1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qede NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2020 Marvell International Ltd.
5  */
6 
7 #include <linux/crash_dump.h>
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/version.h>
11 #include <linux/device.h>
12 #include <linux/netdevice.h>
13 #include <linux/etherdevice.h>
14 #include <linux/skbuff.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/string.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/interrupt.h>
20 #include <asm/byteorder.h>
21 #include <asm/param.h>
22 #include <linux/io.h>
23 #include <linux/netdev_features.h>
24 #include <linux/udp.h>
25 #include <linux/tcp.h>
26 #include <net/udp_tunnel.h>
27 #include <linux/ip.h>
28 #include <net/ipv6.h>
29 #include <net/tcp.h>
30 #include <linux/if_ether.h>
31 #include <linux/if_vlan.h>
32 #include <linux/pkt_sched.h>
33 #include <linux/ethtool.h>
34 #include <linux/in.h>
35 #include <linux/random.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/bitops.h>
38 #include <linux/vmalloc.h>
39 #include <linux/aer.h>
40 #include "qede.h"
41 #include "qede_ptp.h"
42 
43 static char version[] =
44 	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
45 
46 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
47 MODULE_LICENSE("GPL");
48 MODULE_VERSION(DRV_MODULE_VERSION);
49 
50 static uint debug;
51 module_param(debug, uint, 0);
52 MODULE_PARM_DESC(debug, " Default debug msglevel");
53 
54 static const struct qed_eth_ops *qed_ops;
55 
56 #define CHIP_NUM_57980S_40		0x1634
57 #define CHIP_NUM_57980S_10		0x1666
58 #define CHIP_NUM_57980S_MF		0x1636
59 #define CHIP_NUM_57980S_100		0x1644
60 #define CHIP_NUM_57980S_50		0x1654
61 #define CHIP_NUM_57980S_25		0x1656
62 #define CHIP_NUM_57980S_IOV		0x1664
63 #define CHIP_NUM_AH			0x8070
64 #define CHIP_NUM_AH_IOV			0x8090
65 
66 #ifndef PCI_DEVICE_ID_NX2_57980E
67 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
68 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
69 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
70 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
71 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
72 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
73 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
74 #define PCI_DEVICE_ID_AH		CHIP_NUM_AH
75 #define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
76 
77 #endif
78 
79 enum qede_pci_private {
80 	QEDE_PRIVATE_PF,
81 	QEDE_PRIVATE_VF
82 };
83 
84 static const struct pci_device_id qede_pci_tbl[] = {
85 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
86 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
87 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
88 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
89 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
90 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
91 #ifdef CONFIG_QED_SRIOV
92 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
93 #endif
94 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
95 #ifdef CONFIG_QED_SRIOV
96 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
97 #endif
98 	{ 0 }
99 };
100 
101 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
102 
103 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
104 static pci_ers_result_t
105 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
106 
107 #define TX_TIMEOUT		(5 * HZ)
108 
109 /* Utilize last protocol index for XDP */
110 #define XDP_PI	11
111 
112 static void qede_remove(struct pci_dev *pdev);
113 static void qede_shutdown(struct pci_dev *pdev);
114 static void qede_link_update(void *dev, struct qed_link_output *link);
115 static void qede_schedule_recovery_handler(void *dev);
116 static void qede_recovery_handler(struct qede_dev *edev);
117 static void qede_schedule_hw_err_handler(void *dev,
118 					 enum qed_hw_err_type err_type);
119 static void qede_get_eth_tlv_data(void *edev, void *data);
120 static void qede_get_generic_tlv_data(void *edev,
121 				      struct qed_generic_tlvs *data);
122 static void qede_generic_hw_err_handler(struct qede_dev *edev);
123 #ifdef CONFIG_QED_SRIOV
qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos, __be16 vlan_proto)124 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
125 			    __be16 vlan_proto)
126 {
127 	struct qede_dev *edev = netdev_priv(ndev);
128 
129 	if (vlan > 4095) {
130 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
131 		return -EINVAL;
132 	}
133 
134 	if (vlan_proto != htons(ETH_P_8021Q))
135 		return -EPROTONOSUPPORT;
136 
137 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
138 		   vlan, vf);
139 
140 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
141 }
142 
qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)143 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
144 {
145 	struct qede_dev *edev = netdev_priv(ndev);
146 
147 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx);
148 
149 	if (!is_valid_ether_addr(mac)) {
150 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
151 		return -EINVAL;
152 	}
153 
154 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
155 }
156 
qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)157 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
158 {
159 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
160 	struct qed_dev_info *qed_info = &edev->dev_info.common;
161 	struct qed_update_vport_params *vport_params;
162 	int rc;
163 
164 	vport_params = vzalloc(sizeof(*vport_params));
165 	if (!vport_params)
166 		return -ENOMEM;
167 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
168 
169 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
170 
171 	/* Enable/Disable Tx switching for PF */
172 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
173 	    !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
174 		vport_params->vport_id = 0;
175 		vport_params->update_tx_switching_flg = 1;
176 		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
177 		edev->ops->vport_update(edev->cdev, vport_params);
178 	}
179 
180 	vfree(vport_params);
181 	return rc;
182 }
183 #endif
184 
185 static const struct pci_error_handlers qede_err_handler = {
186 	.error_detected = qede_io_error_detected,
187 };
188 
189 static struct pci_driver qede_pci_driver = {
190 	.name = "qede",
191 	.id_table = qede_pci_tbl,
192 	.probe = qede_probe,
193 	.remove = qede_remove,
194 	.shutdown = qede_shutdown,
195 #ifdef CONFIG_QED_SRIOV
196 	.sriov_configure = qede_sriov_configure,
197 #endif
198 	.err_handler = &qede_err_handler,
199 };
200 
201 static struct qed_eth_cb_ops qede_ll_ops = {
202 	{
203 #ifdef CONFIG_RFS_ACCEL
204 		.arfs_filter_op = qede_arfs_filter_op,
205 #endif
206 		.link_update = qede_link_update,
207 		.schedule_recovery_handler = qede_schedule_recovery_handler,
208 		.schedule_hw_err_handler = qede_schedule_hw_err_handler,
209 		.get_generic_tlv_data = qede_get_generic_tlv_data,
210 		.get_protocol_tlv_data = qede_get_eth_tlv_data,
211 	},
212 	.force_mac = qede_force_mac,
213 	.ports_update = qede_udp_ports_update,
214 };
215 
qede_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)216 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
217 			     void *ptr)
218 {
219 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
220 	struct ethtool_drvinfo drvinfo;
221 	struct qede_dev *edev;
222 
223 	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
224 		goto done;
225 
226 	/* Check whether this is a qede device */
227 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
228 		goto done;
229 
230 	memset(&drvinfo, 0, sizeof(drvinfo));
231 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
232 	if (strcmp(drvinfo.driver, "qede"))
233 		goto done;
234 	edev = netdev_priv(ndev);
235 
236 	switch (event) {
237 	case NETDEV_CHANGENAME:
238 		/* Notify qed of the name change */
239 		if (!edev->ops || !edev->ops->common)
240 			goto done;
241 		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
242 		break;
243 	case NETDEV_CHANGEADDR:
244 		edev = netdev_priv(ndev);
245 		qede_rdma_event_changeaddr(edev);
246 		break;
247 	}
248 
249 done:
250 	return NOTIFY_DONE;
251 }
252 
253 static struct notifier_block qede_netdev_notifier = {
254 	.notifier_call = qede_netdev_event,
255 };
256 
257 static
qede_init(void)258 int __init qede_init(void)
259 {
260 	int ret;
261 
262 	pr_info("qede_init: %s\n", version);
263 
264 	qede_forced_speed_maps_init();
265 
266 	qed_ops = qed_get_eth_ops();
267 	if (!qed_ops) {
268 		pr_notice("Failed to get qed ethtool operations\n");
269 		return -EINVAL;
270 	}
271 
272 	/* Must register notifier before pci ops, since we might miss
273 	 * interface rename after pci probe and netdev registration.
274 	 */
275 	ret = register_netdevice_notifier(&qede_netdev_notifier);
276 	if (ret) {
277 		pr_notice("Failed to register netdevice_notifier\n");
278 		qed_put_eth_ops();
279 		return -EINVAL;
280 	}
281 
282 	ret = pci_register_driver(&qede_pci_driver);
283 	if (ret) {
284 		pr_notice("Failed to register driver\n");
285 		unregister_netdevice_notifier(&qede_netdev_notifier);
286 		qed_put_eth_ops();
287 		return -EINVAL;
288 	}
289 
290 	return 0;
291 }
292 
qede_cleanup(void)293 static void __exit qede_cleanup(void)
294 {
295 	if (debug & QED_LOG_INFO_MASK)
296 		pr_info("qede_cleanup called\n");
297 
298 	unregister_netdevice_notifier(&qede_netdev_notifier);
299 	pci_unregister_driver(&qede_pci_driver);
300 	qed_put_eth_ops();
301 }
302 
303 module_init(qede_init);
304 module_exit(qede_cleanup);
305 
306 static int qede_open(struct net_device *ndev);
307 static int qede_close(struct net_device *ndev);
308 
qede_fill_by_demand_stats(struct qede_dev *edev)309 void qede_fill_by_demand_stats(struct qede_dev *edev)
310 {
311 	struct qede_stats_common *p_common = &edev->stats.common;
312 	struct qed_eth_stats stats;
313 
314 	edev->ops->get_vport_stats(edev->cdev, &stats);
315 
316 	spin_lock(&edev->stats_lock);
317 
318 	p_common->no_buff_discards = stats.common.no_buff_discards;
319 	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
320 	p_common->ttl0_discard = stats.common.ttl0_discard;
321 	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
322 	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
323 	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
324 	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
325 	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
326 	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
327 	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
328 	p_common->mac_filter_discards = stats.common.mac_filter_discards;
329 	p_common->gft_filter_drop = stats.common.gft_filter_drop;
330 
331 	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
332 	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
333 	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
334 	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
335 	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
336 	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
337 	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
338 	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
339 	p_common->coalesced_events = stats.common.tpa_coalesced_events;
340 	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
341 	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
342 	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
343 
344 	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
345 	p_common->rx_65_to_127_byte_packets =
346 	    stats.common.rx_65_to_127_byte_packets;
347 	p_common->rx_128_to_255_byte_packets =
348 	    stats.common.rx_128_to_255_byte_packets;
349 	p_common->rx_256_to_511_byte_packets =
350 	    stats.common.rx_256_to_511_byte_packets;
351 	p_common->rx_512_to_1023_byte_packets =
352 	    stats.common.rx_512_to_1023_byte_packets;
353 	p_common->rx_1024_to_1518_byte_packets =
354 	    stats.common.rx_1024_to_1518_byte_packets;
355 	p_common->rx_crc_errors = stats.common.rx_crc_errors;
356 	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
357 	p_common->rx_pause_frames = stats.common.rx_pause_frames;
358 	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
359 	p_common->rx_align_errors = stats.common.rx_align_errors;
360 	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
361 	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
362 	p_common->rx_jabbers = stats.common.rx_jabbers;
363 	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
364 	p_common->rx_fragments = stats.common.rx_fragments;
365 	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
366 	p_common->tx_65_to_127_byte_packets =
367 	    stats.common.tx_65_to_127_byte_packets;
368 	p_common->tx_128_to_255_byte_packets =
369 	    stats.common.tx_128_to_255_byte_packets;
370 	p_common->tx_256_to_511_byte_packets =
371 	    stats.common.tx_256_to_511_byte_packets;
372 	p_common->tx_512_to_1023_byte_packets =
373 	    stats.common.tx_512_to_1023_byte_packets;
374 	p_common->tx_1024_to_1518_byte_packets =
375 	    stats.common.tx_1024_to_1518_byte_packets;
376 	p_common->tx_pause_frames = stats.common.tx_pause_frames;
377 	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
378 	p_common->brb_truncates = stats.common.brb_truncates;
379 	p_common->brb_discards = stats.common.brb_discards;
380 	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
381 	p_common->link_change_count = stats.common.link_change_count;
382 	p_common->ptp_skip_txts = edev->ptp_skip_txts;
383 
384 	if (QEDE_IS_BB(edev)) {
385 		struct qede_stats_bb *p_bb = &edev->stats.bb;
386 
387 		p_bb->rx_1519_to_1522_byte_packets =
388 		    stats.bb.rx_1519_to_1522_byte_packets;
389 		p_bb->rx_1519_to_2047_byte_packets =
390 		    stats.bb.rx_1519_to_2047_byte_packets;
391 		p_bb->rx_2048_to_4095_byte_packets =
392 		    stats.bb.rx_2048_to_4095_byte_packets;
393 		p_bb->rx_4096_to_9216_byte_packets =
394 		    stats.bb.rx_4096_to_9216_byte_packets;
395 		p_bb->rx_9217_to_16383_byte_packets =
396 		    stats.bb.rx_9217_to_16383_byte_packets;
397 		p_bb->tx_1519_to_2047_byte_packets =
398 		    stats.bb.tx_1519_to_2047_byte_packets;
399 		p_bb->tx_2048_to_4095_byte_packets =
400 		    stats.bb.tx_2048_to_4095_byte_packets;
401 		p_bb->tx_4096_to_9216_byte_packets =
402 		    stats.bb.tx_4096_to_9216_byte_packets;
403 		p_bb->tx_9217_to_16383_byte_packets =
404 		    stats.bb.tx_9217_to_16383_byte_packets;
405 		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
406 		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
407 	} else {
408 		struct qede_stats_ah *p_ah = &edev->stats.ah;
409 
410 		p_ah->rx_1519_to_max_byte_packets =
411 		    stats.ah.rx_1519_to_max_byte_packets;
412 		p_ah->tx_1519_to_max_byte_packets =
413 		    stats.ah.tx_1519_to_max_byte_packets;
414 	}
415 
416 	spin_unlock(&edev->stats_lock);
417 }
418 
qede_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)419 static void qede_get_stats64(struct net_device *dev,
420 			     struct rtnl_link_stats64 *stats)
421 {
422 	struct qede_dev *edev = netdev_priv(dev);
423 	struct qede_stats_common *p_common;
424 
425 	p_common = &edev->stats.common;
426 
427 	spin_lock(&edev->stats_lock);
428 
429 	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
430 			    p_common->rx_bcast_pkts;
431 	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
432 			    p_common->tx_bcast_pkts;
433 
434 	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
435 			  p_common->rx_bcast_bytes;
436 	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
437 			  p_common->tx_bcast_bytes;
438 
439 	stats->tx_errors = p_common->tx_err_drop_pkts;
440 	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
441 
442 	stats->rx_fifo_errors = p_common->no_buff_discards;
443 
444 	if (QEDE_IS_BB(edev))
445 		stats->collisions = edev->stats.bb.tx_total_collisions;
446 	stats->rx_crc_errors = p_common->rx_crc_errors;
447 	stats->rx_frame_errors = p_common->rx_align_errors;
448 
449 	spin_unlock(&edev->stats_lock);
450 }
451 
452 #ifdef CONFIG_QED_SRIOV
qede_get_vf_config(struct net_device *dev, int vfidx, struct ifla_vf_info *ivi)453 static int qede_get_vf_config(struct net_device *dev, int vfidx,
454 			      struct ifla_vf_info *ivi)
455 {
456 	struct qede_dev *edev = netdev_priv(dev);
457 
458 	if (!edev->ops)
459 		return -EINVAL;
460 
461 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
462 }
463 
qede_set_vf_rate(struct net_device *dev, int vfidx, int min_tx_rate, int max_tx_rate)464 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
465 			    int min_tx_rate, int max_tx_rate)
466 {
467 	struct qede_dev *edev = netdev_priv(dev);
468 
469 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
470 					max_tx_rate);
471 }
472 
qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)473 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
474 {
475 	struct qede_dev *edev = netdev_priv(dev);
476 
477 	if (!edev->ops)
478 		return -EINVAL;
479 
480 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
481 }
482 
qede_set_vf_link_state(struct net_device *dev, int vfidx, int link_state)483 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
484 				  int link_state)
485 {
486 	struct qede_dev *edev = netdev_priv(dev);
487 
488 	if (!edev->ops)
489 		return -EINVAL;
490 
491 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
492 }
493 
qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)494 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
495 {
496 	struct qede_dev *edev = netdev_priv(dev);
497 
498 	if (!edev->ops)
499 		return -EINVAL;
500 
501 	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
502 }
503 #endif
504 
qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)505 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
506 {
507 	struct qede_dev *edev = netdev_priv(dev);
508 
509 	if (!netif_running(dev))
510 		return -EAGAIN;
511 
512 	switch (cmd) {
513 	case SIOCSHWTSTAMP:
514 		return qede_ptp_hw_ts(edev, ifr);
515 	default:
516 		DP_VERBOSE(edev, QED_MSG_DEBUG,
517 			   "default IOCTL cmd 0x%x\n", cmd);
518 		return -EOPNOTSUPP;
519 	}
520 
521 	return 0;
522 }
523 
qede_tx_log_print(struct qede_dev *edev, struct qede_tx_queue *txq)524 static void qede_tx_log_print(struct qede_dev *edev, struct qede_tx_queue *txq)
525 {
526 	DP_NOTICE(edev,
527 		  "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
528 		  txq->index, le16_to_cpu(*txq->hw_cons_ptr),
529 		  qed_chain_get_cons_idx(&txq->tx_pbl),
530 		  qed_chain_get_prod_idx(&txq->tx_pbl),
531 		  jiffies);
532 }
533 
qede_tx_timeout(struct net_device *dev, unsigned int txqueue)534 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
535 {
536 	struct qede_dev *edev = netdev_priv(dev);
537 	struct qede_tx_queue *txq;
538 	int cos;
539 
540 	netif_carrier_off(dev);
541 	DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
542 
543 	if (!(edev->fp_array[txqueue].type & QEDE_FASTPATH_TX))
544 		return;
545 
546 	for_each_cos_in_txq(edev, cos) {
547 		txq = &edev->fp_array[txqueue].txq[cos];
548 
549 		if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
550 		    qed_chain_get_prod_idx(&txq->tx_pbl))
551 			qede_tx_log_print(edev, txq);
552 	}
553 
554 	if (IS_VF(edev))
555 		return;
556 
557 	if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
558 	    edev->state == QEDE_STATE_RECOVERY) {
559 		DP_INFO(edev,
560 			"Avoid handling a Tx timeout while another HW error is being handled\n");
561 		return;
562 	}
563 
564 	set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
565 	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
566 	schedule_delayed_work(&edev->sp_task, 0);
567 }
568 
qede_setup_tc(struct net_device *ndev, u8 num_tc)569 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
570 {
571 	struct qede_dev *edev = netdev_priv(ndev);
572 	int cos, count, offset;
573 
574 	if (num_tc > edev->dev_info.num_tc)
575 		return -EINVAL;
576 
577 	netdev_reset_tc(ndev);
578 	netdev_set_num_tc(ndev, num_tc);
579 
580 	for_each_cos_in_txq(edev, cos) {
581 		count = QEDE_TSS_COUNT(edev);
582 		offset = cos * QEDE_TSS_COUNT(edev);
583 		netdev_set_tc_queue(ndev, cos, count, offset);
584 	}
585 
586 	return 0;
587 }
588 
589 static int
qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f, __be16 proto)590 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
591 		__be16 proto)
592 {
593 	switch (f->command) {
594 	case FLOW_CLS_REPLACE:
595 		return qede_add_tc_flower_fltr(edev, proto, f);
596 	case FLOW_CLS_DESTROY:
597 		return qede_delete_flow_filter(edev, f->cookie);
598 	default:
599 		return -EOPNOTSUPP;
600 	}
601 }
602 
qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)603 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
604 				  void *cb_priv)
605 {
606 	struct flow_cls_offload *f;
607 	struct qede_dev *edev = cb_priv;
608 
609 	if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
610 		return -EOPNOTSUPP;
611 
612 	switch (type) {
613 	case TC_SETUP_CLSFLOWER:
614 		f = type_data;
615 		return qede_set_flower(edev, f, f->common.protocol);
616 	default:
617 		return -EOPNOTSUPP;
618 	}
619 }
620 
621 static LIST_HEAD(qede_block_cb_list);
622 
623 static int
qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type, void *type_data)624 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
625 		      void *type_data)
626 {
627 	struct qede_dev *edev = netdev_priv(dev);
628 	struct tc_mqprio_qopt *mqprio;
629 
630 	switch (type) {
631 	case TC_SETUP_BLOCK:
632 		return flow_block_cb_setup_simple(type_data,
633 						  &qede_block_cb_list,
634 						  qede_setup_tc_block_cb,
635 						  edev, edev, true);
636 	case TC_SETUP_QDISC_MQPRIO:
637 		mqprio = type_data;
638 
639 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
640 		return qede_setup_tc(dev, mqprio->num_tc);
641 	default:
642 		return -EOPNOTSUPP;
643 	}
644 }
645 
646 static const struct net_device_ops qede_netdev_ops = {
647 	.ndo_open		= qede_open,
648 	.ndo_stop		= qede_close,
649 	.ndo_start_xmit		= qede_start_xmit,
650 	.ndo_select_queue	= qede_select_queue,
651 	.ndo_set_rx_mode	= qede_set_rx_mode,
652 	.ndo_set_mac_address	= qede_set_mac_addr,
653 	.ndo_validate_addr	= eth_validate_addr,
654 	.ndo_change_mtu		= qede_change_mtu,
655 	.ndo_do_ioctl		= qede_ioctl,
656 	.ndo_tx_timeout		= qede_tx_timeout,
657 #ifdef CONFIG_QED_SRIOV
658 	.ndo_set_vf_mac		= qede_set_vf_mac,
659 	.ndo_set_vf_vlan	= qede_set_vf_vlan,
660 	.ndo_set_vf_trust	= qede_set_vf_trust,
661 #endif
662 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
663 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
664 	.ndo_fix_features	= qede_fix_features,
665 	.ndo_set_features	= qede_set_features,
666 	.ndo_get_stats64	= qede_get_stats64,
667 #ifdef CONFIG_QED_SRIOV
668 	.ndo_set_vf_link_state	= qede_set_vf_link_state,
669 	.ndo_set_vf_spoofchk	= qede_set_vf_spoofchk,
670 	.ndo_get_vf_config	= qede_get_vf_config,
671 	.ndo_set_vf_rate	= qede_set_vf_rate,
672 #endif
673 	.ndo_udp_tunnel_add	= udp_tunnel_nic_add_port,
674 	.ndo_udp_tunnel_del	= udp_tunnel_nic_del_port,
675 	.ndo_features_check	= qede_features_check,
676 	.ndo_bpf		= qede_xdp,
677 #ifdef CONFIG_RFS_ACCEL
678 	.ndo_rx_flow_steer	= qede_rx_flow_steer,
679 #endif
680 	.ndo_xdp_xmit		= qede_xdp_transmit,
681 	.ndo_setup_tc		= qede_setup_tc_offload,
682 };
683 
684 static const struct net_device_ops qede_netdev_vf_ops = {
685 	.ndo_open		= qede_open,
686 	.ndo_stop		= qede_close,
687 	.ndo_start_xmit		= qede_start_xmit,
688 	.ndo_select_queue	= qede_select_queue,
689 	.ndo_set_rx_mode	= qede_set_rx_mode,
690 	.ndo_set_mac_address	= qede_set_mac_addr,
691 	.ndo_validate_addr	= eth_validate_addr,
692 	.ndo_change_mtu		= qede_change_mtu,
693 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
694 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
695 	.ndo_fix_features	= qede_fix_features,
696 	.ndo_set_features	= qede_set_features,
697 	.ndo_get_stats64	= qede_get_stats64,
698 	.ndo_udp_tunnel_add	= udp_tunnel_nic_add_port,
699 	.ndo_udp_tunnel_del	= udp_tunnel_nic_del_port,
700 	.ndo_features_check	= qede_features_check,
701 };
702 
703 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
704 	.ndo_open		= qede_open,
705 	.ndo_stop		= qede_close,
706 	.ndo_start_xmit		= qede_start_xmit,
707 	.ndo_select_queue	= qede_select_queue,
708 	.ndo_set_rx_mode	= qede_set_rx_mode,
709 	.ndo_set_mac_address	= qede_set_mac_addr,
710 	.ndo_validate_addr	= eth_validate_addr,
711 	.ndo_change_mtu		= qede_change_mtu,
712 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
713 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
714 	.ndo_fix_features	= qede_fix_features,
715 	.ndo_set_features	= qede_set_features,
716 	.ndo_get_stats64	= qede_get_stats64,
717 	.ndo_udp_tunnel_add	= udp_tunnel_nic_add_port,
718 	.ndo_udp_tunnel_del	= udp_tunnel_nic_del_port,
719 	.ndo_features_check	= qede_features_check,
720 	.ndo_bpf		= qede_xdp,
721 	.ndo_xdp_xmit		= qede_xdp_transmit,
722 };
723 
724 /* -------------------------------------------------------------------------
725  * START OF PROBE / REMOVE
726  * -------------------------------------------------------------------------
727  */
728 
qede_alloc_etherdev(struct qed_dev *cdev, struct pci_dev *pdev, struct qed_dev_eth_info *info, u32 dp_module, u8 dp_level)729 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
730 					    struct pci_dev *pdev,
731 					    struct qed_dev_eth_info *info,
732 					    u32 dp_module, u8 dp_level)
733 {
734 	struct net_device *ndev;
735 	struct qede_dev *edev;
736 
737 	ndev = alloc_etherdev_mqs(sizeof(*edev),
738 				  info->num_queues * info->num_tc,
739 				  info->num_queues);
740 	if (!ndev) {
741 		pr_err("etherdev allocation failed\n");
742 		return NULL;
743 	}
744 
745 	edev = netdev_priv(ndev);
746 	edev->ndev = ndev;
747 	edev->cdev = cdev;
748 	edev->pdev = pdev;
749 	edev->dp_module = dp_module;
750 	edev->dp_level = dp_level;
751 	edev->ops = qed_ops;
752 
753 	if (is_kdump_kernel()) {
754 		edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
755 		edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
756 	} else {
757 		edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
758 		edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
759 	}
760 
761 	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
762 		info->num_queues, info->num_queues);
763 
764 	SET_NETDEV_DEV(ndev, &pdev->dev);
765 
766 	memset(&edev->stats, 0, sizeof(edev->stats));
767 	memcpy(&edev->dev_info, info, sizeof(*info));
768 
769 	/* As ethtool doesn't have the ability to show WoL behavior as
770 	 * 'default', if device supports it declare it's enabled.
771 	 */
772 	if (edev->dev_info.common.wol_support)
773 		edev->wol_enabled = true;
774 
775 	INIT_LIST_HEAD(&edev->vlan_list);
776 
777 	return edev;
778 }
779 
qede_init_ndev(struct qede_dev *edev)780 static void qede_init_ndev(struct qede_dev *edev)
781 {
782 	struct net_device *ndev = edev->ndev;
783 	struct pci_dev *pdev = edev->pdev;
784 	bool udp_tunnel_enable = false;
785 	netdev_features_t hw_features;
786 
787 	pci_set_drvdata(pdev, ndev);
788 
789 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
790 	ndev->base_addr = ndev->mem_start;
791 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
792 	ndev->irq = edev->dev_info.common.pci_irq;
793 
794 	ndev->watchdog_timeo = TX_TIMEOUT;
795 
796 	if (IS_VF(edev)) {
797 		if (edev->dev_info.xdp_supported)
798 			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
799 		else
800 			ndev->netdev_ops = &qede_netdev_vf_ops;
801 	} else {
802 		ndev->netdev_ops = &qede_netdev_ops;
803 	}
804 
805 	qede_set_ethtool_ops(ndev);
806 
807 	ndev->priv_flags |= IFF_UNICAST_FLT;
808 
809 	/* user-changeble features */
810 	hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
811 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
812 		      NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
813 
814 	if (edev->dev_info.common.b_arfs_capable)
815 		hw_features |= NETIF_F_NTUPLE;
816 
817 	if (edev->dev_info.common.vxlan_enable ||
818 	    edev->dev_info.common.geneve_enable)
819 		udp_tunnel_enable = true;
820 
821 	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
822 		hw_features |= NETIF_F_TSO_ECN;
823 		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
824 					NETIF_F_SG | NETIF_F_TSO |
825 					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
826 					NETIF_F_RXCSUM;
827 	}
828 
829 	if (udp_tunnel_enable) {
830 		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
831 				NETIF_F_GSO_UDP_TUNNEL_CSUM);
832 		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
833 					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
834 
835 		qede_set_udp_tunnels(edev);
836 	}
837 
838 	if (edev->dev_info.common.gre_enable) {
839 		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
840 		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
841 					  NETIF_F_GSO_GRE_CSUM);
842 	}
843 
844 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
845 			      NETIF_F_HIGHDMA;
846 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
847 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
848 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
849 
850 	ndev->hw_features = hw_features;
851 
852 	/* MTU range: 46 - 9600 */
853 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
854 	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
855 
856 	/* Set network device HW mac */
857 	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
858 
859 	ndev->mtu = edev->dev_info.common.mtu;
860 }
861 
862 /* This function converts from 32b param to two params of level and module
863  * Input 32b decoding:
864  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
865  * 'happy' flow, e.g. memory allocation failed.
866  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
867  * and provide important parameters.
868  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
869  * module. VERBOSE prints are for tracking the specific flow in low level.
870  *
871  * Notice that the level should be that of the lowest required logs.
872  */
qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)873 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
874 {
875 	*p_dp_level = QED_LEVEL_NOTICE;
876 	*p_dp_module = 0;
877 
878 	if (debug & QED_LOG_VERBOSE_MASK) {
879 		*p_dp_level = QED_LEVEL_VERBOSE;
880 		*p_dp_module = (debug & 0x3FFFFFFF);
881 	} else if (debug & QED_LOG_INFO_MASK) {
882 		*p_dp_level = QED_LEVEL_INFO;
883 	} else if (debug & QED_LOG_NOTICE_MASK) {
884 		*p_dp_level = QED_LEVEL_NOTICE;
885 	}
886 }
887 
qede_free_fp_array(struct qede_dev *edev)888 static void qede_free_fp_array(struct qede_dev *edev)
889 {
890 	if (edev->fp_array) {
891 		struct qede_fastpath *fp;
892 		int i;
893 
894 		for_each_queue(i) {
895 			fp = &edev->fp_array[i];
896 
897 			kfree(fp->sb_info);
898 			/* Handle mem alloc failure case where qede_init_fp
899 			 * didn't register xdp_rxq_info yet.
900 			 * Implicit only (fp->type & QEDE_FASTPATH_RX)
901 			 */
902 			if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
903 				xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
904 			kfree(fp->rxq);
905 			kfree(fp->xdp_tx);
906 			kfree(fp->txq);
907 		}
908 		kfree(edev->fp_array);
909 	}
910 
911 	edev->num_queues = 0;
912 	edev->fp_num_tx = 0;
913 	edev->fp_num_rx = 0;
914 }
915 
qede_alloc_fp_array(struct qede_dev *edev)916 static int qede_alloc_fp_array(struct qede_dev *edev)
917 {
918 	u8 fp_combined, fp_rx = edev->fp_num_rx;
919 	struct qede_fastpath *fp;
920 	int i;
921 
922 	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
923 				 sizeof(*edev->fp_array), GFP_KERNEL);
924 	if (!edev->fp_array) {
925 		DP_NOTICE(edev, "fp array allocation failed\n");
926 		goto err;
927 	}
928 
929 	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
930 
931 	/* Allocate the FP elements for Rx queues followed by combined and then
932 	 * the Tx. This ordering should be maintained so that the respective
933 	 * queues (Rx or Tx) will be together in the fastpath array and the
934 	 * associated ids will be sequential.
935 	 */
936 	for_each_queue(i) {
937 		fp = &edev->fp_array[i];
938 
939 		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
940 		if (!fp->sb_info) {
941 			DP_NOTICE(edev, "sb info struct allocation failed\n");
942 			goto err;
943 		}
944 
945 		if (fp_rx) {
946 			fp->type = QEDE_FASTPATH_RX;
947 			fp_rx--;
948 		} else if (fp_combined) {
949 			fp->type = QEDE_FASTPATH_COMBINED;
950 			fp_combined--;
951 		} else {
952 			fp->type = QEDE_FASTPATH_TX;
953 		}
954 
955 		if (fp->type & QEDE_FASTPATH_TX) {
956 			fp->txq = kcalloc(edev->dev_info.num_tc,
957 					  sizeof(*fp->txq), GFP_KERNEL);
958 			if (!fp->txq)
959 				goto err;
960 		}
961 
962 		if (fp->type & QEDE_FASTPATH_RX) {
963 			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
964 			if (!fp->rxq)
965 				goto err;
966 
967 			if (edev->xdp_prog) {
968 				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
969 						     GFP_KERNEL);
970 				if (!fp->xdp_tx)
971 					goto err;
972 				fp->type |= QEDE_FASTPATH_XDP;
973 			}
974 		}
975 	}
976 
977 	return 0;
978 err:
979 	qede_free_fp_array(edev);
980 	return -ENOMEM;
981 }
982 
983 /* The qede lock is used to protect driver state change and driver flows that
984  * are not reentrant.
985  */
__qede_lock(struct qede_dev *edev)986 void __qede_lock(struct qede_dev *edev)
987 {
988 	mutex_lock(&edev->qede_lock);
989 }
990 
__qede_unlock(struct qede_dev *edev)991 void __qede_unlock(struct qede_dev *edev)
992 {
993 	mutex_unlock(&edev->qede_lock);
994 }
995 
996 /* This version of the lock should be used when acquiring the RTNL lock is also
997  * needed in addition to the internal qede lock.
998  */
qede_lock(struct qede_dev *edev)999 static void qede_lock(struct qede_dev *edev)
1000 {
1001 	rtnl_lock();
1002 	__qede_lock(edev);
1003 }
1004 
qede_unlock(struct qede_dev *edev)1005 static void qede_unlock(struct qede_dev *edev)
1006 {
1007 	__qede_unlock(edev);
1008 	rtnl_unlock();
1009 }
1010 
qede_periodic_task(struct work_struct *work)1011 static void qede_periodic_task(struct work_struct *work)
1012 {
1013 	struct qede_dev *edev = container_of(work, struct qede_dev,
1014 					     periodic_task.work);
1015 
1016 	qede_fill_by_demand_stats(edev);
1017 	schedule_delayed_work(&edev->periodic_task, edev->stats_coal_ticks);
1018 }
1019 
qede_init_periodic_task(struct qede_dev *edev)1020 static void qede_init_periodic_task(struct qede_dev *edev)
1021 {
1022 	INIT_DELAYED_WORK(&edev->periodic_task, qede_periodic_task);
1023 	spin_lock_init(&edev->stats_lock);
1024 	edev->stats_coal_usecs = USEC_PER_SEC;
1025 	edev->stats_coal_ticks = usecs_to_jiffies(USEC_PER_SEC);
1026 }
1027 
qede_sp_task(struct work_struct *work)1028 static void qede_sp_task(struct work_struct *work)
1029 {
1030 	struct qede_dev *edev = container_of(work, struct qede_dev,
1031 					     sp_task.work);
1032 
1033 	/* Disable execution of this deferred work once
1034 	 * qede removal is in progress, this stop any future
1035 	 * scheduling of sp_task.
1036 	 */
1037 	if (test_bit(QEDE_SP_DISABLE, &edev->sp_flags))
1038 		return;
1039 
1040 	/* The locking scheme depends on the specific flag:
1041 	 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1042 	 * ensure that ongoing flows are ended and new ones are not started.
1043 	 * In other cases - only the internal qede lock should be acquired.
1044 	 */
1045 
1046 	if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1047 		cancel_delayed_work_sync(&edev->periodic_task);
1048 #ifdef CONFIG_QED_SRIOV
1049 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1050 		 * The recovery of the active VFs is currently not supported.
1051 		 */
1052 		if (pci_num_vf(edev->pdev))
1053 			qede_sriov_configure(edev->pdev, 0);
1054 #endif
1055 		qede_lock(edev);
1056 		qede_recovery_handler(edev);
1057 		qede_unlock(edev);
1058 	}
1059 
1060 	__qede_lock(edev);
1061 
1062 	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1063 		if (edev->state == QEDE_STATE_OPEN)
1064 			qede_config_rx_mode(edev->ndev);
1065 
1066 #ifdef CONFIG_RFS_ACCEL
1067 	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1068 		if (edev->state == QEDE_STATE_OPEN)
1069 			qede_process_arfs_filters(edev, false);
1070 	}
1071 #endif
1072 	if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1073 		qede_generic_hw_err_handler(edev);
1074 	__qede_unlock(edev);
1075 
1076 	if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1077 #ifdef CONFIG_QED_SRIOV
1078 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1079 		 * The recovery of the active VFs is currently not supported.
1080 		 */
1081 		if (pci_num_vf(edev->pdev))
1082 			qede_sriov_configure(edev->pdev, 0);
1083 #endif
1084 		edev->ops->common->recovery_process(edev->cdev);
1085 	}
1086 }
1087 
qede_update_pf_params(struct qed_dev *cdev)1088 static void qede_update_pf_params(struct qed_dev *cdev)
1089 {
1090 	struct qed_pf_params pf_params;
1091 	u16 num_cons;
1092 
1093 	/* 64 rx + 64 tx + 64 XDP */
1094 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
1095 
1096 	/* 1 rx + 1 xdp + max tx cos */
1097 	num_cons = QED_MIN_L2_CONS;
1098 
1099 	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1100 
1101 	/* Same for VFs - make sure they'll have sufficient connections
1102 	 * to support XDP Tx queues.
1103 	 */
1104 	pf_params.eth_pf_params.num_vf_cons = 48;
1105 
1106 	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1107 	qed_ops->common->update_pf_params(cdev, &pf_params);
1108 }
1109 
1110 #define QEDE_FW_VER_STR_SIZE	80
1111 
qede_log_probe(struct qede_dev *edev)1112 static void qede_log_probe(struct qede_dev *edev)
1113 {
1114 	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1115 	u8 buf[QEDE_FW_VER_STR_SIZE];
1116 	size_t left_size;
1117 
1118 	snprintf(buf, QEDE_FW_VER_STR_SIZE,
1119 		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1120 		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1121 		 p_dev_info->fw_eng,
1122 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1123 		 QED_MFW_VERSION_3_OFFSET,
1124 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1125 		 QED_MFW_VERSION_2_OFFSET,
1126 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1127 		 QED_MFW_VERSION_1_OFFSET,
1128 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1129 		 QED_MFW_VERSION_0_OFFSET);
1130 
1131 	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1132 	if (p_dev_info->mbi_version && left_size)
1133 		snprintf(buf + strlen(buf), left_size,
1134 			 " [MBI %d.%d.%d]",
1135 			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1136 			 QED_MBI_VERSION_2_OFFSET,
1137 			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1138 			 QED_MBI_VERSION_1_OFFSET,
1139 			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1140 			 QED_MBI_VERSION_0_OFFSET);
1141 
1142 	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1143 		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1144 		buf, edev->ndev->name);
1145 }
1146 
1147 enum qede_probe_mode {
1148 	QEDE_PROBE_NORMAL,
1149 	QEDE_PROBE_RECOVERY,
1150 };
1151 
__qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level, bool is_vf, enum qede_probe_mode mode)1152 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1153 			bool is_vf, enum qede_probe_mode mode)
1154 {
1155 	struct qed_probe_params probe_params;
1156 	struct qed_slowpath_params sp_params;
1157 	struct qed_dev_eth_info dev_info;
1158 	struct qede_dev *edev;
1159 	struct qed_dev *cdev;
1160 	int rc;
1161 
1162 	if (unlikely(dp_level & QED_LEVEL_INFO))
1163 		pr_notice("Starting qede probe\n");
1164 
1165 	memset(&probe_params, 0, sizeof(probe_params));
1166 	probe_params.protocol = QED_PROTOCOL_ETH;
1167 	probe_params.dp_module = dp_module;
1168 	probe_params.dp_level = dp_level;
1169 	probe_params.is_vf = is_vf;
1170 	probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1171 	cdev = qed_ops->common->probe(pdev, &probe_params);
1172 	if (!cdev) {
1173 		rc = -ENODEV;
1174 		goto err0;
1175 	}
1176 
1177 	qede_update_pf_params(cdev);
1178 
1179 	/* Start the Slowpath-process */
1180 	memset(&sp_params, 0, sizeof(sp_params));
1181 	sp_params.int_mode = QED_INT_MODE_MSIX;
1182 	sp_params.drv_major = QEDE_MAJOR_VERSION;
1183 	sp_params.drv_minor = QEDE_MINOR_VERSION;
1184 	sp_params.drv_rev = QEDE_REVISION_VERSION;
1185 	sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
1186 	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1187 	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1188 	if (rc) {
1189 		pr_notice("Cannot start slowpath\n");
1190 		goto err1;
1191 	}
1192 
1193 	/* Learn information crucial for qede to progress */
1194 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
1195 	if (rc)
1196 		goto err2;
1197 
1198 	if (mode != QEDE_PROBE_RECOVERY) {
1199 		edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1200 					   dp_level);
1201 		if (!edev) {
1202 			rc = -ENOMEM;
1203 			goto err2;
1204 		}
1205 
1206 		edev->devlink = qed_ops->common->devlink_register(cdev);
1207 		if (IS_ERR(edev->devlink)) {
1208 			DP_NOTICE(edev, "Cannot register devlink\n");
1209 			edev->devlink = NULL;
1210 			/* Go on, we can live without devlink */
1211 		}
1212 	} else {
1213 		struct net_device *ndev = pci_get_drvdata(pdev);
1214 
1215 		edev = netdev_priv(ndev);
1216 
1217 		if (edev->devlink) {
1218 			struct qed_devlink *qdl = devlink_priv(edev->devlink);
1219 
1220 			qdl->cdev = cdev;
1221 		}
1222 		edev->cdev = cdev;
1223 		memset(&edev->stats, 0, sizeof(edev->stats));
1224 		memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1225 	}
1226 
1227 	if (is_vf)
1228 		set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1229 
1230 	qede_init_ndev(edev);
1231 
1232 	rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1233 	if (rc)
1234 		goto err3;
1235 
1236 	if (mode != QEDE_PROBE_RECOVERY) {
1237 		/* Prepare the lock prior to the registration of the netdev,
1238 		 * as once it's registered we might reach flows requiring it
1239 		 * [it's even possible to reach a flow needing it directly
1240 		 * from there, although it's unlikely].
1241 		 */
1242 		INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1243 		mutex_init(&edev->qede_lock);
1244 		qede_init_periodic_task(edev);
1245 
1246 		rc = register_netdev(edev->ndev);
1247 		if (rc) {
1248 			DP_NOTICE(edev, "Cannot register net-device\n");
1249 			goto err4;
1250 		}
1251 	}
1252 
1253 	edev->ops->common->set_name(cdev, edev->ndev->name);
1254 
1255 	/* PTP not supported on VFs */
1256 	if (!is_vf)
1257 		qede_ptp_enable(edev);
1258 
1259 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1260 
1261 #ifdef CONFIG_DCB
1262 	if (!IS_VF(edev))
1263 		qede_set_dcbnl_ops(edev->ndev);
1264 #endif
1265 
1266 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1267 
1268 	qede_log_probe(edev);
1269 
1270 	/* retain user config (for example - after recovery) */
1271 	if (edev->stats_coal_usecs)
1272 		schedule_delayed_work(&edev->periodic_task, 0);
1273 
1274 	return 0;
1275 
1276 err4:
1277 	qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1278 err3:
1279 	if (mode != QEDE_PROBE_RECOVERY)
1280 		free_netdev(edev->ndev);
1281 	else
1282 		edev->cdev = NULL;
1283 err2:
1284 	qed_ops->common->slowpath_stop(cdev);
1285 err1:
1286 	qed_ops->common->remove(cdev);
1287 err0:
1288 	return rc;
1289 }
1290 
qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)1291 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1292 {
1293 	bool is_vf = false;
1294 	u32 dp_module = 0;
1295 	u8 dp_level = 0;
1296 
1297 	switch ((enum qede_pci_private)id->driver_data) {
1298 	case QEDE_PRIVATE_VF:
1299 		if (debug & QED_LOG_VERBOSE_MASK)
1300 			dev_err(&pdev->dev, "Probing a VF\n");
1301 		is_vf = true;
1302 		break;
1303 	default:
1304 		if (debug & QED_LOG_VERBOSE_MASK)
1305 			dev_err(&pdev->dev, "Probing a PF\n");
1306 	}
1307 
1308 	qede_config_debug(debug, &dp_module, &dp_level);
1309 
1310 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1311 			    QEDE_PROBE_NORMAL);
1312 }
1313 
1314 enum qede_remove_mode {
1315 	QEDE_REMOVE_NORMAL,
1316 	QEDE_REMOVE_RECOVERY,
1317 };
1318 
__qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)1319 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1320 {
1321 	struct net_device *ndev = pci_get_drvdata(pdev);
1322 	struct qede_dev *edev;
1323 	struct qed_dev *cdev;
1324 
1325 	if (!ndev) {
1326 		dev_info(&pdev->dev, "Device has already been removed\n");
1327 		return;
1328 	}
1329 
1330 	edev = netdev_priv(ndev);
1331 	cdev = edev->cdev;
1332 
1333 	DP_INFO(edev, "Starting qede_remove\n");
1334 
1335 	qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1336 
1337 	if (mode != QEDE_REMOVE_RECOVERY) {
1338 		set_bit(QEDE_SP_DISABLE, &edev->sp_flags);
1339 		unregister_netdev(ndev);
1340 
1341 		cancel_delayed_work_sync(&edev->sp_task);
1342 		cancel_delayed_work_sync(&edev->periodic_task);
1343 
1344 		edev->ops->common->set_power_state(cdev, PCI_D0);
1345 
1346 		pci_set_drvdata(pdev, NULL);
1347 	}
1348 
1349 	qede_ptp_disable(edev);
1350 
1351 	/* Use global ops since we've freed edev */
1352 	qed_ops->common->slowpath_stop(cdev);
1353 	if (system_state == SYSTEM_POWER_OFF)
1354 		return;
1355 
1356 	if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) {
1357 		qed_ops->common->devlink_unregister(edev->devlink);
1358 		edev->devlink = NULL;
1359 	}
1360 	qed_ops->common->remove(cdev);
1361 	edev->cdev = NULL;
1362 
1363 	/* Since this can happen out-of-sync with other flows,
1364 	 * don't release the netdevice until after slowpath stop
1365 	 * has been called to guarantee various other contexts
1366 	 * [e.g., QED register callbacks] won't break anything when
1367 	 * accessing the netdevice.
1368 	 */
1369 	if (mode != QEDE_REMOVE_RECOVERY)
1370 		free_netdev(ndev);
1371 
1372 	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1373 }
1374 
qede_remove(struct pci_dev *pdev)1375 static void qede_remove(struct pci_dev *pdev)
1376 {
1377 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1378 }
1379 
qede_shutdown(struct pci_dev *pdev)1380 static void qede_shutdown(struct pci_dev *pdev)
1381 {
1382 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1383 }
1384 
1385 /* -------------------------------------------------------------------------
1386  * START OF LOAD / UNLOAD
1387  * -------------------------------------------------------------------------
1388  */
1389 
qede_set_num_queues(struct qede_dev *edev)1390 static int qede_set_num_queues(struct qede_dev *edev)
1391 {
1392 	int rc;
1393 	u16 rss_num;
1394 
1395 	/* Setup queues according to possible resources*/
1396 	if (edev->req_queues)
1397 		rss_num = edev->req_queues;
1398 	else
1399 		rss_num = netif_get_num_default_rss_queues() *
1400 			  edev->dev_info.common.num_hwfns;
1401 
1402 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1403 
1404 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1405 	if (rc > 0) {
1406 		/* Managed to request interrupts for our queues */
1407 		edev->num_queues = rc;
1408 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1409 			QEDE_QUEUE_CNT(edev), rss_num);
1410 		rc = 0;
1411 	}
1412 
1413 	edev->fp_num_tx = edev->req_num_tx;
1414 	edev->fp_num_rx = edev->req_num_rx;
1415 
1416 	return rc;
1417 }
1418 
qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info, u16 sb_id)1419 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1420 			     u16 sb_id)
1421 {
1422 	if (sb_info->sb_virt) {
1423 		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1424 					      QED_SB_TYPE_L2_QUEUE);
1425 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1426 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1427 		memset(sb_info, 0, sizeof(*sb_info));
1428 	}
1429 }
1430 
1431 /* This function allocates fast-path status block memory */
qede_alloc_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info, u16 sb_id)1432 static int qede_alloc_mem_sb(struct qede_dev *edev,
1433 			     struct qed_sb_info *sb_info, u16 sb_id)
1434 {
1435 	struct status_block_e4 *sb_virt;
1436 	dma_addr_t sb_phys;
1437 	int rc;
1438 
1439 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1440 				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1441 	if (!sb_virt) {
1442 		DP_ERR(edev, "Status block allocation failed\n");
1443 		return -ENOMEM;
1444 	}
1445 
1446 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1447 					sb_virt, sb_phys, sb_id,
1448 					QED_SB_TYPE_L2_QUEUE);
1449 	if (rc) {
1450 		DP_ERR(edev, "Status block initialization failed\n");
1451 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1452 				  sb_virt, sb_phys);
1453 		return rc;
1454 	}
1455 
1456 	return 0;
1457 }
1458 
qede_free_rx_buffers(struct qede_dev *edev, struct qede_rx_queue *rxq)1459 static void qede_free_rx_buffers(struct qede_dev *edev,
1460 				 struct qede_rx_queue *rxq)
1461 {
1462 	u16 i;
1463 
1464 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1465 		struct sw_rx_data *rx_buf;
1466 		struct page *data;
1467 
1468 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1469 		data = rx_buf->data;
1470 
1471 		dma_unmap_page(&edev->pdev->dev,
1472 			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1473 
1474 		rx_buf->data = NULL;
1475 		__free_page(data);
1476 	}
1477 }
1478 
qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)1479 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1480 {
1481 	/* Free rx buffers */
1482 	qede_free_rx_buffers(edev, rxq);
1483 
1484 	/* Free the parallel SW ring */
1485 	kfree(rxq->sw_rx_ring);
1486 
1487 	/* Free the real RQ ring used by FW */
1488 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1489 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1490 }
1491 
qede_set_tpa_param(struct qede_rx_queue *rxq)1492 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1493 {
1494 	int i;
1495 
1496 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1497 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1498 
1499 		tpa_info->state = QEDE_AGG_STATE_NONE;
1500 	}
1501 }
1502 
1503 /* This function allocates all memory needed per Rx queue */
qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)1504 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1505 {
1506 	struct qed_chain_init_params params = {
1507 		.cnt_type	= QED_CHAIN_CNT_TYPE_U16,
1508 		.num_elems	= RX_RING_SIZE,
1509 	};
1510 	struct qed_dev *cdev = edev->cdev;
1511 	int i, rc, size;
1512 
1513 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1514 
1515 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1516 
1517 	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1518 	size = rxq->rx_headroom +
1519 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1520 
1521 	/* Make sure that the headroom and  payload fit in a single page */
1522 	if (rxq->rx_buf_size + size > PAGE_SIZE)
1523 		rxq->rx_buf_size = PAGE_SIZE - size;
1524 
1525 	/* Segment size to split a page in multiple equal parts,
1526 	 * unless XDP is used in which case we'd use the entire page.
1527 	 */
1528 	if (!edev->xdp_prog) {
1529 		size = size + rxq->rx_buf_size;
1530 		rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1531 	} else {
1532 		rxq->rx_buf_seg_size = PAGE_SIZE;
1533 		edev->ndev->features &= ~NETIF_F_GRO_HW;
1534 	}
1535 
1536 	/* Allocate the parallel driver ring for Rx buffers */
1537 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1538 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1539 	if (!rxq->sw_rx_ring) {
1540 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1541 		rc = -ENOMEM;
1542 		goto err;
1543 	}
1544 
1545 	/* Allocate FW Rx ring  */
1546 	params.mode = QED_CHAIN_MODE_NEXT_PTR;
1547 	params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE;
1548 	params.elem_size = sizeof(struct eth_rx_bd);
1549 
1550 	rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, &params);
1551 	if (rc)
1552 		goto err;
1553 
1554 	/* Allocate FW completion ring */
1555 	params.mode = QED_CHAIN_MODE_PBL;
1556 	params.intended_use = QED_CHAIN_USE_TO_CONSUME;
1557 	params.elem_size = sizeof(union eth_rx_cqe);
1558 
1559 	rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, &params);
1560 	if (rc)
1561 		goto err;
1562 
1563 	/* Allocate buffers for the Rx ring */
1564 	rxq->filled_buffers = 0;
1565 	for (i = 0; i < rxq->num_rx_buffers; i++) {
1566 		rc = qede_alloc_rx_buffer(rxq, false);
1567 		if (rc) {
1568 			DP_ERR(edev,
1569 			       "Rx buffers allocation failed at index %d\n", i);
1570 			goto err;
1571 		}
1572 	}
1573 
1574 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1575 	if (!edev->gro_disable)
1576 		qede_set_tpa_param(rxq);
1577 err:
1578 	return rc;
1579 }
1580 
qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)1581 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1582 {
1583 	/* Free the parallel SW ring */
1584 	if (txq->is_xdp)
1585 		kfree(txq->sw_tx_ring.xdp);
1586 	else
1587 		kfree(txq->sw_tx_ring.skbs);
1588 
1589 	/* Free the real RQ ring used by FW */
1590 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1591 }
1592 
1593 /* This function allocates all memory needed per Tx queue */
qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)1594 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1595 {
1596 	struct qed_chain_init_params params = {
1597 		.mode		= QED_CHAIN_MODE_PBL,
1598 		.intended_use	= QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1599 		.cnt_type	= QED_CHAIN_CNT_TYPE_U16,
1600 		.num_elems	= edev->q_num_tx_buffers,
1601 		.elem_size	= sizeof(union eth_tx_bd_types),
1602 	};
1603 	int size, rc;
1604 
1605 	txq->num_tx_buffers = edev->q_num_tx_buffers;
1606 
1607 	/* Allocate the parallel driver ring for Tx buffers */
1608 	if (txq->is_xdp) {
1609 		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1610 		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1611 		if (!txq->sw_tx_ring.xdp)
1612 			goto err;
1613 	} else {
1614 		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1615 		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1616 		if (!txq->sw_tx_ring.skbs)
1617 			goto err;
1618 	}
1619 
1620 	rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, &params);
1621 	if (rc)
1622 		goto err;
1623 
1624 	return 0;
1625 
1626 err:
1627 	qede_free_mem_txq(edev, txq);
1628 	return -ENOMEM;
1629 }
1630 
1631 /* This function frees all memory of a single fp */
qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)1632 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1633 {
1634 	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1635 
1636 	if (fp->type & QEDE_FASTPATH_RX)
1637 		qede_free_mem_rxq(edev, fp->rxq);
1638 
1639 	if (fp->type & QEDE_FASTPATH_XDP)
1640 		qede_free_mem_txq(edev, fp->xdp_tx);
1641 
1642 	if (fp->type & QEDE_FASTPATH_TX) {
1643 		int cos;
1644 
1645 		for_each_cos_in_txq(edev, cos)
1646 			qede_free_mem_txq(edev, &fp->txq[cos]);
1647 	}
1648 }
1649 
1650 /* This function allocates all memory needed for a single fp (i.e. an entity
1651  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1652  */
qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)1653 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1654 {
1655 	int rc = 0;
1656 
1657 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1658 	if (rc)
1659 		goto out;
1660 
1661 	if (fp->type & QEDE_FASTPATH_RX) {
1662 		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1663 		if (rc)
1664 			goto out;
1665 	}
1666 
1667 	if (fp->type & QEDE_FASTPATH_XDP) {
1668 		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1669 		if (rc)
1670 			goto out;
1671 	}
1672 
1673 	if (fp->type & QEDE_FASTPATH_TX) {
1674 		int cos;
1675 
1676 		for_each_cos_in_txq(edev, cos) {
1677 			rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1678 			if (rc)
1679 				goto out;
1680 		}
1681 	}
1682 
1683 out:
1684 	return rc;
1685 }
1686 
qede_free_mem_load(struct qede_dev *edev)1687 static void qede_free_mem_load(struct qede_dev *edev)
1688 {
1689 	int i;
1690 
1691 	for_each_queue(i) {
1692 		struct qede_fastpath *fp = &edev->fp_array[i];
1693 
1694 		qede_free_mem_fp(edev, fp);
1695 	}
1696 }
1697 
1698 /* This function allocates all qede memory at NIC load. */
qede_alloc_mem_load(struct qede_dev *edev)1699 static int qede_alloc_mem_load(struct qede_dev *edev)
1700 {
1701 	int rc = 0, queue_id;
1702 
1703 	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1704 		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1705 
1706 		rc = qede_alloc_mem_fp(edev, fp);
1707 		if (rc) {
1708 			DP_ERR(edev,
1709 			       "Failed to allocate memory for fastpath - rss id = %d\n",
1710 			       queue_id);
1711 			qede_free_mem_load(edev);
1712 			return rc;
1713 		}
1714 	}
1715 
1716 	return 0;
1717 }
1718 
qede_empty_tx_queue(struct qede_dev *edev, struct qede_tx_queue *txq)1719 static void qede_empty_tx_queue(struct qede_dev *edev,
1720 				struct qede_tx_queue *txq)
1721 {
1722 	unsigned int pkts_compl = 0, bytes_compl = 0;
1723 	struct netdev_queue *netdev_txq;
1724 	int rc, len = 0;
1725 
1726 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1727 
1728 	while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1729 	       qed_chain_get_prod_idx(&txq->tx_pbl)) {
1730 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1731 			   "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1732 			   txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1733 			   qed_chain_get_prod_idx(&txq->tx_pbl));
1734 
1735 		rc = qede_free_tx_pkt(edev, txq, &len);
1736 		if (rc) {
1737 			DP_NOTICE(edev,
1738 				  "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1739 				  txq->index,
1740 				  qed_chain_get_cons_idx(&txq->tx_pbl),
1741 				  qed_chain_get_prod_idx(&txq->tx_pbl));
1742 			break;
1743 		}
1744 
1745 		bytes_compl += len;
1746 		pkts_compl++;
1747 		txq->sw_tx_cons++;
1748 	}
1749 
1750 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1751 }
1752 
qede_empty_tx_queues(struct qede_dev *edev)1753 static void qede_empty_tx_queues(struct qede_dev *edev)
1754 {
1755 	int i;
1756 
1757 	for_each_queue(i)
1758 		if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1759 			int cos;
1760 
1761 			for_each_cos_in_txq(edev, cos) {
1762 				struct qede_fastpath *fp;
1763 
1764 				fp = &edev->fp_array[i];
1765 				qede_empty_tx_queue(edev,
1766 						    &fp->txq[cos]);
1767 			}
1768 		}
1769 }
1770 
1771 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
qede_init_fp(struct qede_dev *edev)1772 static void qede_init_fp(struct qede_dev *edev)
1773 {
1774 	int queue_id, rxq_index = 0, txq_index = 0;
1775 	struct qede_fastpath *fp;
1776 	bool init_xdp = false;
1777 
1778 	for_each_queue(queue_id) {
1779 		fp = &edev->fp_array[queue_id];
1780 
1781 		fp->edev = edev;
1782 		fp->id = queue_id;
1783 
1784 		if (fp->type & QEDE_FASTPATH_XDP) {
1785 			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1786 								rxq_index);
1787 			fp->xdp_tx->is_xdp = 1;
1788 
1789 			spin_lock_init(&fp->xdp_tx->xdp_tx_lock);
1790 			init_xdp = true;
1791 		}
1792 
1793 		if (fp->type & QEDE_FASTPATH_RX) {
1794 			fp->rxq->rxq_id = rxq_index++;
1795 
1796 			/* Determine how to map buffers for this queue */
1797 			if (fp->type & QEDE_FASTPATH_XDP)
1798 				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1799 			else
1800 				fp->rxq->data_direction = DMA_FROM_DEVICE;
1801 			fp->rxq->dev = &edev->pdev->dev;
1802 
1803 			/* Driver have no error path from here */
1804 			WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1805 						 fp->rxq->rxq_id) < 0);
1806 
1807 			if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq,
1808 						       MEM_TYPE_PAGE_ORDER0,
1809 						       NULL)) {
1810 				DP_NOTICE(edev,
1811 					  "Failed to register XDP memory model\n");
1812 			}
1813 		}
1814 
1815 		if (fp->type & QEDE_FASTPATH_TX) {
1816 			int cos;
1817 
1818 			for_each_cos_in_txq(edev, cos) {
1819 				struct qede_tx_queue *txq = &fp->txq[cos];
1820 				u16 ndev_tx_id;
1821 
1822 				txq->cos = cos;
1823 				txq->index = txq_index;
1824 				ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1825 				txq->ndev_txq_id = ndev_tx_id;
1826 
1827 				if (edev->dev_info.is_legacy)
1828 					txq->is_legacy = true;
1829 				txq->dev = &edev->pdev->dev;
1830 			}
1831 
1832 			txq_index++;
1833 		}
1834 
1835 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1836 			 edev->ndev->name, queue_id);
1837 	}
1838 
1839 	if (init_xdp) {
1840 		edev->total_xdp_queues = QEDE_RSS_COUNT(edev);
1841 		DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues);
1842 	}
1843 }
1844 
qede_set_real_num_queues(struct qede_dev *edev)1845 static int qede_set_real_num_queues(struct qede_dev *edev)
1846 {
1847 	int rc = 0;
1848 
1849 	rc = netif_set_real_num_tx_queues(edev->ndev,
1850 					  QEDE_TSS_COUNT(edev) *
1851 					  edev->dev_info.num_tc);
1852 	if (rc) {
1853 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1854 		return rc;
1855 	}
1856 
1857 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1858 	if (rc) {
1859 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1860 		return rc;
1861 	}
1862 
1863 	return 0;
1864 }
1865 
qede_napi_disable_remove(struct qede_dev *edev)1866 static void qede_napi_disable_remove(struct qede_dev *edev)
1867 {
1868 	int i;
1869 
1870 	for_each_queue(i) {
1871 		napi_disable(&edev->fp_array[i].napi);
1872 
1873 		netif_napi_del(&edev->fp_array[i].napi);
1874 	}
1875 }
1876 
qede_napi_add_enable(struct qede_dev *edev)1877 static void qede_napi_add_enable(struct qede_dev *edev)
1878 {
1879 	int i;
1880 
1881 	/* Add NAPI objects */
1882 	for_each_queue(i) {
1883 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1884 			       qede_poll, NAPI_POLL_WEIGHT);
1885 		napi_enable(&edev->fp_array[i].napi);
1886 	}
1887 }
1888 
qede_sync_free_irqs(struct qede_dev *edev)1889 static void qede_sync_free_irqs(struct qede_dev *edev)
1890 {
1891 	int i;
1892 
1893 	for (i = 0; i < edev->int_info.used_cnt; i++) {
1894 		if (edev->int_info.msix_cnt) {
1895 			synchronize_irq(edev->int_info.msix[i].vector);
1896 			free_irq(edev->int_info.msix[i].vector,
1897 				 &edev->fp_array[i]);
1898 		} else {
1899 			edev->ops->common->simd_handler_clean(edev->cdev, i);
1900 		}
1901 	}
1902 
1903 	edev->int_info.used_cnt = 0;
1904 	edev->int_info.msix_cnt = 0;
1905 }
1906 
qede_req_msix_irqs(struct qede_dev *edev)1907 static int qede_req_msix_irqs(struct qede_dev *edev)
1908 {
1909 	int i, rc;
1910 
1911 	/* Sanitize number of interrupts == number of prepared RSS queues */
1912 	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1913 		DP_ERR(edev,
1914 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1915 		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1916 		return -EINVAL;
1917 	}
1918 
1919 	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1920 #ifdef CONFIG_RFS_ACCEL
1921 		struct qede_fastpath *fp = &edev->fp_array[i];
1922 
1923 		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1924 			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1925 					      edev->int_info.msix[i].vector);
1926 			if (rc) {
1927 				DP_ERR(edev, "Failed to add CPU rmap\n");
1928 				qede_free_arfs(edev);
1929 			}
1930 		}
1931 #endif
1932 		rc = request_irq(edev->int_info.msix[i].vector,
1933 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1934 				 &edev->fp_array[i]);
1935 		if (rc) {
1936 			DP_ERR(edev, "Request fp %d irq failed\n", i);
1937 			qede_sync_free_irqs(edev);
1938 			return rc;
1939 		}
1940 		DP_VERBOSE(edev, NETIF_MSG_INTR,
1941 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1942 			   edev->fp_array[i].name, i,
1943 			   &edev->fp_array[i]);
1944 		edev->int_info.used_cnt++;
1945 	}
1946 
1947 	return 0;
1948 }
1949 
qede_simd_fp_handler(void *cookie)1950 static void qede_simd_fp_handler(void *cookie)
1951 {
1952 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1953 
1954 	napi_schedule_irqoff(&fp->napi);
1955 }
1956 
qede_setup_irqs(struct qede_dev *edev)1957 static int qede_setup_irqs(struct qede_dev *edev)
1958 {
1959 	int i, rc = 0;
1960 
1961 	/* Learn Interrupt configuration */
1962 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1963 	if (rc)
1964 		return rc;
1965 
1966 	if (edev->int_info.msix_cnt) {
1967 		rc = qede_req_msix_irqs(edev);
1968 		if (rc)
1969 			return rc;
1970 		edev->ndev->irq = edev->int_info.msix[0].vector;
1971 	} else {
1972 		const struct qed_common_ops *ops;
1973 
1974 		/* qed should learn receive the RSS ids and callbacks */
1975 		ops = edev->ops->common;
1976 		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1977 			ops->simd_handler_config(edev->cdev,
1978 						 &edev->fp_array[i], i,
1979 						 qede_simd_fp_handler);
1980 		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1981 	}
1982 	return 0;
1983 }
1984 
qede_drain_txq(struct qede_dev *edev, struct qede_tx_queue *txq, bool allow_drain)1985 static int qede_drain_txq(struct qede_dev *edev,
1986 			  struct qede_tx_queue *txq, bool allow_drain)
1987 {
1988 	int rc, cnt = 1000;
1989 
1990 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
1991 		if (!cnt) {
1992 			if (allow_drain) {
1993 				DP_NOTICE(edev,
1994 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
1995 					  txq->index);
1996 				rc = edev->ops->common->drain(edev->cdev);
1997 				if (rc)
1998 					return rc;
1999 				return qede_drain_txq(edev, txq, false);
2000 			}
2001 			DP_NOTICE(edev,
2002 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
2003 				  txq->index, txq->sw_tx_prod,
2004 				  txq->sw_tx_cons);
2005 			return -ENODEV;
2006 		}
2007 		cnt--;
2008 		usleep_range(1000, 2000);
2009 		barrier();
2010 	}
2011 
2012 	/* FW finished processing, wait for HW to transmit all tx packets */
2013 	usleep_range(1000, 2000);
2014 
2015 	return 0;
2016 }
2017 
qede_stop_txq(struct qede_dev *edev, struct qede_tx_queue *txq, int rss_id)2018 static int qede_stop_txq(struct qede_dev *edev,
2019 			 struct qede_tx_queue *txq, int rss_id)
2020 {
2021 	/* delete doorbell from doorbell recovery mechanism */
2022 	edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
2023 					   &txq->tx_db);
2024 
2025 	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
2026 }
2027 
qede_stop_queues(struct qede_dev *edev)2028 static int qede_stop_queues(struct qede_dev *edev)
2029 {
2030 	struct qed_update_vport_params *vport_update_params;
2031 	struct qed_dev *cdev = edev->cdev;
2032 	struct qede_fastpath *fp;
2033 	int rc, i;
2034 
2035 	/* Disable the vport */
2036 	vport_update_params = vzalloc(sizeof(*vport_update_params));
2037 	if (!vport_update_params)
2038 		return -ENOMEM;
2039 
2040 	vport_update_params->vport_id = 0;
2041 	vport_update_params->update_vport_active_flg = 1;
2042 	vport_update_params->vport_active_flg = 0;
2043 	vport_update_params->update_rss_flg = 0;
2044 
2045 	rc = edev->ops->vport_update(cdev, vport_update_params);
2046 	vfree(vport_update_params);
2047 
2048 	if (rc) {
2049 		DP_ERR(edev, "Failed to update vport\n");
2050 		return rc;
2051 	}
2052 
2053 	/* Flush Tx queues. If needed, request drain from MCP */
2054 	for_each_queue(i) {
2055 		fp = &edev->fp_array[i];
2056 
2057 		if (fp->type & QEDE_FASTPATH_TX) {
2058 			int cos;
2059 
2060 			for_each_cos_in_txq(edev, cos) {
2061 				rc = qede_drain_txq(edev, &fp->txq[cos], true);
2062 				if (rc)
2063 					return rc;
2064 			}
2065 		}
2066 
2067 		if (fp->type & QEDE_FASTPATH_XDP) {
2068 			rc = qede_drain_txq(edev, fp->xdp_tx, true);
2069 			if (rc)
2070 				return rc;
2071 		}
2072 	}
2073 
2074 	/* Stop all Queues in reverse order */
2075 	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2076 		fp = &edev->fp_array[i];
2077 
2078 		/* Stop the Tx Queue(s) */
2079 		if (fp->type & QEDE_FASTPATH_TX) {
2080 			int cos;
2081 
2082 			for_each_cos_in_txq(edev, cos) {
2083 				rc = qede_stop_txq(edev, &fp->txq[cos], i);
2084 				if (rc)
2085 					return rc;
2086 			}
2087 		}
2088 
2089 		/* Stop the Rx Queue */
2090 		if (fp->type & QEDE_FASTPATH_RX) {
2091 			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2092 			if (rc) {
2093 				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2094 				return rc;
2095 			}
2096 		}
2097 
2098 		/* Stop the XDP forwarding queue */
2099 		if (fp->type & QEDE_FASTPATH_XDP) {
2100 			rc = qede_stop_txq(edev, fp->xdp_tx, i);
2101 			if (rc)
2102 				return rc;
2103 
2104 			bpf_prog_put(fp->rxq->xdp_prog);
2105 		}
2106 	}
2107 
2108 	/* Stop the vport */
2109 	rc = edev->ops->vport_stop(cdev, 0);
2110 	if (rc)
2111 		DP_ERR(edev, "Failed to stop VPORT\n");
2112 
2113 	return rc;
2114 }
2115 
qede_start_txq(struct qede_dev *edev, struct qede_fastpath *fp, struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)2116 static int qede_start_txq(struct qede_dev *edev,
2117 			  struct qede_fastpath *fp,
2118 			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2119 {
2120 	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2121 	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2122 	struct qed_queue_start_common_params params;
2123 	struct qed_txq_start_ret_params ret_params;
2124 	int rc;
2125 
2126 	memset(&params, 0, sizeof(params));
2127 	memset(&ret_params, 0, sizeof(ret_params));
2128 
2129 	/* Let the XDP queue share the queue-zone with one of the regular txq.
2130 	 * We don't really care about its coalescing.
2131 	 */
2132 	if (txq->is_xdp)
2133 		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2134 	else
2135 		params.queue_id = txq->index;
2136 
2137 	params.p_sb = fp->sb_info;
2138 	params.sb_idx = sb_idx;
2139 	params.tc = txq->cos;
2140 
2141 	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2142 				   page_cnt, &ret_params);
2143 	if (rc) {
2144 		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2145 		return rc;
2146 	}
2147 
2148 	txq->doorbell_addr = ret_params.p_doorbell;
2149 	txq->handle = ret_params.p_handle;
2150 
2151 	/* Determine the FW consumer address associated */
2152 	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2153 
2154 	/* Prepare the doorbell parameters */
2155 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2156 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2157 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2158 		  DQ_XCM_ETH_TX_BD_PROD_CMD);
2159 	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2160 
2161 	/* register doorbell with doorbell recovery mechanism */
2162 	rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2163 						&txq->tx_db, DB_REC_WIDTH_32B,
2164 						DB_REC_KERNEL);
2165 
2166 	return rc;
2167 }
2168 
qede_start_queues(struct qede_dev *edev, bool clear_stats)2169 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2170 {
2171 	int vlan_removal_en = 1;
2172 	struct qed_dev *cdev = edev->cdev;
2173 	struct qed_dev_info *qed_info = &edev->dev_info.common;
2174 	struct qed_update_vport_params *vport_update_params;
2175 	struct qed_queue_start_common_params q_params;
2176 	struct qed_start_vport_params start = {0};
2177 	int rc, i;
2178 
2179 	if (!edev->num_queues) {
2180 		DP_ERR(edev,
2181 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
2182 		return -EINVAL;
2183 	}
2184 
2185 	vport_update_params = vzalloc(sizeof(*vport_update_params));
2186 	if (!vport_update_params)
2187 		return -ENOMEM;
2188 
2189 	start.handle_ptp_pkts = !!(edev->ptp);
2190 	start.gro_enable = !edev->gro_disable;
2191 	start.mtu = edev->ndev->mtu;
2192 	start.vport_id = 0;
2193 	start.drop_ttl0 = true;
2194 	start.remove_inner_vlan = vlan_removal_en;
2195 	start.clear_stats = clear_stats;
2196 
2197 	rc = edev->ops->vport_start(cdev, &start);
2198 
2199 	if (rc) {
2200 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2201 		goto out;
2202 	}
2203 
2204 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
2205 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2206 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2207 
2208 	for_each_queue(i) {
2209 		struct qede_fastpath *fp = &edev->fp_array[i];
2210 		dma_addr_t p_phys_table;
2211 		u32 page_cnt;
2212 
2213 		if (fp->type & QEDE_FASTPATH_RX) {
2214 			struct qed_rxq_start_ret_params ret_params;
2215 			struct qede_rx_queue *rxq = fp->rxq;
2216 			__le16 *val;
2217 
2218 			memset(&ret_params, 0, sizeof(ret_params));
2219 			memset(&q_params, 0, sizeof(q_params));
2220 			q_params.queue_id = rxq->rxq_id;
2221 			q_params.vport_id = 0;
2222 			q_params.p_sb = fp->sb_info;
2223 			q_params.sb_idx = RX_PI;
2224 
2225 			p_phys_table =
2226 			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2227 			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2228 
2229 			rc = edev->ops->q_rx_start(cdev, i, &q_params,
2230 						   rxq->rx_buf_size,
2231 						   rxq->rx_bd_ring.p_phys_addr,
2232 						   p_phys_table,
2233 						   page_cnt, &ret_params);
2234 			if (rc) {
2235 				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2236 				       rc);
2237 				goto out;
2238 			}
2239 
2240 			/* Use the return parameters */
2241 			rxq->hw_rxq_prod_addr = ret_params.p_prod;
2242 			rxq->handle = ret_params.p_handle;
2243 
2244 			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2245 			rxq->hw_cons_ptr = val;
2246 
2247 			qede_update_rx_prod(edev, rxq);
2248 		}
2249 
2250 		if (fp->type & QEDE_FASTPATH_XDP) {
2251 			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2252 			if (rc)
2253 				goto out;
2254 
2255 			bpf_prog_add(edev->xdp_prog, 1);
2256 			fp->rxq->xdp_prog = edev->xdp_prog;
2257 		}
2258 
2259 		if (fp->type & QEDE_FASTPATH_TX) {
2260 			int cos;
2261 
2262 			for_each_cos_in_txq(edev, cos) {
2263 				rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2264 						    TX_PI(cos));
2265 				if (rc)
2266 					goto out;
2267 			}
2268 		}
2269 	}
2270 
2271 	/* Prepare and send the vport enable */
2272 	vport_update_params->vport_id = start.vport_id;
2273 	vport_update_params->update_vport_active_flg = 1;
2274 	vport_update_params->vport_active_flg = 1;
2275 
2276 	if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2277 	    qed_info->tx_switching) {
2278 		vport_update_params->update_tx_switching_flg = 1;
2279 		vport_update_params->tx_switching_flg = 1;
2280 	}
2281 
2282 	qede_fill_rss_params(edev, &vport_update_params->rss_params,
2283 			     &vport_update_params->update_rss_flg);
2284 
2285 	rc = edev->ops->vport_update(cdev, vport_update_params);
2286 	if (rc)
2287 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2288 
2289 out:
2290 	vfree(vport_update_params);
2291 	return rc;
2292 }
2293 
2294 enum qede_unload_mode {
2295 	QEDE_UNLOAD_NORMAL,
2296 	QEDE_UNLOAD_RECOVERY,
2297 };
2298 
qede_unload(struct qede_dev *edev, enum qede_unload_mode mode, bool is_locked)2299 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2300 			bool is_locked)
2301 {
2302 	struct qed_link_params link_params;
2303 	int rc;
2304 
2305 	DP_INFO(edev, "Starting qede unload\n");
2306 
2307 	if (!is_locked)
2308 		__qede_lock(edev);
2309 
2310 	clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2311 
2312 	if (mode != QEDE_UNLOAD_RECOVERY)
2313 		edev->state = QEDE_STATE_CLOSED;
2314 
2315 	qede_rdma_dev_event_close(edev);
2316 
2317 	/* Close OS Tx */
2318 	netif_tx_disable(edev->ndev);
2319 	netif_carrier_off(edev->ndev);
2320 
2321 	if (mode != QEDE_UNLOAD_RECOVERY) {
2322 		/* Reset the link */
2323 		memset(&link_params, 0, sizeof(link_params));
2324 		link_params.link_up = false;
2325 		edev->ops->common->set_link(edev->cdev, &link_params);
2326 
2327 		rc = qede_stop_queues(edev);
2328 		if (rc) {
2329 			qede_sync_free_irqs(edev);
2330 			goto out;
2331 		}
2332 
2333 		DP_INFO(edev, "Stopped Queues\n");
2334 	}
2335 
2336 	qede_vlan_mark_nonconfigured(edev);
2337 	edev->ops->fastpath_stop(edev->cdev);
2338 
2339 	if (edev->dev_info.common.b_arfs_capable) {
2340 		qede_poll_for_freeing_arfs_filters(edev);
2341 		qede_free_arfs(edev);
2342 	}
2343 
2344 	/* Release the interrupts */
2345 	qede_sync_free_irqs(edev);
2346 	edev->ops->common->set_fp_int(edev->cdev, 0);
2347 
2348 	qede_napi_disable_remove(edev);
2349 
2350 	if (mode == QEDE_UNLOAD_RECOVERY)
2351 		qede_empty_tx_queues(edev);
2352 
2353 	qede_free_mem_load(edev);
2354 	qede_free_fp_array(edev);
2355 
2356 out:
2357 	if (!is_locked)
2358 		__qede_unlock(edev);
2359 
2360 	if (mode != QEDE_UNLOAD_RECOVERY)
2361 		DP_NOTICE(edev, "Link is down\n");
2362 
2363 	edev->ptp_skip_txts = 0;
2364 
2365 	DP_INFO(edev, "Ending qede unload\n");
2366 }
2367 
2368 enum qede_load_mode {
2369 	QEDE_LOAD_NORMAL,
2370 	QEDE_LOAD_RELOAD,
2371 	QEDE_LOAD_RECOVERY,
2372 };
2373 
qede_load(struct qede_dev *edev, enum qede_load_mode mode, bool is_locked)2374 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2375 		     bool is_locked)
2376 {
2377 	struct qed_link_params link_params;
2378 	u8 num_tc;
2379 	int rc;
2380 
2381 	DP_INFO(edev, "Starting qede load\n");
2382 
2383 	if (!is_locked)
2384 		__qede_lock(edev);
2385 
2386 	rc = qede_set_num_queues(edev);
2387 	if (rc)
2388 		goto out;
2389 
2390 	rc = qede_alloc_fp_array(edev);
2391 	if (rc)
2392 		goto out;
2393 
2394 	qede_init_fp(edev);
2395 
2396 	rc = qede_alloc_mem_load(edev);
2397 	if (rc)
2398 		goto err1;
2399 	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2400 		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2401 
2402 	rc = qede_set_real_num_queues(edev);
2403 	if (rc)
2404 		goto err2;
2405 
2406 	if (qede_alloc_arfs(edev)) {
2407 		edev->ndev->features &= ~NETIF_F_NTUPLE;
2408 		edev->dev_info.common.b_arfs_capable = false;
2409 	}
2410 
2411 	qede_napi_add_enable(edev);
2412 	DP_INFO(edev, "Napi added and enabled\n");
2413 
2414 	rc = qede_setup_irqs(edev);
2415 	if (rc)
2416 		goto err3;
2417 	DP_INFO(edev, "Setup IRQs succeeded\n");
2418 
2419 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2420 	if (rc)
2421 		goto err4;
2422 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2423 
2424 	num_tc = netdev_get_num_tc(edev->ndev);
2425 	num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2426 	qede_setup_tc(edev->ndev, num_tc);
2427 
2428 	/* Program un-configured VLANs */
2429 	qede_configure_vlan_filters(edev);
2430 
2431 	set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2432 
2433 	/* Ask for link-up using current configuration */
2434 	memset(&link_params, 0, sizeof(link_params));
2435 	link_params.link_up = true;
2436 	edev->ops->common->set_link(edev->cdev, &link_params);
2437 
2438 	edev->state = QEDE_STATE_OPEN;
2439 
2440 	DP_INFO(edev, "Ending successfully qede load\n");
2441 
2442 	goto out;
2443 err4:
2444 	qede_sync_free_irqs(edev);
2445 err3:
2446 	qede_napi_disable_remove(edev);
2447 err2:
2448 	qede_free_mem_load(edev);
2449 err1:
2450 	edev->ops->common->set_fp_int(edev->cdev, 0);
2451 	qede_free_fp_array(edev);
2452 	edev->num_queues = 0;
2453 	edev->fp_num_tx = 0;
2454 	edev->fp_num_rx = 0;
2455 out:
2456 	if (!is_locked)
2457 		__qede_unlock(edev);
2458 
2459 	return rc;
2460 }
2461 
2462 /* 'func' should be able to run between unload and reload assuming interface
2463  * is actually running, or afterwards in case it's currently DOWN.
2464  */
qede_reload(struct qede_dev *edev, struct qede_reload_args *args, bool is_locked)2465 void qede_reload(struct qede_dev *edev,
2466 		 struct qede_reload_args *args, bool is_locked)
2467 {
2468 	if (!is_locked)
2469 		__qede_lock(edev);
2470 
2471 	/* Since qede_lock is held, internal state wouldn't change even
2472 	 * if netdev state would start transitioning. Check whether current
2473 	 * internal configuration indicates device is up, then reload.
2474 	 */
2475 	if (edev->state == QEDE_STATE_OPEN) {
2476 		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2477 		if (args)
2478 			args->func(edev, args);
2479 		qede_load(edev, QEDE_LOAD_RELOAD, true);
2480 
2481 		/* Since no one is going to do it for us, re-configure */
2482 		qede_config_rx_mode(edev->ndev);
2483 	} else if (args) {
2484 		args->func(edev, args);
2485 	}
2486 
2487 	if (!is_locked)
2488 		__qede_unlock(edev);
2489 }
2490 
2491 /* called with rtnl_lock */
qede_open(struct net_device *ndev)2492 static int qede_open(struct net_device *ndev)
2493 {
2494 	struct qede_dev *edev = netdev_priv(ndev);
2495 	int rc;
2496 
2497 	netif_carrier_off(ndev);
2498 
2499 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2500 
2501 	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2502 	if (rc)
2503 		return rc;
2504 
2505 	udp_tunnel_nic_reset_ntf(ndev);
2506 
2507 	edev->ops->common->update_drv_state(edev->cdev, true);
2508 
2509 	return 0;
2510 }
2511 
qede_close(struct net_device *ndev)2512 static int qede_close(struct net_device *ndev)
2513 {
2514 	struct qede_dev *edev = netdev_priv(ndev);
2515 
2516 	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2517 
2518 	if (edev->cdev)
2519 		edev->ops->common->update_drv_state(edev->cdev, false);
2520 
2521 	return 0;
2522 }
2523 
qede_link_update(void *dev, struct qed_link_output *link)2524 static void qede_link_update(void *dev, struct qed_link_output *link)
2525 {
2526 	struct qede_dev *edev = dev;
2527 
2528 	if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2529 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2530 		return;
2531 	}
2532 
2533 	if (link->link_up) {
2534 		if (!netif_carrier_ok(edev->ndev)) {
2535 			DP_NOTICE(edev, "Link is up\n");
2536 			netif_tx_start_all_queues(edev->ndev);
2537 			netif_carrier_on(edev->ndev);
2538 			qede_rdma_dev_event_open(edev);
2539 		}
2540 	} else {
2541 		if (netif_carrier_ok(edev->ndev)) {
2542 			DP_NOTICE(edev, "Link is down\n");
2543 			netif_tx_disable(edev->ndev);
2544 			netif_carrier_off(edev->ndev);
2545 			qede_rdma_dev_event_close(edev);
2546 		}
2547 	}
2548 }
2549 
qede_schedule_recovery_handler(void *dev)2550 static void qede_schedule_recovery_handler(void *dev)
2551 {
2552 	struct qede_dev *edev = dev;
2553 
2554 	if (edev->state == QEDE_STATE_RECOVERY) {
2555 		DP_NOTICE(edev,
2556 			  "Avoid scheduling a recovery handling since already in recovery state\n");
2557 		return;
2558 	}
2559 
2560 	set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2561 	schedule_delayed_work(&edev->sp_task, 0);
2562 
2563 	DP_INFO(edev, "Scheduled a recovery handler\n");
2564 }
2565 
qede_recovery_failed(struct qede_dev *edev)2566 static void qede_recovery_failed(struct qede_dev *edev)
2567 {
2568 	netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2569 
2570 	netif_device_detach(edev->ndev);
2571 
2572 	if (edev->cdev)
2573 		edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2574 }
2575 
qede_recovery_handler(struct qede_dev *edev)2576 static void qede_recovery_handler(struct qede_dev *edev)
2577 {
2578 	u32 curr_state = edev->state;
2579 	int rc;
2580 
2581 	DP_NOTICE(edev, "Starting a recovery process\n");
2582 
2583 	/* No need to acquire first the qede_lock since is done by qede_sp_task
2584 	 * before calling this function.
2585 	 */
2586 	edev->state = QEDE_STATE_RECOVERY;
2587 
2588 	edev->ops->common->recovery_prolog(edev->cdev);
2589 
2590 	if (curr_state == QEDE_STATE_OPEN)
2591 		qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2592 
2593 	__qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2594 
2595 	rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2596 			  IS_VF(edev), QEDE_PROBE_RECOVERY);
2597 	if (rc) {
2598 		edev->cdev = NULL;
2599 		goto err;
2600 	}
2601 
2602 	if (curr_state == QEDE_STATE_OPEN) {
2603 		rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2604 		if (rc)
2605 			goto err;
2606 
2607 		qede_config_rx_mode(edev->ndev);
2608 		udp_tunnel_nic_reset_ntf(edev->ndev);
2609 	}
2610 
2611 	edev->state = curr_state;
2612 
2613 	DP_NOTICE(edev, "Recovery handling is done\n");
2614 
2615 	return;
2616 
2617 err:
2618 	qede_recovery_failed(edev);
2619 }
2620 
qede_atomic_hw_err_handler(struct qede_dev *edev)2621 static void qede_atomic_hw_err_handler(struct qede_dev *edev)
2622 {
2623 	struct qed_dev *cdev = edev->cdev;
2624 
2625 	DP_NOTICE(edev,
2626 		  "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2627 		  edev->err_flags);
2628 
2629 	/* Get a call trace of the flow that led to the error */
2630 	WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
2631 
2632 	/* Prevent HW attentions from being reasserted */
2633 	if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2634 		edev->ops->common->attn_clr_enable(cdev, true);
2635 
2636 	DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2637 }
2638 
qede_generic_hw_err_handler(struct qede_dev *edev)2639 static void qede_generic_hw_err_handler(struct qede_dev *edev)
2640 {
2641 	DP_NOTICE(edev,
2642 		  "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2643 		  edev->err_flags);
2644 
2645 	if (edev->devlink)
2646 		edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type);
2647 
2648 	clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2649 
2650 	DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
2651 }
2652 
qede_set_hw_err_flags(struct qede_dev *edev, enum qed_hw_err_type err_type)2653 static void qede_set_hw_err_flags(struct qede_dev *edev,
2654 				  enum qed_hw_err_type err_type)
2655 {
2656 	unsigned long err_flags = 0;
2657 
2658 	switch (err_type) {
2659 	case QED_HW_ERR_DMAE_FAIL:
2660 		set_bit(QEDE_ERR_WARN, &err_flags);
2661 		fallthrough;
2662 	case QED_HW_ERR_MFW_RESP_FAIL:
2663 	case QED_HW_ERR_HW_ATTN:
2664 	case QED_HW_ERR_RAMROD_FAIL:
2665 	case QED_HW_ERR_FW_ASSERT:
2666 		set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2667 		set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2668 		break;
2669 
2670 	default:
2671 		DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2672 		break;
2673 	}
2674 
2675 	edev->err_flags |= err_flags;
2676 }
2677 
qede_schedule_hw_err_handler(void *dev, enum qed_hw_err_type err_type)2678 static void qede_schedule_hw_err_handler(void *dev,
2679 					 enum qed_hw_err_type err_type)
2680 {
2681 	struct qede_dev *edev = dev;
2682 
2683 	/* Fan failure cannot be masked by handling of another HW error or by a
2684 	 * concurrent recovery process.
2685 	 */
2686 	if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2687 	     edev->state == QEDE_STATE_RECOVERY) &&
2688 	     err_type != QED_HW_ERR_FAN_FAIL) {
2689 		DP_INFO(edev,
2690 			"Avoid scheduling an error handling while another HW error is being handled\n");
2691 		return;
2692 	}
2693 
2694 	if (err_type >= QED_HW_ERR_LAST) {
2695 		DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2696 		clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2697 		return;
2698 	}
2699 
2700 	edev->last_err_type = err_type;
2701 	qede_set_hw_err_flags(edev, err_type);
2702 	qede_atomic_hw_err_handler(edev);
2703 	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2704 	schedule_delayed_work(&edev->sp_task, 0);
2705 
2706 	DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2707 }
2708 
qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)2709 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2710 {
2711 	struct netdev_queue *netdev_txq;
2712 
2713 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2714 	if (netif_xmit_stopped(netdev_txq))
2715 		return true;
2716 
2717 	return false;
2718 }
2719 
qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)2720 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2721 {
2722 	struct qede_dev *edev = dev;
2723 	struct netdev_hw_addr *ha;
2724 	int i;
2725 
2726 	if (edev->ndev->features & NETIF_F_IP_CSUM)
2727 		data->feat_flags |= QED_TLV_IP_CSUM;
2728 	if (edev->ndev->features & NETIF_F_TSO)
2729 		data->feat_flags |= QED_TLV_LSO;
2730 
2731 	ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2732 	eth_zero_addr(data->mac[1]);
2733 	eth_zero_addr(data->mac[2]);
2734 	/* Copy the first two UC macs */
2735 	netif_addr_lock_bh(edev->ndev);
2736 	i = 1;
2737 	netdev_for_each_uc_addr(ha, edev->ndev) {
2738 		ether_addr_copy(data->mac[i++], ha->addr);
2739 		if (i == QED_TLV_MAC_COUNT)
2740 			break;
2741 	}
2742 
2743 	netif_addr_unlock_bh(edev->ndev);
2744 }
2745 
qede_get_eth_tlv_data(void *dev, void *data)2746 static void qede_get_eth_tlv_data(void *dev, void *data)
2747 {
2748 	struct qed_mfw_tlv_eth *etlv = data;
2749 	struct qede_dev *edev = dev;
2750 	struct qede_fastpath *fp;
2751 	int i;
2752 
2753 	etlv->lso_maxoff_size = 0XFFFF;
2754 	etlv->lso_maxoff_size_set = true;
2755 	etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2756 	etlv->lso_minseg_size_set = true;
2757 	etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2758 	etlv->prom_mode_set = true;
2759 	etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2760 	etlv->tx_descr_size_set = true;
2761 	etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2762 	etlv->rx_descr_size_set = true;
2763 	etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2764 	etlv->iov_offload_set = true;
2765 
2766 	/* Fill information regarding queues; Should be done under the qede
2767 	 * lock to guarantee those don't change beneath our feet.
2768 	 */
2769 	etlv->txqs_empty = true;
2770 	etlv->rxqs_empty = true;
2771 	etlv->num_txqs_full = 0;
2772 	etlv->num_rxqs_full = 0;
2773 
2774 	__qede_lock(edev);
2775 	for_each_queue(i) {
2776 		fp = &edev->fp_array[i];
2777 		if (fp->type & QEDE_FASTPATH_TX) {
2778 			struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2779 
2780 			if (txq->sw_tx_cons != txq->sw_tx_prod)
2781 				etlv->txqs_empty = false;
2782 			if (qede_is_txq_full(edev, txq))
2783 				etlv->num_txqs_full++;
2784 		}
2785 		if (fp->type & QEDE_FASTPATH_RX) {
2786 			if (qede_has_rx_work(fp->rxq))
2787 				etlv->rxqs_empty = false;
2788 
2789 			/* This one is a bit tricky; Firmware might stop
2790 			 * placing packets if ring is not yet full.
2791 			 * Give an approximation.
2792 			 */
2793 			if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2794 			    qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2795 			    RX_RING_SIZE - 100)
2796 				etlv->num_rxqs_full++;
2797 		}
2798 	}
2799 	__qede_unlock(edev);
2800 
2801 	etlv->txqs_empty_set = true;
2802 	etlv->rxqs_empty_set = true;
2803 	etlv->num_txqs_full_set = true;
2804 	etlv->num_rxqs_full_set = true;
2805 }
2806 
2807 /**
2808  * qede_io_error_detected - called when PCI error is detected
2809  * @pdev: Pointer to PCI device
2810  * @state: The current pci connection state
2811  *
2812  * This function is called after a PCI bus error affecting
2813  * this device has been detected.
2814  */
2815 static pci_ers_result_t
qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)2816 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2817 {
2818 	struct net_device *dev = pci_get_drvdata(pdev);
2819 	struct qede_dev *edev = netdev_priv(dev);
2820 
2821 	if (!edev)
2822 		return PCI_ERS_RESULT_NONE;
2823 
2824 	DP_NOTICE(edev, "IO error detected [%d]\n", state);
2825 
2826 	__qede_lock(edev);
2827 	if (edev->state == QEDE_STATE_RECOVERY) {
2828 		DP_NOTICE(edev, "Device already in the recovery state\n");
2829 		__qede_unlock(edev);
2830 		return PCI_ERS_RESULT_NONE;
2831 	}
2832 
2833 	/* PF handles the recovery of its VFs */
2834 	if (IS_VF(edev)) {
2835 		DP_VERBOSE(edev, QED_MSG_IOV,
2836 			   "VF recovery is handled by its PF\n");
2837 		__qede_unlock(edev);
2838 		return PCI_ERS_RESULT_RECOVERED;
2839 	}
2840 
2841 	/* Close OS Tx */
2842 	netif_tx_disable(edev->ndev);
2843 	netif_carrier_off(edev->ndev);
2844 
2845 	set_bit(QEDE_SP_AER, &edev->sp_flags);
2846 	schedule_delayed_work(&edev->sp_task, 0);
2847 
2848 	__qede_unlock(edev);
2849 
2850 	return PCI_ERS_RESULT_CAN_RECOVER;
2851 }
2852