1// SPDX-License-Identifier: GPL-2.0 2#include <linux/acpi.h> 3#include <linux/ctype.h> 4#include <linux/delay.h> 5#include <linux/gpio/consumer.h> 6#include <linux/hwmon.h> 7#include <linux/i2c.h> 8#include <linux/interrupt.h> 9#include <linux/jiffies.h> 10#include <linux/mdio/mdio-i2c.h> 11#include <linux/module.h> 12#include <linux/mutex.h> 13#include <linux/of.h> 14#include <linux/phy.h> 15#include <linux/platform_device.h> 16#include <linux/rtnetlink.h> 17#include <linux/slab.h> 18#include <linux/workqueue.h> 19 20#include "sfp.h" 21#include "swphy.h" 22 23enum { 24 GPIO_MODDEF0, 25 GPIO_LOS, 26 GPIO_TX_FAULT, 27 GPIO_TX_DISABLE, 28 GPIO_RATE_SELECT, 29 GPIO_MAX, 30 31 SFP_F_PRESENT = BIT(GPIO_MODDEF0), 32 SFP_F_LOS = BIT(GPIO_LOS), 33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), 34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), 35 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT), 36 37 SFP_E_INSERT = 0, 38 SFP_E_REMOVE, 39 SFP_E_DEV_ATTACH, 40 SFP_E_DEV_DETACH, 41 SFP_E_DEV_DOWN, 42 SFP_E_DEV_UP, 43 SFP_E_TX_FAULT, 44 SFP_E_TX_CLEAR, 45 SFP_E_LOS_HIGH, 46 SFP_E_LOS_LOW, 47 SFP_E_TIMEOUT, 48 49 SFP_MOD_EMPTY = 0, 50 SFP_MOD_ERROR, 51 SFP_MOD_PROBE, 52 SFP_MOD_WAITDEV, 53 SFP_MOD_HPOWER, 54 SFP_MOD_WAITPWR, 55 SFP_MOD_PRESENT, 56 57 SFP_DEV_DETACHED = 0, 58 SFP_DEV_DOWN, 59 SFP_DEV_UP, 60 61 SFP_S_DOWN = 0, 62 SFP_S_FAIL, 63 SFP_S_WAIT, 64 SFP_S_INIT, 65 SFP_S_INIT_PHY, 66 SFP_S_INIT_TX_FAULT, 67 SFP_S_WAIT_LOS, 68 SFP_S_LINK_UP, 69 SFP_S_TX_FAULT, 70 SFP_S_REINIT, 71 SFP_S_TX_DISABLE, 72}; 73 74static const char * const mod_state_strings[] = { 75 [SFP_MOD_EMPTY] = "empty", 76 [SFP_MOD_ERROR] = "error", 77 [SFP_MOD_PROBE] = "probe", 78 [SFP_MOD_WAITDEV] = "waitdev", 79 [SFP_MOD_HPOWER] = "hpower", 80 [SFP_MOD_WAITPWR] = "waitpwr", 81 [SFP_MOD_PRESENT] = "present", 82}; 83 84static const char *mod_state_to_str(unsigned short mod_state) 85{ 86 if (mod_state >= ARRAY_SIZE(mod_state_strings)) 87 return "Unknown module state"; 88 return mod_state_strings[mod_state]; 89} 90 91static const char * const dev_state_strings[] = { 92 [SFP_DEV_DETACHED] = "detached", 93 [SFP_DEV_DOWN] = "down", 94 [SFP_DEV_UP] = "up", 95}; 96 97static const char *dev_state_to_str(unsigned short dev_state) 98{ 99 if (dev_state >= ARRAY_SIZE(dev_state_strings)) 100 return "Unknown device state"; 101 return dev_state_strings[dev_state]; 102} 103 104static const char * const event_strings[] = { 105 [SFP_E_INSERT] = "insert", 106 [SFP_E_REMOVE] = "remove", 107 [SFP_E_DEV_ATTACH] = "dev_attach", 108 [SFP_E_DEV_DETACH] = "dev_detach", 109 [SFP_E_DEV_DOWN] = "dev_down", 110 [SFP_E_DEV_UP] = "dev_up", 111 [SFP_E_TX_FAULT] = "tx_fault", 112 [SFP_E_TX_CLEAR] = "tx_clear", 113 [SFP_E_LOS_HIGH] = "los_high", 114 [SFP_E_LOS_LOW] = "los_low", 115 [SFP_E_TIMEOUT] = "timeout", 116}; 117 118static const char *event_to_str(unsigned short event) 119{ 120 if (event >= ARRAY_SIZE(event_strings)) 121 return "Unknown event"; 122 return event_strings[event]; 123} 124 125static const char * const sm_state_strings[] = { 126 [SFP_S_DOWN] = "down", 127 [SFP_S_FAIL] = "fail", 128 [SFP_S_WAIT] = "wait", 129 [SFP_S_INIT] = "init", 130 [SFP_S_INIT_PHY] = "init_phy", 131 [SFP_S_INIT_TX_FAULT] = "init_tx_fault", 132 [SFP_S_WAIT_LOS] = "wait_los", 133 [SFP_S_LINK_UP] = "link_up", 134 [SFP_S_TX_FAULT] = "tx_fault", 135 [SFP_S_REINIT] = "reinit", 136 [SFP_S_TX_DISABLE] = "tx_disable", 137}; 138 139static const char *sm_state_to_str(unsigned short sm_state) 140{ 141 if (sm_state >= ARRAY_SIZE(sm_state_strings)) 142 return "Unknown state"; 143 return sm_state_strings[sm_state]; 144} 145 146static const char *gpio_of_names[] = { 147 "mod-def0", 148 "los", 149 "tx-fault", 150 "tx-disable", 151 "rate-select0", 152}; 153 154static const enum gpiod_flags gpio_flags[] = { 155 GPIOD_IN, 156 GPIOD_IN, 157 GPIOD_IN, 158 GPIOD_ASIS, 159 GPIOD_ASIS, 160}; 161 162/* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a 163 * non-cooled module to initialise its laser safety circuitry. We wait 164 * an initial T_WAIT period before we check the tx fault to give any PHY 165 * on board (for a copper SFP) time to initialise. 166 */ 167#define T_WAIT msecs_to_jiffies(50) 168#define T_START_UP msecs_to_jiffies(300) 169#define T_START_UP_BAD_GPON msecs_to_jiffies(60000) 170 171/* t_reset is the time required to assert the TX_DISABLE signal to reset 172 * an indicated TX_FAULT. 173 */ 174#define T_RESET_US 10 175#define T_FAULT_RECOVER msecs_to_jiffies(1000) 176 177/* N_FAULT_INIT is the number of recovery attempts at module initialisation 178 * time. If the TX_FAULT signal is not deasserted after this number of 179 * attempts at clearing it, we decide that the module is faulty. 180 * N_FAULT is the same but after the module has initialised. 181 */ 182#define N_FAULT_INIT 5 183#define N_FAULT 5 184 185/* T_PHY_RETRY is the time interval between attempts to probe the PHY. 186 * R_PHY_RETRY is the number of attempts. 187 */ 188#define T_PHY_RETRY msecs_to_jiffies(50) 189#define R_PHY_RETRY 12 190 191/* SFP module presence detection is poor: the three MOD DEF signals are 192 * the same length on the PCB, which means it's possible for MOD DEF 0 to 193 * connect before the I2C bus on MOD DEF 1/2. 194 * 195 * The SFF-8472 specifies t_serial ("Time from power on until module is 196 * ready for data transmission over the two wire serial bus.") as 300ms. 197 */ 198#define T_SERIAL msecs_to_jiffies(300) 199#define T_HPOWER_LEVEL msecs_to_jiffies(300) 200#define T_PROBE_RETRY_INIT msecs_to_jiffies(100) 201#define R_PROBE_RETRY_INIT 10 202#define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000) 203#define R_PROBE_RETRY_SLOW 12 204 205/* SFP modules appear to always have their PHY configured for bus address 206 * 0x56 (which with mdio-i2c, translates to a PHY address of 22). 207 */ 208#define SFP_PHY_ADDR 22 209 210/* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM 211 * at a time. Some SFP modules and also some Linux I2C drivers do not like 212 * reads longer than 16 bytes. 213 */ 214#define SFP_EEPROM_BLOCK_SIZE 16 215 216struct sff_data { 217 unsigned int gpios; 218 bool (*module_supported)(const struct sfp_eeprom_id *id); 219}; 220 221struct sfp { 222 struct device *dev; 223 struct i2c_adapter *i2c; 224 struct mii_bus *i2c_mii; 225 struct sfp_bus *sfp_bus; 226 struct phy_device *mod_phy; 227 const struct sff_data *type; 228 size_t i2c_block_size; 229 u32 max_power_mW; 230 231 unsigned int (*get_state)(struct sfp *); 232 void (*set_state)(struct sfp *, unsigned int); 233 int (*read)(struct sfp *, bool, u8, void *, size_t); 234 int (*write)(struct sfp *, bool, u8, void *, size_t); 235 236 struct gpio_desc *gpio[GPIO_MAX]; 237 int gpio_irq[GPIO_MAX]; 238 239 bool need_poll; 240 241 struct mutex st_mutex; /* Protects state */ 242 unsigned int state_soft_mask; 243 unsigned int state; 244 struct delayed_work poll; 245 struct delayed_work timeout; 246 struct mutex sm_mutex; /* Protects state machine */ 247 unsigned char sm_mod_state; 248 unsigned char sm_mod_tries_init; 249 unsigned char sm_mod_tries; 250 unsigned char sm_dev_state; 251 unsigned short sm_state; 252 unsigned char sm_fault_retries; 253 unsigned char sm_phy_retries; 254 255 struct sfp_eeprom_id id; 256 unsigned int module_power_mW; 257 unsigned int module_t_start_up; 258 bool tx_fault_ignore; 259 260#if IS_ENABLED(CONFIG_HWMON) 261 struct sfp_diag diag; 262 struct delayed_work hwmon_probe; 263 unsigned int hwmon_tries; 264 struct device *hwmon_dev; 265 char *hwmon_name; 266#endif 267 268}; 269 270static bool sff_module_supported(const struct sfp_eeprom_id *id) 271{ 272 return id->base.phys_id == SFF8024_ID_SFF_8472 && 273 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 274} 275 276static const struct sff_data sff_data = { 277 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, 278 .module_supported = sff_module_supported, 279}; 280 281static bool sfp_module_supported(const struct sfp_eeprom_id *id) 282{ 283 if (id->base.phys_id == SFF8024_ID_SFP && 284 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP) 285 return true; 286 287 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored 288 * phys id SFF instead of SFP. Therefore mark this module explicitly 289 * as supported based on vendor name and pn match. 290 */ 291 if (id->base.phys_id == SFF8024_ID_SFF_8472 && 292 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP && 293 !memcmp(id->base.vendor_name, "UBNT ", 16) && 294 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16)) 295 return true; 296 297 return false; 298} 299 300static const struct sff_data sfp_data = { 301 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | 302 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT, 303 .module_supported = sfp_module_supported, 304}; 305 306static const struct of_device_id sfp_of_match[] = { 307 { .compatible = "sff,sff", .data = &sff_data, }, 308 { .compatible = "sff,sfp", .data = &sfp_data, }, 309 { }, 310}; 311MODULE_DEVICE_TABLE(of, sfp_of_match); 312 313static unsigned long poll_jiffies; 314 315static unsigned int sfp_gpio_get_state(struct sfp *sfp) 316{ 317 unsigned int i, state, v; 318 319 for (i = state = 0; i < GPIO_MAX; i++) { 320 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 321 continue; 322 323 v = gpiod_get_value_cansleep(sfp->gpio[i]); 324 if (v) 325 state |= BIT(i); 326 } 327 328 return state; 329} 330 331static unsigned int sff_gpio_get_state(struct sfp *sfp) 332{ 333 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; 334} 335 336static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) 337{ 338 if (state & SFP_F_PRESENT) { 339 /* If the module is present, drive the signals */ 340 if (sfp->gpio[GPIO_TX_DISABLE]) 341 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], 342 state & SFP_F_TX_DISABLE); 343 if (state & SFP_F_RATE_SELECT) 344 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT], 345 state & SFP_F_RATE_SELECT); 346 } else { 347 /* Otherwise, let them float to the pull-ups */ 348 if (sfp->gpio[GPIO_TX_DISABLE]) 349 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); 350 if (state & SFP_F_RATE_SELECT) 351 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]); 352 } 353} 354 355static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 356 size_t len) 357{ 358 struct i2c_msg msgs[2]; 359 u8 bus_addr = a2 ? 0x51 : 0x50; 360 size_t block_size = sfp->i2c_block_size; 361 size_t this_len; 362 int ret; 363 364 msgs[0].addr = bus_addr; 365 msgs[0].flags = 0; 366 msgs[0].len = 1; 367 msgs[0].buf = &dev_addr; 368 msgs[1].addr = bus_addr; 369 msgs[1].flags = I2C_M_RD; 370 msgs[1].len = len; 371 msgs[1].buf = buf; 372 373 while (len) { 374 this_len = len; 375 if (this_len > block_size) 376 this_len = block_size; 377 378 msgs[1].len = this_len; 379 380 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 381 if (ret < 0) 382 return ret; 383 384 if (ret != ARRAY_SIZE(msgs)) 385 break; 386 387 msgs[1].buf += this_len; 388 dev_addr += this_len; 389 len -= this_len; 390 } 391 392 return msgs[1].buf - (u8 *)buf; 393} 394 395static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 396 size_t len) 397{ 398 struct i2c_msg msgs[1]; 399 u8 bus_addr = a2 ? 0x51 : 0x50; 400 int ret; 401 402 msgs[0].addr = bus_addr; 403 msgs[0].flags = 0; 404 msgs[0].len = 1 + len; 405 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); 406 if (!msgs[0].buf) 407 return -ENOMEM; 408 409 msgs[0].buf[0] = dev_addr; 410 memcpy(&msgs[0].buf[1], buf, len); 411 412 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 413 414 kfree(msgs[0].buf); 415 416 if (ret < 0) 417 return ret; 418 419 return ret == ARRAY_SIZE(msgs) ? len : 0; 420} 421 422static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) 423{ 424 struct mii_bus *i2c_mii; 425 int ret; 426 427 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) 428 return -EINVAL; 429 430 sfp->i2c = i2c; 431 sfp->read = sfp_i2c_read; 432 sfp->write = sfp_i2c_write; 433 434 i2c_mii = mdio_i2c_alloc(sfp->dev, i2c); 435 if (IS_ERR(i2c_mii)) 436 return PTR_ERR(i2c_mii); 437 438 i2c_mii->name = "SFP I2C Bus"; 439 i2c_mii->phy_mask = ~0; 440 441 ret = mdiobus_register(i2c_mii); 442 if (ret < 0) { 443 mdiobus_free(i2c_mii); 444 return ret; 445 } 446 447 sfp->i2c_mii = i2c_mii; 448 449 return 0; 450} 451 452/* Interface */ 453static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 454{ 455 return sfp->read(sfp, a2, addr, buf, len); 456} 457 458static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 459{ 460 return sfp->write(sfp, a2, addr, buf, len); 461} 462 463static unsigned int sfp_soft_get_state(struct sfp *sfp) 464{ 465 unsigned int state = 0; 466 u8 status; 467 int ret; 468 469 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)); 470 if (ret == sizeof(status)) { 471 if (status & SFP_STATUS_RX_LOS) 472 state |= SFP_F_LOS; 473 if (status & SFP_STATUS_TX_FAULT) 474 state |= SFP_F_TX_FAULT; 475 } else { 476 dev_err_ratelimited(sfp->dev, 477 "failed to read SFP soft status: %d\n", 478 ret); 479 /* Preserve the current state */ 480 state = sfp->state; 481 } 482 483 return state & sfp->state_soft_mask; 484} 485 486static void sfp_soft_set_state(struct sfp *sfp, unsigned int state) 487{ 488 u8 status; 489 490 if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) == 491 sizeof(status)) { 492 if (state & SFP_F_TX_DISABLE) 493 status |= SFP_STATUS_TX_DISABLE_FORCE; 494 else 495 status &= ~SFP_STATUS_TX_DISABLE_FORCE; 496 497 sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status)); 498 } 499} 500 501static void sfp_soft_start_poll(struct sfp *sfp) 502{ 503 const struct sfp_eeprom_id *id = &sfp->id; 504 505 sfp->state_soft_mask = 0; 506 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE && 507 !sfp->gpio[GPIO_TX_DISABLE]) 508 sfp->state_soft_mask |= SFP_F_TX_DISABLE; 509 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT && 510 !sfp->gpio[GPIO_TX_FAULT]) 511 sfp->state_soft_mask |= SFP_F_TX_FAULT; 512 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS && 513 !sfp->gpio[GPIO_LOS]) 514 sfp->state_soft_mask |= SFP_F_LOS; 515 516 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && 517 !sfp->need_poll) 518 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 519} 520 521static void sfp_soft_stop_poll(struct sfp *sfp) 522{ 523 sfp->state_soft_mask = 0; 524} 525 526static unsigned int sfp_get_state(struct sfp *sfp) 527{ 528 unsigned int state = sfp->get_state(sfp); 529 530 if (state & SFP_F_PRESENT && 531 sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT)) 532 state |= sfp_soft_get_state(sfp); 533 534 return state; 535} 536 537static void sfp_set_state(struct sfp *sfp, unsigned int state) 538{ 539 sfp->set_state(sfp, state); 540 541 if (state & SFP_F_PRESENT && 542 sfp->state_soft_mask & SFP_F_TX_DISABLE) 543 sfp_soft_set_state(sfp, state); 544} 545 546static unsigned int sfp_check(void *buf, size_t len) 547{ 548 u8 *p, check; 549 550 for (p = buf, check = 0; len; p++, len--) 551 check += *p; 552 553 return check; 554} 555 556/* hwmon */ 557#if IS_ENABLED(CONFIG_HWMON) 558static umode_t sfp_hwmon_is_visible(const void *data, 559 enum hwmon_sensor_types type, 560 u32 attr, int channel) 561{ 562 const struct sfp *sfp = data; 563 564 switch (type) { 565 case hwmon_temp: 566 switch (attr) { 567 case hwmon_temp_min_alarm: 568 case hwmon_temp_max_alarm: 569 case hwmon_temp_lcrit_alarm: 570 case hwmon_temp_crit_alarm: 571 case hwmon_temp_min: 572 case hwmon_temp_max: 573 case hwmon_temp_lcrit: 574 case hwmon_temp_crit: 575 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 576 return 0; 577 fallthrough; 578 case hwmon_temp_input: 579 case hwmon_temp_label: 580 return 0444; 581 default: 582 return 0; 583 } 584 case hwmon_in: 585 switch (attr) { 586 case hwmon_in_min_alarm: 587 case hwmon_in_max_alarm: 588 case hwmon_in_lcrit_alarm: 589 case hwmon_in_crit_alarm: 590 case hwmon_in_min: 591 case hwmon_in_max: 592 case hwmon_in_lcrit: 593 case hwmon_in_crit: 594 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 595 return 0; 596 fallthrough; 597 case hwmon_in_input: 598 case hwmon_in_label: 599 return 0444; 600 default: 601 return 0; 602 } 603 case hwmon_curr: 604 switch (attr) { 605 case hwmon_curr_min_alarm: 606 case hwmon_curr_max_alarm: 607 case hwmon_curr_lcrit_alarm: 608 case hwmon_curr_crit_alarm: 609 case hwmon_curr_min: 610 case hwmon_curr_max: 611 case hwmon_curr_lcrit: 612 case hwmon_curr_crit: 613 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 614 return 0; 615 fallthrough; 616 case hwmon_curr_input: 617 case hwmon_curr_label: 618 return 0444; 619 default: 620 return 0; 621 } 622 case hwmon_power: 623 /* External calibration of receive power requires 624 * floating point arithmetic. Doing that in the kernel 625 * is not easy, so just skip it. If the module does 626 * not require external calibration, we can however 627 * show receiver power, since FP is then not needed. 628 */ 629 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && 630 channel == 1) 631 return 0; 632 switch (attr) { 633 case hwmon_power_min_alarm: 634 case hwmon_power_max_alarm: 635 case hwmon_power_lcrit_alarm: 636 case hwmon_power_crit_alarm: 637 case hwmon_power_min: 638 case hwmon_power_max: 639 case hwmon_power_lcrit: 640 case hwmon_power_crit: 641 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 642 return 0; 643 fallthrough; 644 case hwmon_power_input: 645 case hwmon_power_label: 646 return 0444; 647 default: 648 return 0; 649 } 650 default: 651 return 0; 652 } 653} 654 655static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) 656{ 657 __be16 val; 658 int err; 659 660 err = sfp_read(sfp, true, reg, &val, sizeof(val)); 661 if (err < 0) 662 return err; 663 664 *value = be16_to_cpu(val); 665 666 return 0; 667} 668 669static void sfp_hwmon_to_rx_power(long *value) 670{ 671 *value = DIV_ROUND_CLOSEST(*value, 10); 672} 673 674static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, 675 long *value) 676{ 677 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) 678 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; 679} 680 681static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) 682{ 683 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), 684 be16_to_cpu(sfp->diag.cal_t_offset), value); 685 686 if (*value >= 0x8000) 687 *value -= 0x10000; 688 689 *value = DIV_ROUND_CLOSEST(*value * 1000, 256); 690} 691 692static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) 693{ 694 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), 695 be16_to_cpu(sfp->diag.cal_v_offset), value); 696 697 *value = DIV_ROUND_CLOSEST(*value, 10); 698} 699 700static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) 701{ 702 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), 703 be16_to_cpu(sfp->diag.cal_txi_offset), value); 704 705 *value = DIV_ROUND_CLOSEST(*value, 500); 706} 707 708static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) 709{ 710 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), 711 be16_to_cpu(sfp->diag.cal_txpwr_offset), value); 712 713 *value = DIV_ROUND_CLOSEST(*value, 10); 714} 715 716static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) 717{ 718 int err; 719 720 err = sfp_hwmon_read_sensor(sfp, reg, value); 721 if (err < 0) 722 return err; 723 724 sfp_hwmon_calibrate_temp(sfp, value); 725 726 return 0; 727} 728 729static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) 730{ 731 int err; 732 733 err = sfp_hwmon_read_sensor(sfp, reg, value); 734 if (err < 0) 735 return err; 736 737 sfp_hwmon_calibrate_vcc(sfp, value); 738 739 return 0; 740} 741 742static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) 743{ 744 int err; 745 746 err = sfp_hwmon_read_sensor(sfp, reg, value); 747 if (err < 0) 748 return err; 749 750 sfp_hwmon_calibrate_bias(sfp, value); 751 752 return 0; 753} 754 755static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) 756{ 757 int err; 758 759 err = sfp_hwmon_read_sensor(sfp, reg, value); 760 if (err < 0) 761 return err; 762 763 sfp_hwmon_calibrate_tx_power(sfp, value); 764 765 return 0; 766} 767 768static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) 769{ 770 int err; 771 772 err = sfp_hwmon_read_sensor(sfp, reg, value); 773 if (err < 0) 774 return err; 775 776 sfp_hwmon_to_rx_power(value); 777 778 return 0; 779} 780 781static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) 782{ 783 u8 status; 784 int err; 785 786 switch (attr) { 787 case hwmon_temp_input: 788 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); 789 790 case hwmon_temp_lcrit: 791 *value = be16_to_cpu(sfp->diag.temp_low_alarm); 792 sfp_hwmon_calibrate_temp(sfp, value); 793 return 0; 794 795 case hwmon_temp_min: 796 *value = be16_to_cpu(sfp->diag.temp_low_warn); 797 sfp_hwmon_calibrate_temp(sfp, value); 798 return 0; 799 case hwmon_temp_max: 800 *value = be16_to_cpu(sfp->diag.temp_high_warn); 801 sfp_hwmon_calibrate_temp(sfp, value); 802 return 0; 803 804 case hwmon_temp_crit: 805 *value = be16_to_cpu(sfp->diag.temp_high_alarm); 806 sfp_hwmon_calibrate_temp(sfp, value); 807 return 0; 808 809 case hwmon_temp_lcrit_alarm: 810 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 811 if (err < 0) 812 return err; 813 814 *value = !!(status & SFP_ALARM0_TEMP_LOW); 815 return 0; 816 817 case hwmon_temp_min_alarm: 818 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 819 if (err < 0) 820 return err; 821 822 *value = !!(status & SFP_WARN0_TEMP_LOW); 823 return 0; 824 825 case hwmon_temp_max_alarm: 826 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 827 if (err < 0) 828 return err; 829 830 *value = !!(status & SFP_WARN0_TEMP_HIGH); 831 return 0; 832 833 case hwmon_temp_crit_alarm: 834 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 835 if (err < 0) 836 return err; 837 838 *value = !!(status & SFP_ALARM0_TEMP_HIGH); 839 return 0; 840 default: 841 return -EOPNOTSUPP; 842 } 843 844 return -EOPNOTSUPP; 845} 846 847static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) 848{ 849 u8 status; 850 int err; 851 852 switch (attr) { 853 case hwmon_in_input: 854 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); 855 856 case hwmon_in_lcrit: 857 *value = be16_to_cpu(sfp->diag.volt_low_alarm); 858 sfp_hwmon_calibrate_vcc(sfp, value); 859 return 0; 860 861 case hwmon_in_min: 862 *value = be16_to_cpu(sfp->diag.volt_low_warn); 863 sfp_hwmon_calibrate_vcc(sfp, value); 864 return 0; 865 866 case hwmon_in_max: 867 *value = be16_to_cpu(sfp->diag.volt_high_warn); 868 sfp_hwmon_calibrate_vcc(sfp, value); 869 return 0; 870 871 case hwmon_in_crit: 872 *value = be16_to_cpu(sfp->diag.volt_high_alarm); 873 sfp_hwmon_calibrate_vcc(sfp, value); 874 return 0; 875 876 case hwmon_in_lcrit_alarm: 877 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 878 if (err < 0) 879 return err; 880 881 *value = !!(status & SFP_ALARM0_VCC_LOW); 882 return 0; 883 884 case hwmon_in_min_alarm: 885 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 886 if (err < 0) 887 return err; 888 889 *value = !!(status & SFP_WARN0_VCC_LOW); 890 return 0; 891 892 case hwmon_in_max_alarm: 893 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 894 if (err < 0) 895 return err; 896 897 *value = !!(status & SFP_WARN0_VCC_HIGH); 898 return 0; 899 900 case hwmon_in_crit_alarm: 901 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 902 if (err < 0) 903 return err; 904 905 *value = !!(status & SFP_ALARM0_VCC_HIGH); 906 return 0; 907 default: 908 return -EOPNOTSUPP; 909 } 910 911 return -EOPNOTSUPP; 912} 913 914static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) 915{ 916 u8 status; 917 int err; 918 919 switch (attr) { 920 case hwmon_curr_input: 921 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); 922 923 case hwmon_curr_lcrit: 924 *value = be16_to_cpu(sfp->diag.bias_low_alarm); 925 sfp_hwmon_calibrate_bias(sfp, value); 926 return 0; 927 928 case hwmon_curr_min: 929 *value = be16_to_cpu(sfp->diag.bias_low_warn); 930 sfp_hwmon_calibrate_bias(sfp, value); 931 return 0; 932 933 case hwmon_curr_max: 934 *value = be16_to_cpu(sfp->diag.bias_high_warn); 935 sfp_hwmon_calibrate_bias(sfp, value); 936 return 0; 937 938 case hwmon_curr_crit: 939 *value = be16_to_cpu(sfp->diag.bias_high_alarm); 940 sfp_hwmon_calibrate_bias(sfp, value); 941 return 0; 942 943 case hwmon_curr_lcrit_alarm: 944 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 945 if (err < 0) 946 return err; 947 948 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); 949 return 0; 950 951 case hwmon_curr_min_alarm: 952 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 953 if (err < 0) 954 return err; 955 956 *value = !!(status & SFP_WARN0_TX_BIAS_LOW); 957 return 0; 958 959 case hwmon_curr_max_alarm: 960 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 961 if (err < 0) 962 return err; 963 964 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); 965 return 0; 966 967 case hwmon_curr_crit_alarm: 968 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 969 if (err < 0) 970 return err; 971 972 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); 973 return 0; 974 default: 975 return -EOPNOTSUPP; 976 } 977 978 return -EOPNOTSUPP; 979} 980 981static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) 982{ 983 u8 status; 984 int err; 985 986 switch (attr) { 987 case hwmon_power_input: 988 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); 989 990 case hwmon_power_lcrit: 991 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); 992 sfp_hwmon_calibrate_tx_power(sfp, value); 993 return 0; 994 995 case hwmon_power_min: 996 *value = be16_to_cpu(sfp->diag.txpwr_low_warn); 997 sfp_hwmon_calibrate_tx_power(sfp, value); 998 return 0; 999 1000 case hwmon_power_max: 1001 *value = be16_to_cpu(sfp->diag.txpwr_high_warn); 1002 sfp_hwmon_calibrate_tx_power(sfp, value); 1003 return 0; 1004 1005 case hwmon_power_crit: 1006 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); 1007 sfp_hwmon_calibrate_tx_power(sfp, value); 1008 return 0; 1009 1010 case hwmon_power_lcrit_alarm: 1011 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1012 if (err < 0) 1013 return err; 1014 1015 *value = !!(status & SFP_ALARM0_TXPWR_LOW); 1016 return 0; 1017 1018 case hwmon_power_min_alarm: 1019 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1020 if (err < 0) 1021 return err; 1022 1023 *value = !!(status & SFP_WARN0_TXPWR_LOW); 1024 return 0; 1025 1026 case hwmon_power_max_alarm: 1027 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1028 if (err < 0) 1029 return err; 1030 1031 *value = !!(status & SFP_WARN0_TXPWR_HIGH); 1032 return 0; 1033 1034 case hwmon_power_crit_alarm: 1035 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1036 if (err < 0) 1037 return err; 1038 1039 *value = !!(status & SFP_ALARM0_TXPWR_HIGH); 1040 return 0; 1041 default: 1042 return -EOPNOTSUPP; 1043 } 1044 1045 return -EOPNOTSUPP; 1046} 1047 1048static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) 1049{ 1050 u8 status; 1051 int err; 1052 1053 switch (attr) { 1054 case hwmon_power_input: 1055 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); 1056 1057 case hwmon_power_lcrit: 1058 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); 1059 sfp_hwmon_to_rx_power(value); 1060 return 0; 1061 1062 case hwmon_power_min: 1063 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); 1064 sfp_hwmon_to_rx_power(value); 1065 return 0; 1066 1067 case hwmon_power_max: 1068 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); 1069 sfp_hwmon_to_rx_power(value); 1070 return 0; 1071 1072 case hwmon_power_crit: 1073 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); 1074 sfp_hwmon_to_rx_power(value); 1075 return 0; 1076 1077 case hwmon_power_lcrit_alarm: 1078 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1079 if (err < 0) 1080 return err; 1081 1082 *value = !!(status & SFP_ALARM1_RXPWR_LOW); 1083 return 0; 1084 1085 case hwmon_power_min_alarm: 1086 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1087 if (err < 0) 1088 return err; 1089 1090 *value = !!(status & SFP_WARN1_RXPWR_LOW); 1091 return 0; 1092 1093 case hwmon_power_max_alarm: 1094 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1095 if (err < 0) 1096 return err; 1097 1098 *value = !!(status & SFP_WARN1_RXPWR_HIGH); 1099 return 0; 1100 1101 case hwmon_power_crit_alarm: 1102 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1103 if (err < 0) 1104 return err; 1105 1106 *value = !!(status & SFP_ALARM1_RXPWR_HIGH); 1107 return 0; 1108 default: 1109 return -EOPNOTSUPP; 1110 } 1111 1112 return -EOPNOTSUPP; 1113} 1114 1115static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, 1116 u32 attr, int channel, long *value) 1117{ 1118 struct sfp *sfp = dev_get_drvdata(dev); 1119 1120 switch (type) { 1121 case hwmon_temp: 1122 return sfp_hwmon_temp(sfp, attr, value); 1123 case hwmon_in: 1124 return sfp_hwmon_vcc(sfp, attr, value); 1125 case hwmon_curr: 1126 return sfp_hwmon_bias(sfp, attr, value); 1127 case hwmon_power: 1128 switch (channel) { 1129 case 0: 1130 return sfp_hwmon_tx_power(sfp, attr, value); 1131 case 1: 1132 return sfp_hwmon_rx_power(sfp, attr, value); 1133 default: 1134 return -EOPNOTSUPP; 1135 } 1136 default: 1137 return -EOPNOTSUPP; 1138 } 1139} 1140 1141static const char *const sfp_hwmon_power_labels[] = { 1142 "TX_power", 1143 "RX_power", 1144}; 1145 1146static int sfp_hwmon_read_string(struct device *dev, 1147 enum hwmon_sensor_types type, 1148 u32 attr, int channel, const char **str) 1149{ 1150 switch (type) { 1151 case hwmon_curr: 1152 switch (attr) { 1153 case hwmon_curr_label: 1154 *str = "bias"; 1155 return 0; 1156 default: 1157 return -EOPNOTSUPP; 1158 } 1159 break; 1160 case hwmon_temp: 1161 switch (attr) { 1162 case hwmon_temp_label: 1163 *str = "temperature"; 1164 return 0; 1165 default: 1166 return -EOPNOTSUPP; 1167 } 1168 break; 1169 case hwmon_in: 1170 switch (attr) { 1171 case hwmon_in_label: 1172 *str = "VCC"; 1173 return 0; 1174 default: 1175 return -EOPNOTSUPP; 1176 } 1177 break; 1178 case hwmon_power: 1179 switch (attr) { 1180 case hwmon_power_label: 1181 *str = sfp_hwmon_power_labels[channel]; 1182 return 0; 1183 default: 1184 return -EOPNOTSUPP; 1185 } 1186 break; 1187 default: 1188 return -EOPNOTSUPP; 1189 } 1190 1191 return -EOPNOTSUPP; 1192} 1193 1194static const struct hwmon_ops sfp_hwmon_ops = { 1195 .is_visible = sfp_hwmon_is_visible, 1196 .read = sfp_hwmon_read, 1197 .read_string = sfp_hwmon_read_string, 1198}; 1199 1200static u32 sfp_hwmon_chip_config[] = { 1201 HWMON_C_REGISTER_TZ, 1202 0, 1203}; 1204 1205static const struct hwmon_channel_info sfp_hwmon_chip = { 1206 .type = hwmon_chip, 1207 .config = sfp_hwmon_chip_config, 1208}; 1209 1210static u32 sfp_hwmon_temp_config[] = { 1211 HWMON_T_INPUT | 1212 HWMON_T_MAX | HWMON_T_MIN | 1213 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | 1214 HWMON_T_CRIT | HWMON_T_LCRIT | 1215 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | 1216 HWMON_T_LABEL, 1217 0, 1218}; 1219 1220static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = { 1221 .type = hwmon_temp, 1222 .config = sfp_hwmon_temp_config, 1223}; 1224 1225static u32 sfp_hwmon_vcc_config[] = { 1226 HWMON_I_INPUT | 1227 HWMON_I_MAX | HWMON_I_MIN | 1228 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | 1229 HWMON_I_CRIT | HWMON_I_LCRIT | 1230 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | 1231 HWMON_I_LABEL, 1232 0, 1233}; 1234 1235static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = { 1236 .type = hwmon_in, 1237 .config = sfp_hwmon_vcc_config, 1238}; 1239 1240static u32 sfp_hwmon_bias_config[] = { 1241 HWMON_C_INPUT | 1242 HWMON_C_MAX | HWMON_C_MIN | 1243 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | 1244 HWMON_C_CRIT | HWMON_C_LCRIT | 1245 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | 1246 HWMON_C_LABEL, 1247 0, 1248}; 1249 1250static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = { 1251 .type = hwmon_curr, 1252 .config = sfp_hwmon_bias_config, 1253}; 1254 1255static u32 sfp_hwmon_power_config[] = { 1256 /* Transmit power */ 1257 HWMON_P_INPUT | 1258 HWMON_P_MAX | HWMON_P_MIN | 1259 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1260 HWMON_P_CRIT | HWMON_P_LCRIT | 1261 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1262 HWMON_P_LABEL, 1263 /* Receive power */ 1264 HWMON_P_INPUT | 1265 HWMON_P_MAX | HWMON_P_MIN | 1266 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1267 HWMON_P_CRIT | HWMON_P_LCRIT | 1268 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1269 HWMON_P_LABEL, 1270 0, 1271}; 1272 1273static const struct hwmon_channel_info sfp_hwmon_power_channel_info = { 1274 .type = hwmon_power, 1275 .config = sfp_hwmon_power_config, 1276}; 1277 1278static const struct hwmon_channel_info *sfp_hwmon_info[] = { 1279 &sfp_hwmon_chip, 1280 &sfp_hwmon_vcc_channel_info, 1281 &sfp_hwmon_temp_channel_info, 1282 &sfp_hwmon_bias_channel_info, 1283 &sfp_hwmon_power_channel_info, 1284 NULL, 1285}; 1286 1287static const struct hwmon_chip_info sfp_hwmon_chip_info = { 1288 .ops = &sfp_hwmon_ops, 1289 .info = sfp_hwmon_info, 1290}; 1291 1292static void sfp_hwmon_probe(struct work_struct *work) 1293{ 1294 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); 1295 int err, i; 1296 1297 /* hwmon interface needs to access 16bit registers in atomic way to 1298 * guarantee coherency of the diagnostic monitoring data. If it is not 1299 * possible to guarantee coherency because EEPROM is broken in such way 1300 * that does not support atomic 16bit read operation then we have to 1301 * skip registration of hwmon device. 1302 */ 1303 if (sfp->i2c_block_size < 2) { 1304 dev_info(sfp->dev, 1305 "skipping hwmon device registration due to broken EEPROM\n"); 1306 dev_info(sfp->dev, 1307 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n"); 1308 return; 1309 } 1310 1311 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); 1312 if (err < 0) { 1313 if (sfp->hwmon_tries--) { 1314 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1315 T_PROBE_RETRY_SLOW); 1316 } else { 1317 dev_warn(sfp->dev, "hwmon probe failed: %d\n", err); 1318 } 1319 return; 1320 } 1321 1322 sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL); 1323 if (!sfp->hwmon_name) { 1324 dev_err(sfp->dev, "out of memory for hwmon name\n"); 1325 return; 1326 } 1327 1328 for (i = 0; sfp->hwmon_name[i]; i++) 1329 if (hwmon_is_bad_char(sfp->hwmon_name[i])) 1330 sfp->hwmon_name[i] = '_'; 1331 1332 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, 1333 sfp->hwmon_name, sfp, 1334 &sfp_hwmon_chip_info, 1335 NULL); 1336 if (IS_ERR(sfp->hwmon_dev)) 1337 dev_err(sfp->dev, "failed to register hwmon device: %ld\n", 1338 PTR_ERR(sfp->hwmon_dev)); 1339} 1340 1341static int sfp_hwmon_insert(struct sfp *sfp) 1342{ 1343 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE) 1344 return 0; 1345 1346 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) 1347 return 0; 1348 1349 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 1350 /* This driver in general does not support address 1351 * change. 1352 */ 1353 return 0; 1354 1355 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1); 1356 sfp->hwmon_tries = R_PROBE_RETRY_SLOW; 1357 1358 return 0; 1359} 1360 1361static void sfp_hwmon_remove(struct sfp *sfp) 1362{ 1363 cancel_delayed_work_sync(&sfp->hwmon_probe); 1364 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { 1365 hwmon_device_unregister(sfp->hwmon_dev); 1366 sfp->hwmon_dev = NULL; 1367 kfree(sfp->hwmon_name); 1368 } 1369} 1370 1371static int sfp_hwmon_init(struct sfp *sfp) 1372{ 1373 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); 1374 1375 return 0; 1376} 1377 1378static void sfp_hwmon_exit(struct sfp *sfp) 1379{ 1380 cancel_delayed_work_sync(&sfp->hwmon_probe); 1381} 1382#else 1383static int sfp_hwmon_insert(struct sfp *sfp) 1384{ 1385 return 0; 1386} 1387 1388static void sfp_hwmon_remove(struct sfp *sfp) 1389{ 1390} 1391 1392static int sfp_hwmon_init(struct sfp *sfp) 1393{ 1394 return 0; 1395} 1396 1397static void sfp_hwmon_exit(struct sfp *sfp) 1398{ 1399} 1400#endif 1401 1402/* Helpers */ 1403static void sfp_module_tx_disable(struct sfp *sfp) 1404{ 1405 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1406 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); 1407 sfp->state |= SFP_F_TX_DISABLE; 1408 sfp_set_state(sfp, sfp->state); 1409} 1410 1411static void sfp_module_tx_enable(struct sfp *sfp) 1412{ 1413 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1414 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); 1415 sfp->state &= ~SFP_F_TX_DISABLE; 1416 sfp_set_state(sfp, sfp->state); 1417} 1418 1419static void sfp_module_tx_fault_reset(struct sfp *sfp) 1420{ 1421 unsigned int state = sfp->state; 1422 1423 if (state & SFP_F_TX_DISABLE) 1424 return; 1425 1426 sfp_set_state(sfp, state | SFP_F_TX_DISABLE); 1427 1428 udelay(T_RESET_US); 1429 1430 sfp_set_state(sfp, state); 1431} 1432 1433/* SFP state machine */ 1434static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) 1435{ 1436 if (timeout) 1437 mod_delayed_work(system_power_efficient_wq, &sfp->timeout, 1438 timeout); 1439 else 1440 cancel_delayed_work(&sfp->timeout); 1441} 1442 1443static void sfp_sm_next(struct sfp *sfp, unsigned int state, 1444 unsigned int timeout) 1445{ 1446 sfp->sm_state = state; 1447 sfp_sm_set_timer(sfp, timeout); 1448} 1449 1450static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, 1451 unsigned int timeout) 1452{ 1453 sfp->sm_mod_state = state; 1454 sfp_sm_set_timer(sfp, timeout); 1455} 1456 1457static void sfp_sm_phy_detach(struct sfp *sfp) 1458{ 1459 sfp_remove_phy(sfp->sfp_bus); 1460 phy_device_remove(sfp->mod_phy); 1461 phy_device_free(sfp->mod_phy); 1462 sfp->mod_phy = NULL; 1463} 1464 1465static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45) 1466{ 1467 struct phy_device *phy; 1468 int err; 1469 1470 phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45); 1471 if (phy == ERR_PTR(-ENODEV)) 1472 return PTR_ERR(phy); 1473 if (IS_ERR(phy)) { 1474 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy)); 1475 return PTR_ERR(phy); 1476 } 1477 1478 err = phy_device_register(phy); 1479 if (err) { 1480 phy_device_free(phy); 1481 dev_err(sfp->dev, "phy_device_register failed: %d\n", err); 1482 return err; 1483 } 1484 1485 err = sfp_add_phy(sfp->sfp_bus, phy); 1486 if (err) { 1487 phy_device_remove(phy); 1488 phy_device_free(phy); 1489 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err); 1490 return err; 1491 } 1492 1493 sfp->mod_phy = phy; 1494 1495 return 0; 1496} 1497 1498static void sfp_sm_link_up(struct sfp *sfp) 1499{ 1500 sfp_link_up(sfp->sfp_bus); 1501 sfp_sm_next(sfp, SFP_S_LINK_UP, 0); 1502} 1503 1504static void sfp_sm_link_down(struct sfp *sfp) 1505{ 1506 sfp_link_down(sfp->sfp_bus); 1507} 1508 1509static void sfp_sm_link_check_los(struct sfp *sfp) 1510{ 1511 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1512 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1513 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1514 bool los = false; 1515 1516 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL 1517 * are set, we assume that no LOS signal is available. If both are 1518 * set, we assume LOS is not implemented (and is meaningless.) 1519 */ 1520 if (los_options == los_inverted) 1521 los = !(sfp->state & SFP_F_LOS); 1522 else if (los_options == los_normal) 1523 los = !!(sfp->state & SFP_F_LOS); 1524 1525 if (los) 1526 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 1527 else 1528 sfp_sm_link_up(sfp); 1529} 1530 1531static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) 1532{ 1533 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1534 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1535 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1536 1537 return (los_options == los_inverted && event == SFP_E_LOS_LOW) || 1538 (los_options == los_normal && event == SFP_E_LOS_HIGH); 1539} 1540 1541static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) 1542{ 1543 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1544 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1545 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1546 1547 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) || 1548 (los_options == los_normal && event == SFP_E_LOS_LOW); 1549} 1550 1551static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) 1552{ 1553 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { 1554 dev_err(sfp->dev, 1555 "module persistently indicates fault, disabling\n"); 1556 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); 1557 } else { 1558 if (warn) 1559 dev_err(sfp->dev, "module transmit fault indicated\n"); 1560 1561 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER); 1562 } 1563} 1564 1565/* Probe a SFP for a PHY device if the module supports copper - the PHY 1566 * normally sits at I2C bus address 0x56, and may either be a clause 22 1567 * or clause 45 PHY. 1568 * 1569 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with 1570 * negotiation enabled, but some may be in 1000base-X - which is for the 1571 * PHY driver to determine. 1572 * 1573 * Clause 45 copper SFP+ modules (10G) appear to switch their interface 1574 * mode according to the negotiated line speed. 1575 */ 1576static int sfp_sm_probe_for_phy(struct sfp *sfp) 1577{ 1578 int err = 0; 1579 1580 switch (sfp->id.base.extended_cc) { 1581 case SFF8024_ECC_10GBASE_T_SFI: 1582 case SFF8024_ECC_10GBASE_T_SR: 1583 case SFF8024_ECC_5GBASE_T: 1584 case SFF8024_ECC_2_5GBASE_T: 1585 err = sfp_sm_probe_phy(sfp, true); 1586 break; 1587 1588 default: 1589 if (sfp->id.base.e1000_base_t) 1590 err = sfp_sm_probe_phy(sfp, false); 1591 break; 1592 } 1593 return err; 1594} 1595 1596static int sfp_module_parse_power(struct sfp *sfp) 1597{ 1598 u32 power_mW = 1000; 1599 bool supports_a2; 1600 1601 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) 1602 power_mW = 1500; 1603 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) 1604 power_mW = 2000; 1605 1606 supports_a2 = sfp->id.ext.sff8472_compliance != 1607 SFP_SFF8472_COMPLIANCE_NONE || 1608 sfp->id.ext.diagmon & SFP_DIAGMON_DDM; 1609 1610 if (power_mW > sfp->max_power_mW) { 1611 /* Module power specification exceeds the allowed maximum. */ 1612 if (!supports_a2) { 1613 /* The module appears not to implement bus address 1614 * 0xa2, so assume that the module powers up in the 1615 * indicated mode. 1616 */ 1617 dev_err(sfp->dev, 1618 "Host does not support %u.%uW modules\n", 1619 power_mW / 1000, (power_mW / 100) % 10); 1620 return -EINVAL; 1621 } else { 1622 dev_warn(sfp->dev, 1623 "Host does not support %u.%uW modules, module left in power mode 1\n", 1624 power_mW / 1000, (power_mW / 100) % 10); 1625 return 0; 1626 } 1627 } 1628 1629 if (power_mW <= 1000) { 1630 /* Modules below 1W do not require a power change sequence */ 1631 sfp->module_power_mW = power_mW; 1632 return 0; 1633 } 1634 1635 if (!supports_a2) { 1636 /* The module power level is below the host maximum and the 1637 * module appears not to implement bus address 0xa2, so assume 1638 * that the module powers up in the indicated mode. 1639 */ 1640 return 0; 1641 } 1642 1643 /* If the module requires a higher power mode, but also requires 1644 * an address change sequence, warn the user that the module may 1645 * not be functional. 1646 */ 1647 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) { 1648 dev_warn(sfp->dev, 1649 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n", 1650 power_mW / 1000, (power_mW / 100) % 10); 1651 return 0; 1652 } 1653 1654 sfp->module_power_mW = power_mW; 1655 1656 return 0; 1657} 1658 1659static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) 1660{ 1661 u8 val; 1662 int err; 1663 1664 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val)); 1665 if (err != sizeof(val)) { 1666 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err); 1667 return -EAGAIN; 1668 } 1669 1670 /* DM7052 reports as a high power module, responds to reads (with 1671 * all bytes 0xff) at 0x51 but does not accept writes. In any case, 1672 * if the bit is already set, we're already in high power mode. 1673 */ 1674 if (!!(val & BIT(0)) == enable) 1675 return 0; 1676 1677 if (enable) 1678 val |= BIT(0); 1679 else 1680 val &= ~BIT(0); 1681 1682 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val)); 1683 if (err != sizeof(val)) { 1684 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err); 1685 return -EAGAIN; 1686 } 1687 1688 if (enable) 1689 dev_info(sfp->dev, "Module switched to %u.%uW power level\n", 1690 sfp->module_power_mW / 1000, 1691 (sfp->module_power_mW / 100) % 10); 1692 1693 return 0; 1694} 1695 1696/* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL 1697 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do 1698 * not support multibyte reads from the EEPROM. Each multi-byte read 1699 * operation returns just one byte of EEPROM followed by zeros. There is 1700 * no way to identify which modules are using Realtek RTL8672 and RTL9601C 1701 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor 1702 * name and vendor id into EEPROM, so there is even no way to detect if 1703 * module is V-SOL V2801F. Therefore check for those zeros in the read 1704 * data and then based on check switch to reading EEPROM to one byte 1705 * at a time. 1706 */ 1707static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len) 1708{ 1709 size_t i, block_size = sfp->i2c_block_size; 1710 1711 /* Already using byte IO */ 1712 if (block_size == 1) 1713 return false; 1714 1715 for (i = 1; i < len; i += block_size) { 1716 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i))) 1717 return false; 1718 } 1719 return true; 1720} 1721 1722static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id) 1723{ 1724 u8 check; 1725 int err; 1726 1727 if (id->base.phys_id != SFF8024_ID_SFF_8472 || 1728 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP || 1729 id->base.connector != SFF8024_CONNECTOR_LC) { 1730 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n"); 1731 id->base.phys_id = SFF8024_ID_SFF_8472; 1732 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP; 1733 id->base.connector = SFF8024_CONNECTOR_LC; 1734 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3); 1735 if (err != 3) { 1736 dev_err(sfp->dev, "Failed to rewrite module EEPROM: %d\n", err); 1737 return err; 1738 } 1739 1740 /* Cotsworks modules have been found to require a delay between write operations. */ 1741 mdelay(50); 1742 1743 /* Update base structure checksum */ 1744 check = sfp_check(&id->base, sizeof(id->base) - 1); 1745 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1); 1746 if (err != 1) { 1747 dev_err(sfp->dev, "Failed to update base structure checksum in fiber module EEPROM: %d\n", err); 1748 return err; 1749 } 1750 } 1751 return 0; 1752} 1753 1754static int sfp_sm_mod_probe(struct sfp *sfp, bool report) 1755{ 1756 /* SFP module inserted - read I2C data */ 1757 struct sfp_eeprom_id id; 1758 bool cotsworks_sfbg; 1759 bool cotsworks; 1760 u8 check; 1761 int ret; 1762 1763 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; 1764 1765 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 1766 if (ret < 0) { 1767 if (report) 1768 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret); 1769 return -EAGAIN; 1770 } 1771 1772 if (ret != sizeof(id.base)) { 1773 dev_err(sfp->dev, "EEPROM short read: %d\n", ret); 1774 return -EAGAIN; 1775 } 1776 1777 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from 1778 * address 0x51 is just one byte at a time. Also SFF-8472 requires 1779 * that EEPROM supports atomic 16bit read operation for diagnostic 1780 * fields, so do not switch to one byte reading at a time unless it 1781 * is really required and we have no other option. 1782 */ 1783 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) { 1784 dev_info(sfp->dev, 1785 "Detected broken RTL8672/RTL9601C emulated EEPROM\n"); 1786 dev_info(sfp->dev, 1787 "Switching to reading EEPROM to one byte at a time\n"); 1788 sfp->i2c_block_size = 1; 1789 1790 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 1791 if (ret < 0) { 1792 if (report) 1793 dev_err(sfp->dev, "failed to read EEPROM: %d\n", 1794 ret); 1795 return -EAGAIN; 1796 } 1797 1798 if (ret != sizeof(id.base)) { 1799 dev_err(sfp->dev, "EEPROM short read: %d\n", ret); 1800 return -EAGAIN; 1801 } 1802 } 1803 1804 /* Cotsworks do not seem to update the checksums when they 1805 * do the final programming with the final module part number, 1806 * serial number and date code. 1807 */ 1808 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); 1809 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4); 1810 1811 /* Cotsworks SFF module EEPROM do not always have valid phys_id, 1812 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if 1813 * Cotsworks PN matches and bytes are not correct. 1814 */ 1815 if (cotsworks && cotsworks_sfbg) { 1816 ret = sfp_cotsworks_fixup_check(sfp, &id); 1817 if (ret < 0) 1818 return ret; 1819 } 1820 1821 /* Validate the checksum over the base structure */ 1822 check = sfp_check(&id.base, sizeof(id.base) - 1); 1823 if (check != id.base.cc_base) { 1824 if (cotsworks) { 1825 dev_warn(sfp->dev, 1826 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", 1827 check, id.base.cc_base); 1828 } else { 1829 dev_err(sfp->dev, 1830 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", 1831 check, id.base.cc_base); 1832 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 1833 16, 1, &id, sizeof(id), true); 1834 return -EINVAL; 1835 } 1836 } 1837 1838 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext)); 1839 if (ret < 0) { 1840 if (report) 1841 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret); 1842 return -EAGAIN; 1843 } 1844 1845 if (ret != sizeof(id.ext)) { 1846 dev_err(sfp->dev, "EEPROM short read: %d\n", ret); 1847 return -EAGAIN; 1848 } 1849 1850 check = sfp_check(&id.ext, sizeof(id.ext) - 1); 1851 if (check != id.ext.cc_ext) { 1852 if (cotsworks) { 1853 dev_warn(sfp->dev, 1854 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", 1855 check, id.ext.cc_ext); 1856 } else { 1857 dev_err(sfp->dev, 1858 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", 1859 check, id.ext.cc_ext); 1860 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 1861 16, 1, &id, sizeof(id), true); 1862 memset(&id.ext, 0, sizeof(id.ext)); 1863 } 1864 } 1865 1866 sfp->id = id; 1867 1868 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", 1869 (int)sizeof(id.base.vendor_name), id.base.vendor_name, 1870 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, 1871 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, 1872 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, 1873 (int)sizeof(id.ext.datecode), id.ext.datecode); 1874 1875 /* Check whether we support this module */ 1876 if (!sfp->type->module_supported(&id)) { 1877 dev_err(sfp->dev, 1878 "module is not supported - phys id 0x%02x 0x%02x\n", 1879 sfp->id.base.phys_id, sfp->id.base.phys_ext_id); 1880 return -EINVAL; 1881 } 1882 1883 /* If the module requires address swap mode, warn about it */ 1884 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 1885 dev_warn(sfp->dev, 1886 "module address swap to access page 0xA2 is not supported.\n"); 1887 1888 /* Parse the module power requirement */ 1889 ret = sfp_module_parse_power(sfp); 1890 if (ret < 0) 1891 return ret; 1892 1893 if (!memcmp(id.base.vendor_name, "ALCATELLUCENT ", 16) && 1894 !memcmp(id.base.vendor_pn, "3FE46541AA ", 16)) 1895 sfp->module_t_start_up = T_START_UP_BAD_GPON; 1896 else 1897 sfp->module_t_start_up = T_START_UP; 1898 1899 if (!memcmp(id.base.vendor_name, "HUAWEI ", 16) && 1900 !memcmp(id.base.vendor_pn, "MA5671A ", 16)) 1901 sfp->tx_fault_ignore = true; 1902 else 1903 sfp->tx_fault_ignore = false; 1904 1905 return 0; 1906} 1907 1908static void sfp_sm_mod_remove(struct sfp *sfp) 1909{ 1910 if (sfp->sm_mod_state > SFP_MOD_WAITDEV) 1911 sfp_module_remove(sfp->sfp_bus); 1912 1913 sfp_hwmon_remove(sfp); 1914 1915 memset(&sfp->id, 0, sizeof(sfp->id)); 1916 sfp->module_power_mW = 0; 1917 1918 dev_info(sfp->dev, "module removed\n"); 1919} 1920 1921/* This state machine tracks the upstream's state */ 1922static void sfp_sm_device(struct sfp *sfp, unsigned int event) 1923{ 1924 switch (sfp->sm_dev_state) { 1925 default: 1926 if (event == SFP_E_DEV_ATTACH) 1927 sfp->sm_dev_state = SFP_DEV_DOWN; 1928 break; 1929 1930 case SFP_DEV_DOWN: 1931 if (event == SFP_E_DEV_DETACH) 1932 sfp->sm_dev_state = SFP_DEV_DETACHED; 1933 else if (event == SFP_E_DEV_UP) 1934 sfp->sm_dev_state = SFP_DEV_UP; 1935 break; 1936 1937 case SFP_DEV_UP: 1938 if (event == SFP_E_DEV_DETACH) 1939 sfp->sm_dev_state = SFP_DEV_DETACHED; 1940 else if (event == SFP_E_DEV_DOWN) 1941 sfp->sm_dev_state = SFP_DEV_DOWN; 1942 break; 1943 } 1944} 1945 1946/* This state machine tracks the insert/remove state of the module, probes 1947 * the on-board EEPROM, and sets up the power level. 1948 */ 1949static void sfp_sm_module(struct sfp *sfp, unsigned int event) 1950{ 1951 int err; 1952 1953 /* Handle remove event globally, it resets this state machine */ 1954 if (event == SFP_E_REMOVE) { 1955 if (sfp->sm_mod_state > SFP_MOD_PROBE) 1956 sfp_sm_mod_remove(sfp); 1957 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0); 1958 return; 1959 } 1960 1961 /* Handle device detach globally */ 1962 if (sfp->sm_dev_state < SFP_DEV_DOWN && 1963 sfp->sm_mod_state > SFP_MOD_WAITDEV) { 1964 if (sfp->module_power_mW > 1000 && 1965 sfp->sm_mod_state > SFP_MOD_HPOWER) 1966 sfp_sm_mod_hpower(sfp, false); 1967 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 1968 return; 1969 } 1970 1971 switch (sfp->sm_mod_state) { 1972 default: 1973 if (event == SFP_E_INSERT) { 1974 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL); 1975 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; 1976 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; 1977 } 1978 break; 1979 1980 case SFP_MOD_PROBE: 1981 /* Wait for T_PROBE_INIT to time out */ 1982 if (event != SFP_E_TIMEOUT) 1983 break; 1984 1985 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1); 1986 if (err == -EAGAIN) { 1987 if (sfp->sm_mod_tries_init && 1988 --sfp->sm_mod_tries_init) { 1989 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 1990 break; 1991 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { 1992 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) 1993 dev_warn(sfp->dev, 1994 "please wait, module slow to respond\n"); 1995 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); 1996 break; 1997 } 1998 } 1999 if (err < 0) { 2000 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2001 break; 2002 } 2003 2004 err = sfp_hwmon_insert(sfp); 2005 if (err) 2006 dev_warn(sfp->dev, "hwmon probe failed: %d\n", err); 2007 2008 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2009 fallthrough; 2010 case SFP_MOD_WAITDEV: 2011 /* Ensure that the device is attached before proceeding */ 2012 if (sfp->sm_dev_state < SFP_DEV_DOWN) 2013 break; 2014 2015 /* Report the module insertion to the upstream device */ 2016 err = sfp_module_insert(sfp->sfp_bus, &sfp->id); 2017 if (err < 0) { 2018 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2019 break; 2020 } 2021 2022 /* If this is a power level 1 module, we are done */ 2023 if (sfp->module_power_mW <= 1000) 2024 goto insert; 2025 2026 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0); 2027 fallthrough; 2028 case SFP_MOD_HPOWER: 2029 /* Enable high power mode */ 2030 err = sfp_sm_mod_hpower(sfp, true); 2031 if (err < 0) { 2032 if (err != -EAGAIN) { 2033 sfp_module_remove(sfp->sfp_bus); 2034 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2035 } else { 2036 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2037 } 2038 break; 2039 } 2040 2041 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL); 2042 break; 2043 2044 case SFP_MOD_WAITPWR: 2045 /* Wait for T_HPOWER_LEVEL to time out */ 2046 if (event != SFP_E_TIMEOUT) 2047 break; 2048 2049 insert: 2050 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0); 2051 break; 2052 2053 case SFP_MOD_PRESENT: 2054 case SFP_MOD_ERROR: 2055 break; 2056 } 2057} 2058 2059static void sfp_sm_main(struct sfp *sfp, unsigned int event) 2060{ 2061 unsigned long timeout; 2062 int ret; 2063 2064 /* Some events are global */ 2065 if (sfp->sm_state != SFP_S_DOWN && 2066 (sfp->sm_mod_state != SFP_MOD_PRESENT || 2067 sfp->sm_dev_state != SFP_DEV_UP)) { 2068 if (sfp->sm_state == SFP_S_LINK_UP && 2069 sfp->sm_dev_state == SFP_DEV_UP) 2070 sfp_sm_link_down(sfp); 2071 if (sfp->sm_state > SFP_S_INIT) 2072 sfp_module_stop(sfp->sfp_bus); 2073 if (sfp->mod_phy) 2074 sfp_sm_phy_detach(sfp); 2075 sfp_module_tx_disable(sfp); 2076 sfp_soft_stop_poll(sfp); 2077 sfp_sm_next(sfp, SFP_S_DOWN, 0); 2078 return; 2079 } 2080 2081 /* The main state machine */ 2082 switch (sfp->sm_state) { 2083 case SFP_S_DOWN: 2084 if (sfp->sm_mod_state != SFP_MOD_PRESENT || 2085 sfp->sm_dev_state != SFP_DEV_UP) 2086 break; 2087 2088 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) 2089 sfp_soft_start_poll(sfp); 2090 2091 sfp_module_tx_enable(sfp); 2092 2093 /* Initialise the fault clearance retries */ 2094 sfp->sm_fault_retries = N_FAULT_INIT; 2095 2096 /* We need to check the TX_FAULT state, which is not defined 2097 * while TX_DISABLE is asserted. The earliest we want to do 2098 * anything (such as probe for a PHY) is 50ms. 2099 */ 2100 sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT); 2101 break; 2102 2103 case SFP_S_WAIT: 2104 if (event != SFP_E_TIMEOUT) 2105 break; 2106 2107 if (sfp->state & SFP_F_TX_FAULT) { 2108 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) 2109 * from the TX_DISABLE deassertion for the module to 2110 * initialise, which is indicated by TX_FAULT 2111 * deasserting. 2112 */ 2113 timeout = sfp->module_t_start_up; 2114 if (timeout > T_WAIT) 2115 timeout -= T_WAIT; 2116 else 2117 timeout = 1; 2118 2119 sfp_sm_next(sfp, SFP_S_INIT, timeout); 2120 } else { 2121 /* TX_FAULT is not asserted, assume the module has 2122 * finished initialising. 2123 */ 2124 goto init_done; 2125 } 2126 break; 2127 2128 case SFP_S_INIT: 2129 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2130 /* TX_FAULT is still asserted after t_init or 2131 * or t_start_up, so assume there is a fault. 2132 */ 2133 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT, 2134 sfp->sm_fault_retries == N_FAULT_INIT); 2135 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2136 init_done: 2137 sfp->sm_phy_retries = R_PHY_RETRY; 2138 goto phy_probe; 2139 } 2140 break; 2141 2142 case SFP_S_INIT_PHY: 2143 if (event != SFP_E_TIMEOUT) 2144 break; 2145 phy_probe: 2146 /* TX_FAULT deasserted or we timed out with TX_FAULT 2147 * clear. Probe for the PHY and check the LOS state. 2148 */ 2149 ret = sfp_sm_probe_for_phy(sfp); 2150 if (ret == -ENODEV) { 2151 if (--sfp->sm_phy_retries) { 2152 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY); 2153 break; 2154 } else { 2155 dev_info(sfp->dev, "no PHY detected\n"); 2156 } 2157 } else if (ret) { 2158 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2159 break; 2160 } 2161 if (sfp_module_start(sfp->sfp_bus)) { 2162 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2163 break; 2164 } 2165 sfp_sm_link_check_los(sfp); 2166 2167 /* Reset the fault retry count */ 2168 sfp->sm_fault_retries = N_FAULT; 2169 break; 2170 2171 case SFP_S_INIT_TX_FAULT: 2172 if (event == SFP_E_TIMEOUT) { 2173 sfp_module_tx_fault_reset(sfp); 2174 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up); 2175 } 2176 break; 2177 2178 case SFP_S_WAIT_LOS: 2179 if (event == SFP_E_TX_FAULT) 2180 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2181 else if (sfp_los_event_inactive(sfp, event)) 2182 sfp_sm_link_up(sfp); 2183 break; 2184 2185 case SFP_S_LINK_UP: 2186 if (event == SFP_E_TX_FAULT) { 2187 sfp_sm_link_down(sfp); 2188 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2189 } else if (sfp_los_event_active(sfp, event)) { 2190 sfp_sm_link_down(sfp); 2191 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 2192 } 2193 break; 2194 2195 case SFP_S_TX_FAULT: 2196 if (event == SFP_E_TIMEOUT) { 2197 sfp_module_tx_fault_reset(sfp); 2198 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up); 2199 } 2200 break; 2201 2202 case SFP_S_REINIT: 2203 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2204 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false); 2205 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2206 dev_info(sfp->dev, "module transmit fault recovered\n"); 2207 sfp_sm_link_check_los(sfp); 2208 } 2209 break; 2210 2211 case SFP_S_TX_DISABLE: 2212 break; 2213 } 2214} 2215 2216static void sfp_sm_event(struct sfp *sfp, unsigned int event) 2217{ 2218 mutex_lock(&sfp->sm_mutex); 2219 2220 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", 2221 mod_state_to_str(sfp->sm_mod_state), 2222 dev_state_to_str(sfp->sm_dev_state), 2223 sm_state_to_str(sfp->sm_state), 2224 event_to_str(event)); 2225 2226 sfp_sm_device(sfp, event); 2227 sfp_sm_module(sfp, event); 2228 sfp_sm_main(sfp, event); 2229 2230 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", 2231 mod_state_to_str(sfp->sm_mod_state), 2232 dev_state_to_str(sfp->sm_dev_state), 2233 sm_state_to_str(sfp->sm_state)); 2234 2235 mutex_unlock(&sfp->sm_mutex); 2236} 2237 2238static void sfp_attach(struct sfp *sfp) 2239{ 2240 sfp_sm_event(sfp, SFP_E_DEV_ATTACH); 2241} 2242 2243static void sfp_detach(struct sfp *sfp) 2244{ 2245 sfp_sm_event(sfp, SFP_E_DEV_DETACH); 2246} 2247 2248static void sfp_start(struct sfp *sfp) 2249{ 2250 sfp_sm_event(sfp, SFP_E_DEV_UP); 2251} 2252 2253static void sfp_stop(struct sfp *sfp) 2254{ 2255 sfp_sm_event(sfp, SFP_E_DEV_DOWN); 2256} 2257 2258static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) 2259{ 2260 /* locking... and check module is present */ 2261 2262 if (sfp->id.ext.sff8472_compliance && 2263 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { 2264 modinfo->type = ETH_MODULE_SFF_8472; 2265 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 2266 } else { 2267 modinfo->type = ETH_MODULE_SFF_8079; 2268 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 2269 } 2270 return 0; 2271} 2272 2273static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, 2274 u8 *data) 2275{ 2276 unsigned int first, last, len; 2277 int ret; 2278 2279 if (ee->len == 0) 2280 return -EINVAL; 2281 2282 first = ee->offset; 2283 last = ee->offset + ee->len; 2284 if (first < ETH_MODULE_SFF_8079_LEN) { 2285 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); 2286 len -= first; 2287 2288 ret = sfp_read(sfp, false, first, data, len); 2289 if (ret < 0) 2290 return ret; 2291 2292 first += len; 2293 data += len; 2294 } 2295 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { 2296 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); 2297 len -= first; 2298 first -= ETH_MODULE_SFF_8079_LEN; 2299 2300 ret = sfp_read(sfp, true, first, data, len); 2301 if (ret < 0) 2302 return ret; 2303 } 2304 return 0; 2305} 2306 2307static const struct sfp_socket_ops sfp_module_ops = { 2308 .attach = sfp_attach, 2309 .detach = sfp_detach, 2310 .start = sfp_start, 2311 .stop = sfp_stop, 2312 .module_info = sfp_module_info, 2313 .module_eeprom = sfp_module_eeprom, 2314}; 2315 2316static void sfp_timeout(struct work_struct *work) 2317{ 2318 struct sfp *sfp = container_of(work, struct sfp, timeout.work); 2319 2320 rtnl_lock(); 2321 sfp_sm_event(sfp, SFP_E_TIMEOUT); 2322 rtnl_unlock(); 2323} 2324 2325static void sfp_check_state(struct sfp *sfp) 2326{ 2327 unsigned int state, i, changed; 2328 2329 mutex_lock(&sfp->st_mutex); 2330 state = sfp_get_state(sfp); 2331 changed = state ^ sfp->state; 2332 if (sfp->tx_fault_ignore) 2333 changed &= SFP_F_PRESENT | SFP_F_LOS; 2334 else 2335 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; 2336 2337 for (i = 0; i < GPIO_MAX; i++) 2338 if (changed & BIT(i)) 2339 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i], 2340 !!(sfp->state & BIT(i)), !!(state & BIT(i))); 2341 2342 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT); 2343 sfp->state = state; 2344 2345 rtnl_lock(); 2346 if (changed & SFP_F_PRESENT) 2347 sfp_sm_event(sfp, state & SFP_F_PRESENT ? 2348 SFP_E_INSERT : SFP_E_REMOVE); 2349 2350 if (changed & SFP_F_TX_FAULT) 2351 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? 2352 SFP_E_TX_FAULT : SFP_E_TX_CLEAR); 2353 2354 if (changed & SFP_F_LOS) 2355 sfp_sm_event(sfp, state & SFP_F_LOS ? 2356 SFP_E_LOS_HIGH : SFP_E_LOS_LOW); 2357 rtnl_unlock(); 2358 mutex_unlock(&sfp->st_mutex); 2359} 2360 2361static irqreturn_t sfp_irq(int irq, void *data) 2362{ 2363 struct sfp *sfp = data; 2364 2365 sfp_check_state(sfp); 2366 2367 return IRQ_HANDLED; 2368} 2369 2370static void sfp_poll(struct work_struct *work) 2371{ 2372 struct sfp *sfp = container_of(work, struct sfp, poll.work); 2373 2374 sfp_check_state(sfp); 2375 2376 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || 2377 sfp->need_poll) 2378 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2379} 2380 2381static struct sfp *sfp_alloc(struct device *dev) 2382{ 2383 struct sfp *sfp; 2384 2385 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); 2386 if (!sfp) 2387 return ERR_PTR(-ENOMEM); 2388 2389 sfp->dev = dev; 2390 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; 2391 2392 mutex_init(&sfp->sm_mutex); 2393 mutex_init(&sfp->st_mutex); 2394 INIT_DELAYED_WORK(&sfp->poll, sfp_poll); 2395 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); 2396 2397 sfp_hwmon_init(sfp); 2398 2399 return sfp; 2400} 2401 2402static void sfp_cleanup(void *data) 2403{ 2404 struct sfp *sfp = data; 2405 2406 sfp_hwmon_exit(sfp); 2407 2408 cancel_delayed_work_sync(&sfp->poll); 2409 cancel_delayed_work_sync(&sfp->timeout); 2410 if (sfp->i2c_mii) { 2411 mdiobus_unregister(sfp->i2c_mii); 2412 mdiobus_free(sfp->i2c_mii); 2413 } 2414 if (sfp->i2c) 2415 i2c_put_adapter(sfp->i2c); 2416 kfree(sfp); 2417} 2418 2419static int sfp_probe(struct platform_device *pdev) 2420{ 2421 const struct sff_data *sff; 2422 struct i2c_adapter *i2c; 2423 char *sfp_irq_name; 2424 struct sfp *sfp; 2425 int err, i; 2426 2427 sfp = sfp_alloc(&pdev->dev); 2428 if (IS_ERR(sfp)) 2429 return PTR_ERR(sfp); 2430 2431 platform_set_drvdata(pdev, sfp); 2432 2433 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp); 2434 if (err < 0) 2435 return err; 2436 2437 sff = sfp->type = &sfp_data; 2438 2439 if (pdev->dev.of_node) { 2440 struct device_node *node = pdev->dev.of_node; 2441 const struct of_device_id *id; 2442 struct device_node *np; 2443 2444 id = of_match_node(sfp_of_match, node); 2445 if (WARN_ON(!id)) 2446 return -EINVAL; 2447 2448 sff = sfp->type = id->data; 2449 2450 np = of_parse_phandle(node, "i2c-bus", 0); 2451 if (!np) { 2452 dev_err(sfp->dev, "missing 'i2c-bus' property\n"); 2453 return -ENODEV; 2454 } 2455 2456 i2c = of_find_i2c_adapter_by_node(np); 2457 of_node_put(np); 2458 } else if (has_acpi_companion(&pdev->dev)) { 2459 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev); 2460 struct fwnode_handle *fw = acpi_fwnode_handle(adev); 2461 struct fwnode_reference_args args; 2462 struct acpi_handle *acpi_handle; 2463 int ret; 2464 2465 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args); 2466 if (ret || !is_acpi_device_node(args.fwnode)) { 2467 dev_err(&pdev->dev, "missing 'i2c-bus' property\n"); 2468 return -ENODEV; 2469 } 2470 2471 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode); 2472 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle); 2473 } else { 2474 return -EINVAL; 2475 } 2476 2477 if (!i2c) 2478 return -EPROBE_DEFER; 2479 2480 err = sfp_i2c_configure(sfp, i2c); 2481 if (err < 0) { 2482 i2c_put_adapter(i2c); 2483 return err; 2484 } 2485 2486 for (i = 0; i < GPIO_MAX; i++) 2487 if (sff->gpios & BIT(i)) { 2488 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, 2489 gpio_of_names[i], gpio_flags[i]); 2490 if (IS_ERR(sfp->gpio[i])) 2491 return PTR_ERR(sfp->gpio[i]); 2492 } 2493 2494 sfp->get_state = sfp_gpio_get_state; 2495 sfp->set_state = sfp_gpio_set_state; 2496 2497 /* Modules that have no detect signal are always present */ 2498 if (!(sfp->gpio[GPIO_MODDEF0])) 2499 sfp->get_state = sff_gpio_get_state; 2500 2501 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", 2502 &sfp->max_power_mW); 2503 if (!sfp->max_power_mW) 2504 sfp->max_power_mW = 1000; 2505 2506 dev_info(sfp->dev, "Host maximum power %u.%uW\n", 2507 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); 2508 2509 /* Get the initial state, and always signal TX disable, 2510 * since the network interface will not be up. 2511 */ 2512 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; 2513 2514 if (sfp->gpio[GPIO_RATE_SELECT] && 2515 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT])) 2516 sfp->state |= SFP_F_RATE_SELECT; 2517 sfp_set_state(sfp, sfp->state); 2518 sfp_module_tx_disable(sfp); 2519 if (sfp->state & SFP_F_PRESENT) { 2520 rtnl_lock(); 2521 sfp_sm_event(sfp, SFP_E_INSERT); 2522 rtnl_unlock(); 2523 } 2524 2525 for (i = 0; i < GPIO_MAX; i++) { 2526 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 2527 continue; 2528 2529 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]); 2530 if (sfp->gpio_irq[i] < 0) { 2531 sfp->gpio_irq[i] = 0; 2532 sfp->need_poll = true; 2533 continue; 2534 } 2535 2536 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL, 2537 "%s-%s", dev_name(sfp->dev), 2538 gpio_of_names[i]); 2539 2540 if (!sfp_irq_name) 2541 return -ENOMEM; 2542 2543 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i], 2544 NULL, sfp_irq, 2545 IRQF_ONESHOT | 2546 IRQF_TRIGGER_RISING | 2547 IRQF_TRIGGER_FALLING, 2548 sfp_irq_name, sfp); 2549 if (err) { 2550 sfp->gpio_irq[i] = 0; 2551 sfp->need_poll = true; 2552 } 2553 } 2554 2555 if (sfp->need_poll) 2556 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2557 2558 /* We could have an issue in cases no Tx disable pin is available or 2559 * wired as modules using a laser as their light source will continue to 2560 * be active when the fiber is removed. This could be a safety issue and 2561 * we should at least warn the user about that. 2562 */ 2563 if (!sfp->gpio[GPIO_TX_DISABLE]) 2564 dev_warn(sfp->dev, 2565 "No tx_disable pin: SFP modules will always be emitting.\n"); 2566 2567 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); 2568 if (!sfp->sfp_bus) 2569 return -ENOMEM; 2570 2571 return 0; 2572} 2573 2574static int sfp_remove(struct platform_device *pdev) 2575{ 2576 struct sfp *sfp = platform_get_drvdata(pdev); 2577 2578 sfp_unregister_socket(sfp->sfp_bus); 2579 2580 rtnl_lock(); 2581 sfp_sm_event(sfp, SFP_E_REMOVE); 2582 rtnl_unlock(); 2583 2584 return 0; 2585} 2586 2587static void sfp_shutdown(struct platform_device *pdev) 2588{ 2589 struct sfp *sfp = platform_get_drvdata(pdev); 2590 int i; 2591 2592 for (i = 0; i < GPIO_MAX; i++) { 2593 if (!sfp->gpio_irq[i]) 2594 continue; 2595 2596 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp); 2597 } 2598 2599 cancel_delayed_work_sync(&sfp->poll); 2600 cancel_delayed_work_sync(&sfp->timeout); 2601} 2602 2603static struct platform_driver sfp_driver = { 2604 .probe = sfp_probe, 2605 .remove = sfp_remove, 2606 .shutdown = sfp_shutdown, 2607 .driver = { 2608 .name = "sfp", 2609 .of_match_table = sfp_of_match, 2610 }, 2611}; 2612 2613static int sfp_init(void) 2614{ 2615 poll_jiffies = msecs_to_jiffies(100); 2616 2617 return platform_driver_register(&sfp_driver); 2618} 2619module_init(sfp_init); 2620 2621static void sfp_exit(void) 2622{ 2623 platform_driver_unregister(&sfp_driver); 2624} 2625module_exit(sfp_exit); 2626 2627MODULE_ALIAS("platform:sfp"); 2628MODULE_AUTHOR("Russell King"); 2629MODULE_LICENSE("GPL v2"); 2630