xref: /kernel/linux/linux-5.10/drivers/net/phy/sfp.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/acpi.h>
3#include <linux/ctype.h>
4#include <linux/delay.h>
5#include <linux/gpio/consumer.h>
6#include <linux/hwmon.h>
7#include <linux/i2c.h>
8#include <linux/interrupt.h>
9#include <linux/jiffies.h>
10#include <linux/mdio/mdio-i2c.h>
11#include <linux/module.h>
12#include <linux/mutex.h>
13#include <linux/of.h>
14#include <linux/phy.h>
15#include <linux/platform_device.h>
16#include <linux/rtnetlink.h>
17#include <linux/slab.h>
18#include <linux/workqueue.h>
19
20#include "sfp.h"
21#include "swphy.h"
22
23enum {
24	GPIO_MODDEF0,
25	GPIO_LOS,
26	GPIO_TX_FAULT,
27	GPIO_TX_DISABLE,
28	GPIO_RATE_SELECT,
29	GPIO_MAX,
30
31	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32	SFP_F_LOS = BIT(GPIO_LOS),
33	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35	SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
36
37	SFP_E_INSERT = 0,
38	SFP_E_REMOVE,
39	SFP_E_DEV_ATTACH,
40	SFP_E_DEV_DETACH,
41	SFP_E_DEV_DOWN,
42	SFP_E_DEV_UP,
43	SFP_E_TX_FAULT,
44	SFP_E_TX_CLEAR,
45	SFP_E_LOS_HIGH,
46	SFP_E_LOS_LOW,
47	SFP_E_TIMEOUT,
48
49	SFP_MOD_EMPTY = 0,
50	SFP_MOD_ERROR,
51	SFP_MOD_PROBE,
52	SFP_MOD_WAITDEV,
53	SFP_MOD_HPOWER,
54	SFP_MOD_WAITPWR,
55	SFP_MOD_PRESENT,
56
57	SFP_DEV_DETACHED = 0,
58	SFP_DEV_DOWN,
59	SFP_DEV_UP,
60
61	SFP_S_DOWN = 0,
62	SFP_S_FAIL,
63	SFP_S_WAIT,
64	SFP_S_INIT,
65	SFP_S_INIT_PHY,
66	SFP_S_INIT_TX_FAULT,
67	SFP_S_WAIT_LOS,
68	SFP_S_LINK_UP,
69	SFP_S_TX_FAULT,
70	SFP_S_REINIT,
71	SFP_S_TX_DISABLE,
72};
73
74static const char  * const mod_state_strings[] = {
75	[SFP_MOD_EMPTY] = "empty",
76	[SFP_MOD_ERROR] = "error",
77	[SFP_MOD_PROBE] = "probe",
78	[SFP_MOD_WAITDEV] = "waitdev",
79	[SFP_MOD_HPOWER] = "hpower",
80	[SFP_MOD_WAITPWR] = "waitpwr",
81	[SFP_MOD_PRESENT] = "present",
82};
83
84static const char *mod_state_to_str(unsigned short mod_state)
85{
86	if (mod_state >= ARRAY_SIZE(mod_state_strings))
87		return "Unknown module state";
88	return mod_state_strings[mod_state];
89}
90
91static const char * const dev_state_strings[] = {
92	[SFP_DEV_DETACHED] = "detached",
93	[SFP_DEV_DOWN] = "down",
94	[SFP_DEV_UP] = "up",
95};
96
97static const char *dev_state_to_str(unsigned short dev_state)
98{
99	if (dev_state >= ARRAY_SIZE(dev_state_strings))
100		return "Unknown device state";
101	return dev_state_strings[dev_state];
102}
103
104static const char * const event_strings[] = {
105	[SFP_E_INSERT] = "insert",
106	[SFP_E_REMOVE] = "remove",
107	[SFP_E_DEV_ATTACH] = "dev_attach",
108	[SFP_E_DEV_DETACH] = "dev_detach",
109	[SFP_E_DEV_DOWN] = "dev_down",
110	[SFP_E_DEV_UP] = "dev_up",
111	[SFP_E_TX_FAULT] = "tx_fault",
112	[SFP_E_TX_CLEAR] = "tx_clear",
113	[SFP_E_LOS_HIGH] = "los_high",
114	[SFP_E_LOS_LOW] = "los_low",
115	[SFP_E_TIMEOUT] = "timeout",
116};
117
118static const char *event_to_str(unsigned short event)
119{
120	if (event >= ARRAY_SIZE(event_strings))
121		return "Unknown event";
122	return event_strings[event];
123}
124
125static const char * const sm_state_strings[] = {
126	[SFP_S_DOWN] = "down",
127	[SFP_S_FAIL] = "fail",
128	[SFP_S_WAIT] = "wait",
129	[SFP_S_INIT] = "init",
130	[SFP_S_INIT_PHY] = "init_phy",
131	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
132	[SFP_S_WAIT_LOS] = "wait_los",
133	[SFP_S_LINK_UP] = "link_up",
134	[SFP_S_TX_FAULT] = "tx_fault",
135	[SFP_S_REINIT] = "reinit",
136	[SFP_S_TX_DISABLE] = "tx_disable",
137};
138
139static const char *sm_state_to_str(unsigned short sm_state)
140{
141	if (sm_state >= ARRAY_SIZE(sm_state_strings))
142		return "Unknown state";
143	return sm_state_strings[sm_state];
144}
145
146static const char *gpio_of_names[] = {
147	"mod-def0",
148	"los",
149	"tx-fault",
150	"tx-disable",
151	"rate-select0",
152};
153
154static const enum gpiod_flags gpio_flags[] = {
155	GPIOD_IN,
156	GPIOD_IN,
157	GPIOD_IN,
158	GPIOD_ASIS,
159	GPIOD_ASIS,
160};
161
162/* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
163 * non-cooled module to initialise its laser safety circuitry. We wait
164 * an initial T_WAIT period before we check the tx fault to give any PHY
165 * on board (for a copper SFP) time to initialise.
166 */
167#define T_WAIT			msecs_to_jiffies(50)
168#define T_START_UP		msecs_to_jiffies(300)
169#define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
170
171/* t_reset is the time required to assert the TX_DISABLE signal to reset
172 * an indicated TX_FAULT.
173 */
174#define T_RESET_US		10
175#define T_FAULT_RECOVER		msecs_to_jiffies(1000)
176
177/* N_FAULT_INIT is the number of recovery attempts at module initialisation
178 * time. If the TX_FAULT signal is not deasserted after this number of
179 * attempts at clearing it, we decide that the module is faulty.
180 * N_FAULT is the same but after the module has initialised.
181 */
182#define N_FAULT_INIT		5
183#define N_FAULT			5
184
185/* T_PHY_RETRY is the time interval between attempts to probe the PHY.
186 * R_PHY_RETRY is the number of attempts.
187 */
188#define T_PHY_RETRY		msecs_to_jiffies(50)
189#define R_PHY_RETRY		12
190
191/* SFP module presence detection is poor: the three MOD DEF signals are
192 * the same length on the PCB, which means it's possible for MOD DEF 0 to
193 * connect before the I2C bus on MOD DEF 1/2.
194 *
195 * The SFF-8472 specifies t_serial ("Time from power on until module is
196 * ready for data transmission over the two wire serial bus.") as 300ms.
197 */
198#define T_SERIAL		msecs_to_jiffies(300)
199#define T_HPOWER_LEVEL		msecs_to_jiffies(300)
200#define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
201#define R_PROBE_RETRY_INIT	10
202#define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
203#define R_PROBE_RETRY_SLOW	12
204
205/* SFP modules appear to always have their PHY configured for bus address
206 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
207 */
208#define SFP_PHY_ADDR	22
209
210/* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
211 * at a time. Some SFP modules and also some Linux I2C drivers do not like
212 * reads longer than 16 bytes.
213 */
214#define SFP_EEPROM_BLOCK_SIZE	16
215
216struct sff_data {
217	unsigned int gpios;
218	bool (*module_supported)(const struct sfp_eeprom_id *id);
219};
220
221struct sfp {
222	struct device *dev;
223	struct i2c_adapter *i2c;
224	struct mii_bus *i2c_mii;
225	struct sfp_bus *sfp_bus;
226	struct phy_device *mod_phy;
227	const struct sff_data *type;
228	size_t i2c_block_size;
229	u32 max_power_mW;
230
231	unsigned int (*get_state)(struct sfp *);
232	void (*set_state)(struct sfp *, unsigned int);
233	int (*read)(struct sfp *, bool, u8, void *, size_t);
234	int (*write)(struct sfp *, bool, u8, void *, size_t);
235
236	struct gpio_desc *gpio[GPIO_MAX];
237	int gpio_irq[GPIO_MAX];
238
239	bool need_poll;
240
241	struct mutex st_mutex;			/* Protects state */
242	unsigned int state_soft_mask;
243	unsigned int state;
244	struct delayed_work poll;
245	struct delayed_work timeout;
246	struct mutex sm_mutex;			/* Protects state machine */
247	unsigned char sm_mod_state;
248	unsigned char sm_mod_tries_init;
249	unsigned char sm_mod_tries;
250	unsigned char sm_dev_state;
251	unsigned short sm_state;
252	unsigned char sm_fault_retries;
253	unsigned char sm_phy_retries;
254
255	struct sfp_eeprom_id id;
256	unsigned int module_power_mW;
257	unsigned int module_t_start_up;
258	bool tx_fault_ignore;
259
260#if IS_ENABLED(CONFIG_HWMON)
261	struct sfp_diag diag;
262	struct delayed_work hwmon_probe;
263	unsigned int hwmon_tries;
264	struct device *hwmon_dev;
265	char *hwmon_name;
266#endif
267
268};
269
270static bool sff_module_supported(const struct sfp_eeprom_id *id)
271{
272	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
273	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
274}
275
276static const struct sff_data sff_data = {
277	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
278	.module_supported = sff_module_supported,
279};
280
281static bool sfp_module_supported(const struct sfp_eeprom_id *id)
282{
283	if (id->base.phys_id == SFF8024_ID_SFP &&
284	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
285		return true;
286
287	/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
288	 * phys id SFF instead of SFP. Therefore mark this module explicitly
289	 * as supported based on vendor name and pn match.
290	 */
291	if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
292	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
293	    !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
294	    !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
295		return true;
296
297	return false;
298}
299
300static const struct sff_data sfp_data = {
301	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
302		 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
303	.module_supported = sfp_module_supported,
304};
305
306static const struct of_device_id sfp_of_match[] = {
307	{ .compatible = "sff,sff", .data = &sff_data, },
308	{ .compatible = "sff,sfp", .data = &sfp_data, },
309	{ },
310};
311MODULE_DEVICE_TABLE(of, sfp_of_match);
312
313static unsigned long poll_jiffies;
314
315static unsigned int sfp_gpio_get_state(struct sfp *sfp)
316{
317	unsigned int i, state, v;
318
319	for (i = state = 0; i < GPIO_MAX; i++) {
320		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
321			continue;
322
323		v = gpiod_get_value_cansleep(sfp->gpio[i]);
324		if (v)
325			state |= BIT(i);
326	}
327
328	return state;
329}
330
331static unsigned int sff_gpio_get_state(struct sfp *sfp)
332{
333	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
334}
335
336static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
337{
338	if (state & SFP_F_PRESENT) {
339		/* If the module is present, drive the signals */
340		if (sfp->gpio[GPIO_TX_DISABLE])
341			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
342					       state & SFP_F_TX_DISABLE);
343		if (state & SFP_F_RATE_SELECT)
344			gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
345					       state & SFP_F_RATE_SELECT);
346	} else {
347		/* Otherwise, let them float to the pull-ups */
348		if (sfp->gpio[GPIO_TX_DISABLE])
349			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
350		if (state & SFP_F_RATE_SELECT)
351			gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
352	}
353}
354
355static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
356			size_t len)
357{
358	struct i2c_msg msgs[2];
359	u8 bus_addr = a2 ? 0x51 : 0x50;
360	size_t block_size = sfp->i2c_block_size;
361	size_t this_len;
362	int ret;
363
364	msgs[0].addr = bus_addr;
365	msgs[0].flags = 0;
366	msgs[0].len = 1;
367	msgs[0].buf = &dev_addr;
368	msgs[1].addr = bus_addr;
369	msgs[1].flags = I2C_M_RD;
370	msgs[1].len = len;
371	msgs[1].buf = buf;
372
373	while (len) {
374		this_len = len;
375		if (this_len > block_size)
376			this_len = block_size;
377
378		msgs[1].len = this_len;
379
380		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
381		if (ret < 0)
382			return ret;
383
384		if (ret != ARRAY_SIZE(msgs))
385			break;
386
387		msgs[1].buf += this_len;
388		dev_addr += this_len;
389		len -= this_len;
390	}
391
392	return msgs[1].buf - (u8 *)buf;
393}
394
395static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
396	size_t len)
397{
398	struct i2c_msg msgs[1];
399	u8 bus_addr = a2 ? 0x51 : 0x50;
400	int ret;
401
402	msgs[0].addr = bus_addr;
403	msgs[0].flags = 0;
404	msgs[0].len = 1 + len;
405	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
406	if (!msgs[0].buf)
407		return -ENOMEM;
408
409	msgs[0].buf[0] = dev_addr;
410	memcpy(&msgs[0].buf[1], buf, len);
411
412	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
413
414	kfree(msgs[0].buf);
415
416	if (ret < 0)
417		return ret;
418
419	return ret == ARRAY_SIZE(msgs) ? len : 0;
420}
421
422static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
423{
424	struct mii_bus *i2c_mii;
425	int ret;
426
427	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
428		return -EINVAL;
429
430	sfp->i2c = i2c;
431	sfp->read = sfp_i2c_read;
432	sfp->write = sfp_i2c_write;
433
434	i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
435	if (IS_ERR(i2c_mii))
436		return PTR_ERR(i2c_mii);
437
438	i2c_mii->name = "SFP I2C Bus";
439	i2c_mii->phy_mask = ~0;
440
441	ret = mdiobus_register(i2c_mii);
442	if (ret < 0) {
443		mdiobus_free(i2c_mii);
444		return ret;
445	}
446
447	sfp->i2c_mii = i2c_mii;
448
449	return 0;
450}
451
452/* Interface */
453static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
454{
455	return sfp->read(sfp, a2, addr, buf, len);
456}
457
458static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
459{
460	return sfp->write(sfp, a2, addr, buf, len);
461}
462
463static unsigned int sfp_soft_get_state(struct sfp *sfp)
464{
465	unsigned int state = 0;
466	u8 status;
467	int ret;
468
469	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
470	if (ret == sizeof(status)) {
471		if (status & SFP_STATUS_RX_LOS)
472			state |= SFP_F_LOS;
473		if (status & SFP_STATUS_TX_FAULT)
474			state |= SFP_F_TX_FAULT;
475	} else {
476		dev_err_ratelimited(sfp->dev,
477				    "failed to read SFP soft status: %d\n",
478				    ret);
479		/* Preserve the current state */
480		state = sfp->state;
481	}
482
483	return state & sfp->state_soft_mask;
484}
485
486static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
487{
488	u8 status;
489
490	if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
491		     sizeof(status)) {
492		if (state & SFP_F_TX_DISABLE)
493			status |= SFP_STATUS_TX_DISABLE_FORCE;
494		else
495			status &= ~SFP_STATUS_TX_DISABLE_FORCE;
496
497		sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
498	}
499}
500
501static void sfp_soft_start_poll(struct sfp *sfp)
502{
503	const struct sfp_eeprom_id *id = &sfp->id;
504
505	sfp->state_soft_mask = 0;
506	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
507	    !sfp->gpio[GPIO_TX_DISABLE])
508		sfp->state_soft_mask |= SFP_F_TX_DISABLE;
509	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
510	    !sfp->gpio[GPIO_TX_FAULT])
511		sfp->state_soft_mask |= SFP_F_TX_FAULT;
512	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
513	    !sfp->gpio[GPIO_LOS])
514		sfp->state_soft_mask |= SFP_F_LOS;
515
516	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
517	    !sfp->need_poll)
518		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
519}
520
521static void sfp_soft_stop_poll(struct sfp *sfp)
522{
523	sfp->state_soft_mask = 0;
524}
525
526static unsigned int sfp_get_state(struct sfp *sfp)
527{
528	unsigned int state = sfp->get_state(sfp);
529
530	if (state & SFP_F_PRESENT &&
531	    sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
532		state |= sfp_soft_get_state(sfp);
533
534	return state;
535}
536
537static void sfp_set_state(struct sfp *sfp, unsigned int state)
538{
539	sfp->set_state(sfp, state);
540
541	if (state & SFP_F_PRESENT &&
542	    sfp->state_soft_mask & SFP_F_TX_DISABLE)
543		sfp_soft_set_state(sfp, state);
544}
545
546static unsigned int sfp_check(void *buf, size_t len)
547{
548	u8 *p, check;
549
550	for (p = buf, check = 0; len; p++, len--)
551		check += *p;
552
553	return check;
554}
555
556/* hwmon */
557#if IS_ENABLED(CONFIG_HWMON)
558static umode_t sfp_hwmon_is_visible(const void *data,
559				    enum hwmon_sensor_types type,
560				    u32 attr, int channel)
561{
562	const struct sfp *sfp = data;
563
564	switch (type) {
565	case hwmon_temp:
566		switch (attr) {
567		case hwmon_temp_min_alarm:
568		case hwmon_temp_max_alarm:
569		case hwmon_temp_lcrit_alarm:
570		case hwmon_temp_crit_alarm:
571		case hwmon_temp_min:
572		case hwmon_temp_max:
573		case hwmon_temp_lcrit:
574		case hwmon_temp_crit:
575			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
576				return 0;
577			fallthrough;
578		case hwmon_temp_input:
579		case hwmon_temp_label:
580			return 0444;
581		default:
582			return 0;
583		}
584	case hwmon_in:
585		switch (attr) {
586		case hwmon_in_min_alarm:
587		case hwmon_in_max_alarm:
588		case hwmon_in_lcrit_alarm:
589		case hwmon_in_crit_alarm:
590		case hwmon_in_min:
591		case hwmon_in_max:
592		case hwmon_in_lcrit:
593		case hwmon_in_crit:
594			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
595				return 0;
596			fallthrough;
597		case hwmon_in_input:
598		case hwmon_in_label:
599			return 0444;
600		default:
601			return 0;
602		}
603	case hwmon_curr:
604		switch (attr) {
605		case hwmon_curr_min_alarm:
606		case hwmon_curr_max_alarm:
607		case hwmon_curr_lcrit_alarm:
608		case hwmon_curr_crit_alarm:
609		case hwmon_curr_min:
610		case hwmon_curr_max:
611		case hwmon_curr_lcrit:
612		case hwmon_curr_crit:
613			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
614				return 0;
615			fallthrough;
616		case hwmon_curr_input:
617		case hwmon_curr_label:
618			return 0444;
619		default:
620			return 0;
621		}
622	case hwmon_power:
623		/* External calibration of receive power requires
624		 * floating point arithmetic. Doing that in the kernel
625		 * is not easy, so just skip it. If the module does
626		 * not require external calibration, we can however
627		 * show receiver power, since FP is then not needed.
628		 */
629		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
630		    channel == 1)
631			return 0;
632		switch (attr) {
633		case hwmon_power_min_alarm:
634		case hwmon_power_max_alarm:
635		case hwmon_power_lcrit_alarm:
636		case hwmon_power_crit_alarm:
637		case hwmon_power_min:
638		case hwmon_power_max:
639		case hwmon_power_lcrit:
640		case hwmon_power_crit:
641			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
642				return 0;
643			fallthrough;
644		case hwmon_power_input:
645		case hwmon_power_label:
646			return 0444;
647		default:
648			return 0;
649		}
650	default:
651		return 0;
652	}
653}
654
655static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
656{
657	__be16 val;
658	int err;
659
660	err = sfp_read(sfp, true, reg, &val, sizeof(val));
661	if (err < 0)
662		return err;
663
664	*value = be16_to_cpu(val);
665
666	return 0;
667}
668
669static void sfp_hwmon_to_rx_power(long *value)
670{
671	*value = DIV_ROUND_CLOSEST(*value, 10);
672}
673
674static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
675				long *value)
676{
677	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
678		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
679}
680
681static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
682{
683	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
684			    be16_to_cpu(sfp->diag.cal_t_offset), value);
685
686	if (*value >= 0x8000)
687		*value -= 0x10000;
688
689	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
690}
691
692static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
693{
694	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
695			    be16_to_cpu(sfp->diag.cal_v_offset), value);
696
697	*value = DIV_ROUND_CLOSEST(*value, 10);
698}
699
700static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
701{
702	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
703			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
704
705	*value = DIV_ROUND_CLOSEST(*value, 500);
706}
707
708static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
709{
710	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
711			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
712
713	*value = DIV_ROUND_CLOSEST(*value, 10);
714}
715
716static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
717{
718	int err;
719
720	err = sfp_hwmon_read_sensor(sfp, reg, value);
721	if (err < 0)
722		return err;
723
724	sfp_hwmon_calibrate_temp(sfp, value);
725
726	return 0;
727}
728
729static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
730{
731	int err;
732
733	err = sfp_hwmon_read_sensor(sfp, reg, value);
734	if (err < 0)
735		return err;
736
737	sfp_hwmon_calibrate_vcc(sfp, value);
738
739	return 0;
740}
741
742static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
743{
744	int err;
745
746	err = sfp_hwmon_read_sensor(sfp, reg, value);
747	if (err < 0)
748		return err;
749
750	sfp_hwmon_calibrate_bias(sfp, value);
751
752	return 0;
753}
754
755static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
756{
757	int err;
758
759	err = sfp_hwmon_read_sensor(sfp, reg, value);
760	if (err < 0)
761		return err;
762
763	sfp_hwmon_calibrate_tx_power(sfp, value);
764
765	return 0;
766}
767
768static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
769{
770	int err;
771
772	err = sfp_hwmon_read_sensor(sfp, reg, value);
773	if (err < 0)
774		return err;
775
776	sfp_hwmon_to_rx_power(value);
777
778	return 0;
779}
780
781static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
782{
783	u8 status;
784	int err;
785
786	switch (attr) {
787	case hwmon_temp_input:
788		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
789
790	case hwmon_temp_lcrit:
791		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
792		sfp_hwmon_calibrate_temp(sfp, value);
793		return 0;
794
795	case hwmon_temp_min:
796		*value = be16_to_cpu(sfp->diag.temp_low_warn);
797		sfp_hwmon_calibrate_temp(sfp, value);
798		return 0;
799	case hwmon_temp_max:
800		*value = be16_to_cpu(sfp->diag.temp_high_warn);
801		sfp_hwmon_calibrate_temp(sfp, value);
802		return 0;
803
804	case hwmon_temp_crit:
805		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
806		sfp_hwmon_calibrate_temp(sfp, value);
807		return 0;
808
809	case hwmon_temp_lcrit_alarm:
810		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
811		if (err < 0)
812			return err;
813
814		*value = !!(status & SFP_ALARM0_TEMP_LOW);
815		return 0;
816
817	case hwmon_temp_min_alarm:
818		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
819		if (err < 0)
820			return err;
821
822		*value = !!(status & SFP_WARN0_TEMP_LOW);
823		return 0;
824
825	case hwmon_temp_max_alarm:
826		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
827		if (err < 0)
828			return err;
829
830		*value = !!(status & SFP_WARN0_TEMP_HIGH);
831		return 0;
832
833	case hwmon_temp_crit_alarm:
834		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
835		if (err < 0)
836			return err;
837
838		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
839		return 0;
840	default:
841		return -EOPNOTSUPP;
842	}
843
844	return -EOPNOTSUPP;
845}
846
847static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
848{
849	u8 status;
850	int err;
851
852	switch (attr) {
853	case hwmon_in_input:
854		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
855
856	case hwmon_in_lcrit:
857		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
858		sfp_hwmon_calibrate_vcc(sfp, value);
859		return 0;
860
861	case hwmon_in_min:
862		*value = be16_to_cpu(sfp->diag.volt_low_warn);
863		sfp_hwmon_calibrate_vcc(sfp, value);
864		return 0;
865
866	case hwmon_in_max:
867		*value = be16_to_cpu(sfp->diag.volt_high_warn);
868		sfp_hwmon_calibrate_vcc(sfp, value);
869		return 0;
870
871	case hwmon_in_crit:
872		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
873		sfp_hwmon_calibrate_vcc(sfp, value);
874		return 0;
875
876	case hwmon_in_lcrit_alarm:
877		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
878		if (err < 0)
879			return err;
880
881		*value = !!(status & SFP_ALARM0_VCC_LOW);
882		return 0;
883
884	case hwmon_in_min_alarm:
885		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
886		if (err < 0)
887			return err;
888
889		*value = !!(status & SFP_WARN0_VCC_LOW);
890		return 0;
891
892	case hwmon_in_max_alarm:
893		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
894		if (err < 0)
895			return err;
896
897		*value = !!(status & SFP_WARN0_VCC_HIGH);
898		return 0;
899
900	case hwmon_in_crit_alarm:
901		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
902		if (err < 0)
903			return err;
904
905		*value = !!(status & SFP_ALARM0_VCC_HIGH);
906		return 0;
907	default:
908		return -EOPNOTSUPP;
909	}
910
911	return -EOPNOTSUPP;
912}
913
914static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
915{
916	u8 status;
917	int err;
918
919	switch (attr) {
920	case hwmon_curr_input:
921		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
922
923	case hwmon_curr_lcrit:
924		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
925		sfp_hwmon_calibrate_bias(sfp, value);
926		return 0;
927
928	case hwmon_curr_min:
929		*value = be16_to_cpu(sfp->diag.bias_low_warn);
930		sfp_hwmon_calibrate_bias(sfp, value);
931		return 0;
932
933	case hwmon_curr_max:
934		*value = be16_to_cpu(sfp->diag.bias_high_warn);
935		sfp_hwmon_calibrate_bias(sfp, value);
936		return 0;
937
938	case hwmon_curr_crit:
939		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
940		sfp_hwmon_calibrate_bias(sfp, value);
941		return 0;
942
943	case hwmon_curr_lcrit_alarm:
944		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
945		if (err < 0)
946			return err;
947
948		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
949		return 0;
950
951	case hwmon_curr_min_alarm:
952		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
953		if (err < 0)
954			return err;
955
956		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
957		return 0;
958
959	case hwmon_curr_max_alarm:
960		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
961		if (err < 0)
962			return err;
963
964		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
965		return 0;
966
967	case hwmon_curr_crit_alarm:
968		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
969		if (err < 0)
970			return err;
971
972		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
973		return 0;
974	default:
975		return -EOPNOTSUPP;
976	}
977
978	return -EOPNOTSUPP;
979}
980
981static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
982{
983	u8 status;
984	int err;
985
986	switch (attr) {
987	case hwmon_power_input:
988		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
989
990	case hwmon_power_lcrit:
991		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
992		sfp_hwmon_calibrate_tx_power(sfp, value);
993		return 0;
994
995	case hwmon_power_min:
996		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
997		sfp_hwmon_calibrate_tx_power(sfp, value);
998		return 0;
999
1000	case hwmon_power_max:
1001		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1002		sfp_hwmon_calibrate_tx_power(sfp, value);
1003		return 0;
1004
1005	case hwmon_power_crit:
1006		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1007		sfp_hwmon_calibrate_tx_power(sfp, value);
1008		return 0;
1009
1010	case hwmon_power_lcrit_alarm:
1011		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1012		if (err < 0)
1013			return err;
1014
1015		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
1016		return 0;
1017
1018	case hwmon_power_min_alarm:
1019		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1020		if (err < 0)
1021			return err;
1022
1023		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1024		return 0;
1025
1026	case hwmon_power_max_alarm:
1027		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1028		if (err < 0)
1029			return err;
1030
1031		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1032		return 0;
1033
1034	case hwmon_power_crit_alarm:
1035		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1036		if (err < 0)
1037			return err;
1038
1039		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1040		return 0;
1041	default:
1042		return -EOPNOTSUPP;
1043	}
1044
1045	return -EOPNOTSUPP;
1046}
1047
1048static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1049{
1050	u8 status;
1051	int err;
1052
1053	switch (attr) {
1054	case hwmon_power_input:
1055		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1056
1057	case hwmon_power_lcrit:
1058		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1059		sfp_hwmon_to_rx_power(value);
1060		return 0;
1061
1062	case hwmon_power_min:
1063		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1064		sfp_hwmon_to_rx_power(value);
1065		return 0;
1066
1067	case hwmon_power_max:
1068		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1069		sfp_hwmon_to_rx_power(value);
1070		return 0;
1071
1072	case hwmon_power_crit:
1073		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1074		sfp_hwmon_to_rx_power(value);
1075		return 0;
1076
1077	case hwmon_power_lcrit_alarm:
1078		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1079		if (err < 0)
1080			return err;
1081
1082		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1083		return 0;
1084
1085	case hwmon_power_min_alarm:
1086		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1087		if (err < 0)
1088			return err;
1089
1090		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1091		return 0;
1092
1093	case hwmon_power_max_alarm:
1094		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1095		if (err < 0)
1096			return err;
1097
1098		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1099		return 0;
1100
1101	case hwmon_power_crit_alarm:
1102		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1103		if (err < 0)
1104			return err;
1105
1106		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1107		return 0;
1108	default:
1109		return -EOPNOTSUPP;
1110	}
1111
1112	return -EOPNOTSUPP;
1113}
1114
1115static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1116			  u32 attr, int channel, long *value)
1117{
1118	struct sfp *sfp = dev_get_drvdata(dev);
1119
1120	switch (type) {
1121	case hwmon_temp:
1122		return sfp_hwmon_temp(sfp, attr, value);
1123	case hwmon_in:
1124		return sfp_hwmon_vcc(sfp, attr, value);
1125	case hwmon_curr:
1126		return sfp_hwmon_bias(sfp, attr, value);
1127	case hwmon_power:
1128		switch (channel) {
1129		case 0:
1130			return sfp_hwmon_tx_power(sfp, attr, value);
1131		case 1:
1132			return sfp_hwmon_rx_power(sfp, attr, value);
1133		default:
1134			return -EOPNOTSUPP;
1135		}
1136	default:
1137		return -EOPNOTSUPP;
1138	}
1139}
1140
1141static const char *const sfp_hwmon_power_labels[] = {
1142	"TX_power",
1143	"RX_power",
1144};
1145
1146static int sfp_hwmon_read_string(struct device *dev,
1147				 enum hwmon_sensor_types type,
1148				 u32 attr, int channel, const char **str)
1149{
1150	switch (type) {
1151	case hwmon_curr:
1152		switch (attr) {
1153		case hwmon_curr_label:
1154			*str = "bias";
1155			return 0;
1156		default:
1157			return -EOPNOTSUPP;
1158		}
1159		break;
1160	case hwmon_temp:
1161		switch (attr) {
1162		case hwmon_temp_label:
1163			*str = "temperature";
1164			return 0;
1165		default:
1166			return -EOPNOTSUPP;
1167		}
1168		break;
1169	case hwmon_in:
1170		switch (attr) {
1171		case hwmon_in_label:
1172			*str = "VCC";
1173			return 0;
1174		default:
1175			return -EOPNOTSUPP;
1176		}
1177		break;
1178	case hwmon_power:
1179		switch (attr) {
1180		case hwmon_power_label:
1181			*str = sfp_hwmon_power_labels[channel];
1182			return 0;
1183		default:
1184			return -EOPNOTSUPP;
1185		}
1186		break;
1187	default:
1188		return -EOPNOTSUPP;
1189	}
1190
1191	return -EOPNOTSUPP;
1192}
1193
1194static const struct hwmon_ops sfp_hwmon_ops = {
1195	.is_visible = sfp_hwmon_is_visible,
1196	.read = sfp_hwmon_read,
1197	.read_string = sfp_hwmon_read_string,
1198};
1199
1200static u32 sfp_hwmon_chip_config[] = {
1201	HWMON_C_REGISTER_TZ,
1202	0,
1203};
1204
1205static const struct hwmon_channel_info sfp_hwmon_chip = {
1206	.type = hwmon_chip,
1207	.config = sfp_hwmon_chip_config,
1208};
1209
1210static u32 sfp_hwmon_temp_config[] = {
1211	HWMON_T_INPUT |
1212	HWMON_T_MAX | HWMON_T_MIN |
1213	HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1214	HWMON_T_CRIT | HWMON_T_LCRIT |
1215	HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1216	HWMON_T_LABEL,
1217	0,
1218};
1219
1220static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1221	.type = hwmon_temp,
1222	.config = sfp_hwmon_temp_config,
1223};
1224
1225static u32 sfp_hwmon_vcc_config[] = {
1226	HWMON_I_INPUT |
1227	HWMON_I_MAX | HWMON_I_MIN |
1228	HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1229	HWMON_I_CRIT | HWMON_I_LCRIT |
1230	HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1231	HWMON_I_LABEL,
1232	0,
1233};
1234
1235static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1236	.type = hwmon_in,
1237	.config = sfp_hwmon_vcc_config,
1238};
1239
1240static u32 sfp_hwmon_bias_config[] = {
1241	HWMON_C_INPUT |
1242	HWMON_C_MAX | HWMON_C_MIN |
1243	HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1244	HWMON_C_CRIT | HWMON_C_LCRIT |
1245	HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1246	HWMON_C_LABEL,
1247	0,
1248};
1249
1250static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1251	.type = hwmon_curr,
1252	.config = sfp_hwmon_bias_config,
1253};
1254
1255static u32 sfp_hwmon_power_config[] = {
1256	/* Transmit power */
1257	HWMON_P_INPUT |
1258	HWMON_P_MAX | HWMON_P_MIN |
1259	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1260	HWMON_P_CRIT | HWMON_P_LCRIT |
1261	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1262	HWMON_P_LABEL,
1263	/* Receive power */
1264	HWMON_P_INPUT |
1265	HWMON_P_MAX | HWMON_P_MIN |
1266	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1267	HWMON_P_CRIT | HWMON_P_LCRIT |
1268	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1269	HWMON_P_LABEL,
1270	0,
1271};
1272
1273static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1274	.type = hwmon_power,
1275	.config = sfp_hwmon_power_config,
1276};
1277
1278static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1279	&sfp_hwmon_chip,
1280	&sfp_hwmon_vcc_channel_info,
1281	&sfp_hwmon_temp_channel_info,
1282	&sfp_hwmon_bias_channel_info,
1283	&sfp_hwmon_power_channel_info,
1284	NULL,
1285};
1286
1287static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1288	.ops = &sfp_hwmon_ops,
1289	.info = sfp_hwmon_info,
1290};
1291
1292static void sfp_hwmon_probe(struct work_struct *work)
1293{
1294	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1295	int err, i;
1296
1297	/* hwmon interface needs to access 16bit registers in atomic way to
1298	 * guarantee coherency of the diagnostic monitoring data. If it is not
1299	 * possible to guarantee coherency because EEPROM is broken in such way
1300	 * that does not support atomic 16bit read operation then we have to
1301	 * skip registration of hwmon device.
1302	 */
1303	if (sfp->i2c_block_size < 2) {
1304		dev_info(sfp->dev,
1305			 "skipping hwmon device registration due to broken EEPROM\n");
1306		dev_info(sfp->dev,
1307			 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1308		return;
1309	}
1310
1311	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1312	if (err < 0) {
1313		if (sfp->hwmon_tries--) {
1314			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1315					 T_PROBE_RETRY_SLOW);
1316		} else {
1317			dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1318		}
1319		return;
1320	}
1321
1322	sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1323	if (!sfp->hwmon_name) {
1324		dev_err(sfp->dev, "out of memory for hwmon name\n");
1325		return;
1326	}
1327
1328	for (i = 0; sfp->hwmon_name[i]; i++)
1329		if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1330			sfp->hwmon_name[i] = '_';
1331
1332	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1333							 sfp->hwmon_name, sfp,
1334							 &sfp_hwmon_chip_info,
1335							 NULL);
1336	if (IS_ERR(sfp->hwmon_dev))
1337		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1338			PTR_ERR(sfp->hwmon_dev));
1339}
1340
1341static int sfp_hwmon_insert(struct sfp *sfp)
1342{
1343	if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1344		return 0;
1345
1346	if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1347		return 0;
1348
1349	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1350		/* This driver in general does not support address
1351		 * change.
1352		 */
1353		return 0;
1354
1355	mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1356	sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1357
1358	return 0;
1359}
1360
1361static void sfp_hwmon_remove(struct sfp *sfp)
1362{
1363	cancel_delayed_work_sync(&sfp->hwmon_probe);
1364	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1365		hwmon_device_unregister(sfp->hwmon_dev);
1366		sfp->hwmon_dev = NULL;
1367		kfree(sfp->hwmon_name);
1368	}
1369}
1370
1371static int sfp_hwmon_init(struct sfp *sfp)
1372{
1373	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1374
1375	return 0;
1376}
1377
1378static void sfp_hwmon_exit(struct sfp *sfp)
1379{
1380	cancel_delayed_work_sync(&sfp->hwmon_probe);
1381}
1382#else
1383static int sfp_hwmon_insert(struct sfp *sfp)
1384{
1385	return 0;
1386}
1387
1388static void sfp_hwmon_remove(struct sfp *sfp)
1389{
1390}
1391
1392static int sfp_hwmon_init(struct sfp *sfp)
1393{
1394	return 0;
1395}
1396
1397static void sfp_hwmon_exit(struct sfp *sfp)
1398{
1399}
1400#endif
1401
1402/* Helpers */
1403static void sfp_module_tx_disable(struct sfp *sfp)
1404{
1405	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1406		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1407	sfp->state |= SFP_F_TX_DISABLE;
1408	sfp_set_state(sfp, sfp->state);
1409}
1410
1411static void sfp_module_tx_enable(struct sfp *sfp)
1412{
1413	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1414		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1415	sfp->state &= ~SFP_F_TX_DISABLE;
1416	sfp_set_state(sfp, sfp->state);
1417}
1418
1419static void sfp_module_tx_fault_reset(struct sfp *sfp)
1420{
1421	unsigned int state = sfp->state;
1422
1423	if (state & SFP_F_TX_DISABLE)
1424		return;
1425
1426	sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1427
1428	udelay(T_RESET_US);
1429
1430	sfp_set_state(sfp, state);
1431}
1432
1433/* SFP state machine */
1434static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1435{
1436	if (timeout)
1437		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1438				 timeout);
1439	else
1440		cancel_delayed_work(&sfp->timeout);
1441}
1442
1443static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1444			unsigned int timeout)
1445{
1446	sfp->sm_state = state;
1447	sfp_sm_set_timer(sfp, timeout);
1448}
1449
1450static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1451			    unsigned int timeout)
1452{
1453	sfp->sm_mod_state = state;
1454	sfp_sm_set_timer(sfp, timeout);
1455}
1456
1457static void sfp_sm_phy_detach(struct sfp *sfp)
1458{
1459	sfp_remove_phy(sfp->sfp_bus);
1460	phy_device_remove(sfp->mod_phy);
1461	phy_device_free(sfp->mod_phy);
1462	sfp->mod_phy = NULL;
1463}
1464
1465static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
1466{
1467	struct phy_device *phy;
1468	int err;
1469
1470	phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
1471	if (phy == ERR_PTR(-ENODEV))
1472		return PTR_ERR(phy);
1473	if (IS_ERR(phy)) {
1474		dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1475		return PTR_ERR(phy);
1476	}
1477
1478	err = phy_device_register(phy);
1479	if (err) {
1480		phy_device_free(phy);
1481		dev_err(sfp->dev, "phy_device_register failed: %d\n", err);
1482		return err;
1483	}
1484
1485	err = sfp_add_phy(sfp->sfp_bus, phy);
1486	if (err) {
1487		phy_device_remove(phy);
1488		phy_device_free(phy);
1489		dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1490		return err;
1491	}
1492
1493	sfp->mod_phy = phy;
1494
1495	return 0;
1496}
1497
1498static void sfp_sm_link_up(struct sfp *sfp)
1499{
1500	sfp_link_up(sfp->sfp_bus);
1501	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1502}
1503
1504static void sfp_sm_link_down(struct sfp *sfp)
1505{
1506	sfp_link_down(sfp->sfp_bus);
1507}
1508
1509static void sfp_sm_link_check_los(struct sfp *sfp)
1510{
1511	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1512	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1513	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1514	bool los = false;
1515
1516	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1517	 * are set, we assume that no LOS signal is available. If both are
1518	 * set, we assume LOS is not implemented (and is meaningless.)
1519	 */
1520	if (los_options == los_inverted)
1521		los = !(sfp->state & SFP_F_LOS);
1522	else if (los_options == los_normal)
1523		los = !!(sfp->state & SFP_F_LOS);
1524
1525	if (los)
1526		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1527	else
1528		sfp_sm_link_up(sfp);
1529}
1530
1531static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1532{
1533	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1534	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1535	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1536
1537	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1538	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
1539}
1540
1541static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1542{
1543	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1544	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1545	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1546
1547	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1548	       (los_options == los_normal && event == SFP_E_LOS_LOW);
1549}
1550
1551static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1552{
1553	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1554		dev_err(sfp->dev,
1555			"module persistently indicates fault, disabling\n");
1556		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1557	} else {
1558		if (warn)
1559			dev_err(sfp->dev, "module transmit fault indicated\n");
1560
1561		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1562	}
1563}
1564
1565/* Probe a SFP for a PHY device if the module supports copper - the PHY
1566 * normally sits at I2C bus address 0x56, and may either be a clause 22
1567 * or clause 45 PHY.
1568 *
1569 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1570 * negotiation enabled, but some may be in 1000base-X - which is for the
1571 * PHY driver to determine.
1572 *
1573 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1574 * mode according to the negotiated line speed.
1575 */
1576static int sfp_sm_probe_for_phy(struct sfp *sfp)
1577{
1578	int err = 0;
1579
1580	switch (sfp->id.base.extended_cc) {
1581	case SFF8024_ECC_10GBASE_T_SFI:
1582	case SFF8024_ECC_10GBASE_T_SR:
1583	case SFF8024_ECC_5GBASE_T:
1584	case SFF8024_ECC_2_5GBASE_T:
1585		err = sfp_sm_probe_phy(sfp, true);
1586		break;
1587
1588	default:
1589		if (sfp->id.base.e1000_base_t)
1590			err = sfp_sm_probe_phy(sfp, false);
1591		break;
1592	}
1593	return err;
1594}
1595
1596static int sfp_module_parse_power(struct sfp *sfp)
1597{
1598	u32 power_mW = 1000;
1599	bool supports_a2;
1600
1601	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1602		power_mW = 1500;
1603	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1604		power_mW = 2000;
1605
1606	supports_a2 = sfp->id.ext.sff8472_compliance !=
1607				SFP_SFF8472_COMPLIANCE_NONE ||
1608		      sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1609
1610	if (power_mW > sfp->max_power_mW) {
1611		/* Module power specification exceeds the allowed maximum. */
1612		if (!supports_a2) {
1613			/* The module appears not to implement bus address
1614			 * 0xa2, so assume that the module powers up in the
1615			 * indicated mode.
1616			 */
1617			dev_err(sfp->dev,
1618				"Host does not support %u.%uW modules\n",
1619				power_mW / 1000, (power_mW / 100) % 10);
1620			return -EINVAL;
1621		} else {
1622			dev_warn(sfp->dev,
1623				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1624				 power_mW / 1000, (power_mW / 100) % 10);
1625			return 0;
1626		}
1627	}
1628
1629	if (power_mW <= 1000) {
1630		/* Modules below 1W do not require a power change sequence */
1631		sfp->module_power_mW = power_mW;
1632		return 0;
1633	}
1634
1635	if (!supports_a2) {
1636		/* The module power level is below the host maximum and the
1637		 * module appears not to implement bus address 0xa2, so assume
1638		 * that the module powers up in the indicated mode.
1639		 */
1640		return 0;
1641	}
1642
1643	/* If the module requires a higher power mode, but also requires
1644	 * an address change sequence, warn the user that the module may
1645	 * not be functional.
1646	 */
1647	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1648		dev_warn(sfp->dev,
1649			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1650			 power_mW / 1000, (power_mW / 100) % 10);
1651		return 0;
1652	}
1653
1654	sfp->module_power_mW = power_mW;
1655
1656	return 0;
1657}
1658
1659static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1660{
1661	u8 val;
1662	int err;
1663
1664	err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1665	if (err != sizeof(val)) {
1666		dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1667		return -EAGAIN;
1668	}
1669
1670	/* DM7052 reports as a high power module, responds to reads (with
1671	 * all bytes 0xff) at 0x51 but does not accept writes.  In any case,
1672	 * if the bit is already set, we're already in high power mode.
1673	 */
1674	if (!!(val & BIT(0)) == enable)
1675		return 0;
1676
1677	if (enable)
1678		val |= BIT(0);
1679	else
1680		val &= ~BIT(0);
1681
1682	err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1683	if (err != sizeof(val)) {
1684		dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1685		return -EAGAIN;
1686	}
1687
1688	if (enable)
1689		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1690			 sfp->module_power_mW / 1000,
1691			 (sfp->module_power_mW / 100) % 10);
1692
1693	return 0;
1694}
1695
1696/* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1697 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1698 * not support multibyte reads from the EEPROM. Each multi-byte read
1699 * operation returns just one byte of EEPROM followed by zeros. There is
1700 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1701 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1702 * name and vendor id into EEPROM, so there is even no way to detect if
1703 * module is V-SOL V2801F. Therefore check for those zeros in the read
1704 * data and then based on check switch to reading EEPROM to one byte
1705 * at a time.
1706 */
1707static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1708{
1709	size_t i, block_size = sfp->i2c_block_size;
1710
1711	/* Already using byte IO */
1712	if (block_size == 1)
1713		return false;
1714
1715	for (i = 1; i < len; i += block_size) {
1716		if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1717			return false;
1718	}
1719	return true;
1720}
1721
1722static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1723{
1724	u8 check;
1725	int err;
1726
1727	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1728	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1729	    id->base.connector != SFF8024_CONNECTOR_LC) {
1730		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1731		id->base.phys_id = SFF8024_ID_SFF_8472;
1732		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1733		id->base.connector = SFF8024_CONNECTOR_LC;
1734		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1735		if (err != 3) {
1736			dev_err(sfp->dev, "Failed to rewrite module EEPROM: %d\n", err);
1737			return err;
1738		}
1739
1740		/* Cotsworks modules have been found to require a delay between write operations. */
1741		mdelay(50);
1742
1743		/* Update base structure checksum */
1744		check = sfp_check(&id->base, sizeof(id->base) - 1);
1745		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1746		if (err != 1) {
1747			dev_err(sfp->dev, "Failed to update base structure checksum in fiber module EEPROM: %d\n", err);
1748			return err;
1749		}
1750	}
1751	return 0;
1752}
1753
1754static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1755{
1756	/* SFP module inserted - read I2C data */
1757	struct sfp_eeprom_id id;
1758	bool cotsworks_sfbg;
1759	bool cotsworks;
1760	u8 check;
1761	int ret;
1762
1763	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
1764
1765	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1766	if (ret < 0) {
1767		if (report)
1768			dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1769		return -EAGAIN;
1770	}
1771
1772	if (ret != sizeof(id.base)) {
1773		dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1774		return -EAGAIN;
1775	}
1776
1777	/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1778	 * address 0x51 is just one byte at a time. Also SFF-8472 requires
1779	 * that EEPROM supports atomic 16bit read operation for diagnostic
1780	 * fields, so do not switch to one byte reading at a time unless it
1781	 * is really required and we have no other option.
1782	 */
1783	if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1784		dev_info(sfp->dev,
1785			 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1786		dev_info(sfp->dev,
1787			 "Switching to reading EEPROM to one byte at a time\n");
1788		sfp->i2c_block_size = 1;
1789
1790		ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1791		if (ret < 0) {
1792			if (report)
1793				dev_err(sfp->dev, "failed to read EEPROM: %d\n",
1794					ret);
1795			return -EAGAIN;
1796		}
1797
1798		if (ret != sizeof(id.base)) {
1799			dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1800			return -EAGAIN;
1801		}
1802	}
1803
1804	/* Cotsworks do not seem to update the checksums when they
1805	 * do the final programming with the final module part number,
1806	 * serial number and date code.
1807	 */
1808	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1809	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1810
1811	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
1812	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
1813	 * Cotsworks PN matches and bytes are not correct.
1814	 */
1815	if (cotsworks && cotsworks_sfbg) {
1816		ret = sfp_cotsworks_fixup_check(sfp, &id);
1817		if (ret < 0)
1818			return ret;
1819	}
1820
1821	/* Validate the checksum over the base structure */
1822	check = sfp_check(&id.base, sizeof(id.base) - 1);
1823	if (check != id.base.cc_base) {
1824		if (cotsworks) {
1825			dev_warn(sfp->dev,
1826				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1827				 check, id.base.cc_base);
1828		} else {
1829			dev_err(sfp->dev,
1830				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1831				check, id.base.cc_base);
1832			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1833				       16, 1, &id, sizeof(id), true);
1834			return -EINVAL;
1835		}
1836	}
1837
1838	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
1839	if (ret < 0) {
1840		if (report)
1841			dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1842		return -EAGAIN;
1843	}
1844
1845	if (ret != sizeof(id.ext)) {
1846		dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1847		return -EAGAIN;
1848	}
1849
1850	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1851	if (check != id.ext.cc_ext) {
1852		if (cotsworks) {
1853			dev_warn(sfp->dev,
1854				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1855				 check, id.ext.cc_ext);
1856		} else {
1857			dev_err(sfp->dev,
1858				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1859				check, id.ext.cc_ext);
1860			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1861				       16, 1, &id, sizeof(id), true);
1862			memset(&id.ext, 0, sizeof(id.ext));
1863		}
1864	}
1865
1866	sfp->id = id;
1867
1868	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1869		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1870		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1871		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1872		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1873		 (int)sizeof(id.ext.datecode), id.ext.datecode);
1874
1875	/* Check whether we support this module */
1876	if (!sfp->type->module_supported(&id)) {
1877		dev_err(sfp->dev,
1878			"module is not supported - phys id 0x%02x 0x%02x\n",
1879			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1880		return -EINVAL;
1881	}
1882
1883	/* If the module requires address swap mode, warn about it */
1884	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1885		dev_warn(sfp->dev,
1886			 "module address swap to access page 0xA2 is not supported.\n");
1887
1888	/* Parse the module power requirement */
1889	ret = sfp_module_parse_power(sfp);
1890	if (ret < 0)
1891		return ret;
1892
1893	if (!memcmp(id.base.vendor_name, "ALCATELLUCENT   ", 16) &&
1894	    !memcmp(id.base.vendor_pn, "3FE46541AA      ", 16))
1895		sfp->module_t_start_up = T_START_UP_BAD_GPON;
1896	else
1897		sfp->module_t_start_up = T_START_UP;
1898
1899	if (!memcmp(id.base.vendor_name, "HUAWEI          ", 16) &&
1900	    !memcmp(id.base.vendor_pn, "MA5671A         ", 16))
1901		sfp->tx_fault_ignore = true;
1902	else
1903		sfp->tx_fault_ignore = false;
1904
1905	return 0;
1906}
1907
1908static void sfp_sm_mod_remove(struct sfp *sfp)
1909{
1910	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1911		sfp_module_remove(sfp->sfp_bus);
1912
1913	sfp_hwmon_remove(sfp);
1914
1915	memset(&sfp->id, 0, sizeof(sfp->id));
1916	sfp->module_power_mW = 0;
1917
1918	dev_info(sfp->dev, "module removed\n");
1919}
1920
1921/* This state machine tracks the upstream's state */
1922static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1923{
1924	switch (sfp->sm_dev_state) {
1925	default:
1926		if (event == SFP_E_DEV_ATTACH)
1927			sfp->sm_dev_state = SFP_DEV_DOWN;
1928		break;
1929
1930	case SFP_DEV_DOWN:
1931		if (event == SFP_E_DEV_DETACH)
1932			sfp->sm_dev_state = SFP_DEV_DETACHED;
1933		else if (event == SFP_E_DEV_UP)
1934			sfp->sm_dev_state = SFP_DEV_UP;
1935		break;
1936
1937	case SFP_DEV_UP:
1938		if (event == SFP_E_DEV_DETACH)
1939			sfp->sm_dev_state = SFP_DEV_DETACHED;
1940		else if (event == SFP_E_DEV_DOWN)
1941			sfp->sm_dev_state = SFP_DEV_DOWN;
1942		break;
1943	}
1944}
1945
1946/* This state machine tracks the insert/remove state of the module, probes
1947 * the on-board EEPROM, and sets up the power level.
1948 */
1949static void sfp_sm_module(struct sfp *sfp, unsigned int event)
1950{
1951	int err;
1952
1953	/* Handle remove event globally, it resets this state machine */
1954	if (event == SFP_E_REMOVE) {
1955		if (sfp->sm_mod_state > SFP_MOD_PROBE)
1956			sfp_sm_mod_remove(sfp);
1957		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
1958		return;
1959	}
1960
1961	/* Handle device detach globally */
1962	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
1963	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
1964		if (sfp->module_power_mW > 1000 &&
1965		    sfp->sm_mod_state > SFP_MOD_HPOWER)
1966			sfp_sm_mod_hpower(sfp, false);
1967		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1968		return;
1969	}
1970
1971	switch (sfp->sm_mod_state) {
1972	default:
1973		if (event == SFP_E_INSERT) {
1974			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
1975			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
1976			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
1977		}
1978		break;
1979
1980	case SFP_MOD_PROBE:
1981		/* Wait for T_PROBE_INIT to time out */
1982		if (event != SFP_E_TIMEOUT)
1983			break;
1984
1985		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
1986		if (err == -EAGAIN) {
1987			if (sfp->sm_mod_tries_init &&
1988			   --sfp->sm_mod_tries_init) {
1989				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
1990				break;
1991			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
1992				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
1993					dev_warn(sfp->dev,
1994						 "please wait, module slow to respond\n");
1995				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
1996				break;
1997			}
1998		}
1999		if (err < 0) {
2000			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2001			break;
2002		}
2003
2004		err = sfp_hwmon_insert(sfp);
2005		if (err)
2006			dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
2007
2008		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2009		fallthrough;
2010	case SFP_MOD_WAITDEV:
2011		/* Ensure that the device is attached before proceeding */
2012		if (sfp->sm_dev_state < SFP_DEV_DOWN)
2013			break;
2014
2015		/* Report the module insertion to the upstream device */
2016		err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
2017		if (err < 0) {
2018			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2019			break;
2020		}
2021
2022		/* If this is a power level 1 module, we are done */
2023		if (sfp->module_power_mW <= 1000)
2024			goto insert;
2025
2026		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2027		fallthrough;
2028	case SFP_MOD_HPOWER:
2029		/* Enable high power mode */
2030		err = sfp_sm_mod_hpower(sfp, true);
2031		if (err < 0) {
2032			if (err != -EAGAIN) {
2033				sfp_module_remove(sfp->sfp_bus);
2034				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2035			} else {
2036				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2037			}
2038			break;
2039		}
2040
2041		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2042		break;
2043
2044	case SFP_MOD_WAITPWR:
2045		/* Wait for T_HPOWER_LEVEL to time out */
2046		if (event != SFP_E_TIMEOUT)
2047			break;
2048
2049	insert:
2050		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2051		break;
2052
2053	case SFP_MOD_PRESENT:
2054	case SFP_MOD_ERROR:
2055		break;
2056	}
2057}
2058
2059static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2060{
2061	unsigned long timeout;
2062	int ret;
2063
2064	/* Some events are global */
2065	if (sfp->sm_state != SFP_S_DOWN &&
2066	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2067	     sfp->sm_dev_state != SFP_DEV_UP)) {
2068		if (sfp->sm_state == SFP_S_LINK_UP &&
2069		    sfp->sm_dev_state == SFP_DEV_UP)
2070			sfp_sm_link_down(sfp);
2071		if (sfp->sm_state > SFP_S_INIT)
2072			sfp_module_stop(sfp->sfp_bus);
2073		if (sfp->mod_phy)
2074			sfp_sm_phy_detach(sfp);
2075		sfp_module_tx_disable(sfp);
2076		sfp_soft_stop_poll(sfp);
2077		sfp_sm_next(sfp, SFP_S_DOWN, 0);
2078		return;
2079	}
2080
2081	/* The main state machine */
2082	switch (sfp->sm_state) {
2083	case SFP_S_DOWN:
2084		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2085		    sfp->sm_dev_state != SFP_DEV_UP)
2086			break;
2087
2088		if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2089			sfp_soft_start_poll(sfp);
2090
2091		sfp_module_tx_enable(sfp);
2092
2093		/* Initialise the fault clearance retries */
2094		sfp->sm_fault_retries = N_FAULT_INIT;
2095
2096		/* We need to check the TX_FAULT state, which is not defined
2097		 * while TX_DISABLE is asserted. The earliest we want to do
2098		 * anything (such as probe for a PHY) is 50ms.
2099		 */
2100		sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
2101		break;
2102
2103	case SFP_S_WAIT:
2104		if (event != SFP_E_TIMEOUT)
2105			break;
2106
2107		if (sfp->state & SFP_F_TX_FAULT) {
2108			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2109			 * from the TX_DISABLE deassertion for the module to
2110			 * initialise, which is indicated by TX_FAULT
2111			 * deasserting.
2112			 */
2113			timeout = sfp->module_t_start_up;
2114			if (timeout > T_WAIT)
2115				timeout -= T_WAIT;
2116			else
2117				timeout = 1;
2118
2119			sfp_sm_next(sfp, SFP_S_INIT, timeout);
2120		} else {
2121			/* TX_FAULT is not asserted, assume the module has
2122			 * finished initialising.
2123			 */
2124			goto init_done;
2125		}
2126		break;
2127
2128	case SFP_S_INIT:
2129		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2130			/* TX_FAULT is still asserted after t_init or
2131			 * or t_start_up, so assume there is a fault.
2132			 */
2133			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2134				     sfp->sm_fault_retries == N_FAULT_INIT);
2135		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2136	init_done:
2137			sfp->sm_phy_retries = R_PHY_RETRY;
2138			goto phy_probe;
2139		}
2140		break;
2141
2142	case SFP_S_INIT_PHY:
2143		if (event != SFP_E_TIMEOUT)
2144			break;
2145	phy_probe:
2146		/* TX_FAULT deasserted or we timed out with TX_FAULT
2147		 * clear.  Probe for the PHY and check the LOS state.
2148		 */
2149		ret = sfp_sm_probe_for_phy(sfp);
2150		if (ret == -ENODEV) {
2151			if (--sfp->sm_phy_retries) {
2152				sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2153				break;
2154			} else {
2155				dev_info(sfp->dev, "no PHY detected\n");
2156			}
2157		} else if (ret) {
2158			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2159			break;
2160		}
2161		if (sfp_module_start(sfp->sfp_bus)) {
2162			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2163			break;
2164		}
2165		sfp_sm_link_check_los(sfp);
2166
2167		/* Reset the fault retry count */
2168		sfp->sm_fault_retries = N_FAULT;
2169		break;
2170
2171	case SFP_S_INIT_TX_FAULT:
2172		if (event == SFP_E_TIMEOUT) {
2173			sfp_module_tx_fault_reset(sfp);
2174			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2175		}
2176		break;
2177
2178	case SFP_S_WAIT_LOS:
2179		if (event == SFP_E_TX_FAULT)
2180			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2181		else if (sfp_los_event_inactive(sfp, event))
2182			sfp_sm_link_up(sfp);
2183		break;
2184
2185	case SFP_S_LINK_UP:
2186		if (event == SFP_E_TX_FAULT) {
2187			sfp_sm_link_down(sfp);
2188			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2189		} else if (sfp_los_event_active(sfp, event)) {
2190			sfp_sm_link_down(sfp);
2191			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2192		}
2193		break;
2194
2195	case SFP_S_TX_FAULT:
2196		if (event == SFP_E_TIMEOUT) {
2197			sfp_module_tx_fault_reset(sfp);
2198			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2199		}
2200		break;
2201
2202	case SFP_S_REINIT:
2203		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2204			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2205		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2206			dev_info(sfp->dev, "module transmit fault recovered\n");
2207			sfp_sm_link_check_los(sfp);
2208		}
2209		break;
2210
2211	case SFP_S_TX_DISABLE:
2212		break;
2213	}
2214}
2215
2216static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2217{
2218	mutex_lock(&sfp->sm_mutex);
2219
2220	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2221		mod_state_to_str(sfp->sm_mod_state),
2222		dev_state_to_str(sfp->sm_dev_state),
2223		sm_state_to_str(sfp->sm_state),
2224		event_to_str(event));
2225
2226	sfp_sm_device(sfp, event);
2227	sfp_sm_module(sfp, event);
2228	sfp_sm_main(sfp, event);
2229
2230	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2231		mod_state_to_str(sfp->sm_mod_state),
2232		dev_state_to_str(sfp->sm_dev_state),
2233		sm_state_to_str(sfp->sm_state));
2234
2235	mutex_unlock(&sfp->sm_mutex);
2236}
2237
2238static void sfp_attach(struct sfp *sfp)
2239{
2240	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2241}
2242
2243static void sfp_detach(struct sfp *sfp)
2244{
2245	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2246}
2247
2248static void sfp_start(struct sfp *sfp)
2249{
2250	sfp_sm_event(sfp, SFP_E_DEV_UP);
2251}
2252
2253static void sfp_stop(struct sfp *sfp)
2254{
2255	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2256}
2257
2258static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2259{
2260	/* locking... and check module is present */
2261
2262	if (sfp->id.ext.sff8472_compliance &&
2263	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2264		modinfo->type = ETH_MODULE_SFF_8472;
2265		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2266	} else {
2267		modinfo->type = ETH_MODULE_SFF_8079;
2268		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2269	}
2270	return 0;
2271}
2272
2273static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2274			     u8 *data)
2275{
2276	unsigned int first, last, len;
2277	int ret;
2278
2279	if (ee->len == 0)
2280		return -EINVAL;
2281
2282	first = ee->offset;
2283	last = ee->offset + ee->len;
2284	if (first < ETH_MODULE_SFF_8079_LEN) {
2285		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2286		len -= first;
2287
2288		ret = sfp_read(sfp, false, first, data, len);
2289		if (ret < 0)
2290			return ret;
2291
2292		first += len;
2293		data += len;
2294	}
2295	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2296		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2297		len -= first;
2298		first -= ETH_MODULE_SFF_8079_LEN;
2299
2300		ret = sfp_read(sfp, true, first, data, len);
2301		if (ret < 0)
2302			return ret;
2303	}
2304	return 0;
2305}
2306
2307static const struct sfp_socket_ops sfp_module_ops = {
2308	.attach = sfp_attach,
2309	.detach = sfp_detach,
2310	.start = sfp_start,
2311	.stop = sfp_stop,
2312	.module_info = sfp_module_info,
2313	.module_eeprom = sfp_module_eeprom,
2314};
2315
2316static void sfp_timeout(struct work_struct *work)
2317{
2318	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2319
2320	rtnl_lock();
2321	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2322	rtnl_unlock();
2323}
2324
2325static void sfp_check_state(struct sfp *sfp)
2326{
2327	unsigned int state, i, changed;
2328
2329	mutex_lock(&sfp->st_mutex);
2330	state = sfp_get_state(sfp);
2331	changed = state ^ sfp->state;
2332	if (sfp->tx_fault_ignore)
2333		changed &= SFP_F_PRESENT | SFP_F_LOS;
2334	else
2335		changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2336
2337	for (i = 0; i < GPIO_MAX; i++)
2338		if (changed & BIT(i))
2339			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2340				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2341
2342	state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2343	sfp->state = state;
2344
2345	rtnl_lock();
2346	if (changed & SFP_F_PRESENT)
2347		sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2348				SFP_E_INSERT : SFP_E_REMOVE);
2349
2350	if (changed & SFP_F_TX_FAULT)
2351		sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2352				SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2353
2354	if (changed & SFP_F_LOS)
2355		sfp_sm_event(sfp, state & SFP_F_LOS ?
2356				SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2357	rtnl_unlock();
2358	mutex_unlock(&sfp->st_mutex);
2359}
2360
2361static irqreturn_t sfp_irq(int irq, void *data)
2362{
2363	struct sfp *sfp = data;
2364
2365	sfp_check_state(sfp);
2366
2367	return IRQ_HANDLED;
2368}
2369
2370static void sfp_poll(struct work_struct *work)
2371{
2372	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2373
2374	sfp_check_state(sfp);
2375
2376	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2377	    sfp->need_poll)
2378		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2379}
2380
2381static struct sfp *sfp_alloc(struct device *dev)
2382{
2383	struct sfp *sfp;
2384
2385	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2386	if (!sfp)
2387		return ERR_PTR(-ENOMEM);
2388
2389	sfp->dev = dev;
2390	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2391
2392	mutex_init(&sfp->sm_mutex);
2393	mutex_init(&sfp->st_mutex);
2394	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2395	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2396
2397	sfp_hwmon_init(sfp);
2398
2399	return sfp;
2400}
2401
2402static void sfp_cleanup(void *data)
2403{
2404	struct sfp *sfp = data;
2405
2406	sfp_hwmon_exit(sfp);
2407
2408	cancel_delayed_work_sync(&sfp->poll);
2409	cancel_delayed_work_sync(&sfp->timeout);
2410	if (sfp->i2c_mii) {
2411		mdiobus_unregister(sfp->i2c_mii);
2412		mdiobus_free(sfp->i2c_mii);
2413	}
2414	if (sfp->i2c)
2415		i2c_put_adapter(sfp->i2c);
2416	kfree(sfp);
2417}
2418
2419static int sfp_probe(struct platform_device *pdev)
2420{
2421	const struct sff_data *sff;
2422	struct i2c_adapter *i2c;
2423	char *sfp_irq_name;
2424	struct sfp *sfp;
2425	int err, i;
2426
2427	sfp = sfp_alloc(&pdev->dev);
2428	if (IS_ERR(sfp))
2429		return PTR_ERR(sfp);
2430
2431	platform_set_drvdata(pdev, sfp);
2432
2433	err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2434	if (err < 0)
2435		return err;
2436
2437	sff = sfp->type = &sfp_data;
2438
2439	if (pdev->dev.of_node) {
2440		struct device_node *node = pdev->dev.of_node;
2441		const struct of_device_id *id;
2442		struct device_node *np;
2443
2444		id = of_match_node(sfp_of_match, node);
2445		if (WARN_ON(!id))
2446			return -EINVAL;
2447
2448		sff = sfp->type = id->data;
2449
2450		np = of_parse_phandle(node, "i2c-bus", 0);
2451		if (!np) {
2452			dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2453			return -ENODEV;
2454		}
2455
2456		i2c = of_find_i2c_adapter_by_node(np);
2457		of_node_put(np);
2458	} else if (has_acpi_companion(&pdev->dev)) {
2459		struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2460		struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2461		struct fwnode_reference_args args;
2462		struct acpi_handle *acpi_handle;
2463		int ret;
2464
2465		ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2466		if (ret || !is_acpi_device_node(args.fwnode)) {
2467			dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2468			return -ENODEV;
2469		}
2470
2471		acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2472		i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2473	} else {
2474		return -EINVAL;
2475	}
2476
2477	if (!i2c)
2478		return -EPROBE_DEFER;
2479
2480	err = sfp_i2c_configure(sfp, i2c);
2481	if (err < 0) {
2482		i2c_put_adapter(i2c);
2483		return err;
2484	}
2485
2486	for (i = 0; i < GPIO_MAX; i++)
2487		if (sff->gpios & BIT(i)) {
2488			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2489					   gpio_of_names[i], gpio_flags[i]);
2490			if (IS_ERR(sfp->gpio[i]))
2491				return PTR_ERR(sfp->gpio[i]);
2492		}
2493
2494	sfp->get_state = sfp_gpio_get_state;
2495	sfp->set_state = sfp_gpio_set_state;
2496
2497	/* Modules that have no detect signal are always present */
2498	if (!(sfp->gpio[GPIO_MODDEF0]))
2499		sfp->get_state = sff_gpio_get_state;
2500
2501	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2502				 &sfp->max_power_mW);
2503	if (!sfp->max_power_mW)
2504		sfp->max_power_mW = 1000;
2505
2506	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2507		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2508
2509	/* Get the initial state, and always signal TX disable,
2510	 * since the network interface will not be up.
2511	 */
2512	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2513
2514	if (sfp->gpio[GPIO_RATE_SELECT] &&
2515	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2516		sfp->state |= SFP_F_RATE_SELECT;
2517	sfp_set_state(sfp, sfp->state);
2518	sfp_module_tx_disable(sfp);
2519	if (sfp->state & SFP_F_PRESENT) {
2520		rtnl_lock();
2521		sfp_sm_event(sfp, SFP_E_INSERT);
2522		rtnl_unlock();
2523	}
2524
2525	for (i = 0; i < GPIO_MAX; i++) {
2526		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2527			continue;
2528
2529		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2530		if (sfp->gpio_irq[i] < 0) {
2531			sfp->gpio_irq[i] = 0;
2532			sfp->need_poll = true;
2533			continue;
2534		}
2535
2536		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2537					      "%s-%s", dev_name(sfp->dev),
2538					      gpio_of_names[i]);
2539
2540		if (!sfp_irq_name)
2541			return -ENOMEM;
2542
2543		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2544						NULL, sfp_irq,
2545						IRQF_ONESHOT |
2546						IRQF_TRIGGER_RISING |
2547						IRQF_TRIGGER_FALLING,
2548						sfp_irq_name, sfp);
2549		if (err) {
2550			sfp->gpio_irq[i] = 0;
2551			sfp->need_poll = true;
2552		}
2553	}
2554
2555	if (sfp->need_poll)
2556		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2557
2558	/* We could have an issue in cases no Tx disable pin is available or
2559	 * wired as modules using a laser as their light source will continue to
2560	 * be active when the fiber is removed. This could be a safety issue and
2561	 * we should at least warn the user about that.
2562	 */
2563	if (!sfp->gpio[GPIO_TX_DISABLE])
2564		dev_warn(sfp->dev,
2565			 "No tx_disable pin: SFP modules will always be emitting.\n");
2566
2567	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2568	if (!sfp->sfp_bus)
2569		return -ENOMEM;
2570
2571	return 0;
2572}
2573
2574static int sfp_remove(struct platform_device *pdev)
2575{
2576	struct sfp *sfp = platform_get_drvdata(pdev);
2577
2578	sfp_unregister_socket(sfp->sfp_bus);
2579
2580	rtnl_lock();
2581	sfp_sm_event(sfp, SFP_E_REMOVE);
2582	rtnl_unlock();
2583
2584	return 0;
2585}
2586
2587static void sfp_shutdown(struct platform_device *pdev)
2588{
2589	struct sfp *sfp = platform_get_drvdata(pdev);
2590	int i;
2591
2592	for (i = 0; i < GPIO_MAX; i++) {
2593		if (!sfp->gpio_irq[i])
2594			continue;
2595
2596		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2597	}
2598
2599	cancel_delayed_work_sync(&sfp->poll);
2600	cancel_delayed_work_sync(&sfp->timeout);
2601}
2602
2603static struct platform_driver sfp_driver = {
2604	.probe = sfp_probe,
2605	.remove = sfp_remove,
2606	.shutdown = sfp_shutdown,
2607	.driver = {
2608		.name = "sfp",
2609		.of_match_table = sfp_of_match,
2610	},
2611};
2612
2613static int sfp_init(void)
2614{
2615	poll_jiffies = msecs_to_jiffies(100);
2616
2617	return platform_driver_register(&sfp_driver);
2618}
2619module_init(sfp_init);
2620
2621static void sfp_exit(void)
2622{
2623	platform_driver_unregister(&sfp_driver);
2624}
2625module_exit(sfp_exit);
2626
2627MODULE_ALIAS("platform:sfp");
2628MODULE_AUTHOR("Russell King");
2629MODULE_LICENSE("GPL v2");
2630