1// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) 2/* QLogic qede NIC Driver 3 * Copyright (c) 2015-2017 QLogic Corporation 4 * Copyright (c) 2019-2020 Marvell International Ltd. 5 */ 6 7#include <linux/crash_dump.h> 8#include <linux/module.h> 9#include <linux/pci.h> 10#include <linux/version.h> 11#include <linux/device.h> 12#include <linux/netdevice.h> 13#include <linux/etherdevice.h> 14#include <linux/skbuff.h> 15#include <linux/errno.h> 16#include <linux/list.h> 17#include <linux/string.h> 18#include <linux/dma-mapping.h> 19#include <linux/interrupt.h> 20#include <asm/byteorder.h> 21#include <asm/param.h> 22#include <linux/io.h> 23#include <linux/netdev_features.h> 24#include <linux/udp.h> 25#include <linux/tcp.h> 26#include <net/udp_tunnel.h> 27#include <linux/ip.h> 28#include <net/ipv6.h> 29#include <net/tcp.h> 30#include <linux/if_ether.h> 31#include <linux/if_vlan.h> 32#include <linux/pkt_sched.h> 33#include <linux/ethtool.h> 34#include <linux/in.h> 35#include <linux/random.h> 36#include <net/ip6_checksum.h> 37#include <linux/bitops.h> 38#include <linux/vmalloc.h> 39#include <linux/aer.h> 40#include "qede.h" 41#include "qede_ptp.h" 42 43static char version[] = 44 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n"; 45 46MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver"); 47MODULE_LICENSE("GPL"); 48MODULE_VERSION(DRV_MODULE_VERSION); 49 50static uint debug; 51module_param(debug, uint, 0); 52MODULE_PARM_DESC(debug, " Default debug msglevel"); 53 54static const struct qed_eth_ops *qed_ops; 55 56#define CHIP_NUM_57980S_40 0x1634 57#define CHIP_NUM_57980S_10 0x1666 58#define CHIP_NUM_57980S_MF 0x1636 59#define CHIP_NUM_57980S_100 0x1644 60#define CHIP_NUM_57980S_50 0x1654 61#define CHIP_NUM_57980S_25 0x1656 62#define CHIP_NUM_57980S_IOV 0x1664 63#define CHIP_NUM_AH 0x8070 64#define CHIP_NUM_AH_IOV 0x8090 65 66#ifndef PCI_DEVICE_ID_NX2_57980E 67#define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40 68#define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10 69#define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF 70#define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100 71#define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50 72#define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25 73#define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV 74#define PCI_DEVICE_ID_AH CHIP_NUM_AH 75#define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV 76 77#endif 78 79enum qede_pci_private { 80 QEDE_PRIVATE_PF, 81 QEDE_PRIVATE_VF 82}; 83 84static const struct pci_device_id qede_pci_tbl[] = { 85 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF}, 86 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF}, 87 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF}, 88 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF}, 89 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF}, 90 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF}, 91#ifdef CONFIG_QED_SRIOV 92 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF}, 93#endif 94 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF}, 95#ifdef CONFIG_QED_SRIOV 96 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF}, 97#endif 98 { 0 } 99}; 100 101MODULE_DEVICE_TABLE(pci, qede_pci_tbl); 102 103static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id); 104static pci_ers_result_t 105qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state); 106 107#define TX_TIMEOUT (5 * HZ) 108 109/* Utilize last protocol index for XDP */ 110#define XDP_PI 11 111 112static void qede_remove(struct pci_dev *pdev); 113static void qede_shutdown(struct pci_dev *pdev); 114static void qede_link_update(void *dev, struct qed_link_output *link); 115static void qede_schedule_recovery_handler(void *dev); 116static void qede_recovery_handler(struct qede_dev *edev); 117static void qede_schedule_hw_err_handler(void *dev, 118 enum qed_hw_err_type err_type); 119static void qede_get_eth_tlv_data(void *edev, void *data); 120static void qede_get_generic_tlv_data(void *edev, 121 struct qed_generic_tlvs *data); 122static void qede_generic_hw_err_handler(struct qede_dev *edev); 123#ifdef CONFIG_QED_SRIOV 124static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos, 125 __be16 vlan_proto) 126{ 127 struct qede_dev *edev = netdev_priv(ndev); 128 129 if (vlan > 4095) { 130 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan); 131 return -EINVAL; 132 } 133 134 if (vlan_proto != htons(ETH_P_8021Q)) 135 return -EPROTONOSUPPORT; 136 137 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n", 138 vlan, vf); 139 140 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf); 141} 142 143static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac) 144{ 145 struct qede_dev *edev = netdev_priv(ndev); 146 147 DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx); 148 149 if (!is_valid_ether_addr(mac)) { 150 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n"); 151 return -EINVAL; 152 } 153 154 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx); 155} 156 157static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param) 158{ 159 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev)); 160 struct qed_dev_info *qed_info = &edev->dev_info.common; 161 struct qed_update_vport_params *vport_params; 162 int rc; 163 164 vport_params = vzalloc(sizeof(*vport_params)); 165 if (!vport_params) 166 return -ENOMEM; 167 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param); 168 169 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param); 170 171 /* Enable/Disable Tx switching for PF */ 172 if ((rc == num_vfs_param) && netif_running(edev->ndev) && 173 !qed_info->b_inter_pf_switch && qed_info->tx_switching) { 174 vport_params->vport_id = 0; 175 vport_params->update_tx_switching_flg = 1; 176 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0; 177 edev->ops->vport_update(edev->cdev, vport_params); 178 } 179 180 vfree(vport_params); 181 return rc; 182} 183#endif 184 185static const struct pci_error_handlers qede_err_handler = { 186 .error_detected = qede_io_error_detected, 187}; 188 189static struct pci_driver qede_pci_driver = { 190 .name = "qede", 191 .id_table = qede_pci_tbl, 192 .probe = qede_probe, 193 .remove = qede_remove, 194 .shutdown = qede_shutdown, 195#ifdef CONFIG_QED_SRIOV 196 .sriov_configure = qede_sriov_configure, 197#endif 198 .err_handler = &qede_err_handler, 199}; 200 201static struct qed_eth_cb_ops qede_ll_ops = { 202 { 203#ifdef CONFIG_RFS_ACCEL 204 .arfs_filter_op = qede_arfs_filter_op, 205#endif 206 .link_update = qede_link_update, 207 .schedule_recovery_handler = qede_schedule_recovery_handler, 208 .schedule_hw_err_handler = qede_schedule_hw_err_handler, 209 .get_generic_tlv_data = qede_get_generic_tlv_data, 210 .get_protocol_tlv_data = qede_get_eth_tlv_data, 211 }, 212 .force_mac = qede_force_mac, 213 .ports_update = qede_udp_ports_update, 214}; 215 216static int qede_netdev_event(struct notifier_block *this, unsigned long event, 217 void *ptr) 218{ 219 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 220 struct ethtool_drvinfo drvinfo; 221 struct qede_dev *edev; 222 223 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR) 224 goto done; 225 226 /* Check whether this is a qede device */ 227 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo) 228 goto done; 229 230 memset(&drvinfo, 0, sizeof(drvinfo)); 231 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo); 232 if (strcmp(drvinfo.driver, "qede")) 233 goto done; 234 edev = netdev_priv(ndev); 235 236 switch (event) { 237 case NETDEV_CHANGENAME: 238 /* Notify qed of the name change */ 239 if (!edev->ops || !edev->ops->common) 240 goto done; 241 edev->ops->common->set_name(edev->cdev, edev->ndev->name); 242 break; 243 case NETDEV_CHANGEADDR: 244 edev = netdev_priv(ndev); 245 qede_rdma_event_changeaddr(edev); 246 break; 247 } 248 249done: 250 return NOTIFY_DONE; 251} 252 253static struct notifier_block qede_netdev_notifier = { 254 .notifier_call = qede_netdev_event, 255}; 256 257static 258int __init qede_init(void) 259{ 260 int ret; 261 262 pr_info("qede_init: %s\n", version); 263 264 qede_forced_speed_maps_init(); 265 266 qed_ops = qed_get_eth_ops(); 267 if (!qed_ops) { 268 pr_notice("Failed to get qed ethtool operations\n"); 269 return -EINVAL; 270 } 271 272 /* Must register notifier before pci ops, since we might miss 273 * interface rename after pci probe and netdev registration. 274 */ 275 ret = register_netdevice_notifier(&qede_netdev_notifier); 276 if (ret) { 277 pr_notice("Failed to register netdevice_notifier\n"); 278 qed_put_eth_ops(); 279 return -EINVAL; 280 } 281 282 ret = pci_register_driver(&qede_pci_driver); 283 if (ret) { 284 pr_notice("Failed to register driver\n"); 285 unregister_netdevice_notifier(&qede_netdev_notifier); 286 qed_put_eth_ops(); 287 return -EINVAL; 288 } 289 290 return 0; 291} 292 293static void __exit qede_cleanup(void) 294{ 295 if (debug & QED_LOG_INFO_MASK) 296 pr_info("qede_cleanup called\n"); 297 298 unregister_netdevice_notifier(&qede_netdev_notifier); 299 pci_unregister_driver(&qede_pci_driver); 300 qed_put_eth_ops(); 301} 302 303module_init(qede_init); 304module_exit(qede_cleanup); 305 306static int qede_open(struct net_device *ndev); 307static int qede_close(struct net_device *ndev); 308 309void qede_fill_by_demand_stats(struct qede_dev *edev) 310{ 311 struct qede_stats_common *p_common = &edev->stats.common; 312 struct qed_eth_stats stats; 313 314 edev->ops->get_vport_stats(edev->cdev, &stats); 315 316 spin_lock(&edev->stats_lock); 317 318 p_common->no_buff_discards = stats.common.no_buff_discards; 319 p_common->packet_too_big_discard = stats.common.packet_too_big_discard; 320 p_common->ttl0_discard = stats.common.ttl0_discard; 321 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes; 322 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes; 323 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes; 324 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts; 325 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts; 326 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts; 327 p_common->mftag_filter_discards = stats.common.mftag_filter_discards; 328 p_common->mac_filter_discards = stats.common.mac_filter_discards; 329 p_common->gft_filter_drop = stats.common.gft_filter_drop; 330 331 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes; 332 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes; 333 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes; 334 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts; 335 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts; 336 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts; 337 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts; 338 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts; 339 p_common->coalesced_events = stats.common.tpa_coalesced_events; 340 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num; 341 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts; 342 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes; 343 344 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets; 345 p_common->rx_65_to_127_byte_packets = 346 stats.common.rx_65_to_127_byte_packets; 347 p_common->rx_128_to_255_byte_packets = 348 stats.common.rx_128_to_255_byte_packets; 349 p_common->rx_256_to_511_byte_packets = 350 stats.common.rx_256_to_511_byte_packets; 351 p_common->rx_512_to_1023_byte_packets = 352 stats.common.rx_512_to_1023_byte_packets; 353 p_common->rx_1024_to_1518_byte_packets = 354 stats.common.rx_1024_to_1518_byte_packets; 355 p_common->rx_crc_errors = stats.common.rx_crc_errors; 356 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames; 357 p_common->rx_pause_frames = stats.common.rx_pause_frames; 358 p_common->rx_pfc_frames = stats.common.rx_pfc_frames; 359 p_common->rx_align_errors = stats.common.rx_align_errors; 360 p_common->rx_carrier_errors = stats.common.rx_carrier_errors; 361 p_common->rx_oversize_packets = stats.common.rx_oversize_packets; 362 p_common->rx_jabbers = stats.common.rx_jabbers; 363 p_common->rx_undersize_packets = stats.common.rx_undersize_packets; 364 p_common->rx_fragments = stats.common.rx_fragments; 365 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets; 366 p_common->tx_65_to_127_byte_packets = 367 stats.common.tx_65_to_127_byte_packets; 368 p_common->tx_128_to_255_byte_packets = 369 stats.common.tx_128_to_255_byte_packets; 370 p_common->tx_256_to_511_byte_packets = 371 stats.common.tx_256_to_511_byte_packets; 372 p_common->tx_512_to_1023_byte_packets = 373 stats.common.tx_512_to_1023_byte_packets; 374 p_common->tx_1024_to_1518_byte_packets = 375 stats.common.tx_1024_to_1518_byte_packets; 376 p_common->tx_pause_frames = stats.common.tx_pause_frames; 377 p_common->tx_pfc_frames = stats.common.tx_pfc_frames; 378 p_common->brb_truncates = stats.common.brb_truncates; 379 p_common->brb_discards = stats.common.brb_discards; 380 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames; 381 p_common->link_change_count = stats.common.link_change_count; 382 p_common->ptp_skip_txts = edev->ptp_skip_txts; 383 384 if (QEDE_IS_BB(edev)) { 385 struct qede_stats_bb *p_bb = &edev->stats.bb; 386 387 p_bb->rx_1519_to_1522_byte_packets = 388 stats.bb.rx_1519_to_1522_byte_packets; 389 p_bb->rx_1519_to_2047_byte_packets = 390 stats.bb.rx_1519_to_2047_byte_packets; 391 p_bb->rx_2048_to_4095_byte_packets = 392 stats.bb.rx_2048_to_4095_byte_packets; 393 p_bb->rx_4096_to_9216_byte_packets = 394 stats.bb.rx_4096_to_9216_byte_packets; 395 p_bb->rx_9217_to_16383_byte_packets = 396 stats.bb.rx_9217_to_16383_byte_packets; 397 p_bb->tx_1519_to_2047_byte_packets = 398 stats.bb.tx_1519_to_2047_byte_packets; 399 p_bb->tx_2048_to_4095_byte_packets = 400 stats.bb.tx_2048_to_4095_byte_packets; 401 p_bb->tx_4096_to_9216_byte_packets = 402 stats.bb.tx_4096_to_9216_byte_packets; 403 p_bb->tx_9217_to_16383_byte_packets = 404 stats.bb.tx_9217_to_16383_byte_packets; 405 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count; 406 p_bb->tx_total_collisions = stats.bb.tx_total_collisions; 407 } else { 408 struct qede_stats_ah *p_ah = &edev->stats.ah; 409 410 p_ah->rx_1519_to_max_byte_packets = 411 stats.ah.rx_1519_to_max_byte_packets; 412 p_ah->tx_1519_to_max_byte_packets = 413 stats.ah.tx_1519_to_max_byte_packets; 414 } 415 416 spin_unlock(&edev->stats_lock); 417} 418 419static void qede_get_stats64(struct net_device *dev, 420 struct rtnl_link_stats64 *stats) 421{ 422 struct qede_dev *edev = netdev_priv(dev); 423 struct qede_stats_common *p_common; 424 425 p_common = &edev->stats.common; 426 427 spin_lock(&edev->stats_lock); 428 429 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts + 430 p_common->rx_bcast_pkts; 431 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts + 432 p_common->tx_bcast_pkts; 433 434 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes + 435 p_common->rx_bcast_bytes; 436 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes + 437 p_common->tx_bcast_bytes; 438 439 stats->tx_errors = p_common->tx_err_drop_pkts; 440 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts; 441 442 stats->rx_fifo_errors = p_common->no_buff_discards; 443 444 if (QEDE_IS_BB(edev)) 445 stats->collisions = edev->stats.bb.tx_total_collisions; 446 stats->rx_crc_errors = p_common->rx_crc_errors; 447 stats->rx_frame_errors = p_common->rx_align_errors; 448 449 spin_unlock(&edev->stats_lock); 450} 451 452#ifdef CONFIG_QED_SRIOV 453static int qede_get_vf_config(struct net_device *dev, int vfidx, 454 struct ifla_vf_info *ivi) 455{ 456 struct qede_dev *edev = netdev_priv(dev); 457 458 if (!edev->ops) 459 return -EINVAL; 460 461 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi); 462} 463 464static int qede_set_vf_rate(struct net_device *dev, int vfidx, 465 int min_tx_rate, int max_tx_rate) 466{ 467 struct qede_dev *edev = netdev_priv(dev); 468 469 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate, 470 max_tx_rate); 471} 472 473static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val) 474{ 475 struct qede_dev *edev = netdev_priv(dev); 476 477 if (!edev->ops) 478 return -EINVAL; 479 480 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val); 481} 482 483static int qede_set_vf_link_state(struct net_device *dev, int vfidx, 484 int link_state) 485{ 486 struct qede_dev *edev = netdev_priv(dev); 487 488 if (!edev->ops) 489 return -EINVAL; 490 491 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state); 492} 493 494static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting) 495{ 496 struct qede_dev *edev = netdev_priv(dev); 497 498 if (!edev->ops) 499 return -EINVAL; 500 501 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting); 502} 503#endif 504 505static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 506{ 507 struct qede_dev *edev = netdev_priv(dev); 508 509 if (!netif_running(dev)) 510 return -EAGAIN; 511 512 switch (cmd) { 513 case SIOCSHWTSTAMP: 514 return qede_ptp_hw_ts(edev, ifr); 515 default: 516 DP_VERBOSE(edev, QED_MSG_DEBUG, 517 "default IOCTL cmd 0x%x\n", cmd); 518 return -EOPNOTSUPP; 519 } 520 521 return 0; 522} 523 524static void qede_tx_log_print(struct qede_dev *edev, struct qede_tx_queue *txq) 525{ 526 DP_NOTICE(edev, 527 "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n", 528 txq->index, le16_to_cpu(*txq->hw_cons_ptr), 529 qed_chain_get_cons_idx(&txq->tx_pbl), 530 qed_chain_get_prod_idx(&txq->tx_pbl), 531 jiffies); 532} 533 534static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue) 535{ 536 struct qede_dev *edev = netdev_priv(dev); 537 struct qede_tx_queue *txq; 538 int cos; 539 540 netif_carrier_off(dev); 541 DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue); 542 543 if (!(edev->fp_array[txqueue].type & QEDE_FASTPATH_TX)) 544 return; 545 546 for_each_cos_in_txq(edev, cos) { 547 txq = &edev->fp_array[txqueue].txq[cos]; 548 549 if (qed_chain_get_cons_idx(&txq->tx_pbl) != 550 qed_chain_get_prod_idx(&txq->tx_pbl)) 551 qede_tx_log_print(edev, txq); 552 } 553 554 if (IS_VF(edev)) 555 return; 556 557 if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) || 558 edev->state == QEDE_STATE_RECOVERY) { 559 DP_INFO(edev, 560 "Avoid handling a Tx timeout while another HW error is being handled\n"); 561 return; 562 } 563 564 set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags); 565 set_bit(QEDE_SP_HW_ERR, &edev->sp_flags); 566 schedule_delayed_work(&edev->sp_task, 0); 567} 568 569static int qede_setup_tc(struct net_device *ndev, u8 num_tc) 570{ 571 struct qede_dev *edev = netdev_priv(ndev); 572 int cos, count, offset; 573 574 if (num_tc > edev->dev_info.num_tc) 575 return -EINVAL; 576 577 netdev_reset_tc(ndev); 578 netdev_set_num_tc(ndev, num_tc); 579 580 for_each_cos_in_txq(edev, cos) { 581 count = QEDE_TSS_COUNT(edev); 582 offset = cos * QEDE_TSS_COUNT(edev); 583 netdev_set_tc_queue(ndev, cos, count, offset); 584 } 585 586 return 0; 587} 588 589static int 590qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f, 591 __be16 proto) 592{ 593 switch (f->command) { 594 case FLOW_CLS_REPLACE: 595 return qede_add_tc_flower_fltr(edev, proto, f); 596 case FLOW_CLS_DESTROY: 597 return qede_delete_flow_filter(edev, f->cookie); 598 default: 599 return -EOPNOTSUPP; 600 } 601} 602 603static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 604 void *cb_priv) 605{ 606 struct flow_cls_offload *f; 607 struct qede_dev *edev = cb_priv; 608 609 if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data)) 610 return -EOPNOTSUPP; 611 612 switch (type) { 613 case TC_SETUP_CLSFLOWER: 614 f = type_data; 615 return qede_set_flower(edev, f, f->common.protocol); 616 default: 617 return -EOPNOTSUPP; 618 } 619} 620 621static LIST_HEAD(qede_block_cb_list); 622 623static int 624qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type, 625 void *type_data) 626{ 627 struct qede_dev *edev = netdev_priv(dev); 628 struct tc_mqprio_qopt *mqprio; 629 630 switch (type) { 631 case TC_SETUP_BLOCK: 632 return flow_block_cb_setup_simple(type_data, 633 &qede_block_cb_list, 634 qede_setup_tc_block_cb, 635 edev, edev, true); 636 case TC_SETUP_QDISC_MQPRIO: 637 mqprio = type_data; 638 639 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 640 return qede_setup_tc(dev, mqprio->num_tc); 641 default: 642 return -EOPNOTSUPP; 643 } 644} 645 646static const struct net_device_ops qede_netdev_ops = { 647 .ndo_open = qede_open, 648 .ndo_stop = qede_close, 649 .ndo_start_xmit = qede_start_xmit, 650 .ndo_select_queue = qede_select_queue, 651 .ndo_set_rx_mode = qede_set_rx_mode, 652 .ndo_set_mac_address = qede_set_mac_addr, 653 .ndo_validate_addr = eth_validate_addr, 654 .ndo_change_mtu = qede_change_mtu, 655 .ndo_do_ioctl = qede_ioctl, 656 .ndo_tx_timeout = qede_tx_timeout, 657#ifdef CONFIG_QED_SRIOV 658 .ndo_set_vf_mac = qede_set_vf_mac, 659 .ndo_set_vf_vlan = qede_set_vf_vlan, 660 .ndo_set_vf_trust = qede_set_vf_trust, 661#endif 662 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 663 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 664 .ndo_fix_features = qede_fix_features, 665 .ndo_set_features = qede_set_features, 666 .ndo_get_stats64 = qede_get_stats64, 667#ifdef CONFIG_QED_SRIOV 668 .ndo_set_vf_link_state = qede_set_vf_link_state, 669 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk, 670 .ndo_get_vf_config = qede_get_vf_config, 671 .ndo_set_vf_rate = qede_set_vf_rate, 672#endif 673 .ndo_udp_tunnel_add = udp_tunnel_nic_add_port, 674 .ndo_udp_tunnel_del = udp_tunnel_nic_del_port, 675 .ndo_features_check = qede_features_check, 676 .ndo_bpf = qede_xdp, 677#ifdef CONFIG_RFS_ACCEL 678 .ndo_rx_flow_steer = qede_rx_flow_steer, 679#endif 680 .ndo_xdp_xmit = qede_xdp_transmit, 681 .ndo_setup_tc = qede_setup_tc_offload, 682}; 683 684static const struct net_device_ops qede_netdev_vf_ops = { 685 .ndo_open = qede_open, 686 .ndo_stop = qede_close, 687 .ndo_start_xmit = qede_start_xmit, 688 .ndo_select_queue = qede_select_queue, 689 .ndo_set_rx_mode = qede_set_rx_mode, 690 .ndo_set_mac_address = qede_set_mac_addr, 691 .ndo_validate_addr = eth_validate_addr, 692 .ndo_change_mtu = qede_change_mtu, 693 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 694 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 695 .ndo_fix_features = qede_fix_features, 696 .ndo_set_features = qede_set_features, 697 .ndo_get_stats64 = qede_get_stats64, 698 .ndo_udp_tunnel_add = udp_tunnel_nic_add_port, 699 .ndo_udp_tunnel_del = udp_tunnel_nic_del_port, 700 .ndo_features_check = qede_features_check, 701}; 702 703static const struct net_device_ops qede_netdev_vf_xdp_ops = { 704 .ndo_open = qede_open, 705 .ndo_stop = qede_close, 706 .ndo_start_xmit = qede_start_xmit, 707 .ndo_select_queue = qede_select_queue, 708 .ndo_set_rx_mode = qede_set_rx_mode, 709 .ndo_set_mac_address = qede_set_mac_addr, 710 .ndo_validate_addr = eth_validate_addr, 711 .ndo_change_mtu = qede_change_mtu, 712 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 713 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 714 .ndo_fix_features = qede_fix_features, 715 .ndo_set_features = qede_set_features, 716 .ndo_get_stats64 = qede_get_stats64, 717 .ndo_udp_tunnel_add = udp_tunnel_nic_add_port, 718 .ndo_udp_tunnel_del = udp_tunnel_nic_del_port, 719 .ndo_features_check = qede_features_check, 720 .ndo_bpf = qede_xdp, 721 .ndo_xdp_xmit = qede_xdp_transmit, 722}; 723 724/* ------------------------------------------------------------------------- 725 * START OF PROBE / REMOVE 726 * ------------------------------------------------------------------------- 727 */ 728 729static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev, 730 struct pci_dev *pdev, 731 struct qed_dev_eth_info *info, 732 u32 dp_module, u8 dp_level) 733{ 734 struct net_device *ndev; 735 struct qede_dev *edev; 736 737 ndev = alloc_etherdev_mqs(sizeof(*edev), 738 info->num_queues * info->num_tc, 739 info->num_queues); 740 if (!ndev) { 741 pr_err("etherdev allocation failed\n"); 742 return NULL; 743 } 744 745 edev = netdev_priv(ndev); 746 edev->ndev = ndev; 747 edev->cdev = cdev; 748 edev->pdev = pdev; 749 edev->dp_module = dp_module; 750 edev->dp_level = dp_level; 751 edev->ops = qed_ops; 752 753 if (is_kdump_kernel()) { 754 edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN; 755 edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN; 756 } else { 757 edev->q_num_rx_buffers = NUM_RX_BDS_DEF; 758 edev->q_num_tx_buffers = NUM_TX_BDS_DEF; 759 } 760 761 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n", 762 info->num_queues, info->num_queues); 763 764 SET_NETDEV_DEV(ndev, &pdev->dev); 765 766 memset(&edev->stats, 0, sizeof(edev->stats)); 767 memcpy(&edev->dev_info, info, sizeof(*info)); 768 769 /* As ethtool doesn't have the ability to show WoL behavior as 770 * 'default', if device supports it declare it's enabled. 771 */ 772 if (edev->dev_info.common.wol_support) 773 edev->wol_enabled = true; 774 775 INIT_LIST_HEAD(&edev->vlan_list); 776 777 return edev; 778} 779 780static void qede_init_ndev(struct qede_dev *edev) 781{ 782 struct net_device *ndev = edev->ndev; 783 struct pci_dev *pdev = edev->pdev; 784 bool udp_tunnel_enable = false; 785 netdev_features_t hw_features; 786 787 pci_set_drvdata(pdev, ndev); 788 789 ndev->mem_start = edev->dev_info.common.pci_mem_start; 790 ndev->base_addr = ndev->mem_start; 791 ndev->mem_end = edev->dev_info.common.pci_mem_end; 792 ndev->irq = edev->dev_info.common.pci_irq; 793 794 ndev->watchdog_timeo = TX_TIMEOUT; 795 796 if (IS_VF(edev)) { 797 if (edev->dev_info.xdp_supported) 798 ndev->netdev_ops = &qede_netdev_vf_xdp_ops; 799 else 800 ndev->netdev_ops = &qede_netdev_vf_ops; 801 } else { 802 ndev->netdev_ops = &qede_netdev_ops; 803 } 804 805 qede_set_ethtool_ops(ndev); 806 807 ndev->priv_flags |= IFF_UNICAST_FLT; 808 809 /* user-changeble features */ 810 hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG | 811 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 812 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC; 813 814 if (edev->dev_info.common.b_arfs_capable) 815 hw_features |= NETIF_F_NTUPLE; 816 817 if (edev->dev_info.common.vxlan_enable || 818 edev->dev_info.common.geneve_enable) 819 udp_tunnel_enable = true; 820 821 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) { 822 hw_features |= NETIF_F_TSO_ECN; 823 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 824 NETIF_F_SG | NETIF_F_TSO | 825 NETIF_F_TSO_ECN | NETIF_F_TSO6 | 826 NETIF_F_RXCSUM; 827 } 828 829 if (udp_tunnel_enable) { 830 hw_features |= (NETIF_F_GSO_UDP_TUNNEL | 831 NETIF_F_GSO_UDP_TUNNEL_CSUM); 832 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL | 833 NETIF_F_GSO_UDP_TUNNEL_CSUM); 834 835 qede_set_udp_tunnels(edev); 836 } 837 838 if (edev->dev_info.common.gre_enable) { 839 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM); 840 ndev->hw_enc_features |= (NETIF_F_GSO_GRE | 841 NETIF_F_GSO_GRE_CSUM); 842 } 843 844 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 845 NETIF_F_HIGHDMA; 846 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 847 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA | 848 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX; 849 850 ndev->hw_features = hw_features; 851 852 /* MTU range: 46 - 9600 */ 853 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 854 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE; 855 856 /* Set network device HW mac */ 857 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac); 858 859 ndev->mtu = edev->dev_info.common.mtu; 860} 861 862/* This function converts from 32b param to two params of level and module 863 * Input 32b decoding: 864 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the 865 * 'happy' flow, e.g. memory allocation failed. 866 * b30 - enable all INFO prints. INFO prints are for major steps in the flow 867 * and provide important parameters. 868 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that 869 * module. VERBOSE prints are for tracking the specific flow in low level. 870 * 871 * Notice that the level should be that of the lowest required logs. 872 */ 873void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level) 874{ 875 *p_dp_level = QED_LEVEL_NOTICE; 876 *p_dp_module = 0; 877 878 if (debug & QED_LOG_VERBOSE_MASK) { 879 *p_dp_level = QED_LEVEL_VERBOSE; 880 *p_dp_module = (debug & 0x3FFFFFFF); 881 } else if (debug & QED_LOG_INFO_MASK) { 882 *p_dp_level = QED_LEVEL_INFO; 883 } else if (debug & QED_LOG_NOTICE_MASK) { 884 *p_dp_level = QED_LEVEL_NOTICE; 885 } 886} 887 888static void qede_free_fp_array(struct qede_dev *edev) 889{ 890 if (edev->fp_array) { 891 struct qede_fastpath *fp; 892 int i; 893 894 for_each_queue(i) { 895 fp = &edev->fp_array[i]; 896 897 kfree(fp->sb_info); 898 /* Handle mem alloc failure case where qede_init_fp 899 * didn't register xdp_rxq_info yet. 900 * Implicit only (fp->type & QEDE_FASTPATH_RX) 901 */ 902 if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq)) 903 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq); 904 kfree(fp->rxq); 905 kfree(fp->xdp_tx); 906 kfree(fp->txq); 907 } 908 kfree(edev->fp_array); 909 } 910 911 edev->num_queues = 0; 912 edev->fp_num_tx = 0; 913 edev->fp_num_rx = 0; 914} 915 916static int qede_alloc_fp_array(struct qede_dev *edev) 917{ 918 u8 fp_combined, fp_rx = edev->fp_num_rx; 919 struct qede_fastpath *fp; 920 int i; 921 922 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev), 923 sizeof(*edev->fp_array), GFP_KERNEL); 924 if (!edev->fp_array) { 925 DP_NOTICE(edev, "fp array allocation failed\n"); 926 goto err; 927 } 928 929 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx; 930 931 /* Allocate the FP elements for Rx queues followed by combined and then 932 * the Tx. This ordering should be maintained so that the respective 933 * queues (Rx or Tx) will be together in the fastpath array and the 934 * associated ids will be sequential. 935 */ 936 for_each_queue(i) { 937 fp = &edev->fp_array[i]; 938 939 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL); 940 if (!fp->sb_info) { 941 DP_NOTICE(edev, "sb info struct allocation failed\n"); 942 goto err; 943 } 944 945 if (fp_rx) { 946 fp->type = QEDE_FASTPATH_RX; 947 fp_rx--; 948 } else if (fp_combined) { 949 fp->type = QEDE_FASTPATH_COMBINED; 950 fp_combined--; 951 } else { 952 fp->type = QEDE_FASTPATH_TX; 953 } 954 955 if (fp->type & QEDE_FASTPATH_TX) { 956 fp->txq = kcalloc(edev->dev_info.num_tc, 957 sizeof(*fp->txq), GFP_KERNEL); 958 if (!fp->txq) 959 goto err; 960 } 961 962 if (fp->type & QEDE_FASTPATH_RX) { 963 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL); 964 if (!fp->rxq) 965 goto err; 966 967 if (edev->xdp_prog) { 968 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx), 969 GFP_KERNEL); 970 if (!fp->xdp_tx) 971 goto err; 972 fp->type |= QEDE_FASTPATH_XDP; 973 } 974 } 975 } 976 977 return 0; 978err: 979 qede_free_fp_array(edev); 980 return -ENOMEM; 981} 982 983/* The qede lock is used to protect driver state change and driver flows that 984 * are not reentrant. 985 */ 986void __qede_lock(struct qede_dev *edev) 987{ 988 mutex_lock(&edev->qede_lock); 989} 990 991void __qede_unlock(struct qede_dev *edev) 992{ 993 mutex_unlock(&edev->qede_lock); 994} 995 996/* This version of the lock should be used when acquiring the RTNL lock is also 997 * needed in addition to the internal qede lock. 998 */ 999static void qede_lock(struct qede_dev *edev) 1000{ 1001 rtnl_lock(); 1002 __qede_lock(edev); 1003} 1004 1005static void qede_unlock(struct qede_dev *edev) 1006{ 1007 __qede_unlock(edev); 1008 rtnl_unlock(); 1009} 1010 1011static void qede_periodic_task(struct work_struct *work) 1012{ 1013 struct qede_dev *edev = container_of(work, struct qede_dev, 1014 periodic_task.work); 1015 1016 qede_fill_by_demand_stats(edev); 1017 schedule_delayed_work(&edev->periodic_task, edev->stats_coal_ticks); 1018} 1019 1020static void qede_init_periodic_task(struct qede_dev *edev) 1021{ 1022 INIT_DELAYED_WORK(&edev->periodic_task, qede_periodic_task); 1023 spin_lock_init(&edev->stats_lock); 1024 edev->stats_coal_usecs = USEC_PER_SEC; 1025 edev->stats_coal_ticks = usecs_to_jiffies(USEC_PER_SEC); 1026} 1027 1028static void qede_sp_task(struct work_struct *work) 1029{ 1030 struct qede_dev *edev = container_of(work, struct qede_dev, 1031 sp_task.work); 1032 1033 /* Disable execution of this deferred work once 1034 * qede removal is in progress, this stop any future 1035 * scheduling of sp_task. 1036 */ 1037 if (test_bit(QEDE_SP_DISABLE, &edev->sp_flags)) 1038 return; 1039 1040 /* The locking scheme depends on the specific flag: 1041 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to 1042 * ensure that ongoing flows are ended and new ones are not started. 1043 * In other cases - only the internal qede lock should be acquired. 1044 */ 1045 1046 if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) { 1047 cancel_delayed_work_sync(&edev->periodic_task); 1048#ifdef CONFIG_QED_SRIOV 1049 /* SRIOV must be disabled outside the lock to avoid a deadlock. 1050 * The recovery of the active VFs is currently not supported. 1051 */ 1052 if (pci_num_vf(edev->pdev)) 1053 qede_sriov_configure(edev->pdev, 0); 1054#endif 1055 qede_lock(edev); 1056 qede_recovery_handler(edev); 1057 qede_unlock(edev); 1058 } 1059 1060 __qede_lock(edev); 1061 1062 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags)) 1063 if (edev->state == QEDE_STATE_OPEN) 1064 qede_config_rx_mode(edev->ndev); 1065 1066#ifdef CONFIG_RFS_ACCEL 1067 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) { 1068 if (edev->state == QEDE_STATE_OPEN) 1069 qede_process_arfs_filters(edev, false); 1070 } 1071#endif 1072 if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags)) 1073 qede_generic_hw_err_handler(edev); 1074 __qede_unlock(edev); 1075 1076 if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) { 1077#ifdef CONFIG_QED_SRIOV 1078 /* SRIOV must be disabled outside the lock to avoid a deadlock. 1079 * The recovery of the active VFs is currently not supported. 1080 */ 1081 if (pci_num_vf(edev->pdev)) 1082 qede_sriov_configure(edev->pdev, 0); 1083#endif 1084 edev->ops->common->recovery_process(edev->cdev); 1085 } 1086} 1087 1088static void qede_update_pf_params(struct qed_dev *cdev) 1089{ 1090 struct qed_pf_params pf_params; 1091 u16 num_cons; 1092 1093 /* 64 rx + 64 tx + 64 XDP */ 1094 memset(&pf_params, 0, sizeof(struct qed_pf_params)); 1095 1096 /* 1 rx + 1 xdp + max tx cos */ 1097 num_cons = QED_MIN_L2_CONS; 1098 1099 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons; 1100 1101 /* Same for VFs - make sure they'll have sufficient connections 1102 * to support XDP Tx queues. 1103 */ 1104 pf_params.eth_pf_params.num_vf_cons = 48; 1105 1106 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR; 1107 qed_ops->common->update_pf_params(cdev, &pf_params); 1108} 1109 1110#define QEDE_FW_VER_STR_SIZE 80 1111 1112static void qede_log_probe(struct qede_dev *edev) 1113{ 1114 struct qed_dev_info *p_dev_info = &edev->dev_info.common; 1115 u8 buf[QEDE_FW_VER_STR_SIZE]; 1116 size_t left_size; 1117 1118 snprintf(buf, QEDE_FW_VER_STR_SIZE, 1119 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d", 1120 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev, 1121 p_dev_info->fw_eng, 1122 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >> 1123 QED_MFW_VERSION_3_OFFSET, 1124 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >> 1125 QED_MFW_VERSION_2_OFFSET, 1126 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >> 1127 QED_MFW_VERSION_1_OFFSET, 1128 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >> 1129 QED_MFW_VERSION_0_OFFSET); 1130 1131 left_size = QEDE_FW_VER_STR_SIZE - strlen(buf); 1132 if (p_dev_info->mbi_version && left_size) 1133 snprintf(buf + strlen(buf), left_size, 1134 " [MBI %d.%d.%d]", 1135 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >> 1136 QED_MBI_VERSION_2_OFFSET, 1137 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >> 1138 QED_MBI_VERSION_1_OFFSET, 1139 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >> 1140 QED_MBI_VERSION_0_OFFSET); 1141 1142 pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number, 1143 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn), 1144 buf, edev->ndev->name); 1145} 1146 1147enum qede_probe_mode { 1148 QEDE_PROBE_NORMAL, 1149 QEDE_PROBE_RECOVERY, 1150}; 1151 1152static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level, 1153 bool is_vf, enum qede_probe_mode mode) 1154{ 1155 struct qed_probe_params probe_params; 1156 struct qed_slowpath_params sp_params; 1157 struct qed_dev_eth_info dev_info; 1158 struct qede_dev *edev; 1159 struct qed_dev *cdev; 1160 int rc; 1161 1162 if (unlikely(dp_level & QED_LEVEL_INFO)) 1163 pr_notice("Starting qede probe\n"); 1164 1165 memset(&probe_params, 0, sizeof(probe_params)); 1166 probe_params.protocol = QED_PROTOCOL_ETH; 1167 probe_params.dp_module = dp_module; 1168 probe_params.dp_level = dp_level; 1169 probe_params.is_vf = is_vf; 1170 probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY); 1171 cdev = qed_ops->common->probe(pdev, &probe_params); 1172 if (!cdev) { 1173 rc = -ENODEV; 1174 goto err0; 1175 } 1176 1177 qede_update_pf_params(cdev); 1178 1179 /* Start the Slowpath-process */ 1180 memset(&sp_params, 0, sizeof(sp_params)); 1181 sp_params.int_mode = QED_INT_MODE_MSIX; 1182 sp_params.drv_major = QEDE_MAJOR_VERSION; 1183 sp_params.drv_minor = QEDE_MINOR_VERSION; 1184 sp_params.drv_rev = QEDE_REVISION_VERSION; 1185 sp_params.drv_eng = QEDE_ENGINEERING_VERSION; 1186 strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE); 1187 rc = qed_ops->common->slowpath_start(cdev, &sp_params); 1188 if (rc) { 1189 pr_notice("Cannot start slowpath\n"); 1190 goto err1; 1191 } 1192 1193 /* Learn information crucial for qede to progress */ 1194 rc = qed_ops->fill_dev_info(cdev, &dev_info); 1195 if (rc) 1196 goto err2; 1197 1198 if (mode != QEDE_PROBE_RECOVERY) { 1199 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module, 1200 dp_level); 1201 if (!edev) { 1202 rc = -ENOMEM; 1203 goto err2; 1204 } 1205 1206 edev->devlink = qed_ops->common->devlink_register(cdev); 1207 if (IS_ERR(edev->devlink)) { 1208 DP_NOTICE(edev, "Cannot register devlink\n"); 1209 edev->devlink = NULL; 1210 /* Go on, we can live without devlink */ 1211 } 1212 } else { 1213 struct net_device *ndev = pci_get_drvdata(pdev); 1214 1215 edev = netdev_priv(ndev); 1216 1217 if (edev->devlink) { 1218 struct qed_devlink *qdl = devlink_priv(edev->devlink); 1219 1220 qdl->cdev = cdev; 1221 } 1222 edev->cdev = cdev; 1223 memset(&edev->stats, 0, sizeof(edev->stats)); 1224 memcpy(&edev->dev_info, &dev_info, sizeof(dev_info)); 1225 } 1226 1227 if (is_vf) 1228 set_bit(QEDE_FLAGS_IS_VF, &edev->flags); 1229 1230 qede_init_ndev(edev); 1231 1232 rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY)); 1233 if (rc) 1234 goto err3; 1235 1236 if (mode != QEDE_PROBE_RECOVERY) { 1237 /* Prepare the lock prior to the registration of the netdev, 1238 * as once it's registered we might reach flows requiring it 1239 * [it's even possible to reach a flow needing it directly 1240 * from there, although it's unlikely]. 1241 */ 1242 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task); 1243 mutex_init(&edev->qede_lock); 1244 qede_init_periodic_task(edev); 1245 1246 rc = register_netdev(edev->ndev); 1247 if (rc) { 1248 DP_NOTICE(edev, "Cannot register net-device\n"); 1249 goto err4; 1250 } 1251 } 1252 1253 edev->ops->common->set_name(cdev, edev->ndev->name); 1254 1255 /* PTP not supported on VFs */ 1256 if (!is_vf) 1257 qede_ptp_enable(edev); 1258 1259 edev->ops->register_ops(cdev, &qede_ll_ops, edev); 1260 1261#ifdef CONFIG_DCB 1262 if (!IS_VF(edev)) 1263 qede_set_dcbnl_ops(edev->ndev); 1264#endif 1265 1266 edev->rx_copybreak = QEDE_RX_HDR_SIZE; 1267 1268 qede_log_probe(edev); 1269 1270 /* retain user config (for example - after recovery) */ 1271 if (edev->stats_coal_usecs) 1272 schedule_delayed_work(&edev->periodic_task, 0); 1273 1274 return 0; 1275 1276err4: 1277 qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY)); 1278err3: 1279 if (mode != QEDE_PROBE_RECOVERY) 1280 free_netdev(edev->ndev); 1281 else 1282 edev->cdev = NULL; 1283err2: 1284 qed_ops->common->slowpath_stop(cdev); 1285err1: 1286 qed_ops->common->remove(cdev); 1287err0: 1288 return rc; 1289} 1290 1291static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1292{ 1293 bool is_vf = false; 1294 u32 dp_module = 0; 1295 u8 dp_level = 0; 1296 1297 switch ((enum qede_pci_private)id->driver_data) { 1298 case QEDE_PRIVATE_VF: 1299 if (debug & QED_LOG_VERBOSE_MASK) 1300 dev_err(&pdev->dev, "Probing a VF\n"); 1301 is_vf = true; 1302 break; 1303 default: 1304 if (debug & QED_LOG_VERBOSE_MASK) 1305 dev_err(&pdev->dev, "Probing a PF\n"); 1306 } 1307 1308 qede_config_debug(debug, &dp_module, &dp_level); 1309 1310 return __qede_probe(pdev, dp_module, dp_level, is_vf, 1311 QEDE_PROBE_NORMAL); 1312} 1313 1314enum qede_remove_mode { 1315 QEDE_REMOVE_NORMAL, 1316 QEDE_REMOVE_RECOVERY, 1317}; 1318 1319static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode) 1320{ 1321 struct net_device *ndev = pci_get_drvdata(pdev); 1322 struct qede_dev *edev; 1323 struct qed_dev *cdev; 1324 1325 if (!ndev) { 1326 dev_info(&pdev->dev, "Device has already been removed\n"); 1327 return; 1328 } 1329 1330 edev = netdev_priv(ndev); 1331 cdev = edev->cdev; 1332 1333 DP_INFO(edev, "Starting qede_remove\n"); 1334 1335 qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY)); 1336 1337 if (mode != QEDE_REMOVE_RECOVERY) { 1338 set_bit(QEDE_SP_DISABLE, &edev->sp_flags); 1339 unregister_netdev(ndev); 1340 1341 cancel_delayed_work_sync(&edev->sp_task); 1342 cancel_delayed_work_sync(&edev->periodic_task); 1343 1344 edev->ops->common->set_power_state(cdev, PCI_D0); 1345 1346 pci_set_drvdata(pdev, NULL); 1347 } 1348 1349 qede_ptp_disable(edev); 1350 1351 /* Use global ops since we've freed edev */ 1352 qed_ops->common->slowpath_stop(cdev); 1353 if (system_state == SYSTEM_POWER_OFF) 1354 return; 1355 1356 if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) { 1357 qed_ops->common->devlink_unregister(edev->devlink); 1358 edev->devlink = NULL; 1359 } 1360 qed_ops->common->remove(cdev); 1361 edev->cdev = NULL; 1362 1363 /* Since this can happen out-of-sync with other flows, 1364 * don't release the netdevice until after slowpath stop 1365 * has been called to guarantee various other contexts 1366 * [e.g., QED register callbacks] won't break anything when 1367 * accessing the netdevice. 1368 */ 1369 if (mode != QEDE_REMOVE_RECOVERY) 1370 free_netdev(ndev); 1371 1372 dev_info(&pdev->dev, "Ending qede_remove successfully\n"); 1373} 1374 1375static void qede_remove(struct pci_dev *pdev) 1376{ 1377 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1378} 1379 1380static void qede_shutdown(struct pci_dev *pdev) 1381{ 1382 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1383} 1384 1385/* ------------------------------------------------------------------------- 1386 * START OF LOAD / UNLOAD 1387 * ------------------------------------------------------------------------- 1388 */ 1389 1390static int qede_set_num_queues(struct qede_dev *edev) 1391{ 1392 int rc; 1393 u16 rss_num; 1394 1395 /* Setup queues according to possible resources*/ 1396 if (edev->req_queues) 1397 rss_num = edev->req_queues; 1398 else 1399 rss_num = netif_get_num_default_rss_queues() * 1400 edev->dev_info.common.num_hwfns; 1401 1402 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num); 1403 1404 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num); 1405 if (rc > 0) { 1406 /* Managed to request interrupts for our queues */ 1407 edev->num_queues = rc; 1408 DP_INFO(edev, "Managed %d [of %d] RSS queues\n", 1409 QEDE_QUEUE_CNT(edev), rss_num); 1410 rc = 0; 1411 } 1412 1413 edev->fp_num_tx = edev->req_num_tx; 1414 edev->fp_num_rx = edev->req_num_rx; 1415 1416 return rc; 1417} 1418 1419static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info, 1420 u16 sb_id) 1421{ 1422 if (sb_info->sb_virt) { 1423 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id, 1424 QED_SB_TYPE_L2_QUEUE); 1425 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt), 1426 (void *)sb_info->sb_virt, sb_info->sb_phys); 1427 memset(sb_info, 0, sizeof(*sb_info)); 1428 } 1429} 1430 1431/* This function allocates fast-path status block memory */ 1432static int qede_alloc_mem_sb(struct qede_dev *edev, 1433 struct qed_sb_info *sb_info, u16 sb_id) 1434{ 1435 struct status_block_e4 *sb_virt; 1436 dma_addr_t sb_phys; 1437 int rc; 1438 1439 sb_virt = dma_alloc_coherent(&edev->pdev->dev, 1440 sizeof(*sb_virt), &sb_phys, GFP_KERNEL); 1441 if (!sb_virt) { 1442 DP_ERR(edev, "Status block allocation failed\n"); 1443 return -ENOMEM; 1444 } 1445 1446 rc = edev->ops->common->sb_init(edev->cdev, sb_info, 1447 sb_virt, sb_phys, sb_id, 1448 QED_SB_TYPE_L2_QUEUE); 1449 if (rc) { 1450 DP_ERR(edev, "Status block initialization failed\n"); 1451 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt), 1452 sb_virt, sb_phys); 1453 return rc; 1454 } 1455 1456 return 0; 1457} 1458 1459static void qede_free_rx_buffers(struct qede_dev *edev, 1460 struct qede_rx_queue *rxq) 1461{ 1462 u16 i; 1463 1464 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) { 1465 struct sw_rx_data *rx_buf; 1466 struct page *data; 1467 1468 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX]; 1469 data = rx_buf->data; 1470 1471 dma_unmap_page(&edev->pdev->dev, 1472 rx_buf->mapping, PAGE_SIZE, rxq->data_direction); 1473 1474 rx_buf->data = NULL; 1475 __free_page(data); 1476 } 1477} 1478 1479static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1480{ 1481 /* Free rx buffers */ 1482 qede_free_rx_buffers(edev, rxq); 1483 1484 /* Free the parallel SW ring */ 1485 kfree(rxq->sw_rx_ring); 1486 1487 /* Free the real RQ ring used by FW */ 1488 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring); 1489 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring); 1490} 1491 1492static void qede_set_tpa_param(struct qede_rx_queue *rxq) 1493{ 1494 int i; 1495 1496 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { 1497 struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; 1498 1499 tpa_info->state = QEDE_AGG_STATE_NONE; 1500 } 1501} 1502 1503/* This function allocates all memory needed per Rx queue */ 1504static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1505{ 1506 struct qed_chain_init_params params = { 1507 .cnt_type = QED_CHAIN_CNT_TYPE_U16, 1508 .num_elems = RX_RING_SIZE, 1509 }; 1510 struct qed_dev *cdev = edev->cdev; 1511 int i, rc, size; 1512 1513 rxq->num_rx_buffers = edev->q_num_rx_buffers; 1514 1515 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu; 1516 1517 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD; 1518 size = rxq->rx_headroom + 1519 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1520 1521 /* Make sure that the headroom and payload fit in a single page */ 1522 if (rxq->rx_buf_size + size > PAGE_SIZE) 1523 rxq->rx_buf_size = PAGE_SIZE - size; 1524 1525 /* Segment size to split a page in multiple equal parts, 1526 * unless XDP is used in which case we'd use the entire page. 1527 */ 1528 if (!edev->xdp_prog) { 1529 size = size + rxq->rx_buf_size; 1530 rxq->rx_buf_seg_size = roundup_pow_of_two(size); 1531 } else { 1532 rxq->rx_buf_seg_size = PAGE_SIZE; 1533 edev->ndev->features &= ~NETIF_F_GRO_HW; 1534 } 1535 1536 /* Allocate the parallel driver ring for Rx buffers */ 1537 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE; 1538 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL); 1539 if (!rxq->sw_rx_ring) { 1540 DP_ERR(edev, "Rx buffers ring allocation failed\n"); 1541 rc = -ENOMEM; 1542 goto err; 1543 } 1544 1545 /* Allocate FW Rx ring */ 1546 params.mode = QED_CHAIN_MODE_NEXT_PTR; 1547 params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE; 1548 params.elem_size = sizeof(struct eth_rx_bd); 1549 1550 rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, ¶ms); 1551 if (rc) 1552 goto err; 1553 1554 /* Allocate FW completion ring */ 1555 params.mode = QED_CHAIN_MODE_PBL; 1556 params.intended_use = QED_CHAIN_USE_TO_CONSUME; 1557 params.elem_size = sizeof(union eth_rx_cqe); 1558 1559 rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, ¶ms); 1560 if (rc) 1561 goto err; 1562 1563 /* Allocate buffers for the Rx ring */ 1564 rxq->filled_buffers = 0; 1565 for (i = 0; i < rxq->num_rx_buffers; i++) { 1566 rc = qede_alloc_rx_buffer(rxq, false); 1567 if (rc) { 1568 DP_ERR(edev, 1569 "Rx buffers allocation failed at index %d\n", i); 1570 goto err; 1571 } 1572 } 1573 1574 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW); 1575 if (!edev->gro_disable) 1576 qede_set_tpa_param(rxq); 1577err: 1578 return rc; 1579} 1580 1581static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1582{ 1583 /* Free the parallel SW ring */ 1584 if (txq->is_xdp) 1585 kfree(txq->sw_tx_ring.xdp); 1586 else 1587 kfree(txq->sw_tx_ring.skbs); 1588 1589 /* Free the real RQ ring used by FW */ 1590 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl); 1591} 1592 1593/* This function allocates all memory needed per Tx queue */ 1594static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1595{ 1596 struct qed_chain_init_params params = { 1597 .mode = QED_CHAIN_MODE_PBL, 1598 .intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1599 .cnt_type = QED_CHAIN_CNT_TYPE_U16, 1600 .num_elems = edev->q_num_tx_buffers, 1601 .elem_size = sizeof(union eth_tx_bd_types), 1602 }; 1603 int size, rc; 1604 1605 txq->num_tx_buffers = edev->q_num_tx_buffers; 1606 1607 /* Allocate the parallel driver ring for Tx buffers */ 1608 if (txq->is_xdp) { 1609 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers; 1610 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL); 1611 if (!txq->sw_tx_ring.xdp) 1612 goto err; 1613 } else { 1614 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers; 1615 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL); 1616 if (!txq->sw_tx_ring.skbs) 1617 goto err; 1618 } 1619 1620 rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, ¶ms); 1621 if (rc) 1622 goto err; 1623 1624 return 0; 1625 1626err: 1627 qede_free_mem_txq(edev, txq); 1628 return -ENOMEM; 1629} 1630 1631/* This function frees all memory of a single fp */ 1632static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1633{ 1634 qede_free_mem_sb(edev, fp->sb_info, fp->id); 1635 1636 if (fp->type & QEDE_FASTPATH_RX) 1637 qede_free_mem_rxq(edev, fp->rxq); 1638 1639 if (fp->type & QEDE_FASTPATH_XDP) 1640 qede_free_mem_txq(edev, fp->xdp_tx); 1641 1642 if (fp->type & QEDE_FASTPATH_TX) { 1643 int cos; 1644 1645 for_each_cos_in_txq(edev, cos) 1646 qede_free_mem_txq(edev, &fp->txq[cos]); 1647 } 1648} 1649 1650/* This function allocates all memory needed for a single fp (i.e. an entity 1651 * which contains status block, one rx queue and/or multiple per-TC tx queues. 1652 */ 1653static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1654{ 1655 int rc = 0; 1656 1657 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id); 1658 if (rc) 1659 goto out; 1660 1661 if (fp->type & QEDE_FASTPATH_RX) { 1662 rc = qede_alloc_mem_rxq(edev, fp->rxq); 1663 if (rc) 1664 goto out; 1665 } 1666 1667 if (fp->type & QEDE_FASTPATH_XDP) { 1668 rc = qede_alloc_mem_txq(edev, fp->xdp_tx); 1669 if (rc) 1670 goto out; 1671 } 1672 1673 if (fp->type & QEDE_FASTPATH_TX) { 1674 int cos; 1675 1676 for_each_cos_in_txq(edev, cos) { 1677 rc = qede_alloc_mem_txq(edev, &fp->txq[cos]); 1678 if (rc) 1679 goto out; 1680 } 1681 } 1682 1683out: 1684 return rc; 1685} 1686 1687static void qede_free_mem_load(struct qede_dev *edev) 1688{ 1689 int i; 1690 1691 for_each_queue(i) { 1692 struct qede_fastpath *fp = &edev->fp_array[i]; 1693 1694 qede_free_mem_fp(edev, fp); 1695 } 1696} 1697 1698/* This function allocates all qede memory at NIC load. */ 1699static int qede_alloc_mem_load(struct qede_dev *edev) 1700{ 1701 int rc = 0, queue_id; 1702 1703 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) { 1704 struct qede_fastpath *fp = &edev->fp_array[queue_id]; 1705 1706 rc = qede_alloc_mem_fp(edev, fp); 1707 if (rc) { 1708 DP_ERR(edev, 1709 "Failed to allocate memory for fastpath - rss id = %d\n", 1710 queue_id); 1711 qede_free_mem_load(edev); 1712 return rc; 1713 } 1714 } 1715 1716 return 0; 1717} 1718 1719static void qede_empty_tx_queue(struct qede_dev *edev, 1720 struct qede_tx_queue *txq) 1721{ 1722 unsigned int pkts_compl = 0, bytes_compl = 0; 1723 struct netdev_queue *netdev_txq; 1724 int rc, len = 0; 1725 1726 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id); 1727 1728 while (qed_chain_get_cons_idx(&txq->tx_pbl) != 1729 qed_chain_get_prod_idx(&txq->tx_pbl)) { 1730 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, 1731 "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n", 1732 txq->index, qed_chain_get_cons_idx(&txq->tx_pbl), 1733 qed_chain_get_prod_idx(&txq->tx_pbl)); 1734 1735 rc = qede_free_tx_pkt(edev, txq, &len); 1736 if (rc) { 1737 DP_NOTICE(edev, 1738 "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n", 1739 txq->index, 1740 qed_chain_get_cons_idx(&txq->tx_pbl), 1741 qed_chain_get_prod_idx(&txq->tx_pbl)); 1742 break; 1743 } 1744 1745 bytes_compl += len; 1746 pkts_compl++; 1747 txq->sw_tx_cons++; 1748 } 1749 1750 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl); 1751} 1752 1753static void qede_empty_tx_queues(struct qede_dev *edev) 1754{ 1755 int i; 1756 1757 for_each_queue(i) 1758 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) { 1759 int cos; 1760 1761 for_each_cos_in_txq(edev, cos) { 1762 struct qede_fastpath *fp; 1763 1764 fp = &edev->fp_array[i]; 1765 qede_empty_tx_queue(edev, 1766 &fp->txq[cos]); 1767 } 1768 } 1769} 1770 1771/* This function inits fp content and resets the SB, RXQ and TXQ structures */ 1772static void qede_init_fp(struct qede_dev *edev) 1773{ 1774 int queue_id, rxq_index = 0, txq_index = 0; 1775 struct qede_fastpath *fp; 1776 bool init_xdp = false; 1777 1778 for_each_queue(queue_id) { 1779 fp = &edev->fp_array[queue_id]; 1780 1781 fp->edev = edev; 1782 fp->id = queue_id; 1783 1784 if (fp->type & QEDE_FASTPATH_XDP) { 1785 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev, 1786 rxq_index); 1787 fp->xdp_tx->is_xdp = 1; 1788 1789 spin_lock_init(&fp->xdp_tx->xdp_tx_lock); 1790 init_xdp = true; 1791 } 1792 1793 if (fp->type & QEDE_FASTPATH_RX) { 1794 fp->rxq->rxq_id = rxq_index++; 1795 1796 /* Determine how to map buffers for this queue */ 1797 if (fp->type & QEDE_FASTPATH_XDP) 1798 fp->rxq->data_direction = DMA_BIDIRECTIONAL; 1799 else 1800 fp->rxq->data_direction = DMA_FROM_DEVICE; 1801 fp->rxq->dev = &edev->pdev->dev; 1802 1803 /* Driver have no error path from here */ 1804 WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev, 1805 fp->rxq->rxq_id) < 0); 1806 1807 if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq, 1808 MEM_TYPE_PAGE_ORDER0, 1809 NULL)) { 1810 DP_NOTICE(edev, 1811 "Failed to register XDP memory model\n"); 1812 } 1813 } 1814 1815 if (fp->type & QEDE_FASTPATH_TX) { 1816 int cos; 1817 1818 for_each_cos_in_txq(edev, cos) { 1819 struct qede_tx_queue *txq = &fp->txq[cos]; 1820 u16 ndev_tx_id; 1821 1822 txq->cos = cos; 1823 txq->index = txq_index; 1824 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq); 1825 txq->ndev_txq_id = ndev_tx_id; 1826 1827 if (edev->dev_info.is_legacy) 1828 txq->is_legacy = true; 1829 txq->dev = &edev->pdev->dev; 1830 } 1831 1832 txq_index++; 1833 } 1834 1835 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1836 edev->ndev->name, queue_id); 1837 } 1838 1839 if (init_xdp) { 1840 edev->total_xdp_queues = QEDE_RSS_COUNT(edev); 1841 DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues); 1842 } 1843} 1844 1845static int qede_set_real_num_queues(struct qede_dev *edev) 1846{ 1847 int rc = 0; 1848 1849 rc = netif_set_real_num_tx_queues(edev->ndev, 1850 QEDE_TSS_COUNT(edev) * 1851 edev->dev_info.num_tc); 1852 if (rc) { 1853 DP_NOTICE(edev, "Failed to set real number of Tx queues\n"); 1854 return rc; 1855 } 1856 1857 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev)); 1858 if (rc) { 1859 DP_NOTICE(edev, "Failed to set real number of Rx queues\n"); 1860 return rc; 1861 } 1862 1863 return 0; 1864} 1865 1866static void qede_napi_disable_remove(struct qede_dev *edev) 1867{ 1868 int i; 1869 1870 for_each_queue(i) { 1871 napi_disable(&edev->fp_array[i].napi); 1872 1873 netif_napi_del(&edev->fp_array[i].napi); 1874 } 1875} 1876 1877static void qede_napi_add_enable(struct qede_dev *edev) 1878{ 1879 int i; 1880 1881 /* Add NAPI objects */ 1882 for_each_queue(i) { 1883 netif_napi_add(edev->ndev, &edev->fp_array[i].napi, 1884 qede_poll, NAPI_POLL_WEIGHT); 1885 napi_enable(&edev->fp_array[i].napi); 1886 } 1887} 1888 1889static void qede_sync_free_irqs(struct qede_dev *edev) 1890{ 1891 int i; 1892 1893 for (i = 0; i < edev->int_info.used_cnt; i++) { 1894 if (edev->int_info.msix_cnt) { 1895 synchronize_irq(edev->int_info.msix[i].vector); 1896 free_irq(edev->int_info.msix[i].vector, 1897 &edev->fp_array[i]); 1898 } else { 1899 edev->ops->common->simd_handler_clean(edev->cdev, i); 1900 } 1901 } 1902 1903 edev->int_info.used_cnt = 0; 1904 edev->int_info.msix_cnt = 0; 1905} 1906 1907static int qede_req_msix_irqs(struct qede_dev *edev) 1908{ 1909 int i, rc; 1910 1911 /* Sanitize number of interrupts == number of prepared RSS queues */ 1912 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) { 1913 DP_ERR(edev, 1914 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n", 1915 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt); 1916 return -EINVAL; 1917 } 1918 1919 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) { 1920#ifdef CONFIG_RFS_ACCEL 1921 struct qede_fastpath *fp = &edev->fp_array[i]; 1922 1923 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) { 1924 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap, 1925 edev->int_info.msix[i].vector); 1926 if (rc) { 1927 DP_ERR(edev, "Failed to add CPU rmap\n"); 1928 qede_free_arfs(edev); 1929 } 1930 } 1931#endif 1932 rc = request_irq(edev->int_info.msix[i].vector, 1933 qede_msix_fp_int, 0, edev->fp_array[i].name, 1934 &edev->fp_array[i]); 1935 if (rc) { 1936 DP_ERR(edev, "Request fp %d irq failed\n", i); 1937 qede_sync_free_irqs(edev); 1938 return rc; 1939 } 1940 DP_VERBOSE(edev, NETIF_MSG_INTR, 1941 "Requested fp irq for %s [entry %d]. Cookie is at %p\n", 1942 edev->fp_array[i].name, i, 1943 &edev->fp_array[i]); 1944 edev->int_info.used_cnt++; 1945 } 1946 1947 return 0; 1948} 1949 1950static void qede_simd_fp_handler(void *cookie) 1951{ 1952 struct qede_fastpath *fp = (struct qede_fastpath *)cookie; 1953 1954 napi_schedule_irqoff(&fp->napi); 1955} 1956 1957static int qede_setup_irqs(struct qede_dev *edev) 1958{ 1959 int i, rc = 0; 1960 1961 /* Learn Interrupt configuration */ 1962 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info); 1963 if (rc) 1964 return rc; 1965 1966 if (edev->int_info.msix_cnt) { 1967 rc = qede_req_msix_irqs(edev); 1968 if (rc) 1969 return rc; 1970 edev->ndev->irq = edev->int_info.msix[0].vector; 1971 } else { 1972 const struct qed_common_ops *ops; 1973 1974 /* qed should learn receive the RSS ids and callbacks */ 1975 ops = edev->ops->common; 1976 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) 1977 ops->simd_handler_config(edev->cdev, 1978 &edev->fp_array[i], i, 1979 qede_simd_fp_handler); 1980 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev); 1981 } 1982 return 0; 1983} 1984 1985static int qede_drain_txq(struct qede_dev *edev, 1986 struct qede_tx_queue *txq, bool allow_drain) 1987{ 1988 int rc, cnt = 1000; 1989 1990 while (txq->sw_tx_cons != txq->sw_tx_prod) { 1991 if (!cnt) { 1992 if (allow_drain) { 1993 DP_NOTICE(edev, 1994 "Tx queue[%d] is stuck, requesting MCP to drain\n", 1995 txq->index); 1996 rc = edev->ops->common->drain(edev->cdev); 1997 if (rc) 1998 return rc; 1999 return qede_drain_txq(edev, txq, false); 2000 } 2001 DP_NOTICE(edev, 2002 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n", 2003 txq->index, txq->sw_tx_prod, 2004 txq->sw_tx_cons); 2005 return -ENODEV; 2006 } 2007 cnt--; 2008 usleep_range(1000, 2000); 2009 barrier(); 2010 } 2011 2012 /* FW finished processing, wait for HW to transmit all tx packets */ 2013 usleep_range(1000, 2000); 2014 2015 return 0; 2016} 2017 2018static int qede_stop_txq(struct qede_dev *edev, 2019 struct qede_tx_queue *txq, int rss_id) 2020{ 2021 /* delete doorbell from doorbell recovery mechanism */ 2022 edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr, 2023 &txq->tx_db); 2024 2025 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle); 2026} 2027 2028static int qede_stop_queues(struct qede_dev *edev) 2029{ 2030 struct qed_update_vport_params *vport_update_params; 2031 struct qed_dev *cdev = edev->cdev; 2032 struct qede_fastpath *fp; 2033 int rc, i; 2034 2035 /* Disable the vport */ 2036 vport_update_params = vzalloc(sizeof(*vport_update_params)); 2037 if (!vport_update_params) 2038 return -ENOMEM; 2039 2040 vport_update_params->vport_id = 0; 2041 vport_update_params->update_vport_active_flg = 1; 2042 vport_update_params->vport_active_flg = 0; 2043 vport_update_params->update_rss_flg = 0; 2044 2045 rc = edev->ops->vport_update(cdev, vport_update_params); 2046 vfree(vport_update_params); 2047 2048 if (rc) { 2049 DP_ERR(edev, "Failed to update vport\n"); 2050 return rc; 2051 } 2052 2053 /* Flush Tx queues. If needed, request drain from MCP */ 2054 for_each_queue(i) { 2055 fp = &edev->fp_array[i]; 2056 2057 if (fp->type & QEDE_FASTPATH_TX) { 2058 int cos; 2059 2060 for_each_cos_in_txq(edev, cos) { 2061 rc = qede_drain_txq(edev, &fp->txq[cos], true); 2062 if (rc) 2063 return rc; 2064 } 2065 } 2066 2067 if (fp->type & QEDE_FASTPATH_XDP) { 2068 rc = qede_drain_txq(edev, fp->xdp_tx, true); 2069 if (rc) 2070 return rc; 2071 } 2072 } 2073 2074 /* Stop all Queues in reverse order */ 2075 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) { 2076 fp = &edev->fp_array[i]; 2077 2078 /* Stop the Tx Queue(s) */ 2079 if (fp->type & QEDE_FASTPATH_TX) { 2080 int cos; 2081 2082 for_each_cos_in_txq(edev, cos) { 2083 rc = qede_stop_txq(edev, &fp->txq[cos], i); 2084 if (rc) 2085 return rc; 2086 } 2087 } 2088 2089 /* Stop the Rx Queue */ 2090 if (fp->type & QEDE_FASTPATH_RX) { 2091 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle); 2092 if (rc) { 2093 DP_ERR(edev, "Failed to stop RXQ #%d\n", i); 2094 return rc; 2095 } 2096 } 2097 2098 /* Stop the XDP forwarding queue */ 2099 if (fp->type & QEDE_FASTPATH_XDP) { 2100 rc = qede_stop_txq(edev, fp->xdp_tx, i); 2101 if (rc) 2102 return rc; 2103 2104 bpf_prog_put(fp->rxq->xdp_prog); 2105 } 2106 } 2107 2108 /* Stop the vport */ 2109 rc = edev->ops->vport_stop(cdev, 0); 2110 if (rc) 2111 DP_ERR(edev, "Failed to stop VPORT\n"); 2112 2113 return rc; 2114} 2115 2116static int qede_start_txq(struct qede_dev *edev, 2117 struct qede_fastpath *fp, 2118 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx) 2119{ 2120 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl); 2121 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl); 2122 struct qed_queue_start_common_params params; 2123 struct qed_txq_start_ret_params ret_params; 2124 int rc; 2125 2126 memset(¶ms, 0, sizeof(params)); 2127 memset(&ret_params, 0, sizeof(ret_params)); 2128 2129 /* Let the XDP queue share the queue-zone with one of the regular txq. 2130 * We don't really care about its coalescing. 2131 */ 2132 if (txq->is_xdp) 2133 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq); 2134 else 2135 params.queue_id = txq->index; 2136 2137 params.p_sb = fp->sb_info; 2138 params.sb_idx = sb_idx; 2139 params.tc = txq->cos; 2140 2141 rc = edev->ops->q_tx_start(edev->cdev, rss_id, ¶ms, phys_table, 2142 page_cnt, &ret_params); 2143 if (rc) { 2144 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc); 2145 return rc; 2146 } 2147 2148 txq->doorbell_addr = ret_params.p_doorbell; 2149 txq->handle = ret_params.p_handle; 2150 2151 /* Determine the FW consumer address associated */ 2152 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx]; 2153 2154 /* Prepare the doorbell parameters */ 2155 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM); 2156 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET); 2157 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL, 2158 DQ_XCM_ETH_TX_BD_PROD_CMD); 2159 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; 2160 2161 /* register doorbell with doorbell recovery mechanism */ 2162 rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr, 2163 &txq->tx_db, DB_REC_WIDTH_32B, 2164 DB_REC_KERNEL); 2165 2166 return rc; 2167} 2168 2169static int qede_start_queues(struct qede_dev *edev, bool clear_stats) 2170{ 2171 int vlan_removal_en = 1; 2172 struct qed_dev *cdev = edev->cdev; 2173 struct qed_dev_info *qed_info = &edev->dev_info.common; 2174 struct qed_update_vport_params *vport_update_params; 2175 struct qed_queue_start_common_params q_params; 2176 struct qed_start_vport_params start = {0}; 2177 int rc, i; 2178 2179 if (!edev->num_queues) { 2180 DP_ERR(edev, 2181 "Cannot update V-VPORT as active as there are no Rx queues\n"); 2182 return -EINVAL; 2183 } 2184 2185 vport_update_params = vzalloc(sizeof(*vport_update_params)); 2186 if (!vport_update_params) 2187 return -ENOMEM; 2188 2189 start.handle_ptp_pkts = !!(edev->ptp); 2190 start.gro_enable = !edev->gro_disable; 2191 start.mtu = edev->ndev->mtu; 2192 start.vport_id = 0; 2193 start.drop_ttl0 = true; 2194 start.remove_inner_vlan = vlan_removal_en; 2195 start.clear_stats = clear_stats; 2196 2197 rc = edev->ops->vport_start(cdev, &start); 2198 2199 if (rc) { 2200 DP_ERR(edev, "Start V-PORT failed %d\n", rc); 2201 goto out; 2202 } 2203 2204 DP_VERBOSE(edev, NETIF_MSG_IFUP, 2205 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n", 2206 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en); 2207 2208 for_each_queue(i) { 2209 struct qede_fastpath *fp = &edev->fp_array[i]; 2210 dma_addr_t p_phys_table; 2211 u32 page_cnt; 2212 2213 if (fp->type & QEDE_FASTPATH_RX) { 2214 struct qed_rxq_start_ret_params ret_params; 2215 struct qede_rx_queue *rxq = fp->rxq; 2216 __le16 *val; 2217 2218 memset(&ret_params, 0, sizeof(ret_params)); 2219 memset(&q_params, 0, sizeof(q_params)); 2220 q_params.queue_id = rxq->rxq_id; 2221 q_params.vport_id = 0; 2222 q_params.p_sb = fp->sb_info; 2223 q_params.sb_idx = RX_PI; 2224 2225 p_phys_table = 2226 qed_chain_get_pbl_phys(&rxq->rx_comp_ring); 2227 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring); 2228 2229 rc = edev->ops->q_rx_start(cdev, i, &q_params, 2230 rxq->rx_buf_size, 2231 rxq->rx_bd_ring.p_phys_addr, 2232 p_phys_table, 2233 page_cnt, &ret_params); 2234 if (rc) { 2235 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, 2236 rc); 2237 goto out; 2238 } 2239 2240 /* Use the return parameters */ 2241 rxq->hw_rxq_prod_addr = ret_params.p_prod; 2242 rxq->handle = ret_params.p_handle; 2243 2244 val = &fp->sb_info->sb_virt->pi_array[RX_PI]; 2245 rxq->hw_cons_ptr = val; 2246 2247 qede_update_rx_prod(edev, rxq); 2248 } 2249 2250 if (fp->type & QEDE_FASTPATH_XDP) { 2251 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI); 2252 if (rc) 2253 goto out; 2254 2255 bpf_prog_add(edev->xdp_prog, 1); 2256 fp->rxq->xdp_prog = edev->xdp_prog; 2257 } 2258 2259 if (fp->type & QEDE_FASTPATH_TX) { 2260 int cos; 2261 2262 for_each_cos_in_txq(edev, cos) { 2263 rc = qede_start_txq(edev, fp, &fp->txq[cos], i, 2264 TX_PI(cos)); 2265 if (rc) 2266 goto out; 2267 } 2268 } 2269 } 2270 2271 /* Prepare and send the vport enable */ 2272 vport_update_params->vport_id = start.vport_id; 2273 vport_update_params->update_vport_active_flg = 1; 2274 vport_update_params->vport_active_flg = 1; 2275 2276 if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) && 2277 qed_info->tx_switching) { 2278 vport_update_params->update_tx_switching_flg = 1; 2279 vport_update_params->tx_switching_flg = 1; 2280 } 2281 2282 qede_fill_rss_params(edev, &vport_update_params->rss_params, 2283 &vport_update_params->update_rss_flg); 2284 2285 rc = edev->ops->vport_update(cdev, vport_update_params); 2286 if (rc) 2287 DP_ERR(edev, "Update V-PORT failed %d\n", rc); 2288 2289out: 2290 vfree(vport_update_params); 2291 return rc; 2292} 2293 2294enum qede_unload_mode { 2295 QEDE_UNLOAD_NORMAL, 2296 QEDE_UNLOAD_RECOVERY, 2297}; 2298 2299static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode, 2300 bool is_locked) 2301{ 2302 struct qed_link_params link_params; 2303 int rc; 2304 2305 DP_INFO(edev, "Starting qede unload\n"); 2306 2307 if (!is_locked) 2308 __qede_lock(edev); 2309 2310 clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags); 2311 2312 if (mode != QEDE_UNLOAD_RECOVERY) 2313 edev->state = QEDE_STATE_CLOSED; 2314 2315 qede_rdma_dev_event_close(edev); 2316 2317 /* Close OS Tx */ 2318 netif_tx_disable(edev->ndev); 2319 netif_carrier_off(edev->ndev); 2320 2321 if (mode != QEDE_UNLOAD_RECOVERY) { 2322 /* Reset the link */ 2323 memset(&link_params, 0, sizeof(link_params)); 2324 link_params.link_up = false; 2325 edev->ops->common->set_link(edev->cdev, &link_params); 2326 2327 rc = qede_stop_queues(edev); 2328 if (rc) { 2329 qede_sync_free_irqs(edev); 2330 goto out; 2331 } 2332 2333 DP_INFO(edev, "Stopped Queues\n"); 2334 } 2335 2336 qede_vlan_mark_nonconfigured(edev); 2337 edev->ops->fastpath_stop(edev->cdev); 2338 2339 if (edev->dev_info.common.b_arfs_capable) { 2340 qede_poll_for_freeing_arfs_filters(edev); 2341 qede_free_arfs(edev); 2342 } 2343 2344 /* Release the interrupts */ 2345 qede_sync_free_irqs(edev); 2346 edev->ops->common->set_fp_int(edev->cdev, 0); 2347 2348 qede_napi_disable_remove(edev); 2349 2350 if (mode == QEDE_UNLOAD_RECOVERY) 2351 qede_empty_tx_queues(edev); 2352 2353 qede_free_mem_load(edev); 2354 qede_free_fp_array(edev); 2355 2356out: 2357 if (!is_locked) 2358 __qede_unlock(edev); 2359 2360 if (mode != QEDE_UNLOAD_RECOVERY) 2361 DP_NOTICE(edev, "Link is down\n"); 2362 2363 edev->ptp_skip_txts = 0; 2364 2365 DP_INFO(edev, "Ending qede unload\n"); 2366} 2367 2368enum qede_load_mode { 2369 QEDE_LOAD_NORMAL, 2370 QEDE_LOAD_RELOAD, 2371 QEDE_LOAD_RECOVERY, 2372}; 2373 2374static int qede_load(struct qede_dev *edev, enum qede_load_mode mode, 2375 bool is_locked) 2376{ 2377 struct qed_link_params link_params; 2378 u8 num_tc; 2379 int rc; 2380 2381 DP_INFO(edev, "Starting qede load\n"); 2382 2383 if (!is_locked) 2384 __qede_lock(edev); 2385 2386 rc = qede_set_num_queues(edev); 2387 if (rc) 2388 goto out; 2389 2390 rc = qede_alloc_fp_array(edev); 2391 if (rc) 2392 goto out; 2393 2394 qede_init_fp(edev); 2395 2396 rc = qede_alloc_mem_load(edev); 2397 if (rc) 2398 goto err1; 2399 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n", 2400 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev)); 2401 2402 rc = qede_set_real_num_queues(edev); 2403 if (rc) 2404 goto err2; 2405 2406 if (qede_alloc_arfs(edev)) { 2407 edev->ndev->features &= ~NETIF_F_NTUPLE; 2408 edev->dev_info.common.b_arfs_capable = false; 2409 } 2410 2411 qede_napi_add_enable(edev); 2412 DP_INFO(edev, "Napi added and enabled\n"); 2413 2414 rc = qede_setup_irqs(edev); 2415 if (rc) 2416 goto err3; 2417 DP_INFO(edev, "Setup IRQs succeeded\n"); 2418 2419 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD); 2420 if (rc) 2421 goto err4; 2422 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n"); 2423 2424 num_tc = netdev_get_num_tc(edev->ndev); 2425 num_tc = num_tc ? num_tc : edev->dev_info.num_tc; 2426 qede_setup_tc(edev->ndev, num_tc); 2427 2428 /* Program un-configured VLANs */ 2429 qede_configure_vlan_filters(edev); 2430 2431 set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags); 2432 2433 /* Ask for link-up using current configuration */ 2434 memset(&link_params, 0, sizeof(link_params)); 2435 link_params.link_up = true; 2436 edev->ops->common->set_link(edev->cdev, &link_params); 2437 2438 edev->state = QEDE_STATE_OPEN; 2439 2440 DP_INFO(edev, "Ending successfully qede load\n"); 2441 2442 goto out; 2443err4: 2444 qede_sync_free_irqs(edev); 2445err3: 2446 qede_napi_disable_remove(edev); 2447err2: 2448 qede_free_mem_load(edev); 2449err1: 2450 edev->ops->common->set_fp_int(edev->cdev, 0); 2451 qede_free_fp_array(edev); 2452 edev->num_queues = 0; 2453 edev->fp_num_tx = 0; 2454 edev->fp_num_rx = 0; 2455out: 2456 if (!is_locked) 2457 __qede_unlock(edev); 2458 2459 return rc; 2460} 2461 2462/* 'func' should be able to run between unload and reload assuming interface 2463 * is actually running, or afterwards in case it's currently DOWN. 2464 */ 2465void qede_reload(struct qede_dev *edev, 2466 struct qede_reload_args *args, bool is_locked) 2467{ 2468 if (!is_locked) 2469 __qede_lock(edev); 2470 2471 /* Since qede_lock is held, internal state wouldn't change even 2472 * if netdev state would start transitioning. Check whether current 2473 * internal configuration indicates device is up, then reload. 2474 */ 2475 if (edev->state == QEDE_STATE_OPEN) { 2476 qede_unload(edev, QEDE_UNLOAD_NORMAL, true); 2477 if (args) 2478 args->func(edev, args); 2479 qede_load(edev, QEDE_LOAD_RELOAD, true); 2480 2481 /* Since no one is going to do it for us, re-configure */ 2482 qede_config_rx_mode(edev->ndev); 2483 } else if (args) { 2484 args->func(edev, args); 2485 } 2486 2487 if (!is_locked) 2488 __qede_unlock(edev); 2489} 2490 2491/* called with rtnl_lock */ 2492static int qede_open(struct net_device *ndev) 2493{ 2494 struct qede_dev *edev = netdev_priv(ndev); 2495 int rc; 2496 2497 netif_carrier_off(ndev); 2498 2499 edev->ops->common->set_power_state(edev->cdev, PCI_D0); 2500 2501 rc = qede_load(edev, QEDE_LOAD_NORMAL, false); 2502 if (rc) 2503 return rc; 2504 2505 udp_tunnel_nic_reset_ntf(ndev); 2506 2507 edev->ops->common->update_drv_state(edev->cdev, true); 2508 2509 return 0; 2510} 2511 2512static int qede_close(struct net_device *ndev) 2513{ 2514 struct qede_dev *edev = netdev_priv(ndev); 2515 2516 qede_unload(edev, QEDE_UNLOAD_NORMAL, false); 2517 2518 if (edev->cdev) 2519 edev->ops->common->update_drv_state(edev->cdev, false); 2520 2521 return 0; 2522} 2523 2524static void qede_link_update(void *dev, struct qed_link_output *link) 2525{ 2526 struct qede_dev *edev = dev; 2527 2528 if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) { 2529 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n"); 2530 return; 2531 } 2532 2533 if (link->link_up) { 2534 if (!netif_carrier_ok(edev->ndev)) { 2535 DP_NOTICE(edev, "Link is up\n"); 2536 netif_tx_start_all_queues(edev->ndev); 2537 netif_carrier_on(edev->ndev); 2538 qede_rdma_dev_event_open(edev); 2539 } 2540 } else { 2541 if (netif_carrier_ok(edev->ndev)) { 2542 DP_NOTICE(edev, "Link is down\n"); 2543 netif_tx_disable(edev->ndev); 2544 netif_carrier_off(edev->ndev); 2545 qede_rdma_dev_event_close(edev); 2546 } 2547 } 2548} 2549 2550static void qede_schedule_recovery_handler(void *dev) 2551{ 2552 struct qede_dev *edev = dev; 2553 2554 if (edev->state == QEDE_STATE_RECOVERY) { 2555 DP_NOTICE(edev, 2556 "Avoid scheduling a recovery handling since already in recovery state\n"); 2557 return; 2558 } 2559 2560 set_bit(QEDE_SP_RECOVERY, &edev->sp_flags); 2561 schedule_delayed_work(&edev->sp_task, 0); 2562 2563 DP_INFO(edev, "Scheduled a recovery handler\n"); 2564} 2565 2566static void qede_recovery_failed(struct qede_dev *edev) 2567{ 2568 netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n"); 2569 2570 netif_device_detach(edev->ndev); 2571 2572 if (edev->cdev) 2573 edev->ops->common->set_power_state(edev->cdev, PCI_D3hot); 2574} 2575 2576static void qede_recovery_handler(struct qede_dev *edev) 2577{ 2578 u32 curr_state = edev->state; 2579 int rc; 2580 2581 DP_NOTICE(edev, "Starting a recovery process\n"); 2582 2583 /* No need to acquire first the qede_lock since is done by qede_sp_task 2584 * before calling this function. 2585 */ 2586 edev->state = QEDE_STATE_RECOVERY; 2587 2588 edev->ops->common->recovery_prolog(edev->cdev); 2589 2590 if (curr_state == QEDE_STATE_OPEN) 2591 qede_unload(edev, QEDE_UNLOAD_RECOVERY, true); 2592 2593 __qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY); 2594 2595 rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level, 2596 IS_VF(edev), QEDE_PROBE_RECOVERY); 2597 if (rc) { 2598 edev->cdev = NULL; 2599 goto err; 2600 } 2601 2602 if (curr_state == QEDE_STATE_OPEN) { 2603 rc = qede_load(edev, QEDE_LOAD_RECOVERY, true); 2604 if (rc) 2605 goto err; 2606 2607 qede_config_rx_mode(edev->ndev); 2608 udp_tunnel_nic_reset_ntf(edev->ndev); 2609 } 2610 2611 edev->state = curr_state; 2612 2613 DP_NOTICE(edev, "Recovery handling is done\n"); 2614 2615 return; 2616 2617err: 2618 qede_recovery_failed(edev); 2619} 2620 2621static void qede_atomic_hw_err_handler(struct qede_dev *edev) 2622{ 2623 struct qed_dev *cdev = edev->cdev; 2624 2625 DP_NOTICE(edev, 2626 "Generic non-sleepable HW error handling started - err_flags 0x%lx\n", 2627 edev->err_flags); 2628 2629 /* Get a call trace of the flow that led to the error */ 2630 WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags)); 2631 2632 /* Prevent HW attentions from being reasserted */ 2633 if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags)) 2634 edev->ops->common->attn_clr_enable(cdev, true); 2635 2636 DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n"); 2637} 2638 2639static void qede_generic_hw_err_handler(struct qede_dev *edev) 2640{ 2641 DP_NOTICE(edev, 2642 "Generic sleepable HW error handling started - err_flags 0x%lx\n", 2643 edev->err_flags); 2644 2645 if (edev->devlink) 2646 edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type); 2647 2648 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags); 2649 2650 DP_NOTICE(edev, "Generic sleepable HW error handling is done\n"); 2651} 2652 2653static void qede_set_hw_err_flags(struct qede_dev *edev, 2654 enum qed_hw_err_type err_type) 2655{ 2656 unsigned long err_flags = 0; 2657 2658 switch (err_type) { 2659 case QED_HW_ERR_DMAE_FAIL: 2660 set_bit(QEDE_ERR_WARN, &err_flags); 2661 fallthrough; 2662 case QED_HW_ERR_MFW_RESP_FAIL: 2663 case QED_HW_ERR_HW_ATTN: 2664 case QED_HW_ERR_RAMROD_FAIL: 2665 case QED_HW_ERR_FW_ASSERT: 2666 set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags); 2667 set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags); 2668 break; 2669 2670 default: 2671 DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type); 2672 break; 2673 } 2674 2675 edev->err_flags |= err_flags; 2676} 2677 2678static void qede_schedule_hw_err_handler(void *dev, 2679 enum qed_hw_err_type err_type) 2680{ 2681 struct qede_dev *edev = dev; 2682 2683 /* Fan failure cannot be masked by handling of another HW error or by a 2684 * concurrent recovery process. 2685 */ 2686 if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) || 2687 edev->state == QEDE_STATE_RECOVERY) && 2688 err_type != QED_HW_ERR_FAN_FAIL) { 2689 DP_INFO(edev, 2690 "Avoid scheduling an error handling while another HW error is being handled\n"); 2691 return; 2692 } 2693 2694 if (err_type >= QED_HW_ERR_LAST) { 2695 DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type); 2696 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags); 2697 return; 2698 } 2699 2700 edev->last_err_type = err_type; 2701 qede_set_hw_err_flags(edev, err_type); 2702 qede_atomic_hw_err_handler(edev); 2703 set_bit(QEDE_SP_HW_ERR, &edev->sp_flags); 2704 schedule_delayed_work(&edev->sp_task, 0); 2705 2706 DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type); 2707} 2708 2709static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq) 2710{ 2711 struct netdev_queue *netdev_txq; 2712 2713 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id); 2714 if (netif_xmit_stopped(netdev_txq)) 2715 return true; 2716 2717 return false; 2718} 2719 2720static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data) 2721{ 2722 struct qede_dev *edev = dev; 2723 struct netdev_hw_addr *ha; 2724 int i; 2725 2726 if (edev->ndev->features & NETIF_F_IP_CSUM) 2727 data->feat_flags |= QED_TLV_IP_CSUM; 2728 if (edev->ndev->features & NETIF_F_TSO) 2729 data->feat_flags |= QED_TLV_LSO; 2730 2731 ether_addr_copy(data->mac[0], edev->ndev->dev_addr); 2732 eth_zero_addr(data->mac[1]); 2733 eth_zero_addr(data->mac[2]); 2734 /* Copy the first two UC macs */ 2735 netif_addr_lock_bh(edev->ndev); 2736 i = 1; 2737 netdev_for_each_uc_addr(ha, edev->ndev) { 2738 ether_addr_copy(data->mac[i++], ha->addr); 2739 if (i == QED_TLV_MAC_COUNT) 2740 break; 2741 } 2742 2743 netif_addr_unlock_bh(edev->ndev); 2744} 2745 2746static void qede_get_eth_tlv_data(void *dev, void *data) 2747{ 2748 struct qed_mfw_tlv_eth *etlv = data; 2749 struct qede_dev *edev = dev; 2750 struct qede_fastpath *fp; 2751 int i; 2752 2753 etlv->lso_maxoff_size = 0XFFFF; 2754 etlv->lso_maxoff_size_set = true; 2755 etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN; 2756 etlv->lso_minseg_size_set = true; 2757 etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC); 2758 etlv->prom_mode_set = true; 2759 etlv->tx_descr_size = QEDE_TSS_COUNT(edev); 2760 etlv->tx_descr_size_set = true; 2761 etlv->rx_descr_size = QEDE_RSS_COUNT(edev); 2762 etlv->rx_descr_size_set = true; 2763 etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB; 2764 etlv->iov_offload_set = true; 2765 2766 /* Fill information regarding queues; Should be done under the qede 2767 * lock to guarantee those don't change beneath our feet. 2768 */ 2769 etlv->txqs_empty = true; 2770 etlv->rxqs_empty = true; 2771 etlv->num_txqs_full = 0; 2772 etlv->num_rxqs_full = 0; 2773 2774 __qede_lock(edev); 2775 for_each_queue(i) { 2776 fp = &edev->fp_array[i]; 2777 if (fp->type & QEDE_FASTPATH_TX) { 2778 struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp); 2779 2780 if (txq->sw_tx_cons != txq->sw_tx_prod) 2781 etlv->txqs_empty = false; 2782 if (qede_is_txq_full(edev, txq)) 2783 etlv->num_txqs_full++; 2784 } 2785 if (fp->type & QEDE_FASTPATH_RX) { 2786 if (qede_has_rx_work(fp->rxq)) 2787 etlv->rxqs_empty = false; 2788 2789 /* This one is a bit tricky; Firmware might stop 2790 * placing packets if ring is not yet full. 2791 * Give an approximation. 2792 */ 2793 if (le16_to_cpu(*fp->rxq->hw_cons_ptr) - 2794 qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) > 2795 RX_RING_SIZE - 100) 2796 etlv->num_rxqs_full++; 2797 } 2798 } 2799 __qede_unlock(edev); 2800 2801 etlv->txqs_empty_set = true; 2802 etlv->rxqs_empty_set = true; 2803 etlv->num_txqs_full_set = true; 2804 etlv->num_rxqs_full_set = true; 2805} 2806 2807/** 2808 * qede_io_error_detected - called when PCI error is detected 2809 * @pdev: Pointer to PCI device 2810 * @state: The current pci connection state 2811 * 2812 * This function is called after a PCI bus error affecting 2813 * this device has been detected. 2814 */ 2815static pci_ers_result_t 2816qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) 2817{ 2818 struct net_device *dev = pci_get_drvdata(pdev); 2819 struct qede_dev *edev = netdev_priv(dev); 2820 2821 if (!edev) 2822 return PCI_ERS_RESULT_NONE; 2823 2824 DP_NOTICE(edev, "IO error detected [%d]\n", state); 2825 2826 __qede_lock(edev); 2827 if (edev->state == QEDE_STATE_RECOVERY) { 2828 DP_NOTICE(edev, "Device already in the recovery state\n"); 2829 __qede_unlock(edev); 2830 return PCI_ERS_RESULT_NONE; 2831 } 2832 2833 /* PF handles the recovery of its VFs */ 2834 if (IS_VF(edev)) { 2835 DP_VERBOSE(edev, QED_MSG_IOV, 2836 "VF recovery is handled by its PF\n"); 2837 __qede_unlock(edev); 2838 return PCI_ERS_RESULT_RECOVERED; 2839 } 2840 2841 /* Close OS Tx */ 2842 netif_tx_disable(edev->ndev); 2843 netif_carrier_off(edev->ndev); 2844 2845 set_bit(QEDE_SP_AER, &edev->sp_flags); 2846 schedule_delayed_work(&edev->sp_task, 0); 2847 2848 __qede_unlock(edev); 2849 2850 return PCI_ERS_RESULT_CAN_RECOVER; 2851} 2852