}
268
269static void *
270mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx,
271		 int *len, u32 *info, bool *more)
272{
273	struct mt76_queue_entry *e = &q->entry[idx];
274	struct mt76_desc *desc = &q->desc[idx];
275	dma_addr_t buf_addr;
276	void *buf = e->buf;
277	int buf_len = SKB_WITH_OVERHEAD(q->buf_size);
278
279	buf_addr = e->dma_addr[0];
280	if (len) {
281		u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl));
282		*len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl);
283		*more = !(ctl & MT_DMA_CTL_LAST_SEC0);
284	}
285
286	if (info)
287		*info = le32_to_cpu(desc->info);
288
289	dma_unmap_single(dev->dev, buf_addr, buf_len, DMA_FROM_DEVICE);
290	e->buf = NULL;
291
292	return buf;
293}
294
295static void *
296mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
297		 int *len, u32 *info, bool *more)
298{
299	int idx = q->tail;
300
301	*more = false;
302	if (!q->queued)
303		return NULL;
304
305	if (flush)
306		q->desc[idx].ctrl |= cpu_to_le32(MT_DMA_CTL_DMA_DONE);
307	else if (!(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE)))
308		return NULL;
309
310	q->tail = (q->tail + 1) % q->ndesc;
311	q->queued--;
312
313	return mt76_dma_get_buf(dev, q, idx, len, info, more);
314}
315
316static int
317mt76_dma_tx_queue_skb_raw(struct mt76_dev *dev, enum mt76_txq_id qid,
318			  struct sk_buff *skb, u32 tx_info)
319{
320	struct mt76_queue *q = dev->q_tx[qid];
321	struct mt76_queue_buf buf = {};
322	dma_addr_t addr;
323
324	if (q->queued + 1 >= q->ndesc - 1)
325		goto error;
326
327	addr = dma_map_single(dev->dev, skb->data, skb->len,
328			      DMA_TO_DEVICE);
329	if (unlikely(dma_mapping_error(dev->dev, addr)))
330		goto error;
331
332	buf.addr = addr;
333	buf.len = skb->len;
334
335	spin_lock_bh(&q->lock);
336	mt76_dma_add_buf(dev, q, &buf, 1, tx_info, skb, NULL);
337	mt76_dma_kick_queue(dev, q);
338	spin_unlock_bh(&q->lock);
339
340	return 0;
341
342error:
343	dev_kfree_skb(skb);
344	return -ENOMEM;
345}
346
347static int
348mt76_dma_tx_queue_skb(struct mt76_dev *dev, enum mt76_txq_id qid,
349		      struct sk_buff *skb, struct mt76_wcid *wcid,
350		      struct ieee80211_sta *sta)
351{
352	struct mt76_queue *q = dev->q_tx[qid];
353	struct mt76_tx_info tx_info = {
354		.skb = skb,
355	};
356	struct ieee80211_hw *hw;
357	int len, n = 0, ret = -ENOMEM;
358	struct mt76_txwi_cache *t;
359	struct sk_buff *iter;
360	dma_addr_t addr;
361	u8 *txwi;
362
363	t = mt76_get_txwi(dev);
364	if (!t) {
365		hw = mt76_tx_status_get_hw(dev, skb);
366		ieee80211_free_txskb(hw, skb);
367		return -ENOMEM;
368	}
369	txwi = mt76_get_txwi_ptr(dev, t);
370
371	skb->prev = skb->next = NULL;
372	if (dev->drv->drv_flags & MT_DRV_TX_ALIGNED4_SKBS)
373		mt76_insert_hdr_pad(skb);
374
375	len = skb_headlen(skb);
376	addr = dma_map_single(dev->dev, skb->data, len, DMA_TO_DEVICE);
377	if (unlikely(dma_mapping_error(dev->dev, addr)))
378		goto free;
379
380	tx_info.buf[n].addr = t->dma_addr;
381	tx_info.buf[n++].len = dev->drv->txwi_size;
382	tx_info.buf[n].addr = addr;
383	tx_info.buf[n++].len = len;
384
385	skb_walk_frags(skb, iter) {
386		if (n == ARRAY_SIZE(tx_info.buf))
387			goto unmap;
388
389		addr = dma_map_single(dev->dev, iter->data, iter->len,
390				      DMA_TO_DEVICE);
391		if (unlikely(dma_mapping_error(dev->dev, addr)))
392			goto unmap;
393
394		tx_info.buf[n].addr = addr;
395		tx_info.buf[n++].len = iter->len;
396	}
397	tx_info.nbuf = n;
398
399	if (q->queued + (tx_info.nbuf + 1) / 2 >= q->ndesc - 1) {
400		ret = -ENOMEM;
401		goto unmap;
402	}
403
404	dma_sync_single_for_cpu(dev->dev, t->dma_addr, dev->drv->txwi_size,
405				DMA_TO_DEVICE);
406	ret = dev->drv->tx_prepare_skb(dev, txwi, qid, wcid, sta, &tx_info);
407	dma_sync_single_for_device(dev->dev, t->dma_addr, dev->drv->txwi_size,
408				   DMA_TO_DEVICE);
409	if (ret < 0)
410		goto unmap;
411
412	return mt76_dma_add_buf(dev, q, tx_info.buf, tx_info.nbuf,
413				tx_info.info, tx_info.skb, t);
414
415unmap:
416	for (n--; n > 0; n--)
417		dma_unmap_single(dev->dev, tx_info.buf[n].addr,
418				 tx_info.buf[n].len, DMA_TO_DEVICE);
419
420free:
421#ifdef CONFIG_NL80211_TESTMODE
422	/* fix tx_done accounting on queue overflow */
423	if (tx_info.skb == dev->test.tx_skb)
424		dev->test.tx_done--;
425#endif
426
427	dev_kfree_skb(tx_info.skb);
428	mt76_put_txwi(dev, t);
429	return ret;
430}
431
432static int
433mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q)
434{
435	dma_addr_t addr;
436	void *buf;
437	int frames = 0;
438	int len = SKB_WITH_OVERHEAD(q->buf_size);
439	int offset = q->buf_offset;
440
441	spin_lock_bh(&q->lock);
442
443	while (q->queued < q->ndesc - 1) {
444		struct mt76_queue_buf qbuf;
445
446		buf = page_frag_alloc(&q->rx_page, q->buf_size, GFP_ATOMIC);
447		if (!buf)
448			break;
449
450		addr = dma_map_single(dev->dev, buf, len, DMA_FROM_DEVICE);
451		if (unlikely(dma_mapping_error(dev->dev, addr))) {
452			skb_free_frag(buf);
453			break;
454		}
455
456		qbuf.addr = addr + offset;
457		qbuf.len = len - offset;
458		qbuf.skip_unmap = false;
459		mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL);
460		frames++;
461	}
462
463	if (frames)
464		mt76_dma_kick_queue(dev, q);
465
466	spin_unlock_bh(&q->lock);
467
468	return frames;
469}
470
471static void
472mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q)
473{
474	struct page *page;
475	void *buf;
476	bool more;
477
478	spin_lock_bh(&q->lock);
479
480	do {
481		buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more);
482		if (!buf)
483			break;
484
485		skb_free_frag(buf);
486	} while (1);
487
488	if (q->rx_head) {
489		dev_kfree_skb(q->rx_head);
490		q->rx_head = NULL;
491	}
492
493	spin_unlock_bh(&q->lock);
494
495	if (!q->rx_page.va)
496		return;
497
498	page = virt_to_page(q->rx_page.va);
499	__page_frag_cache_drain(page, q->rx_page.pagecnt_bias);
500	memset(&q->rx_page, 0, sizeof(q->rx_page));
501}
502
503static void
504mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid)
505{
506	struct mt76_queue *q = &dev->q_rx[qid];
507	int i;
508
509	for (i = 0; i < q->ndesc; i++)
510		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
511
512	mt76_dma_rx_cleanup(dev, q);
513	mt76_dma_sync_idx(dev, q);
514	mt76_dma_rx_fill(dev, q);
515}
516
517static void
518mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data,
519		  int len, bool more)
520{
521	struct sk_buff *skb = q->rx_head;
522	struct skb_shared_info *shinfo = skb_shinfo(skb);
523	int nr_frags = shinfo->nr_frags;
524
525	if (nr_frags < ARRAY_SIZE(shinfo->frags)) {
526		struct page *page = virt_to_head_page(data);
527		int offset = data - page_address(page) + q->buf_offset;
528
529		skb_add_rx_frag(skb, nr_frags, page, offset, len, q->buf_size);
530	} else {
531		skb_free_frag(data);
532	}
533
534	if (more)
535		return;
536
537	q->rx_head = NULL;
538	if (nr_frags < ARRAY_SIZE(shinfo->frags))
539		dev->drv->rx_skb(dev, q - dev->q_rx, skb);
540	else
541		dev_kfree_skb(skb);
542}
543
544static int
545mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget)
546{
547	int len, data_len, done = 0;
548	struct sk_buff *skb;
549	unsigned char *data;
550	bool more;
551
552	while (done < budget) {
553		u32 info;
554
555		data = mt76_dma_dequeue(dev, q, false, &len, &info, &more);
556		if (!data)
557			break;
558
559		if (q->rx_head)
560			data_len = q->buf_size;
561		else
562			data_len = SKB_WITH_OVERHEAD(q->buf_size);
563
564		if (data_len < len + q->buf_offset) {
565			dev_kfree_skb(q->rx_head);
566			q->rx_head = NULL;
567
568			skb_free_frag(data);
569			continue;
570		}
571
572		if (q->rx_head) {
573			mt76_add_fragment(dev, q, data, len, more);
574			continue;
575		}
576
577		skb = build_skb(data, q->buf_size);
578		if (!skb) {
579			skb_free_frag(data);
580			continue;
581		}
582		skb_reserve(skb, q->buf_offset);
583
584		if (q == &dev->q_rx[MT_RXQ_MCU]) {
585			u32 *rxfce = (u32 *)skb->cb;
586			*rxfce = info;
587		}
588
589		__skb_put(skb, len);
590		done++;
591
592		if (more) {
593			q->rx_head = skb;
594			continue;
595		}
596
597		dev->drv->rx_skb(dev, q - dev->q_rx, skb);
598	}
599
600	mt76_dma_rx_fill(dev, q);
601	return done;
602}
603
604static int
605mt76_dma_rx_poll(struct napi_struct *napi, int budget)
606{
607	struct mt76_dev *dev;
608	int qid, done = 0, cur;
609
610	dev = container_of(napi->dev, struct mt76_dev, napi_dev);
611	qid = napi - dev->napi;
612
613	local_bh_disable();
614	rcu_read_lock();
615
616	do {
617		cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done);
618		mt76_rx_poll_complete(dev, qid, napi);
619		done += cur;
620	} while (cur && done < budget);
621
622	rcu_read_unlock();
623	local_bh_enable();
624
625	if (done < budget && napi_complete(napi))
626		dev->drv->rx_poll_complete(dev, qid);
627
628	return done;
629}
630
631static int
632mt76_dma_init(struct mt76_dev *dev)
633{
634	int i;
635
636	init_dummy_netdev(&dev->napi_dev);
637
638	mt76_for_each_q_rx(dev, i) {
639		netif_napi_add(&dev->napi_dev, &dev->napi[i], mt76_dma_rx_poll,
640			       64);
641		mt76_dma_rx_fill(dev, &dev->q_rx[i]);
642		napi_enable(&dev->napi[i]);
643	}
644
645	return 0;
646}
647
648static const struct mt76_queue_ops mt76_dma_ops = {
649	.init = mt76_dma_init,
650	.alloc = mt76_dma_alloc_queue,
651	.tx_queue_skb_raw = mt76_dma_tx_queue_skb_raw,
652	.tx_queue_skb = mt76_dma_tx_queue_skb,
653	.tx_cleanup = mt76_dma_tx_cleanup,
654	.rx_reset = mt76_dma_rx_reset,
655	.kick = mt76_dma_kick_queue,
656};
657
658void mt76_dma_attach(struct mt76_dev *dev)
659{
660	dev->queue_ops = &mt76_dma_ops;
661}
662EXPORT_SYMBOL_GPL(mt76_dma_attach);
663
664void mt76_dma_cleanup(struct mt76_dev *dev)
665{
666	int i;
667
668	mt76_worker_disable(&dev->tx_worker);
669	netif_napi_del(&dev->tx_napi);
670	for (i = 0; i < ARRAY_SIZE(dev->q_tx); i++)
671		mt76_dma_tx_cleanup(dev, i, true);
672
673	mt76_for_each_q_rx(dev, i) {
674		netif_napi_del(&dev->napi[i]);
675		mt76_dma_rx_cleanup(dev, &dev->q_rx[i]);
676	}
677
678	mt76_free_pending_txwi(dev);
679}
680EXPORT_SYMBOL_GPL(mt76_dma_cleanup);
681