1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/acpi.h>
3 #include <linux/ctype.h>
4 #include <linux/delay.h>
5 #include <linux/gpio/consumer.h>
6 #include <linux/hwmon.h>
7 #include <linux/i2c.h>
8 #include <linux/interrupt.h>
9 #include <linux/jiffies.h>
10 #include <linux/mdio/mdio-i2c.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/of.h>
14 #include <linux/phy.h>
15 #include <linux/platform_device.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 
20 #include "sfp.h"
21 #include "swphy.h"
22 
23 enum {
24 	GPIO_MODDEF0,
25 	GPIO_LOS,
26 	GPIO_TX_FAULT,
27 	GPIO_TX_DISABLE,
28 	GPIO_RATE_SELECT,
29 	GPIO_MAX,
30 
31 	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 	SFP_F_LOS = BIT(GPIO_LOS),
33 	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 	SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
36 
37 	SFP_E_INSERT = 0,
38 	SFP_E_REMOVE,
39 	SFP_E_DEV_ATTACH,
40 	SFP_E_DEV_DETACH,
41 	SFP_E_DEV_DOWN,
42 	SFP_E_DEV_UP,
43 	SFP_E_TX_FAULT,
44 	SFP_E_TX_CLEAR,
45 	SFP_E_LOS_HIGH,
46 	SFP_E_LOS_LOW,
47 	SFP_E_TIMEOUT,
48 
49 	SFP_MOD_EMPTY = 0,
50 	SFP_MOD_ERROR,
51 	SFP_MOD_PROBE,
52 	SFP_MOD_WAITDEV,
53 	SFP_MOD_HPOWER,
54 	SFP_MOD_WAITPWR,
55 	SFP_MOD_PRESENT,
56 
57 	SFP_DEV_DETACHED = 0,
58 	SFP_DEV_DOWN,
59 	SFP_DEV_UP,
60 
61 	SFP_S_DOWN = 0,
62 	SFP_S_FAIL,
63 	SFP_S_WAIT,
64 	SFP_S_INIT,
65 	SFP_S_INIT_PHY,
66 	SFP_S_INIT_TX_FAULT,
67 	SFP_S_WAIT_LOS,
68 	SFP_S_LINK_UP,
69 	SFP_S_TX_FAULT,
70 	SFP_S_REINIT,
71 	SFP_S_TX_DISABLE,
72 };
73 
74 static const char  * const mod_state_strings[] = {
75 	[SFP_MOD_EMPTY] = "empty",
76 	[SFP_MOD_ERROR] = "error",
77 	[SFP_MOD_PROBE] = "probe",
78 	[SFP_MOD_WAITDEV] = "waitdev",
79 	[SFP_MOD_HPOWER] = "hpower",
80 	[SFP_MOD_WAITPWR] = "waitpwr",
81 	[SFP_MOD_PRESENT] = "present",
82 };
83 
mod_state_to_str(unsigned short mod_state)84 static const char *mod_state_to_str(unsigned short mod_state)
85 {
86 	if (mod_state >= ARRAY_SIZE(mod_state_strings))
87 		return "Unknown module state";
88 	return mod_state_strings[mod_state];
89 }
90 
91 static const char * const dev_state_strings[] = {
92 	[SFP_DEV_DETACHED] = "detached",
93 	[SFP_DEV_DOWN] = "down",
94 	[SFP_DEV_UP] = "up",
95 };
96 
dev_state_to_str(unsigned short dev_state)97 static const char *dev_state_to_str(unsigned short dev_state)
98 {
99 	if (dev_state >= ARRAY_SIZE(dev_state_strings))
100 		return "Unknown device state";
101 	return dev_state_strings[dev_state];
102 }
103 
104 static const char * const event_strings[] = {
105 	[SFP_E_INSERT] = "insert",
106 	[SFP_E_REMOVE] = "remove",
107 	[SFP_E_DEV_ATTACH] = "dev_attach",
108 	[SFP_E_DEV_DETACH] = "dev_detach",
109 	[SFP_E_DEV_DOWN] = "dev_down",
110 	[SFP_E_DEV_UP] = "dev_up",
111 	[SFP_E_TX_FAULT] = "tx_fault",
112 	[SFP_E_TX_CLEAR] = "tx_clear",
113 	[SFP_E_LOS_HIGH] = "los_high",
114 	[SFP_E_LOS_LOW] = "los_low",
115 	[SFP_E_TIMEOUT] = "timeout",
116 };
117 
event_to_str(unsigned short event)118 static const char *event_to_str(unsigned short event)
119 {
120 	if (event >= ARRAY_SIZE(event_strings))
121 		return "Unknown event";
122 	return event_strings[event];
123 }
124 
125 static const char * const sm_state_strings[] = {
126 	[SFP_S_DOWN] = "down",
127 	[SFP_S_FAIL] = "fail",
128 	[SFP_S_WAIT] = "wait",
129 	[SFP_S_INIT] = "init",
130 	[SFP_S_INIT_PHY] = "init_phy",
131 	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
132 	[SFP_S_WAIT_LOS] = "wait_los",
133 	[SFP_S_LINK_UP] = "link_up",
134 	[SFP_S_TX_FAULT] = "tx_fault",
135 	[SFP_S_REINIT] = "reinit",
136 	[SFP_S_TX_DISABLE] = "tx_disable",
137 };
138 
sm_state_to_str(unsigned short sm_state)139 static const char *sm_state_to_str(unsigned short sm_state)
140 {
141 	if (sm_state >= ARRAY_SIZE(sm_state_strings))
142 		return "Unknown state";
143 	return sm_state_strings[sm_state];
144 }
145 
146 static const char *gpio_of_names[] = {
147 	"mod-def0",
148 	"los",
149 	"tx-fault",
150 	"tx-disable",
151 	"rate-select0",
152 };
153 
154 static const enum gpiod_flags gpio_flags[] = {
155 	GPIOD_IN,
156 	GPIOD_IN,
157 	GPIOD_IN,
158 	GPIOD_ASIS,
159 	GPIOD_ASIS,
160 };
161 
162 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
163  * non-cooled module to initialise its laser safety circuitry. We wait
164  * an initial T_WAIT period before we check the tx fault to give any PHY
165  * on board (for a copper SFP) time to initialise.
166  */
167 #define T_WAIT			msecs_to_jiffies(50)
168 #define T_START_UP		msecs_to_jiffies(300)
169 #define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
170 
171 /* t_reset is the time required to assert the TX_DISABLE signal to reset
172  * an indicated TX_FAULT.
173  */
174 #define T_RESET_US		10
175 #define T_FAULT_RECOVER		msecs_to_jiffies(1000)
176 
177 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
178  * time. If the TX_FAULT signal is not deasserted after this number of
179  * attempts at clearing it, we decide that the module is faulty.
180  * N_FAULT is the same but after the module has initialised.
181  */
182 #define N_FAULT_INIT		5
183 #define N_FAULT			5
184 
185 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
186  * R_PHY_RETRY is the number of attempts.
187  */
188 #define T_PHY_RETRY		msecs_to_jiffies(50)
189 #define R_PHY_RETRY		12
190 
191 /* SFP module presence detection is poor: the three MOD DEF signals are
192  * the same length on the PCB, which means it's possible for MOD DEF 0 to
193  * connect before the I2C bus on MOD DEF 1/2.
194  *
195  * The SFF-8472 specifies t_serial ("Time from power on until module is
196  * ready for data transmission over the two wire serial bus.") as 300ms.
197  */
198 #define T_SERIAL		msecs_to_jiffies(300)
199 #define T_HPOWER_LEVEL		msecs_to_jiffies(300)
200 #define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
201 #define R_PROBE_RETRY_INIT	10
202 #define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
203 #define R_PROBE_RETRY_SLOW	12
204 
205 /* SFP modules appear to always have their PHY configured for bus address
206  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
207  */
208 #define SFP_PHY_ADDR	22
209 
210 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
211  * at a time. Some SFP modules and also some Linux I2C drivers do not like
212  * reads longer than 16 bytes.
213  */
214 #define SFP_EEPROM_BLOCK_SIZE	16
215 
216 struct sff_data {
217 	unsigned int gpios;
218 	bool (*module_supported)(const struct sfp_eeprom_id *id);
219 };
220 
221 struct sfp {
222 	struct device *dev;
223 	struct i2c_adapter *i2c;
224 	struct mii_bus *i2c_mii;
225 	struct sfp_bus *sfp_bus;
226 	struct phy_device *mod_phy;
227 	const struct sff_data *type;
228 	size_t i2c_block_size;
229 	u32 max_power_mW;
230 
231 	unsigned int (*get_state)(struct sfp *);
232 	void (*set_state)(struct sfp *, unsigned int);
233 	int (*read)(struct sfp *, bool, u8, void *, size_t);
234 	int (*write)(struct sfp *, bool, u8, void *, size_t);
235 
236 	struct gpio_desc *gpio[GPIO_MAX];
237 	int gpio_irq[GPIO_MAX];
238 
239 	bool need_poll;
240 
241 	struct mutex st_mutex;			/* Protects state */
242 	unsigned int state_soft_mask;
243 	unsigned int state;
244 	struct delayed_work poll;
245 	struct delayed_work timeout;
246 	struct mutex sm_mutex;			/* Protects state machine */
247 	unsigned char sm_mod_state;
248 	unsigned char sm_mod_tries_init;
249 	unsigned char sm_mod_tries;
250 	unsigned char sm_dev_state;
251 	unsigned short sm_state;
252 	unsigned char sm_fault_retries;
253 	unsigned char sm_phy_retries;
254 
255 	struct sfp_eeprom_id id;
256 	unsigned int module_power_mW;
257 	unsigned int module_t_start_up;
258 	bool tx_fault_ignore;
259 
260 #if IS_ENABLED(CONFIG_HWMON)
261 	struct sfp_diag diag;
262 	struct delayed_work hwmon_probe;
263 	unsigned int hwmon_tries;
264 	struct device *hwmon_dev;
265 	char *hwmon_name;
266 #endif
267 
268 };
269 
sff_module_supported(const struct sfp_eeprom_id *id)270 static bool sff_module_supported(const struct sfp_eeprom_id *id)
271 {
272 	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
273 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
274 }
275 
276 static const struct sff_data sff_data = {
277 	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
278 	.module_supported = sff_module_supported,
279 };
280 
sfp_module_supported(const struct sfp_eeprom_id *id)281 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
282 {
283 	if (id->base.phys_id == SFF8024_ID_SFP &&
284 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
285 		return true;
286 
287 	/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
288 	 * phys id SFF instead of SFP. Therefore mark this module explicitly
289 	 * as supported based on vendor name and pn match.
290 	 */
291 	if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
292 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
293 	    !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
294 	    !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
295 		return true;
296 
297 	return false;
298 }
299 
300 static const struct sff_data sfp_data = {
301 	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
302 		 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
303 	.module_supported = sfp_module_supported,
304 };
305 
306 static const struct of_device_id sfp_of_match[] = {
307 	{ .compatible = "sff,sff", .data = &sff_data, },
308 	{ .compatible = "sff,sfp", .data = &sfp_data, },
309 	{ },
310 };
311 MODULE_DEVICE_TABLE(of, sfp_of_match);
312 
313 static unsigned long poll_jiffies;
314 
sfp_gpio_get_state(struct sfp *sfp)315 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
316 {
317 	unsigned int i, state, v;
318 
319 	for (i = state = 0; i < GPIO_MAX; i++) {
320 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
321 			continue;
322 
323 		v = gpiod_get_value_cansleep(sfp->gpio[i]);
324 		if (v)
325 			state |= BIT(i);
326 	}
327 
328 	return state;
329 }
330 
sff_gpio_get_state(struct sfp *sfp)331 static unsigned int sff_gpio_get_state(struct sfp *sfp)
332 {
333 	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
334 }
335 
sfp_gpio_set_state(struct sfp *sfp, unsigned int state)336 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
337 {
338 	if (state & SFP_F_PRESENT) {
339 		/* If the module is present, drive the signals */
340 		if (sfp->gpio[GPIO_TX_DISABLE])
341 			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
342 					       state & SFP_F_TX_DISABLE);
343 		if (state & SFP_F_RATE_SELECT)
344 			gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
345 					       state & SFP_F_RATE_SELECT);
346 	} else {
347 		/* Otherwise, let them float to the pull-ups */
348 		if (sfp->gpio[GPIO_TX_DISABLE])
349 			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
350 		if (state & SFP_F_RATE_SELECT)
351 			gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
352 	}
353 }
354 
sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, size_t len)355 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
356 			size_t len)
357 {
358 	struct i2c_msg msgs[2];
359 	u8 bus_addr = a2 ? 0x51 : 0x50;
360 	size_t block_size = sfp->i2c_block_size;
361 	size_t this_len;
362 	int ret;
363 
364 	msgs[0].addr = bus_addr;
365 	msgs[0].flags = 0;
366 	msgs[0].len = 1;
367 	msgs[0].buf = &dev_addr;
368 	msgs[1].addr = bus_addr;
369 	msgs[1].flags = I2C_M_RD;
370 	msgs[1].len = len;
371 	msgs[1].buf = buf;
372 
373 	while (len) {
374 		this_len = len;
375 		if (this_len > block_size)
376 			this_len = block_size;
377 
378 		msgs[1].len = this_len;
379 
380 		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
381 		if (ret < 0)
382 			return ret;
383 
384 		if (ret != ARRAY_SIZE(msgs))
385 			break;
386 
387 		msgs[1].buf += this_len;
388 		dev_addr += this_len;
389 		len -= this_len;
390 	}
391 
392 	return msgs[1].buf - (u8 *)buf;
393 }
394 
sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, size_t len)395 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
396 	size_t len)
397 {
398 	struct i2c_msg msgs[1];
399 	u8 bus_addr = a2 ? 0x51 : 0x50;
400 	int ret;
401 
402 	msgs[0].addr = bus_addr;
403 	msgs[0].flags = 0;
404 	msgs[0].len = 1 + len;
405 	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
406 	if (!msgs[0].buf)
407 		return -ENOMEM;
408 
409 	msgs[0].buf[0] = dev_addr;
410 	memcpy(&msgs[0].buf[1], buf, len);
411 
412 	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
413 
414 	kfree(msgs[0].buf);
415 
416 	if (ret < 0)
417 		return ret;
418 
419 	return ret == ARRAY_SIZE(msgs) ? len : 0;
420 }
421 
sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)422 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
423 {
424 	struct mii_bus *i2c_mii;
425 	int ret;
426 
427 	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
428 		return -EINVAL;
429 
430 	sfp->i2c = i2c;
431 	sfp->read = sfp_i2c_read;
432 	sfp->write = sfp_i2c_write;
433 
434 	i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
435 	if (IS_ERR(i2c_mii))
436 		return PTR_ERR(i2c_mii);
437 
438 	i2c_mii->name = "SFP I2C Bus";
439 	i2c_mii->phy_mask = ~0;
440 
441 	ret = mdiobus_register(i2c_mii);
442 	if (ret < 0) {
443 		mdiobus_free(i2c_mii);
444 		return ret;
445 	}
446 
447 	sfp->i2c_mii = i2c_mii;
448 
449 	return 0;
450 }
451 
452 /* Interface */
sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)453 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
454 {
455 	return sfp->read(sfp, a2, addr, buf, len);
456 }
457 
sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)458 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
459 {
460 	return sfp->write(sfp, a2, addr, buf, len);
461 }
462 
sfp_soft_get_state(struct sfp *sfp)463 static unsigned int sfp_soft_get_state(struct sfp *sfp)
464 {
465 	unsigned int state = 0;
466 	u8 status;
467 	int ret;
468 
469 	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
470 	if (ret == sizeof(status)) {
471 		if (status & SFP_STATUS_RX_LOS)
472 			state |= SFP_F_LOS;
473 		if (status & SFP_STATUS_TX_FAULT)
474 			state |= SFP_F_TX_FAULT;
475 	} else {
476 		dev_err_ratelimited(sfp->dev,
477 				    "failed to read SFP soft status: %d\n",
478 				    ret);
479 		/* Preserve the current state */
480 		state = sfp->state;
481 	}
482 
483 	return state & sfp->state_soft_mask;
484 }
485 
sfp_soft_set_state(struct sfp *sfp, unsigned int state)486 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
487 {
488 	u8 status;
489 
490 	if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
491 		     sizeof(status)) {
492 		if (state & SFP_F_TX_DISABLE)
493 			status |= SFP_STATUS_TX_DISABLE_FORCE;
494 		else
495 			status &= ~SFP_STATUS_TX_DISABLE_FORCE;
496 
497 		sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
498 	}
499 }
500 
sfp_soft_start_poll(struct sfp *sfp)501 static void sfp_soft_start_poll(struct sfp *sfp)
502 {
503 	const struct sfp_eeprom_id *id = &sfp->id;
504 
505 	sfp->state_soft_mask = 0;
506 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
507 	    !sfp->gpio[GPIO_TX_DISABLE])
508 		sfp->state_soft_mask |= SFP_F_TX_DISABLE;
509 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
510 	    !sfp->gpio[GPIO_TX_FAULT])
511 		sfp->state_soft_mask |= SFP_F_TX_FAULT;
512 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
513 	    !sfp->gpio[GPIO_LOS])
514 		sfp->state_soft_mask |= SFP_F_LOS;
515 
516 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
517 	    !sfp->need_poll)
518 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
519 }
520 
sfp_soft_stop_poll(struct sfp *sfp)521 static void sfp_soft_stop_poll(struct sfp *sfp)
522 {
523 	sfp->state_soft_mask = 0;
524 }
525 
sfp_get_state(struct sfp *sfp)526 static unsigned int sfp_get_state(struct sfp *sfp)
527 {
528 	unsigned int state = sfp->get_state(sfp);
529 
530 	if (state & SFP_F_PRESENT &&
531 	    sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
532 		state |= sfp_soft_get_state(sfp);
533 
534 	return state;
535 }
536 
sfp_set_state(struct sfp *sfp, unsigned int state)537 static void sfp_set_state(struct sfp *sfp, unsigned int state)
538 {
539 	sfp->set_state(sfp, state);
540 
541 	if (state & SFP_F_PRESENT &&
542 	    sfp->state_soft_mask & SFP_F_TX_DISABLE)
543 		sfp_soft_set_state(sfp, state);
544 }
545 
sfp_check(void *buf, size_t len)546 static unsigned int sfp_check(void *buf, size_t len)
547 {
548 	u8 *p, check;
549 
550 	for (p = buf, check = 0; len; p++, len--)
551 		check += *p;
552 
553 	return check;
554 }
555 
556 /* hwmon */
557 #if IS_ENABLED(CONFIG_HWMON)
sfp_hwmon_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr, int channel)558 static umode_t sfp_hwmon_is_visible(const void *data,
559 				    enum hwmon_sensor_types type,
560 				    u32 attr, int channel)
561 {
562 	const struct sfp *sfp = data;
563 
564 	switch (type) {
565 	case hwmon_temp:
566 		switch (attr) {
567 		case hwmon_temp_min_alarm:
568 		case hwmon_temp_max_alarm:
569 		case hwmon_temp_lcrit_alarm:
570 		case hwmon_temp_crit_alarm:
571 		case hwmon_temp_min:
572 		case hwmon_temp_max:
573 		case hwmon_temp_lcrit:
574 		case hwmon_temp_crit:
575 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
576 				return 0;
577 			fallthrough;
578 		case hwmon_temp_input:
579 		case hwmon_temp_label:
580 			return 0444;
581 		default:
582 			return 0;
583 		}
584 	case hwmon_in:
585 		switch (attr) {
586 		case hwmon_in_min_alarm:
587 		case hwmon_in_max_alarm:
588 		case hwmon_in_lcrit_alarm:
589 		case hwmon_in_crit_alarm:
590 		case hwmon_in_min:
591 		case hwmon_in_max:
592 		case hwmon_in_lcrit:
593 		case hwmon_in_crit:
594 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
595 				return 0;
596 			fallthrough;
597 		case hwmon_in_input:
598 		case hwmon_in_label:
599 			return 0444;
600 		default:
601 			return 0;
602 		}
603 	case hwmon_curr:
604 		switch (attr) {
605 		case hwmon_curr_min_alarm:
606 		case hwmon_curr_max_alarm:
607 		case hwmon_curr_lcrit_alarm:
608 		case hwmon_curr_crit_alarm:
609 		case hwmon_curr_min:
610 		case hwmon_curr_max:
611 		case hwmon_curr_lcrit:
612 		case hwmon_curr_crit:
613 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
614 				return 0;
615 			fallthrough;
616 		case hwmon_curr_input:
617 		case hwmon_curr_label:
618 			return 0444;
619 		default:
620 			return 0;
621 		}
622 	case hwmon_power:
623 		/* External calibration of receive power requires
624 		 * floating point arithmetic. Doing that in the kernel
625 		 * is not easy, so just skip it. If the module does
626 		 * not require external calibration, we can however
627 		 * show receiver power, since FP is then not needed.
628 		 */
629 		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
630 		    channel == 1)
631 			return 0;
632 		switch (attr) {
633 		case hwmon_power_min_alarm:
634 		case hwmon_power_max_alarm:
635 		case hwmon_power_lcrit_alarm:
636 		case hwmon_power_crit_alarm:
637 		case hwmon_power_min:
638 		case hwmon_power_max:
639 		case hwmon_power_lcrit:
640 		case hwmon_power_crit:
641 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
642 				return 0;
643 			fallthrough;
644 		case hwmon_power_input:
645 		case hwmon_power_label:
646 			return 0444;
647 		default:
648 			return 0;
649 		}
650 	default:
651 		return 0;
652 	}
653 }
654 
sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)655 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
656 {
657 	__be16 val;
658 	int err;
659 
660 	err = sfp_read(sfp, true, reg, &val, sizeof(val));
661 	if (err < 0)
662 		return err;
663 
664 	*value = be16_to_cpu(val);
665 
666 	return 0;
667 }
668 
sfp_hwmon_to_rx_power(long *value)669 static void sfp_hwmon_to_rx_power(long *value)
670 {
671 	*value = DIV_ROUND_CLOSEST(*value, 10);
672 }
673 
sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, long *value)674 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
675 				long *value)
676 {
677 	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
678 		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
679 }
680 
sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)681 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
682 {
683 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
684 			    be16_to_cpu(sfp->diag.cal_t_offset), value);
685 
686 	if (*value >= 0x8000)
687 		*value -= 0x10000;
688 
689 	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
690 }
691 
sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)692 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
693 {
694 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
695 			    be16_to_cpu(sfp->diag.cal_v_offset), value);
696 
697 	*value = DIV_ROUND_CLOSEST(*value, 10);
698 }
699 
sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)700 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
701 {
702 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
703 			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
704 
705 	*value = DIV_ROUND_CLOSEST(*value, 500);
706 }
707 
sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)708 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
709 {
710 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
711 			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
712 
713 	*value = DIV_ROUND_CLOSEST(*value, 10);
714 }
715 
sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)716 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
717 {
718 	int err;
719 
720 	err = sfp_hwmon_read_sensor(sfp, reg, value);
721 	if (err < 0)
722 		return err;
723 
724 	sfp_hwmon_calibrate_temp(sfp, value);
725 
726 	return 0;
727 }
728 
sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)729 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
730 {
731 	int err;
732 
733 	err = sfp_hwmon_read_sensor(sfp, reg, value);
734 	if (err < 0)
735 		return err;
736 
737 	sfp_hwmon_calibrate_vcc(sfp, value);
738 
739 	return 0;
740 }
741 
sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)742 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
743 {
744 	int err;
745 
746 	err = sfp_hwmon_read_sensor(sfp, reg, value);
747 	if (err < 0)
748 		return err;
749 
750 	sfp_hwmon_calibrate_bias(sfp, value);
751 
752 	return 0;
753 }
754 
sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)755 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
756 {
757 	int err;
758 
759 	err = sfp_hwmon_read_sensor(sfp, reg, value);
760 	if (err < 0)
761 		return err;
762 
763 	sfp_hwmon_calibrate_tx_power(sfp, value);
764 
765 	return 0;
766 }
767 
sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)768 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
769 {
770 	int err;
771 
772 	err = sfp_hwmon_read_sensor(sfp, reg, value);
773 	if (err < 0)
774 		return err;
775 
776 	sfp_hwmon_to_rx_power(value);
777 
778 	return 0;
779 }
780 
sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)781 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
782 {
783 	u8 status;
784 	int err;
785 
786 	switch (attr) {
787 	case hwmon_temp_input:
788 		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
789 
790 	case hwmon_temp_lcrit:
791 		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
792 		sfp_hwmon_calibrate_temp(sfp, value);
793 		return 0;
794 
795 	case hwmon_temp_min:
796 		*value = be16_to_cpu(sfp->diag.temp_low_warn);
797 		sfp_hwmon_calibrate_temp(sfp, value);
798 		return 0;
799 	case hwmon_temp_max:
800 		*value = be16_to_cpu(sfp->diag.temp_high_warn);
801 		sfp_hwmon_calibrate_temp(sfp, value);
802 		return 0;
803 
804 	case hwmon_temp_crit:
805 		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
806 		sfp_hwmon_calibrate_temp(sfp, value);
807 		return 0;
808 
809 	case hwmon_temp_lcrit_alarm:
810 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
811 		if (err < 0)
812 			return err;
813 
814 		*value = !!(status & SFP_ALARM0_TEMP_LOW);
815 		return 0;
816 
817 	case hwmon_temp_min_alarm:
818 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
819 		if (err < 0)
820 			return err;
821 
822 		*value = !!(status & SFP_WARN0_TEMP_LOW);
823 		return 0;
824 
825 	case hwmon_temp_max_alarm:
826 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
827 		if (err < 0)
828 			return err;
829 
830 		*value = !!(status & SFP_WARN0_TEMP_HIGH);
831 		return 0;
832 
833 	case hwmon_temp_crit_alarm:
834 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
835 		if (err < 0)
836 			return err;
837 
838 		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
839 		return 0;
840 	default:
841 		return -EOPNOTSUPP;
842 	}
843 
844 	return -EOPNOTSUPP;
845 }
846 
sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)847 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
848 {
849 	u8 status;
850 	int err;
851 
852 	switch (attr) {
853 	case hwmon_in_input:
854 		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
855 
856 	case hwmon_in_lcrit:
857 		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
858 		sfp_hwmon_calibrate_vcc(sfp, value);
859 		return 0;
860 
861 	case hwmon_in_min:
862 		*value = be16_to_cpu(sfp->diag.volt_low_warn);
863 		sfp_hwmon_calibrate_vcc(sfp, value);
864 		return 0;
865 
866 	case hwmon_in_max:
867 		*value = be16_to_cpu(sfp->diag.volt_high_warn);
868 		sfp_hwmon_calibrate_vcc(sfp, value);
869 		return 0;
870 
871 	case hwmon_in_crit:
872 		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
873 		sfp_hwmon_calibrate_vcc(sfp, value);
874 		return 0;
875 
876 	case hwmon_in_lcrit_alarm:
877 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
878 		if (err < 0)
879 			return err;
880 
881 		*value = !!(status & SFP_ALARM0_VCC_LOW);
882 		return 0;
883 
884 	case hwmon_in_min_alarm:
885 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
886 		if (err < 0)
887 			return err;
888 
889 		*value = !!(status & SFP_WARN0_VCC_LOW);
890 		return 0;
891 
892 	case hwmon_in_max_alarm:
893 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
894 		if (err < 0)
895 			return err;
896 
897 		*value = !!(status & SFP_WARN0_VCC_HIGH);
898 		return 0;
899 
900 	case hwmon_in_crit_alarm:
901 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
902 		if (err < 0)
903 			return err;
904 
905 		*value = !!(status & SFP_ALARM0_VCC_HIGH);
906 		return 0;
907 	default:
908 		return -EOPNOTSUPP;
909 	}
910 
911 	return -EOPNOTSUPP;
912 }
913 
sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)914 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
915 {
916 	u8 status;
917 	int err;
918 
919 	switch (attr) {
920 	case hwmon_curr_input:
921 		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
922 
923 	case hwmon_curr_lcrit:
924 		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
925 		sfp_hwmon_calibrate_bias(sfp, value);
926 		return 0;
927 
928 	case hwmon_curr_min:
929 		*value = be16_to_cpu(sfp->diag.bias_low_warn);
930 		sfp_hwmon_calibrate_bias(sfp, value);
931 		return 0;
932 
933 	case hwmon_curr_max:
934 		*value = be16_to_cpu(sfp->diag.bias_high_warn);
935 		sfp_hwmon_calibrate_bias(sfp, value);
936 		return 0;
937 
938 	case hwmon_curr_crit:
939 		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
940 		sfp_hwmon_calibrate_bias(sfp, value);
941 		return 0;
942 
943 	case hwmon_curr_lcrit_alarm:
944 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
945 		if (err < 0)
946 			return err;
947 
948 		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
949 		return 0;
950 
951 	case hwmon_curr_min_alarm:
952 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
953 		if (err < 0)
954 			return err;
955 
956 		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
957 		return 0;
958 
959 	case hwmon_curr_max_alarm:
960 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
961 		if (err < 0)
962 			return err;
963 
964 		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
965 		return 0;
966 
967 	case hwmon_curr_crit_alarm:
968 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
969 		if (err < 0)
970 			return err;
971 
972 		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
973 		return 0;
974 	default:
975 		return -EOPNOTSUPP;
976 	}
977 
978 	return -EOPNOTSUPP;
979 }
980 
sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)981 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
982 {
983 	u8 status;
984 	int err;
985 
986 	switch (attr) {
987 	case hwmon_power_input:
988 		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
989 
990 	case hwmon_power_lcrit:
991 		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
992 		sfp_hwmon_calibrate_tx_power(sfp, value);
993 		return 0;
994 
995 	case hwmon_power_min:
996 		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
997 		sfp_hwmon_calibrate_tx_power(sfp, value);
998 		return 0;
999 
1000 	case hwmon_power_max:
1001 		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1002 		sfp_hwmon_calibrate_tx_power(sfp, value);
1003 		return 0;
1004 
1005 	case hwmon_power_crit:
1006 		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1007 		sfp_hwmon_calibrate_tx_power(sfp, value);
1008 		return 0;
1009 
1010 	case hwmon_power_lcrit_alarm:
1011 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1012 		if (err < 0)
1013 			return err;
1014 
1015 		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
1016 		return 0;
1017 
1018 	case hwmon_power_min_alarm:
1019 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1020 		if (err < 0)
1021 			return err;
1022 
1023 		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1024 		return 0;
1025 
1026 	case hwmon_power_max_alarm:
1027 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1028 		if (err < 0)
1029 			return err;
1030 
1031 		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1032 		return 0;
1033 
1034 	case hwmon_power_crit_alarm:
1035 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1036 		if (err < 0)
1037 			return err;
1038 
1039 		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1040 		return 0;
1041 	default:
1042 		return -EOPNOTSUPP;
1043 	}
1044 
1045 	return -EOPNOTSUPP;
1046 }
1047 
sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)1048 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1049 {
1050 	u8 status;
1051 	int err;
1052 
1053 	switch (attr) {
1054 	case hwmon_power_input:
1055 		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1056 
1057 	case hwmon_power_lcrit:
1058 		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1059 		sfp_hwmon_to_rx_power(value);
1060 		return 0;
1061 
1062 	case hwmon_power_min:
1063 		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1064 		sfp_hwmon_to_rx_power(value);
1065 		return 0;
1066 
1067 	case hwmon_power_max:
1068 		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1069 		sfp_hwmon_to_rx_power(value);
1070 		return 0;
1071 
1072 	case hwmon_power_crit:
1073 		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1074 		sfp_hwmon_to_rx_power(value);
1075 		return 0;
1076 
1077 	case hwmon_power_lcrit_alarm:
1078 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1079 		if (err < 0)
1080 			return err;
1081 
1082 		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1083 		return 0;
1084 
1085 	case hwmon_power_min_alarm:
1086 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1087 		if (err < 0)
1088 			return err;
1089 
1090 		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1091 		return 0;
1092 
1093 	case hwmon_power_max_alarm:
1094 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1095 		if (err < 0)
1096 			return err;
1097 
1098 		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1099 		return 0;
1100 
1101 	case hwmon_power_crit_alarm:
1102 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1103 		if (err < 0)
1104 			return err;
1105 
1106 		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1107 		return 0;
1108 	default:
1109 		return -EOPNOTSUPP;
1110 	}
1111 
1112 	return -EOPNOTSUPP;
1113 }
1114 
sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *value)1115 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1116 			  u32 attr, int channel, long *value)
1117 {
1118 	struct sfp *sfp = dev_get_drvdata(dev);
1119 
1120 	switch (type) {
1121 	case hwmon_temp:
1122 		return sfp_hwmon_temp(sfp, attr, value);
1123 	case hwmon_in:
1124 		return sfp_hwmon_vcc(sfp, attr, value);
1125 	case hwmon_curr:
1126 		return sfp_hwmon_bias(sfp, attr, value);
1127 	case hwmon_power:
1128 		switch (channel) {
1129 		case 0:
1130 			return sfp_hwmon_tx_power(sfp, attr, value);
1131 		case 1:
1132 			return sfp_hwmon_rx_power(sfp, attr, value);
1133 		default:
1134 			return -EOPNOTSUPP;
1135 		}
1136 	default:
1137 		return -EOPNOTSUPP;
1138 	}
1139 }
1140 
1141 static const char *const sfp_hwmon_power_labels[] = {
1142 	"TX_power",
1143 	"RX_power",
1144 };
1145 
sfp_hwmon_read_string(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, const char **str)1146 static int sfp_hwmon_read_string(struct device *dev,
1147 				 enum hwmon_sensor_types type,
1148 				 u32 attr, int channel, const char **str)
1149 {
1150 	switch (type) {
1151 	case hwmon_curr:
1152 		switch (attr) {
1153 		case hwmon_curr_label:
1154 			*str = "bias";
1155 			return 0;
1156 		default:
1157 			return -EOPNOTSUPP;
1158 		}
1159 		break;
1160 	case hwmon_temp:
1161 		switch (attr) {
1162 		case hwmon_temp_label:
1163 			*str = "temperature";
1164 			return 0;
1165 		default:
1166 			return -EOPNOTSUPP;
1167 		}
1168 		break;
1169 	case hwmon_in:
1170 		switch (attr) {
1171 		case hwmon_in_label:
1172 			*str = "VCC";
1173 			return 0;
1174 		default:
1175 			return -EOPNOTSUPP;
1176 		}
1177 		break;
1178 	case hwmon_power:
1179 		switch (attr) {
1180 		case hwmon_power_label:
1181 			*str = sfp_hwmon_power_labels[channel];
1182 			return 0;
1183 		default:
1184 			return -EOPNOTSUPP;
1185 		}
1186 		break;
1187 	default:
1188 		return -EOPNOTSUPP;
1189 	}
1190 
1191 	return -EOPNOTSUPP;
1192 }
1193 
1194 static const struct hwmon_ops sfp_hwmon_ops = {
1195 	.is_visible = sfp_hwmon_is_visible,
1196 	.read = sfp_hwmon_read,
1197 	.read_string = sfp_hwmon_read_string,
1198 };
1199 
1200 static u32 sfp_hwmon_chip_config[] = {
1201 	HWMON_C_REGISTER_TZ,
1202 	0,
1203 };
1204 
1205 static const struct hwmon_channel_info sfp_hwmon_chip = {
1206 	.type = hwmon_chip,
1207 	.config = sfp_hwmon_chip_config,
1208 };
1209 
1210 static u32 sfp_hwmon_temp_config[] = {
1211 	HWMON_T_INPUT |
1212 	HWMON_T_MAX | HWMON_T_MIN |
1213 	HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1214 	HWMON_T_CRIT | HWMON_T_LCRIT |
1215 	HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1216 	HWMON_T_LABEL,
1217 	0,
1218 };
1219 
1220 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1221 	.type = hwmon_temp,
1222 	.config = sfp_hwmon_temp_config,
1223 };
1224 
1225 static u32 sfp_hwmon_vcc_config[] = {
1226 	HWMON_I_INPUT |
1227 	HWMON_I_MAX | HWMON_I_MIN |
1228 	HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1229 	HWMON_I_CRIT | HWMON_I_LCRIT |
1230 	HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1231 	HWMON_I_LABEL,
1232 	0,
1233 };
1234 
1235 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1236 	.type = hwmon_in,
1237 	.config = sfp_hwmon_vcc_config,
1238 };
1239 
1240 static u32 sfp_hwmon_bias_config[] = {
1241 	HWMON_C_INPUT |
1242 	HWMON_C_MAX | HWMON_C_MIN |
1243 	HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1244 	HWMON_C_CRIT | HWMON_C_LCRIT |
1245 	HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1246 	HWMON_C_LABEL,
1247 	0,
1248 };
1249 
1250 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1251 	.type = hwmon_curr,
1252 	.config = sfp_hwmon_bias_config,
1253 };
1254 
1255 static u32 sfp_hwmon_power_config[] = {
1256 	/* Transmit power */
1257 	HWMON_P_INPUT |
1258 	HWMON_P_MAX | HWMON_P_MIN |
1259 	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1260 	HWMON_P_CRIT | HWMON_P_LCRIT |
1261 	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1262 	HWMON_P_LABEL,
1263 	/* Receive power */
1264 	HWMON_P_INPUT |
1265 	HWMON_P_MAX | HWMON_P_MIN |
1266 	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1267 	HWMON_P_CRIT | HWMON_P_LCRIT |
1268 	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1269 	HWMON_P_LABEL,
1270 	0,
1271 };
1272 
1273 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1274 	.type = hwmon_power,
1275 	.config = sfp_hwmon_power_config,
1276 };
1277 
1278 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1279 	&sfp_hwmon_chip,
1280 	&sfp_hwmon_vcc_channel_info,
1281 	&sfp_hwmon_temp_channel_info,
1282 	&sfp_hwmon_bias_channel_info,
1283 	&sfp_hwmon_power_channel_info,
1284 	NULL,
1285 };
1286 
1287 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1288 	.ops = &sfp_hwmon_ops,
1289 	.info = sfp_hwmon_info,
1290 };
1291 
sfp_hwmon_probe(struct work_struct *work)1292 static void sfp_hwmon_probe(struct work_struct *work)
1293 {
1294 	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1295 	int err, i;
1296 
1297 	/* hwmon interface needs to access 16bit registers in atomic way to
1298 	 * guarantee coherency of the diagnostic monitoring data. If it is not
1299 	 * possible to guarantee coherency because EEPROM is broken in such way
1300 	 * that does not support atomic 16bit read operation then we have to
1301 	 * skip registration of hwmon device.
1302 	 */
1303 	if (sfp->i2c_block_size < 2) {
1304 		dev_info(sfp->dev,
1305 			 "skipping hwmon device registration due to broken EEPROM\n");
1306 		dev_info(sfp->dev,
1307 			 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1308 		return;
1309 	}
1310 
1311 	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1312 	if (err < 0) {
1313 		if (sfp->hwmon_tries--) {
1314 			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1315 					 T_PROBE_RETRY_SLOW);
1316 		} else {
1317 			dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1318 		}
1319 		return;
1320 	}
1321 
1322 	sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1323 	if (!sfp->hwmon_name) {
1324 		dev_err(sfp->dev, "out of memory for hwmon name\n");
1325 		return;
1326 	}
1327 
1328 	for (i = 0; sfp->hwmon_name[i]; i++)
1329 		if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1330 			sfp->hwmon_name[i] = '_';
1331 
1332 	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1333 							 sfp->hwmon_name, sfp,
1334 							 &sfp_hwmon_chip_info,
1335 							 NULL);
1336 	if (IS_ERR(sfp->hwmon_dev))
1337 		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1338 			PTR_ERR(sfp->hwmon_dev));
1339 }
1340 
sfp_hwmon_insert(struct sfp *sfp)1341 static int sfp_hwmon_insert(struct sfp *sfp)
1342 {
1343 	if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1344 		return 0;
1345 
1346 	if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1347 		return 0;
1348 
1349 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1350 		/* This driver in general does not support address
1351 		 * change.
1352 		 */
1353 		return 0;
1354 
1355 	mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1356 	sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1357 
1358 	return 0;
1359 }
1360 
sfp_hwmon_remove(struct sfp *sfp)1361 static void sfp_hwmon_remove(struct sfp *sfp)
1362 {
1363 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1364 	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1365 		hwmon_device_unregister(sfp->hwmon_dev);
1366 		sfp->hwmon_dev = NULL;
1367 		kfree(sfp->hwmon_name);
1368 	}
1369 }
1370 
sfp_hwmon_init(struct sfp *sfp)1371 static int sfp_hwmon_init(struct sfp *sfp)
1372 {
1373 	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1374 
1375 	return 0;
1376 }
1377 
sfp_hwmon_exit(struct sfp *sfp)1378 static void sfp_hwmon_exit(struct sfp *sfp)
1379 {
1380 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1381 }
1382 #else
sfp_hwmon_insert(struct sfp *sfp)1383 static int sfp_hwmon_insert(struct sfp *sfp)
1384 {
1385 	return 0;
1386 }
1387 
sfp_hwmon_remove(struct sfp *sfp)1388 static void sfp_hwmon_remove(struct sfp *sfp)
1389 {
1390 }
1391 
sfp_hwmon_init(struct sfp *sfp)1392 static int sfp_hwmon_init(struct sfp *sfp)
1393 {
1394 	return 0;
1395 }
1396 
sfp_hwmon_exit(struct sfp *sfp)1397 static void sfp_hwmon_exit(struct sfp *sfp)
1398 {
1399 }
1400 #endif
1401 
1402 /* Helpers */
sfp_module_tx_disable(struct sfp *sfp)1403 static void sfp_module_tx_disable(struct sfp *sfp)
1404 {
1405 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1406 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1407 	sfp->state |= SFP_F_TX_DISABLE;
1408 	sfp_set_state(sfp, sfp->state);
1409 }
1410 
sfp_module_tx_enable(struct sfp *sfp)1411 static void sfp_module_tx_enable(struct sfp *sfp)
1412 {
1413 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1414 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1415 	sfp->state &= ~SFP_F_TX_DISABLE;
1416 	sfp_set_state(sfp, sfp->state);
1417 }
1418 
sfp_module_tx_fault_reset(struct sfp *sfp)1419 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1420 {
1421 	unsigned int state = sfp->state;
1422 
1423 	if (state & SFP_F_TX_DISABLE)
1424 		return;
1425 
1426 	sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1427 
1428 	udelay(T_RESET_US);
1429 
1430 	sfp_set_state(sfp, state);
1431 }
1432 
1433 /* SFP state machine */
sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)1434 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1435 {
1436 	if (timeout)
1437 		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1438 				 timeout);
1439 	else
1440 		cancel_delayed_work(&sfp->timeout);
1441 }
1442 
sfp_sm_next(struct sfp *sfp, unsigned int state, unsigned int timeout)1443 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1444 			unsigned int timeout)
1445 {
1446 	sfp->sm_state = state;
1447 	sfp_sm_set_timer(sfp, timeout);
1448 }
1449 
sfp_sm_mod_next(struct sfp *sfp, unsigned int state, unsigned int timeout)1450 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1451 			    unsigned int timeout)
1452 {
1453 	sfp->sm_mod_state = state;
1454 	sfp_sm_set_timer(sfp, timeout);
1455 }
1456 
sfp_sm_phy_detach(struct sfp *sfp)1457 static void sfp_sm_phy_detach(struct sfp *sfp)
1458 {
1459 	sfp_remove_phy(sfp->sfp_bus);
1460 	phy_device_remove(sfp->mod_phy);
1461 	phy_device_free(sfp->mod_phy);
1462 	sfp->mod_phy = NULL;
1463 }
1464 
sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)1465 static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
1466 {
1467 	struct phy_device *phy;
1468 	int err;
1469 
1470 	phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
1471 	if (phy == ERR_PTR(-ENODEV))
1472 		return PTR_ERR(phy);
1473 	if (IS_ERR(phy)) {
1474 		dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1475 		return PTR_ERR(phy);
1476 	}
1477 
1478 	err = phy_device_register(phy);
1479 	if (err) {
1480 		phy_device_free(phy);
1481 		dev_err(sfp->dev, "phy_device_register failed: %d\n", err);
1482 		return err;
1483 	}
1484 
1485 	err = sfp_add_phy(sfp->sfp_bus, phy);
1486 	if (err) {
1487 		phy_device_remove(phy);
1488 		phy_device_free(phy);
1489 		dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1490 		return err;
1491 	}
1492 
1493 	sfp->mod_phy = phy;
1494 
1495 	return 0;
1496 }
1497 
sfp_sm_link_up(struct sfp *sfp)1498 static void sfp_sm_link_up(struct sfp *sfp)
1499 {
1500 	sfp_link_up(sfp->sfp_bus);
1501 	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1502 }
1503 
sfp_sm_link_down(struct sfp *sfp)1504 static void sfp_sm_link_down(struct sfp *sfp)
1505 {
1506 	sfp_link_down(sfp->sfp_bus);
1507 }
1508 
sfp_sm_link_check_los(struct sfp *sfp)1509 static void sfp_sm_link_check_los(struct sfp *sfp)
1510 {
1511 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1512 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1513 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1514 	bool los = false;
1515 
1516 	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1517 	 * are set, we assume that no LOS signal is available. If both are
1518 	 * set, we assume LOS is not implemented (and is meaningless.)
1519 	 */
1520 	if (los_options == los_inverted)
1521 		los = !(sfp->state & SFP_F_LOS);
1522 	else if (los_options == los_normal)
1523 		los = !!(sfp->state & SFP_F_LOS);
1524 
1525 	if (los)
1526 		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1527 	else
1528 		sfp_sm_link_up(sfp);
1529 }
1530 
sfp_los_event_active(struct sfp *sfp, unsigned int event)1531 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1532 {
1533 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1534 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1535 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1536 
1537 	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1538 	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
1539 }
1540 
sfp_los_event_inactive(struct sfp *sfp, unsigned int event)1541 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1542 {
1543 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1544 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1545 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1546 
1547 	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1548 	       (los_options == los_normal && event == SFP_E_LOS_LOW);
1549 }
1550 
sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)1551 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1552 {
1553 	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1554 		dev_err(sfp->dev,
1555 			"module persistently indicates fault, disabling\n");
1556 		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1557 	} else {
1558 		if (warn)
1559 			dev_err(sfp->dev, "module transmit fault indicated\n");
1560 
1561 		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1562 	}
1563 }
1564 
1565 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1566  * normally sits at I2C bus address 0x56, and may either be a clause 22
1567  * or clause 45 PHY.
1568  *
1569  * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1570  * negotiation enabled, but some may be in 1000base-X - which is for the
1571  * PHY driver to determine.
1572  *
1573  * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1574  * mode according to the negotiated line speed.
1575  */
sfp_sm_probe_for_phy(struct sfp *sfp)1576 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1577 {
1578 	int err = 0;
1579 
1580 	switch (sfp->id.base.extended_cc) {
1581 	case SFF8024_ECC_10GBASE_T_SFI:
1582 	case SFF8024_ECC_10GBASE_T_SR:
1583 	case SFF8024_ECC_5GBASE_T:
1584 	case SFF8024_ECC_2_5GBASE_T:
1585 		err = sfp_sm_probe_phy(sfp, true);
1586 		break;
1587 
1588 	default:
1589 		if (sfp->id.base.e1000_base_t)
1590 			err = sfp_sm_probe_phy(sfp, false);
1591 		break;
1592 	}
1593 	return err;
1594 }
1595 
sfp_module_parse_power(struct sfp *sfp)1596 static int sfp_module_parse_power(struct sfp *sfp)
1597 {
1598 	u32 power_mW = 1000;
1599 	bool supports_a2;
1600 
1601 	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1602 		power_mW = 1500;
1603 	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1604 		power_mW = 2000;
1605 
1606 	supports_a2 = sfp->id.ext.sff8472_compliance !=
1607 				SFP_SFF8472_COMPLIANCE_NONE ||
1608 		      sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1609 
1610 	if (power_mW > sfp->max_power_mW) {
1611 		/* Module power specification exceeds the allowed maximum. */
1612 		if (!supports_a2) {
1613 			/* The module appears not to implement bus address
1614 			 * 0xa2, so assume that the module powers up in the
1615 			 * indicated mode.
1616 			 */
1617 			dev_err(sfp->dev,
1618 				"Host does not support %u.%uW modules\n",
1619 				power_mW / 1000, (power_mW / 100) % 10);
1620 			return -EINVAL;
1621 		} else {
1622 			dev_warn(sfp->dev,
1623 				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1624 				 power_mW / 1000, (power_mW / 100) % 10);
1625 			return 0;
1626 		}
1627 	}
1628 
1629 	if (power_mW <= 1000) {
1630 		/* Modules below 1W do not require a power change sequence */
1631 		sfp->module_power_mW = power_mW;
1632 		return 0;
1633 	}
1634 
1635 	if (!supports_a2) {
1636 		/* The module power level is below the host maximum and the
1637 		 * module appears not to implement bus address 0xa2, so assume
1638 		 * that the module powers up in the indicated mode.
1639 		 */
1640 		return 0;
1641 	}
1642 
1643 	/* If the module requires a higher power mode, but also requires
1644 	 * an address change sequence, warn the user that the module may
1645 	 * not be functional.
1646 	 */
1647 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1648 		dev_warn(sfp->dev,
1649 			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1650 			 power_mW / 1000, (power_mW / 100) % 10);
1651 		return 0;
1652 	}
1653 
1654 	sfp->module_power_mW = power_mW;
1655 
1656 	return 0;
1657 }
1658 
sfp_sm_mod_hpower(struct sfp *sfp, bool enable)1659 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1660 {
1661 	u8 val;
1662 	int err;
1663 
1664 	err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1665 	if (err != sizeof(val)) {
1666 		dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1667 		return -EAGAIN;
1668 	}
1669 
1670 	/* DM7052 reports as a high power module, responds to reads (with
1671 	 * all bytes 0xff) at 0x51 but does not accept writes.  In any case,
1672 	 * if the bit is already set, we're already in high power mode.
1673 	 */
1674 	if (!!(val & BIT(0)) == enable)
1675 		return 0;
1676 
1677 	if (enable)
1678 		val |= BIT(0);
1679 	else
1680 		val &= ~BIT(0);
1681 
1682 	err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1683 	if (err != sizeof(val)) {
1684 		dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1685 		return -EAGAIN;
1686 	}
1687 
1688 	if (enable)
1689 		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1690 			 sfp->module_power_mW / 1000,
1691 			 (sfp->module_power_mW / 100) % 10);
1692 
1693 	return 0;
1694 }
1695 
1696 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1697  * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1698  * not support multibyte reads from the EEPROM. Each multi-byte read
1699  * operation returns just one byte of EEPROM followed by zeros. There is
1700  * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1701  * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1702  * name and vendor id into EEPROM, so there is even no way to detect if
1703  * module is V-SOL V2801F. Therefore check for those zeros in the read
1704  * data and then based on check switch to reading EEPROM to one byte
1705  * at a time.
1706  */
sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)1707 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1708 {
1709 	size_t i, block_size = sfp->i2c_block_size;
1710 
1711 	/* Already using byte IO */
1712 	if (block_size == 1)
1713 		return false;
1714 
1715 	for (i = 1; i < len; i += block_size) {
1716 		if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1717 			return false;
1718 	}
1719 	return true;
1720 }
1721 
sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)1722 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1723 {
1724 	u8 check;
1725 	int err;
1726 
1727 	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1728 	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1729 	    id->base.connector != SFF8024_CONNECTOR_LC) {
1730 		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1731 		id->base.phys_id = SFF8024_ID_SFF_8472;
1732 		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1733 		id->base.connector = SFF8024_CONNECTOR_LC;
1734 		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1735 		if (err != 3) {
1736 			dev_err(sfp->dev, "Failed to rewrite module EEPROM: %d\n", err);
1737 			return err;
1738 		}
1739 
1740 		/* Cotsworks modules have been found to require a delay between write operations. */
1741 		mdelay(50);
1742 
1743 		/* Update base structure checksum */
1744 		check = sfp_check(&id->base, sizeof(id->base) - 1);
1745 		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1746 		if (err != 1) {
1747 			dev_err(sfp->dev, "Failed to update base structure checksum in fiber module EEPROM: %d\n", err);
1748 			return err;
1749 		}
1750 	}
1751 	return 0;
1752 }
1753 
sfp_sm_mod_probe(struct sfp *sfp, bool report)1754 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1755 {
1756 	/* SFP module inserted - read I2C data */
1757 	struct sfp_eeprom_id id;
1758 	bool cotsworks_sfbg;
1759 	bool cotsworks;
1760 	u8 check;
1761 	int ret;
1762 
1763 	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
1764 
1765 	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1766 	if (ret < 0) {
1767 		if (report)
1768 			dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1769 		return -EAGAIN;
1770 	}
1771 
1772 	if (ret != sizeof(id.base)) {
1773 		dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1774 		return -EAGAIN;
1775 	}
1776 
1777 	/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1778 	 * address 0x51 is just one byte at a time. Also SFF-8472 requires
1779 	 * that EEPROM supports atomic 16bit read operation for diagnostic
1780 	 * fields, so do not switch to one byte reading at a time unless it
1781 	 * is really required and we have no other option.
1782 	 */
1783 	if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1784 		dev_info(sfp->dev,
1785 			 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1786 		dev_info(sfp->dev,
1787 			 "Switching to reading EEPROM to one byte at a time\n");
1788 		sfp->i2c_block_size = 1;
1789 
1790 		ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1791 		if (ret < 0) {
1792 			if (report)
1793 				dev_err(sfp->dev, "failed to read EEPROM: %d\n",
1794 					ret);
1795 			return -EAGAIN;
1796 		}
1797 
1798 		if (ret != sizeof(id.base)) {
1799 			dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1800 			return -EAGAIN;
1801 		}
1802 	}
1803 
1804 	/* Cotsworks do not seem to update the checksums when they
1805 	 * do the final programming with the final module part number,
1806 	 * serial number and date code.
1807 	 */
1808 	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1809 	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1810 
1811 	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
1812 	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
1813 	 * Cotsworks PN matches and bytes are not correct.
1814 	 */
1815 	if (cotsworks && cotsworks_sfbg) {
1816 		ret = sfp_cotsworks_fixup_check(sfp, &id);
1817 		if (ret < 0)
1818 			return ret;
1819 	}
1820 
1821 	/* Validate the checksum over the base structure */
1822 	check = sfp_check(&id.base, sizeof(id.base) - 1);
1823 	if (check != id.base.cc_base) {
1824 		if (cotsworks) {
1825 			dev_warn(sfp->dev,
1826 				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1827 				 check, id.base.cc_base);
1828 		} else {
1829 			dev_err(sfp->dev,
1830 				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1831 				check, id.base.cc_base);
1832 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1833 				       16, 1, &id, sizeof(id), true);
1834 			return -EINVAL;
1835 		}
1836 	}
1837 
1838 	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
1839 	if (ret < 0) {
1840 		if (report)
1841 			dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1842 		return -EAGAIN;
1843 	}
1844 
1845 	if (ret != sizeof(id.ext)) {
1846 		dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1847 		return -EAGAIN;
1848 	}
1849 
1850 	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1851 	if (check != id.ext.cc_ext) {
1852 		if (cotsworks) {
1853 			dev_warn(sfp->dev,
1854 				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1855 				 check, id.ext.cc_ext);
1856 		} else {
1857 			dev_err(sfp->dev,
1858 				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1859 				check, id.ext.cc_ext);
1860 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1861 				       16, 1, &id, sizeof(id), true);
1862 			memset(&id.ext, 0, sizeof(id.ext));
1863 		}
1864 	}
1865 
1866 	sfp->id = id;
1867 
1868 	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1869 		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1870 		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1871 		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1872 		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1873 		 (int)sizeof(id.ext.datecode), id.ext.datecode);
1874 
1875 	/* Check whether we support this module */
1876 	if (!sfp->type->module_supported(&id)) {
1877 		dev_err(sfp->dev,
1878 			"module is not supported - phys id 0x%02x 0x%02x\n",
1879 			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1880 		return -EINVAL;
1881 	}
1882 
1883 	/* If the module requires address swap mode, warn about it */
1884 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1885 		dev_warn(sfp->dev,
1886 			 "module address swap to access page 0xA2 is not supported.\n");
1887 
1888 	/* Parse the module power requirement */
1889 	ret = sfp_module_parse_power(sfp);
1890 	if (ret < 0)
1891 		return ret;
1892 
1893 	if (!memcmp(id.base.vendor_name, "ALCATELLUCENT   ", 16) &&
1894 	    !memcmp(id.base.vendor_pn, "3FE46541AA      ", 16))
1895 		sfp->module_t_start_up = T_START_UP_BAD_GPON;
1896 	else
1897 		sfp->module_t_start_up = T_START_UP;
1898 
1899 	if (!memcmp(id.base.vendor_name, "HUAWEI          ", 16) &&
1900 	    !memcmp(id.base.vendor_pn, "MA5671A         ", 16))
1901 		sfp->tx_fault_ignore = true;
1902 	else
1903 		sfp->tx_fault_ignore = false;
1904 
1905 	return 0;
1906 }
1907 
sfp_sm_mod_remove(struct sfp *sfp)1908 static void sfp_sm_mod_remove(struct sfp *sfp)
1909 {
1910 	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1911 		sfp_module_remove(sfp->sfp_bus);
1912 
1913 	sfp_hwmon_remove(sfp);
1914 
1915 	memset(&sfp->id, 0, sizeof(sfp->id));
1916 	sfp->module_power_mW = 0;
1917 
1918 	dev_info(sfp->dev, "module removed\n");
1919 }
1920 
1921 /* This state machine tracks the upstream's state */
sfp_sm_device(struct sfp *sfp, unsigned int event)1922 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1923 {
1924 	switch (sfp->sm_dev_state) {
1925 	default:
1926 		if (event == SFP_E_DEV_ATTACH)
1927 			sfp->sm_dev_state = SFP_DEV_DOWN;
1928 		break;
1929 
1930 	case SFP_DEV_DOWN:
1931 		if (event == SFP_E_DEV_DETACH)
1932 			sfp->sm_dev_state = SFP_DEV_DETACHED;
1933 		else if (event == SFP_E_DEV_UP)
1934 			sfp->sm_dev_state = SFP_DEV_UP;
1935 		break;
1936 
1937 	case SFP_DEV_UP:
1938 		if (event == SFP_E_DEV_DETACH)
1939 			sfp->sm_dev_state = SFP_DEV_DETACHED;
1940 		else if (event == SFP_E_DEV_DOWN)
1941 			sfp->sm_dev_state = SFP_DEV_DOWN;
1942 		break;
1943 	}
1944 }
1945 
1946 /* This state machine tracks the insert/remove state of the module, probes
1947  * the on-board EEPROM, and sets up the power level.
1948  */
sfp_sm_module(struct sfp *sfp, unsigned int event)1949 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
1950 {
1951 	int err;
1952 
1953 	/* Handle remove event globally, it resets this state machine */
1954 	if (event == SFP_E_REMOVE) {
1955 		if (sfp->sm_mod_state > SFP_MOD_PROBE)
1956 			sfp_sm_mod_remove(sfp);
1957 		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
1958 		return;
1959 	}
1960 
1961 	/* Handle device detach globally */
1962 	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
1963 	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
1964 		if (sfp->module_power_mW > 1000 &&
1965 		    sfp->sm_mod_state > SFP_MOD_HPOWER)
1966 			sfp_sm_mod_hpower(sfp, false);
1967 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1968 		return;
1969 	}
1970 
1971 	switch (sfp->sm_mod_state) {
1972 	default:
1973 		if (event == SFP_E_INSERT) {
1974 			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
1975 			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
1976 			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
1977 		}
1978 		break;
1979 
1980 	case SFP_MOD_PROBE:
1981 		/* Wait for T_PROBE_INIT to time out */
1982 		if (event != SFP_E_TIMEOUT)
1983 			break;
1984 
1985 		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
1986 		if (err == -EAGAIN) {
1987 			if (sfp->sm_mod_tries_init &&
1988 			   --sfp->sm_mod_tries_init) {
1989 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
1990 				break;
1991 			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
1992 				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
1993 					dev_warn(sfp->dev,
1994 						 "please wait, module slow to respond\n");
1995 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
1996 				break;
1997 			}
1998 		}
1999 		if (err < 0) {
2000 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2001 			break;
2002 		}
2003 
2004 		err = sfp_hwmon_insert(sfp);
2005 		if (err)
2006 			dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
2007 
2008 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2009 		fallthrough;
2010 	case SFP_MOD_WAITDEV:
2011 		/* Ensure that the device is attached before proceeding */
2012 		if (sfp->sm_dev_state < SFP_DEV_DOWN)
2013 			break;
2014 
2015 		/* Report the module insertion to the upstream device */
2016 		err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
2017 		if (err < 0) {
2018 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2019 			break;
2020 		}
2021 
2022 		/* If this is a power level 1 module, we are done */
2023 		if (sfp->module_power_mW <= 1000)
2024 			goto insert;
2025 
2026 		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2027 		fallthrough;
2028 	case SFP_MOD_HPOWER:
2029 		/* Enable high power mode */
2030 		err = sfp_sm_mod_hpower(sfp, true);
2031 		if (err < 0) {
2032 			if (err != -EAGAIN) {
2033 				sfp_module_remove(sfp->sfp_bus);
2034 				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2035 			} else {
2036 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2037 			}
2038 			break;
2039 		}
2040 
2041 		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2042 		break;
2043 
2044 	case SFP_MOD_WAITPWR:
2045 		/* Wait for T_HPOWER_LEVEL to time out */
2046 		if (event != SFP_E_TIMEOUT)
2047 			break;
2048 
2049 	insert:
2050 		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2051 		break;
2052 
2053 	case SFP_MOD_PRESENT:
2054 	case SFP_MOD_ERROR:
2055 		break;
2056 	}
2057 }
2058 
sfp_sm_main(struct sfp *sfp, unsigned int event)2059 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2060 {
2061 	unsigned long timeout;
2062 	int ret;
2063 
2064 	/* Some events are global */
2065 	if (sfp->sm_state != SFP_S_DOWN &&
2066 	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2067 	     sfp->sm_dev_state != SFP_DEV_UP)) {
2068 		if (sfp->sm_state == SFP_S_LINK_UP &&
2069 		    sfp->sm_dev_state == SFP_DEV_UP)
2070 			sfp_sm_link_down(sfp);
2071 		if (sfp->sm_state > SFP_S_INIT)
2072 			sfp_module_stop(sfp->sfp_bus);
2073 		if (sfp->mod_phy)
2074 			sfp_sm_phy_detach(sfp);
2075 		sfp_module_tx_disable(sfp);
2076 		sfp_soft_stop_poll(sfp);
2077 		sfp_sm_next(sfp, SFP_S_DOWN, 0);
2078 		return;
2079 	}
2080 
2081 	/* The main state machine */
2082 	switch (sfp->sm_state) {
2083 	case SFP_S_DOWN:
2084 		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2085 		    sfp->sm_dev_state != SFP_DEV_UP)
2086 			break;
2087 
2088 		if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2089 			sfp_soft_start_poll(sfp);
2090 
2091 		sfp_module_tx_enable(sfp);
2092 
2093 		/* Initialise the fault clearance retries */
2094 		sfp->sm_fault_retries = N_FAULT_INIT;
2095 
2096 		/* We need to check the TX_FAULT state, which is not defined
2097 		 * while TX_DISABLE is asserted. The earliest we want to do
2098 		 * anything (such as probe for a PHY) is 50ms.
2099 		 */
2100 		sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
2101 		break;
2102 
2103 	case SFP_S_WAIT:
2104 		if (event != SFP_E_TIMEOUT)
2105 			break;
2106 
2107 		if (sfp->state & SFP_F_TX_FAULT) {
2108 			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2109 			 * from the TX_DISABLE deassertion for the module to
2110 			 * initialise, which is indicated by TX_FAULT
2111 			 * deasserting.
2112 			 */
2113 			timeout = sfp->module_t_start_up;
2114 			if (timeout > T_WAIT)
2115 				timeout -= T_WAIT;
2116 			else
2117 				timeout = 1;
2118 
2119 			sfp_sm_next(sfp, SFP_S_INIT, timeout);
2120 		} else {
2121 			/* TX_FAULT is not asserted, assume the module has
2122 			 * finished initialising.
2123 			 */
2124 			goto init_done;
2125 		}
2126 		break;
2127 
2128 	case SFP_S_INIT:
2129 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2130 			/* TX_FAULT is still asserted after t_init or
2131 			 * or t_start_up, so assume there is a fault.
2132 			 */
2133 			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2134 				     sfp->sm_fault_retries == N_FAULT_INIT);
2135 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2136 	init_done:
2137 			sfp->sm_phy_retries = R_PHY_RETRY;
2138 			goto phy_probe;
2139 		}
2140 		break;
2141 
2142 	case SFP_S_INIT_PHY:
2143 		if (event != SFP_E_TIMEOUT)
2144 			break;
2145 	phy_probe:
2146 		/* TX_FAULT deasserted or we timed out with TX_FAULT
2147 		 * clear.  Probe for the PHY and check the LOS state.
2148 		 */
2149 		ret = sfp_sm_probe_for_phy(sfp);
2150 		if (ret == -ENODEV) {
2151 			if (--sfp->sm_phy_retries) {
2152 				sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2153 				break;
2154 			} else {
2155 				dev_info(sfp->dev, "no PHY detected\n");
2156 			}
2157 		} else if (ret) {
2158 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2159 			break;
2160 		}
2161 		if (sfp_module_start(sfp->sfp_bus)) {
2162 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2163 			break;
2164 		}
2165 		sfp_sm_link_check_los(sfp);
2166 
2167 		/* Reset the fault retry count */
2168 		sfp->sm_fault_retries = N_FAULT;
2169 		break;
2170 
2171 	case SFP_S_INIT_TX_FAULT:
2172 		if (event == SFP_E_TIMEOUT) {
2173 			sfp_module_tx_fault_reset(sfp);
2174 			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2175 		}
2176 		break;
2177 
2178 	case SFP_S_WAIT_LOS:
2179 		if (event == SFP_E_TX_FAULT)
2180 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2181 		else if (sfp_los_event_inactive(sfp, event))
2182 			sfp_sm_link_up(sfp);
2183 		break;
2184 
2185 	case SFP_S_LINK_UP:
2186 		if (event == SFP_E_TX_FAULT) {
2187 			sfp_sm_link_down(sfp);
2188 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2189 		} else if (sfp_los_event_active(sfp, event)) {
2190 			sfp_sm_link_down(sfp);
2191 			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2192 		}
2193 		break;
2194 
2195 	case SFP_S_TX_FAULT:
2196 		if (event == SFP_E_TIMEOUT) {
2197 			sfp_module_tx_fault_reset(sfp);
2198 			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2199 		}
2200 		break;
2201 
2202 	case SFP_S_REINIT:
2203 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2204 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2205 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2206 			dev_info(sfp->dev, "module transmit fault recovered\n");
2207 			sfp_sm_link_check_los(sfp);
2208 		}
2209 		break;
2210 
2211 	case SFP_S_TX_DISABLE:
2212 		break;
2213 	}
2214 }
2215 
sfp_sm_event(struct sfp *sfp, unsigned int event)2216 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2217 {
2218 	mutex_lock(&sfp->sm_mutex);
2219 
2220 	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2221 		mod_state_to_str(sfp->sm_mod_state),
2222 		dev_state_to_str(sfp->sm_dev_state),
2223 		sm_state_to_str(sfp->sm_state),
2224 		event_to_str(event));
2225 
2226 	sfp_sm_device(sfp, event);
2227 	sfp_sm_module(sfp, event);
2228 	sfp_sm_main(sfp, event);
2229 
2230 	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2231 		mod_state_to_str(sfp->sm_mod_state),
2232 		dev_state_to_str(sfp->sm_dev_state),
2233 		sm_state_to_str(sfp->sm_state));
2234 
2235 	mutex_unlock(&sfp->sm_mutex);
2236 }
2237 
sfp_attach(struct sfp *sfp)2238 static void sfp_attach(struct sfp *sfp)
2239 {
2240 	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2241 }
2242 
sfp_detach(struct sfp *sfp)2243 static void sfp_detach(struct sfp *sfp)
2244 {
2245 	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2246 }
2247 
sfp_start(struct sfp *sfp)2248 static void sfp_start(struct sfp *sfp)
2249 {
2250 	sfp_sm_event(sfp, SFP_E_DEV_UP);
2251 }
2252 
sfp_stop(struct sfp *sfp)2253 static void sfp_stop(struct sfp *sfp)
2254 {
2255 	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2256 }
2257 
sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)2258 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2259 {
2260 	/* locking... and check module is present */
2261 
2262 	if (sfp->id.ext.sff8472_compliance &&
2263 	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2264 		modinfo->type = ETH_MODULE_SFF_8472;
2265 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2266 	} else {
2267 		modinfo->type = ETH_MODULE_SFF_8079;
2268 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2269 	}
2270 	return 0;
2271 }
2272 
sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, u8 *data)2273 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2274 			     u8 *data)
2275 {
2276 	unsigned int first, last, len;
2277 	int ret;
2278 
2279 	if (ee->len == 0)
2280 		return -EINVAL;
2281 
2282 	first = ee->offset;
2283 	last = ee->offset + ee->len;
2284 	if (first < ETH_MODULE_SFF_8079_LEN) {
2285 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2286 		len -= first;
2287 
2288 		ret = sfp_read(sfp, false, first, data, len);
2289 		if (ret < 0)
2290 			return ret;
2291 
2292 		first += len;
2293 		data += len;
2294 	}
2295 	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2296 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2297 		len -= first;
2298 		first -= ETH_MODULE_SFF_8079_LEN;
2299 
2300 		ret = sfp_read(sfp, true, first, data, len);
2301 		if (ret < 0)
2302 			return ret;
2303 	}
2304 	return 0;
2305 }
2306 
2307 static const struct sfp_socket_ops sfp_module_ops = {
2308 	.attach = sfp_attach,
2309 	.detach = sfp_detach,
2310 	.start = sfp_start,
2311 	.stop = sfp_stop,
2312 	.module_info = sfp_module_info,
2313 	.module_eeprom = sfp_module_eeprom,
2314 };
2315 
sfp_timeout(struct work_struct *work)2316 static void sfp_timeout(struct work_struct *work)
2317 {
2318 	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2319 
2320 	rtnl_lock();
2321 	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2322 	rtnl_unlock();
2323 }
2324 
sfp_check_state(struct sfp *sfp)2325 static void sfp_check_state(struct sfp *sfp)
2326 {
2327 	unsigned int state, i, changed;
2328 
2329 	mutex_lock(&sfp->st_mutex);
2330 	state = sfp_get_state(sfp);
2331 	changed = state ^ sfp->state;
2332 	if (sfp->tx_fault_ignore)
2333 		changed &= SFP_F_PRESENT | SFP_F_LOS;
2334 	else
2335 		changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2336 
2337 	for (i = 0; i < GPIO_MAX; i++)
2338 		if (changed & BIT(i))
2339 			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2340 				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2341 
2342 	state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2343 	sfp->state = state;
2344 
2345 	rtnl_lock();
2346 	if (changed & SFP_F_PRESENT)
2347 		sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2348 				SFP_E_INSERT : SFP_E_REMOVE);
2349 
2350 	if (changed & SFP_F_TX_FAULT)
2351 		sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2352 				SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2353 
2354 	if (changed & SFP_F_LOS)
2355 		sfp_sm_event(sfp, state & SFP_F_LOS ?
2356 				SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2357 	rtnl_unlock();
2358 	mutex_unlock(&sfp->st_mutex);
2359 }
2360 
sfp_irq(int irq, void *data)2361 static irqreturn_t sfp_irq(int irq, void *data)
2362 {
2363 	struct sfp *sfp = data;
2364 
2365 	sfp_check_state(sfp);
2366 
2367 	return IRQ_HANDLED;
2368 }
2369 
sfp_poll(struct work_struct *work)2370 static void sfp_poll(struct work_struct *work)
2371 {
2372 	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2373 
2374 	sfp_check_state(sfp);
2375 
2376 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2377 	    sfp->need_poll)
2378 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2379 }
2380 
sfp_alloc(struct device *dev)2381 static struct sfp *sfp_alloc(struct device *dev)
2382 {
2383 	struct sfp *sfp;
2384 
2385 	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2386 	if (!sfp)
2387 		return ERR_PTR(-ENOMEM);
2388 
2389 	sfp->dev = dev;
2390 	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2391 
2392 	mutex_init(&sfp->sm_mutex);
2393 	mutex_init(&sfp->st_mutex);
2394 	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2395 	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2396 
2397 	sfp_hwmon_init(sfp);
2398 
2399 	return sfp;
2400 }
2401 
sfp_cleanup(void *data)2402 static void sfp_cleanup(void *data)
2403 {
2404 	struct sfp *sfp = data;
2405 
2406 	sfp_hwmon_exit(sfp);
2407 
2408 	cancel_delayed_work_sync(&sfp->poll);
2409 	cancel_delayed_work_sync(&sfp->timeout);
2410 	if (sfp->i2c_mii) {
2411 		mdiobus_unregister(sfp->i2c_mii);
2412 		mdiobus_free(sfp->i2c_mii);
2413 	}
2414 	if (sfp->i2c)
2415 		i2c_put_adapter(sfp->i2c);
2416 	kfree(sfp);
2417 }
2418 
sfp_probe(struct platform_device *pdev)2419 static int sfp_probe(struct platform_device *pdev)
2420 {
2421 	const struct sff_data *sff;
2422 	struct i2c_adapter *i2c;
2423 	char *sfp_irq_name;
2424 	struct sfp *sfp;
2425 	int err, i;
2426 
2427 	sfp = sfp_alloc(&pdev->dev);
2428 	if (IS_ERR(sfp))
2429 		return PTR_ERR(sfp);
2430 
2431 	platform_set_drvdata(pdev, sfp);
2432 
2433 	err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2434 	if (err < 0)
2435 		return err;
2436 
2437 	sff = sfp->type = &sfp_data;
2438 
2439 	if (pdev->dev.of_node) {
2440 		struct device_node *node = pdev->dev.of_node;
2441 		const struct of_device_id *id;
2442 		struct device_node *np;
2443 
2444 		id = of_match_node(sfp_of_match, node);
2445 		if (WARN_ON(!id))
2446 			return -EINVAL;
2447 
2448 		sff = sfp->type = id->data;
2449 
2450 		np = of_parse_phandle(node, "i2c-bus", 0);
2451 		if (!np) {
2452 			dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2453 			return -ENODEV;
2454 		}
2455 
2456 		i2c = of_find_i2c_adapter_by_node(np);
2457 		of_node_put(np);
2458 	} else if (has_acpi_companion(&pdev->dev)) {
2459 		struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2460 		struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2461 		struct fwnode_reference_args args;
2462 		struct acpi_handle *acpi_handle;
2463 		int ret;
2464 
2465 		ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2466 		if (ret || !is_acpi_device_node(args.fwnode)) {
2467 			dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2468 			return -ENODEV;
2469 		}
2470 
2471 		acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2472 		i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2473 	} else {
2474 		return -EINVAL;
2475 	}
2476 
2477 	if (!i2c)
2478 		return -EPROBE_DEFER;
2479 
2480 	err = sfp_i2c_configure(sfp, i2c);
2481 	if (err < 0) {
2482 		i2c_put_adapter(i2c);
2483 		return err;
2484 	}
2485 
2486 	for (i = 0; i < GPIO_MAX; i++)
2487 		if (sff->gpios & BIT(i)) {
2488 			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2489 					   gpio_of_names[i], gpio_flags[i]);
2490 			if (IS_ERR(sfp->gpio[i]))
2491 				return PTR_ERR(sfp->gpio[i]);
2492 		}
2493 
2494 	sfp->get_state = sfp_gpio_get_state;
2495 	sfp->set_state = sfp_gpio_set_state;
2496 
2497 	/* Modules that have no detect signal are always present */
2498 	if (!(sfp->gpio[GPIO_MODDEF0]))
2499 		sfp->get_state = sff_gpio_get_state;
2500 
2501 	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2502 				 &sfp->max_power_mW);
2503 	if (!sfp->max_power_mW)
2504 		sfp->max_power_mW = 1000;
2505 
2506 	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2507 		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2508 
2509 	/* Get the initial state, and always signal TX disable,
2510 	 * since the network interface will not be up.
2511 	 */
2512 	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2513 
2514 	if (sfp->gpio[GPIO_RATE_SELECT] &&
2515 	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2516 		sfp->state |= SFP_F_RATE_SELECT;
2517 	sfp_set_state(sfp, sfp->state);
2518 	sfp_module_tx_disable(sfp);
2519 	if (sfp->state & SFP_F_PRESENT) {
2520 		rtnl_lock();
2521 		sfp_sm_event(sfp, SFP_E_INSERT);
2522 		rtnl_unlock();
2523 	}
2524 
2525 	for (i = 0; i < GPIO_MAX; i++) {
2526 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2527 			continue;
2528 
2529 		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2530 		if (sfp->gpio_irq[i] < 0) {
2531 			sfp->gpio_irq[i] = 0;
2532 			sfp->need_poll = true;
2533 			continue;
2534 		}
2535 
2536 		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2537 					      "%s-%s", dev_name(sfp->dev),
2538 					      gpio_of_names[i]);
2539 
2540 		if (!sfp_irq_name)
2541 			return -ENOMEM;
2542 
2543 		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2544 						NULL, sfp_irq,
2545 						IRQF_ONESHOT |
2546 						IRQF_TRIGGER_RISING |
2547 						IRQF_TRIGGER_FALLING,
2548 						sfp_irq_name, sfp);
2549 		if (err) {
2550 			sfp->gpio_irq[i] = 0;
2551 			sfp->need_poll = true;
2552 		}
2553 	}
2554 
2555 	if (sfp->need_poll)
2556 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2557 
2558 	/* We could have an issue in cases no Tx disable pin is available or
2559 	 * wired as modules using a laser as their light source will continue to
2560 	 * be active when the fiber is removed. This could be a safety issue and
2561 	 * we should at least warn the user about that.
2562 	 */
2563 	if (!sfp->gpio[GPIO_TX_DISABLE])
2564 		dev_warn(sfp->dev,
2565 			 "No tx_disable pin: SFP modules will always be emitting.\n");
2566 
2567 	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2568 	if (!sfp->sfp_bus)
2569 		return -ENOMEM;
2570 
2571 	return 0;
2572 }
2573 
sfp_remove(struct platform_device *pdev)2574 static int sfp_remove(struct platform_device *pdev)
2575 {
2576 	struct sfp *sfp = platform_get_drvdata(pdev);
2577 
2578 	sfp_unregister_socket(sfp->sfp_bus);
2579 
2580 	rtnl_lock();
2581 	sfp_sm_event(sfp, SFP_E_REMOVE);
2582 	rtnl_unlock();
2583 
2584 	return 0;
2585 }
2586 
sfp_shutdown(struct platform_device *pdev)2587 static void sfp_shutdown(struct platform_device *pdev)
2588 {
2589 	struct sfp *sfp = platform_get_drvdata(pdev);
2590 	int i;
2591 
2592 	for (i = 0; i < GPIO_MAX; i++) {
2593 		if (!sfp->gpio_irq[i])
2594 			continue;
2595 
2596 		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2597 	}
2598 
2599 	cancel_delayed_work_sync(&sfp->poll);
2600 	cancel_delayed_work_sync(&sfp->timeout);
2601 }
2602 
2603 static struct platform_driver sfp_driver = {
2604 	.probe = sfp_probe,
2605 	.remove = sfp_remove,
2606 	.shutdown = sfp_shutdown,
2607 	.driver = {
2608 		.name = "sfp",
2609 		.of_match_table = sfp_of_match,
2610 	},
2611 };
2612 
sfp_init(void)2613 static int sfp_init(void)
2614 {
2615 	poll_jiffies = msecs_to_jiffies(100);
2616 
2617 	return platform_driver_register(&sfp_driver);
2618 }
2619 module_init(sfp_init);
2620 
sfp_exit(void)2621 static void sfp_exit(void)
2622 {
2623 	platform_driver_unregister(&sfp_driver);
2624 }
2625 module_exit(sfp_exit);
2626 
2627 MODULE_ALIAS("platform:sfp");
2628 MODULE_AUTHOR("Russell King");
2629 MODULE_LICENSE("GPL v2");
2630