1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
4  */
5 
6 #include <linux/dma-mapping.h>
7 #include "mt76.h"
8 #include "dma.h"
9 
10 static struct mt76_txwi_cache *
mt76_alloc_txwi(struct mt76_dev *dev)11 mt76_alloc_txwi(struct mt76_dev *dev)
12 {
13 	struct mt76_txwi_cache *t;
14 	dma_addr_t addr;
15 	u8 *txwi;
16 	int size;
17 
18 	size = L1_CACHE_ALIGN(dev->drv->txwi_size + sizeof(*t));
19 	txwi = devm_kzalloc(dev->dev, size, GFP_ATOMIC);
20 	if (!txwi)
21 		return NULL;
22 
23 	addr = dma_map_single(dev->dev, txwi, dev->drv->txwi_size,
24 			      DMA_TO_DEVICE);
25 	t = (struct mt76_txwi_cache *)(txwi + dev->drv->txwi_size);
26 	t->dma_addr = addr;
27 
28 	return t;
29 }
30 
31 static struct mt76_txwi_cache *
__mt76_get_txwi(struct mt76_dev *dev)32 __mt76_get_txwi(struct mt76_dev *dev)
33 {
34 	struct mt76_txwi_cache *t = NULL;
35 
36 	spin_lock(&dev->lock);
37 	if (!list_empty(&dev->txwi_cache)) {
38 		t = list_first_entry(&dev->txwi_cache, struct mt76_txwi_cache,
39 				     list);
40 		list_del(&t->list);
41 	}
42 	spin_unlock(&dev->lock);
43 
44 	return t;
45 }
46 
47 static struct mt76_txwi_cache *
mt76_get_txwi(struct mt76_dev *dev)48 mt76_get_txwi(struct mt76_dev *dev)
49 {
50 	struct mt76_txwi_cache *t = __mt76_get_txwi(dev);
51 
52 	if (t)
53 		return t;
54 
55 	return mt76_alloc_txwi(dev);
56 }
57 
58 void
mt76_put_txwi(struct mt76_dev *dev, struct mt76_txwi_cache *t)59 mt76_put_txwi(struct mt76_dev *dev, struct mt76_txwi_cache *t)
60 {
61 	if (!t)
62 		return;
63 
64 	spin_lock(&dev->lock);
65 	list_add(&t->list, &dev->txwi_cache);
66 	spin_unlock(&dev->lock);
67 }
68 EXPORT_SYMBOL_GPL(mt76_put_txwi);
69 
70 static void
mt76_free_pending_txwi(struct mt76_dev *dev)71 mt76_free_pending_txwi(struct mt76_dev *dev)
72 {
73 	struct mt76_txwi_cache *t;
74 
75 	local_bh_disable();
76 	while ((t = __mt76_get_txwi(dev)) != NULL)
77 		dma_unmap_single(dev->dev, t->dma_addr, dev->drv->txwi_size,
78 				 DMA_TO_DEVICE);
79 	local_bh_enable();
80 }
81 
82 static int
mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q, int idx, int n_desc, int bufsize, u32 ring_base)83 mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q,
84 		     int idx, int n_desc, int bufsize,
85 		     u32 ring_base)
86 {
87 	int size;
88 	int i;
89 
90 	spin_lock_init(&q->lock);
91 
92 	q->regs = dev->mmio.regs + ring_base + idx * MT_RING_SIZE;
93 	q->ndesc = n_desc;
94 	q->buf_size = bufsize;
95 	q->hw_idx = idx;
96 
97 	size = q->ndesc * sizeof(struct mt76_desc);
98 	q->desc = dmam_alloc_coherent(dev->dev, size, &q->desc_dma, GFP_KERNEL);
99 	if (!q->desc)
100 		return -ENOMEM;
101 
102 	size = q->ndesc * sizeof(*q->entry);
103 	q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL);
104 	if (!q->entry)
105 		return -ENOMEM;
106 
107 	/* clear descriptors */
108 	for (i = 0; i < q->ndesc; i++)
109 		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
110 
111 	writel(q->desc_dma, &q->regs->desc_base);
112 	writel(0, &q->regs->cpu_idx);
113 	writel(0, &q->regs->dma_idx);
114 	writel(q->ndesc, &q->regs->ring_size);
115 
116 	return 0;
117 }
118 
119 static int
mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q, struct mt76_queue_buf *buf, int nbufs, u32 info, struct sk_buff *skb, void *txwi)120 mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q,
121 		 struct mt76_queue_buf *buf, int nbufs, u32 info,
122 		 struct sk_buff *skb, void *txwi)
123 {
124 	struct mt76_queue_entry *entry;
125 	struct mt76_desc *desc;
126 	u32 ctrl;
127 	int i, idx = -1;
128 
129 	if (txwi) {
130 		q->entry[q->head].txwi = DMA_DUMMY_DATA;
131 		q->entry[q->head].skip_buf0 = true;
132 	}
133 
134 	for (i = 0; i < nbufs; i += 2, buf += 2) {
135 		u32 buf0 = buf[0].addr, buf1 = 0;
136 
137 		idx = q->head;
138 		q->head = (q->head + 1) % q->ndesc;
139 
140 		desc = &q->desc[idx];
141 		entry = &q->entry[idx];
142 
143 		if (buf[0].skip_unmap)
144 			entry->skip_buf0 = true;
145 		entry->skip_buf1 = i == nbufs - 1;
146 
147 		entry->dma_addr[0] = buf[0].addr;
148 		entry->dma_len[0] = buf[0].len;
149 
150 		ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len);
151 		if (i < nbufs - 1) {
152 			entry->dma_addr[1] = buf[1].addr;
153 			entry->dma_len[1] = buf[1].len;
154 			buf1 = buf[1].addr;
155 			ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len);
156 			if (buf[1].skip_unmap)
157 				entry->skip_buf1 = true;
158 		}
159 
160 		if (i == nbufs - 1)
161 			ctrl |= MT_DMA_CTL_LAST_SEC0;
162 		else if (i == nbufs - 2)
163 			ctrl |= MT_DMA_CTL_LAST_SEC1;
164 
165 		WRITE_ONCE(desc->buf0, cpu_to_le32(buf0));
166 		WRITE_ONCE(desc->buf1, cpu_to_le32(buf1));
167 		WRITE_ONCE(desc->info, cpu_to_le32(info));
168 		WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl));
169 
170 		q->queued++;
171 	}
172 
173 	q->entry[idx].txwi = txwi;
174 	q->entry[idx].skb = skb;
175 
176 	return idx;
177 }
178 
179 static void
mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx, struct mt76_queue_entry *prev_e)180 mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx,
181 			struct mt76_queue_entry *prev_e)
182 {
183 	struct mt76_queue_entry *e = &q->entry[idx];
184 
185 	if (!e->skip_buf0)
186 		dma_unmap_single(dev->dev, e->dma_addr[0], e->dma_len[0],
187 				 DMA_TO_DEVICE);
188 
189 	if (!e->skip_buf1)
190 		dma_unmap_single(dev->dev, e->dma_addr[1], e->dma_len[1],
191 				 DMA_TO_DEVICE);
192 
193 	if (e->txwi == DMA_DUMMY_DATA)
194 		e->txwi = NULL;
195 
196 	if (e->skb == DMA_DUMMY_DATA)
197 		e->skb = NULL;
198 
199 	*prev_e = *e;
200 	memset(e, 0, sizeof(*e));
201 }
202 
203 static void
mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q)204 mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q)
205 {
206 	writel(q->desc_dma, &q->regs->desc_base);
207 	writel(q->ndesc, &q->regs->ring_size);
208 	q->head = readl(&q->regs->dma_idx);
209 	q->tail = q->head;
210 }
211 
212 static void
mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q)213 mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q)
214 {
215 	wmb();
216 	writel(q->head, &q->regs->cpu_idx);
217 }
218 
219 static void
mt76_dma_tx_cleanup(struct mt76_dev *dev, enum mt76_txq_id qid, bool flush)220 mt76_dma_tx_cleanup(struct mt76_dev *dev, enum mt76_txq_id qid, bool flush)
221 {
222 	struct mt76_queue *q = dev->q_tx[qid];
223 	struct mt76_queue_entry entry;
224 	bool wake = false;
225 	int last;
226 
227 	if (!q)
228 		return;
229 
230 	if (flush)
231 		last = -1;
232 	else
233 		last = readl(&q->regs->dma_idx);
234 
235 	while (q->queued > 0 && q->tail != last) {
236 		mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry);
237 		mt76_queue_tx_complete(dev, q, &entry);
238 
239 		if (entry.txwi) {
240 			if (!(dev->drv->drv_flags & MT_DRV_TXWI_NO_FREE))
241 				mt76_put_txwi(dev, entry.txwi);
242 			wake = !flush;
243 		}
244 
245 		if (!flush && q->tail == last)
246 			last = readl(&q->regs->dma_idx);
247 
248 	}
249 
250 	if (flush) {
251 		spin_lock_bh(&q->lock);
252 		mt76_dma_sync_idx(dev, q);
253 		mt76_dma_kick_queue(dev, q);
254 		spin_unlock_bh(&q->lock);
255 	}
256 
257 	wake = wake && q->stopped &&
258 	       qid < IEEE80211_NUM_ACS && q->queued < q->ndesc - 8;
259 	if (wake)
260 		q->stopped = false;
261 
262 	if (!q->queued)
263 		wake_up(&dev->tx_wait);
264 
265 	if (wake)
266 		ieee80211_wake_queue(dev->hw, qid);
267 }
268 
269 static void *
mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx, int *len, u32 *info, bool *more)270 mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx,
271 		 int *len, u32 *info, bool *more)
272 {
273 	struct mt76_queue_entry *e = &q->entry[idx];
274 	struct mt76_desc *desc = &q->desc[idx];
275 	dma_addr_t buf_addr;
276 	void *buf = e->buf;
277 	int buf_len = SKB_WITH_OVERHEAD(q->buf_size);
278 
279 	buf_addr = e->dma_addr[0];
280 	if (len) {
281 		u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl));
282 		*len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl);
283 		*more = !(ctl & MT_DMA_CTL_LAST_SEC0);
284 	}
285 
286 	if (info)
287 		*info = le32_to_cpu(desc->info);
288 
289 	dma_unmap_single(dev->dev, buf_addr, buf_len, DMA_FROM_DEVICE);
290 	e->buf = NULL;
291 
292 	return buf;
293 }
294 
295 static void *
mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush, int *len, u32 *info, bool *more)296 mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
297 		 int *len, u32 *info, bool *more)
298 {
299 	int idx = q->tail;
300 
301 	*more = false;
302 	if (!q->queued)
303 		return NULL;
304 
305 	if (flush)
306 		q->desc[idx].ctrl |= cpu_to_le32(MT_DMA_CTL_DMA_DONE);
307 	else if (!(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE)))
308 		return NULL;
309 
310 	q->tail = (q->tail + 1) % q->ndesc;
311 	q->queued--;
312 
313 	return mt76_dma_get_buf(dev, q, idx, len, info, more);
314 }
315 
316 static int
mt76_dma_tx_queue_skb_raw(struct mt76_dev *dev, enum mt76_txq_id qid, struct sk_buff *skb, u32 tx_info)317 mt76_dma_tx_queue_skb_raw(struct mt76_dev *dev, enum mt76_txq_id qid,
318 			  struct sk_buff *skb, u32 tx_info)
319 {
320 	struct mt76_queue *q = dev->q_tx[qid];
321 	struct mt76_queue_buf buf = {};
322 	dma_addr_t addr;
323 
324 	if (q->queued + 1 >= q->ndesc - 1)
325 		goto error;
326 
327 	addr = dma_map_single(dev->dev, skb->data, skb->len,
328 			      DMA_TO_DEVICE);
329 	if (unlikely(dma_mapping_error(dev->dev, addr)))
330 		goto error;
331 
332 	buf.addr = addr;
333 	buf.len = skb->len;
334 
335 	spin_lock_bh(&q->lock);
336 	mt76_dma_add_buf(dev, q, &buf, 1, tx_info, skb, NULL);
337 	mt76_dma_kick_queue(dev, q);
338 	spin_unlock_bh(&q->lock);
339 
340 	return 0;
341 
342 error:
343 	dev_kfree_skb(skb);
344 	return -ENOMEM;
345 }
346 
347 static int
mt76_dma_tx_queue_skb(struct mt76_dev *dev, enum mt76_txq_id qid, struct sk_buff *skb, struct mt76_wcid *wcid, struct ieee80211_sta *sta)348 mt76_dma_tx_queue_skb(struct mt76_dev *dev, enum mt76_txq_id qid,
349 		      struct sk_buff *skb, struct mt76_wcid *wcid,
350 		      struct ieee80211_sta *sta)
351 {
352 	struct mt76_queue *q = dev->q_tx[qid];
353 	struct mt76_tx_info tx_info = {
354 		.skb = skb,
355 	};
356 	struct ieee80211_hw *hw;
357 	int len, n = 0, ret = -ENOMEM;
358 	struct mt76_txwi_cache *t;
359 	struct sk_buff *iter;
360 	dma_addr_t addr;
361 	u8 *txwi;
362 
363 	t = mt76_get_txwi(dev);
364 	if (!t) {
365 		hw = mt76_tx_status_get_hw(dev, skb);
366 		ieee80211_free_txskb(hw, skb);
367 		return -ENOMEM;
368 	}
369 	txwi = mt76_get_txwi_ptr(dev, t);
370 
371 	skb->prev = skb->next = NULL;
372 	if (dev->drv->drv_flags & MT_DRV_TX_ALIGNED4_SKBS)
373 		mt76_insert_hdr_pad(skb);
374 
375 	len = skb_headlen(skb);
376 	addr = dma_map_single(dev->dev, skb->data, len, DMA_TO_DEVICE);
377 	if (unlikely(dma_mapping_error(dev->dev, addr)))
378 		goto free;
379 
380 	tx_info.buf[n].addr = t->dma_addr;
381 	tx_info.buf[n++].len = dev->drv->txwi_size;
382 	tx_info.buf[n].addr = addr;
383 	tx_info.buf[n++].len = len;
384 
385 	skb_walk_frags(skb, iter) {
386 		if (n == ARRAY_SIZE(tx_info.buf))
387 			goto unmap;
388 
389 		addr = dma_map_single(dev->dev, iter->data, iter->len,
390 				      DMA_TO_DEVICE);
391 		if (unlikely(dma_mapping_error(dev->dev, addr)))
392 			goto unmap;
393 
394 		tx_info.buf[n].addr = addr;
395 		tx_info.buf[n++].len = iter->len;
396 	}
397 	tx_info.nbuf = n;
398 
399 	if (q->queued + (tx_info.nbuf + 1) / 2 >= q->ndesc - 1) {
400 		ret = -ENOMEM;
401 		goto unmap;
402 	}
403 
404 	dma_sync_single_for_cpu(dev->dev, t->dma_addr, dev->drv->txwi_size,
405 				DMA_TO_DEVICE);
406 	ret = dev->drv->tx_prepare_skb(dev, txwi, qid, wcid, sta, &tx_info);
407 	dma_sync_single_for_device(dev->dev, t->dma_addr, dev->drv->txwi_size,
408 				   DMA_TO_DEVICE);
409 	if (ret < 0)
410 		goto unmap;
411 
412 	return mt76_dma_add_buf(dev, q, tx_info.buf, tx_info.nbuf,
413 				tx_info.info, tx_info.skb, t);
414 
415 unmap:
416 	for (n--; n > 0; n--)
417 		dma_unmap_single(dev->dev, tx_info.buf[n].addr,
418 				 tx_info.buf[n].len, DMA_TO_DEVICE);
419 
420 free:
421 #ifdef CONFIG_NL80211_TESTMODE
422 	/* fix tx_done accounting on queue overflow */
423 	if (tx_info.skb == dev->test.tx_skb)
424 		dev->test.tx_done--;
425 #endif
426 
427 	dev_kfree_skb(tx_info.skb);
428 	mt76_put_txwi(dev, t);
429 	return ret;
430 }
431 
432 static int
mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q)433 mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q)
434 {
435 	dma_addr_t addr;
436 	void *buf;
437 	int frames = 0;
438 	int len = SKB_WITH_OVERHEAD(q->buf_size);
439 	int offset = q->buf_offset;
440 
441 	spin_lock_bh(&q->lock);
442 
443 	while (q->queued < q->ndesc - 1) {
444 		struct mt76_queue_buf qbuf;
445 
446 		buf = page_frag_alloc(&q->rx_page, q->buf_size, GFP_ATOMIC);
447 		if (!buf)
448 			break;
449 
450 		addr = dma_map_single(dev->dev, buf, len, DMA_FROM_DEVICE);
451 		if (unlikely(dma_mapping_error(dev->dev, addr))) {
452 			skb_free_frag(buf);
453 			break;
454 		}
455 
456 		qbuf.addr = addr + offset;
457 		qbuf.len = len - offset;
458 		qbuf.skip_unmap = false;
459 		mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL);
460 		frames++;
461 	}
462 
463 	if (frames)
464 		mt76_dma_kick_queue(dev, q);
465 
466 	spin_unlock_bh(&q->lock);
467 
468 	return frames;
469 }
470 
471 static void
mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q)472 mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q)
473 {
474 	struct page *page;
475 	void *buf;
476 	bool more;
477 
478 	spin_lock_bh(&q->lock);
479 
480 	do {
481 		buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more);
482 		if (!buf)
483 			break;
484 
485 		skb_free_frag(buf);
486 	} while (1);
487 
488 	if (q->rx_head) {
489 		dev_kfree_skb(q->rx_head);
490 		q->rx_head = NULL;
491 	}
492 
493 	spin_unlock_bh(&q->lock);
494 
495 	if (!q->rx_page.va)
496 		return;
497 
498 	page = virt_to_page(q->rx_page.va);
499 	__page_frag_cache_drain(page, q->rx_page.pagecnt_bias);
500 	memset(&q->rx_page, 0, sizeof(q->rx_page));
501 }
502 
503 static void
mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid)504 mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid)
505 {
506 	struct mt76_queue *q = &dev->q_rx[qid];
507 	int i;
508 
509 	for (i = 0; i < q->ndesc; i++)
510 		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
511 
512 	mt76_dma_rx_cleanup(dev, q);
513 	mt76_dma_sync_idx(dev, q);
514 	mt76_dma_rx_fill(dev, q);
515 }
516 
517 static void
mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data, int len, bool more)518 mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data,
519 		  int len, bool more)
520 {
521 	struct sk_buff *skb = q->rx_head;
522 	struct skb_shared_info *shinfo = skb_shinfo(skb);
523 	int nr_frags = shinfo->nr_frags;
524 
525 	if (nr_frags < ARRAY_SIZE(shinfo->frags)) {
526 		struct page *page = virt_to_head_page(data);
527 		int offset = data - page_address(page) + q->buf_offset;
528 
529 		skb_add_rx_frag(skb, nr_frags, page, offset, len, q->buf_size);
530 	} else {
531 		skb_free_frag(data);
532 	}
533 
534 	if (more)
535 		return;
536 
537 	q->rx_head = NULL;
538 	if (nr_frags < ARRAY_SIZE(shinfo->frags))
539 		dev->drv->rx_skb(dev, q - dev->q_rx, skb);
540 	else
541 		dev_kfree_skb(skb);
542 }
543 
544 static int
mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget)545 mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget)
546 {
547 	int len, data_len, done = 0;
548 	struct sk_buff *skb;
549 	unsigned char *data;
550 	bool more;
551 
552 	while (done < budget) {
553 		u32 info;
554 
555 		data = mt76_dma_dequeue(dev, q, false, &len, &info, &more);
556 		if (!data)
557 			break;
558 
559 		if (q->rx_head)
560 			data_len = q->buf_size;
561 		else
562 			data_len = SKB_WITH_OVERHEAD(q->buf_size);
563 
564 		if (data_len < len + q->buf_offset) {
565 			dev_kfree_skb(q->rx_head);
566 			q->rx_head = NULL;
567 
568 			skb_free_frag(data);
569 			continue;
570 		}
571 
572 		if (q->rx_head) {
573 			mt76_add_fragment(dev, q, data, len, more);
574 			continue;
575 		}
576 
577 		skb = build_skb(data, q->buf_size);
578 		if (!skb) {
579 			skb_free_frag(data);
580 			continue;
581 		}
582 		skb_reserve(skb, q->buf_offset);
583 
584 		if (q == &dev->q_rx[MT_RXQ_MCU]) {
585 			u32 *rxfce = (u32 *)skb->cb;
586 			*rxfce = info;
587 		}
588 
589 		__skb_put(skb, len);
590 		done++;
591 
592 		if (more) {
593 			q->rx_head = skb;
594 			continue;
595 		}
596 
597 		dev->drv->rx_skb(dev, q - dev->q_rx, skb);
598 	}
599 
600 	mt76_dma_rx_fill(dev, q);
601 	return done;
602 }
603 
604 static int
mt76_dma_rx_poll(struct napi_struct *napi, int budget)605 mt76_dma_rx_poll(struct napi_struct *napi, int budget)
606 {
607 	struct mt76_dev *dev;
608 	int qid, done = 0, cur;
609 
610 	dev = container_of(napi->dev, struct mt76_dev, napi_dev);
611 	qid = napi - dev->napi;
612 
613 	local_bh_disable();
614 	rcu_read_lock();
615 
616 	do {
617 		cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done);
618 		mt76_rx_poll_complete(dev, qid, napi);
619 		done += cur;
620 	} while (cur && done < budget);
621 
622 	rcu_read_unlock();
623 	local_bh_enable();
624 
625 	if (done < budget && napi_complete(napi))
626 		dev->drv->rx_poll_complete(dev, qid);
627 
628 	return done;
629 }
630 
631 static int
mt76_dma_init(struct mt76_dev *dev)632 mt76_dma_init(struct mt76_dev *dev)
633 {
634 	int i;
635 
636 	init_dummy_netdev(&dev->napi_dev);
637 
638 	mt76_for_each_q_rx(dev, i) {
639 		netif_napi_add(&dev->napi_dev, &dev->napi[i], mt76_dma_rx_poll,
640 			       64);
641 		mt76_dma_rx_fill(dev, &dev->q_rx[i]);
642 		napi_enable(&dev->napi[i]);
643 	}
644 
645 	return 0;
646 }
647 
648 static const struct mt76_queue_ops mt76_dma_ops = {
649 	.init = mt76_dma_init,
650 	.alloc = mt76_dma_alloc_queue,
651 	.tx_queue_skb_raw = mt76_dma_tx_queue_skb_raw,
652 	.tx_queue_skb = mt76_dma_tx_queue_skb,
653 	.tx_cleanup = mt76_dma_tx_cleanup,
654 	.rx_reset = mt76_dma_rx_reset,
655 	.kick = mt76_dma_kick_queue,
656 };
657 
mt76_dma_attach(struct mt76_dev *dev)658 void mt76_dma_attach(struct mt76_dev *dev)
659 {
660 	dev->queue_ops = &mt76_dma_ops;
661 }
662 EXPORT_SYMBOL_GPL(mt76_dma_attach);
663 
mt76_dma_cleanup(struct mt76_dev *dev)664 void mt76_dma_cleanup(struct mt76_dev *dev)
665 {
666 	int i;
667 
668 	mt76_worker_disable(&dev->tx_worker);
669 	netif_napi_del(&dev->tx_napi);
670 	for (i = 0; i < ARRAY_SIZE(dev->q_tx); i++)
671 		mt76_dma_tx_cleanup(dev, i, true);
672 
673 	mt76_for_each_q_rx(dev, i) {
674 		netif_napi_del(&dev->napi[i]);
675 		mt76_dma_rx_cleanup(dev, &dev->q_rx[i]);
676 	}
677 
678 	mt76_free_pending_txwi(dev);
679 }
680 EXPORT_SYMBOL_GPL(mt76_dma_cleanup);
681