1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/acpi.h>
3 #include <linux/ctype.h>
4 #include <linux/delay.h>
5 #include <linux/gpio/consumer.h>
6 #include <linux/hwmon.h>
7 #include <linux/i2c.h>
8 #include <linux/interrupt.h>
9 #include <linux/jiffies.h>
10 #include <linux/mdio/mdio-i2c.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/of.h>
14 #include <linux/phy.h>
15 #include <linux/platform_device.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19
20 #include "sfp.h"
21 #include "swphy.h"
22
23 enum {
24 GPIO_MODDEF0,
25 GPIO_LOS,
26 GPIO_TX_FAULT,
27 GPIO_TX_DISABLE,
28 GPIO_RATE_SELECT,
29 GPIO_MAX,
30
31 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 SFP_F_LOS = BIT(GPIO_LOS),
33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
36
37 SFP_E_INSERT = 0,
38 SFP_E_REMOVE,
39 SFP_E_DEV_ATTACH,
40 SFP_E_DEV_DETACH,
41 SFP_E_DEV_DOWN,
42 SFP_E_DEV_UP,
43 SFP_E_TX_FAULT,
44 SFP_E_TX_CLEAR,
45 SFP_E_LOS_HIGH,
46 SFP_E_LOS_LOW,
47 SFP_E_TIMEOUT,
48
49 SFP_MOD_EMPTY = 0,
50 SFP_MOD_ERROR,
51 SFP_MOD_PROBE,
52 SFP_MOD_WAITDEV,
53 SFP_MOD_HPOWER,
54 SFP_MOD_WAITPWR,
55 SFP_MOD_PRESENT,
56
57 SFP_DEV_DETACHED = 0,
58 SFP_DEV_DOWN,
59 SFP_DEV_UP,
60
61 SFP_S_DOWN = 0,
62 SFP_S_FAIL,
63 SFP_S_WAIT,
64 SFP_S_INIT,
65 SFP_S_INIT_PHY,
66 SFP_S_INIT_TX_FAULT,
67 SFP_S_WAIT_LOS,
68 SFP_S_LINK_UP,
69 SFP_S_TX_FAULT,
70 SFP_S_REINIT,
71 SFP_S_TX_DISABLE,
72 };
73
74 static const char * const mod_state_strings[] = {
75 [SFP_MOD_EMPTY] = "empty",
76 [SFP_MOD_ERROR] = "error",
77 [SFP_MOD_PROBE] = "probe",
78 [SFP_MOD_WAITDEV] = "waitdev",
79 [SFP_MOD_HPOWER] = "hpower",
80 [SFP_MOD_WAITPWR] = "waitpwr",
81 [SFP_MOD_PRESENT] = "present",
82 };
83
mod_state_to_str(unsigned short mod_state)84 static const char *mod_state_to_str(unsigned short mod_state)
85 {
86 if (mod_state >= ARRAY_SIZE(mod_state_strings))
87 return "Unknown module state";
88 return mod_state_strings[mod_state];
89 }
90
91 static const char * const dev_state_strings[] = {
92 [SFP_DEV_DETACHED] = "detached",
93 [SFP_DEV_DOWN] = "down",
94 [SFP_DEV_UP] = "up",
95 };
96
dev_state_to_str(unsigned short dev_state)97 static const char *dev_state_to_str(unsigned short dev_state)
98 {
99 if (dev_state >= ARRAY_SIZE(dev_state_strings))
100 return "Unknown device state";
101 return dev_state_strings[dev_state];
102 }
103
104 static const char * const event_strings[] = {
105 [SFP_E_INSERT] = "insert",
106 [SFP_E_REMOVE] = "remove",
107 [SFP_E_DEV_ATTACH] = "dev_attach",
108 [SFP_E_DEV_DETACH] = "dev_detach",
109 [SFP_E_DEV_DOWN] = "dev_down",
110 [SFP_E_DEV_UP] = "dev_up",
111 [SFP_E_TX_FAULT] = "tx_fault",
112 [SFP_E_TX_CLEAR] = "tx_clear",
113 [SFP_E_LOS_HIGH] = "los_high",
114 [SFP_E_LOS_LOW] = "los_low",
115 [SFP_E_TIMEOUT] = "timeout",
116 };
117
event_to_str(unsigned short event)118 static const char *event_to_str(unsigned short event)
119 {
120 if (event >= ARRAY_SIZE(event_strings))
121 return "Unknown event";
122 return event_strings[event];
123 }
124
125 static const char * const sm_state_strings[] = {
126 [SFP_S_DOWN] = "down",
127 [SFP_S_FAIL] = "fail",
128 [SFP_S_WAIT] = "wait",
129 [SFP_S_INIT] = "init",
130 [SFP_S_INIT_PHY] = "init_phy",
131 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
132 [SFP_S_WAIT_LOS] = "wait_los",
133 [SFP_S_LINK_UP] = "link_up",
134 [SFP_S_TX_FAULT] = "tx_fault",
135 [SFP_S_REINIT] = "reinit",
136 [SFP_S_TX_DISABLE] = "tx_disable",
137 };
138
sm_state_to_str(unsigned short sm_state)139 static const char *sm_state_to_str(unsigned short sm_state)
140 {
141 if (sm_state >= ARRAY_SIZE(sm_state_strings))
142 return "Unknown state";
143 return sm_state_strings[sm_state];
144 }
145
146 static const char *gpio_of_names[] = {
147 "mod-def0",
148 "los",
149 "tx-fault",
150 "tx-disable",
151 "rate-select0",
152 };
153
154 static const enum gpiod_flags gpio_flags[] = {
155 GPIOD_IN,
156 GPIOD_IN,
157 GPIOD_IN,
158 GPIOD_ASIS,
159 GPIOD_ASIS,
160 };
161
162 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
163 * non-cooled module to initialise its laser safety circuitry. We wait
164 * an initial T_WAIT period before we check the tx fault to give any PHY
165 * on board (for a copper SFP) time to initialise.
166 */
167 #define T_WAIT msecs_to_jiffies(50)
168 #define T_START_UP msecs_to_jiffies(300)
169 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
170
171 /* t_reset is the time required to assert the TX_DISABLE signal to reset
172 * an indicated TX_FAULT.
173 */
174 #define T_RESET_US 10
175 #define T_FAULT_RECOVER msecs_to_jiffies(1000)
176
177 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
178 * time. If the TX_FAULT signal is not deasserted after this number of
179 * attempts at clearing it, we decide that the module is faulty.
180 * N_FAULT is the same but after the module has initialised.
181 */
182 #define N_FAULT_INIT 5
183 #define N_FAULT 5
184
185 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
186 * R_PHY_RETRY is the number of attempts.
187 */
188 #define T_PHY_RETRY msecs_to_jiffies(50)
189 #define R_PHY_RETRY 12
190
191 /* SFP module presence detection is poor: the three MOD DEF signals are
192 * the same length on the PCB, which means it's possible for MOD DEF 0 to
193 * connect before the I2C bus on MOD DEF 1/2.
194 *
195 * The SFF-8472 specifies t_serial ("Time from power on until module is
196 * ready for data transmission over the two wire serial bus.") as 300ms.
197 */
198 #define T_SERIAL msecs_to_jiffies(300)
199 #define T_HPOWER_LEVEL msecs_to_jiffies(300)
200 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
201 #define R_PROBE_RETRY_INIT 10
202 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
203 #define R_PROBE_RETRY_SLOW 12
204
205 /* SFP modules appear to always have their PHY configured for bus address
206 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
207 */
208 #define SFP_PHY_ADDR 22
209
210 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
211 * at a time. Some SFP modules and also some Linux I2C drivers do not like
212 * reads longer than 16 bytes.
213 */
214 #define SFP_EEPROM_BLOCK_SIZE 16
215
216 struct sff_data {
217 unsigned int gpios;
218 bool (*module_supported)(const struct sfp_eeprom_id *id);
219 };
220
221 struct sfp {
222 struct device *dev;
223 struct i2c_adapter *i2c;
224 struct mii_bus *i2c_mii;
225 struct sfp_bus *sfp_bus;
226 struct phy_device *mod_phy;
227 const struct sff_data *type;
228 size_t i2c_block_size;
229 u32 max_power_mW;
230
231 unsigned int (*get_state)(struct sfp *);
232 void (*set_state)(struct sfp *, unsigned int);
233 int (*read)(struct sfp *, bool, u8, void *, size_t);
234 int (*write)(struct sfp *, bool, u8, void *, size_t);
235
236 struct gpio_desc *gpio[GPIO_MAX];
237 int gpio_irq[GPIO_MAX];
238
239 bool need_poll;
240
241 struct mutex st_mutex; /* Protects state */
242 unsigned int state_soft_mask;
243 unsigned int state;
244 struct delayed_work poll;
245 struct delayed_work timeout;
246 struct mutex sm_mutex; /* Protects state machine */
247 unsigned char sm_mod_state;
248 unsigned char sm_mod_tries_init;
249 unsigned char sm_mod_tries;
250 unsigned char sm_dev_state;
251 unsigned short sm_state;
252 unsigned char sm_fault_retries;
253 unsigned char sm_phy_retries;
254
255 struct sfp_eeprom_id id;
256 unsigned int module_power_mW;
257 unsigned int module_t_start_up;
258 bool tx_fault_ignore;
259
260 #if IS_ENABLED(CONFIG_HWMON)
261 struct sfp_diag diag;
262 struct delayed_work hwmon_probe;
263 unsigned int hwmon_tries;
264 struct device *hwmon_dev;
265 char *hwmon_name;
266 #endif
267
268 };
269
sff_module_supported(const struct sfp_eeprom_id *id)270 static bool sff_module_supported(const struct sfp_eeprom_id *id)
271 {
272 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
273 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
274 }
275
276 static const struct sff_data sff_data = {
277 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
278 .module_supported = sff_module_supported,
279 };
280
sfp_module_supported(const struct sfp_eeprom_id *id)281 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
282 {
283 if (id->base.phys_id == SFF8024_ID_SFP &&
284 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
285 return true;
286
287 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
288 * phys id SFF instead of SFP. Therefore mark this module explicitly
289 * as supported based on vendor name and pn match.
290 */
291 if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
292 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
293 !memcmp(id->base.vendor_name, "UBNT ", 16) &&
294 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
295 return true;
296
297 return false;
298 }
299
300 static const struct sff_data sfp_data = {
301 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
302 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
303 .module_supported = sfp_module_supported,
304 };
305
306 static const struct of_device_id sfp_of_match[] = {
307 { .compatible = "sff,sff", .data = &sff_data, },
308 { .compatible = "sff,sfp", .data = &sfp_data, },
309 { },
310 };
311 MODULE_DEVICE_TABLE(of, sfp_of_match);
312
313 static unsigned long poll_jiffies;
314
sfp_gpio_get_state(struct sfp *sfp)315 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
316 {
317 unsigned int i, state, v;
318
319 for (i = state = 0; i < GPIO_MAX; i++) {
320 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
321 continue;
322
323 v = gpiod_get_value_cansleep(sfp->gpio[i]);
324 if (v)
325 state |= BIT(i);
326 }
327
328 return state;
329 }
330
sff_gpio_get_state(struct sfp *sfp)331 static unsigned int sff_gpio_get_state(struct sfp *sfp)
332 {
333 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
334 }
335
sfp_gpio_set_state(struct sfp *sfp, unsigned int state)336 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
337 {
338 if (state & SFP_F_PRESENT) {
339 /* If the module is present, drive the signals */
340 if (sfp->gpio[GPIO_TX_DISABLE])
341 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
342 state & SFP_F_TX_DISABLE);
343 if (state & SFP_F_RATE_SELECT)
344 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
345 state & SFP_F_RATE_SELECT);
346 } else {
347 /* Otherwise, let them float to the pull-ups */
348 if (sfp->gpio[GPIO_TX_DISABLE])
349 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
350 if (state & SFP_F_RATE_SELECT)
351 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
352 }
353 }
354
sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, size_t len)355 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
356 size_t len)
357 {
358 struct i2c_msg msgs[2];
359 u8 bus_addr = a2 ? 0x51 : 0x50;
360 size_t block_size = sfp->i2c_block_size;
361 size_t this_len;
362 int ret;
363
364 msgs[0].addr = bus_addr;
365 msgs[0].flags = 0;
366 msgs[0].len = 1;
367 msgs[0].buf = &dev_addr;
368 msgs[1].addr = bus_addr;
369 msgs[1].flags = I2C_M_RD;
370 msgs[1].len = len;
371 msgs[1].buf = buf;
372
373 while (len) {
374 this_len = len;
375 if (this_len > block_size)
376 this_len = block_size;
377
378 msgs[1].len = this_len;
379
380 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
381 if (ret < 0)
382 return ret;
383
384 if (ret != ARRAY_SIZE(msgs))
385 break;
386
387 msgs[1].buf += this_len;
388 dev_addr += this_len;
389 len -= this_len;
390 }
391
392 return msgs[1].buf - (u8 *)buf;
393 }
394
sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, size_t len)395 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
396 size_t len)
397 {
398 struct i2c_msg msgs[1];
399 u8 bus_addr = a2 ? 0x51 : 0x50;
400 int ret;
401
402 msgs[0].addr = bus_addr;
403 msgs[0].flags = 0;
404 msgs[0].len = 1 + len;
405 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
406 if (!msgs[0].buf)
407 return -ENOMEM;
408
409 msgs[0].buf[0] = dev_addr;
410 memcpy(&msgs[0].buf[1], buf, len);
411
412 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
413
414 kfree(msgs[0].buf);
415
416 if (ret < 0)
417 return ret;
418
419 return ret == ARRAY_SIZE(msgs) ? len : 0;
420 }
421
sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)422 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
423 {
424 struct mii_bus *i2c_mii;
425 int ret;
426
427 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
428 return -EINVAL;
429
430 sfp->i2c = i2c;
431 sfp->read = sfp_i2c_read;
432 sfp->write = sfp_i2c_write;
433
434 i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
435 if (IS_ERR(i2c_mii))
436 return PTR_ERR(i2c_mii);
437
438 i2c_mii->name = "SFP I2C Bus";
439 i2c_mii->phy_mask = ~0;
440
441 ret = mdiobus_register(i2c_mii);
442 if (ret < 0) {
443 mdiobus_free(i2c_mii);
444 return ret;
445 }
446
447 sfp->i2c_mii = i2c_mii;
448
449 return 0;
450 }
451
452 /* Interface */
sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)453 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
454 {
455 return sfp->read(sfp, a2, addr, buf, len);
456 }
457
sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)458 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
459 {
460 return sfp->write(sfp, a2, addr, buf, len);
461 }
462
sfp_soft_get_state(struct sfp *sfp)463 static unsigned int sfp_soft_get_state(struct sfp *sfp)
464 {
465 unsigned int state = 0;
466 u8 status;
467 int ret;
468
469 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
470 if (ret == sizeof(status)) {
471 if (status & SFP_STATUS_RX_LOS)
472 state |= SFP_F_LOS;
473 if (status & SFP_STATUS_TX_FAULT)
474 state |= SFP_F_TX_FAULT;
475 } else {
476 dev_err_ratelimited(sfp->dev,
477 "failed to read SFP soft status: %d\n",
478 ret);
479 /* Preserve the current state */
480 state = sfp->state;
481 }
482
483 return state & sfp->state_soft_mask;
484 }
485
sfp_soft_set_state(struct sfp *sfp, unsigned int state)486 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
487 {
488 u8 status;
489
490 if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
491 sizeof(status)) {
492 if (state & SFP_F_TX_DISABLE)
493 status |= SFP_STATUS_TX_DISABLE_FORCE;
494 else
495 status &= ~SFP_STATUS_TX_DISABLE_FORCE;
496
497 sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
498 }
499 }
500
sfp_soft_start_poll(struct sfp *sfp)501 static void sfp_soft_start_poll(struct sfp *sfp)
502 {
503 const struct sfp_eeprom_id *id = &sfp->id;
504
505 sfp->state_soft_mask = 0;
506 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
507 !sfp->gpio[GPIO_TX_DISABLE])
508 sfp->state_soft_mask |= SFP_F_TX_DISABLE;
509 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
510 !sfp->gpio[GPIO_TX_FAULT])
511 sfp->state_soft_mask |= SFP_F_TX_FAULT;
512 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
513 !sfp->gpio[GPIO_LOS])
514 sfp->state_soft_mask |= SFP_F_LOS;
515
516 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
517 !sfp->need_poll)
518 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
519 }
520
sfp_soft_stop_poll(struct sfp *sfp)521 static void sfp_soft_stop_poll(struct sfp *sfp)
522 {
523 sfp->state_soft_mask = 0;
524 }
525
sfp_get_state(struct sfp *sfp)526 static unsigned int sfp_get_state(struct sfp *sfp)
527 {
528 unsigned int state = sfp->get_state(sfp);
529
530 if (state & SFP_F_PRESENT &&
531 sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
532 state |= sfp_soft_get_state(sfp);
533
534 return state;
535 }
536
sfp_set_state(struct sfp *sfp, unsigned int state)537 static void sfp_set_state(struct sfp *sfp, unsigned int state)
538 {
539 sfp->set_state(sfp, state);
540
541 if (state & SFP_F_PRESENT &&
542 sfp->state_soft_mask & SFP_F_TX_DISABLE)
543 sfp_soft_set_state(sfp, state);
544 }
545
sfp_check(void *buf, size_t len)546 static unsigned int sfp_check(void *buf, size_t len)
547 {
548 u8 *p, check;
549
550 for (p = buf, check = 0; len; p++, len--)
551 check += *p;
552
553 return check;
554 }
555
556 /* hwmon */
557 #if IS_ENABLED(CONFIG_HWMON)
sfp_hwmon_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr, int channel)558 static umode_t sfp_hwmon_is_visible(const void *data,
559 enum hwmon_sensor_types type,
560 u32 attr, int channel)
561 {
562 const struct sfp *sfp = data;
563
564 switch (type) {
565 case hwmon_temp:
566 switch (attr) {
567 case hwmon_temp_min_alarm:
568 case hwmon_temp_max_alarm:
569 case hwmon_temp_lcrit_alarm:
570 case hwmon_temp_crit_alarm:
571 case hwmon_temp_min:
572 case hwmon_temp_max:
573 case hwmon_temp_lcrit:
574 case hwmon_temp_crit:
575 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
576 return 0;
577 fallthrough;
578 case hwmon_temp_input:
579 case hwmon_temp_label:
580 return 0444;
581 default:
582 return 0;
583 }
584 case hwmon_in:
585 switch (attr) {
586 case hwmon_in_min_alarm:
587 case hwmon_in_max_alarm:
588 case hwmon_in_lcrit_alarm:
589 case hwmon_in_crit_alarm:
590 case hwmon_in_min:
591 case hwmon_in_max:
592 case hwmon_in_lcrit:
593 case hwmon_in_crit:
594 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
595 return 0;
596 fallthrough;
597 case hwmon_in_input:
598 case hwmon_in_label:
599 return 0444;
600 default:
601 return 0;
602 }
603 case hwmon_curr:
604 switch (attr) {
605 case hwmon_curr_min_alarm:
606 case hwmon_curr_max_alarm:
607 case hwmon_curr_lcrit_alarm:
608 case hwmon_curr_crit_alarm:
609 case hwmon_curr_min:
610 case hwmon_curr_max:
611 case hwmon_curr_lcrit:
612 case hwmon_curr_crit:
613 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
614 return 0;
615 fallthrough;
616 case hwmon_curr_input:
617 case hwmon_curr_label:
618 return 0444;
619 default:
620 return 0;
621 }
622 case hwmon_power:
623 /* External calibration of receive power requires
624 * floating point arithmetic. Doing that in the kernel
625 * is not easy, so just skip it. If the module does
626 * not require external calibration, we can however
627 * show receiver power, since FP is then not needed.
628 */
629 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
630 channel == 1)
631 return 0;
632 switch (attr) {
633 case hwmon_power_min_alarm:
634 case hwmon_power_max_alarm:
635 case hwmon_power_lcrit_alarm:
636 case hwmon_power_crit_alarm:
637 case hwmon_power_min:
638 case hwmon_power_max:
639 case hwmon_power_lcrit:
640 case hwmon_power_crit:
641 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
642 return 0;
643 fallthrough;
644 case hwmon_power_input:
645 case hwmon_power_label:
646 return 0444;
647 default:
648 return 0;
649 }
650 default:
651 return 0;
652 }
653 }
654
sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)655 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
656 {
657 __be16 val;
658 int err;
659
660 err = sfp_read(sfp, true, reg, &val, sizeof(val));
661 if (err < 0)
662 return err;
663
664 *value = be16_to_cpu(val);
665
666 return 0;
667 }
668
sfp_hwmon_to_rx_power(long *value)669 static void sfp_hwmon_to_rx_power(long *value)
670 {
671 *value = DIV_ROUND_CLOSEST(*value, 10);
672 }
673
sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, long *value)674 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
675 long *value)
676 {
677 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
678 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
679 }
680
sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)681 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
682 {
683 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
684 be16_to_cpu(sfp->diag.cal_t_offset), value);
685
686 if (*value >= 0x8000)
687 *value -= 0x10000;
688
689 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
690 }
691
sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)692 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
693 {
694 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
695 be16_to_cpu(sfp->diag.cal_v_offset), value);
696
697 *value = DIV_ROUND_CLOSEST(*value, 10);
698 }
699
sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)700 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
701 {
702 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
703 be16_to_cpu(sfp->diag.cal_txi_offset), value);
704
705 *value = DIV_ROUND_CLOSEST(*value, 500);
706 }
707
sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)708 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
709 {
710 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
711 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
712
713 *value = DIV_ROUND_CLOSEST(*value, 10);
714 }
715
sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)716 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
717 {
718 int err;
719
720 err = sfp_hwmon_read_sensor(sfp, reg, value);
721 if (err < 0)
722 return err;
723
724 sfp_hwmon_calibrate_temp(sfp, value);
725
726 return 0;
727 }
728
sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)729 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
730 {
731 int err;
732
733 err = sfp_hwmon_read_sensor(sfp, reg, value);
734 if (err < 0)
735 return err;
736
737 sfp_hwmon_calibrate_vcc(sfp, value);
738
739 return 0;
740 }
741
sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)742 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
743 {
744 int err;
745
746 err = sfp_hwmon_read_sensor(sfp, reg, value);
747 if (err < 0)
748 return err;
749
750 sfp_hwmon_calibrate_bias(sfp, value);
751
752 return 0;
753 }
754
sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)755 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
756 {
757 int err;
758
759 err = sfp_hwmon_read_sensor(sfp, reg, value);
760 if (err < 0)
761 return err;
762
763 sfp_hwmon_calibrate_tx_power(sfp, value);
764
765 return 0;
766 }
767
sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)768 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
769 {
770 int err;
771
772 err = sfp_hwmon_read_sensor(sfp, reg, value);
773 if (err < 0)
774 return err;
775
776 sfp_hwmon_to_rx_power(value);
777
778 return 0;
779 }
780
sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)781 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
782 {
783 u8 status;
784 int err;
785
786 switch (attr) {
787 case hwmon_temp_input:
788 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
789
790 case hwmon_temp_lcrit:
791 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
792 sfp_hwmon_calibrate_temp(sfp, value);
793 return 0;
794
795 case hwmon_temp_min:
796 *value = be16_to_cpu(sfp->diag.temp_low_warn);
797 sfp_hwmon_calibrate_temp(sfp, value);
798 return 0;
799 case hwmon_temp_max:
800 *value = be16_to_cpu(sfp->diag.temp_high_warn);
801 sfp_hwmon_calibrate_temp(sfp, value);
802 return 0;
803
804 case hwmon_temp_crit:
805 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
806 sfp_hwmon_calibrate_temp(sfp, value);
807 return 0;
808
809 case hwmon_temp_lcrit_alarm:
810 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
811 if (err < 0)
812 return err;
813
814 *value = !!(status & SFP_ALARM0_TEMP_LOW);
815 return 0;
816
817 case hwmon_temp_min_alarm:
818 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
819 if (err < 0)
820 return err;
821
822 *value = !!(status & SFP_WARN0_TEMP_LOW);
823 return 0;
824
825 case hwmon_temp_max_alarm:
826 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
827 if (err < 0)
828 return err;
829
830 *value = !!(status & SFP_WARN0_TEMP_HIGH);
831 return 0;
832
833 case hwmon_temp_crit_alarm:
834 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
835 if (err < 0)
836 return err;
837
838 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
839 return 0;
840 default:
841 return -EOPNOTSUPP;
842 }
843
844 return -EOPNOTSUPP;
845 }
846
sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)847 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
848 {
849 u8 status;
850 int err;
851
852 switch (attr) {
853 case hwmon_in_input:
854 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
855
856 case hwmon_in_lcrit:
857 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
858 sfp_hwmon_calibrate_vcc(sfp, value);
859 return 0;
860
861 case hwmon_in_min:
862 *value = be16_to_cpu(sfp->diag.volt_low_warn);
863 sfp_hwmon_calibrate_vcc(sfp, value);
864 return 0;
865
866 case hwmon_in_max:
867 *value = be16_to_cpu(sfp->diag.volt_high_warn);
868 sfp_hwmon_calibrate_vcc(sfp, value);
869 return 0;
870
871 case hwmon_in_crit:
872 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
873 sfp_hwmon_calibrate_vcc(sfp, value);
874 return 0;
875
876 case hwmon_in_lcrit_alarm:
877 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
878 if (err < 0)
879 return err;
880
881 *value = !!(status & SFP_ALARM0_VCC_LOW);
882 return 0;
883
884 case hwmon_in_min_alarm:
885 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
886 if (err < 0)
887 return err;
888
889 *value = !!(status & SFP_WARN0_VCC_LOW);
890 return 0;
891
892 case hwmon_in_max_alarm:
893 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
894 if (err < 0)
895 return err;
896
897 *value = !!(status & SFP_WARN0_VCC_HIGH);
898 return 0;
899
900 case hwmon_in_crit_alarm:
901 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
902 if (err < 0)
903 return err;
904
905 *value = !!(status & SFP_ALARM0_VCC_HIGH);
906 return 0;
907 default:
908 return -EOPNOTSUPP;
909 }
910
911 return -EOPNOTSUPP;
912 }
913
sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)914 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
915 {
916 u8 status;
917 int err;
918
919 switch (attr) {
920 case hwmon_curr_input:
921 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
922
923 case hwmon_curr_lcrit:
924 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
925 sfp_hwmon_calibrate_bias(sfp, value);
926 return 0;
927
928 case hwmon_curr_min:
929 *value = be16_to_cpu(sfp->diag.bias_low_warn);
930 sfp_hwmon_calibrate_bias(sfp, value);
931 return 0;
932
933 case hwmon_curr_max:
934 *value = be16_to_cpu(sfp->diag.bias_high_warn);
935 sfp_hwmon_calibrate_bias(sfp, value);
936 return 0;
937
938 case hwmon_curr_crit:
939 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
940 sfp_hwmon_calibrate_bias(sfp, value);
941 return 0;
942
943 case hwmon_curr_lcrit_alarm:
944 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
945 if (err < 0)
946 return err;
947
948 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
949 return 0;
950
951 case hwmon_curr_min_alarm:
952 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
953 if (err < 0)
954 return err;
955
956 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
957 return 0;
958
959 case hwmon_curr_max_alarm:
960 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
961 if (err < 0)
962 return err;
963
964 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
965 return 0;
966
967 case hwmon_curr_crit_alarm:
968 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
969 if (err < 0)
970 return err;
971
972 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
973 return 0;
974 default:
975 return -EOPNOTSUPP;
976 }
977
978 return -EOPNOTSUPP;
979 }
980
sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)981 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
982 {
983 u8 status;
984 int err;
985
986 switch (attr) {
987 case hwmon_power_input:
988 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
989
990 case hwmon_power_lcrit:
991 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
992 sfp_hwmon_calibrate_tx_power(sfp, value);
993 return 0;
994
995 case hwmon_power_min:
996 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
997 sfp_hwmon_calibrate_tx_power(sfp, value);
998 return 0;
999
1000 case hwmon_power_max:
1001 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1002 sfp_hwmon_calibrate_tx_power(sfp, value);
1003 return 0;
1004
1005 case hwmon_power_crit:
1006 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1007 sfp_hwmon_calibrate_tx_power(sfp, value);
1008 return 0;
1009
1010 case hwmon_power_lcrit_alarm:
1011 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1012 if (err < 0)
1013 return err;
1014
1015 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1016 return 0;
1017
1018 case hwmon_power_min_alarm:
1019 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1020 if (err < 0)
1021 return err;
1022
1023 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1024 return 0;
1025
1026 case hwmon_power_max_alarm:
1027 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1028 if (err < 0)
1029 return err;
1030
1031 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1032 return 0;
1033
1034 case hwmon_power_crit_alarm:
1035 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1036 if (err < 0)
1037 return err;
1038
1039 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1040 return 0;
1041 default:
1042 return -EOPNOTSUPP;
1043 }
1044
1045 return -EOPNOTSUPP;
1046 }
1047
sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)1048 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1049 {
1050 u8 status;
1051 int err;
1052
1053 switch (attr) {
1054 case hwmon_power_input:
1055 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1056
1057 case hwmon_power_lcrit:
1058 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1059 sfp_hwmon_to_rx_power(value);
1060 return 0;
1061
1062 case hwmon_power_min:
1063 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1064 sfp_hwmon_to_rx_power(value);
1065 return 0;
1066
1067 case hwmon_power_max:
1068 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1069 sfp_hwmon_to_rx_power(value);
1070 return 0;
1071
1072 case hwmon_power_crit:
1073 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1074 sfp_hwmon_to_rx_power(value);
1075 return 0;
1076
1077 case hwmon_power_lcrit_alarm:
1078 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1079 if (err < 0)
1080 return err;
1081
1082 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1083 return 0;
1084
1085 case hwmon_power_min_alarm:
1086 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1087 if (err < 0)
1088 return err;
1089
1090 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1091 return 0;
1092
1093 case hwmon_power_max_alarm:
1094 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1095 if (err < 0)
1096 return err;
1097
1098 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1099 return 0;
1100
1101 case hwmon_power_crit_alarm:
1102 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1103 if (err < 0)
1104 return err;
1105
1106 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1107 return 0;
1108 default:
1109 return -EOPNOTSUPP;
1110 }
1111
1112 return -EOPNOTSUPP;
1113 }
1114
sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *value)1115 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1116 u32 attr, int channel, long *value)
1117 {
1118 struct sfp *sfp = dev_get_drvdata(dev);
1119
1120 switch (type) {
1121 case hwmon_temp:
1122 return sfp_hwmon_temp(sfp, attr, value);
1123 case hwmon_in:
1124 return sfp_hwmon_vcc(sfp, attr, value);
1125 case hwmon_curr:
1126 return sfp_hwmon_bias(sfp, attr, value);
1127 case hwmon_power:
1128 switch (channel) {
1129 case 0:
1130 return sfp_hwmon_tx_power(sfp, attr, value);
1131 case 1:
1132 return sfp_hwmon_rx_power(sfp, attr, value);
1133 default:
1134 return -EOPNOTSUPP;
1135 }
1136 default:
1137 return -EOPNOTSUPP;
1138 }
1139 }
1140
1141 static const char *const sfp_hwmon_power_labels[] = {
1142 "TX_power",
1143 "RX_power",
1144 };
1145
sfp_hwmon_read_string(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, const char **str)1146 static int sfp_hwmon_read_string(struct device *dev,
1147 enum hwmon_sensor_types type,
1148 u32 attr, int channel, const char **str)
1149 {
1150 switch (type) {
1151 case hwmon_curr:
1152 switch (attr) {
1153 case hwmon_curr_label:
1154 *str = "bias";
1155 return 0;
1156 default:
1157 return -EOPNOTSUPP;
1158 }
1159 break;
1160 case hwmon_temp:
1161 switch (attr) {
1162 case hwmon_temp_label:
1163 *str = "temperature";
1164 return 0;
1165 default:
1166 return -EOPNOTSUPP;
1167 }
1168 break;
1169 case hwmon_in:
1170 switch (attr) {
1171 case hwmon_in_label:
1172 *str = "VCC";
1173 return 0;
1174 default:
1175 return -EOPNOTSUPP;
1176 }
1177 break;
1178 case hwmon_power:
1179 switch (attr) {
1180 case hwmon_power_label:
1181 *str = sfp_hwmon_power_labels[channel];
1182 return 0;
1183 default:
1184 return -EOPNOTSUPP;
1185 }
1186 break;
1187 default:
1188 return -EOPNOTSUPP;
1189 }
1190
1191 return -EOPNOTSUPP;
1192 }
1193
1194 static const struct hwmon_ops sfp_hwmon_ops = {
1195 .is_visible = sfp_hwmon_is_visible,
1196 .read = sfp_hwmon_read,
1197 .read_string = sfp_hwmon_read_string,
1198 };
1199
1200 static u32 sfp_hwmon_chip_config[] = {
1201 HWMON_C_REGISTER_TZ,
1202 0,
1203 };
1204
1205 static const struct hwmon_channel_info sfp_hwmon_chip = {
1206 .type = hwmon_chip,
1207 .config = sfp_hwmon_chip_config,
1208 };
1209
1210 static u32 sfp_hwmon_temp_config[] = {
1211 HWMON_T_INPUT |
1212 HWMON_T_MAX | HWMON_T_MIN |
1213 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1214 HWMON_T_CRIT | HWMON_T_LCRIT |
1215 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1216 HWMON_T_LABEL,
1217 0,
1218 };
1219
1220 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1221 .type = hwmon_temp,
1222 .config = sfp_hwmon_temp_config,
1223 };
1224
1225 static u32 sfp_hwmon_vcc_config[] = {
1226 HWMON_I_INPUT |
1227 HWMON_I_MAX | HWMON_I_MIN |
1228 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1229 HWMON_I_CRIT | HWMON_I_LCRIT |
1230 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1231 HWMON_I_LABEL,
1232 0,
1233 };
1234
1235 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1236 .type = hwmon_in,
1237 .config = sfp_hwmon_vcc_config,
1238 };
1239
1240 static u32 sfp_hwmon_bias_config[] = {
1241 HWMON_C_INPUT |
1242 HWMON_C_MAX | HWMON_C_MIN |
1243 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1244 HWMON_C_CRIT | HWMON_C_LCRIT |
1245 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1246 HWMON_C_LABEL,
1247 0,
1248 };
1249
1250 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1251 .type = hwmon_curr,
1252 .config = sfp_hwmon_bias_config,
1253 };
1254
1255 static u32 sfp_hwmon_power_config[] = {
1256 /* Transmit power */
1257 HWMON_P_INPUT |
1258 HWMON_P_MAX | HWMON_P_MIN |
1259 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1260 HWMON_P_CRIT | HWMON_P_LCRIT |
1261 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1262 HWMON_P_LABEL,
1263 /* Receive power */
1264 HWMON_P_INPUT |
1265 HWMON_P_MAX | HWMON_P_MIN |
1266 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1267 HWMON_P_CRIT | HWMON_P_LCRIT |
1268 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1269 HWMON_P_LABEL,
1270 0,
1271 };
1272
1273 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1274 .type = hwmon_power,
1275 .config = sfp_hwmon_power_config,
1276 };
1277
1278 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1279 &sfp_hwmon_chip,
1280 &sfp_hwmon_vcc_channel_info,
1281 &sfp_hwmon_temp_channel_info,
1282 &sfp_hwmon_bias_channel_info,
1283 &sfp_hwmon_power_channel_info,
1284 NULL,
1285 };
1286
1287 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1288 .ops = &sfp_hwmon_ops,
1289 .info = sfp_hwmon_info,
1290 };
1291
sfp_hwmon_probe(struct work_struct *work)1292 static void sfp_hwmon_probe(struct work_struct *work)
1293 {
1294 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1295 int err, i;
1296
1297 /* hwmon interface needs to access 16bit registers in atomic way to
1298 * guarantee coherency of the diagnostic monitoring data. If it is not
1299 * possible to guarantee coherency because EEPROM is broken in such way
1300 * that does not support atomic 16bit read operation then we have to
1301 * skip registration of hwmon device.
1302 */
1303 if (sfp->i2c_block_size < 2) {
1304 dev_info(sfp->dev,
1305 "skipping hwmon device registration due to broken EEPROM\n");
1306 dev_info(sfp->dev,
1307 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1308 return;
1309 }
1310
1311 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1312 if (err < 0) {
1313 if (sfp->hwmon_tries--) {
1314 mod_delayed_work(system_wq, &sfp->hwmon_probe,
1315 T_PROBE_RETRY_SLOW);
1316 } else {
1317 dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1318 }
1319 return;
1320 }
1321
1322 sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1323 if (!sfp->hwmon_name) {
1324 dev_err(sfp->dev, "out of memory for hwmon name\n");
1325 return;
1326 }
1327
1328 for (i = 0; sfp->hwmon_name[i]; i++)
1329 if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1330 sfp->hwmon_name[i] = '_';
1331
1332 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1333 sfp->hwmon_name, sfp,
1334 &sfp_hwmon_chip_info,
1335 NULL);
1336 if (IS_ERR(sfp->hwmon_dev))
1337 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1338 PTR_ERR(sfp->hwmon_dev));
1339 }
1340
sfp_hwmon_insert(struct sfp *sfp)1341 static int sfp_hwmon_insert(struct sfp *sfp)
1342 {
1343 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1344 return 0;
1345
1346 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1347 return 0;
1348
1349 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1350 /* This driver in general does not support address
1351 * change.
1352 */
1353 return 0;
1354
1355 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1356 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1357
1358 return 0;
1359 }
1360
sfp_hwmon_remove(struct sfp *sfp)1361 static void sfp_hwmon_remove(struct sfp *sfp)
1362 {
1363 cancel_delayed_work_sync(&sfp->hwmon_probe);
1364 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1365 hwmon_device_unregister(sfp->hwmon_dev);
1366 sfp->hwmon_dev = NULL;
1367 kfree(sfp->hwmon_name);
1368 }
1369 }
1370
sfp_hwmon_init(struct sfp *sfp)1371 static int sfp_hwmon_init(struct sfp *sfp)
1372 {
1373 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1374
1375 return 0;
1376 }
1377
sfp_hwmon_exit(struct sfp *sfp)1378 static void sfp_hwmon_exit(struct sfp *sfp)
1379 {
1380 cancel_delayed_work_sync(&sfp->hwmon_probe);
1381 }
1382 #else
sfp_hwmon_insert(struct sfp *sfp)1383 static int sfp_hwmon_insert(struct sfp *sfp)
1384 {
1385 return 0;
1386 }
1387
sfp_hwmon_remove(struct sfp *sfp)1388 static void sfp_hwmon_remove(struct sfp *sfp)
1389 {
1390 }
1391
sfp_hwmon_init(struct sfp *sfp)1392 static int sfp_hwmon_init(struct sfp *sfp)
1393 {
1394 return 0;
1395 }
1396
sfp_hwmon_exit(struct sfp *sfp)1397 static void sfp_hwmon_exit(struct sfp *sfp)
1398 {
1399 }
1400 #endif
1401
1402 /* Helpers */
sfp_module_tx_disable(struct sfp *sfp)1403 static void sfp_module_tx_disable(struct sfp *sfp)
1404 {
1405 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1406 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1407 sfp->state |= SFP_F_TX_DISABLE;
1408 sfp_set_state(sfp, sfp->state);
1409 }
1410
sfp_module_tx_enable(struct sfp *sfp)1411 static void sfp_module_tx_enable(struct sfp *sfp)
1412 {
1413 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1414 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1415 sfp->state &= ~SFP_F_TX_DISABLE;
1416 sfp_set_state(sfp, sfp->state);
1417 }
1418
sfp_module_tx_fault_reset(struct sfp *sfp)1419 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1420 {
1421 unsigned int state = sfp->state;
1422
1423 if (state & SFP_F_TX_DISABLE)
1424 return;
1425
1426 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1427
1428 udelay(T_RESET_US);
1429
1430 sfp_set_state(sfp, state);
1431 }
1432
1433 /* SFP state machine */
sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)1434 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1435 {
1436 if (timeout)
1437 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1438 timeout);
1439 else
1440 cancel_delayed_work(&sfp->timeout);
1441 }
1442
sfp_sm_next(struct sfp *sfp, unsigned int state, unsigned int timeout)1443 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1444 unsigned int timeout)
1445 {
1446 sfp->sm_state = state;
1447 sfp_sm_set_timer(sfp, timeout);
1448 }
1449
sfp_sm_mod_next(struct sfp *sfp, unsigned int state, unsigned int timeout)1450 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1451 unsigned int timeout)
1452 {
1453 sfp->sm_mod_state = state;
1454 sfp_sm_set_timer(sfp, timeout);
1455 }
1456
sfp_sm_phy_detach(struct sfp *sfp)1457 static void sfp_sm_phy_detach(struct sfp *sfp)
1458 {
1459 sfp_remove_phy(sfp->sfp_bus);
1460 phy_device_remove(sfp->mod_phy);
1461 phy_device_free(sfp->mod_phy);
1462 sfp->mod_phy = NULL;
1463 }
1464
sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)1465 static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
1466 {
1467 struct phy_device *phy;
1468 int err;
1469
1470 phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
1471 if (phy == ERR_PTR(-ENODEV))
1472 return PTR_ERR(phy);
1473 if (IS_ERR(phy)) {
1474 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1475 return PTR_ERR(phy);
1476 }
1477
1478 err = phy_device_register(phy);
1479 if (err) {
1480 phy_device_free(phy);
1481 dev_err(sfp->dev, "phy_device_register failed: %d\n", err);
1482 return err;
1483 }
1484
1485 err = sfp_add_phy(sfp->sfp_bus, phy);
1486 if (err) {
1487 phy_device_remove(phy);
1488 phy_device_free(phy);
1489 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1490 return err;
1491 }
1492
1493 sfp->mod_phy = phy;
1494
1495 return 0;
1496 }
1497
sfp_sm_link_up(struct sfp *sfp)1498 static void sfp_sm_link_up(struct sfp *sfp)
1499 {
1500 sfp_link_up(sfp->sfp_bus);
1501 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1502 }
1503
sfp_sm_link_down(struct sfp *sfp)1504 static void sfp_sm_link_down(struct sfp *sfp)
1505 {
1506 sfp_link_down(sfp->sfp_bus);
1507 }
1508
sfp_sm_link_check_los(struct sfp *sfp)1509 static void sfp_sm_link_check_los(struct sfp *sfp)
1510 {
1511 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1512 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1513 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1514 bool los = false;
1515
1516 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1517 * are set, we assume that no LOS signal is available. If both are
1518 * set, we assume LOS is not implemented (and is meaningless.)
1519 */
1520 if (los_options == los_inverted)
1521 los = !(sfp->state & SFP_F_LOS);
1522 else if (los_options == los_normal)
1523 los = !!(sfp->state & SFP_F_LOS);
1524
1525 if (los)
1526 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1527 else
1528 sfp_sm_link_up(sfp);
1529 }
1530
sfp_los_event_active(struct sfp *sfp, unsigned int event)1531 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1532 {
1533 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1534 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1535 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1536
1537 return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1538 (los_options == los_normal && event == SFP_E_LOS_HIGH);
1539 }
1540
sfp_los_event_inactive(struct sfp *sfp, unsigned int event)1541 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1542 {
1543 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1544 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1545 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1546
1547 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1548 (los_options == los_normal && event == SFP_E_LOS_LOW);
1549 }
1550
sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)1551 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1552 {
1553 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1554 dev_err(sfp->dev,
1555 "module persistently indicates fault, disabling\n");
1556 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1557 } else {
1558 if (warn)
1559 dev_err(sfp->dev, "module transmit fault indicated\n");
1560
1561 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1562 }
1563 }
1564
1565 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1566 * normally sits at I2C bus address 0x56, and may either be a clause 22
1567 * or clause 45 PHY.
1568 *
1569 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1570 * negotiation enabled, but some may be in 1000base-X - which is for the
1571 * PHY driver to determine.
1572 *
1573 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1574 * mode according to the negotiated line speed.
1575 */
sfp_sm_probe_for_phy(struct sfp *sfp)1576 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1577 {
1578 int err = 0;
1579
1580 switch (sfp->id.base.extended_cc) {
1581 case SFF8024_ECC_10GBASE_T_SFI:
1582 case SFF8024_ECC_10GBASE_T_SR:
1583 case SFF8024_ECC_5GBASE_T:
1584 case SFF8024_ECC_2_5GBASE_T:
1585 err = sfp_sm_probe_phy(sfp, true);
1586 break;
1587
1588 default:
1589 if (sfp->id.base.e1000_base_t)
1590 err = sfp_sm_probe_phy(sfp, false);
1591 break;
1592 }
1593 return err;
1594 }
1595
sfp_module_parse_power(struct sfp *sfp)1596 static int sfp_module_parse_power(struct sfp *sfp)
1597 {
1598 u32 power_mW = 1000;
1599 bool supports_a2;
1600
1601 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1602 power_mW = 1500;
1603 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1604 power_mW = 2000;
1605
1606 supports_a2 = sfp->id.ext.sff8472_compliance !=
1607 SFP_SFF8472_COMPLIANCE_NONE ||
1608 sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1609
1610 if (power_mW > sfp->max_power_mW) {
1611 /* Module power specification exceeds the allowed maximum. */
1612 if (!supports_a2) {
1613 /* The module appears not to implement bus address
1614 * 0xa2, so assume that the module powers up in the
1615 * indicated mode.
1616 */
1617 dev_err(sfp->dev,
1618 "Host does not support %u.%uW modules\n",
1619 power_mW / 1000, (power_mW / 100) % 10);
1620 return -EINVAL;
1621 } else {
1622 dev_warn(sfp->dev,
1623 "Host does not support %u.%uW modules, module left in power mode 1\n",
1624 power_mW / 1000, (power_mW / 100) % 10);
1625 return 0;
1626 }
1627 }
1628
1629 if (power_mW <= 1000) {
1630 /* Modules below 1W do not require a power change sequence */
1631 sfp->module_power_mW = power_mW;
1632 return 0;
1633 }
1634
1635 if (!supports_a2) {
1636 /* The module power level is below the host maximum and the
1637 * module appears not to implement bus address 0xa2, so assume
1638 * that the module powers up in the indicated mode.
1639 */
1640 return 0;
1641 }
1642
1643 /* If the module requires a higher power mode, but also requires
1644 * an address change sequence, warn the user that the module may
1645 * not be functional.
1646 */
1647 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1648 dev_warn(sfp->dev,
1649 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1650 power_mW / 1000, (power_mW / 100) % 10);
1651 return 0;
1652 }
1653
1654 sfp->module_power_mW = power_mW;
1655
1656 return 0;
1657 }
1658
sfp_sm_mod_hpower(struct sfp *sfp, bool enable)1659 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1660 {
1661 u8 val;
1662 int err;
1663
1664 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1665 if (err != sizeof(val)) {
1666 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1667 return -EAGAIN;
1668 }
1669
1670 /* DM7052 reports as a high power module, responds to reads (with
1671 * all bytes 0xff) at 0x51 but does not accept writes. In any case,
1672 * if the bit is already set, we're already in high power mode.
1673 */
1674 if (!!(val & BIT(0)) == enable)
1675 return 0;
1676
1677 if (enable)
1678 val |= BIT(0);
1679 else
1680 val &= ~BIT(0);
1681
1682 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1683 if (err != sizeof(val)) {
1684 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1685 return -EAGAIN;
1686 }
1687
1688 if (enable)
1689 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1690 sfp->module_power_mW / 1000,
1691 (sfp->module_power_mW / 100) % 10);
1692
1693 return 0;
1694 }
1695
1696 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1697 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1698 * not support multibyte reads from the EEPROM. Each multi-byte read
1699 * operation returns just one byte of EEPROM followed by zeros. There is
1700 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1701 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1702 * name and vendor id into EEPROM, so there is even no way to detect if
1703 * module is V-SOL V2801F. Therefore check for those zeros in the read
1704 * data and then based on check switch to reading EEPROM to one byte
1705 * at a time.
1706 */
sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)1707 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1708 {
1709 size_t i, block_size = sfp->i2c_block_size;
1710
1711 /* Already using byte IO */
1712 if (block_size == 1)
1713 return false;
1714
1715 for (i = 1; i < len; i += block_size) {
1716 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1717 return false;
1718 }
1719 return true;
1720 }
1721
sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)1722 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1723 {
1724 u8 check;
1725 int err;
1726
1727 if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1728 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1729 id->base.connector != SFF8024_CONNECTOR_LC) {
1730 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1731 id->base.phys_id = SFF8024_ID_SFF_8472;
1732 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1733 id->base.connector = SFF8024_CONNECTOR_LC;
1734 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1735 if (err != 3) {
1736 dev_err(sfp->dev, "Failed to rewrite module EEPROM: %d\n", err);
1737 return err;
1738 }
1739
1740 /* Cotsworks modules have been found to require a delay between write operations. */
1741 mdelay(50);
1742
1743 /* Update base structure checksum */
1744 check = sfp_check(&id->base, sizeof(id->base) - 1);
1745 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1746 if (err != 1) {
1747 dev_err(sfp->dev, "Failed to update base structure checksum in fiber module EEPROM: %d\n", err);
1748 return err;
1749 }
1750 }
1751 return 0;
1752 }
1753
sfp_sm_mod_probe(struct sfp *sfp, bool report)1754 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1755 {
1756 /* SFP module inserted - read I2C data */
1757 struct sfp_eeprom_id id;
1758 bool cotsworks_sfbg;
1759 bool cotsworks;
1760 u8 check;
1761 int ret;
1762
1763 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
1764
1765 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1766 if (ret < 0) {
1767 if (report)
1768 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1769 return -EAGAIN;
1770 }
1771
1772 if (ret != sizeof(id.base)) {
1773 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1774 return -EAGAIN;
1775 }
1776
1777 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1778 * address 0x51 is just one byte at a time. Also SFF-8472 requires
1779 * that EEPROM supports atomic 16bit read operation for diagnostic
1780 * fields, so do not switch to one byte reading at a time unless it
1781 * is really required and we have no other option.
1782 */
1783 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1784 dev_info(sfp->dev,
1785 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1786 dev_info(sfp->dev,
1787 "Switching to reading EEPROM to one byte at a time\n");
1788 sfp->i2c_block_size = 1;
1789
1790 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1791 if (ret < 0) {
1792 if (report)
1793 dev_err(sfp->dev, "failed to read EEPROM: %d\n",
1794 ret);
1795 return -EAGAIN;
1796 }
1797
1798 if (ret != sizeof(id.base)) {
1799 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1800 return -EAGAIN;
1801 }
1802 }
1803
1804 /* Cotsworks do not seem to update the checksums when they
1805 * do the final programming with the final module part number,
1806 * serial number and date code.
1807 */
1808 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
1809 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1810
1811 /* Cotsworks SFF module EEPROM do not always have valid phys_id,
1812 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
1813 * Cotsworks PN matches and bytes are not correct.
1814 */
1815 if (cotsworks && cotsworks_sfbg) {
1816 ret = sfp_cotsworks_fixup_check(sfp, &id);
1817 if (ret < 0)
1818 return ret;
1819 }
1820
1821 /* Validate the checksum over the base structure */
1822 check = sfp_check(&id.base, sizeof(id.base) - 1);
1823 if (check != id.base.cc_base) {
1824 if (cotsworks) {
1825 dev_warn(sfp->dev,
1826 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1827 check, id.base.cc_base);
1828 } else {
1829 dev_err(sfp->dev,
1830 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1831 check, id.base.cc_base);
1832 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1833 16, 1, &id, sizeof(id), true);
1834 return -EINVAL;
1835 }
1836 }
1837
1838 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
1839 if (ret < 0) {
1840 if (report)
1841 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1842 return -EAGAIN;
1843 }
1844
1845 if (ret != sizeof(id.ext)) {
1846 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1847 return -EAGAIN;
1848 }
1849
1850 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1851 if (check != id.ext.cc_ext) {
1852 if (cotsworks) {
1853 dev_warn(sfp->dev,
1854 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1855 check, id.ext.cc_ext);
1856 } else {
1857 dev_err(sfp->dev,
1858 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1859 check, id.ext.cc_ext);
1860 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1861 16, 1, &id, sizeof(id), true);
1862 memset(&id.ext, 0, sizeof(id.ext));
1863 }
1864 }
1865
1866 sfp->id = id;
1867
1868 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1869 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1870 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1871 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1872 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1873 (int)sizeof(id.ext.datecode), id.ext.datecode);
1874
1875 /* Check whether we support this module */
1876 if (!sfp->type->module_supported(&id)) {
1877 dev_err(sfp->dev,
1878 "module is not supported - phys id 0x%02x 0x%02x\n",
1879 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1880 return -EINVAL;
1881 }
1882
1883 /* If the module requires address swap mode, warn about it */
1884 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1885 dev_warn(sfp->dev,
1886 "module address swap to access page 0xA2 is not supported.\n");
1887
1888 /* Parse the module power requirement */
1889 ret = sfp_module_parse_power(sfp);
1890 if (ret < 0)
1891 return ret;
1892
1893 if (!memcmp(id.base.vendor_name, "ALCATELLUCENT ", 16) &&
1894 !memcmp(id.base.vendor_pn, "3FE46541AA ", 16))
1895 sfp->module_t_start_up = T_START_UP_BAD_GPON;
1896 else
1897 sfp->module_t_start_up = T_START_UP;
1898
1899 if (!memcmp(id.base.vendor_name, "HUAWEI ", 16) &&
1900 !memcmp(id.base.vendor_pn, "MA5671A ", 16))
1901 sfp->tx_fault_ignore = true;
1902 else
1903 sfp->tx_fault_ignore = false;
1904
1905 return 0;
1906 }
1907
sfp_sm_mod_remove(struct sfp *sfp)1908 static void sfp_sm_mod_remove(struct sfp *sfp)
1909 {
1910 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1911 sfp_module_remove(sfp->sfp_bus);
1912
1913 sfp_hwmon_remove(sfp);
1914
1915 memset(&sfp->id, 0, sizeof(sfp->id));
1916 sfp->module_power_mW = 0;
1917
1918 dev_info(sfp->dev, "module removed\n");
1919 }
1920
1921 /* This state machine tracks the upstream's state */
sfp_sm_device(struct sfp *sfp, unsigned int event)1922 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1923 {
1924 switch (sfp->sm_dev_state) {
1925 default:
1926 if (event == SFP_E_DEV_ATTACH)
1927 sfp->sm_dev_state = SFP_DEV_DOWN;
1928 break;
1929
1930 case SFP_DEV_DOWN:
1931 if (event == SFP_E_DEV_DETACH)
1932 sfp->sm_dev_state = SFP_DEV_DETACHED;
1933 else if (event == SFP_E_DEV_UP)
1934 sfp->sm_dev_state = SFP_DEV_UP;
1935 break;
1936
1937 case SFP_DEV_UP:
1938 if (event == SFP_E_DEV_DETACH)
1939 sfp->sm_dev_state = SFP_DEV_DETACHED;
1940 else if (event == SFP_E_DEV_DOWN)
1941 sfp->sm_dev_state = SFP_DEV_DOWN;
1942 break;
1943 }
1944 }
1945
1946 /* This state machine tracks the insert/remove state of the module, probes
1947 * the on-board EEPROM, and sets up the power level.
1948 */
sfp_sm_module(struct sfp *sfp, unsigned int event)1949 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
1950 {
1951 int err;
1952
1953 /* Handle remove event globally, it resets this state machine */
1954 if (event == SFP_E_REMOVE) {
1955 if (sfp->sm_mod_state > SFP_MOD_PROBE)
1956 sfp_sm_mod_remove(sfp);
1957 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
1958 return;
1959 }
1960
1961 /* Handle device detach globally */
1962 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
1963 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
1964 if (sfp->module_power_mW > 1000 &&
1965 sfp->sm_mod_state > SFP_MOD_HPOWER)
1966 sfp_sm_mod_hpower(sfp, false);
1967 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1968 return;
1969 }
1970
1971 switch (sfp->sm_mod_state) {
1972 default:
1973 if (event == SFP_E_INSERT) {
1974 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
1975 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
1976 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
1977 }
1978 break;
1979
1980 case SFP_MOD_PROBE:
1981 /* Wait for T_PROBE_INIT to time out */
1982 if (event != SFP_E_TIMEOUT)
1983 break;
1984
1985 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
1986 if (err == -EAGAIN) {
1987 if (sfp->sm_mod_tries_init &&
1988 --sfp->sm_mod_tries_init) {
1989 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
1990 break;
1991 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
1992 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
1993 dev_warn(sfp->dev,
1994 "please wait, module slow to respond\n");
1995 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
1996 break;
1997 }
1998 }
1999 if (err < 0) {
2000 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2001 break;
2002 }
2003
2004 err = sfp_hwmon_insert(sfp);
2005 if (err)
2006 dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
2007
2008 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2009 fallthrough;
2010 case SFP_MOD_WAITDEV:
2011 /* Ensure that the device is attached before proceeding */
2012 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2013 break;
2014
2015 /* Report the module insertion to the upstream device */
2016 err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
2017 if (err < 0) {
2018 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2019 break;
2020 }
2021
2022 /* If this is a power level 1 module, we are done */
2023 if (sfp->module_power_mW <= 1000)
2024 goto insert;
2025
2026 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2027 fallthrough;
2028 case SFP_MOD_HPOWER:
2029 /* Enable high power mode */
2030 err = sfp_sm_mod_hpower(sfp, true);
2031 if (err < 0) {
2032 if (err != -EAGAIN) {
2033 sfp_module_remove(sfp->sfp_bus);
2034 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2035 } else {
2036 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2037 }
2038 break;
2039 }
2040
2041 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2042 break;
2043
2044 case SFP_MOD_WAITPWR:
2045 /* Wait for T_HPOWER_LEVEL to time out */
2046 if (event != SFP_E_TIMEOUT)
2047 break;
2048
2049 insert:
2050 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2051 break;
2052
2053 case SFP_MOD_PRESENT:
2054 case SFP_MOD_ERROR:
2055 break;
2056 }
2057 }
2058
sfp_sm_main(struct sfp *sfp, unsigned int event)2059 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2060 {
2061 unsigned long timeout;
2062 int ret;
2063
2064 /* Some events are global */
2065 if (sfp->sm_state != SFP_S_DOWN &&
2066 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2067 sfp->sm_dev_state != SFP_DEV_UP)) {
2068 if (sfp->sm_state == SFP_S_LINK_UP &&
2069 sfp->sm_dev_state == SFP_DEV_UP)
2070 sfp_sm_link_down(sfp);
2071 if (sfp->sm_state > SFP_S_INIT)
2072 sfp_module_stop(sfp->sfp_bus);
2073 if (sfp->mod_phy)
2074 sfp_sm_phy_detach(sfp);
2075 sfp_module_tx_disable(sfp);
2076 sfp_soft_stop_poll(sfp);
2077 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2078 return;
2079 }
2080
2081 /* The main state machine */
2082 switch (sfp->sm_state) {
2083 case SFP_S_DOWN:
2084 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2085 sfp->sm_dev_state != SFP_DEV_UP)
2086 break;
2087
2088 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2089 sfp_soft_start_poll(sfp);
2090
2091 sfp_module_tx_enable(sfp);
2092
2093 /* Initialise the fault clearance retries */
2094 sfp->sm_fault_retries = N_FAULT_INIT;
2095
2096 /* We need to check the TX_FAULT state, which is not defined
2097 * while TX_DISABLE is asserted. The earliest we want to do
2098 * anything (such as probe for a PHY) is 50ms.
2099 */
2100 sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
2101 break;
2102
2103 case SFP_S_WAIT:
2104 if (event != SFP_E_TIMEOUT)
2105 break;
2106
2107 if (sfp->state & SFP_F_TX_FAULT) {
2108 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2109 * from the TX_DISABLE deassertion for the module to
2110 * initialise, which is indicated by TX_FAULT
2111 * deasserting.
2112 */
2113 timeout = sfp->module_t_start_up;
2114 if (timeout > T_WAIT)
2115 timeout -= T_WAIT;
2116 else
2117 timeout = 1;
2118
2119 sfp_sm_next(sfp, SFP_S_INIT, timeout);
2120 } else {
2121 /* TX_FAULT is not asserted, assume the module has
2122 * finished initialising.
2123 */
2124 goto init_done;
2125 }
2126 break;
2127
2128 case SFP_S_INIT:
2129 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2130 /* TX_FAULT is still asserted after t_init or
2131 * or t_start_up, so assume there is a fault.
2132 */
2133 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2134 sfp->sm_fault_retries == N_FAULT_INIT);
2135 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2136 init_done:
2137 sfp->sm_phy_retries = R_PHY_RETRY;
2138 goto phy_probe;
2139 }
2140 break;
2141
2142 case SFP_S_INIT_PHY:
2143 if (event != SFP_E_TIMEOUT)
2144 break;
2145 phy_probe:
2146 /* TX_FAULT deasserted or we timed out with TX_FAULT
2147 * clear. Probe for the PHY and check the LOS state.
2148 */
2149 ret = sfp_sm_probe_for_phy(sfp);
2150 if (ret == -ENODEV) {
2151 if (--sfp->sm_phy_retries) {
2152 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2153 break;
2154 } else {
2155 dev_info(sfp->dev, "no PHY detected\n");
2156 }
2157 } else if (ret) {
2158 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2159 break;
2160 }
2161 if (sfp_module_start(sfp->sfp_bus)) {
2162 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2163 break;
2164 }
2165 sfp_sm_link_check_los(sfp);
2166
2167 /* Reset the fault retry count */
2168 sfp->sm_fault_retries = N_FAULT;
2169 break;
2170
2171 case SFP_S_INIT_TX_FAULT:
2172 if (event == SFP_E_TIMEOUT) {
2173 sfp_module_tx_fault_reset(sfp);
2174 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2175 }
2176 break;
2177
2178 case SFP_S_WAIT_LOS:
2179 if (event == SFP_E_TX_FAULT)
2180 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2181 else if (sfp_los_event_inactive(sfp, event))
2182 sfp_sm_link_up(sfp);
2183 break;
2184
2185 case SFP_S_LINK_UP:
2186 if (event == SFP_E_TX_FAULT) {
2187 sfp_sm_link_down(sfp);
2188 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2189 } else if (sfp_los_event_active(sfp, event)) {
2190 sfp_sm_link_down(sfp);
2191 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2192 }
2193 break;
2194
2195 case SFP_S_TX_FAULT:
2196 if (event == SFP_E_TIMEOUT) {
2197 sfp_module_tx_fault_reset(sfp);
2198 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2199 }
2200 break;
2201
2202 case SFP_S_REINIT:
2203 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2204 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2205 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2206 dev_info(sfp->dev, "module transmit fault recovered\n");
2207 sfp_sm_link_check_los(sfp);
2208 }
2209 break;
2210
2211 case SFP_S_TX_DISABLE:
2212 break;
2213 }
2214 }
2215
sfp_sm_event(struct sfp *sfp, unsigned int event)2216 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2217 {
2218 mutex_lock(&sfp->sm_mutex);
2219
2220 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2221 mod_state_to_str(sfp->sm_mod_state),
2222 dev_state_to_str(sfp->sm_dev_state),
2223 sm_state_to_str(sfp->sm_state),
2224 event_to_str(event));
2225
2226 sfp_sm_device(sfp, event);
2227 sfp_sm_module(sfp, event);
2228 sfp_sm_main(sfp, event);
2229
2230 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2231 mod_state_to_str(sfp->sm_mod_state),
2232 dev_state_to_str(sfp->sm_dev_state),
2233 sm_state_to_str(sfp->sm_state));
2234
2235 mutex_unlock(&sfp->sm_mutex);
2236 }
2237
sfp_attach(struct sfp *sfp)2238 static void sfp_attach(struct sfp *sfp)
2239 {
2240 sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2241 }
2242
sfp_detach(struct sfp *sfp)2243 static void sfp_detach(struct sfp *sfp)
2244 {
2245 sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2246 }
2247
sfp_start(struct sfp *sfp)2248 static void sfp_start(struct sfp *sfp)
2249 {
2250 sfp_sm_event(sfp, SFP_E_DEV_UP);
2251 }
2252
sfp_stop(struct sfp *sfp)2253 static void sfp_stop(struct sfp *sfp)
2254 {
2255 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2256 }
2257
sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)2258 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2259 {
2260 /* locking... and check module is present */
2261
2262 if (sfp->id.ext.sff8472_compliance &&
2263 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2264 modinfo->type = ETH_MODULE_SFF_8472;
2265 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2266 } else {
2267 modinfo->type = ETH_MODULE_SFF_8079;
2268 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2269 }
2270 return 0;
2271 }
2272
sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, u8 *data)2273 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2274 u8 *data)
2275 {
2276 unsigned int first, last, len;
2277 int ret;
2278
2279 if (ee->len == 0)
2280 return -EINVAL;
2281
2282 first = ee->offset;
2283 last = ee->offset + ee->len;
2284 if (first < ETH_MODULE_SFF_8079_LEN) {
2285 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2286 len -= first;
2287
2288 ret = sfp_read(sfp, false, first, data, len);
2289 if (ret < 0)
2290 return ret;
2291
2292 first += len;
2293 data += len;
2294 }
2295 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2296 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2297 len -= first;
2298 first -= ETH_MODULE_SFF_8079_LEN;
2299
2300 ret = sfp_read(sfp, true, first, data, len);
2301 if (ret < 0)
2302 return ret;
2303 }
2304 return 0;
2305 }
2306
2307 static const struct sfp_socket_ops sfp_module_ops = {
2308 .attach = sfp_attach,
2309 .detach = sfp_detach,
2310 .start = sfp_start,
2311 .stop = sfp_stop,
2312 .module_info = sfp_module_info,
2313 .module_eeprom = sfp_module_eeprom,
2314 };
2315
sfp_timeout(struct work_struct *work)2316 static void sfp_timeout(struct work_struct *work)
2317 {
2318 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2319
2320 rtnl_lock();
2321 sfp_sm_event(sfp, SFP_E_TIMEOUT);
2322 rtnl_unlock();
2323 }
2324
sfp_check_state(struct sfp *sfp)2325 static void sfp_check_state(struct sfp *sfp)
2326 {
2327 unsigned int state, i, changed;
2328
2329 mutex_lock(&sfp->st_mutex);
2330 state = sfp_get_state(sfp);
2331 changed = state ^ sfp->state;
2332 if (sfp->tx_fault_ignore)
2333 changed &= SFP_F_PRESENT | SFP_F_LOS;
2334 else
2335 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2336
2337 for (i = 0; i < GPIO_MAX; i++)
2338 if (changed & BIT(i))
2339 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2340 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2341
2342 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2343 sfp->state = state;
2344
2345 rtnl_lock();
2346 if (changed & SFP_F_PRESENT)
2347 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2348 SFP_E_INSERT : SFP_E_REMOVE);
2349
2350 if (changed & SFP_F_TX_FAULT)
2351 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2352 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2353
2354 if (changed & SFP_F_LOS)
2355 sfp_sm_event(sfp, state & SFP_F_LOS ?
2356 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2357 rtnl_unlock();
2358 mutex_unlock(&sfp->st_mutex);
2359 }
2360
sfp_irq(int irq, void *data)2361 static irqreturn_t sfp_irq(int irq, void *data)
2362 {
2363 struct sfp *sfp = data;
2364
2365 sfp_check_state(sfp);
2366
2367 return IRQ_HANDLED;
2368 }
2369
sfp_poll(struct work_struct *work)2370 static void sfp_poll(struct work_struct *work)
2371 {
2372 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2373
2374 sfp_check_state(sfp);
2375
2376 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2377 sfp->need_poll)
2378 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2379 }
2380
sfp_alloc(struct device *dev)2381 static struct sfp *sfp_alloc(struct device *dev)
2382 {
2383 struct sfp *sfp;
2384
2385 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2386 if (!sfp)
2387 return ERR_PTR(-ENOMEM);
2388
2389 sfp->dev = dev;
2390 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2391
2392 mutex_init(&sfp->sm_mutex);
2393 mutex_init(&sfp->st_mutex);
2394 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2395 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2396
2397 sfp_hwmon_init(sfp);
2398
2399 return sfp;
2400 }
2401
sfp_cleanup(void *data)2402 static void sfp_cleanup(void *data)
2403 {
2404 struct sfp *sfp = data;
2405
2406 sfp_hwmon_exit(sfp);
2407
2408 cancel_delayed_work_sync(&sfp->poll);
2409 cancel_delayed_work_sync(&sfp->timeout);
2410 if (sfp->i2c_mii) {
2411 mdiobus_unregister(sfp->i2c_mii);
2412 mdiobus_free(sfp->i2c_mii);
2413 }
2414 if (sfp->i2c)
2415 i2c_put_adapter(sfp->i2c);
2416 kfree(sfp);
2417 }
2418
sfp_probe(struct platform_device *pdev)2419 static int sfp_probe(struct platform_device *pdev)
2420 {
2421 const struct sff_data *sff;
2422 struct i2c_adapter *i2c;
2423 char *sfp_irq_name;
2424 struct sfp *sfp;
2425 int err, i;
2426
2427 sfp = sfp_alloc(&pdev->dev);
2428 if (IS_ERR(sfp))
2429 return PTR_ERR(sfp);
2430
2431 platform_set_drvdata(pdev, sfp);
2432
2433 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2434 if (err < 0)
2435 return err;
2436
2437 sff = sfp->type = &sfp_data;
2438
2439 if (pdev->dev.of_node) {
2440 struct device_node *node = pdev->dev.of_node;
2441 const struct of_device_id *id;
2442 struct device_node *np;
2443
2444 id = of_match_node(sfp_of_match, node);
2445 if (WARN_ON(!id))
2446 return -EINVAL;
2447
2448 sff = sfp->type = id->data;
2449
2450 np = of_parse_phandle(node, "i2c-bus", 0);
2451 if (!np) {
2452 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2453 return -ENODEV;
2454 }
2455
2456 i2c = of_find_i2c_adapter_by_node(np);
2457 of_node_put(np);
2458 } else if (has_acpi_companion(&pdev->dev)) {
2459 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2460 struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2461 struct fwnode_reference_args args;
2462 struct acpi_handle *acpi_handle;
2463 int ret;
2464
2465 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2466 if (ret || !is_acpi_device_node(args.fwnode)) {
2467 dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2468 return -ENODEV;
2469 }
2470
2471 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2472 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2473 } else {
2474 return -EINVAL;
2475 }
2476
2477 if (!i2c)
2478 return -EPROBE_DEFER;
2479
2480 err = sfp_i2c_configure(sfp, i2c);
2481 if (err < 0) {
2482 i2c_put_adapter(i2c);
2483 return err;
2484 }
2485
2486 for (i = 0; i < GPIO_MAX; i++)
2487 if (sff->gpios & BIT(i)) {
2488 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2489 gpio_of_names[i], gpio_flags[i]);
2490 if (IS_ERR(sfp->gpio[i]))
2491 return PTR_ERR(sfp->gpio[i]);
2492 }
2493
2494 sfp->get_state = sfp_gpio_get_state;
2495 sfp->set_state = sfp_gpio_set_state;
2496
2497 /* Modules that have no detect signal are always present */
2498 if (!(sfp->gpio[GPIO_MODDEF0]))
2499 sfp->get_state = sff_gpio_get_state;
2500
2501 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2502 &sfp->max_power_mW);
2503 if (!sfp->max_power_mW)
2504 sfp->max_power_mW = 1000;
2505
2506 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2507 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2508
2509 /* Get the initial state, and always signal TX disable,
2510 * since the network interface will not be up.
2511 */
2512 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2513
2514 if (sfp->gpio[GPIO_RATE_SELECT] &&
2515 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2516 sfp->state |= SFP_F_RATE_SELECT;
2517 sfp_set_state(sfp, sfp->state);
2518 sfp_module_tx_disable(sfp);
2519 if (sfp->state & SFP_F_PRESENT) {
2520 rtnl_lock();
2521 sfp_sm_event(sfp, SFP_E_INSERT);
2522 rtnl_unlock();
2523 }
2524
2525 for (i = 0; i < GPIO_MAX; i++) {
2526 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2527 continue;
2528
2529 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2530 if (sfp->gpio_irq[i] < 0) {
2531 sfp->gpio_irq[i] = 0;
2532 sfp->need_poll = true;
2533 continue;
2534 }
2535
2536 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2537 "%s-%s", dev_name(sfp->dev),
2538 gpio_of_names[i]);
2539
2540 if (!sfp_irq_name)
2541 return -ENOMEM;
2542
2543 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2544 NULL, sfp_irq,
2545 IRQF_ONESHOT |
2546 IRQF_TRIGGER_RISING |
2547 IRQF_TRIGGER_FALLING,
2548 sfp_irq_name, sfp);
2549 if (err) {
2550 sfp->gpio_irq[i] = 0;
2551 sfp->need_poll = true;
2552 }
2553 }
2554
2555 if (sfp->need_poll)
2556 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2557
2558 /* We could have an issue in cases no Tx disable pin is available or
2559 * wired as modules using a laser as their light source will continue to
2560 * be active when the fiber is removed. This could be a safety issue and
2561 * we should at least warn the user about that.
2562 */
2563 if (!sfp->gpio[GPIO_TX_DISABLE])
2564 dev_warn(sfp->dev,
2565 "No tx_disable pin: SFP modules will always be emitting.\n");
2566
2567 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2568 if (!sfp->sfp_bus)
2569 return -ENOMEM;
2570
2571 return 0;
2572 }
2573
sfp_remove(struct platform_device *pdev)2574 static int sfp_remove(struct platform_device *pdev)
2575 {
2576 struct sfp *sfp = platform_get_drvdata(pdev);
2577
2578 sfp_unregister_socket(sfp->sfp_bus);
2579
2580 rtnl_lock();
2581 sfp_sm_event(sfp, SFP_E_REMOVE);
2582 rtnl_unlock();
2583
2584 return 0;
2585 }
2586
sfp_shutdown(struct platform_device *pdev)2587 static void sfp_shutdown(struct platform_device *pdev)
2588 {
2589 struct sfp *sfp = platform_get_drvdata(pdev);
2590 int i;
2591
2592 for (i = 0; i < GPIO_MAX; i++) {
2593 if (!sfp->gpio_irq[i])
2594 continue;
2595
2596 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2597 }
2598
2599 cancel_delayed_work_sync(&sfp->poll);
2600 cancel_delayed_work_sync(&sfp->timeout);
2601 }
2602
2603 static struct platform_driver sfp_driver = {
2604 .probe = sfp_probe,
2605 .remove = sfp_remove,
2606 .shutdown = sfp_shutdown,
2607 .driver = {
2608 .name = "sfp",
2609 .of_match_table = sfp_of_match,
2610 },
2611 };
2612
sfp_init(void)2613 static int sfp_init(void)
2614 {
2615 poll_jiffies = msecs_to_jiffies(100);
2616
2617 return platform_driver_register(&sfp_driver);
2618 }
2619 module_init(sfp_init);
2620
sfp_exit(void)2621 static void sfp_exit(void)
2622 {
2623 platform_driver_unregister(&sfp_driver);
2624 }
2625 module_exit(sfp_exit);
2626
2627 MODULE_ALIAS("platform:sfp");
2628 MODULE_AUTHOR("Russell King");
2629 MODULE_LICENSE("GPL v2");
2630