1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2012-2013 Solarflare Communications Inc.
5 */
6
7 #include "net_driver.h"
8 #include "rx_common.h"
9 #include "tx_common.h"
10 #include "ef10_regs.h"
11 #include "io.h"
12 #include "mcdi.h"
13 #include "mcdi_pcol.h"
14 #include "mcdi_port.h"
15 #include "mcdi_port_common.h"
16 #include "mcdi_functions.h"
17 #include "nic.h"
18 #include "mcdi_filters.h"
19 #include "workarounds.h"
20 #include "selftest.h"
21 #include "ef10_sriov.h"
22 #include <linux/in.h>
23 #include <linux/jhash.h>
24 #include <linux/wait.h>
25 #include <linux/workqueue.h>
26 #include <net/udp_tunnel.h>
27
28 /* Hardware control for EF10 architecture including 'Huntington'. */
29
30 #define EFX_EF10_DRVGEN_EV 7
31 enum {
32 EFX_EF10_TEST = 1,
33 EFX_EF10_REFILL,
34 };
35
36 /* VLAN list entry */
37 struct efx_ef10_vlan {
38 struct list_head list;
39 u16 vid;
40 };
41
42 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
43 static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels;
44
efx_ef10_get_warm_boot_count(struct efx_nic *efx)45 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
46 {
47 efx_dword_t reg;
48
49 efx_readd(efx, ®, ER_DZ_BIU_MC_SFT_STATUS);
50 return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
51 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
52 }
53
54 /* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
55 * I/O space and BAR 2(&3) for memory. On SFC9250 (Medford2), there is no I/O
56 * bar; PFs use BAR 0/1 for memory.
57 */
efx_ef10_pf_mem_bar(struct efx_nic *efx)58 static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
59 {
60 switch (efx->pci_dev->device) {
61 case 0x0b03: /* SFC9250 PF */
62 return 0;
63 default:
64 return 2;
65 }
66 }
67
68 /* All VFs use BAR 0/1 for memory */
efx_ef10_vf_mem_bar(struct efx_nic *efx)69 static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
70 {
71 return 0;
72 }
73
efx_ef10_mem_map_size(struct efx_nic *efx)74 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
75 {
76 int bar;
77
78 bar = efx->type->mem_bar(efx);
79 return resource_size(&efx->pci_dev->resource[bar]);
80 }
81
efx_ef10_is_vf(struct efx_nic *efx)82 static bool efx_ef10_is_vf(struct efx_nic *efx)
83 {
84 return efx->type->is_vf;
85 }
86
87 #ifdef CONFIG_SFC_SRIOV
efx_ef10_get_vf_index(struct efx_nic *efx)88 static int efx_ef10_get_vf_index(struct efx_nic *efx)
89 {
90 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
91 struct efx_ef10_nic_data *nic_data = efx->nic_data;
92 size_t outlen;
93 int rc;
94
95 rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
96 sizeof(outbuf), &outlen);
97 if (rc)
98 return rc;
99 if (outlen < sizeof(outbuf))
100 return -EIO;
101
102 nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
103 return 0;
104 }
105 #endif
106
efx_ef10_init_datapath_caps(struct efx_nic *efx)107 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
108 {
109 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
110 struct efx_ef10_nic_data *nic_data = efx->nic_data;
111 size_t outlen;
112 int rc;
113
114 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
115
116 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
117 outbuf, sizeof(outbuf), &outlen);
118 if (rc)
119 return rc;
120 if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
121 netif_err(efx, drv, efx->net_dev,
122 "unable to read datapath firmware capabilities\n");
123 return -EIO;
124 }
125
126 nic_data->datapath_caps =
127 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
128
129 if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
130 nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
131 GET_CAPABILITIES_V2_OUT_FLAGS2);
132 nic_data->piobuf_size = MCDI_WORD(outbuf,
133 GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
134 } else {
135 nic_data->datapath_caps2 = 0;
136 nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
137 }
138
139 /* record the DPCPU firmware IDs to determine VEB vswitching support.
140 */
141 nic_data->rx_dpcpu_fw_id =
142 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
143 nic_data->tx_dpcpu_fw_id =
144 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
145
146 if (!(nic_data->datapath_caps &
147 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
148 netif_err(efx, probe, efx->net_dev,
149 "current firmware does not support an RX prefix\n");
150 return -ENODEV;
151 }
152
153 if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
154 u8 vi_window_mode = MCDI_BYTE(outbuf,
155 GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
156
157 rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
158 if (rc)
159 return rc;
160 } else {
161 /* keep default VI stride */
162 netif_dbg(efx, probe, efx->net_dev,
163 "firmware did not report VI window mode, assuming vi_stride = %u\n",
164 efx->vi_stride);
165 }
166
167 if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
168 efx->num_mac_stats = MCDI_WORD(outbuf,
169 GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
170 netif_dbg(efx, probe, efx->net_dev,
171 "firmware reports num_mac_stats = %u\n",
172 efx->num_mac_stats);
173 } else {
174 /* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
175 netif_dbg(efx, probe, efx->net_dev,
176 "firmware did not report num_mac_stats, assuming %u\n",
177 efx->num_mac_stats);
178 }
179
180 return 0;
181 }
182
efx_ef10_read_licensed_features(struct efx_nic *efx)183 static void efx_ef10_read_licensed_features(struct efx_nic *efx)
184 {
185 MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
186 MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
187 struct efx_ef10_nic_data *nic_data = efx->nic_data;
188 size_t outlen;
189 int rc;
190
191 MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
192 MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
193 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
194 outbuf, sizeof(outbuf), &outlen);
195 if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
196 return;
197
198 nic_data->licensed_features = MCDI_QWORD(outbuf,
199 LICENSING_V3_OUT_LICENSED_FEATURES);
200 }
201
efx_ef10_get_sysclk_freq(struct efx_nic *efx)202 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
203 {
204 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
205 int rc;
206
207 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
208 outbuf, sizeof(outbuf), NULL);
209 if (rc)
210 return rc;
211 rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
212 return rc > 0 ? rc : -ERANGE;
213 }
214
efx_ef10_get_timer_workarounds(struct efx_nic *efx)215 static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
216 {
217 struct efx_ef10_nic_data *nic_data = efx->nic_data;
218 unsigned int implemented;
219 unsigned int enabled;
220 int rc;
221
222 nic_data->workaround_35388 = false;
223 nic_data->workaround_61265 = false;
224
225 rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
226
227 if (rc == -ENOSYS) {
228 /* Firmware without GET_WORKAROUNDS - not a problem. */
229 rc = 0;
230 } else if (rc == 0) {
231 /* Bug61265 workaround is always enabled if implemented. */
232 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
233 nic_data->workaround_61265 = true;
234
235 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
236 nic_data->workaround_35388 = true;
237 } else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
238 /* Workaround is implemented but not enabled.
239 * Try to enable it.
240 */
241 rc = efx_mcdi_set_workaround(efx,
242 MC_CMD_WORKAROUND_BUG35388,
243 true, NULL);
244 if (rc == 0)
245 nic_data->workaround_35388 = true;
246 /* If we failed to set the workaround just carry on. */
247 rc = 0;
248 }
249 }
250
251 netif_dbg(efx, probe, efx->net_dev,
252 "workaround for bug 35388 is %sabled\n",
253 nic_data->workaround_35388 ? "en" : "dis");
254 netif_dbg(efx, probe, efx->net_dev,
255 "workaround for bug 61265 is %sabled\n",
256 nic_data->workaround_61265 ? "en" : "dis");
257
258 return rc;
259 }
260
efx_ef10_process_timer_config(struct efx_nic *efx, const efx_dword_t *data)261 static void efx_ef10_process_timer_config(struct efx_nic *efx,
262 const efx_dword_t *data)
263 {
264 unsigned int max_count;
265
266 if (EFX_EF10_WORKAROUND_61265(efx)) {
267 efx->timer_quantum_ns = MCDI_DWORD(data,
268 GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
269 efx->timer_max_ns = MCDI_DWORD(data,
270 GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
271 } else if (EFX_EF10_WORKAROUND_35388(efx)) {
272 efx->timer_quantum_ns = MCDI_DWORD(data,
273 GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
274 max_count = MCDI_DWORD(data,
275 GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
276 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
277 } else {
278 efx->timer_quantum_ns = MCDI_DWORD(data,
279 GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
280 max_count = MCDI_DWORD(data,
281 GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
282 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
283 }
284
285 netif_dbg(efx, probe, efx->net_dev,
286 "got timer properties from MC: quantum %u ns; max %u ns\n",
287 efx->timer_quantum_ns, efx->timer_max_ns);
288 }
289
efx_ef10_get_timer_config(struct efx_nic *efx)290 static int efx_ef10_get_timer_config(struct efx_nic *efx)
291 {
292 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
293 int rc;
294
295 rc = efx_ef10_get_timer_workarounds(efx);
296 if (rc)
297 return rc;
298
299 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
300 outbuf, sizeof(outbuf), NULL);
301
302 if (rc == 0) {
303 efx_ef10_process_timer_config(efx, outbuf);
304 } else if (rc == -ENOSYS || rc == -EPERM) {
305 /* Not available - fall back to Huntington defaults. */
306 unsigned int quantum;
307
308 rc = efx_ef10_get_sysclk_freq(efx);
309 if (rc < 0)
310 return rc;
311
312 quantum = 1536000 / rc; /* 1536 cycles */
313 efx->timer_quantum_ns = quantum;
314 efx->timer_max_ns = efx->type->timer_period_max * quantum;
315 rc = 0;
316 } else {
317 efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
318 MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
319 NULL, 0, rc);
320 }
321
322 return rc;
323 }
324
efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)325 static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
326 {
327 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
328 size_t outlen;
329 int rc;
330
331 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
332
333 rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
334 outbuf, sizeof(outbuf), &outlen);
335 if (rc)
336 return rc;
337 if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
338 return -EIO;
339
340 ether_addr_copy(mac_address,
341 MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
342 return 0;
343 }
344
efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)345 static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
346 {
347 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
348 MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
349 size_t outlen;
350 int num_addrs, rc;
351
352 MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
353 EVB_PORT_ID_ASSIGNED);
354 rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
355 sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
356
357 if (rc)
358 return rc;
359 if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
360 return -EIO;
361
362 num_addrs = MCDI_DWORD(outbuf,
363 VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
364
365 WARN_ON(num_addrs != 1);
366
367 ether_addr_copy(mac_address,
368 MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
369
370 return 0;
371 }
372
efx_ef10_show_link_control_flag(struct device *dev, struct device_attribute *attr, char *buf)373 static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
374 struct device_attribute *attr,
375 char *buf)
376 {
377 struct efx_nic *efx = dev_get_drvdata(dev);
378
379 return sprintf(buf, "%d\n",
380 ((efx->mcdi->fn_flags) &
381 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
382 ? 1 : 0);
383 }
384
efx_ef10_show_primary_flag(struct device *dev, struct device_attribute *attr, char *buf)385 static ssize_t efx_ef10_show_primary_flag(struct device *dev,
386 struct device_attribute *attr,
387 char *buf)
388 {
389 struct efx_nic *efx = dev_get_drvdata(dev);
390
391 return sprintf(buf, "%d\n",
392 ((efx->mcdi->fn_flags) &
393 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
394 ? 1 : 0);
395 }
396
efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)397 static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
398 {
399 struct efx_ef10_nic_data *nic_data = efx->nic_data;
400 struct efx_ef10_vlan *vlan;
401
402 WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
403
404 list_for_each_entry(vlan, &nic_data->vlan_list, list) {
405 if (vlan->vid == vid)
406 return vlan;
407 }
408
409 return NULL;
410 }
411
efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)412 static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
413 {
414 struct efx_ef10_nic_data *nic_data = efx->nic_data;
415 struct efx_ef10_vlan *vlan;
416 int rc;
417
418 mutex_lock(&nic_data->vlan_lock);
419
420 vlan = efx_ef10_find_vlan(efx, vid);
421 if (vlan) {
422 /* We add VID 0 on init. 8021q adds it on module init
423 * for all interfaces with VLAN filtring feature.
424 */
425 if (vid == 0)
426 goto done_unlock;
427 netif_warn(efx, drv, efx->net_dev,
428 "VLAN %u already added\n", vid);
429 rc = -EALREADY;
430 goto fail_exist;
431 }
432
433 rc = -ENOMEM;
434 vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
435 if (!vlan)
436 goto fail_alloc;
437
438 vlan->vid = vid;
439
440 list_add_tail(&vlan->list, &nic_data->vlan_list);
441
442 if (efx->filter_state) {
443 mutex_lock(&efx->mac_lock);
444 down_write(&efx->filter_sem);
445 rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
446 up_write(&efx->filter_sem);
447 mutex_unlock(&efx->mac_lock);
448 if (rc)
449 goto fail_filter_add_vlan;
450 }
451
452 done_unlock:
453 mutex_unlock(&nic_data->vlan_lock);
454 return 0;
455
456 fail_filter_add_vlan:
457 list_del(&vlan->list);
458 kfree(vlan);
459 fail_alloc:
460 fail_exist:
461 mutex_unlock(&nic_data->vlan_lock);
462 return rc;
463 }
464
efx_ef10_del_vlan_internal(struct efx_nic *efx, struct efx_ef10_vlan *vlan)465 static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
466 struct efx_ef10_vlan *vlan)
467 {
468 struct efx_ef10_nic_data *nic_data = efx->nic_data;
469
470 WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
471
472 if (efx->filter_state) {
473 down_write(&efx->filter_sem);
474 efx_mcdi_filter_del_vlan(efx, vlan->vid);
475 up_write(&efx->filter_sem);
476 }
477
478 list_del(&vlan->list);
479 kfree(vlan);
480 }
481
efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)482 static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
483 {
484 struct efx_ef10_nic_data *nic_data = efx->nic_data;
485 struct efx_ef10_vlan *vlan;
486 int rc = 0;
487
488 /* 8021q removes VID 0 on module unload for all interfaces
489 * with VLAN filtering feature. We need to keep it to receive
490 * untagged traffic.
491 */
492 if (vid == 0)
493 return 0;
494
495 mutex_lock(&nic_data->vlan_lock);
496
497 vlan = efx_ef10_find_vlan(efx, vid);
498 if (!vlan) {
499 netif_err(efx, drv, efx->net_dev,
500 "VLAN %u to be deleted not found\n", vid);
501 rc = -ENOENT;
502 } else {
503 efx_ef10_del_vlan_internal(efx, vlan);
504 }
505
506 mutex_unlock(&nic_data->vlan_lock);
507
508 return rc;
509 }
510
efx_ef10_cleanup_vlans(struct efx_nic *efx)511 static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
512 {
513 struct efx_ef10_nic_data *nic_data = efx->nic_data;
514 struct efx_ef10_vlan *vlan, *next_vlan;
515
516 mutex_lock(&nic_data->vlan_lock);
517 list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
518 efx_ef10_del_vlan_internal(efx, vlan);
519 mutex_unlock(&nic_data->vlan_lock);
520 }
521
522 static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
523 NULL);
524 static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
525
efx_ef10_probe(struct efx_nic *efx)526 static int efx_ef10_probe(struct efx_nic *efx)
527 {
528 struct efx_ef10_nic_data *nic_data;
529 int i, rc;
530
531 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
532 if (!nic_data)
533 return -ENOMEM;
534 efx->nic_data = nic_data;
535
536 /* we assume later that we can copy from this buffer in dwords */
537 BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
538
539 rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
540 8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
541 if (rc)
542 goto fail1;
543
544 /* Get the MC's warm boot count. In case it's rebooting right
545 * now, be prepared to retry.
546 */
547 i = 0;
548 for (;;) {
549 rc = efx_ef10_get_warm_boot_count(efx);
550 if (rc >= 0)
551 break;
552 if (++i == 5)
553 goto fail2;
554 ssleep(1);
555 }
556 nic_data->warm_boot_count = rc;
557
558 /* In case we're recovering from a crash (kexec), we want to
559 * cancel any outstanding request by the previous user of this
560 * function. We send a special message using the least
561 * significant bits of the 'high' (doorbell) register.
562 */
563 _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
564
565 rc = efx_mcdi_init(efx);
566 if (rc)
567 goto fail2;
568
569 mutex_init(&nic_data->udp_tunnels_lock);
570 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
571 nic_data->udp_tunnels[i].type =
572 TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
573
574 /* Reset (most) configuration for this function */
575 rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
576 if (rc)
577 goto fail3;
578
579 /* Enable event logging */
580 rc = efx_mcdi_log_ctrl(efx, true, false, 0);
581 if (rc)
582 goto fail3;
583
584 rc = device_create_file(&efx->pci_dev->dev,
585 &dev_attr_link_control_flag);
586 if (rc)
587 goto fail3;
588
589 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
590 if (rc)
591 goto fail4;
592
593 rc = efx_get_pf_index(efx, &nic_data->pf_index);
594 if (rc)
595 goto fail5;
596
597 rc = efx_ef10_init_datapath_caps(efx);
598 if (rc < 0)
599 goto fail5;
600
601 efx_ef10_read_licensed_features(efx);
602
603 /* We can have one VI for each vi_stride-byte region.
604 * However, until we use TX option descriptors we need up to four
605 * TX queues per channel for different checksumming combinations.
606 */
607 if (nic_data->datapath_caps &
608 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
609 efx->tx_queues_per_channel = 4;
610 else
611 efx->tx_queues_per_channel = 2;
612 efx->max_vis = efx_ef10_mem_map_size(efx) / efx->vi_stride;
613 if (!efx->max_vis) {
614 netif_err(efx, drv, efx->net_dev, "error determining max VIs\n");
615 rc = -EIO;
616 goto fail5;
617 }
618 efx->max_channels = min_t(unsigned int, EFX_MAX_CHANNELS,
619 efx->max_vis / efx->tx_queues_per_channel);
620 efx->max_tx_channels = efx->max_channels;
621 if (WARN_ON(efx->max_channels == 0)) {
622 rc = -EIO;
623 goto fail5;
624 }
625
626 efx->rx_packet_len_offset =
627 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
628
629 if (nic_data->datapath_caps &
630 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
631 efx->net_dev->hw_features |= NETIF_F_RXFCS;
632
633 rc = efx_mcdi_port_get_number(efx);
634 if (rc < 0)
635 goto fail5;
636 efx->port_num = rc;
637
638 rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
639 if (rc)
640 goto fail5;
641
642 rc = efx_ef10_get_timer_config(efx);
643 if (rc < 0)
644 goto fail5;
645
646 rc = efx_mcdi_mon_probe(efx);
647 if (rc && rc != -EPERM)
648 goto fail5;
649
650 efx_ptp_defer_probe_with_channel(efx);
651
652 #ifdef CONFIG_SFC_SRIOV
653 if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
654 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
655 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
656
657 efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
658 } else
659 #endif
660 ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
661
662 INIT_LIST_HEAD(&nic_data->vlan_list);
663 mutex_init(&nic_data->vlan_lock);
664
665 /* Add unspecified VID to support VLAN filtering being disabled */
666 rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
667 if (rc)
668 goto fail_add_vid_unspec;
669
670 /* If VLAN filtering is enabled, we need VID 0 to get untagged
671 * traffic. It is added automatically if 8021q module is loaded,
672 * but we can't rely on it since module may be not loaded.
673 */
674 rc = efx_ef10_add_vlan(efx, 0);
675 if (rc)
676 goto fail_add_vid_0;
677
678 if (nic_data->datapath_caps &
679 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) &&
680 efx->mcdi->fn_flags &
681 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED))
682 efx->net_dev->udp_tunnel_nic_info = &efx_ef10_udp_tunnels;
683
684 return 0;
685
686 fail_add_vid_0:
687 efx_ef10_cleanup_vlans(efx);
688 fail_add_vid_unspec:
689 mutex_destroy(&nic_data->vlan_lock);
690 efx_ptp_remove(efx);
691 efx_mcdi_mon_remove(efx);
692 fail5:
693 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
694 fail4:
695 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
696 fail3:
697 efx_mcdi_detach(efx);
698
699 mutex_lock(&nic_data->udp_tunnels_lock);
700 memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
701 (void)efx_ef10_set_udp_tnl_ports(efx, true);
702 mutex_unlock(&nic_data->udp_tunnels_lock);
703 mutex_destroy(&nic_data->udp_tunnels_lock);
704
705 efx_mcdi_fini(efx);
706 fail2:
707 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
708 fail1:
709 kfree(nic_data);
710 efx->nic_data = NULL;
711 return rc;
712 }
713
714 #ifdef EFX_USE_PIO
715
efx_ef10_free_piobufs(struct efx_nic *efx)716 static void efx_ef10_free_piobufs(struct efx_nic *efx)
717 {
718 struct efx_ef10_nic_data *nic_data = efx->nic_data;
719 MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
720 unsigned int i;
721 int rc;
722
723 BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
724
725 for (i = 0; i < nic_data->n_piobufs; i++) {
726 MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
727 nic_data->piobuf_handle[i]);
728 rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
729 NULL, 0, NULL);
730 WARN_ON(rc);
731 }
732
733 nic_data->n_piobufs = 0;
734 }
735
efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)736 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
737 {
738 struct efx_ef10_nic_data *nic_data = efx->nic_data;
739 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
740 unsigned int i;
741 size_t outlen;
742 int rc = 0;
743
744 BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
745
746 for (i = 0; i < n; i++) {
747 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
748 outbuf, sizeof(outbuf), &outlen);
749 if (rc) {
750 /* Don't display the MC error if we didn't have space
751 * for a VF.
752 */
753 if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
754 efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
755 0, outbuf, outlen, rc);
756 break;
757 }
758 if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
759 rc = -EIO;
760 break;
761 }
762 nic_data->piobuf_handle[i] =
763 MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
764 netif_dbg(efx, probe, efx->net_dev,
765 "allocated PIO buffer %u handle %x\n", i,
766 nic_data->piobuf_handle[i]);
767 }
768
769 nic_data->n_piobufs = i;
770 if (rc)
771 efx_ef10_free_piobufs(efx);
772 return rc;
773 }
774
efx_ef10_link_piobufs(struct efx_nic *efx)775 static int efx_ef10_link_piobufs(struct efx_nic *efx)
776 {
777 struct efx_ef10_nic_data *nic_data = efx->nic_data;
778 MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
779 struct efx_channel *channel;
780 struct efx_tx_queue *tx_queue;
781 unsigned int offset, index;
782 int rc;
783
784 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
785 BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
786
787 /* Link a buffer to each VI in the write-combining mapping */
788 for (index = 0; index < nic_data->n_piobufs; ++index) {
789 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
790 nic_data->piobuf_handle[index]);
791 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
792 nic_data->pio_write_vi_base + index);
793 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
794 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
795 NULL, 0, NULL);
796 if (rc) {
797 netif_err(efx, drv, efx->net_dev,
798 "failed to link VI %u to PIO buffer %u (%d)\n",
799 nic_data->pio_write_vi_base + index, index,
800 rc);
801 goto fail;
802 }
803 netif_dbg(efx, probe, efx->net_dev,
804 "linked VI %u to PIO buffer %u\n",
805 nic_data->pio_write_vi_base + index, index);
806 }
807
808 /* Link a buffer to each TX queue */
809 efx_for_each_channel(channel, efx) {
810 /* Extra channels, even those with TXQs (PTP), do not require
811 * PIO resources.
812 */
813 if (!channel->type->want_pio ||
814 channel->channel >= efx->xdp_channel_offset)
815 continue;
816
817 efx_for_each_channel_tx_queue(tx_queue, channel) {
818 /* We assign the PIO buffers to queues in
819 * reverse order to allow for the following
820 * special case.
821 */
822 offset = ((efx->tx_channel_offset + efx->n_tx_channels -
823 tx_queue->channel->channel - 1) *
824 efx_piobuf_size);
825 index = offset / nic_data->piobuf_size;
826 offset = offset % nic_data->piobuf_size;
827
828 /* When the host page size is 4K, the first
829 * host page in the WC mapping may be within
830 * the same VI page as the last TX queue. We
831 * can only link one buffer to each VI.
832 */
833 if (tx_queue->queue == nic_data->pio_write_vi_base) {
834 BUG_ON(index != 0);
835 rc = 0;
836 } else {
837 MCDI_SET_DWORD(inbuf,
838 LINK_PIOBUF_IN_PIOBUF_HANDLE,
839 nic_data->piobuf_handle[index]);
840 MCDI_SET_DWORD(inbuf,
841 LINK_PIOBUF_IN_TXQ_INSTANCE,
842 tx_queue->queue);
843 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
844 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
845 NULL, 0, NULL);
846 }
847
848 if (rc) {
849 /* This is non-fatal; the TX path just
850 * won't use PIO for this queue
851 */
852 netif_err(efx, drv, efx->net_dev,
853 "failed to link VI %u to PIO buffer %u (%d)\n",
854 tx_queue->queue, index, rc);
855 tx_queue->piobuf = NULL;
856 } else {
857 tx_queue->piobuf =
858 nic_data->pio_write_base +
859 index * efx->vi_stride + offset;
860 tx_queue->piobuf_offset = offset;
861 netif_dbg(efx, probe, efx->net_dev,
862 "linked VI %u to PIO buffer %u offset %x addr %p\n",
863 tx_queue->queue, index,
864 tx_queue->piobuf_offset,
865 tx_queue->piobuf);
866 }
867 }
868 }
869
870 return 0;
871
872 fail:
873 /* inbuf was defined for MC_CMD_LINK_PIOBUF. We can use the same
874 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
875 */
876 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
877 while (index--) {
878 MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
879 nic_data->pio_write_vi_base + index);
880 efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
881 inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
882 NULL, 0, NULL);
883 }
884 return rc;
885 }
886
efx_ef10_forget_old_piobufs(struct efx_nic *efx)887 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
888 {
889 struct efx_channel *channel;
890 struct efx_tx_queue *tx_queue;
891
892 /* All our existing PIO buffers went away */
893 efx_for_each_channel(channel, efx)
894 efx_for_each_channel_tx_queue(tx_queue, channel)
895 tx_queue->piobuf = NULL;
896 }
897
898 #else /* !EFX_USE_PIO */
899
efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)900 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
901 {
902 return n == 0 ? 0 : -ENOBUFS;
903 }
904
efx_ef10_link_piobufs(struct efx_nic *efx)905 static int efx_ef10_link_piobufs(struct efx_nic *efx)
906 {
907 return 0;
908 }
909
efx_ef10_free_piobufs(struct efx_nic *efx)910 static void efx_ef10_free_piobufs(struct efx_nic *efx)
911 {
912 }
913
efx_ef10_forget_old_piobufs(struct efx_nic *efx)914 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
915 {
916 }
917
918 #endif /* EFX_USE_PIO */
919
efx_ef10_remove(struct efx_nic *efx)920 static void efx_ef10_remove(struct efx_nic *efx)
921 {
922 struct efx_ef10_nic_data *nic_data = efx->nic_data;
923 int rc;
924
925 #ifdef CONFIG_SFC_SRIOV
926 struct efx_ef10_nic_data *nic_data_pf;
927 struct pci_dev *pci_dev_pf;
928 struct efx_nic *efx_pf;
929 struct ef10_vf *vf;
930
931 if (efx->pci_dev->is_virtfn) {
932 pci_dev_pf = efx->pci_dev->physfn;
933 if (pci_dev_pf) {
934 efx_pf = pci_get_drvdata(pci_dev_pf);
935 nic_data_pf = efx_pf->nic_data;
936 vf = nic_data_pf->vf + nic_data->vf_index;
937 vf->efx = NULL;
938 } else
939 netif_info(efx, drv, efx->net_dev,
940 "Could not get the PF id from VF\n");
941 }
942 #endif
943
944 efx_ef10_cleanup_vlans(efx);
945 mutex_destroy(&nic_data->vlan_lock);
946
947 efx_ptp_remove(efx);
948
949 efx_mcdi_mon_remove(efx);
950
951 efx_mcdi_rx_free_indir_table(efx);
952
953 if (nic_data->wc_membase)
954 iounmap(nic_data->wc_membase);
955
956 rc = efx_mcdi_free_vis(efx);
957 WARN_ON(rc != 0);
958
959 if (!nic_data->must_restore_piobufs)
960 efx_ef10_free_piobufs(efx);
961
962 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
963 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
964
965 efx_mcdi_detach(efx);
966
967 memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
968 mutex_lock(&nic_data->udp_tunnels_lock);
969 (void)efx_ef10_set_udp_tnl_ports(efx, true);
970 mutex_unlock(&nic_data->udp_tunnels_lock);
971
972 mutex_destroy(&nic_data->udp_tunnels_lock);
973
974 efx_mcdi_fini(efx);
975 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
976 kfree(nic_data);
977 }
978
efx_ef10_probe_pf(struct efx_nic *efx)979 static int efx_ef10_probe_pf(struct efx_nic *efx)
980 {
981 return efx_ef10_probe(efx);
982 }
983
efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id, u32 *port_flags, u32 *vadaptor_flags, unsigned int *vlan_tags)984 int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
985 u32 *port_flags, u32 *vadaptor_flags,
986 unsigned int *vlan_tags)
987 {
988 struct efx_ef10_nic_data *nic_data = efx->nic_data;
989 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
990 MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
991 size_t outlen;
992 int rc;
993
994 if (nic_data->datapath_caps &
995 (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
996 MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
997 port_id);
998
999 rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
1000 outbuf, sizeof(outbuf), &outlen);
1001 if (rc)
1002 return rc;
1003
1004 if (outlen < sizeof(outbuf)) {
1005 rc = -EIO;
1006 return rc;
1007 }
1008 }
1009
1010 if (port_flags)
1011 *port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1012 if (vadaptor_flags)
1013 *vadaptor_flags =
1014 MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1015 if (vlan_tags)
1016 *vlan_tags =
1017 MCDI_DWORD(outbuf,
1018 VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1019
1020 return 0;
1021 }
1022
efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)1023 int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1024 {
1025 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1026
1027 MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1028 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1029 NULL, 0, NULL);
1030 }
1031
efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)1032 int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1033 {
1034 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1035
1036 MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1037 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1038 NULL, 0, NULL);
1039 }
1040
efx_ef10_vport_add_mac(struct efx_nic *efx, unsigned int port_id, u8 *mac)1041 int efx_ef10_vport_add_mac(struct efx_nic *efx,
1042 unsigned int port_id, u8 *mac)
1043 {
1044 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1045
1046 MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1047 ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1048
1049 return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1050 sizeof(inbuf), NULL, 0, NULL);
1051 }
1052
efx_ef10_vport_del_mac(struct efx_nic *efx, unsigned int port_id, u8 *mac)1053 int efx_ef10_vport_del_mac(struct efx_nic *efx,
1054 unsigned int port_id, u8 *mac)
1055 {
1056 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1057
1058 MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1059 ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1060
1061 return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1062 sizeof(inbuf), NULL, 0, NULL);
1063 }
1064
1065 #ifdef CONFIG_SFC_SRIOV
efx_ef10_probe_vf(struct efx_nic *efx)1066 static int efx_ef10_probe_vf(struct efx_nic *efx)
1067 {
1068 int rc;
1069 struct pci_dev *pci_dev_pf;
1070
1071 /* If the parent PF has no VF data structure, it doesn't know about this
1072 * VF so fail probe. The VF needs to be re-created. This can happen
1073 * if the PF driver is unloaded while the VF is assigned to a guest.
1074 */
1075 pci_dev_pf = efx->pci_dev->physfn;
1076 if (pci_dev_pf) {
1077 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1078 struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1079
1080 if (!nic_data_pf->vf) {
1081 netif_info(efx, drv, efx->net_dev,
1082 "The VF cannot link to its parent PF; "
1083 "please destroy and re-create the VF\n");
1084 return -EBUSY;
1085 }
1086 }
1087
1088 rc = efx_ef10_probe(efx);
1089 if (rc)
1090 return rc;
1091
1092 rc = efx_ef10_get_vf_index(efx);
1093 if (rc)
1094 goto fail;
1095
1096 if (efx->pci_dev->is_virtfn) {
1097 if (efx->pci_dev->physfn) {
1098 struct efx_nic *efx_pf =
1099 pci_get_drvdata(efx->pci_dev->physfn);
1100 struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1101 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1102
1103 nic_data_p->vf[nic_data->vf_index].efx = efx;
1104 nic_data_p->vf[nic_data->vf_index].pci_dev =
1105 efx->pci_dev;
1106 } else
1107 netif_info(efx, drv, efx->net_dev,
1108 "Could not get the PF id from VF\n");
1109 }
1110
1111 return 0;
1112
1113 fail:
1114 efx_ef10_remove(efx);
1115 return rc;
1116 }
1117 #else
efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))1118 static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1119 {
1120 return 0;
1121 }
1122 #endif
1123
efx_ef10_alloc_vis(struct efx_nic *efx, unsigned int min_vis, unsigned int max_vis)1124 static int efx_ef10_alloc_vis(struct efx_nic *efx,
1125 unsigned int min_vis, unsigned int max_vis)
1126 {
1127 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1128
1129 return efx_mcdi_alloc_vis(efx, min_vis, max_vis, &nic_data->vi_base,
1130 &nic_data->n_allocated_vis);
1131 }
1132
1133 /* Note that the failure path of this function does not free
1134 * resources, as this will be done by efx_ef10_remove().
1135 */
efx_ef10_dimension_resources(struct efx_nic *efx)1136 static int efx_ef10_dimension_resources(struct efx_nic *efx)
1137 {
1138 unsigned int min_vis = max_t(unsigned int, efx->tx_queues_per_channel,
1139 efx_separate_tx_channels ? 2 : 1);
1140 unsigned int channel_vis, pio_write_vi_base, max_vis;
1141 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1142 unsigned int uc_mem_map_size, wc_mem_map_size;
1143 void __iomem *membase;
1144 int rc;
1145
1146 channel_vis = max(efx->n_channels,
1147 ((efx->n_tx_channels + efx->n_extra_tx_channels) *
1148 efx->tx_queues_per_channel) +
1149 efx->n_xdp_channels * efx->xdp_tx_per_channel);
1150 if (efx->max_vis && efx->max_vis < channel_vis) {
1151 netif_dbg(efx, drv, efx->net_dev,
1152 "Reducing channel VIs from %u to %u\n",
1153 channel_vis, efx->max_vis);
1154 channel_vis = efx->max_vis;
1155 }
1156
1157 #ifdef EFX_USE_PIO
1158 /* Try to allocate PIO buffers if wanted and if the full
1159 * number of PIO buffers would be sufficient to allocate one
1160 * copy-buffer per TX channel. Failure is non-fatal, as there
1161 * are only a small number of PIO buffers shared between all
1162 * functions of the controller.
1163 */
1164 if (efx_piobuf_size != 0 &&
1165 nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1166 efx->n_tx_channels) {
1167 unsigned int n_piobufs =
1168 DIV_ROUND_UP(efx->n_tx_channels,
1169 nic_data->piobuf_size / efx_piobuf_size);
1170
1171 rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1172 if (rc == -ENOSPC)
1173 netif_dbg(efx, probe, efx->net_dev,
1174 "out of PIO buffers; cannot allocate more\n");
1175 else if (rc == -EPERM)
1176 netif_dbg(efx, probe, efx->net_dev,
1177 "not permitted to allocate PIO buffers\n");
1178 else if (rc)
1179 netif_err(efx, probe, efx->net_dev,
1180 "failed to allocate PIO buffers (%d)\n", rc);
1181 else
1182 netif_dbg(efx, probe, efx->net_dev,
1183 "allocated %u PIO buffers\n", n_piobufs);
1184 }
1185 #else
1186 nic_data->n_piobufs = 0;
1187 #endif
1188
1189 /* PIO buffers should be mapped with write-combining enabled,
1190 * and we want to make single UC and WC mappings rather than
1191 * several of each (in fact that's the only option if host
1192 * page size is >4K). So we may allocate some extra VIs just
1193 * for writing PIO buffers through.
1194 *
1195 * The UC mapping contains (channel_vis - 1) complete VIs and the
1196 * first 4K of the next VI. Then the WC mapping begins with
1197 * the remainder of this last VI.
1198 */
1199 uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
1200 ER_DZ_TX_PIOBUF);
1201 if (nic_data->n_piobufs) {
1202 /* pio_write_vi_base rounds down to give the number of complete
1203 * VIs inside the UC mapping.
1204 */
1205 pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
1206 wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1207 nic_data->n_piobufs) *
1208 efx->vi_stride) -
1209 uc_mem_map_size);
1210 max_vis = pio_write_vi_base + nic_data->n_piobufs;
1211 } else {
1212 pio_write_vi_base = 0;
1213 wc_mem_map_size = 0;
1214 max_vis = channel_vis;
1215 }
1216
1217 /* In case the last attached driver failed to free VIs, do it now */
1218 rc = efx_mcdi_free_vis(efx);
1219 if (rc != 0)
1220 return rc;
1221
1222 rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1223 if (rc != 0)
1224 return rc;
1225
1226 if (nic_data->n_allocated_vis < channel_vis) {
1227 netif_info(efx, drv, efx->net_dev,
1228 "Could not allocate enough VIs to satisfy RSS"
1229 " requirements. Performance may not be optimal.\n");
1230 /* We didn't get the VIs to populate our channels.
1231 * We could keep what we got but then we'd have more
1232 * interrupts than we need.
1233 * Instead calculate new max_channels and restart
1234 */
1235 efx->max_channels = nic_data->n_allocated_vis;
1236 efx->max_tx_channels =
1237 nic_data->n_allocated_vis / efx->tx_queues_per_channel;
1238
1239 efx_mcdi_free_vis(efx);
1240 return -EAGAIN;
1241 }
1242
1243 /* If we didn't get enough VIs to map all the PIO buffers, free the
1244 * PIO buffers
1245 */
1246 if (nic_data->n_piobufs &&
1247 nic_data->n_allocated_vis <
1248 pio_write_vi_base + nic_data->n_piobufs) {
1249 netif_dbg(efx, probe, efx->net_dev,
1250 "%u VIs are not sufficient to map %u PIO buffers\n",
1251 nic_data->n_allocated_vis, nic_data->n_piobufs);
1252 efx_ef10_free_piobufs(efx);
1253 }
1254
1255 /* Shrink the original UC mapping of the memory BAR */
1256 membase = ioremap(efx->membase_phys, uc_mem_map_size);
1257 if (!membase) {
1258 netif_err(efx, probe, efx->net_dev,
1259 "could not shrink memory BAR to %x\n",
1260 uc_mem_map_size);
1261 return -ENOMEM;
1262 }
1263 iounmap(efx->membase);
1264 efx->membase = membase;
1265
1266 /* Set up the WC mapping if needed */
1267 if (wc_mem_map_size) {
1268 nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1269 uc_mem_map_size,
1270 wc_mem_map_size);
1271 if (!nic_data->wc_membase) {
1272 netif_err(efx, probe, efx->net_dev,
1273 "could not allocate WC mapping of size %x\n",
1274 wc_mem_map_size);
1275 return -ENOMEM;
1276 }
1277 nic_data->pio_write_vi_base = pio_write_vi_base;
1278 nic_data->pio_write_base =
1279 nic_data->wc_membase +
1280 (pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
1281 uc_mem_map_size);
1282
1283 rc = efx_ef10_link_piobufs(efx);
1284 if (rc)
1285 efx_ef10_free_piobufs(efx);
1286 }
1287
1288 netif_dbg(efx, probe, efx->net_dev,
1289 "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1290 &efx->membase_phys, efx->membase, uc_mem_map_size,
1291 nic_data->wc_membase, wc_mem_map_size);
1292
1293 return 0;
1294 }
1295
efx_ef10_fini_nic(struct efx_nic *efx)1296 static void efx_ef10_fini_nic(struct efx_nic *efx)
1297 {
1298 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1299
1300 spin_lock_bh(&efx->stats_lock);
1301 kfree(nic_data->mc_stats);
1302 nic_data->mc_stats = NULL;
1303 spin_unlock_bh(&efx->stats_lock);
1304 }
1305
efx_ef10_init_nic(struct efx_nic *efx)1306 static int efx_ef10_init_nic(struct efx_nic *efx)
1307 {
1308 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1309 struct net_device *net_dev = efx->net_dev;
1310 netdev_features_t tun_feats, tso_feats;
1311 int rc;
1312
1313 if (nic_data->must_check_datapath_caps) {
1314 rc = efx_ef10_init_datapath_caps(efx);
1315 if (rc)
1316 return rc;
1317 nic_data->must_check_datapath_caps = false;
1318 }
1319
1320 if (efx->must_realloc_vis) {
1321 /* We cannot let the number of VIs change now */
1322 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1323 nic_data->n_allocated_vis);
1324 if (rc)
1325 return rc;
1326 efx->must_realloc_vis = false;
1327 }
1328
1329 nic_data->mc_stats = kmalloc(efx->num_mac_stats * sizeof(__le64),
1330 GFP_KERNEL);
1331 if (!nic_data->mc_stats)
1332 return -ENOMEM;
1333
1334 if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1335 rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1336 if (rc == 0) {
1337 rc = efx_ef10_link_piobufs(efx);
1338 if (rc)
1339 efx_ef10_free_piobufs(efx);
1340 }
1341
1342 /* Log an error on failure, but this is non-fatal.
1343 * Permission errors are less important - we've presumably
1344 * had the PIO buffer licence removed.
1345 */
1346 if (rc == -EPERM)
1347 netif_dbg(efx, drv, efx->net_dev,
1348 "not permitted to restore PIO buffers\n");
1349 else if (rc)
1350 netif_err(efx, drv, efx->net_dev,
1351 "failed to restore PIO buffers (%d)\n", rc);
1352 nic_data->must_restore_piobufs = false;
1353 }
1354
1355 /* encap features might change during reset if fw variant changed */
1356 if (efx_has_cap(efx, VXLAN_NVGRE) && !efx_ef10_is_vf(efx))
1357 net_dev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
1358 else
1359 net_dev->hw_enc_features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
1360
1361 tun_feats = NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
1362 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM;
1363 tso_feats = NETIF_F_TSO | NETIF_F_TSO6;
1364
1365 if (efx_has_cap(efx, TX_TSO_V2_ENCAP)) {
1366 /* If this is first nic_init, or if it is a reset and a new fw
1367 * variant has added new features, enable them by default.
1368 * If the features are not new, maintain their current value.
1369 */
1370 if (!(net_dev->hw_features & tun_feats))
1371 net_dev->features |= tun_feats;
1372 net_dev->hw_enc_features |= tun_feats | tso_feats;
1373 net_dev->hw_features |= tun_feats;
1374 } else {
1375 net_dev->hw_enc_features &= ~(tun_feats | tso_feats);
1376 net_dev->hw_features &= ~tun_feats;
1377 net_dev->features &= ~tun_feats;
1378 }
1379
1380 /* don't fail init if RSS setup doesn't work */
1381 rc = efx->type->rx_push_rss_config(efx, false,
1382 efx->rss_context.rx_indir_table, NULL);
1383
1384 return 0;
1385 }
1386
efx_ef10_table_reset_mc_allocations(struct efx_nic *efx)1387 static void efx_ef10_table_reset_mc_allocations(struct efx_nic *efx)
1388 {
1389 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1390 #ifdef CONFIG_SFC_SRIOV
1391 unsigned int i;
1392 #endif
1393
1394 /* All our allocations have been reset */
1395 efx->must_realloc_vis = true;
1396 efx_mcdi_filter_table_reset_mc_allocations(efx);
1397 nic_data->must_restore_piobufs = true;
1398 efx_ef10_forget_old_piobufs(efx);
1399 efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
1400
1401 /* Driver-created vswitches and vports must be re-created */
1402 nic_data->must_probe_vswitching = true;
1403 efx->vport_id = EVB_PORT_ID_ASSIGNED;
1404 #ifdef CONFIG_SFC_SRIOV
1405 if (nic_data->vf)
1406 for (i = 0; i < efx->vf_count; i++)
1407 nic_data->vf[i].vport_id = 0;
1408 #endif
1409 }
1410
efx_ef10_map_reset_reason(enum reset_type reason)1411 static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1412 {
1413 if (reason == RESET_TYPE_MC_FAILURE)
1414 return RESET_TYPE_DATAPATH;
1415
1416 return efx_mcdi_map_reset_reason(reason);
1417 }
1418
efx_ef10_map_reset_flags(u32 *flags)1419 static int efx_ef10_map_reset_flags(u32 *flags)
1420 {
1421 enum {
1422 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1423 ETH_RESET_SHARED_SHIFT),
1424 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1425 ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1426 ETH_RESET_PHY | ETH_RESET_MGMT) <<
1427 ETH_RESET_SHARED_SHIFT)
1428 };
1429
1430 /* We assume for now that our PCI function is permitted to
1431 * reset everything.
1432 */
1433
1434 if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1435 *flags &= ~EF10_RESET_MC;
1436 return RESET_TYPE_WORLD;
1437 }
1438
1439 if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1440 *flags &= ~EF10_RESET_PORT;
1441 return RESET_TYPE_ALL;
1442 }
1443
1444 /* no invisible reset implemented */
1445
1446 return -EINVAL;
1447 }
1448
efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)1449 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1450 {
1451 int rc = efx_mcdi_reset(efx, reset_type);
1452
1453 /* Unprivileged functions return -EPERM, but need to return success
1454 * here so that the datapath is brought back up.
1455 */
1456 if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1457 rc = 0;
1458
1459 /* If it was a port reset, trigger reallocation of MC resources.
1460 * Note that on an MC reset nothing needs to be done now because we'll
1461 * detect the MC reset later and handle it then.
1462 * For an FLR, we never get an MC reset event, but the MC has reset all
1463 * resources assigned to us, so we have to trigger reallocation now.
1464 */
1465 if ((reset_type == RESET_TYPE_ALL ||
1466 reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1467 efx_ef10_table_reset_mc_allocations(efx);
1468 return rc;
1469 }
1470
1471 #define EF10_DMA_STAT(ext_name, mcdi_name) \
1472 [EF10_STAT_ ## ext_name] = \
1473 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1474 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
1475 [EF10_STAT_ ## int_name] = \
1476 { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1477 #define EF10_OTHER_STAT(ext_name) \
1478 [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1479
1480 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1481 EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1482 EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1483 EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1484 EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1485 EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1486 EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1487 EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1488 EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1489 EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1490 EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1491 EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1492 EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1493 EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1494 EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1495 EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1496 EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1497 EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1498 EF10_OTHER_STAT(port_rx_good_bytes),
1499 EF10_OTHER_STAT(port_rx_bad_bytes),
1500 EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1501 EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1502 EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1503 EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1504 EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1505 EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1506 EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1507 EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1508 EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1509 EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1510 EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1511 EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1512 EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1513 EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1514 EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1515 EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1516 EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1517 EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1518 EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1519 EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1520 EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1521 EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1522 EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
1523 EFX_GENERIC_SW_STAT(rx_noskb_drops),
1524 EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1525 EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1526 EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1527 EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1528 EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1529 EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1530 EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1531 EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1532 EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1533 EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1534 EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1535 EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1536 EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1537 EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1538 EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1539 EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1540 EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1541 EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1542 EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1543 EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1544 EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1545 EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1546 EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1547 EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1548 EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1549 EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1550 EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1551 EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1552 EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1553 EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1554 EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
1555 EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
1556 EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
1557 EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
1558 EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
1559 EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
1560 EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
1561 EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
1562 EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
1563 EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
1564 EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
1565 EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
1566 EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
1567 EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
1568 EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
1569 EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
1570 EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
1571 EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
1572 EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
1573 EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
1574 EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
1575 EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
1576 };
1577
1578 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) | \
1579 (1ULL << EF10_STAT_port_tx_packets) | \
1580 (1ULL << EF10_STAT_port_tx_pause) | \
1581 (1ULL << EF10_STAT_port_tx_unicast) | \
1582 (1ULL << EF10_STAT_port_tx_multicast) | \
1583 (1ULL << EF10_STAT_port_tx_broadcast) | \
1584 (1ULL << EF10_STAT_port_rx_bytes) | \
1585 (1ULL << \
1586 EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1587 (1ULL << EF10_STAT_port_rx_good_bytes) | \
1588 (1ULL << EF10_STAT_port_rx_bad_bytes) | \
1589 (1ULL << EF10_STAT_port_rx_packets) | \
1590 (1ULL << EF10_STAT_port_rx_good) | \
1591 (1ULL << EF10_STAT_port_rx_bad) | \
1592 (1ULL << EF10_STAT_port_rx_pause) | \
1593 (1ULL << EF10_STAT_port_rx_control) | \
1594 (1ULL << EF10_STAT_port_rx_unicast) | \
1595 (1ULL << EF10_STAT_port_rx_multicast) | \
1596 (1ULL << EF10_STAT_port_rx_broadcast) | \
1597 (1ULL << EF10_STAT_port_rx_lt64) | \
1598 (1ULL << EF10_STAT_port_rx_64) | \
1599 (1ULL << EF10_STAT_port_rx_65_to_127) | \
1600 (1ULL << EF10_STAT_port_rx_128_to_255) | \
1601 (1ULL << EF10_STAT_port_rx_256_to_511) | \
1602 (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1603 (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1604 (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1605 (1ULL << EF10_STAT_port_rx_gtjumbo) | \
1606 (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1607 (1ULL << EF10_STAT_port_rx_overflow) | \
1608 (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1609 (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
1610 (1ULL << GENERIC_STAT_rx_noskb_drops))
1611
1612 /* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1613 * For a 10G/40G switchable port we do not expose these because they might
1614 * not include all the packets they should.
1615 * On 8000 series NICs these statistics are always provided.
1616 */
1617 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) | \
1618 (1ULL << EF10_STAT_port_tx_lt64) | \
1619 (1ULL << EF10_STAT_port_tx_64) | \
1620 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1621 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1622 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1623 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1624 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1625 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1626
1627 /* These statistics are only provided by the 40G MAC. For a 10G/40G
1628 * switchable port we do expose these because the errors will otherwise
1629 * be silent.
1630 */
1631 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1632 (1ULL << EF10_STAT_port_rx_length_error))
1633
1634 /* These statistics are only provided if the firmware supports the
1635 * capability PM_AND_RXDP_COUNTERS.
1636 */
1637 #define HUNT_PM_AND_RXDP_STAT_MASK ( \
1638 (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) | \
1639 (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) | \
1640 (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) | \
1641 (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) | \
1642 (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) | \
1643 (1ULL << EF10_STAT_port_rx_pm_discard_qbb) | \
1644 (1ULL << EF10_STAT_port_rx_pm_discard_mapping) | \
1645 (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) | \
1646 (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) | \
1647 (1ULL << EF10_STAT_port_rx_dp_streaming_packets) | \
1648 (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) | \
1649 (1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1650
1651 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1652 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1653 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1654 * These bits are in the second u64 of the raw mask.
1655 */
1656 #define EF10_FEC_STAT_MASK ( \
1657 (1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) | \
1658 (1ULL << (EF10_STAT_fec_corrected_errors - 64)) | \
1659 (1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) | \
1660 (1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) | \
1661 (1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) | \
1662 (1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1663
1664 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1665 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1666 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1667 * These bits are in the second u64 of the raw mask.
1668 */
1669 #define EF10_CTPIO_STAT_MASK ( \
1670 (1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) | \
1671 (1ULL << (EF10_STAT_ctpio_long_write_success - 64)) | \
1672 (1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) | \
1673 (1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) | \
1674 (1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) | \
1675 (1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) | \
1676 (1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) | \
1677 (1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) | \
1678 (1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) | \
1679 (1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) | \
1680 (1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) | \
1681 (1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) | \
1682 (1ULL << (EF10_STAT_ctpio_success - 64)) | \
1683 (1ULL << (EF10_STAT_ctpio_fallback - 64)) | \
1684 (1ULL << (EF10_STAT_ctpio_poison - 64)) | \
1685 (1ULL << (EF10_STAT_ctpio_erase - 64)))
1686
efx_ef10_raw_stat_mask(struct efx_nic *efx)1687 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1688 {
1689 u64 raw_mask = HUNT_COMMON_STAT_MASK;
1690 u32 port_caps = efx_mcdi_phy_get_caps(efx);
1691 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1692
1693 if (!(efx->mcdi->fn_flags &
1694 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1695 return 0;
1696
1697 if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1698 raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1699 /* 8000 series have everything even at 40G */
1700 if (nic_data->datapath_caps2 &
1701 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1702 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1703 } else {
1704 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1705 }
1706
1707 if (nic_data->datapath_caps &
1708 (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1709 raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1710
1711 return raw_mask;
1712 }
1713
efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)1714 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1715 {
1716 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1717 u64 raw_mask[2];
1718
1719 raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1720
1721 /* Only show vadaptor stats when EVB capability is present */
1722 if (nic_data->datapath_caps &
1723 (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1724 raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1725 raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
1726 } else {
1727 raw_mask[1] = 0;
1728 }
1729 /* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1730 if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
1731 raw_mask[1] |= EF10_FEC_STAT_MASK;
1732
1733 /* CTPIO stats appear in V3. Only show them on devices that actually
1734 * support CTPIO. Although this driver doesn't use CTPIO others might,
1735 * and we may be reporting the stats for the underlying port.
1736 */
1737 if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
1738 (nic_data->datapath_caps2 &
1739 (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
1740 raw_mask[1] |= EF10_CTPIO_STAT_MASK;
1741
1742 #if BITS_PER_LONG == 64
1743 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1744 mask[0] = raw_mask[0];
1745 mask[1] = raw_mask[1];
1746 #else
1747 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1748 mask[0] = raw_mask[0] & 0xffffffff;
1749 mask[1] = raw_mask[0] >> 32;
1750 mask[2] = raw_mask[1] & 0xffffffff;
1751 #endif
1752 }
1753
efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)1754 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1755 {
1756 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1757
1758 efx_ef10_get_stat_mask(efx, mask);
1759 return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1760 mask, names);
1761 }
1762
efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats, struct rtnl_link_stats64 *core_stats)1763 static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1764 struct rtnl_link_stats64 *core_stats)
1765 {
1766 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1767 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1768 u64 *stats = nic_data->stats;
1769 size_t stats_count = 0, index;
1770
1771 efx_ef10_get_stat_mask(efx, mask);
1772
1773 if (full_stats) {
1774 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1775 if (efx_ef10_stat_desc[index].name) {
1776 *full_stats++ = stats[index];
1777 ++stats_count;
1778 }
1779 }
1780 }
1781
1782 if (!core_stats)
1783 return stats_count;
1784
1785 if (nic_data->datapath_caps &
1786 1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1787 /* Use vadaptor stats. */
1788 core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1789 stats[EF10_STAT_rx_multicast] +
1790 stats[EF10_STAT_rx_broadcast];
1791 core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1792 stats[EF10_STAT_tx_multicast] +
1793 stats[EF10_STAT_tx_broadcast];
1794 core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1795 stats[EF10_STAT_rx_multicast_bytes] +
1796 stats[EF10_STAT_rx_broadcast_bytes];
1797 core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1798 stats[EF10_STAT_tx_multicast_bytes] +
1799 stats[EF10_STAT_tx_broadcast_bytes];
1800 core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1801 stats[GENERIC_STAT_rx_noskb_drops];
1802 core_stats->multicast = stats[EF10_STAT_rx_multicast];
1803 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1804 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1805 core_stats->rx_errors = core_stats->rx_crc_errors;
1806 core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1807 } else {
1808 /* Use port stats. */
1809 core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1810 core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1811 core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1812 core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1813 core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1814 stats[GENERIC_STAT_rx_nodesc_trunc] +
1815 stats[GENERIC_STAT_rx_noskb_drops];
1816 core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1817 core_stats->rx_length_errors =
1818 stats[EF10_STAT_port_rx_gtjumbo] +
1819 stats[EF10_STAT_port_rx_length_error];
1820 core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1821 core_stats->rx_frame_errors =
1822 stats[EF10_STAT_port_rx_align_error];
1823 core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1824 core_stats->rx_errors = (core_stats->rx_length_errors +
1825 core_stats->rx_crc_errors +
1826 core_stats->rx_frame_errors);
1827 }
1828
1829 return stats_count;
1830 }
1831
efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats, struct rtnl_link_stats64 *core_stats)1832 static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1833 struct rtnl_link_stats64 *core_stats)
1834 {
1835 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1836 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1837 u64 *stats = nic_data->stats;
1838
1839 efx_ef10_get_stat_mask(efx, mask);
1840
1841 /* If NIC was fini'd (probably resetting), then we can't read
1842 * updated stats right now.
1843 */
1844 if (nic_data->mc_stats) {
1845 efx_nic_copy_stats(efx, nic_data->mc_stats);
1846 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1847 mask, stats, nic_data->mc_stats, false);
1848 }
1849
1850 /* Update derived statistics */
1851 efx_nic_fix_nodesc_drop_stat(efx,
1852 &stats[EF10_STAT_port_rx_nodesc_drops]);
1853 /* MC Firmware reads RX_BYTES and RX_GOOD_BYTES from the MAC.
1854 * It then calculates RX_BAD_BYTES and DMAs it to us with RX_BYTES.
1855 * We report these as port_rx_ stats. We are not given RX_GOOD_BYTES.
1856 * Here we calculate port_rx_good_bytes.
1857 */
1858 stats[EF10_STAT_port_rx_good_bytes] =
1859 stats[EF10_STAT_port_rx_bytes] -
1860 stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1861
1862 /* The asynchronous reads used to calculate RX_BAD_BYTES in
1863 * MC Firmware are done such that we should not see an increase in
1864 * RX_BAD_BYTES when a good packet has arrived. Unfortunately this
1865 * does mean that the stat can decrease at times. Here we do not
1866 * update the stat unless it has increased or has gone to zero
1867 * (In the case of the NIC rebooting).
1868 * Please see Bug 33781 for a discussion of why things work this way.
1869 */
1870 efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1871 stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1872 efx_update_sw_stats(efx, stats);
1873
1874 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1875 }
1876
1877 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1878 __must_hold(&efx->stats_lock)
1879 {
1880 MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1881 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1882 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1883 __le64 generation_start, generation_end;
1884 u64 *stats = nic_data->stats;
1885 u32 dma_len = efx->num_mac_stats * sizeof(u64);
1886 struct efx_buffer stats_buf;
1887 __le64 *dma_stats;
1888 int rc;
1889
1890 spin_unlock_bh(&efx->stats_lock);
1891
1892 efx_ef10_get_stat_mask(efx, mask);
1893
1894 rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_KERNEL);
1895 if (rc) {
1896 spin_lock_bh(&efx->stats_lock);
1897 return rc;
1898 }
1899
1900 dma_stats = stats_buf.addr;
1901 dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
1902
1903 MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1904 MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1905 MAC_STATS_IN_DMA, 1);
1906 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1907 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1908
1909 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1910 NULL, 0, NULL);
1911 spin_lock_bh(&efx->stats_lock);
1912 if (rc) {
1913 /* Expect ENOENT if DMA queues have not been set up */
1914 if (rc != -ENOENT || atomic_read(&efx->active_queues))
1915 efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1916 sizeof(inbuf), NULL, 0, rc);
1917 goto out;
1918 }
1919
1920 generation_end = dma_stats[efx->num_mac_stats - 1];
1921 if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1922 WARN_ON_ONCE(1);
1923 goto out;
1924 }
1925 rmb();
1926 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1927 stats, stats_buf.addr, false);
1928 rmb();
1929 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1930 if (generation_end != generation_start) {
1931 rc = -EAGAIN;
1932 goto out;
1933 }
1934
1935 efx_update_sw_stats(efx, stats);
1936 out:
1937 /* releasing a DMA coherent buffer with BH disabled can panic */
1938 spin_unlock_bh(&efx->stats_lock);
1939 efx_nic_free_buffer(efx, &stats_buf);
1940 spin_lock_bh(&efx->stats_lock);
1941 return rc;
1942 }
1943
efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats, struct rtnl_link_stats64 *core_stats)1944 static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1945 struct rtnl_link_stats64 *core_stats)
1946 {
1947 if (efx_ef10_try_update_nic_stats_vf(efx))
1948 return 0;
1949
1950 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1951 }
1952
efx_ef10_update_stats_atomic_vf(struct efx_nic *efx, u64 *full_stats, struct rtnl_link_stats64 *core_stats)1953 static size_t efx_ef10_update_stats_atomic_vf(struct efx_nic *efx, u64 *full_stats,
1954 struct rtnl_link_stats64 *core_stats)
1955 {
1956 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1957
1958 /* In atomic context, cannot update HW stats. Just update the
1959 * software stats and return so the caller can continue.
1960 */
1961 efx_update_sw_stats(efx, nic_data->stats);
1962 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1963 }
1964
efx_ef10_push_irq_moderation(struct efx_channel *channel)1965 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1966 {
1967 struct efx_nic *efx = channel->efx;
1968 unsigned int mode, usecs;
1969 efx_dword_t timer_cmd;
1970
1971 if (channel->irq_moderation_us) {
1972 mode = 3;
1973 usecs = channel->irq_moderation_us;
1974 } else {
1975 mode = 0;
1976 usecs = 0;
1977 }
1978
1979 if (EFX_EF10_WORKAROUND_61265(efx)) {
1980 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
1981 unsigned int ns = usecs * 1000;
1982
1983 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
1984 channel->channel);
1985 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
1986 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
1987 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
1988
1989 efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
1990 inbuf, sizeof(inbuf), 0, NULL, 0);
1991 } else if (EFX_EF10_WORKAROUND_35388(efx)) {
1992 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1993
1994 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1995 EFE_DD_EVQ_IND_TIMER_FLAGS,
1996 ERF_DD_EVQ_IND_TIMER_MODE, mode,
1997 ERF_DD_EVQ_IND_TIMER_VAL, ticks);
1998 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1999 channel->channel);
2000 } else {
2001 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2002
2003 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
2004 ERF_DZ_TC_TIMER_VAL, ticks,
2005 ERF_FZ_TC_TMR_REL_VAL, ticks);
2006 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
2007 channel->channel);
2008 }
2009 }
2010
efx_ef10_get_wol_vf(struct efx_nic *efx, struct ethtool_wolinfo *wol)2011 static void efx_ef10_get_wol_vf(struct efx_nic *efx,
2012 struct ethtool_wolinfo *wol) {}
2013
efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)2014 static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
2015 {
2016 return -EOPNOTSUPP;
2017 }
2018
efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)2019 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2020 {
2021 wol->supported = 0;
2022 wol->wolopts = 0;
2023 memset(&wol->sopass, 0, sizeof(wol->sopass));
2024 }
2025
efx_ef10_set_wol(struct efx_nic *efx, u32 type)2026 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
2027 {
2028 if (type != 0)
2029 return -EINVAL;
2030 return 0;
2031 }
2032
efx_ef10_mcdi_request(struct efx_nic *efx, const efx_dword_t *hdr, size_t hdr_len, const efx_dword_t *sdu, size_t sdu_len)2033 static void efx_ef10_mcdi_request(struct efx_nic *efx,
2034 const efx_dword_t *hdr, size_t hdr_len,
2035 const efx_dword_t *sdu, size_t sdu_len)
2036 {
2037 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2038 u8 *pdu = nic_data->mcdi_buf.addr;
2039
2040 memcpy(pdu, hdr, hdr_len);
2041 memcpy(pdu + hdr_len, sdu, sdu_len);
2042 wmb();
2043
2044 /* The hardware provides 'low' and 'high' (doorbell) registers
2045 * for passing the 64-bit address of an MCDI request to
2046 * firmware. However the dwords are swapped by firmware. The
2047 * least significant bits of the doorbell are then 0 for all
2048 * MCDI requests due to alignment.
2049 */
2050 _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
2051 ER_DZ_MC_DB_LWRD);
2052 _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
2053 ER_DZ_MC_DB_HWRD);
2054 }
2055
efx_ef10_mcdi_poll_response(struct efx_nic *efx)2056 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2057 {
2058 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2059 const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2060
2061 rmb();
2062 return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2063 }
2064
2065 static void
efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf, size_t offset, size_t outlen)2066 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2067 size_t offset, size_t outlen)
2068 {
2069 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2070 const u8 *pdu = nic_data->mcdi_buf.addr;
2071
2072 memcpy(outbuf, pdu + offset, outlen);
2073 }
2074
efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)2075 static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2076 {
2077 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2078
2079 /* All our allocations have been reset */
2080 efx_ef10_table_reset_mc_allocations(efx);
2081
2082 /* The datapath firmware might have been changed */
2083 nic_data->must_check_datapath_caps = true;
2084
2085 /* MAC statistics have been cleared on the NIC; clear the local
2086 * statistic that we update with efx_update_diff_stat().
2087 */
2088 nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2089 }
2090
efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)2091 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2092 {
2093 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2094 int rc;
2095
2096 rc = efx_ef10_get_warm_boot_count(efx);
2097 if (rc < 0) {
2098 /* The firmware is presumably in the process of
2099 * rebooting. However, we are supposed to report each
2100 * reboot just once, so we must only do that once we
2101 * can read and store the updated warm boot count.
2102 */
2103 return 0;
2104 }
2105
2106 if (rc == nic_data->warm_boot_count)
2107 return 0;
2108
2109 nic_data->warm_boot_count = rc;
2110 efx_ef10_mcdi_reboot_detected(efx);
2111
2112 return -EIO;
2113 }
2114
2115 /* Handle an MSI interrupt
2116 *
2117 * Handle an MSI hardware interrupt. This routine schedules event
2118 * queue processing. No interrupt acknowledgement cycle is necessary.
2119 * Also, we never need to check that the interrupt is for us, since
2120 * MSI interrupts cannot be shared.
2121 */
efx_ef10_msi_interrupt(int irq, void *dev_id)2122 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2123 {
2124 struct efx_msi_context *context = dev_id;
2125 struct efx_nic *efx = context->efx;
2126
2127 netif_vdbg(efx, intr, efx->net_dev,
2128 "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2129
2130 if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2131 /* Note test interrupts */
2132 if (context->index == efx->irq_level)
2133 efx->last_irq_cpu = raw_smp_processor_id();
2134
2135 /* Schedule processing of the channel */
2136 efx_schedule_channel_irq(efx->channel[context->index]);
2137 }
2138
2139 return IRQ_HANDLED;
2140 }
2141
efx_ef10_legacy_interrupt(int irq, void *dev_id)2142 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2143 {
2144 struct efx_nic *efx = dev_id;
2145 bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2146 struct efx_channel *channel;
2147 efx_dword_t reg;
2148 u32 queues;
2149
2150 /* Read the ISR which also ACKs the interrupts */
2151 efx_readd(efx, ®, ER_DZ_BIU_INT_ISR);
2152 queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2153
2154 if (queues == 0)
2155 return IRQ_NONE;
2156
2157 if (likely(soft_enabled)) {
2158 /* Note test interrupts */
2159 if (queues & (1U << efx->irq_level))
2160 efx->last_irq_cpu = raw_smp_processor_id();
2161
2162 efx_for_each_channel(channel, efx) {
2163 if (queues & 1)
2164 efx_schedule_channel_irq(channel);
2165 queues >>= 1;
2166 }
2167 }
2168
2169 netif_vdbg(efx, intr, efx->net_dev,
2170 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2171 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2172
2173 return IRQ_HANDLED;
2174 }
2175
efx_ef10_irq_test_generate(struct efx_nic *efx)2176 static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2177 {
2178 MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2179
2180 if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2181 NULL) == 0)
2182 return -ENOTSUPP;
2183
2184 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2185
2186 MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2187 return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2188 inbuf, sizeof(inbuf), NULL, 0, NULL);
2189 }
2190
efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)2191 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2192 {
2193 /* low two bits of label are what we want for type */
2194 BUILD_BUG_ON((EFX_TXQ_TYPE_OUTER_CSUM | EFX_TXQ_TYPE_INNER_CSUM) != 3);
2195 tx_queue->type = tx_queue->label & 3;
2196 return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
2197 (tx_queue->ptr_mask + 1) *
2198 sizeof(efx_qword_t),
2199 GFP_KERNEL);
2200 }
2201
2202 /* This writes to the TX_DESC_WPTR and also pushes data */
efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue, const efx_qword_t *txd)2203 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2204 const efx_qword_t *txd)
2205 {
2206 unsigned int write_ptr;
2207 efx_oword_t reg;
2208
2209 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2210 EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2211 reg.qword[0] = *txd;
2212 efx_writeo_page(tx_queue->efx, ®,
2213 ER_DZ_TX_DESC_UPD, tx_queue->queue);
2214 }
2215
2216 /* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2217 */
efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue, struct sk_buff *skb, bool *data_mapped)2218 int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
2219 bool *data_mapped)
2220 {
2221 struct efx_tx_buffer *buffer;
2222 u16 inner_ipv4_id = 0;
2223 u16 outer_ipv4_id = 0;
2224 struct tcphdr *tcp;
2225 struct iphdr *ip;
2226 u16 ip_tot_len;
2227 u32 seqnum;
2228 u32 mss;
2229
2230 EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2231
2232 mss = skb_shinfo(skb)->gso_size;
2233
2234 if (unlikely(mss < 4)) {
2235 WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2236 return -EINVAL;
2237 }
2238
2239 if (skb->encapsulation) {
2240 if (!tx_queue->tso_encap)
2241 return -EINVAL;
2242 ip = ip_hdr(skb);
2243 if (ip->version == 4)
2244 outer_ipv4_id = ntohs(ip->id);
2245
2246 ip = inner_ip_hdr(skb);
2247 tcp = inner_tcp_hdr(skb);
2248 } else {
2249 ip = ip_hdr(skb);
2250 tcp = tcp_hdr(skb);
2251 }
2252
2253 /* 8000-series EF10 hardware requires that IP Total Length be
2254 * greater than or equal to the value it will have in each segment
2255 * (which is at most mss + 208 + TCP header length), but also less
2256 * than (0x10000 - inner_network_header). Otherwise the TCP
2257 * checksum calculation will be broken for encapsulated packets.
2258 * We fill in ip->tot_len with 0xff30, which should satisfy the
2259 * first requirement unless the MSS is ridiculously large (which
2260 * should be impossible as the driver max MTU is 9216); it is
2261 * guaranteed to satisfy the second as we only attempt TSO if
2262 * inner_network_header <= 208.
2263 */
2264 ip_tot_len = 0x10000 - EFX_TSO2_MAX_HDRLEN;
2265 EFX_WARN_ON_ONCE_PARANOID(mss + EFX_TSO2_MAX_HDRLEN +
2266 (tcp->doff << 2u) > ip_tot_len);
2267
2268 if (ip->version == 4) {
2269 ip->tot_len = htons(ip_tot_len);
2270 ip->check = 0;
2271 inner_ipv4_id = ntohs(ip->id);
2272 } else {
2273 ((struct ipv6hdr *)ip)->payload_len = htons(ip_tot_len);
2274 }
2275
2276 seqnum = ntohl(tcp->seq);
2277
2278 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2279
2280 buffer->flags = EFX_TX_BUF_OPTION;
2281 buffer->len = 0;
2282 buffer->unmap_len = 0;
2283 EFX_POPULATE_QWORD_5(buffer->option,
2284 ESF_DZ_TX_DESC_IS_OPT, 1,
2285 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2286 ESF_DZ_TX_TSO_OPTION_TYPE,
2287 ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2288 ESF_DZ_TX_TSO_IP_ID, inner_ipv4_id,
2289 ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2290 );
2291 ++tx_queue->insert_count;
2292
2293 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2294
2295 buffer->flags = EFX_TX_BUF_OPTION;
2296 buffer->len = 0;
2297 buffer->unmap_len = 0;
2298 EFX_POPULATE_QWORD_5(buffer->option,
2299 ESF_DZ_TX_DESC_IS_OPT, 1,
2300 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2301 ESF_DZ_TX_TSO_OPTION_TYPE,
2302 ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2303 ESF_DZ_TX_TSO_OUTER_IPID, outer_ipv4_id,
2304 ESF_DZ_TX_TSO_TCP_MSS, mss
2305 );
2306 ++tx_queue->insert_count;
2307
2308 return 0;
2309 }
2310
efx_ef10_tso_versions(struct efx_nic *efx)2311 static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2312 {
2313 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2314 u32 tso_versions = 0;
2315
2316 if (nic_data->datapath_caps &
2317 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2318 tso_versions |= BIT(1);
2319 if (nic_data->datapath_caps2 &
2320 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2321 tso_versions |= BIT(2);
2322 return tso_versions;
2323 }
2324
efx_ef10_tx_init(struct efx_tx_queue *tx_queue)2325 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2326 {
2327 bool csum_offload = tx_queue->type & EFX_TXQ_TYPE_OUTER_CSUM;
2328 bool inner_csum = tx_queue->type & EFX_TXQ_TYPE_INNER_CSUM;
2329 struct efx_channel *channel = tx_queue->channel;
2330 struct efx_nic *efx = tx_queue->efx;
2331 struct efx_ef10_nic_data *nic_data;
2332 efx_qword_t *txd;
2333 int rc;
2334
2335 nic_data = efx->nic_data;
2336
2337 /* Only attempt to enable TX timestamping if we have the license for it,
2338 * otherwise TXQ init will fail
2339 */
2340 if (!(nic_data->licensed_features &
2341 (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
2342 tx_queue->timestamping = false;
2343 /* Disable sync events on this channel. */
2344 if (efx->type->ptp_set_ts_sync_events)
2345 efx->type->ptp_set_ts_sync_events(efx, false, false);
2346 }
2347
2348 /* TSOv2 is a limited resource that can only be configured on a limited
2349 * number of queues. TSO without checksum offload is not really a thing,
2350 * so we only enable it for those queues.
2351 * TSOv2 cannot be used with Hardware timestamping, and is never needed
2352 * for XDP tx.
2353 */
2354 if (efx_has_cap(efx, TX_TSO_V2)) {
2355 if ((csum_offload || inner_csum) &&
2356 !tx_queue->timestamping && !tx_queue->xdp_tx) {
2357 tx_queue->tso_version = 2;
2358 netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2359 channel->channel);
2360 }
2361 } else if (efx_has_cap(efx, TX_TSO)) {
2362 tx_queue->tso_version = 1;
2363 }
2364
2365 rc = efx_mcdi_tx_init(tx_queue);
2366 if (rc)
2367 goto fail;
2368
2369 /* A previous user of this TX queue might have set us up the
2370 * bomb by writing a descriptor to the TX push collector but
2371 * not the doorbell. (Each collector belongs to a port, not a
2372 * queue or function, so cannot easily be reset.) We must
2373 * attempt to push a no-op descriptor in its place.
2374 */
2375 tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2376 tx_queue->insert_count = 1;
2377 txd = efx_tx_desc(tx_queue, 0);
2378 EFX_POPULATE_QWORD_7(*txd,
2379 ESF_DZ_TX_DESC_IS_OPT, true,
2380 ESF_DZ_TX_OPTION_TYPE,
2381 ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2382 ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2383 ESF_DZ_TX_OPTION_IP_CSUM, csum_offload && tx_queue->tso_version != 2,
2384 ESF_DZ_TX_OPTION_INNER_UDP_TCP_CSUM, inner_csum,
2385 ESF_DZ_TX_OPTION_INNER_IP_CSUM, inner_csum && tx_queue->tso_version != 2,
2386 ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
2387 tx_queue->write_count = 1;
2388
2389 if (tx_queue->tso_version == 2 && efx_has_cap(efx, TX_TSO_V2_ENCAP))
2390 tx_queue->tso_encap = true;
2391
2392 wmb();
2393 efx_ef10_push_tx_desc(tx_queue, txd);
2394
2395 return;
2396
2397 fail:
2398 netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2399 tx_queue->queue);
2400 }
2401
2402 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)2403 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2404 {
2405 unsigned int write_ptr;
2406 efx_dword_t reg;
2407
2408 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2409 EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2410 efx_writed_page(tx_queue->efx, ®,
2411 ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2412 }
2413
2414 #define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2415
efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue, dma_addr_t dma_addr, unsigned int len)2416 static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2417 dma_addr_t dma_addr, unsigned int len)
2418 {
2419 if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2420 /* If we need to break across multiple descriptors we should
2421 * stop at a page boundary. This assumes the length limit is
2422 * greater than the page size.
2423 */
2424 dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2425
2426 BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2427 len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2428 }
2429
2430 return len;
2431 }
2432
efx_ef10_tx_write(struct efx_tx_queue *tx_queue)2433 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2434 {
2435 unsigned int old_write_count = tx_queue->write_count;
2436 struct efx_tx_buffer *buffer;
2437 unsigned int write_ptr;
2438 efx_qword_t *txd;
2439
2440 tx_queue->xmit_pending = false;
2441 if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2442 return;
2443
2444 do {
2445 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2446 buffer = &tx_queue->buffer[write_ptr];
2447 txd = efx_tx_desc(tx_queue, write_ptr);
2448 ++tx_queue->write_count;
2449
2450 /* Create TX descriptor ring entry */
2451 if (buffer->flags & EFX_TX_BUF_OPTION) {
2452 *txd = buffer->option;
2453 if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2454 /* PIO descriptor */
2455 tx_queue->packet_write_count = tx_queue->write_count;
2456 } else {
2457 tx_queue->packet_write_count = tx_queue->write_count;
2458 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2459 EFX_POPULATE_QWORD_3(
2460 *txd,
2461 ESF_DZ_TX_KER_CONT,
2462 buffer->flags & EFX_TX_BUF_CONT,
2463 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2464 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2465 }
2466 } while (tx_queue->write_count != tx_queue->insert_count);
2467
2468 wmb(); /* Ensure descriptors are written before they are fetched */
2469
2470 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2471 txd = efx_tx_desc(tx_queue,
2472 old_write_count & tx_queue->ptr_mask);
2473 efx_ef10_push_tx_desc(tx_queue, txd);
2474 ++tx_queue->pushes;
2475 } else {
2476 efx_ef10_notify_tx_desc(tx_queue);
2477 }
2478 }
2479
efx_ef10_probe_multicast_chaining(struct efx_nic *efx)2480 static int efx_ef10_probe_multicast_chaining(struct efx_nic *efx)
2481 {
2482 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2483 unsigned int enabled, implemented;
2484 bool want_workaround_26807;
2485 int rc;
2486
2487 rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2488 if (rc == -ENOSYS) {
2489 /* GET_WORKAROUNDS was implemented before this workaround,
2490 * thus it must be unavailable in this firmware.
2491 */
2492 nic_data->workaround_26807 = false;
2493 return 0;
2494 }
2495 if (rc)
2496 return rc;
2497 want_workaround_26807 =
2498 implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807;
2499 nic_data->workaround_26807 =
2500 !!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2501
2502 if (want_workaround_26807 && !nic_data->workaround_26807) {
2503 unsigned int flags;
2504
2505 rc = efx_mcdi_set_workaround(efx,
2506 MC_CMD_WORKAROUND_BUG26807,
2507 true, &flags);
2508 if (!rc) {
2509 if (flags &
2510 1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2511 netif_info(efx, drv, efx->net_dev,
2512 "other functions on NIC have been reset\n");
2513
2514 /* With MCFW v4.6.x and earlier, the
2515 * boot count will have incremented,
2516 * so re-read the warm_boot_count
2517 * value now to ensure this function
2518 * doesn't think it has changed next
2519 * time it checks.
2520 */
2521 rc = efx_ef10_get_warm_boot_count(efx);
2522 if (rc >= 0) {
2523 nic_data->warm_boot_count = rc;
2524 rc = 0;
2525 }
2526 }
2527 nic_data->workaround_26807 = true;
2528 } else if (rc == -EPERM) {
2529 rc = 0;
2530 }
2531 }
2532 return rc;
2533 }
2534
efx_ef10_filter_table_probe(struct efx_nic *efx)2535 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
2536 {
2537 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2538 int rc = efx_ef10_probe_multicast_chaining(efx);
2539 struct efx_mcdi_filter_vlan *vlan;
2540
2541 if (rc)
2542 return rc;
2543 rc = efx_mcdi_filter_table_probe(efx, nic_data->workaround_26807);
2544
2545 if (rc)
2546 return rc;
2547
2548 list_for_each_entry(vlan, &nic_data->vlan_list, list) {
2549 rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
2550 if (rc)
2551 goto fail_add_vlan;
2552 }
2553 return 0;
2554
2555 fail_add_vlan:
2556 efx_mcdi_filter_table_remove(efx);
2557 return rc;
2558 }
2559
2560 /* This creates an entry in the RX descriptor queue */
2561 static inline void
efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)2562 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2563 {
2564 struct efx_rx_buffer *rx_buf;
2565 efx_qword_t *rxd;
2566
2567 rxd = efx_rx_desc(rx_queue, index);
2568 rx_buf = efx_rx_buffer(rx_queue, index);
2569 EFX_POPULATE_QWORD_2(*rxd,
2570 ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2571 ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2572 }
2573
efx_ef10_rx_write(struct efx_rx_queue *rx_queue)2574 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2575 {
2576 struct efx_nic *efx = rx_queue->efx;
2577 unsigned int write_count;
2578 efx_dword_t reg;
2579
2580 /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2581 write_count = rx_queue->added_count & ~7;
2582 if (rx_queue->notified_count == write_count)
2583 return;
2584
2585 do
2586 efx_ef10_build_rx_desc(
2587 rx_queue,
2588 rx_queue->notified_count & rx_queue->ptr_mask);
2589 while (++rx_queue->notified_count != write_count);
2590
2591 wmb();
2592 EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2593 write_count & rx_queue->ptr_mask);
2594 efx_writed_page(efx, ®, ER_DZ_RX_DESC_UPD,
2595 efx_rx_queue_index(rx_queue));
2596 }
2597
2598 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2599
efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)2600 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2601 {
2602 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2603 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2604 efx_qword_t event;
2605
2606 EFX_POPULATE_QWORD_2(event,
2607 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2608 ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2609
2610 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2611
2612 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2613 * already swapped the data to little-endian order.
2614 */
2615 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2616 sizeof(efx_qword_t));
2617
2618 efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2619 inbuf, sizeof(inbuf), 0,
2620 efx_ef10_rx_defer_refill_complete, 0);
2621 }
2622
2623 static void
efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie, int rc, efx_dword_t *outbuf, size_t outlen_actual)2624 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2625 int rc, efx_dword_t *outbuf,
2626 size_t outlen_actual)
2627 {
2628 /* nothing to do */
2629 }
2630
efx_ef10_ev_init(struct efx_channel *channel)2631 static int efx_ef10_ev_init(struct efx_channel *channel)
2632 {
2633 struct efx_nic *efx = channel->efx;
2634 struct efx_ef10_nic_data *nic_data;
2635 bool use_v2, cut_thru;
2636
2637 nic_data = efx->nic_data;
2638 use_v2 = nic_data->datapath_caps2 &
2639 1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN;
2640 cut_thru = !(nic_data->datapath_caps &
2641 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2642 return efx_mcdi_ev_init(channel, cut_thru, use_v2);
2643 }
2644
efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue, unsigned int rx_queue_label)2645 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2646 unsigned int rx_queue_label)
2647 {
2648 struct efx_nic *efx = rx_queue->efx;
2649
2650 netif_info(efx, hw, efx->net_dev,
2651 "rx event arrived on queue %d labeled as queue %u\n",
2652 efx_rx_queue_index(rx_queue), rx_queue_label);
2653
2654 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2655 }
2656
2657 static void
efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue, unsigned int actual, unsigned int expected)2658 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2659 unsigned int actual, unsigned int expected)
2660 {
2661 unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2662 struct efx_nic *efx = rx_queue->efx;
2663
2664 netif_info(efx, hw, efx->net_dev,
2665 "dropped %d events (index=%d expected=%d)\n",
2666 dropped, actual, expected);
2667
2668 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2669 }
2670
2671 /* partially received RX was aborted. clean up. */
efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)2672 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2673 {
2674 unsigned int rx_desc_ptr;
2675
2676 netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2677 "scattered RX aborted (dropping %u buffers)\n",
2678 rx_queue->scatter_n);
2679
2680 rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2681
2682 efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2683 0, EFX_RX_PKT_DISCARD);
2684
2685 rx_queue->removed_count += rx_queue->scatter_n;
2686 rx_queue->scatter_n = 0;
2687 rx_queue->scatter_len = 0;
2688 ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2689 }
2690
efx_ef10_handle_rx_event_errors(struct efx_channel *channel, unsigned int n_packets, unsigned int rx_encap_hdr, unsigned int rx_l3_class, unsigned int rx_l4_class, const efx_qword_t *event)2691 static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
2692 unsigned int n_packets,
2693 unsigned int rx_encap_hdr,
2694 unsigned int rx_l3_class,
2695 unsigned int rx_l4_class,
2696 const efx_qword_t *event)
2697 {
2698 struct efx_nic *efx = channel->efx;
2699 bool handled = false;
2700
2701 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
2702 if (!(efx->net_dev->features & NETIF_F_RXALL)) {
2703 if (!efx->loopback_selftest)
2704 channel->n_rx_eth_crc_err += n_packets;
2705 return EFX_RX_PKT_DISCARD;
2706 }
2707 handled = true;
2708 }
2709 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
2710 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2711 rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2712 rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2713 rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2714 rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2715 netdev_WARN(efx->net_dev,
2716 "invalid class for RX_IPCKSUM_ERR: event="
2717 EFX_QWORD_FMT "\n",
2718 EFX_QWORD_VAL(*event));
2719 if (!efx->loopback_selftest)
2720 *(rx_encap_hdr ?
2721 &channel->n_rx_outer_ip_hdr_chksum_err :
2722 &channel->n_rx_ip_hdr_chksum_err) += n_packets;
2723 return 0;
2724 }
2725 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
2726 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2727 ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2728 rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2729 (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2730 rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
2731 netdev_WARN(efx->net_dev,
2732 "invalid class for RX_TCPUDP_CKSUM_ERR: event="
2733 EFX_QWORD_FMT "\n",
2734 EFX_QWORD_VAL(*event));
2735 if (!efx->loopback_selftest)
2736 *(rx_encap_hdr ?
2737 &channel->n_rx_outer_tcp_udp_chksum_err :
2738 &channel->n_rx_tcp_udp_chksum_err) += n_packets;
2739 return 0;
2740 }
2741 if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
2742 if (unlikely(!rx_encap_hdr))
2743 netdev_WARN(efx->net_dev,
2744 "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
2745 EFX_QWORD_FMT "\n",
2746 EFX_QWORD_VAL(*event));
2747 else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2748 rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2749 rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2750 rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2751 netdev_WARN(efx->net_dev,
2752 "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
2753 EFX_QWORD_FMT "\n",
2754 EFX_QWORD_VAL(*event));
2755 if (!efx->loopback_selftest)
2756 channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
2757 return 0;
2758 }
2759 if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
2760 if (unlikely(!rx_encap_hdr))
2761 netdev_WARN(efx->net_dev,
2762 "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2763 EFX_QWORD_FMT "\n",
2764 EFX_QWORD_VAL(*event));
2765 else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2766 rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2767 (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2768 rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
2769 netdev_WARN(efx->net_dev,
2770 "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2771 EFX_QWORD_FMT "\n",
2772 EFX_QWORD_VAL(*event));
2773 if (!efx->loopback_selftest)
2774 channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
2775 return 0;
2776 }
2777
2778 WARN_ON(!handled); /* No error bits were recognised */
2779 return 0;
2780 }
2781
efx_ef10_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)2782 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2783 const efx_qword_t *event)
2784 {
2785 unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
2786 unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
2787 unsigned int n_descs, n_packets, i;
2788 struct efx_nic *efx = channel->efx;
2789 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2790 struct efx_rx_queue *rx_queue;
2791 efx_qword_t errors;
2792 bool rx_cont;
2793 u16 flags = 0;
2794
2795 if (unlikely(READ_ONCE(efx->reset_pending)))
2796 return 0;
2797
2798 /* Basic packet information */
2799 rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2800 next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2801 rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2802 rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
2803 rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
2804 rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2805 rx_encap_hdr =
2806 nic_data->datapath_caps &
2807 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
2808 EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
2809 ESE_EZ_ENCAP_HDR_NONE;
2810
2811 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2812 netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2813 EFX_QWORD_FMT "\n",
2814 EFX_QWORD_VAL(*event));
2815
2816 rx_queue = efx_channel_get_rx_queue(channel);
2817
2818 if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2819 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2820
2821 n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2822 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2823
2824 if (n_descs != rx_queue->scatter_n + 1) {
2825 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2826
2827 /* detect rx abort */
2828 if (unlikely(n_descs == rx_queue->scatter_n)) {
2829 if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2830 netdev_WARN(efx->net_dev,
2831 "invalid RX abort: scatter_n=%u event="
2832 EFX_QWORD_FMT "\n",
2833 rx_queue->scatter_n,
2834 EFX_QWORD_VAL(*event));
2835 efx_ef10_handle_rx_abort(rx_queue);
2836 return 0;
2837 }
2838
2839 /* Check that RX completion merging is valid, i.e.
2840 * the current firmware supports it and this is a
2841 * non-scattered packet.
2842 */
2843 if (!(nic_data->datapath_caps &
2844 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2845 rx_queue->scatter_n != 0 || rx_cont) {
2846 efx_ef10_handle_rx_bad_lbits(
2847 rx_queue, next_ptr_lbits,
2848 (rx_queue->removed_count +
2849 rx_queue->scatter_n + 1) &
2850 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2851 return 0;
2852 }
2853
2854 /* Merged completion for multiple non-scattered packets */
2855 rx_queue->scatter_n = 1;
2856 rx_queue->scatter_len = 0;
2857 n_packets = n_descs;
2858 ++channel->n_rx_merge_events;
2859 channel->n_rx_merge_packets += n_packets;
2860 flags |= EFX_RX_PKT_PREFIX_LEN;
2861 } else {
2862 ++rx_queue->scatter_n;
2863 rx_queue->scatter_len += rx_bytes;
2864 if (rx_cont)
2865 return 0;
2866 n_packets = 1;
2867 }
2868
2869 EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
2870 ESF_DZ_RX_IPCKSUM_ERR, 1,
2871 ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
2872 ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
2873 ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
2874 EFX_AND_QWORD(errors, *event, errors);
2875 if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
2876 flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
2877 rx_encap_hdr,
2878 rx_l3_class, rx_l4_class,
2879 event);
2880 } else {
2881 bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
2882 rx_l4_class == ESE_FZ_L4_CLASS_UDP;
2883
2884 switch (rx_encap_hdr) {
2885 case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
2886 flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
2887 if (tcpudp)
2888 flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
2889 break;
2890 case ESE_EZ_ENCAP_HDR_GRE:
2891 case ESE_EZ_ENCAP_HDR_NONE:
2892 if (tcpudp)
2893 flags |= EFX_RX_PKT_CSUMMED;
2894 break;
2895 default:
2896 netdev_WARN(efx->net_dev,
2897 "unknown encapsulation type: event="
2898 EFX_QWORD_FMT "\n",
2899 EFX_QWORD_VAL(*event));
2900 }
2901 }
2902
2903 if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
2904 flags |= EFX_RX_PKT_TCP;
2905
2906 channel->irq_mod_score += 2 * n_packets;
2907
2908 /* Handle received packet(s) */
2909 for (i = 0; i < n_packets; i++) {
2910 efx_rx_packet(rx_queue,
2911 rx_queue->removed_count & rx_queue->ptr_mask,
2912 rx_queue->scatter_n, rx_queue->scatter_len,
2913 flags);
2914 rx_queue->removed_count += rx_queue->scatter_n;
2915 }
2916
2917 rx_queue->scatter_n = 0;
2918 rx_queue->scatter_len = 0;
2919
2920 return n_packets;
2921 }
2922
efx_ef10_extract_event_ts(efx_qword_t *event)2923 static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
2924 {
2925 u32 tstamp;
2926
2927 tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
2928 tstamp <<= 16;
2929 tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
2930
2931 return tstamp;
2932 }
2933
2934 static void
efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)2935 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2936 {
2937 struct efx_nic *efx = channel->efx;
2938 struct efx_tx_queue *tx_queue;
2939 unsigned int tx_ev_desc_ptr;
2940 unsigned int tx_ev_q_label;
2941 unsigned int tx_ev_type;
2942 u64 ts_part;
2943
2944 if (unlikely(READ_ONCE(efx->reset_pending)))
2945 return;
2946
2947 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2948 return;
2949
2950 /* Get the transmit queue */
2951 tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2952 tx_queue = channel->tx_queue + (tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL);
2953
2954 if (!tx_queue->timestamping) {
2955 /* Transmit completion */
2956 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2957 efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
2958 return;
2959 }
2960
2961 /* Transmit timestamps are only available for 8XXX series. They result
2962 * in up to three events per packet. These occur in order, and are:
2963 * - the normal completion event (may be omitted)
2964 * - the low part of the timestamp
2965 * - the high part of the timestamp
2966 *
2967 * It's possible for multiple completion events to appear before the
2968 * corresponding timestamps. So we can for example get:
2969 * COMP N
2970 * COMP N+1
2971 * TS_LO N
2972 * TS_HI N
2973 * TS_LO N+1
2974 * TS_HI N+1
2975 *
2976 * In addition it's also possible for the adjacent completions to be
2977 * merged, so we may not see COMP N above. As such, the completion
2978 * events are not very useful here.
2979 *
2980 * Each part of the timestamp is itself split across two 16 bit
2981 * fields in the event.
2982 */
2983 tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
2984
2985 switch (tx_ev_type) {
2986 case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
2987 /* Ignore this event - see above. */
2988 break;
2989
2990 case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
2991 ts_part = efx_ef10_extract_event_ts(event);
2992 tx_queue->completed_timestamp_minor = ts_part;
2993 break;
2994
2995 case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
2996 ts_part = efx_ef10_extract_event_ts(event);
2997 tx_queue->completed_timestamp_major = ts_part;
2998
2999 efx_xmit_done_single(tx_queue);
3000 break;
3001
3002 default:
3003 netif_err(efx, hw, efx->net_dev,
3004 "channel %d unknown tx event type %d (data "
3005 EFX_QWORD_FMT ")\n",
3006 channel->channel, tx_ev_type,
3007 EFX_QWORD_VAL(*event));
3008 break;
3009 }
3010 }
3011
3012 static void
efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)3013 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
3014 {
3015 struct efx_nic *efx = channel->efx;
3016 int subcode;
3017
3018 subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
3019
3020 switch (subcode) {
3021 case ESE_DZ_DRV_TIMER_EV:
3022 case ESE_DZ_DRV_WAKE_UP_EV:
3023 break;
3024 case ESE_DZ_DRV_START_UP_EV:
3025 /* event queue init complete. ok. */
3026 break;
3027 default:
3028 netif_err(efx, hw, efx->net_dev,
3029 "channel %d unknown driver event type %d"
3030 " (data " EFX_QWORD_FMT ")\n",
3031 channel->channel, subcode,
3032 EFX_QWORD_VAL(*event));
3033
3034 }
3035 }
3036
efx_ef10_handle_driver_generated_event(struct efx_channel *channel, efx_qword_t *event)3037 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
3038 efx_qword_t *event)
3039 {
3040 struct efx_nic *efx = channel->efx;
3041 u32 subcode;
3042
3043 subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
3044
3045 switch (subcode) {
3046 case EFX_EF10_TEST:
3047 channel->event_test_cpu = raw_smp_processor_id();
3048 break;
3049 case EFX_EF10_REFILL:
3050 /* The queue must be empty, so we won't receive any rx
3051 * events, so efx_process_channel() won't refill the
3052 * queue. Refill it here
3053 */
3054 efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3055 break;
3056 default:
3057 netif_err(efx, hw, efx->net_dev,
3058 "channel %d unknown driver event type %u"
3059 " (data " EFX_QWORD_FMT ")\n",
3060 channel->channel, (unsigned) subcode,
3061 EFX_QWORD_VAL(*event));
3062 }
3063 }
3064
efx_ef10_ev_process(struct efx_channel *channel, int quota)3065 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
3066 {
3067 struct efx_nic *efx = channel->efx;
3068 efx_qword_t event, *p_event;
3069 unsigned int read_ptr;
3070 int ev_code;
3071 int spent = 0;
3072
3073 if (quota <= 0)
3074 return spent;
3075
3076 read_ptr = channel->eventq_read_ptr;
3077
3078 for (;;) {
3079 p_event = efx_event(channel, read_ptr);
3080 event = *p_event;
3081
3082 if (!efx_event_present(&event))
3083 break;
3084
3085 EFX_SET_QWORD(*p_event);
3086
3087 ++read_ptr;
3088
3089 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3090
3091 netif_vdbg(efx, drv, efx->net_dev,
3092 "processing event on %d " EFX_QWORD_FMT "\n",
3093 channel->channel, EFX_QWORD_VAL(event));
3094
3095 switch (ev_code) {
3096 case ESE_DZ_EV_CODE_MCDI_EV:
3097 efx_mcdi_process_event(channel, &event);
3098 break;
3099 case ESE_DZ_EV_CODE_RX_EV:
3100 spent += efx_ef10_handle_rx_event(channel, &event);
3101 if (spent >= quota) {
3102 /* XXX can we split a merged event to
3103 * avoid going over-quota?
3104 */
3105 spent = quota;
3106 goto out;
3107 }
3108 break;
3109 case ESE_DZ_EV_CODE_TX_EV:
3110 efx_ef10_handle_tx_event(channel, &event);
3111 break;
3112 case ESE_DZ_EV_CODE_DRIVER_EV:
3113 efx_ef10_handle_driver_event(channel, &event);
3114 if (++spent == quota)
3115 goto out;
3116 break;
3117 case EFX_EF10_DRVGEN_EV:
3118 efx_ef10_handle_driver_generated_event(channel, &event);
3119 break;
3120 default:
3121 netif_err(efx, hw, efx->net_dev,
3122 "channel %d unknown event type %d"
3123 " (data " EFX_QWORD_FMT ")\n",
3124 channel->channel, ev_code,
3125 EFX_QWORD_VAL(event));
3126 }
3127 }
3128
3129 out:
3130 channel->eventq_read_ptr = read_ptr;
3131 return spent;
3132 }
3133
efx_ef10_ev_read_ack(struct efx_channel *channel)3134 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3135 {
3136 struct efx_nic *efx = channel->efx;
3137 efx_dword_t rptr;
3138
3139 if (EFX_EF10_WORKAROUND_35388(efx)) {
3140 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3141 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3142 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3143 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3144
3145 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3146 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3147 ERF_DD_EVQ_IND_RPTR,
3148 (channel->eventq_read_ptr &
3149 channel->eventq_mask) >>
3150 ERF_DD_EVQ_IND_RPTR_WIDTH);
3151 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3152 channel->channel);
3153 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3154 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3155 ERF_DD_EVQ_IND_RPTR,
3156 channel->eventq_read_ptr &
3157 ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3158 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3159 channel->channel);
3160 } else {
3161 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3162 channel->eventq_read_ptr &
3163 channel->eventq_mask);
3164 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3165 }
3166 }
3167
efx_ef10_ev_test_generate(struct efx_channel *channel)3168 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3169 {
3170 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3171 struct efx_nic *efx = channel->efx;
3172 efx_qword_t event;
3173 int rc;
3174
3175 EFX_POPULATE_QWORD_2(event,
3176 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3177 ESF_DZ_EV_DATA, EFX_EF10_TEST);
3178
3179 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3180
3181 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3182 * already swapped the data to little-endian order.
3183 */
3184 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3185 sizeof(efx_qword_t));
3186
3187 rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3188 NULL, 0, NULL);
3189 if (rc != 0)
3190 goto fail;
3191
3192 return;
3193
3194 fail:
3195 WARN_ON(true);
3196 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3197 }
3198
efx_ef10_prepare_flr(struct efx_nic *efx)3199 static void efx_ef10_prepare_flr(struct efx_nic *efx)
3200 {
3201 atomic_set(&efx->active_queues, 0);
3202 }
3203
efx_ef10_vport_set_mac_address(struct efx_nic *efx)3204 static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
3205 {
3206 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3207 u8 mac_old[ETH_ALEN];
3208 int rc, rc2;
3209
3210 /* Only reconfigure a PF-created vport */
3211 if (is_zero_ether_addr(nic_data->vport_mac))
3212 return 0;
3213
3214 efx_device_detach_sync(efx);
3215 efx_net_stop(efx->net_dev);
3216 down_write(&efx->filter_sem);
3217 efx_mcdi_filter_table_remove(efx);
3218 up_write(&efx->filter_sem);
3219
3220 rc = efx_ef10_vadaptor_free(efx, efx->vport_id);
3221 if (rc)
3222 goto restore_filters;
3223
3224 ether_addr_copy(mac_old, nic_data->vport_mac);
3225 rc = efx_ef10_vport_del_mac(efx, efx->vport_id,
3226 nic_data->vport_mac);
3227 if (rc)
3228 goto restore_vadaptor;
3229
3230 rc = efx_ef10_vport_add_mac(efx, efx->vport_id,
3231 efx->net_dev->dev_addr);
3232 if (!rc) {
3233 ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
3234 } else {
3235 rc2 = efx_ef10_vport_add_mac(efx, efx->vport_id, mac_old);
3236 if (rc2) {
3237 /* Failed to add original MAC, so clear vport_mac */
3238 eth_zero_addr(nic_data->vport_mac);
3239 goto reset_nic;
3240 }
3241 }
3242
3243 restore_vadaptor:
3244 rc2 = efx_ef10_vadaptor_alloc(efx, efx->vport_id);
3245 if (rc2)
3246 goto reset_nic;
3247 restore_filters:
3248 down_write(&efx->filter_sem);
3249 rc2 = efx_ef10_filter_table_probe(efx);
3250 up_write(&efx->filter_sem);
3251 if (rc2)
3252 goto reset_nic;
3253
3254 rc2 = efx_net_open(efx->net_dev);
3255 if (rc2)
3256 goto reset_nic;
3257
3258 efx_device_attach_if_not_resetting(efx);
3259
3260 return rc;
3261
3262 reset_nic:
3263 netif_err(efx, drv, efx->net_dev,
3264 "Failed to restore when changing MAC address - scheduling reset\n");
3265 efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
3266
3267 return rc ? rc : rc2;
3268 }
3269
efx_ef10_set_mac_address(struct efx_nic *efx)3270 static int efx_ef10_set_mac_address(struct efx_nic *efx)
3271 {
3272 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
3273 bool was_enabled = efx->port_enabled;
3274 int rc;
3275
3276 #ifdef CONFIG_SFC_SRIOV
3277 /* If this function is a VF and we have access to the parent PF,
3278 * then use the PF control path to attempt to change the VF MAC address.
3279 */
3280 if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
3281 struct efx_nic *efx_pf = pci_get_drvdata(efx->pci_dev->physfn);
3282 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3283 u8 mac[ETH_ALEN];
3284
3285 /* net_dev->dev_addr can be zeroed by efx_net_stop in
3286 * efx_ef10_sriov_set_vf_mac, so pass in a copy.
3287 */
3288 ether_addr_copy(mac, efx->net_dev->dev_addr);
3289
3290 rc = efx_ef10_sriov_set_vf_mac(efx_pf, nic_data->vf_index, mac);
3291 if (!rc)
3292 return 0;
3293
3294 netif_dbg(efx, drv, efx->net_dev,
3295 "Updating VF mac via PF failed (%d), setting directly\n",
3296 rc);
3297 }
3298 #endif
3299
3300 efx_device_detach_sync(efx);
3301 efx_net_stop(efx->net_dev);
3302
3303 mutex_lock(&efx->mac_lock);
3304 down_write(&efx->filter_sem);
3305 efx_mcdi_filter_table_remove(efx);
3306
3307 ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
3308 efx->net_dev->dev_addr);
3309 MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
3310 efx->vport_id);
3311 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
3312 sizeof(inbuf), NULL, 0, NULL);
3313
3314 efx_ef10_filter_table_probe(efx);
3315 up_write(&efx->filter_sem);
3316 mutex_unlock(&efx->mac_lock);
3317
3318 if (was_enabled)
3319 efx_net_open(efx->net_dev);
3320 efx_device_attach_if_not_resetting(efx);
3321
3322 if (rc == -EPERM) {
3323 netif_err(efx, drv, efx->net_dev,
3324 "Cannot change MAC address; use sfboot to enable"
3325 " mac-spoofing on this interface\n");
3326 } else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
3327 /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
3328 * fall-back to the method of changing the MAC address on the
3329 * vport. This only applies to PFs because such versions of
3330 * MCFW do not support VFs.
3331 */
3332 rc = efx_ef10_vport_set_mac_address(efx);
3333 } else if (rc) {
3334 efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
3335 sizeof(inbuf), NULL, 0, rc);
3336 }
3337
3338 return rc;
3339 }
3340
efx_ef10_mac_reconfigure(struct efx_nic *efx, bool mtu_only)3341 static int efx_ef10_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
3342 {
3343 WARN_ON(!mutex_is_locked(&efx->mac_lock));
3344
3345 efx_mcdi_filter_sync_rx_mode(efx);
3346
3347 if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
3348 return efx_mcdi_set_mtu(efx);
3349 return efx_mcdi_set_mac(efx);
3350 }
3351
efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)3352 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3353 {
3354 MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3355
3356 MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3357 return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3358 NULL, 0, NULL);
3359 }
3360
3361 /* MC BISTs follow a different poll mechanism to phy BISTs.
3362 * The BIST is done in the poll handler on the MC, and the MCDI command
3363 * will block until the BIST is done.
3364 */
efx_ef10_poll_bist(struct efx_nic *efx)3365 static int efx_ef10_poll_bist(struct efx_nic *efx)
3366 {
3367 int rc;
3368 MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3369 size_t outlen;
3370 u32 result;
3371
3372 rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3373 outbuf, sizeof(outbuf), &outlen);
3374 if (rc != 0)
3375 return rc;
3376
3377 if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3378 return -EIO;
3379
3380 result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3381 switch (result) {
3382 case MC_CMD_POLL_BIST_PASSED:
3383 netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3384 return 0;
3385 case MC_CMD_POLL_BIST_TIMEOUT:
3386 netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3387 return -EIO;
3388 case MC_CMD_POLL_BIST_FAILED:
3389 netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3390 return -EIO;
3391 default:
3392 netif_err(efx, hw, efx->net_dev,
3393 "BIST returned unknown result %u", result);
3394 return -EIO;
3395 }
3396 }
3397
efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)3398 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3399 {
3400 int rc;
3401
3402 netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3403
3404 rc = efx_ef10_start_bist(efx, bist_type);
3405 if (rc != 0)
3406 return rc;
3407
3408 return efx_ef10_poll_bist(efx);
3409 }
3410
3411 static int
efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)3412 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3413 {
3414 int rc, rc2;
3415
3416 efx_reset_down(efx, RESET_TYPE_WORLD);
3417
3418 rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3419 NULL, 0, NULL, 0, NULL);
3420 if (rc != 0)
3421 goto out;
3422
3423 tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3424 tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3425
3426 rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3427
3428 out:
3429 if (rc == -EPERM)
3430 rc = 0;
3431 rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3432 return rc ? rc : rc2;
3433 }
3434
3435 #ifdef CONFIG_SFC_MTD
3436
3437 struct efx_ef10_nvram_type_info {
3438 u16 type, type_mask;
3439 u8 port;
3440 const char *name;
3441 };
3442
3443 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3444 { NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" },
3445 { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" },
3446 { NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" },
3447 { NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" },
3448 { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" },
3449 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" },
3450 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" },
3451 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" },
3452 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" },
3453 { NVRAM_PARTITION_TYPE_LICENSE, 0, 0, "sfc_license" },
3454 { NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" },
3455 { NVRAM_PARTITION_TYPE_MUM_FIRMWARE, 0, 0, "sfc_mumfw" },
3456 { NVRAM_PARTITION_TYPE_EXPANSION_UEFI, 0, 0, "sfc_uefi" },
3457 { NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS, 0, 0, "sfc_dynamic_cfg_dflt" },
3458 { NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS, 0, 0, "sfc_exp_rom_cfg_dflt" },
3459 { NVRAM_PARTITION_TYPE_STATUS, 0, 0, "sfc_status" },
3460 { NVRAM_PARTITION_TYPE_BUNDLE, 0, 0, "sfc_bundle" },
3461 { NVRAM_PARTITION_TYPE_BUNDLE_METADATA, 0, 0, "sfc_bundle_metadata" },
3462 };
3463 #define EF10_NVRAM_PARTITION_COUNT ARRAY_SIZE(efx_ef10_nvram_types)
3464
efx_ef10_mtd_probe_partition(struct efx_nic *efx, struct efx_mcdi_mtd_partition *part, unsigned int type, unsigned long *found)3465 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3466 struct efx_mcdi_mtd_partition *part,
3467 unsigned int type,
3468 unsigned long *found)
3469 {
3470 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3471 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3472 const struct efx_ef10_nvram_type_info *info;
3473 size_t size, erase_size, outlen;
3474 int type_idx = 0;
3475 bool protected;
3476 int rc;
3477
3478 for (type_idx = 0; ; type_idx++) {
3479 if (type_idx == EF10_NVRAM_PARTITION_COUNT)
3480 return -ENODEV;
3481 info = efx_ef10_nvram_types + type_idx;
3482 if ((type & ~info->type_mask) == info->type)
3483 break;
3484 }
3485 if (info->port != efx_port_num(efx))
3486 return -ENODEV;
3487
3488 rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3489 if (rc)
3490 return rc;
3491 if (protected &&
3492 (type != NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS &&
3493 type != NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS))
3494 /* Hide protected partitions that don't provide defaults. */
3495 return -ENODEV;
3496
3497 if (protected)
3498 /* Protected partitions are read only. */
3499 erase_size = 0;
3500
3501 /* If we've already exposed a partition of this type, hide this
3502 * duplicate. All operations on MTDs are keyed by the type anyway,
3503 * so we can't act on the duplicate.
3504 */
3505 if (__test_and_set_bit(type_idx, found))
3506 return -EEXIST;
3507
3508 part->nvram_type = type;
3509
3510 MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3511 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3512 outbuf, sizeof(outbuf), &outlen);
3513 if (rc)
3514 return rc;
3515 if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3516 return -EIO;
3517 if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3518 (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3519 part->fw_subtype = MCDI_DWORD(outbuf,
3520 NVRAM_METADATA_OUT_SUBTYPE);
3521
3522 part->common.dev_type_name = "EF10 NVRAM manager";
3523 part->common.type_name = info->name;
3524
3525 part->common.mtd.type = MTD_NORFLASH;
3526 part->common.mtd.flags = MTD_CAP_NORFLASH;
3527 part->common.mtd.size = size;
3528 part->common.mtd.erasesize = erase_size;
3529 /* sfc_status is read-only */
3530 if (!erase_size)
3531 part->common.mtd.flags |= MTD_NO_ERASE;
3532
3533 return 0;
3534 }
3535
efx_ef10_mtd_probe(struct efx_nic *efx)3536 static int efx_ef10_mtd_probe(struct efx_nic *efx)
3537 {
3538 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3539 DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 };
3540 struct efx_mcdi_mtd_partition *parts;
3541 size_t outlen, n_parts_total, i, n_parts;
3542 unsigned int type;
3543 int rc;
3544
3545 ASSERT_RTNL();
3546
3547 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3548 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3549 outbuf, sizeof(outbuf), &outlen);
3550 if (rc)
3551 return rc;
3552 if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3553 return -EIO;
3554
3555 n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3556 if (n_parts_total >
3557 MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3558 return -EIO;
3559
3560 parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3561 if (!parts)
3562 return -ENOMEM;
3563
3564 n_parts = 0;
3565 for (i = 0; i < n_parts_total; i++) {
3566 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3567 i);
3568 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type,
3569 found);
3570 if (rc == -EEXIST || rc == -ENODEV)
3571 continue;
3572 if (rc)
3573 goto fail;
3574 n_parts++;
3575 }
3576
3577 if (!n_parts) {
3578 kfree(parts);
3579 return 0;
3580 }
3581
3582 rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3583 fail:
3584 if (rc)
3585 kfree(parts);
3586 return rc;
3587 }
3588
3589 #endif /* CONFIG_SFC_MTD */
3590
efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)3591 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3592 {
3593 _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3594 }
3595
efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx, u32 host_time)3596 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
3597 u32 host_time) {}
3598
efx_ef10_rx_enable_timestamping(struct efx_channel *channel, bool temp)3599 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3600 bool temp)
3601 {
3602 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3603 int rc;
3604
3605 if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3606 channel->sync_events_state == SYNC_EVENTS_VALID ||
3607 (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3608 return 0;
3609 channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3610
3611 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3612 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3613 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3614 channel->channel);
3615
3616 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3617 inbuf, sizeof(inbuf), NULL, 0, NULL);
3618
3619 if (rc != 0)
3620 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3621 SYNC_EVENTS_DISABLED;
3622
3623 return rc;
3624 }
3625
efx_ef10_rx_disable_timestamping(struct efx_channel *channel, bool temp)3626 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3627 bool temp)
3628 {
3629 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3630 int rc;
3631
3632 if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3633 (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3634 return 0;
3635 if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3636 channel->sync_events_state = SYNC_EVENTS_DISABLED;
3637 return 0;
3638 }
3639 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3640 SYNC_EVENTS_DISABLED;
3641
3642 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3643 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3644 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3645 MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3646 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3647 channel->channel);
3648
3649 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3650 inbuf, sizeof(inbuf), NULL, 0, NULL);
3651
3652 return rc;
3653 }
3654
efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en, bool temp)3655 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3656 bool temp)
3657 {
3658 int (*set)(struct efx_channel *channel, bool temp);
3659 struct efx_channel *channel;
3660
3661 set = en ?
3662 efx_ef10_rx_enable_timestamping :
3663 efx_ef10_rx_disable_timestamping;
3664
3665 channel = efx_ptp_channel(efx);
3666 if (channel) {
3667 int rc = set(channel, temp);
3668 if (en && rc != 0) {
3669 efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3670 return rc;
3671 }
3672 }
3673
3674 return 0;
3675 }
3676
efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx, struct hwtstamp_config *init)3677 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
3678 struct hwtstamp_config *init)
3679 {
3680 return -EOPNOTSUPP;
3681 }
3682
efx_ef10_ptp_set_ts_config(struct efx_nic *efx, struct hwtstamp_config *init)3683 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3684 struct hwtstamp_config *init)
3685 {
3686 int rc;
3687
3688 switch (init->rx_filter) {
3689 case HWTSTAMP_FILTER_NONE:
3690 efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3691 /* if TX timestamping is still requested then leave PTP on */
3692 return efx_ptp_change_mode(efx,
3693 init->tx_type != HWTSTAMP_TX_OFF, 0);
3694 case HWTSTAMP_FILTER_ALL:
3695 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3696 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3697 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3698 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3699 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3700 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3701 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3702 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3703 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3704 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3705 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3706 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3707 case HWTSTAMP_FILTER_NTP_ALL:
3708 init->rx_filter = HWTSTAMP_FILTER_ALL;
3709 rc = efx_ptp_change_mode(efx, true, 0);
3710 if (!rc)
3711 rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3712 if (rc)
3713 efx_ptp_change_mode(efx, false, 0);
3714 return rc;
3715 default:
3716 return -ERANGE;
3717 }
3718 }
3719
efx_ef10_get_phys_port_id(struct efx_nic *efx, struct netdev_phys_item_id *ppid)3720 static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
3721 struct netdev_phys_item_id *ppid)
3722 {
3723 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3724
3725 if (!is_valid_ether_addr(nic_data->port_id))
3726 return -EOPNOTSUPP;
3727
3728 ppid->id_len = ETH_ALEN;
3729 memcpy(ppid->id, nic_data->port_id, ppid->id_len);
3730
3731 return 0;
3732 }
3733
efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)3734 static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3735 {
3736 if (proto != htons(ETH_P_8021Q))
3737 return -EINVAL;
3738
3739 return efx_ef10_add_vlan(efx, vid);
3740 }
3741
efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)3742 static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3743 {
3744 if (proto != htons(ETH_P_8021Q))
3745 return -EINVAL;
3746
3747 return efx_ef10_del_vlan(efx, vid);
3748 }
3749
3750 /* We rely on the MCDI wiping out our TX rings if it made any changes to the
3751 * ports table, ensuring that any TSO descriptors that were made on a now-
3752 * removed tunnel port will be blown away and won't break things when we try
3753 * to transmit them using the new ports table.
3754 */
efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)3755 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
3756 {
3757 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3758 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
3759 MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
3760 bool will_reset = false;
3761 size_t num_entries = 0;
3762 size_t inlen, outlen;
3763 size_t i;
3764 int rc;
3765 efx_dword_t flags_and_num_entries;
3766
3767 WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
3768
3769 nic_data->udp_tunnels_dirty = false;
3770
3771 if (!(nic_data->datapath_caps &
3772 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
3773 efx_device_attach_if_not_resetting(efx);
3774 return 0;
3775 }
3776
3777 BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
3778 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
3779
3780 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
3781 if (nic_data->udp_tunnels[i].type !=
3782 TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID) {
3783 efx_dword_t entry;
3784
3785 EFX_POPULATE_DWORD_2(entry,
3786 TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
3787 ntohs(nic_data->udp_tunnels[i].port),
3788 TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
3789 nic_data->udp_tunnels[i].type);
3790 *_MCDI_ARRAY_DWORD(inbuf,
3791 SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
3792 num_entries++) = entry;
3793 }
3794 }
3795
3796 BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
3797 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
3798 EFX_WORD_1_LBN);
3799 BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
3800 EFX_WORD_1_WIDTH);
3801 EFX_POPULATE_DWORD_2(flags_and_num_entries,
3802 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
3803 !!unloading,
3804 EFX_WORD_1, num_entries);
3805 *_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
3806 flags_and_num_entries;
3807
3808 inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
3809
3810 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
3811 inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
3812 if (rc == -EIO) {
3813 /* Most likely the MC rebooted due to another function also
3814 * setting its tunnel port list. Mark the tunnel port list as
3815 * dirty, so it will be pushed upon coming up from the reboot.
3816 */
3817 nic_data->udp_tunnels_dirty = true;
3818 return 0;
3819 }
3820
3821 if (rc) {
3822 /* expected not available on unprivileged functions */
3823 if (rc != -EPERM)
3824 netif_warn(efx, drv, efx->net_dev,
3825 "Unable to set UDP tunnel ports; rc=%d.\n", rc);
3826 } else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
3827 (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
3828 netif_info(efx, drv, efx->net_dev,
3829 "Rebooting MC due to UDP tunnel port list change\n");
3830 will_reset = true;
3831 if (unloading)
3832 /* Delay for the MC reset to complete. This will make
3833 * unloading other functions a bit smoother. This is a
3834 * race, but the other unload will work whichever way
3835 * it goes, this just avoids an unnecessary error
3836 * message.
3837 */
3838 msleep(100);
3839 }
3840 if (!will_reset && !unloading) {
3841 /* The caller will have detached, relying on the MC reset to
3842 * trigger a re-attach. Since there won't be an MC reset, we
3843 * have to do the attach ourselves.
3844 */
3845 efx_device_attach_if_not_resetting(efx);
3846 }
3847
3848 return rc;
3849 }
3850
efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)3851 static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
3852 {
3853 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3854 int rc = 0;
3855
3856 mutex_lock(&nic_data->udp_tunnels_lock);
3857 if (nic_data->udp_tunnels_dirty) {
3858 /* Make sure all TX are stopped while we modify the table, else
3859 * we might race against an efx_features_check().
3860 */
3861 efx_device_detach_sync(efx);
3862 rc = efx_ef10_set_udp_tnl_ports(efx, false);
3863 }
3864 mutex_unlock(&nic_data->udp_tunnels_lock);
3865 return rc;
3866 }
3867
efx_ef10_udp_tnl_set_port(struct net_device *dev, unsigned int table, unsigned int entry, struct udp_tunnel_info *ti)3868 static int efx_ef10_udp_tnl_set_port(struct net_device *dev,
3869 unsigned int table, unsigned int entry,
3870 struct udp_tunnel_info *ti)
3871 {
3872 struct efx_nic *efx = netdev_priv(dev);
3873 struct efx_ef10_nic_data *nic_data;
3874 int efx_tunnel_type, rc;
3875
3876 if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
3877 efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN;
3878 else
3879 efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE;
3880
3881 nic_data = efx->nic_data;
3882 if (!(nic_data->datapath_caps &
3883 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3884 return -EOPNOTSUPP;
3885
3886 mutex_lock(&nic_data->udp_tunnels_lock);
3887 /* Make sure all TX are stopped while we add to the table, else we
3888 * might race against an efx_features_check().
3889 */
3890 efx_device_detach_sync(efx);
3891 nic_data->udp_tunnels[entry].type = efx_tunnel_type;
3892 nic_data->udp_tunnels[entry].port = ti->port;
3893 rc = efx_ef10_set_udp_tnl_ports(efx, false);
3894 mutex_unlock(&nic_data->udp_tunnels_lock);
3895
3896 return rc;
3897 }
3898
3899 /* Called under the TX lock with the TX queue running, hence no-one can be
3900 * in the middle of updating the UDP tunnels table. However, they could
3901 * have tried and failed the MCDI, in which case they'll have set the dirty
3902 * flag before dropping their locks.
3903 */
efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)3904 static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
3905 {
3906 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3907 size_t i;
3908
3909 if (!(nic_data->datapath_caps &
3910 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3911 return false;
3912
3913 if (nic_data->udp_tunnels_dirty)
3914 /* SW table may not match HW state, so just assume we can't
3915 * use any UDP tunnel offloads.
3916 */
3917 return false;
3918
3919 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
3920 if (nic_data->udp_tunnels[i].type !=
3921 TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID &&
3922 nic_data->udp_tunnels[i].port == port)
3923 return true;
3924
3925 return false;
3926 }
3927
efx_ef10_udp_tnl_unset_port(struct net_device *dev, unsigned int table, unsigned int entry, struct udp_tunnel_info *ti)3928 static int efx_ef10_udp_tnl_unset_port(struct net_device *dev,
3929 unsigned int table, unsigned int entry,
3930 struct udp_tunnel_info *ti)
3931 {
3932 struct efx_nic *efx = netdev_priv(dev);
3933 struct efx_ef10_nic_data *nic_data;
3934 int rc;
3935
3936 nic_data = efx->nic_data;
3937
3938 mutex_lock(&nic_data->udp_tunnels_lock);
3939 /* Make sure all TX are stopped while we remove from the table, else we
3940 * might race against an efx_features_check().
3941 */
3942 efx_device_detach_sync(efx);
3943 nic_data->udp_tunnels[entry].type = TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
3944 nic_data->udp_tunnels[entry].port = 0;
3945 rc = efx_ef10_set_udp_tnl_ports(efx, false);
3946 mutex_unlock(&nic_data->udp_tunnels_lock);
3947
3948 return rc;
3949 }
3950
3951 static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels = {
3952 .set_port = efx_ef10_udp_tnl_set_port,
3953 .unset_port = efx_ef10_udp_tnl_unset_port,
3954 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP,
3955 .tables = {
3956 {
3957 .n_entries = 16,
3958 .tunnel_types = UDP_TUNNEL_TYPE_VXLAN |
3959 UDP_TUNNEL_TYPE_GENEVE,
3960 },
3961 },
3962 };
3963
3964 /* EF10 may have multiple datapath firmware variants within a
3965 * single version. Report which variants are running.
3966 */
efx_ef10_print_additional_fwver(struct efx_nic *efx, char *buf, size_t len)3967 static size_t efx_ef10_print_additional_fwver(struct efx_nic *efx, char *buf,
3968 size_t len)
3969 {
3970 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3971
3972 return scnprintf(buf, len, " rx%x tx%x",
3973 nic_data->rx_dpcpu_fw_id,
3974 nic_data->tx_dpcpu_fw_id);
3975 }
3976
ef10_check_caps(const struct efx_nic *efx, u8 flag, u32 offset)3977 static unsigned int ef10_check_caps(const struct efx_nic *efx,
3978 u8 flag,
3979 u32 offset)
3980 {
3981 const struct efx_ef10_nic_data *nic_data = efx->nic_data;
3982
3983 switch (offset) {
3984 case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS1_OFST):
3985 return nic_data->datapath_caps & BIT_ULL(flag);
3986 case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS2_OFST):
3987 return nic_data->datapath_caps2 & BIT_ULL(flag);
3988 default:
3989 return 0;
3990 }
3991 }
3992
3993 #define EF10_OFFLOAD_FEATURES \
3994 (NETIF_F_IP_CSUM | \
3995 NETIF_F_HW_VLAN_CTAG_FILTER | \
3996 NETIF_F_IPV6_CSUM | \
3997 NETIF_F_RXHASH | \
3998 NETIF_F_NTUPLE | \
3999 NETIF_F_SG | \
4000 NETIF_F_RXCSUM | \
4001 NETIF_F_RXALL)
4002
4003 const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
4004 .is_vf = true,
4005 .mem_bar = efx_ef10_vf_mem_bar,
4006 .mem_map_size = efx_ef10_mem_map_size,
4007 .probe = efx_ef10_probe_vf,
4008 .remove = efx_ef10_remove,
4009 .dimension_resources = efx_ef10_dimension_resources,
4010 .init = efx_ef10_init_nic,
4011 .fini = efx_ef10_fini_nic,
4012 .map_reset_reason = efx_ef10_map_reset_reason,
4013 .map_reset_flags = efx_ef10_map_reset_flags,
4014 .reset = efx_ef10_reset,
4015 .probe_port = efx_mcdi_port_probe,
4016 .remove_port = efx_mcdi_port_remove,
4017 .fini_dmaq = efx_fini_dmaq,
4018 .prepare_flr = efx_ef10_prepare_flr,
4019 .finish_flr = efx_port_dummy_op_void,
4020 .describe_stats = efx_ef10_describe_stats,
4021 .update_stats = efx_ef10_update_stats_vf,
4022 .update_stats_atomic = efx_ef10_update_stats_atomic_vf,
4023 .start_stats = efx_port_dummy_op_void,
4024 .pull_stats = efx_port_dummy_op_void,
4025 .stop_stats = efx_port_dummy_op_void,
4026 .push_irq_moderation = efx_ef10_push_irq_moderation,
4027 .reconfigure_mac = efx_ef10_mac_reconfigure,
4028 .check_mac_fault = efx_mcdi_mac_check_fault,
4029 .reconfigure_port = efx_mcdi_port_reconfigure,
4030 .get_wol = efx_ef10_get_wol_vf,
4031 .set_wol = efx_ef10_set_wol_vf,
4032 .resume_wol = efx_port_dummy_op_void,
4033 .mcdi_request = efx_ef10_mcdi_request,
4034 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
4035 .mcdi_read_response = efx_ef10_mcdi_read_response,
4036 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4037 .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4038 .irq_enable_master = efx_port_dummy_op_void,
4039 .irq_test_generate = efx_ef10_irq_test_generate,
4040 .irq_disable_non_ev = efx_port_dummy_op_void,
4041 .irq_handle_msi = efx_ef10_msi_interrupt,
4042 .irq_handle_legacy = efx_ef10_legacy_interrupt,
4043 .tx_probe = efx_ef10_tx_probe,
4044 .tx_init = efx_ef10_tx_init,
4045 .tx_remove = efx_mcdi_tx_remove,
4046 .tx_write = efx_ef10_tx_write,
4047 .tx_limit_len = efx_ef10_tx_limit_len,
4048 .tx_enqueue = __efx_enqueue_skb,
4049 .rx_push_rss_config = efx_mcdi_vf_rx_push_rss_config,
4050 .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4051 .rx_probe = efx_mcdi_rx_probe,
4052 .rx_init = efx_mcdi_rx_init,
4053 .rx_remove = efx_mcdi_rx_remove,
4054 .rx_write = efx_ef10_rx_write,
4055 .rx_defer_refill = efx_ef10_rx_defer_refill,
4056 .rx_packet = __efx_rx_packet,
4057 .ev_probe = efx_mcdi_ev_probe,
4058 .ev_init = efx_ef10_ev_init,
4059 .ev_fini = efx_mcdi_ev_fini,
4060 .ev_remove = efx_mcdi_ev_remove,
4061 .ev_process = efx_ef10_ev_process,
4062 .ev_read_ack = efx_ef10_ev_read_ack,
4063 .ev_test_generate = efx_ef10_ev_test_generate,
4064 .filter_table_probe = efx_ef10_filter_table_probe,
4065 .filter_table_restore = efx_mcdi_filter_table_restore,
4066 .filter_table_remove = efx_mcdi_filter_table_remove,
4067 .filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4068 .filter_insert = efx_mcdi_filter_insert,
4069 .filter_remove_safe = efx_mcdi_filter_remove_safe,
4070 .filter_get_safe = efx_mcdi_filter_get_safe,
4071 .filter_clear_rx = efx_mcdi_filter_clear_rx,
4072 .filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4073 .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4074 .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4075 #ifdef CONFIG_RFS_ACCEL
4076 .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4077 #endif
4078 #ifdef CONFIG_SFC_MTD
4079 .mtd_probe = efx_port_dummy_op_int,
4080 #endif
4081 .ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
4082 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
4083 .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4084 .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4085 #ifdef CONFIG_SFC_SRIOV
4086 .vswitching_probe = efx_ef10_vswitching_probe_vf,
4087 .vswitching_restore = efx_ef10_vswitching_restore_vf,
4088 .vswitching_remove = efx_ef10_vswitching_remove_vf,
4089 #endif
4090 .get_mac_address = efx_ef10_get_mac_address_vf,
4091 .set_mac_address = efx_ef10_set_mac_address,
4092
4093 .get_phys_port_id = efx_ef10_get_phys_port_id,
4094 .revision = EFX_REV_HUNT_A0,
4095 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4096 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4097 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4098 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4099 .can_rx_scatter = true,
4100 .always_rx_scatter = true,
4101 .min_interrupt_mode = EFX_INT_MODE_MSIX,
4102 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4103 .offload_features = EF10_OFFLOAD_FEATURES,
4104 .mcdi_max_ver = 2,
4105 .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4106 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4107 1 << HWTSTAMP_FILTER_ALL,
4108 .rx_hash_key_size = 40,
4109 .check_caps = ef10_check_caps,
4110 .print_additional_fwver = efx_ef10_print_additional_fwver,
4111 .sensor_event = efx_mcdi_sensor_event,
4112 };
4113
4114 const struct efx_nic_type efx_hunt_a0_nic_type = {
4115 .is_vf = false,
4116 .mem_bar = efx_ef10_pf_mem_bar,
4117 .mem_map_size = efx_ef10_mem_map_size,
4118 .probe = efx_ef10_probe_pf,
4119 .remove = efx_ef10_remove,
4120 .dimension_resources = efx_ef10_dimension_resources,
4121 .init = efx_ef10_init_nic,
4122 .fini = efx_ef10_fini_nic,
4123 .map_reset_reason = efx_ef10_map_reset_reason,
4124 .map_reset_flags = efx_ef10_map_reset_flags,
4125 .reset = efx_ef10_reset,
4126 .probe_port = efx_mcdi_port_probe,
4127 .remove_port = efx_mcdi_port_remove,
4128 .fini_dmaq = efx_fini_dmaq,
4129 .prepare_flr = efx_ef10_prepare_flr,
4130 .finish_flr = efx_port_dummy_op_void,
4131 .describe_stats = efx_ef10_describe_stats,
4132 .update_stats = efx_ef10_update_stats_pf,
4133 .start_stats = efx_mcdi_mac_start_stats,
4134 .pull_stats = efx_mcdi_mac_pull_stats,
4135 .stop_stats = efx_mcdi_mac_stop_stats,
4136 .push_irq_moderation = efx_ef10_push_irq_moderation,
4137 .reconfigure_mac = efx_ef10_mac_reconfigure,
4138 .check_mac_fault = efx_mcdi_mac_check_fault,
4139 .reconfigure_port = efx_mcdi_port_reconfigure,
4140 .get_wol = efx_ef10_get_wol,
4141 .set_wol = efx_ef10_set_wol,
4142 .resume_wol = efx_port_dummy_op_void,
4143 .test_chip = efx_ef10_test_chip,
4144 .test_nvram = efx_mcdi_nvram_test_all,
4145 .mcdi_request = efx_ef10_mcdi_request,
4146 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
4147 .mcdi_read_response = efx_ef10_mcdi_read_response,
4148 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4149 .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4150 .irq_enable_master = efx_port_dummy_op_void,
4151 .irq_test_generate = efx_ef10_irq_test_generate,
4152 .irq_disable_non_ev = efx_port_dummy_op_void,
4153 .irq_handle_msi = efx_ef10_msi_interrupt,
4154 .irq_handle_legacy = efx_ef10_legacy_interrupt,
4155 .tx_probe = efx_ef10_tx_probe,
4156 .tx_init = efx_ef10_tx_init,
4157 .tx_remove = efx_mcdi_tx_remove,
4158 .tx_write = efx_ef10_tx_write,
4159 .tx_limit_len = efx_ef10_tx_limit_len,
4160 .tx_enqueue = __efx_enqueue_skb,
4161 .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
4162 .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4163 .rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
4164 .rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
4165 .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
4166 .rx_probe = efx_mcdi_rx_probe,
4167 .rx_init = efx_mcdi_rx_init,
4168 .rx_remove = efx_mcdi_rx_remove,
4169 .rx_write = efx_ef10_rx_write,
4170 .rx_defer_refill = efx_ef10_rx_defer_refill,
4171 .rx_packet = __efx_rx_packet,
4172 .ev_probe = efx_mcdi_ev_probe,
4173 .ev_init = efx_ef10_ev_init,
4174 .ev_fini = efx_mcdi_ev_fini,
4175 .ev_remove = efx_mcdi_ev_remove,
4176 .ev_process = efx_ef10_ev_process,
4177 .ev_read_ack = efx_ef10_ev_read_ack,
4178 .ev_test_generate = efx_ef10_ev_test_generate,
4179 .filter_table_probe = efx_ef10_filter_table_probe,
4180 .filter_table_restore = efx_mcdi_filter_table_restore,
4181 .filter_table_remove = efx_mcdi_filter_table_remove,
4182 .filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4183 .filter_insert = efx_mcdi_filter_insert,
4184 .filter_remove_safe = efx_mcdi_filter_remove_safe,
4185 .filter_get_safe = efx_mcdi_filter_get_safe,
4186 .filter_clear_rx = efx_mcdi_filter_clear_rx,
4187 .filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4188 .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4189 .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4190 #ifdef CONFIG_RFS_ACCEL
4191 .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4192 #endif
4193 #ifdef CONFIG_SFC_MTD
4194 .mtd_probe = efx_ef10_mtd_probe,
4195 .mtd_rename = efx_mcdi_mtd_rename,
4196 .mtd_read = efx_mcdi_mtd_read,
4197 .mtd_erase = efx_mcdi_mtd_erase,
4198 .mtd_write = efx_mcdi_mtd_write,
4199 .mtd_sync = efx_mcdi_mtd_sync,
4200 #endif
4201 .ptp_write_host_time = efx_ef10_ptp_write_host_time,
4202 .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
4203 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
4204 .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4205 .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4206 .udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
4207 .udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
4208 #ifdef CONFIG_SFC_SRIOV
4209 .sriov_configure = efx_ef10_sriov_configure,
4210 .sriov_init = efx_ef10_sriov_init,
4211 .sriov_fini = efx_ef10_sriov_fini,
4212 .sriov_wanted = efx_ef10_sriov_wanted,
4213 .sriov_reset = efx_ef10_sriov_reset,
4214 .sriov_flr = efx_ef10_sriov_flr,
4215 .sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
4216 .sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
4217 .sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
4218 .sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
4219 .sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
4220 .vswitching_probe = efx_ef10_vswitching_probe_pf,
4221 .vswitching_restore = efx_ef10_vswitching_restore_pf,
4222 .vswitching_remove = efx_ef10_vswitching_remove_pf,
4223 #endif
4224 .get_mac_address = efx_ef10_get_mac_address_pf,
4225 .set_mac_address = efx_ef10_set_mac_address,
4226 .tso_versions = efx_ef10_tso_versions,
4227
4228 .get_phys_port_id = efx_ef10_get_phys_port_id,
4229 .revision = EFX_REV_HUNT_A0,
4230 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4231 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4232 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4233 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4234 .can_rx_scatter = true,
4235 .always_rx_scatter = true,
4236 .option_descriptors = true,
4237 .min_interrupt_mode = EFX_INT_MODE_LEGACY,
4238 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4239 .offload_features = EF10_OFFLOAD_FEATURES,
4240 .mcdi_max_ver = 2,
4241 .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4242 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4243 1 << HWTSTAMP_FILTER_ALL,
4244 .rx_hash_key_size = 40,
4245 .check_caps = ef10_check_caps,
4246 .print_additional_fwver = efx_ef10_print_additional_fwver,
4247 .sensor_event = efx_mcdi_sensor_event,
4248 };
4249