1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/pci.h>
13 #include <net/pkt_sched.h>
14 
15 #include <net/ipv6.h>
16 
17 #include "igc.h"
18 #include "igc_hw.h"
19 #include "igc_tsn.h"
20 
21 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
22 
23 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
24 
25 static int debug = -1;
26 
27 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
28 MODULE_DESCRIPTION(DRV_SUMMARY);
29 MODULE_LICENSE("GPL v2");
30 module_param(debug, int, 0);
31 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
32 
33 char igc_driver_name[] = "igc";
34 static const char igc_driver_string[] = DRV_SUMMARY;
35 static const char igc_copyright[] =
36 	"Copyright(c) 2018 Intel Corporation.";
37 
38 static const struct igc_info *igc_info_tbl[] = {
39 	[board_base] = &igc_base_info,
40 };
41 
42 static const struct pci_device_id igc_pci_tbl[] = {
43 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
44 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
45 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
46 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
47 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
48 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
49 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
50 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
51 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
52 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
53 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
54 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
55 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
56 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
57 	/* required last entry */
58 	{0, }
59 };
60 
61 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
62 
63 enum latency_range {
64 	lowest_latency = 0,
65 	low_latency = 1,
66 	bulk_latency = 2,
67 	latency_invalid = 255
68 };
69 
igc_reset(struct igc_adapter *adapter)70 void igc_reset(struct igc_adapter *adapter)
71 {
72 	struct net_device *dev = adapter->netdev;
73 	struct igc_hw *hw = &adapter->hw;
74 	struct igc_fc_info *fc = &hw->fc;
75 	u32 pba, hwm;
76 
77 	/* Repartition PBA for greater than 9k MTU if required */
78 	pba = IGC_PBA_34K;
79 
80 	/* flow control settings
81 	 * The high water mark must be low enough to fit one full frame
82 	 * after transmitting the pause frame.  As such we must have enough
83 	 * space to allow for us to complete our current transmit and then
84 	 * receive the frame that is in progress from the link partner.
85 	 * Set it to:
86 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
87 	 */
88 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
89 
90 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
91 	fc->low_water = fc->high_water - 16;
92 	fc->pause_time = 0xFFFF;
93 	fc->send_xon = 1;
94 	fc->current_mode = fc->requested_mode;
95 
96 	hw->mac.ops.reset_hw(hw);
97 
98 	if (hw->mac.ops.init_hw(hw))
99 		netdev_err(dev, "Error on hardware initialization\n");
100 
101 	/* Re-establish EEE setting */
102 	igc_set_eee_i225(hw, true, true, true);
103 
104 	if (!netif_running(adapter->netdev))
105 		igc_power_down_phy_copper_base(&adapter->hw);
106 
107 	/* Re-enable PTP, where applicable. */
108 	igc_ptp_reset(adapter);
109 
110 	/* Re-enable TSN offloading, where applicable. */
111 	igc_tsn_offload_apply(adapter);
112 
113 	igc_get_phy_info(hw);
114 }
115 
116 /**
117  * igc_power_up_link - Power up the phy link
118  * @adapter: address of board private structure
119  */
igc_power_up_link(struct igc_adapter *adapter)120 static void igc_power_up_link(struct igc_adapter *adapter)
121 {
122 	igc_reset_phy(&adapter->hw);
123 
124 	igc_power_up_phy_copper(&adapter->hw);
125 
126 	igc_setup_link(&adapter->hw);
127 }
128 
129 /**
130  * igc_release_hw_control - release control of the h/w to f/w
131  * @adapter: address of board private structure
132  *
133  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
134  * For ASF and Pass Through versions of f/w this means that the
135  * driver is no longer loaded.
136  */
igc_release_hw_control(struct igc_adapter *adapter)137 static void igc_release_hw_control(struct igc_adapter *adapter)
138 {
139 	struct igc_hw *hw = &adapter->hw;
140 	u32 ctrl_ext;
141 
142 	if (!pci_device_is_present(adapter->pdev))
143 		return;
144 
145 	/* Let firmware take over control of h/w */
146 	ctrl_ext = rd32(IGC_CTRL_EXT);
147 	wr32(IGC_CTRL_EXT,
148 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
149 }
150 
151 /**
152  * igc_get_hw_control - get control of the h/w from f/w
153  * @adapter: address of board private structure
154  *
155  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
156  * For ASF and Pass Through versions of f/w this means that
157  * the driver is loaded.
158  */
igc_get_hw_control(struct igc_adapter *adapter)159 static void igc_get_hw_control(struct igc_adapter *adapter)
160 {
161 	struct igc_hw *hw = &adapter->hw;
162 	u32 ctrl_ext;
163 
164 	/* Let firmware know the driver has taken over */
165 	ctrl_ext = rd32(IGC_CTRL_EXT);
166 	wr32(IGC_CTRL_EXT,
167 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
168 }
169 
170 /**
171  * igc_clean_tx_ring - Free Tx Buffers
172  * @tx_ring: ring to be cleaned
173  */
igc_clean_tx_ring(struct igc_ring *tx_ring)174 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
175 {
176 	u16 i = tx_ring->next_to_clean;
177 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
178 
179 	while (i != tx_ring->next_to_use) {
180 		union igc_adv_tx_desc *eop_desc, *tx_desc;
181 
182 		/* Free all the Tx ring sk_buffs */
183 		dev_kfree_skb_any(tx_buffer->skb);
184 
185 		/* unmap skb header data */
186 		dma_unmap_single(tx_ring->dev,
187 				 dma_unmap_addr(tx_buffer, dma),
188 				 dma_unmap_len(tx_buffer, len),
189 				 DMA_TO_DEVICE);
190 
191 		/* check for eop_desc to determine the end of the packet */
192 		eop_desc = tx_buffer->next_to_watch;
193 		tx_desc = IGC_TX_DESC(tx_ring, i);
194 
195 		/* unmap remaining buffers */
196 		while (tx_desc != eop_desc) {
197 			tx_buffer++;
198 			tx_desc++;
199 			i++;
200 			if (unlikely(i == tx_ring->count)) {
201 				i = 0;
202 				tx_buffer = tx_ring->tx_buffer_info;
203 				tx_desc = IGC_TX_DESC(tx_ring, 0);
204 			}
205 
206 			/* unmap any remaining paged data */
207 			if (dma_unmap_len(tx_buffer, len))
208 				dma_unmap_page(tx_ring->dev,
209 					       dma_unmap_addr(tx_buffer, dma),
210 					       dma_unmap_len(tx_buffer, len),
211 					       DMA_TO_DEVICE);
212 		}
213 
214 		tx_buffer->next_to_watch = NULL;
215 
216 		/* move us one more past the eop_desc for start of next pkt */
217 		tx_buffer++;
218 		i++;
219 		if (unlikely(i == tx_ring->count)) {
220 			i = 0;
221 			tx_buffer = tx_ring->tx_buffer_info;
222 		}
223 	}
224 
225 	/* reset BQL for queue */
226 	netdev_tx_reset_queue(txring_txq(tx_ring));
227 
228 	/* reset next_to_use and next_to_clean */
229 	tx_ring->next_to_use = 0;
230 	tx_ring->next_to_clean = 0;
231 }
232 
233 /**
234  * igc_free_tx_resources - Free Tx Resources per Queue
235  * @tx_ring: Tx descriptor ring for a specific queue
236  *
237  * Free all transmit software resources
238  */
igc_free_tx_resources(struct igc_ring *tx_ring)239 void igc_free_tx_resources(struct igc_ring *tx_ring)
240 {
241 	igc_clean_tx_ring(tx_ring);
242 
243 	vfree(tx_ring->tx_buffer_info);
244 	tx_ring->tx_buffer_info = NULL;
245 
246 	/* if not set, then don't free */
247 	if (!tx_ring->desc)
248 		return;
249 
250 	dma_free_coherent(tx_ring->dev, tx_ring->size,
251 			  tx_ring->desc, tx_ring->dma);
252 
253 	tx_ring->desc = NULL;
254 }
255 
256 /**
257  * igc_free_all_tx_resources - Free Tx Resources for All Queues
258  * @adapter: board private structure
259  *
260  * Free all transmit software resources
261  */
igc_free_all_tx_resources(struct igc_adapter *adapter)262 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
263 {
264 	int i;
265 
266 	for (i = 0; i < adapter->num_tx_queues; i++)
267 		igc_free_tx_resources(adapter->tx_ring[i]);
268 }
269 
270 /**
271  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
272  * @adapter: board private structure
273  */
igc_clean_all_tx_rings(struct igc_adapter *adapter)274 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
275 {
276 	int i;
277 
278 	for (i = 0; i < adapter->num_tx_queues; i++)
279 		if (adapter->tx_ring[i])
280 			igc_clean_tx_ring(adapter->tx_ring[i]);
281 }
282 
283 /**
284  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
285  * @tx_ring: tx descriptor ring (for a specific queue) to setup
286  *
287  * Return 0 on success, negative on failure
288  */
igc_setup_tx_resources(struct igc_ring *tx_ring)289 int igc_setup_tx_resources(struct igc_ring *tx_ring)
290 {
291 	struct net_device *ndev = tx_ring->netdev;
292 	struct device *dev = tx_ring->dev;
293 	int size = 0;
294 
295 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
296 	tx_ring->tx_buffer_info = vzalloc(size);
297 	if (!tx_ring->tx_buffer_info)
298 		goto err;
299 
300 	/* round up to nearest 4K */
301 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
302 	tx_ring->size = ALIGN(tx_ring->size, 4096);
303 
304 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
305 					   &tx_ring->dma, GFP_KERNEL);
306 
307 	if (!tx_ring->desc)
308 		goto err;
309 
310 	tx_ring->next_to_use = 0;
311 	tx_ring->next_to_clean = 0;
312 
313 	return 0;
314 
315 err:
316 	vfree(tx_ring->tx_buffer_info);
317 	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
318 	return -ENOMEM;
319 }
320 
321 /**
322  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
323  * @adapter: board private structure
324  *
325  * Return 0 on success, negative on failure
326  */
igc_setup_all_tx_resources(struct igc_adapter *adapter)327 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
328 {
329 	struct net_device *dev = adapter->netdev;
330 	int i, err = 0;
331 
332 	for (i = 0; i < adapter->num_tx_queues; i++) {
333 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
334 		if (err) {
335 			netdev_err(dev, "Error on Tx queue %u setup\n", i);
336 			for (i--; i >= 0; i--)
337 				igc_free_tx_resources(adapter->tx_ring[i]);
338 			break;
339 		}
340 	}
341 
342 	return err;
343 }
344 
345 /**
346  * igc_clean_rx_ring - Free Rx Buffers per Queue
347  * @rx_ring: ring to free buffers from
348  */
igc_clean_rx_ring(struct igc_ring *rx_ring)349 static void igc_clean_rx_ring(struct igc_ring *rx_ring)
350 {
351 	u16 i = rx_ring->next_to_clean;
352 
353 	dev_kfree_skb(rx_ring->skb);
354 	rx_ring->skb = NULL;
355 
356 	/* Free all the Rx ring sk_buffs */
357 	while (i != rx_ring->next_to_alloc) {
358 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
359 
360 		/* Invalidate cache lines that may have been written to by
361 		 * device so that we avoid corrupting memory.
362 		 */
363 		dma_sync_single_range_for_cpu(rx_ring->dev,
364 					      buffer_info->dma,
365 					      buffer_info->page_offset,
366 					      igc_rx_bufsz(rx_ring),
367 					      DMA_FROM_DEVICE);
368 
369 		/* free resources associated with mapping */
370 		dma_unmap_page_attrs(rx_ring->dev,
371 				     buffer_info->dma,
372 				     igc_rx_pg_size(rx_ring),
373 				     DMA_FROM_DEVICE,
374 				     IGC_RX_DMA_ATTR);
375 		__page_frag_cache_drain(buffer_info->page,
376 					buffer_info->pagecnt_bias);
377 
378 		i++;
379 		if (i == rx_ring->count)
380 			i = 0;
381 	}
382 
383 	rx_ring->next_to_alloc = 0;
384 	rx_ring->next_to_clean = 0;
385 	rx_ring->next_to_use = 0;
386 }
387 
388 /**
389  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
390  * @adapter: board private structure
391  */
igc_clean_all_rx_rings(struct igc_adapter *adapter)392 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
393 {
394 	int i;
395 
396 	for (i = 0; i < adapter->num_rx_queues; i++)
397 		if (adapter->rx_ring[i])
398 			igc_clean_rx_ring(adapter->rx_ring[i]);
399 }
400 
401 /**
402  * igc_free_rx_resources - Free Rx Resources
403  * @rx_ring: ring to clean the resources from
404  *
405  * Free all receive software resources
406  */
igc_free_rx_resources(struct igc_ring *rx_ring)407 void igc_free_rx_resources(struct igc_ring *rx_ring)
408 {
409 	igc_clean_rx_ring(rx_ring);
410 
411 	vfree(rx_ring->rx_buffer_info);
412 	rx_ring->rx_buffer_info = NULL;
413 
414 	/* if not set, then don't free */
415 	if (!rx_ring->desc)
416 		return;
417 
418 	dma_free_coherent(rx_ring->dev, rx_ring->size,
419 			  rx_ring->desc, rx_ring->dma);
420 
421 	rx_ring->desc = NULL;
422 }
423 
424 /**
425  * igc_free_all_rx_resources - Free Rx Resources for All Queues
426  * @adapter: board private structure
427  *
428  * Free all receive software resources
429  */
igc_free_all_rx_resources(struct igc_adapter *adapter)430 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
431 {
432 	int i;
433 
434 	for (i = 0; i < adapter->num_rx_queues; i++)
435 		igc_free_rx_resources(adapter->rx_ring[i]);
436 }
437 
438 /**
439  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
440  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
441  *
442  * Returns 0 on success, negative on failure
443  */
igc_setup_rx_resources(struct igc_ring *rx_ring)444 int igc_setup_rx_resources(struct igc_ring *rx_ring)
445 {
446 	struct net_device *ndev = rx_ring->netdev;
447 	struct device *dev = rx_ring->dev;
448 	int size, desc_len;
449 
450 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
451 	rx_ring->rx_buffer_info = vzalloc(size);
452 	if (!rx_ring->rx_buffer_info)
453 		goto err;
454 
455 	desc_len = sizeof(union igc_adv_rx_desc);
456 
457 	/* Round up to nearest 4K */
458 	rx_ring->size = rx_ring->count * desc_len;
459 	rx_ring->size = ALIGN(rx_ring->size, 4096);
460 
461 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
462 					   &rx_ring->dma, GFP_KERNEL);
463 
464 	if (!rx_ring->desc)
465 		goto err;
466 
467 	rx_ring->next_to_alloc = 0;
468 	rx_ring->next_to_clean = 0;
469 	rx_ring->next_to_use = 0;
470 
471 	return 0;
472 
473 err:
474 	vfree(rx_ring->rx_buffer_info);
475 	rx_ring->rx_buffer_info = NULL;
476 	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
477 	return -ENOMEM;
478 }
479 
480 /**
481  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
482  *                                (Descriptors) for all queues
483  * @adapter: board private structure
484  *
485  * Return 0 on success, negative on failure
486  */
igc_setup_all_rx_resources(struct igc_adapter *adapter)487 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
488 {
489 	struct net_device *dev = adapter->netdev;
490 	int i, err = 0;
491 
492 	for (i = 0; i < adapter->num_rx_queues; i++) {
493 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
494 		if (err) {
495 			netdev_err(dev, "Error on Rx queue %u setup\n", i);
496 			for (i--; i >= 0; i--)
497 				igc_free_rx_resources(adapter->rx_ring[i]);
498 			break;
499 		}
500 	}
501 
502 	return err;
503 }
504 
505 /**
506  * igc_configure_rx_ring - Configure a receive ring after Reset
507  * @adapter: board private structure
508  * @ring: receive ring to be configured
509  *
510  * Configure the Rx unit of the MAC after a reset.
511  */
igc_configure_rx_ring(struct igc_adapter *adapter, struct igc_ring *ring)512 static void igc_configure_rx_ring(struct igc_adapter *adapter,
513 				  struct igc_ring *ring)
514 {
515 	struct igc_hw *hw = &adapter->hw;
516 	union igc_adv_rx_desc *rx_desc;
517 	int reg_idx = ring->reg_idx;
518 	u32 srrctl = 0, rxdctl = 0;
519 	u64 rdba = ring->dma;
520 
521 	/* disable the queue */
522 	wr32(IGC_RXDCTL(reg_idx), 0);
523 
524 	/* Set DMA base address registers */
525 	wr32(IGC_RDBAL(reg_idx),
526 	     rdba & 0x00000000ffffffffULL);
527 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
528 	wr32(IGC_RDLEN(reg_idx),
529 	     ring->count * sizeof(union igc_adv_rx_desc));
530 
531 	/* initialize head and tail */
532 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
533 	wr32(IGC_RDH(reg_idx), 0);
534 	writel(0, ring->tail);
535 
536 	/* reset next-to- use/clean to place SW in sync with hardware */
537 	ring->next_to_clean = 0;
538 	ring->next_to_use = 0;
539 
540 	/* set descriptor configuration */
541 	srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
542 	if (ring_uses_large_buffer(ring))
543 		srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
544 	else
545 		srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
546 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
547 
548 	wr32(IGC_SRRCTL(reg_idx), srrctl);
549 
550 	rxdctl |= IGC_RX_PTHRESH;
551 	rxdctl |= IGC_RX_HTHRESH << 8;
552 	rxdctl |= IGC_RX_WTHRESH << 16;
553 
554 	/* initialize rx_buffer_info */
555 	memset(ring->rx_buffer_info, 0,
556 	       sizeof(struct igc_rx_buffer) * ring->count);
557 
558 	/* initialize Rx descriptor 0 */
559 	rx_desc = IGC_RX_DESC(ring, 0);
560 	rx_desc->wb.upper.length = 0;
561 
562 	/* enable receive descriptor fetching */
563 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
564 
565 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
566 }
567 
568 /**
569  * igc_configure_rx - Configure receive Unit after Reset
570  * @adapter: board private structure
571  *
572  * Configure the Rx unit of the MAC after a reset.
573  */
igc_configure_rx(struct igc_adapter *adapter)574 static void igc_configure_rx(struct igc_adapter *adapter)
575 {
576 	int i;
577 
578 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
579 	 * the Base and Length of the Rx Descriptor Ring
580 	 */
581 	for (i = 0; i < adapter->num_rx_queues; i++)
582 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
583 }
584 
585 /**
586  * igc_configure_tx_ring - Configure transmit ring after Reset
587  * @adapter: board private structure
588  * @ring: tx ring to configure
589  *
590  * Configure a transmit ring after a reset.
591  */
igc_configure_tx_ring(struct igc_adapter *adapter, struct igc_ring *ring)592 static void igc_configure_tx_ring(struct igc_adapter *adapter,
593 				  struct igc_ring *ring)
594 {
595 	struct igc_hw *hw = &adapter->hw;
596 	int reg_idx = ring->reg_idx;
597 	u64 tdba = ring->dma;
598 	u32 txdctl = 0;
599 
600 	/* disable the queue */
601 	wr32(IGC_TXDCTL(reg_idx), 0);
602 	wrfl();
603 
604 	wr32(IGC_TDLEN(reg_idx),
605 	     ring->count * sizeof(union igc_adv_tx_desc));
606 	wr32(IGC_TDBAL(reg_idx),
607 	     tdba & 0x00000000ffffffffULL);
608 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
609 
610 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
611 	wr32(IGC_TDH(reg_idx), 0);
612 	writel(0, ring->tail);
613 
614 	txdctl |= IGC_TX_PTHRESH;
615 	txdctl |= IGC_TX_HTHRESH << 8;
616 	txdctl |= IGC_TX_WTHRESH << 16;
617 
618 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
619 	wr32(IGC_TXDCTL(reg_idx), txdctl);
620 }
621 
622 /**
623  * igc_configure_tx - Configure transmit Unit after Reset
624  * @adapter: board private structure
625  *
626  * Configure the Tx unit of the MAC after a reset.
627  */
igc_configure_tx(struct igc_adapter *adapter)628 static void igc_configure_tx(struct igc_adapter *adapter)
629 {
630 	int i;
631 
632 	for (i = 0; i < adapter->num_tx_queues; i++)
633 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
634 }
635 
636 /**
637  * igc_setup_mrqc - configure the multiple receive queue control registers
638  * @adapter: Board private structure
639  */
igc_setup_mrqc(struct igc_adapter *adapter)640 static void igc_setup_mrqc(struct igc_adapter *adapter)
641 {
642 	struct igc_hw *hw = &adapter->hw;
643 	u32 j, num_rx_queues;
644 	u32 mrqc, rxcsum;
645 	u32 rss_key[10];
646 
647 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
648 	for (j = 0; j < 10; j++)
649 		wr32(IGC_RSSRK(j), rss_key[j]);
650 
651 	num_rx_queues = adapter->rss_queues;
652 
653 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
654 		for (j = 0; j < IGC_RETA_SIZE; j++)
655 			adapter->rss_indir_tbl[j] =
656 			(j * num_rx_queues) / IGC_RETA_SIZE;
657 		adapter->rss_indir_tbl_init = num_rx_queues;
658 	}
659 	igc_write_rss_indir_tbl(adapter);
660 
661 	/* Disable raw packet checksumming so that RSS hash is placed in
662 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
663 	 * offloads as they are enabled by default
664 	 */
665 	rxcsum = rd32(IGC_RXCSUM);
666 	rxcsum |= IGC_RXCSUM_PCSD;
667 
668 	/* Enable Receive Checksum Offload for SCTP */
669 	rxcsum |= IGC_RXCSUM_CRCOFL;
670 
671 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
672 	wr32(IGC_RXCSUM, rxcsum);
673 
674 	/* Generate RSS hash based on packet types, TCP/UDP
675 	 * port numbers and/or IPv4/v6 src and dst addresses
676 	 */
677 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
678 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
679 	       IGC_MRQC_RSS_FIELD_IPV6 |
680 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
681 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
682 
683 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
684 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
685 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
686 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
687 
688 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
689 
690 	wr32(IGC_MRQC, mrqc);
691 }
692 
693 /**
694  * igc_setup_rctl - configure the receive control registers
695  * @adapter: Board private structure
696  */
igc_setup_rctl(struct igc_adapter *adapter)697 static void igc_setup_rctl(struct igc_adapter *adapter)
698 {
699 	struct igc_hw *hw = &adapter->hw;
700 	u32 rctl;
701 
702 	rctl = rd32(IGC_RCTL);
703 
704 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
705 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
706 
707 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
708 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
709 
710 	/* enable stripping of CRC. Newer features require
711 	 * that the HW strips the CRC.
712 	 */
713 	rctl |= IGC_RCTL_SECRC;
714 
715 	/* disable store bad packets and clear size bits. */
716 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
717 
718 	/* enable LPE to allow for reception of jumbo frames */
719 	rctl |= IGC_RCTL_LPE;
720 
721 	/* disable queue 0 to prevent tail write w/o re-config */
722 	wr32(IGC_RXDCTL(0), 0);
723 
724 	/* This is useful for sniffing bad packets. */
725 	if (adapter->netdev->features & NETIF_F_RXALL) {
726 		/* UPE and MPE will be handled by normal PROMISC logic
727 		 * in set_rx_mode
728 		 */
729 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
730 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
731 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
732 
733 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
734 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
735 	}
736 
737 	wr32(IGC_RCTL, rctl);
738 }
739 
740 /**
741  * igc_setup_tctl - configure the transmit control registers
742  * @adapter: Board private structure
743  */
igc_setup_tctl(struct igc_adapter *adapter)744 static void igc_setup_tctl(struct igc_adapter *adapter)
745 {
746 	struct igc_hw *hw = &adapter->hw;
747 	u32 tctl;
748 
749 	/* disable queue 0 which icould be enabled by default */
750 	wr32(IGC_TXDCTL(0), 0);
751 
752 	/* Program the Transmit Control Register */
753 	tctl = rd32(IGC_TCTL);
754 	tctl &= ~IGC_TCTL_CT;
755 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
756 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
757 
758 	/* Enable transmits */
759 	tctl |= IGC_TCTL_EN;
760 
761 	wr32(IGC_TCTL, tctl);
762 }
763 
764 /**
765  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
766  * @adapter: Pointer to adapter where the filter should be set
767  * @index: Filter index
768  * @type: MAC address filter type (source or destination)
769  * @addr: MAC address
770  * @queue: If non-negative, queue assignment feature is enabled and frames
771  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
772  *         assignment is disabled.
773  */
igc_set_mac_filter_hw(struct igc_adapter *adapter, int index, enum igc_mac_filter_type type, const u8 *addr, int queue)774 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
775 				  enum igc_mac_filter_type type,
776 				  const u8 *addr, int queue)
777 {
778 	struct net_device *dev = adapter->netdev;
779 	struct igc_hw *hw = &adapter->hw;
780 	u32 ral, rah;
781 
782 	if (WARN_ON(index >= hw->mac.rar_entry_count))
783 		return;
784 
785 	ral = le32_to_cpup((__le32 *)(addr));
786 	rah = le16_to_cpup((__le16 *)(addr + 4));
787 
788 	if (type == IGC_MAC_FILTER_TYPE_SRC) {
789 		rah &= ~IGC_RAH_ASEL_MASK;
790 		rah |= IGC_RAH_ASEL_SRC_ADDR;
791 	}
792 
793 	if (queue >= 0) {
794 		rah &= ~IGC_RAH_QSEL_MASK;
795 		rah |= (queue << IGC_RAH_QSEL_SHIFT);
796 		rah |= IGC_RAH_QSEL_ENABLE;
797 	}
798 
799 	rah |= IGC_RAH_AV;
800 
801 	wr32(IGC_RAL(index), ral);
802 	wr32(IGC_RAH(index), rah);
803 
804 	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
805 }
806 
807 /**
808  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
809  * @adapter: Pointer to adapter where the filter should be cleared
810  * @index: Filter index
811  */
igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)812 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
813 {
814 	struct net_device *dev = adapter->netdev;
815 	struct igc_hw *hw = &adapter->hw;
816 
817 	if (WARN_ON(index >= hw->mac.rar_entry_count))
818 		return;
819 
820 	wr32(IGC_RAL(index), 0);
821 	wr32(IGC_RAH(index), 0);
822 
823 	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
824 }
825 
826 /* Set default MAC address for the PF in the first RAR entry */
igc_set_default_mac_filter(struct igc_adapter *adapter)827 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
828 {
829 	struct net_device *dev = adapter->netdev;
830 	u8 *addr = adapter->hw.mac.addr;
831 
832 	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
833 
834 	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
835 }
836 
837 /**
838  * igc_set_mac - Change the Ethernet Address of the NIC
839  * @netdev: network interface device structure
840  * @p: pointer to an address structure
841  *
842  * Returns 0 on success, negative on failure
843  */
igc_set_mac(struct net_device *netdev, void *p)844 static int igc_set_mac(struct net_device *netdev, void *p)
845 {
846 	struct igc_adapter *adapter = netdev_priv(netdev);
847 	struct igc_hw *hw = &adapter->hw;
848 	struct sockaddr *addr = p;
849 
850 	if (!is_valid_ether_addr(addr->sa_data))
851 		return -EADDRNOTAVAIL;
852 
853 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
854 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
855 
856 	/* set the correct pool for the new PF MAC address in entry 0 */
857 	igc_set_default_mac_filter(adapter);
858 
859 	return 0;
860 }
861 
862 /**
863  *  igc_write_mc_addr_list - write multicast addresses to MTA
864  *  @netdev: network interface device structure
865  *
866  *  Writes multicast address list to the MTA hash table.
867  *  Returns: -ENOMEM on failure
868  *           0 on no addresses written
869  *           X on writing X addresses to MTA
870  **/
igc_write_mc_addr_list(struct net_device *netdev)871 static int igc_write_mc_addr_list(struct net_device *netdev)
872 {
873 	struct igc_adapter *adapter = netdev_priv(netdev);
874 	struct igc_hw *hw = &adapter->hw;
875 	struct netdev_hw_addr *ha;
876 	u8  *mta_list;
877 	int i;
878 
879 	if (netdev_mc_empty(netdev)) {
880 		/* nothing to program, so clear mc list */
881 		igc_update_mc_addr_list(hw, NULL, 0);
882 		return 0;
883 	}
884 
885 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
886 	if (!mta_list)
887 		return -ENOMEM;
888 
889 	/* The shared function expects a packed array of only addresses. */
890 	i = 0;
891 	netdev_for_each_mc_addr(ha, netdev)
892 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
893 
894 	igc_update_mc_addr_list(hw, mta_list, i);
895 	kfree(mta_list);
896 
897 	return netdev_mc_count(netdev);
898 }
899 
igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime, bool *first_flag, bool *insert_empty)900 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
901 				bool *first_flag, bool *insert_empty)
902 {
903 	struct igc_adapter *adapter = netdev_priv(ring->netdev);
904 	ktime_t cycle_time = adapter->cycle_time;
905 	ktime_t base_time = adapter->base_time;
906 	ktime_t now = ktime_get_clocktai();
907 	ktime_t baset_est, end_of_cycle;
908 	s32 launchtime;
909 	s64 n;
910 
911 	n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
912 
913 	baset_est = ktime_add_ns(base_time, cycle_time * (n));
914 	end_of_cycle = ktime_add_ns(baset_est, cycle_time);
915 
916 	if (ktime_compare(txtime, end_of_cycle) >= 0) {
917 		if (baset_est != ring->last_ff_cycle) {
918 			*first_flag = true;
919 			ring->last_ff_cycle = baset_est;
920 
921 			if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
922 				*insert_empty = true;
923 		}
924 	}
925 
926 	/* Introducing a window at end of cycle on which packets
927 	 * potentially not honor launchtime. Window of 5us chosen
928 	 * considering software update the tail pointer and packets
929 	 * are dma'ed to packet buffer.
930 	 */
931 	if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
932 		netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
933 			    txtime);
934 
935 	ring->last_tx_cycle = end_of_cycle;
936 
937 	launchtime = ktime_sub_ns(txtime, baset_est);
938 	if (launchtime > 0)
939 		div_s64_rem(launchtime, cycle_time, &launchtime);
940 	else
941 		launchtime = 0;
942 
943 	return cpu_to_le32(launchtime);
944 }
945 
igc_init_empty_frame(struct igc_ring *ring, struct igc_tx_buffer *buffer, struct sk_buff *skb)946 static int igc_init_empty_frame(struct igc_ring *ring,
947 				struct igc_tx_buffer *buffer,
948 				struct sk_buff *skb)
949 {
950 	unsigned int size;
951 	dma_addr_t dma;
952 
953 	size = skb_headlen(skb);
954 
955 	dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
956 	if (dma_mapping_error(ring->dev, dma)) {
957 		netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
958 		return -ENOMEM;
959 	}
960 
961 	buffer->skb = skb;
962 	buffer->protocol = 0;
963 	buffer->bytecount = skb->len;
964 	buffer->gso_segs = 1;
965 	buffer->time_stamp = jiffies;
966 	dma_unmap_len_set(buffer, len, skb->len);
967 	dma_unmap_addr_set(buffer, dma, dma);
968 
969 	return 0;
970 }
971 
igc_init_tx_empty_descriptor(struct igc_ring *ring, struct sk_buff *skb, struct igc_tx_buffer *first)972 static int igc_init_tx_empty_descriptor(struct igc_ring *ring,
973 					struct sk_buff *skb,
974 					struct igc_tx_buffer *first)
975 {
976 	union igc_adv_tx_desc *desc;
977 	u32 cmd_type, olinfo_status;
978 	int err;
979 
980 	if (!igc_desc_unused(ring))
981 		return -EBUSY;
982 
983 	err = igc_init_empty_frame(ring, first, skb);
984 	if (err)
985 		return err;
986 
987 	cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
988 		   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
989 		   first->bytecount;
990 	olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
991 
992 	desc = IGC_TX_DESC(ring, ring->next_to_use);
993 	desc->read.cmd_type_len = cpu_to_le32(cmd_type);
994 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
995 	desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
996 
997 	netdev_tx_sent_queue(txring_txq(ring), skb->len);
998 
999 	first->next_to_watch = desc;
1000 
1001 	ring->next_to_use++;
1002 	if (ring->next_to_use == ring->count)
1003 		ring->next_to_use = 0;
1004 
1005 	return 0;
1006 }
1007 
1008 #define IGC_EMPTY_FRAME_SIZE 60
1009 
igc_tx_ctxtdesc(struct igc_ring *tx_ring, __le32 launch_time, bool first_flag, u32 vlan_macip_lens, u32 type_tucmd, u32 mss_l4len_idx)1010 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1011 			    __le32 launch_time, bool first_flag,
1012 			    u32 vlan_macip_lens, u32 type_tucmd,
1013 			    u32 mss_l4len_idx)
1014 {
1015 	struct igc_adv_tx_context_desc *context_desc;
1016 	u16 i = tx_ring->next_to_use;
1017 
1018 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1019 
1020 	i++;
1021 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1022 
1023 	/* set bits to identify this as an advanced context descriptor */
1024 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1025 
1026 	/* For i225, context index must be unique per ring. */
1027 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1028 		mss_l4len_idx |= tx_ring->reg_idx << 4;
1029 
1030 	if (first_flag)
1031 		mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1032 
1033 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1034 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1035 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1036 	context_desc->launch_time	= launch_time;
1037 }
1038 
igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first, __le32 launch_time, bool first_flag)1039 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1040 			__le32 launch_time, bool first_flag)
1041 {
1042 	struct sk_buff *skb = first->skb;
1043 	u32 vlan_macip_lens = 0;
1044 	u32 type_tucmd = 0;
1045 
1046 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1047 csum_failed:
1048 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1049 		    !tx_ring->launchtime_enable)
1050 			return;
1051 		goto no_csum;
1052 	}
1053 
1054 	switch (skb->csum_offset) {
1055 	case offsetof(struct tcphdr, check):
1056 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1057 		fallthrough;
1058 	case offsetof(struct udphdr, check):
1059 		break;
1060 	case offsetof(struct sctphdr, checksum):
1061 		/* validate that this is actually an SCTP request */
1062 		if (skb_csum_is_sctp(skb)) {
1063 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1064 			break;
1065 		}
1066 		fallthrough;
1067 	default:
1068 		skb_checksum_help(skb);
1069 		goto csum_failed;
1070 	}
1071 
1072 	/* update TX checksum flag */
1073 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
1074 	vlan_macip_lens = skb_checksum_start_offset(skb) -
1075 			  skb_network_offset(skb);
1076 no_csum:
1077 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1078 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1079 
1080 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1081 			vlan_macip_lens, type_tucmd, 0);
1082 }
1083 
__igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)1084 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1085 {
1086 	struct net_device *netdev = tx_ring->netdev;
1087 
1088 	netif_stop_subqueue(netdev, tx_ring->queue_index);
1089 
1090 	/* memory barriier comment */
1091 	smp_mb();
1092 
1093 	/* We need to check again in a case another CPU has just
1094 	 * made room available.
1095 	 */
1096 	if (igc_desc_unused(tx_ring) < size)
1097 		return -EBUSY;
1098 
1099 	/* A reprieve! */
1100 	netif_wake_subqueue(netdev, tx_ring->queue_index);
1101 
1102 	u64_stats_update_begin(&tx_ring->tx_syncp2);
1103 	tx_ring->tx_stats.restart_queue2++;
1104 	u64_stats_update_end(&tx_ring->tx_syncp2);
1105 
1106 	return 0;
1107 }
1108 
igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)1109 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1110 {
1111 	if (igc_desc_unused(tx_ring) >= size)
1112 		return 0;
1113 	return __igc_maybe_stop_tx(tx_ring, size);
1114 }
1115 
1116 #define IGC_SET_FLAG(_input, _flag, _result) \
1117 	(((_flag) <= (_result)) ?				\
1118 	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1119 	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1120 
igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)1121 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1122 {
1123 	/* set type for advanced descriptor with frame checksum insertion */
1124 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1125 		       IGC_ADVTXD_DCMD_DEXT |
1126 		       IGC_ADVTXD_DCMD_IFCS;
1127 
1128 	/* set segmentation bits for TSO */
1129 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1130 				 (IGC_ADVTXD_DCMD_TSE));
1131 
1132 	/* set timestamp bit if present */
1133 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1134 				 (IGC_ADVTXD_MAC_TSTAMP));
1135 
1136 	return cmd_type;
1137 }
1138 
igc_tx_olinfo_status(struct igc_ring *tx_ring, union igc_adv_tx_desc *tx_desc, u32 tx_flags, unsigned int paylen)1139 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1140 				 union igc_adv_tx_desc *tx_desc,
1141 				 u32 tx_flags, unsigned int paylen)
1142 {
1143 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1144 
1145 	/* insert L4 checksum */
1146 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1147 			  ((IGC_TXD_POPTS_TXSM << 8) /
1148 			  IGC_TX_FLAGS_CSUM);
1149 
1150 	/* insert IPv4 checksum */
1151 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1152 			  (((IGC_TXD_POPTS_IXSM << 8)) /
1153 			  IGC_TX_FLAGS_IPV4);
1154 
1155 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1156 }
1157 
igc_tx_map(struct igc_ring *tx_ring, struct igc_tx_buffer *first, const u8 hdr_len)1158 static int igc_tx_map(struct igc_ring *tx_ring,
1159 		      struct igc_tx_buffer *first,
1160 		      const u8 hdr_len)
1161 {
1162 	struct sk_buff *skb = first->skb;
1163 	struct igc_tx_buffer *tx_buffer;
1164 	union igc_adv_tx_desc *tx_desc;
1165 	u32 tx_flags = first->tx_flags;
1166 	skb_frag_t *frag;
1167 	u16 i = tx_ring->next_to_use;
1168 	unsigned int data_len, size;
1169 	dma_addr_t dma;
1170 	u32 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1171 
1172 	tx_desc = IGC_TX_DESC(tx_ring, i);
1173 
1174 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1175 
1176 	size = skb_headlen(skb);
1177 	data_len = skb->data_len;
1178 
1179 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1180 
1181 	tx_buffer = first;
1182 
1183 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1184 		if (dma_mapping_error(tx_ring->dev, dma))
1185 			goto dma_error;
1186 
1187 		/* record length, and DMA address */
1188 		dma_unmap_len_set(tx_buffer, len, size);
1189 		dma_unmap_addr_set(tx_buffer, dma, dma);
1190 
1191 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1192 
1193 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1194 			tx_desc->read.cmd_type_len =
1195 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1196 
1197 			i++;
1198 			tx_desc++;
1199 			if (i == tx_ring->count) {
1200 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1201 				i = 0;
1202 			}
1203 			tx_desc->read.olinfo_status = 0;
1204 
1205 			dma += IGC_MAX_DATA_PER_TXD;
1206 			size -= IGC_MAX_DATA_PER_TXD;
1207 
1208 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1209 		}
1210 
1211 		if (likely(!data_len))
1212 			break;
1213 
1214 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1215 
1216 		i++;
1217 		tx_desc++;
1218 		if (i == tx_ring->count) {
1219 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1220 			i = 0;
1221 		}
1222 		tx_desc->read.olinfo_status = 0;
1223 
1224 		size = skb_frag_size(frag);
1225 		data_len -= size;
1226 
1227 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1228 				       size, DMA_TO_DEVICE);
1229 
1230 		tx_buffer = &tx_ring->tx_buffer_info[i];
1231 	}
1232 
1233 	/* write last descriptor with RS and EOP bits */
1234 	cmd_type |= size | IGC_TXD_DCMD;
1235 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1236 
1237 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1238 
1239 	/* set the timestamp */
1240 	first->time_stamp = jiffies;
1241 
1242 	skb_tx_timestamp(skb);
1243 
1244 	/* Force memory writes to complete before letting h/w know there
1245 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1246 	 * memory model archs, such as IA-64).
1247 	 *
1248 	 * We also need this memory barrier to make certain all of the
1249 	 * status bits have been updated before next_to_watch is written.
1250 	 */
1251 	wmb();
1252 
1253 	/* set next_to_watch value indicating a packet is present */
1254 	first->next_to_watch = tx_desc;
1255 
1256 	i++;
1257 	if (i == tx_ring->count)
1258 		i = 0;
1259 
1260 	tx_ring->next_to_use = i;
1261 
1262 	/* Make sure there is space in the ring for the next send. */
1263 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1264 
1265 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1266 		writel(i, tx_ring->tail);
1267 	}
1268 
1269 	return 0;
1270 dma_error:
1271 	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1272 	tx_buffer = &tx_ring->tx_buffer_info[i];
1273 
1274 	/* clear dma mappings for failed tx_buffer_info map */
1275 	while (tx_buffer != first) {
1276 		if (dma_unmap_len(tx_buffer, len))
1277 			dma_unmap_page(tx_ring->dev,
1278 				       dma_unmap_addr(tx_buffer, dma),
1279 				       dma_unmap_len(tx_buffer, len),
1280 				       DMA_TO_DEVICE);
1281 		dma_unmap_len_set(tx_buffer, len, 0);
1282 
1283 		if (i-- == 0)
1284 			i += tx_ring->count;
1285 		tx_buffer = &tx_ring->tx_buffer_info[i];
1286 	}
1287 
1288 	if (dma_unmap_len(tx_buffer, len))
1289 		dma_unmap_single(tx_ring->dev,
1290 				 dma_unmap_addr(tx_buffer, dma),
1291 				 dma_unmap_len(tx_buffer, len),
1292 				 DMA_TO_DEVICE);
1293 	dma_unmap_len_set(tx_buffer, len, 0);
1294 
1295 	dev_kfree_skb_any(tx_buffer->skb);
1296 	tx_buffer->skb = NULL;
1297 
1298 	tx_ring->next_to_use = i;
1299 
1300 	return -1;
1301 }
1302 
igc_tso(struct igc_ring *tx_ring, struct igc_tx_buffer *first, __le32 launch_time, bool first_flag, u8 *hdr_len)1303 static int igc_tso(struct igc_ring *tx_ring,
1304 		   struct igc_tx_buffer *first,
1305 		   __le32 launch_time, bool first_flag,
1306 		   u8 *hdr_len)
1307 {
1308 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1309 	struct sk_buff *skb = first->skb;
1310 	union {
1311 		struct iphdr *v4;
1312 		struct ipv6hdr *v6;
1313 		unsigned char *hdr;
1314 	} ip;
1315 	union {
1316 		struct tcphdr *tcp;
1317 		struct udphdr *udp;
1318 		unsigned char *hdr;
1319 	} l4;
1320 	u32 paylen, l4_offset;
1321 	int err;
1322 
1323 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1324 		return 0;
1325 
1326 	if (!skb_is_gso(skb))
1327 		return 0;
1328 
1329 	err = skb_cow_head(skb, 0);
1330 	if (err < 0)
1331 		return err;
1332 
1333 	ip.hdr = skb_network_header(skb);
1334 	l4.hdr = skb_checksum_start(skb);
1335 
1336 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1337 	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1338 
1339 	/* initialize outer IP header fields */
1340 	if (ip.v4->version == 4) {
1341 		unsigned char *csum_start = skb_checksum_start(skb);
1342 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1343 
1344 		/* IP header will have to cancel out any data that
1345 		 * is not a part of the outer IP header
1346 		 */
1347 		ip.v4->check = csum_fold(csum_partial(trans_start,
1348 						      csum_start - trans_start,
1349 						      0));
1350 		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1351 
1352 		ip.v4->tot_len = 0;
1353 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1354 				   IGC_TX_FLAGS_CSUM |
1355 				   IGC_TX_FLAGS_IPV4;
1356 	} else {
1357 		ip.v6->payload_len = 0;
1358 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1359 				   IGC_TX_FLAGS_CSUM;
1360 	}
1361 
1362 	/* determine offset of inner transport header */
1363 	l4_offset = l4.hdr - skb->data;
1364 
1365 	/* remove payload length from inner checksum */
1366 	paylen = skb->len - l4_offset;
1367 	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1368 		/* compute length of segmentation header */
1369 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1370 		csum_replace_by_diff(&l4.tcp->check,
1371 				     (__force __wsum)htonl(paylen));
1372 	} else {
1373 		/* compute length of segmentation header */
1374 		*hdr_len = sizeof(*l4.udp) + l4_offset;
1375 		csum_replace_by_diff(&l4.udp->check,
1376 				     (__force __wsum)htonl(paylen));
1377 	}
1378 
1379 	/* update gso size and bytecount with header size */
1380 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1381 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1382 
1383 	/* MSS L4LEN IDX */
1384 	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1385 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1386 
1387 	/* VLAN MACLEN IPLEN */
1388 	vlan_macip_lens = l4.hdr - ip.hdr;
1389 	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1390 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1391 
1392 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1393 			vlan_macip_lens, type_tucmd, mss_l4len_idx);
1394 
1395 	return 1;
1396 }
1397 
igc_xmit_frame_ring(struct sk_buff *skb, struct igc_ring *tx_ring)1398 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1399 				       struct igc_ring *tx_ring)
1400 {
1401 	bool first_flag = false, insert_empty = false;
1402 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1403 	__be16 protocol = vlan_get_protocol(skb);
1404 	struct igc_tx_buffer *first;
1405 	__le32 launch_time = 0;
1406 	u32 tx_flags = 0;
1407 	unsigned short f;
1408 	ktime_t txtime;
1409 	u8 hdr_len = 0;
1410 	int tso = 0;
1411 
1412 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1413 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1414 	 *	+ 2 desc gap to keep tail from touching head,
1415 	 *	+ 1 desc for context descriptor,
1416 	 * otherwise try next time
1417 	 */
1418 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1419 		count += TXD_USE_COUNT(skb_frag_size(
1420 						&skb_shinfo(skb)->frags[f]));
1421 
1422 	if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1423 		/* this is a hard error */
1424 		return NETDEV_TX_BUSY;
1425 	}
1426 
1427 	if (!tx_ring->launchtime_enable)
1428 		goto done;
1429 
1430 	txtime = skb->tstamp;
1431 	skb->tstamp = ktime_set(0, 0);
1432 	launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1433 
1434 	if (insert_empty) {
1435 		struct igc_tx_buffer *empty_info;
1436 		struct sk_buff *empty;
1437 		void *data;
1438 
1439 		empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1440 		empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1441 		if (!empty)
1442 			goto done;
1443 
1444 		data = skb_put(empty, IGC_EMPTY_FRAME_SIZE);
1445 		memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1446 
1447 		igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1448 
1449 		if (igc_init_tx_empty_descriptor(tx_ring,
1450 						 empty,
1451 						 empty_info) < 0)
1452 			dev_kfree_skb_any(empty);
1453 	}
1454 
1455 done:
1456 	/* record the location of the first descriptor for this packet */
1457 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1458 	first->skb = skb;
1459 	first->bytecount = skb->len;
1460 	first->gso_segs = 1;
1461 
1462 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1463 		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1464 
1465 		/* FIXME: add support for retrieving timestamps from
1466 		 * the other timer registers before skipping the
1467 		 * timestamping request.
1468 		 */
1469 		unsigned long flags;
1470 
1471 		spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1472 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON && !adapter->ptp_tx_skb) {
1473 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1474 			tx_flags |= IGC_TX_FLAGS_TSTAMP;
1475 
1476 			adapter->ptp_tx_skb = skb_get(skb);
1477 			adapter->ptp_tx_start = jiffies;
1478 		} else {
1479 			adapter->tx_hwtstamp_skipped++;
1480 		}
1481 
1482 		spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1483 	}
1484 
1485 	/* record initial flags and protocol */
1486 	first->tx_flags = tx_flags;
1487 	first->protocol = protocol;
1488 
1489 	tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1490 	if (tso < 0)
1491 		goto out_drop;
1492 	else if (!tso)
1493 		igc_tx_csum(tx_ring, first, launch_time, first_flag);
1494 
1495 	igc_tx_map(tx_ring, first, hdr_len);
1496 
1497 	return NETDEV_TX_OK;
1498 
1499 out_drop:
1500 	dev_kfree_skb_any(first->skb);
1501 	first->skb = NULL;
1502 
1503 	return NETDEV_TX_OK;
1504 }
1505 
igc_tx_queue_mapping(struct igc_adapter *adapter, struct sk_buff *skb)1506 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1507 						    struct sk_buff *skb)
1508 {
1509 	unsigned int r_idx = skb->queue_mapping;
1510 
1511 	if (r_idx >= adapter->num_tx_queues)
1512 		r_idx = r_idx % adapter->num_tx_queues;
1513 
1514 	return adapter->tx_ring[r_idx];
1515 }
1516 
igc_xmit_frame(struct sk_buff *skb, struct net_device *netdev)1517 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1518 				  struct net_device *netdev)
1519 {
1520 	struct igc_adapter *adapter = netdev_priv(netdev);
1521 
1522 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1523 	 * in order to meet this minimum size requirement.
1524 	 */
1525 	if (skb->len < 17) {
1526 		if (skb_padto(skb, 17))
1527 			return NETDEV_TX_OK;
1528 		skb->len = 17;
1529 	}
1530 
1531 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1532 }
1533 
igc_rx_checksum(struct igc_ring *ring, union igc_adv_rx_desc *rx_desc, struct sk_buff *skb)1534 static void igc_rx_checksum(struct igc_ring *ring,
1535 			    union igc_adv_rx_desc *rx_desc,
1536 			    struct sk_buff *skb)
1537 {
1538 	skb_checksum_none_assert(skb);
1539 
1540 	/* Ignore Checksum bit is set */
1541 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1542 		return;
1543 
1544 	/* Rx checksum disabled via ethtool */
1545 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1546 		return;
1547 
1548 	/* TCP/UDP checksum error bit is set */
1549 	if (igc_test_staterr(rx_desc,
1550 			     IGC_RXDEXT_STATERR_L4E |
1551 			     IGC_RXDEXT_STATERR_IPE)) {
1552 		/* work around errata with sctp packets where the TCPE aka
1553 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1554 		 * packets (aka let the stack check the crc32c)
1555 		 */
1556 		if (!(skb->len == 60 &&
1557 		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1558 			u64_stats_update_begin(&ring->rx_syncp);
1559 			ring->rx_stats.csum_err++;
1560 			u64_stats_update_end(&ring->rx_syncp);
1561 		}
1562 		/* let the stack verify checksum errors */
1563 		return;
1564 	}
1565 	/* It must be a TCP or UDP packet with a valid checksum */
1566 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1567 				      IGC_RXD_STAT_UDPCS))
1568 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1569 
1570 	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1571 		   le32_to_cpu(rx_desc->wb.upper.status_error));
1572 }
1573 
1574 /* Mapping HW RSS Type to enum pkt_hash_types */
1575 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1576 	[IGC_RSS_TYPE_NO_HASH]		= PKT_HASH_TYPE_L2,
1577 	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= PKT_HASH_TYPE_L4,
1578 	[IGC_RSS_TYPE_HASH_IPV4]	= PKT_HASH_TYPE_L3,
1579 	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= PKT_HASH_TYPE_L4,
1580 	[IGC_RSS_TYPE_HASH_IPV6_EX]	= PKT_HASH_TYPE_L3,
1581 	[IGC_RSS_TYPE_HASH_IPV6]	= PKT_HASH_TYPE_L3,
1582 	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1583 	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= PKT_HASH_TYPE_L4,
1584 	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= PKT_HASH_TYPE_L4,
1585 	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1586 	[10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
1587 	[11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask   */
1588 	[12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons       */
1589 	[13] = PKT_HASH_TYPE_NONE,
1590 	[14] = PKT_HASH_TYPE_NONE,
1591 	[15] = PKT_HASH_TYPE_NONE,
1592 };
1593 
igc_rx_hash(struct igc_ring *ring, union igc_adv_rx_desc *rx_desc, struct sk_buff *skb)1594 static inline void igc_rx_hash(struct igc_ring *ring,
1595 			       union igc_adv_rx_desc *rx_desc,
1596 			       struct sk_buff *skb)
1597 {
1598 	if (ring->netdev->features & NETIF_F_RXHASH) {
1599 		u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1600 		u32 rss_type = igc_rss_type(rx_desc);
1601 
1602 		skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1603 	}
1604 }
1605 
1606 /**
1607  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1608  * @rx_ring: rx descriptor ring packet is being transacted on
1609  * @rx_desc: pointer to the EOP Rx descriptor
1610  * @skb: pointer to current skb being populated
1611  *
1612  * This function checks the ring, descriptor, and packet information in order
1613  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1614  * skb.
1615  */
igc_process_skb_fields(struct igc_ring *rx_ring, union igc_adv_rx_desc *rx_desc, struct sk_buff *skb)1616 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1617 				   union igc_adv_rx_desc *rx_desc,
1618 				   struct sk_buff *skb)
1619 {
1620 	igc_rx_hash(rx_ring, rx_desc, skb);
1621 
1622 	igc_rx_checksum(rx_ring, rx_desc, skb);
1623 
1624 	skb_record_rx_queue(skb, rx_ring->queue_index);
1625 
1626 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1627 }
1628 
igc_get_rx_buffer(struct igc_ring *rx_ring, const unsigned int size)1629 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1630 					       const unsigned int size)
1631 {
1632 	struct igc_rx_buffer *rx_buffer;
1633 
1634 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1635 	prefetchw(rx_buffer->page);
1636 
1637 	/* we are reusing so sync this buffer for CPU use */
1638 	dma_sync_single_range_for_cpu(rx_ring->dev,
1639 				      rx_buffer->dma,
1640 				      rx_buffer->page_offset,
1641 				      size,
1642 				      DMA_FROM_DEVICE);
1643 
1644 	rx_buffer->pagecnt_bias--;
1645 
1646 	return rx_buffer;
1647 }
1648 
1649 /**
1650  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1651  * @rx_ring: rx descriptor ring to transact packets on
1652  * @rx_buffer: buffer containing page to add
1653  * @skb: sk_buff to place the data into
1654  * @size: size of buffer to be added
1655  *
1656  * This function will add the data contained in rx_buffer->page to the skb.
1657  */
igc_add_rx_frag(struct igc_ring *rx_ring, struct igc_rx_buffer *rx_buffer, struct sk_buff *skb, unsigned int size)1658 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1659 			    struct igc_rx_buffer *rx_buffer,
1660 			    struct sk_buff *skb,
1661 			    unsigned int size)
1662 {
1663 #if (PAGE_SIZE < 8192)
1664 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1665 
1666 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1667 			rx_buffer->page_offset, size, truesize);
1668 	rx_buffer->page_offset ^= truesize;
1669 #else
1670 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1671 				SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1672 				SKB_DATA_ALIGN(size);
1673 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1674 			rx_buffer->page_offset, size, truesize);
1675 	rx_buffer->page_offset += truesize;
1676 #endif
1677 }
1678 
igc_build_skb(struct igc_ring *rx_ring, struct igc_rx_buffer *rx_buffer, union igc_adv_rx_desc *rx_desc, unsigned int size)1679 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1680 				     struct igc_rx_buffer *rx_buffer,
1681 				     union igc_adv_rx_desc *rx_desc,
1682 				     unsigned int size)
1683 {
1684 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1685 #if (PAGE_SIZE < 8192)
1686 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1687 #else
1688 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1689 				SKB_DATA_ALIGN(IGC_SKB_PAD + size);
1690 #endif
1691 	struct sk_buff *skb;
1692 
1693 	/* prefetch first cache line of first page */
1694 	net_prefetch(va);
1695 
1696 	/* build an skb around the page buffer */
1697 	skb = build_skb(va - IGC_SKB_PAD, truesize);
1698 	if (unlikely(!skb))
1699 		return NULL;
1700 
1701 	/* update pointers within the skb to store the data */
1702 	skb_reserve(skb, IGC_SKB_PAD);
1703 	__skb_put(skb, size);
1704 
1705 	/* update buffer offset */
1706 #if (PAGE_SIZE < 8192)
1707 	rx_buffer->page_offset ^= truesize;
1708 #else
1709 	rx_buffer->page_offset += truesize;
1710 #endif
1711 
1712 	return skb;
1713 }
1714 
igc_construct_skb(struct igc_ring *rx_ring, struct igc_rx_buffer *rx_buffer, union igc_adv_rx_desc *rx_desc, unsigned int size)1715 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1716 					 struct igc_rx_buffer *rx_buffer,
1717 					 union igc_adv_rx_desc *rx_desc,
1718 					 unsigned int size)
1719 {
1720 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1721 #if (PAGE_SIZE < 8192)
1722 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1723 #else
1724 	unsigned int truesize = SKB_DATA_ALIGN(size);
1725 #endif
1726 	unsigned int headlen;
1727 	struct sk_buff *skb;
1728 
1729 	/* prefetch first cache line of first page */
1730 	net_prefetch(va);
1731 
1732 	/* allocate a skb to store the frags */
1733 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1734 	if (unlikely(!skb))
1735 		return NULL;
1736 
1737 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP))) {
1738 		igc_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
1739 		va += IGC_TS_HDR_LEN;
1740 		size -= IGC_TS_HDR_LEN;
1741 	}
1742 
1743 	/* Determine available headroom for copy */
1744 	headlen = size;
1745 	if (headlen > IGC_RX_HDR_LEN)
1746 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1747 
1748 	/* align pull length to size of long to optimize memcpy performance */
1749 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1750 
1751 	/* update all of the pointers */
1752 	size -= headlen;
1753 	if (size) {
1754 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1755 				(va + headlen) - page_address(rx_buffer->page),
1756 				size, truesize);
1757 #if (PAGE_SIZE < 8192)
1758 		rx_buffer->page_offset ^= truesize;
1759 #else
1760 		rx_buffer->page_offset += truesize;
1761 #endif
1762 	} else {
1763 		rx_buffer->pagecnt_bias++;
1764 	}
1765 
1766 	return skb;
1767 }
1768 
1769 /**
1770  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1771  * @rx_ring: rx descriptor ring to store buffers on
1772  * @old_buff: donor buffer to have page reused
1773  *
1774  * Synchronizes page for reuse by the adapter
1775  */
igc_reuse_rx_page(struct igc_ring *rx_ring, struct igc_rx_buffer *old_buff)1776 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1777 			      struct igc_rx_buffer *old_buff)
1778 {
1779 	u16 nta = rx_ring->next_to_alloc;
1780 	struct igc_rx_buffer *new_buff;
1781 
1782 	new_buff = &rx_ring->rx_buffer_info[nta];
1783 
1784 	/* update, and store next to alloc */
1785 	nta++;
1786 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1787 
1788 	/* Transfer page from old buffer to new buffer.
1789 	 * Move each member individually to avoid possible store
1790 	 * forwarding stalls.
1791 	 */
1792 	new_buff->dma		= old_buff->dma;
1793 	new_buff->page		= old_buff->page;
1794 	new_buff->page_offset	= old_buff->page_offset;
1795 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1796 }
1797 
igc_page_is_reserved(struct page *page)1798 static inline bool igc_page_is_reserved(struct page *page)
1799 {
1800 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1801 }
1802 
igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer)1803 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer)
1804 {
1805 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1806 	struct page *page = rx_buffer->page;
1807 
1808 	/* avoid re-using remote pages */
1809 	if (unlikely(igc_page_is_reserved(page)))
1810 		return false;
1811 
1812 #if (PAGE_SIZE < 8192)
1813 	/* if we are only owner of page we can reuse it */
1814 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
1815 		return false;
1816 #else
1817 #define IGC_LAST_OFFSET \
1818 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1819 
1820 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1821 		return false;
1822 #endif
1823 
1824 	/* If we have drained the page fragment pool we need to update
1825 	 * the pagecnt_bias and page count so that we fully restock the
1826 	 * number of references the driver holds.
1827 	 */
1828 	if (unlikely(!pagecnt_bias)) {
1829 		page_ref_add(page, USHRT_MAX);
1830 		rx_buffer->pagecnt_bias = USHRT_MAX;
1831 	}
1832 
1833 	return true;
1834 }
1835 
1836 /**
1837  * igc_is_non_eop - process handling of non-EOP buffers
1838  * @rx_ring: Rx ring being processed
1839  * @rx_desc: Rx descriptor for current buffer
1840  *
1841  * This function updates next to clean.  If the buffer is an EOP buffer
1842  * this function exits returning false, otherwise it will place the
1843  * sk_buff in the next buffer to be chained and return true indicating
1844  * that this is in fact a non-EOP buffer.
1845  */
igc_is_non_eop(struct igc_ring *rx_ring, union igc_adv_rx_desc *rx_desc)1846 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1847 			   union igc_adv_rx_desc *rx_desc)
1848 {
1849 	u32 ntc = rx_ring->next_to_clean + 1;
1850 
1851 	/* fetch, update, and store next to clean */
1852 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1853 	rx_ring->next_to_clean = ntc;
1854 
1855 	prefetch(IGC_RX_DESC(rx_ring, ntc));
1856 
1857 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1858 		return false;
1859 
1860 	return true;
1861 }
1862 
1863 /**
1864  * igc_cleanup_headers - Correct corrupted or empty headers
1865  * @rx_ring: rx descriptor ring packet is being transacted on
1866  * @rx_desc: pointer to the EOP Rx descriptor
1867  * @skb: pointer to current skb being fixed
1868  *
1869  * Address the case where we are pulling data in on pages only
1870  * and as such no data is present in the skb header.
1871  *
1872  * In addition if skb is not at least 60 bytes we need to pad it so that
1873  * it is large enough to qualify as a valid Ethernet frame.
1874  *
1875  * Returns true if an error was encountered and skb was freed.
1876  */
igc_cleanup_headers(struct igc_ring *rx_ring, union igc_adv_rx_desc *rx_desc, struct sk_buff *skb)1877 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1878 				union igc_adv_rx_desc *rx_desc,
1879 				struct sk_buff *skb)
1880 {
1881 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
1882 		struct net_device *netdev = rx_ring->netdev;
1883 
1884 		if (!(netdev->features & NETIF_F_RXALL)) {
1885 			dev_kfree_skb_any(skb);
1886 			return true;
1887 		}
1888 	}
1889 
1890 	/* if eth_skb_pad returns an error the skb was freed */
1891 	if (eth_skb_pad(skb))
1892 		return true;
1893 
1894 	return false;
1895 }
1896 
igc_put_rx_buffer(struct igc_ring *rx_ring, struct igc_rx_buffer *rx_buffer)1897 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1898 			      struct igc_rx_buffer *rx_buffer)
1899 {
1900 	if (igc_can_reuse_rx_page(rx_buffer)) {
1901 		/* hand second half of page back to the ring */
1902 		igc_reuse_rx_page(rx_ring, rx_buffer);
1903 	} else {
1904 		/* We are not reusing the buffer so unmap it and free
1905 		 * any references we are holding to it
1906 		 */
1907 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1908 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1909 				     IGC_RX_DMA_ATTR);
1910 		__page_frag_cache_drain(rx_buffer->page,
1911 					rx_buffer->pagecnt_bias);
1912 	}
1913 
1914 	/* clear contents of rx_buffer */
1915 	rx_buffer->page = NULL;
1916 }
1917 
igc_rx_offset(struct igc_ring *rx_ring)1918 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1919 {
1920 	return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0;
1921 }
1922 
igc_alloc_mapped_page(struct igc_ring *rx_ring, struct igc_rx_buffer *bi)1923 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1924 				  struct igc_rx_buffer *bi)
1925 {
1926 	struct page *page = bi->page;
1927 	dma_addr_t dma;
1928 
1929 	/* since we are recycling buffers we should seldom need to alloc */
1930 	if (likely(page))
1931 		return true;
1932 
1933 	/* alloc new page for storage */
1934 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1935 	if (unlikely(!page)) {
1936 		rx_ring->rx_stats.alloc_failed++;
1937 		return false;
1938 	}
1939 
1940 	/* map page for use */
1941 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1942 				 igc_rx_pg_size(rx_ring),
1943 				 DMA_FROM_DEVICE,
1944 				 IGC_RX_DMA_ATTR);
1945 
1946 	/* if mapping failed free memory back to system since
1947 	 * there isn't much point in holding memory we can't use
1948 	 */
1949 	if (dma_mapping_error(rx_ring->dev, dma)) {
1950 		__free_page(page);
1951 
1952 		rx_ring->rx_stats.alloc_failed++;
1953 		return false;
1954 	}
1955 
1956 	bi->dma = dma;
1957 	bi->page = page;
1958 	bi->page_offset = igc_rx_offset(rx_ring);
1959 	bi->pagecnt_bias = 1;
1960 
1961 	return true;
1962 }
1963 
1964 /**
1965  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1966  * @rx_ring: rx descriptor ring
1967  * @cleaned_count: number of buffers to clean
1968  */
igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)1969 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1970 {
1971 	union igc_adv_rx_desc *rx_desc;
1972 	u16 i = rx_ring->next_to_use;
1973 	struct igc_rx_buffer *bi;
1974 	u16 bufsz;
1975 
1976 	/* nothing to do */
1977 	if (!cleaned_count)
1978 		return;
1979 
1980 	rx_desc = IGC_RX_DESC(rx_ring, i);
1981 	bi = &rx_ring->rx_buffer_info[i];
1982 	i -= rx_ring->count;
1983 
1984 	bufsz = igc_rx_bufsz(rx_ring);
1985 
1986 	do {
1987 		if (!igc_alloc_mapped_page(rx_ring, bi))
1988 			break;
1989 
1990 		/* sync the buffer for use by the device */
1991 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1992 						 bi->page_offset, bufsz,
1993 						 DMA_FROM_DEVICE);
1994 
1995 		/* Refresh the desc even if buffer_addrs didn't change
1996 		 * because each write-back erases this info.
1997 		 */
1998 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1999 
2000 		rx_desc++;
2001 		bi++;
2002 		i++;
2003 		if (unlikely(!i)) {
2004 			rx_desc = IGC_RX_DESC(rx_ring, 0);
2005 			bi = rx_ring->rx_buffer_info;
2006 			i -= rx_ring->count;
2007 		}
2008 
2009 		/* clear the length for the next_to_use descriptor */
2010 		rx_desc->wb.upper.length = 0;
2011 
2012 		cleaned_count--;
2013 	} while (cleaned_count);
2014 
2015 	i += rx_ring->count;
2016 
2017 	if (rx_ring->next_to_use != i) {
2018 		/* record the next descriptor to use */
2019 		rx_ring->next_to_use = i;
2020 
2021 		/* update next to alloc since we have filled the ring */
2022 		rx_ring->next_to_alloc = i;
2023 
2024 		/* Force memory writes to complete before letting h/w
2025 		 * know there are new descriptors to fetch.  (Only
2026 		 * applicable for weak-ordered memory model archs,
2027 		 * such as IA-64).
2028 		 */
2029 		wmb();
2030 		writel(i, rx_ring->tail);
2031 	}
2032 }
2033 
igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)2034 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2035 {
2036 	unsigned int total_bytes = 0, total_packets = 0;
2037 	struct igc_ring *rx_ring = q_vector->rx.ring;
2038 	struct sk_buff *skb = rx_ring->skb;
2039 	u16 cleaned_count = igc_desc_unused(rx_ring);
2040 
2041 	while (likely(total_packets < budget)) {
2042 		union igc_adv_rx_desc *rx_desc;
2043 		struct igc_rx_buffer *rx_buffer;
2044 		unsigned int size;
2045 
2046 		/* return some buffers to hardware, one at a time is too slow */
2047 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2048 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
2049 			cleaned_count = 0;
2050 		}
2051 
2052 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2053 		size = le16_to_cpu(rx_desc->wb.upper.length);
2054 		if (!size)
2055 			break;
2056 
2057 		/* This memory barrier is needed to keep us from reading
2058 		 * any other fields out of the rx_desc until we know the
2059 		 * descriptor has been written back
2060 		 */
2061 		dma_rmb();
2062 
2063 		rx_buffer = igc_get_rx_buffer(rx_ring, size);
2064 
2065 		/* retrieve a buffer from the ring */
2066 		if (skb)
2067 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2068 		else if (ring_uses_build_skb(rx_ring))
2069 			skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
2070 		else
2071 			skb = igc_construct_skb(rx_ring, rx_buffer,
2072 						rx_desc, size);
2073 
2074 		/* exit if we failed to retrieve a buffer */
2075 		if (!skb) {
2076 			rx_ring->rx_stats.alloc_failed++;
2077 			rx_buffer->pagecnt_bias++;
2078 			break;
2079 		}
2080 
2081 		igc_put_rx_buffer(rx_ring, rx_buffer);
2082 		cleaned_count++;
2083 
2084 		/* fetch next buffer in frame if non-eop */
2085 		if (igc_is_non_eop(rx_ring, rx_desc))
2086 			continue;
2087 
2088 		/* verify the packet layout is correct */
2089 		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2090 			skb = NULL;
2091 			continue;
2092 		}
2093 
2094 		/* probably a little skewed due to removing CRC */
2095 		total_bytes += skb->len;
2096 
2097 		/* populate checksum, VLAN, and protocol */
2098 		igc_process_skb_fields(rx_ring, rx_desc, skb);
2099 
2100 		napi_gro_receive(&q_vector->napi, skb);
2101 
2102 		/* reset skb pointer */
2103 		skb = NULL;
2104 
2105 		/* update budget accounting */
2106 		total_packets++;
2107 	}
2108 
2109 	/* place incomplete frames back on ring for completion */
2110 	rx_ring->skb = skb;
2111 
2112 	u64_stats_update_begin(&rx_ring->rx_syncp);
2113 	rx_ring->rx_stats.packets += total_packets;
2114 	rx_ring->rx_stats.bytes += total_bytes;
2115 	u64_stats_update_end(&rx_ring->rx_syncp);
2116 	q_vector->rx.total_packets += total_packets;
2117 	q_vector->rx.total_bytes += total_bytes;
2118 
2119 	if (cleaned_count)
2120 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
2121 
2122 	return total_packets;
2123 }
2124 
2125 /**
2126  * igc_clean_tx_irq - Reclaim resources after transmit completes
2127  * @q_vector: pointer to q_vector containing needed info
2128  * @napi_budget: Used to determine if we are in netpoll
2129  *
2130  * returns true if ring is completely cleaned
2131  */
igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)2132 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2133 {
2134 	struct igc_adapter *adapter = q_vector->adapter;
2135 	unsigned int total_bytes = 0, total_packets = 0;
2136 	unsigned int budget = q_vector->tx.work_limit;
2137 	struct igc_ring *tx_ring = q_vector->tx.ring;
2138 	unsigned int i = tx_ring->next_to_clean;
2139 	struct igc_tx_buffer *tx_buffer;
2140 	union igc_adv_tx_desc *tx_desc;
2141 
2142 	if (test_bit(__IGC_DOWN, &adapter->state))
2143 		return true;
2144 
2145 	tx_buffer = &tx_ring->tx_buffer_info[i];
2146 	tx_desc = IGC_TX_DESC(tx_ring, i);
2147 	i -= tx_ring->count;
2148 
2149 	do {
2150 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2151 
2152 		/* if next_to_watch is not set then there is no work pending */
2153 		if (!eop_desc)
2154 			break;
2155 
2156 		/* prevent any other reads prior to eop_desc */
2157 		smp_rmb();
2158 
2159 		/* if DD is not set pending work has not been completed */
2160 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2161 			break;
2162 
2163 		/* clear next_to_watch to prevent false hangs */
2164 		tx_buffer->next_to_watch = NULL;
2165 
2166 		/* update the statistics for this packet */
2167 		total_bytes += tx_buffer->bytecount;
2168 		total_packets += tx_buffer->gso_segs;
2169 
2170 		/* free the skb */
2171 		napi_consume_skb(tx_buffer->skb, napi_budget);
2172 
2173 		/* unmap skb header data */
2174 		dma_unmap_single(tx_ring->dev,
2175 				 dma_unmap_addr(tx_buffer, dma),
2176 				 dma_unmap_len(tx_buffer, len),
2177 				 DMA_TO_DEVICE);
2178 
2179 		/* clear tx_buffer data */
2180 		dma_unmap_len_set(tx_buffer, len, 0);
2181 
2182 		/* clear last DMA location and unmap remaining buffers */
2183 		while (tx_desc != eop_desc) {
2184 			tx_buffer++;
2185 			tx_desc++;
2186 			i++;
2187 			if (unlikely(!i)) {
2188 				i -= tx_ring->count;
2189 				tx_buffer = tx_ring->tx_buffer_info;
2190 				tx_desc = IGC_TX_DESC(tx_ring, 0);
2191 			}
2192 
2193 			/* unmap any remaining paged data */
2194 			if (dma_unmap_len(tx_buffer, len)) {
2195 				dma_unmap_page(tx_ring->dev,
2196 					       dma_unmap_addr(tx_buffer, dma),
2197 					       dma_unmap_len(tx_buffer, len),
2198 					       DMA_TO_DEVICE);
2199 				dma_unmap_len_set(tx_buffer, len, 0);
2200 			}
2201 		}
2202 
2203 		/* move us one more past the eop_desc for start of next pkt */
2204 		tx_buffer++;
2205 		tx_desc++;
2206 		i++;
2207 		if (unlikely(!i)) {
2208 			i -= tx_ring->count;
2209 			tx_buffer = tx_ring->tx_buffer_info;
2210 			tx_desc = IGC_TX_DESC(tx_ring, 0);
2211 		}
2212 
2213 		/* issue prefetch for next Tx descriptor */
2214 		prefetch(tx_desc);
2215 
2216 		/* update budget accounting */
2217 		budget--;
2218 	} while (likely(budget));
2219 
2220 	netdev_tx_completed_queue(txring_txq(tx_ring),
2221 				  total_packets, total_bytes);
2222 
2223 	i += tx_ring->count;
2224 	tx_ring->next_to_clean = i;
2225 	u64_stats_update_begin(&tx_ring->tx_syncp);
2226 	tx_ring->tx_stats.bytes += total_bytes;
2227 	tx_ring->tx_stats.packets += total_packets;
2228 	u64_stats_update_end(&tx_ring->tx_syncp);
2229 	q_vector->tx.total_bytes += total_bytes;
2230 	q_vector->tx.total_packets += total_packets;
2231 
2232 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2233 		struct igc_hw *hw = &adapter->hw;
2234 
2235 		/* Detect a transmit hang in hardware, this serializes the
2236 		 * check with the clearing of time_stamp and movement of i
2237 		 */
2238 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2239 		if (tx_buffer->next_to_watch &&
2240 		    time_after(jiffies, tx_buffer->time_stamp +
2241 		    (adapter->tx_timeout_factor * HZ)) &&
2242 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2243 			/* detected Tx unit hang */
2244 			netdev_err(tx_ring->netdev,
2245 				   "Detected Tx Unit Hang\n"
2246 				   "  Tx Queue             <%d>\n"
2247 				   "  TDH                  <%x>\n"
2248 				   "  TDT                  <%x>\n"
2249 				   "  next_to_use          <%x>\n"
2250 				   "  next_to_clean        <%x>\n"
2251 				   "buffer_info[next_to_clean]\n"
2252 				   "  time_stamp           <%lx>\n"
2253 				   "  next_to_watch        <%p>\n"
2254 				   "  jiffies              <%lx>\n"
2255 				   "  desc.status          <%x>\n",
2256 				   tx_ring->queue_index,
2257 				   rd32(IGC_TDH(tx_ring->reg_idx)),
2258 				   readl(tx_ring->tail),
2259 				   tx_ring->next_to_use,
2260 				   tx_ring->next_to_clean,
2261 				   tx_buffer->time_stamp,
2262 				   tx_buffer->next_to_watch,
2263 				   jiffies,
2264 				   tx_buffer->next_to_watch->wb.status);
2265 			netif_stop_subqueue(tx_ring->netdev,
2266 					    tx_ring->queue_index);
2267 
2268 			/* we are about to reset, no point in enabling stuff */
2269 			return true;
2270 		}
2271 	}
2272 
2273 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2274 	if (unlikely(total_packets &&
2275 		     netif_carrier_ok(tx_ring->netdev) &&
2276 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2277 		/* Make sure that anybody stopping the queue after this
2278 		 * sees the new next_to_clean.
2279 		 */
2280 		smp_mb();
2281 		if (__netif_subqueue_stopped(tx_ring->netdev,
2282 					     tx_ring->queue_index) &&
2283 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
2284 			netif_wake_subqueue(tx_ring->netdev,
2285 					    tx_ring->queue_index);
2286 
2287 			u64_stats_update_begin(&tx_ring->tx_syncp);
2288 			tx_ring->tx_stats.restart_queue++;
2289 			u64_stats_update_end(&tx_ring->tx_syncp);
2290 		}
2291 	}
2292 
2293 	return !!budget;
2294 }
2295 
igc_find_mac_filter(struct igc_adapter *adapter, enum igc_mac_filter_type type, const u8 *addr)2296 static int igc_find_mac_filter(struct igc_adapter *adapter,
2297 			       enum igc_mac_filter_type type, const u8 *addr)
2298 {
2299 	struct igc_hw *hw = &adapter->hw;
2300 	int max_entries = hw->mac.rar_entry_count;
2301 	u32 ral, rah;
2302 	int i;
2303 
2304 	for (i = 0; i < max_entries; i++) {
2305 		ral = rd32(IGC_RAL(i));
2306 		rah = rd32(IGC_RAH(i));
2307 
2308 		if (!(rah & IGC_RAH_AV))
2309 			continue;
2310 		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2311 			continue;
2312 		if ((rah & IGC_RAH_RAH_MASK) !=
2313 		    le16_to_cpup((__le16 *)(addr + 4)))
2314 			continue;
2315 		if (ral != le32_to_cpup((__le32 *)(addr)))
2316 			continue;
2317 
2318 		return i;
2319 	}
2320 
2321 	return -1;
2322 }
2323 
igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)2324 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2325 {
2326 	struct igc_hw *hw = &adapter->hw;
2327 	int max_entries = hw->mac.rar_entry_count;
2328 	u32 rah;
2329 	int i;
2330 
2331 	for (i = 0; i < max_entries; i++) {
2332 		rah = rd32(IGC_RAH(i));
2333 
2334 		if (!(rah & IGC_RAH_AV))
2335 			return i;
2336 	}
2337 
2338 	return -1;
2339 }
2340 
2341 /**
2342  * igc_add_mac_filter() - Add MAC address filter
2343  * @adapter: Pointer to adapter where the filter should be added
2344  * @type: MAC address filter type (source or destination)
2345  * @addr: MAC address
2346  * @queue: If non-negative, queue assignment feature is enabled and frames
2347  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2348  *         assignment is disabled.
2349  *
2350  * Return: 0 in case of success, negative errno code otherwise.
2351  */
igc_add_mac_filter(struct igc_adapter *adapter, enum igc_mac_filter_type type, const u8 *addr, int queue)2352 static int igc_add_mac_filter(struct igc_adapter *adapter,
2353 			      enum igc_mac_filter_type type, const u8 *addr,
2354 			      int queue)
2355 {
2356 	struct net_device *dev = adapter->netdev;
2357 	int index;
2358 
2359 	index = igc_find_mac_filter(adapter, type, addr);
2360 	if (index >= 0)
2361 		goto update_filter;
2362 
2363 	index = igc_get_avail_mac_filter_slot(adapter);
2364 	if (index < 0)
2365 		return -ENOSPC;
2366 
2367 	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2368 		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2369 		   addr, queue);
2370 
2371 update_filter:
2372 	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2373 	return 0;
2374 }
2375 
2376 /**
2377  * igc_del_mac_filter() - Delete MAC address filter
2378  * @adapter: Pointer to adapter where the filter should be deleted from
2379  * @type: MAC address filter type (source or destination)
2380  * @addr: MAC address
2381  */
igc_del_mac_filter(struct igc_adapter *adapter, enum igc_mac_filter_type type, const u8 *addr)2382 static void igc_del_mac_filter(struct igc_adapter *adapter,
2383 			       enum igc_mac_filter_type type, const u8 *addr)
2384 {
2385 	struct net_device *dev = adapter->netdev;
2386 	int index;
2387 
2388 	index = igc_find_mac_filter(adapter, type, addr);
2389 	if (index < 0)
2390 		return;
2391 
2392 	if (index == 0) {
2393 		/* If this is the default filter, we don't actually delete it.
2394 		 * We just reset to its default value i.e. disable queue
2395 		 * assignment.
2396 		 */
2397 		netdev_dbg(dev, "Disable default MAC filter queue assignment");
2398 
2399 		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2400 	} else {
2401 		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2402 			   index,
2403 			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2404 			   addr);
2405 
2406 		igc_clear_mac_filter_hw(adapter, index);
2407 	}
2408 }
2409 
2410 /**
2411  * igc_add_vlan_prio_filter() - Add VLAN priority filter
2412  * @adapter: Pointer to adapter where the filter should be added
2413  * @prio: VLAN priority value
2414  * @queue: Queue number which matching frames are assigned to
2415  *
2416  * Return: 0 in case of success, negative errno code otherwise.
2417  */
igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio, int queue)2418 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2419 				    int queue)
2420 {
2421 	struct net_device *dev = adapter->netdev;
2422 	struct igc_hw *hw = &adapter->hw;
2423 	u32 vlanpqf;
2424 
2425 	vlanpqf = rd32(IGC_VLANPQF);
2426 
2427 	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2428 		netdev_dbg(dev, "VLAN priority filter already in use\n");
2429 		return -EEXIST;
2430 	}
2431 
2432 	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2433 	vlanpqf |= IGC_VLANPQF_VALID(prio);
2434 
2435 	wr32(IGC_VLANPQF, vlanpqf);
2436 
2437 	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2438 		   prio, queue);
2439 	return 0;
2440 }
2441 
2442 /**
2443  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2444  * @adapter: Pointer to adapter where the filter should be deleted from
2445  * @prio: VLAN priority value
2446  */
igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)2447 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2448 {
2449 	struct igc_hw *hw = &adapter->hw;
2450 	u32 vlanpqf;
2451 
2452 	vlanpqf = rd32(IGC_VLANPQF);
2453 
2454 	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
2455 	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
2456 
2457 	wr32(IGC_VLANPQF, vlanpqf);
2458 
2459 	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
2460 		   prio);
2461 }
2462 
igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)2463 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
2464 {
2465 	struct igc_hw *hw = &adapter->hw;
2466 	int i;
2467 
2468 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2469 		u32 etqf = rd32(IGC_ETQF(i));
2470 
2471 		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
2472 			return i;
2473 	}
2474 
2475 	return -1;
2476 }
2477 
2478 /**
2479  * igc_add_etype_filter() - Add ethertype filter
2480  * @adapter: Pointer to adapter where the filter should be added
2481  * @etype: Ethertype value
2482  * @queue: If non-negative, queue assignment feature is enabled and frames
2483  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2484  *         assignment is disabled.
2485  *
2486  * Return: 0 in case of success, negative errno code otherwise.
2487  */
igc_add_etype_filter(struct igc_adapter *adapter, u16 etype, int queue)2488 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
2489 				int queue)
2490 {
2491 	struct igc_hw *hw = &adapter->hw;
2492 	int index;
2493 	u32 etqf;
2494 
2495 	index = igc_get_avail_etype_filter_slot(adapter);
2496 	if (index < 0)
2497 		return -ENOSPC;
2498 
2499 	etqf = rd32(IGC_ETQF(index));
2500 
2501 	etqf &= ~IGC_ETQF_ETYPE_MASK;
2502 	etqf |= etype;
2503 
2504 	if (queue >= 0) {
2505 		etqf &= ~IGC_ETQF_QUEUE_MASK;
2506 		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
2507 		etqf |= IGC_ETQF_QUEUE_ENABLE;
2508 	}
2509 
2510 	etqf |= IGC_ETQF_FILTER_ENABLE;
2511 
2512 	wr32(IGC_ETQF(index), etqf);
2513 
2514 	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
2515 		   etype, queue);
2516 	return 0;
2517 }
2518 
igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)2519 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
2520 {
2521 	struct igc_hw *hw = &adapter->hw;
2522 	int i;
2523 
2524 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2525 		u32 etqf = rd32(IGC_ETQF(i));
2526 
2527 		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
2528 			return i;
2529 	}
2530 
2531 	return -1;
2532 }
2533 
2534 /**
2535  * igc_del_etype_filter() - Delete ethertype filter
2536  * @adapter: Pointer to adapter where the filter should be deleted from
2537  * @etype: Ethertype value
2538  */
igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)2539 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
2540 {
2541 	struct igc_hw *hw = &adapter->hw;
2542 	int index;
2543 
2544 	index = igc_find_etype_filter(adapter, etype);
2545 	if (index < 0)
2546 		return;
2547 
2548 	wr32(IGC_ETQF(index), 0);
2549 
2550 	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
2551 		   etype);
2552 }
2553 
igc_enable_nfc_rule(struct igc_adapter *adapter, const struct igc_nfc_rule *rule)2554 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
2555 			       const struct igc_nfc_rule *rule)
2556 {
2557 	int err;
2558 
2559 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
2560 		err = igc_add_etype_filter(adapter, rule->filter.etype,
2561 					   rule->action);
2562 		if (err)
2563 			return err;
2564 	}
2565 
2566 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
2567 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2568 					 rule->filter.src_addr, rule->action);
2569 		if (err)
2570 			return err;
2571 	}
2572 
2573 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
2574 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2575 					 rule->filter.dst_addr, rule->action);
2576 		if (err)
2577 			return err;
2578 	}
2579 
2580 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2581 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2582 			   VLAN_PRIO_SHIFT;
2583 
2584 		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
2585 		if (err)
2586 			return err;
2587 	}
2588 
2589 	return 0;
2590 }
2591 
igc_disable_nfc_rule(struct igc_adapter *adapter, const struct igc_nfc_rule *rule)2592 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
2593 				 const struct igc_nfc_rule *rule)
2594 {
2595 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
2596 		igc_del_etype_filter(adapter, rule->filter.etype);
2597 
2598 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2599 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2600 			   VLAN_PRIO_SHIFT;
2601 
2602 		igc_del_vlan_prio_filter(adapter, prio);
2603 	}
2604 
2605 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
2606 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2607 				   rule->filter.src_addr);
2608 
2609 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
2610 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2611 				   rule->filter.dst_addr);
2612 }
2613 
2614 /**
2615  * igc_get_nfc_rule() - Get NFC rule
2616  * @adapter: Pointer to adapter
2617  * @location: Rule location
2618  *
2619  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2620  *
2621  * Return: Pointer to NFC rule at @location. If not found, NULL.
2622  */
igc_get_nfc_rule(struct igc_adapter *adapter, u32 location)2623 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
2624 				      u32 location)
2625 {
2626 	struct igc_nfc_rule *rule;
2627 
2628 	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
2629 		if (rule->location == location)
2630 			return rule;
2631 		if (rule->location > location)
2632 			break;
2633 	}
2634 
2635 	return NULL;
2636 }
2637 
2638 /**
2639  * igc_del_nfc_rule() - Delete NFC rule
2640  * @adapter: Pointer to adapter
2641  * @rule: Pointer to rule to be deleted
2642  *
2643  * Disable NFC rule in hardware and delete it from adapter.
2644  *
2645  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2646  */
igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)2647 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2648 {
2649 	igc_disable_nfc_rule(adapter, rule);
2650 
2651 	list_del(&rule->list);
2652 	adapter->nfc_rule_count--;
2653 
2654 	kfree(rule);
2655 }
2656 
igc_flush_nfc_rules(struct igc_adapter *adapter)2657 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
2658 {
2659 	struct igc_nfc_rule *rule, *tmp;
2660 
2661 	mutex_lock(&adapter->nfc_rule_lock);
2662 
2663 	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
2664 		igc_del_nfc_rule(adapter, rule);
2665 
2666 	mutex_unlock(&adapter->nfc_rule_lock);
2667 }
2668 
2669 /**
2670  * igc_add_nfc_rule() - Add NFC rule
2671  * @adapter: Pointer to adapter
2672  * @rule: Pointer to rule to be added
2673  *
2674  * Enable NFC rule in hardware and add it to adapter.
2675  *
2676  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2677  *
2678  * Return: 0 on success, negative errno on failure.
2679  */
igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)2680 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2681 {
2682 	struct igc_nfc_rule *pred, *cur;
2683 	int err;
2684 
2685 	err = igc_enable_nfc_rule(adapter, rule);
2686 	if (err)
2687 		return err;
2688 
2689 	pred = NULL;
2690 	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
2691 		if (cur->location >= rule->location)
2692 			break;
2693 		pred = cur;
2694 	}
2695 
2696 	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
2697 	adapter->nfc_rule_count++;
2698 	return 0;
2699 }
2700 
igc_restore_nfc_rules(struct igc_adapter *adapter)2701 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
2702 {
2703 	struct igc_nfc_rule *rule;
2704 
2705 	mutex_lock(&adapter->nfc_rule_lock);
2706 
2707 	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
2708 		igc_enable_nfc_rule(adapter, rule);
2709 
2710 	mutex_unlock(&adapter->nfc_rule_lock);
2711 }
2712 
igc_uc_sync(struct net_device *netdev, const unsigned char *addr)2713 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
2714 {
2715 	struct igc_adapter *adapter = netdev_priv(netdev);
2716 
2717 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
2718 }
2719 
igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)2720 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
2721 {
2722 	struct igc_adapter *adapter = netdev_priv(netdev);
2723 
2724 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
2725 	return 0;
2726 }
2727 
2728 /**
2729  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2730  * @netdev: network interface device structure
2731  *
2732  * The set_rx_mode entry point is called whenever the unicast or multicast
2733  * address lists or the network interface flags are updated.  This routine is
2734  * responsible for configuring the hardware for proper unicast, multicast,
2735  * promiscuous mode, and all-multi behavior.
2736  */
igc_set_rx_mode(struct net_device *netdev)2737 static void igc_set_rx_mode(struct net_device *netdev)
2738 {
2739 	struct igc_adapter *adapter = netdev_priv(netdev);
2740 	struct igc_hw *hw = &adapter->hw;
2741 	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
2742 	int count;
2743 
2744 	/* Check for Promiscuous and All Multicast modes */
2745 	if (netdev->flags & IFF_PROMISC) {
2746 		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
2747 	} else {
2748 		if (netdev->flags & IFF_ALLMULTI) {
2749 			rctl |= IGC_RCTL_MPE;
2750 		} else {
2751 			/* Write addresses to the MTA, if the attempt fails
2752 			 * then we should just turn on promiscuous mode so
2753 			 * that we can at least receive multicast traffic
2754 			 */
2755 			count = igc_write_mc_addr_list(netdev);
2756 			if (count < 0)
2757 				rctl |= IGC_RCTL_MPE;
2758 		}
2759 	}
2760 
2761 	/* Write addresses to available RAR registers, if there is not
2762 	 * sufficient space to store all the addresses then enable
2763 	 * unicast promiscuous mode
2764 	 */
2765 	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
2766 		rctl |= IGC_RCTL_UPE;
2767 
2768 	/* update state of unicast and multicast */
2769 	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
2770 	wr32(IGC_RCTL, rctl);
2771 
2772 #if (PAGE_SIZE < 8192)
2773 	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
2774 		rlpml = IGC_MAX_FRAME_BUILD_SKB;
2775 #endif
2776 	wr32(IGC_RLPML, rlpml);
2777 }
2778 
2779 /**
2780  * igc_configure - configure the hardware for RX and TX
2781  * @adapter: private board structure
2782  */
igc_configure(struct igc_adapter *adapter)2783 static void igc_configure(struct igc_adapter *adapter)
2784 {
2785 	struct net_device *netdev = adapter->netdev;
2786 	int i = 0;
2787 
2788 	igc_get_hw_control(adapter);
2789 	igc_set_rx_mode(netdev);
2790 
2791 	igc_setup_tctl(adapter);
2792 	igc_setup_mrqc(adapter);
2793 	igc_setup_rctl(adapter);
2794 
2795 	igc_set_default_mac_filter(adapter);
2796 	igc_restore_nfc_rules(adapter);
2797 
2798 	igc_configure_tx(adapter);
2799 	igc_configure_rx(adapter);
2800 
2801 	igc_rx_fifo_flush_base(&adapter->hw);
2802 
2803 	/* call igc_desc_unused which always leaves
2804 	 * at least 1 descriptor unused to make sure
2805 	 * next_to_use != next_to_clean
2806 	 */
2807 	for (i = 0; i < adapter->num_rx_queues; i++) {
2808 		struct igc_ring *ring = adapter->rx_ring[i];
2809 
2810 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
2811 	}
2812 }
2813 
2814 /**
2815  * igc_write_ivar - configure ivar for given MSI-X vector
2816  * @hw: pointer to the HW structure
2817  * @msix_vector: vector number we are allocating to a given ring
2818  * @index: row index of IVAR register to write within IVAR table
2819  * @offset: column offset of in IVAR, should be multiple of 8
2820  *
2821  * The IVAR table consists of 2 columns,
2822  * each containing an cause allocation for an Rx and Tx ring, and a
2823  * variable number of rows depending on the number of queues supported.
2824  */
igc_write_ivar(struct igc_hw *hw, int msix_vector, int index, int offset)2825 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
2826 			   int index, int offset)
2827 {
2828 	u32 ivar = array_rd32(IGC_IVAR0, index);
2829 
2830 	/* clear any bits that are currently set */
2831 	ivar &= ~((u32)0xFF << offset);
2832 
2833 	/* write vector and valid bit */
2834 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
2835 
2836 	array_wr32(IGC_IVAR0, index, ivar);
2837 }
2838 
igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)2839 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
2840 {
2841 	struct igc_adapter *adapter = q_vector->adapter;
2842 	struct igc_hw *hw = &adapter->hw;
2843 	int rx_queue = IGC_N0_QUEUE;
2844 	int tx_queue = IGC_N0_QUEUE;
2845 
2846 	if (q_vector->rx.ring)
2847 		rx_queue = q_vector->rx.ring->reg_idx;
2848 	if (q_vector->tx.ring)
2849 		tx_queue = q_vector->tx.ring->reg_idx;
2850 
2851 	switch (hw->mac.type) {
2852 	case igc_i225:
2853 		if (rx_queue > IGC_N0_QUEUE)
2854 			igc_write_ivar(hw, msix_vector,
2855 				       rx_queue >> 1,
2856 				       (rx_queue & 0x1) << 4);
2857 		if (tx_queue > IGC_N0_QUEUE)
2858 			igc_write_ivar(hw, msix_vector,
2859 				       tx_queue >> 1,
2860 				       ((tx_queue & 0x1) << 4) + 8);
2861 		q_vector->eims_value = BIT(msix_vector);
2862 		break;
2863 	default:
2864 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
2865 		break;
2866 	}
2867 
2868 	/* add q_vector eims value to global eims_enable_mask */
2869 	adapter->eims_enable_mask |= q_vector->eims_value;
2870 
2871 	/* configure q_vector to set itr on first interrupt */
2872 	q_vector->set_itr = 1;
2873 }
2874 
2875 /**
2876  * igc_configure_msix - Configure MSI-X hardware
2877  * @adapter: Pointer to adapter structure
2878  *
2879  * igc_configure_msix sets up the hardware to properly
2880  * generate MSI-X interrupts.
2881  */
igc_configure_msix(struct igc_adapter *adapter)2882 static void igc_configure_msix(struct igc_adapter *adapter)
2883 {
2884 	struct igc_hw *hw = &adapter->hw;
2885 	int i, vector = 0;
2886 	u32 tmp;
2887 
2888 	adapter->eims_enable_mask = 0;
2889 
2890 	/* set vector for other causes, i.e. link changes */
2891 	switch (hw->mac.type) {
2892 	case igc_i225:
2893 		/* Turn on MSI-X capability first, or our settings
2894 		 * won't stick.  And it will take days to debug.
2895 		 */
2896 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
2897 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
2898 		     IGC_GPIE_NSICR);
2899 
2900 		/* enable msix_other interrupt */
2901 		adapter->eims_other = BIT(vector);
2902 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
2903 
2904 		wr32(IGC_IVAR_MISC, tmp);
2905 		break;
2906 	default:
2907 		/* do nothing, since nothing else supports MSI-X */
2908 		break;
2909 	} /* switch (hw->mac.type) */
2910 
2911 	adapter->eims_enable_mask |= adapter->eims_other;
2912 
2913 	for (i = 0; i < adapter->num_q_vectors; i++)
2914 		igc_assign_vector(adapter->q_vector[i], vector++);
2915 
2916 	wrfl();
2917 }
2918 
2919 /**
2920  * igc_irq_enable - Enable default interrupt generation settings
2921  * @adapter: board private structure
2922  */
igc_irq_enable(struct igc_adapter *adapter)2923 static void igc_irq_enable(struct igc_adapter *adapter)
2924 {
2925 	struct igc_hw *hw = &adapter->hw;
2926 
2927 	if (adapter->msix_entries) {
2928 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
2929 		u32 regval = rd32(IGC_EIAC);
2930 
2931 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
2932 		regval = rd32(IGC_EIAM);
2933 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
2934 		wr32(IGC_EIMS, adapter->eims_enable_mask);
2935 		wr32(IGC_IMS, ims);
2936 	} else {
2937 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
2938 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
2939 	}
2940 }
2941 
2942 /**
2943  * igc_irq_disable - Mask off interrupt generation on the NIC
2944  * @adapter: board private structure
2945  */
igc_irq_disable(struct igc_adapter *adapter)2946 static void igc_irq_disable(struct igc_adapter *adapter)
2947 {
2948 	struct igc_hw *hw = &adapter->hw;
2949 
2950 	if (adapter->msix_entries) {
2951 		u32 regval = rd32(IGC_EIAM);
2952 
2953 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
2954 		wr32(IGC_EIMC, adapter->eims_enable_mask);
2955 		regval = rd32(IGC_EIAC);
2956 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
2957 	}
2958 
2959 	wr32(IGC_IAM, 0);
2960 	wr32(IGC_IMC, ~0);
2961 	wrfl();
2962 
2963 	if (adapter->msix_entries) {
2964 		int vector = 0, i;
2965 
2966 		synchronize_irq(adapter->msix_entries[vector++].vector);
2967 
2968 		for (i = 0; i < adapter->num_q_vectors; i++)
2969 			synchronize_irq(adapter->msix_entries[vector++].vector);
2970 	} else {
2971 		synchronize_irq(adapter->pdev->irq);
2972 	}
2973 }
2974 
igc_set_flag_queue_pairs(struct igc_adapter *adapter, const u32 max_rss_queues)2975 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
2976 			      const u32 max_rss_queues)
2977 {
2978 	/* Determine if we need to pair queues. */
2979 	/* If rss_queues > half of max_rss_queues, pair the queues in
2980 	 * order to conserve interrupts due to limited supply.
2981 	 */
2982 	if (adapter->rss_queues > (max_rss_queues / 2))
2983 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
2984 	else
2985 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
2986 }
2987 
igc_get_max_rss_queues(struct igc_adapter *adapter)2988 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
2989 {
2990 	return IGC_MAX_RX_QUEUES;
2991 }
2992 
igc_init_queue_configuration(struct igc_adapter *adapter)2993 static void igc_init_queue_configuration(struct igc_adapter *adapter)
2994 {
2995 	u32 max_rss_queues;
2996 
2997 	max_rss_queues = igc_get_max_rss_queues(adapter);
2998 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2999 
3000 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
3001 }
3002 
3003 /**
3004  * igc_reset_q_vector - Reset config for interrupt vector
3005  * @adapter: board private structure to initialize
3006  * @v_idx: Index of vector to be reset
3007  *
3008  * If NAPI is enabled it will delete any references to the
3009  * NAPI struct. This is preparation for igc_free_q_vector.
3010  */
igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)3011 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
3012 {
3013 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3014 
3015 	/* if we're coming from igc_set_interrupt_capability, the vectors are
3016 	 * not yet allocated
3017 	 */
3018 	if (!q_vector)
3019 		return;
3020 
3021 	if (q_vector->tx.ring)
3022 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
3023 
3024 	if (q_vector->rx.ring)
3025 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
3026 
3027 	netif_napi_del(&q_vector->napi);
3028 }
3029 
3030 /**
3031  * igc_free_q_vector - Free memory allocated for specific interrupt vector
3032  * @adapter: board private structure to initialize
3033  * @v_idx: Index of vector to be freed
3034  *
3035  * This function frees the memory allocated to the q_vector.
3036  */
igc_free_q_vector(struct igc_adapter *adapter, int v_idx)3037 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
3038 {
3039 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3040 
3041 	adapter->q_vector[v_idx] = NULL;
3042 
3043 	/* igc_get_stats64() might access the rings on this vector,
3044 	 * we must wait a grace period before freeing it.
3045 	 */
3046 	if (q_vector)
3047 		kfree_rcu(q_vector, rcu);
3048 }
3049 
3050 /**
3051  * igc_free_q_vectors - Free memory allocated for interrupt vectors
3052  * @adapter: board private structure to initialize
3053  *
3054  * This function frees the memory allocated to the q_vectors.  In addition if
3055  * NAPI is enabled it will delete any references to the NAPI struct prior
3056  * to freeing the q_vector.
3057  */
igc_free_q_vectors(struct igc_adapter *adapter)3058 static void igc_free_q_vectors(struct igc_adapter *adapter)
3059 {
3060 	int v_idx = adapter->num_q_vectors;
3061 
3062 	adapter->num_tx_queues = 0;
3063 	adapter->num_rx_queues = 0;
3064 	adapter->num_q_vectors = 0;
3065 
3066 	while (v_idx--) {
3067 		igc_reset_q_vector(adapter, v_idx);
3068 		igc_free_q_vector(adapter, v_idx);
3069 	}
3070 }
3071 
3072 /**
3073  * igc_update_itr - update the dynamic ITR value based on statistics
3074  * @q_vector: pointer to q_vector
3075  * @ring_container: ring info to update the itr for
3076  *
3077  * Stores a new ITR value based on packets and byte
3078  * counts during the last interrupt.  The advantage of per interrupt
3079  * computation is faster updates and more accurate ITR for the current
3080  * traffic pattern.  Constants in this function were computed
3081  * based on theoretical maximum wire speed and thresholds were set based
3082  * on testing data as well as attempting to minimize response time
3083  * while increasing bulk throughput.
3084  * NOTE: These calculations are only valid when operating in a single-
3085  * queue environment.
3086  */
igc_update_itr(struct igc_q_vector *q_vector, struct igc_ring_container *ring_container)3087 static void igc_update_itr(struct igc_q_vector *q_vector,
3088 			   struct igc_ring_container *ring_container)
3089 {
3090 	unsigned int packets = ring_container->total_packets;
3091 	unsigned int bytes = ring_container->total_bytes;
3092 	u8 itrval = ring_container->itr;
3093 
3094 	/* no packets, exit with status unchanged */
3095 	if (packets == 0)
3096 		return;
3097 
3098 	switch (itrval) {
3099 	case lowest_latency:
3100 		/* handle TSO and jumbo frames */
3101 		if (bytes / packets > 8000)
3102 			itrval = bulk_latency;
3103 		else if ((packets < 5) && (bytes > 512))
3104 			itrval = low_latency;
3105 		break;
3106 	case low_latency:  /* 50 usec aka 20000 ints/s */
3107 		if (bytes > 10000) {
3108 			/* this if handles the TSO accounting */
3109 			if (bytes / packets > 8000)
3110 				itrval = bulk_latency;
3111 			else if ((packets < 10) || ((bytes / packets) > 1200))
3112 				itrval = bulk_latency;
3113 			else if ((packets > 35))
3114 				itrval = lowest_latency;
3115 		} else if (bytes / packets > 2000) {
3116 			itrval = bulk_latency;
3117 		} else if (packets <= 2 && bytes < 512) {
3118 			itrval = lowest_latency;
3119 		}
3120 		break;
3121 	case bulk_latency: /* 250 usec aka 4000 ints/s */
3122 		if (bytes > 25000) {
3123 			if (packets > 35)
3124 				itrval = low_latency;
3125 		} else if (bytes < 1500) {
3126 			itrval = low_latency;
3127 		}
3128 		break;
3129 	}
3130 
3131 	/* clear work counters since we have the values we need */
3132 	ring_container->total_bytes = 0;
3133 	ring_container->total_packets = 0;
3134 
3135 	/* write updated itr to ring container */
3136 	ring_container->itr = itrval;
3137 }
3138 
igc_set_itr(struct igc_q_vector *q_vector)3139 static void igc_set_itr(struct igc_q_vector *q_vector)
3140 {
3141 	struct igc_adapter *adapter = q_vector->adapter;
3142 	u32 new_itr = q_vector->itr_val;
3143 	u8 current_itr = 0;
3144 
3145 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3146 	switch (adapter->link_speed) {
3147 	case SPEED_10:
3148 	case SPEED_100:
3149 		current_itr = 0;
3150 		new_itr = IGC_4K_ITR;
3151 		goto set_itr_now;
3152 	default:
3153 		break;
3154 	}
3155 
3156 	igc_update_itr(q_vector, &q_vector->tx);
3157 	igc_update_itr(q_vector, &q_vector->rx);
3158 
3159 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3160 
3161 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3162 	if (current_itr == lowest_latency &&
3163 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3164 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3165 		current_itr = low_latency;
3166 
3167 	switch (current_itr) {
3168 	/* counts and packets in update_itr are dependent on these numbers */
3169 	case lowest_latency:
3170 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3171 		break;
3172 	case low_latency:
3173 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3174 		break;
3175 	case bulk_latency:
3176 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
3177 		break;
3178 	default:
3179 		break;
3180 	}
3181 
3182 set_itr_now:
3183 	if (new_itr != q_vector->itr_val) {
3184 		/* this attempts to bias the interrupt rate towards Bulk
3185 		 * by adding intermediate steps when interrupt rate is
3186 		 * increasing
3187 		 */
3188 		new_itr = new_itr > q_vector->itr_val ?
3189 			  max((new_itr * q_vector->itr_val) /
3190 			  (new_itr + (q_vector->itr_val >> 2)),
3191 			  new_itr) : new_itr;
3192 		/* Don't write the value here; it resets the adapter's
3193 		 * internal timer, and causes us to delay far longer than
3194 		 * we should between interrupts.  Instead, we write the ITR
3195 		 * value at the beginning of the next interrupt so the timing
3196 		 * ends up being correct.
3197 		 */
3198 		q_vector->itr_val = new_itr;
3199 		q_vector->set_itr = 1;
3200 	}
3201 }
3202 
igc_reset_interrupt_capability(struct igc_adapter *adapter)3203 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
3204 {
3205 	int v_idx = adapter->num_q_vectors;
3206 
3207 	if (adapter->msix_entries) {
3208 		pci_disable_msix(adapter->pdev);
3209 		kfree(adapter->msix_entries);
3210 		adapter->msix_entries = NULL;
3211 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
3212 		pci_disable_msi(adapter->pdev);
3213 	}
3214 
3215 	while (v_idx--)
3216 		igc_reset_q_vector(adapter, v_idx);
3217 }
3218 
3219 /**
3220  * igc_set_interrupt_capability - set MSI or MSI-X if supported
3221  * @adapter: Pointer to adapter structure
3222  * @msix: boolean value for MSI-X capability
3223  *
3224  * Attempt to configure interrupts using the best available
3225  * capabilities of the hardware and kernel.
3226  */
igc_set_interrupt_capability(struct igc_adapter *adapter, bool msix)3227 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3228 					 bool msix)
3229 {
3230 	int numvecs, i;
3231 	int err;
3232 
3233 	if (!msix)
3234 		goto msi_only;
3235 	adapter->flags |= IGC_FLAG_HAS_MSIX;
3236 
3237 	/* Number of supported queues. */
3238 	adapter->num_rx_queues = adapter->rss_queues;
3239 
3240 	adapter->num_tx_queues = adapter->rss_queues;
3241 
3242 	/* start with one vector for every Rx queue */
3243 	numvecs = adapter->num_rx_queues;
3244 
3245 	/* if Tx handler is separate add 1 for every Tx queue */
3246 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3247 		numvecs += adapter->num_tx_queues;
3248 
3249 	/* store the number of vectors reserved for queues */
3250 	adapter->num_q_vectors = numvecs;
3251 
3252 	/* add 1 vector for link status interrupts */
3253 	numvecs++;
3254 
3255 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3256 					GFP_KERNEL);
3257 
3258 	if (!adapter->msix_entries)
3259 		return;
3260 
3261 	/* populate entry values */
3262 	for (i = 0; i < numvecs; i++)
3263 		adapter->msix_entries[i].entry = i;
3264 
3265 	err = pci_enable_msix_range(adapter->pdev,
3266 				    adapter->msix_entries,
3267 				    numvecs,
3268 				    numvecs);
3269 	if (err > 0)
3270 		return;
3271 
3272 	kfree(adapter->msix_entries);
3273 	adapter->msix_entries = NULL;
3274 
3275 	igc_reset_interrupt_capability(adapter);
3276 
3277 msi_only:
3278 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3279 
3280 	adapter->rss_queues = 1;
3281 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3282 	adapter->num_rx_queues = 1;
3283 	adapter->num_tx_queues = 1;
3284 	adapter->num_q_vectors = 1;
3285 	if (!pci_enable_msi(adapter->pdev))
3286 		adapter->flags |= IGC_FLAG_HAS_MSI;
3287 }
3288 
3289 /**
3290  * igc_update_ring_itr - update the dynamic ITR value based on packet size
3291  * @q_vector: pointer to q_vector
3292  *
3293  * Stores a new ITR value based on strictly on packet size.  This
3294  * algorithm is less sophisticated than that used in igc_update_itr,
3295  * due to the difficulty of synchronizing statistics across multiple
3296  * receive rings.  The divisors and thresholds used by this function
3297  * were determined based on theoretical maximum wire speed and testing
3298  * data, in order to minimize response time while increasing bulk
3299  * throughput.
3300  * NOTE: This function is called only when operating in a multiqueue
3301  * receive environment.
3302  */
igc_update_ring_itr(struct igc_q_vector *q_vector)3303 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3304 {
3305 	struct igc_adapter *adapter = q_vector->adapter;
3306 	int new_val = q_vector->itr_val;
3307 	int avg_wire_size = 0;
3308 	unsigned int packets;
3309 
3310 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
3311 	 * ints/sec - ITR timer value of 120 ticks.
3312 	 */
3313 	switch (adapter->link_speed) {
3314 	case SPEED_10:
3315 	case SPEED_100:
3316 		new_val = IGC_4K_ITR;
3317 		goto set_itr_val;
3318 	default:
3319 		break;
3320 	}
3321 
3322 	packets = q_vector->rx.total_packets;
3323 	if (packets)
3324 		avg_wire_size = q_vector->rx.total_bytes / packets;
3325 
3326 	packets = q_vector->tx.total_packets;
3327 	if (packets)
3328 		avg_wire_size = max_t(u32, avg_wire_size,
3329 				      q_vector->tx.total_bytes / packets);
3330 
3331 	/* if avg_wire_size isn't set no work was done */
3332 	if (!avg_wire_size)
3333 		goto clear_counts;
3334 
3335 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
3336 	avg_wire_size += 24;
3337 
3338 	/* Don't starve jumbo frames */
3339 	avg_wire_size = min(avg_wire_size, 3000);
3340 
3341 	/* Give a little boost to mid-size frames */
3342 	if (avg_wire_size > 300 && avg_wire_size < 1200)
3343 		new_val = avg_wire_size / 3;
3344 	else
3345 		new_val = avg_wire_size / 2;
3346 
3347 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3348 	if (new_val < IGC_20K_ITR &&
3349 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3350 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3351 		new_val = IGC_20K_ITR;
3352 
3353 set_itr_val:
3354 	if (new_val != q_vector->itr_val) {
3355 		q_vector->itr_val = new_val;
3356 		q_vector->set_itr = 1;
3357 	}
3358 clear_counts:
3359 	q_vector->rx.total_bytes = 0;
3360 	q_vector->rx.total_packets = 0;
3361 	q_vector->tx.total_bytes = 0;
3362 	q_vector->tx.total_packets = 0;
3363 }
3364 
igc_ring_irq_enable(struct igc_q_vector *q_vector)3365 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3366 {
3367 	struct igc_adapter *adapter = q_vector->adapter;
3368 	struct igc_hw *hw = &adapter->hw;
3369 
3370 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3371 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3372 		if (adapter->num_q_vectors == 1)
3373 			igc_set_itr(q_vector);
3374 		else
3375 			igc_update_ring_itr(q_vector);
3376 	}
3377 
3378 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
3379 		if (adapter->msix_entries)
3380 			wr32(IGC_EIMS, q_vector->eims_value);
3381 		else
3382 			igc_irq_enable(adapter);
3383 	}
3384 }
3385 
igc_add_ring(struct igc_ring *ring, struct igc_ring_container *head)3386 static void igc_add_ring(struct igc_ring *ring,
3387 			 struct igc_ring_container *head)
3388 {
3389 	head->ring = ring;
3390 	head->count++;
3391 }
3392 
3393 /**
3394  * igc_cache_ring_register - Descriptor ring to register mapping
3395  * @adapter: board private structure to initialize
3396  *
3397  * Once we know the feature-set enabled for the device, we'll cache
3398  * the register offset the descriptor ring is assigned to.
3399  */
igc_cache_ring_register(struct igc_adapter *adapter)3400 static void igc_cache_ring_register(struct igc_adapter *adapter)
3401 {
3402 	int i = 0, j = 0;
3403 
3404 	switch (adapter->hw.mac.type) {
3405 	case igc_i225:
3406 	default:
3407 		for (; i < adapter->num_rx_queues; i++)
3408 			adapter->rx_ring[i]->reg_idx = i;
3409 		for (; j < adapter->num_tx_queues; j++)
3410 			adapter->tx_ring[j]->reg_idx = j;
3411 		break;
3412 	}
3413 }
3414 
3415 /**
3416  * igc_poll - NAPI Rx polling callback
3417  * @napi: napi polling structure
3418  * @budget: count of how many packets we should handle
3419  */
igc_poll(struct napi_struct *napi, int budget)3420 static int igc_poll(struct napi_struct *napi, int budget)
3421 {
3422 	struct igc_q_vector *q_vector = container_of(napi,
3423 						     struct igc_q_vector,
3424 						     napi);
3425 	bool clean_complete = true;
3426 	int work_done = 0;
3427 
3428 	if (q_vector->tx.ring)
3429 		clean_complete = igc_clean_tx_irq(q_vector, budget);
3430 
3431 	if (q_vector->rx.ring) {
3432 		int cleaned = igc_clean_rx_irq(q_vector, budget);
3433 
3434 		work_done += cleaned;
3435 		if (cleaned >= budget)
3436 			clean_complete = false;
3437 	}
3438 
3439 	/* If all work not completed, return budget and keep polling */
3440 	if (!clean_complete)
3441 		return budget;
3442 
3443 	/* Exit the polling mode, but don't re-enable interrupts if stack might
3444 	 * poll us due to busy-polling
3445 	 */
3446 	if (likely(napi_complete_done(napi, work_done)))
3447 		igc_ring_irq_enable(q_vector);
3448 
3449 	return min(work_done, budget - 1);
3450 }
3451 
3452 /**
3453  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3454  * @adapter: board private structure to initialize
3455  * @v_count: q_vectors allocated on adapter, used for ring interleaving
3456  * @v_idx: index of vector in adapter struct
3457  * @txr_count: total number of Tx rings to allocate
3458  * @txr_idx: index of first Tx ring to allocate
3459  * @rxr_count: total number of Rx rings to allocate
3460  * @rxr_idx: index of first Rx ring to allocate
3461  *
3462  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
3463  */
igc_alloc_q_vector(struct igc_adapter *adapter, unsigned int v_count, unsigned int v_idx, unsigned int txr_count, unsigned int txr_idx, unsigned int rxr_count, unsigned int rxr_idx)3464 static int igc_alloc_q_vector(struct igc_adapter *adapter,
3465 			      unsigned int v_count, unsigned int v_idx,
3466 			      unsigned int txr_count, unsigned int txr_idx,
3467 			      unsigned int rxr_count, unsigned int rxr_idx)
3468 {
3469 	struct igc_q_vector *q_vector;
3470 	struct igc_ring *ring;
3471 	int ring_count;
3472 
3473 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
3474 	if (txr_count > 1 || rxr_count > 1)
3475 		return -ENOMEM;
3476 
3477 	ring_count = txr_count + rxr_count;
3478 
3479 	/* allocate q_vector and rings */
3480 	q_vector = adapter->q_vector[v_idx];
3481 	if (!q_vector)
3482 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
3483 				   GFP_KERNEL);
3484 	else
3485 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
3486 	if (!q_vector)
3487 		return -ENOMEM;
3488 
3489 	/* initialize NAPI */
3490 	netif_napi_add(adapter->netdev, &q_vector->napi,
3491 		       igc_poll, 64);
3492 
3493 	/* tie q_vector and adapter together */
3494 	adapter->q_vector[v_idx] = q_vector;
3495 	q_vector->adapter = adapter;
3496 
3497 	/* initialize work limits */
3498 	q_vector->tx.work_limit = adapter->tx_work_limit;
3499 
3500 	/* initialize ITR configuration */
3501 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
3502 	q_vector->itr_val = IGC_START_ITR;
3503 
3504 	/* initialize pointer to rings */
3505 	ring = q_vector->ring;
3506 
3507 	/* initialize ITR */
3508 	if (rxr_count) {
3509 		/* rx or rx/tx vector */
3510 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
3511 			q_vector->itr_val = adapter->rx_itr_setting;
3512 	} else {
3513 		/* tx only vector */
3514 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
3515 			q_vector->itr_val = adapter->tx_itr_setting;
3516 	}
3517 
3518 	if (txr_count) {
3519 		/* assign generic ring traits */
3520 		ring->dev = &adapter->pdev->dev;
3521 		ring->netdev = adapter->netdev;
3522 
3523 		/* configure backlink on ring */
3524 		ring->q_vector = q_vector;
3525 
3526 		/* update q_vector Tx values */
3527 		igc_add_ring(ring, &q_vector->tx);
3528 
3529 		/* apply Tx specific ring traits */
3530 		ring->count = adapter->tx_ring_count;
3531 		ring->queue_index = txr_idx;
3532 
3533 		/* assign ring to adapter */
3534 		adapter->tx_ring[txr_idx] = ring;
3535 
3536 		/* push pointer to next ring */
3537 		ring++;
3538 	}
3539 
3540 	if (rxr_count) {
3541 		/* assign generic ring traits */
3542 		ring->dev = &adapter->pdev->dev;
3543 		ring->netdev = adapter->netdev;
3544 
3545 		/* configure backlink on ring */
3546 		ring->q_vector = q_vector;
3547 
3548 		/* update q_vector Rx values */
3549 		igc_add_ring(ring, &q_vector->rx);
3550 
3551 		/* apply Rx specific ring traits */
3552 		ring->count = adapter->rx_ring_count;
3553 		ring->queue_index = rxr_idx;
3554 
3555 		/* assign ring to adapter */
3556 		adapter->rx_ring[rxr_idx] = ring;
3557 	}
3558 
3559 	return 0;
3560 }
3561 
3562 /**
3563  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
3564  * @adapter: board private structure to initialize
3565  *
3566  * We allocate one q_vector per queue interrupt.  If allocation fails we
3567  * return -ENOMEM.
3568  */
igc_alloc_q_vectors(struct igc_adapter *adapter)3569 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
3570 {
3571 	int rxr_remaining = adapter->num_rx_queues;
3572 	int txr_remaining = adapter->num_tx_queues;
3573 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
3574 	int q_vectors = adapter->num_q_vectors;
3575 	int err;
3576 
3577 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
3578 		for (; rxr_remaining; v_idx++) {
3579 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3580 						 0, 0, 1, rxr_idx);
3581 
3582 			if (err)
3583 				goto err_out;
3584 
3585 			/* update counts and index */
3586 			rxr_remaining--;
3587 			rxr_idx++;
3588 		}
3589 	}
3590 
3591 	for (; v_idx < q_vectors; v_idx++) {
3592 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
3593 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
3594 
3595 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3596 					 tqpv, txr_idx, rqpv, rxr_idx);
3597 
3598 		if (err)
3599 			goto err_out;
3600 
3601 		/* update counts and index */
3602 		rxr_remaining -= rqpv;
3603 		txr_remaining -= tqpv;
3604 		rxr_idx++;
3605 		txr_idx++;
3606 	}
3607 
3608 	return 0;
3609 
3610 err_out:
3611 	adapter->num_tx_queues = 0;
3612 	adapter->num_rx_queues = 0;
3613 	adapter->num_q_vectors = 0;
3614 
3615 	while (v_idx--)
3616 		igc_free_q_vector(adapter, v_idx);
3617 
3618 	return -ENOMEM;
3619 }
3620 
3621 /**
3622  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
3623  * @adapter: Pointer to adapter structure
3624  * @msix: boolean for MSI-X capability
3625  *
3626  * This function initializes the interrupts and allocates all of the queues.
3627  */
igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)3628 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
3629 {
3630 	struct net_device *dev = adapter->netdev;
3631 	int err = 0;
3632 
3633 	igc_set_interrupt_capability(adapter, msix);
3634 
3635 	err = igc_alloc_q_vectors(adapter);
3636 	if (err) {
3637 		netdev_err(dev, "Unable to allocate memory for vectors\n");
3638 		goto err_alloc_q_vectors;
3639 	}
3640 
3641 	igc_cache_ring_register(adapter);
3642 
3643 	return 0;
3644 
3645 err_alloc_q_vectors:
3646 	igc_reset_interrupt_capability(adapter);
3647 	return err;
3648 }
3649 
3650 /**
3651  * igc_sw_init - Initialize general software structures (struct igc_adapter)
3652  * @adapter: board private structure to initialize
3653  *
3654  * igc_sw_init initializes the Adapter private data structure.
3655  * Fields are initialized based on PCI device information and
3656  * OS network device settings (MTU size).
3657  */
igc_sw_init(struct igc_adapter *adapter)3658 static int igc_sw_init(struct igc_adapter *adapter)
3659 {
3660 	struct net_device *netdev = adapter->netdev;
3661 	struct pci_dev *pdev = adapter->pdev;
3662 	struct igc_hw *hw = &adapter->hw;
3663 
3664 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3665 
3666 	/* set default ring sizes */
3667 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
3668 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
3669 
3670 	/* set default ITR values */
3671 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
3672 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
3673 
3674 	/* set default work limits */
3675 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
3676 
3677 	/* adjust max frame to be at least the size of a standard frame */
3678 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3679 				VLAN_HLEN;
3680 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3681 
3682 	mutex_init(&adapter->nfc_rule_lock);
3683 	INIT_LIST_HEAD(&adapter->nfc_rule_list);
3684 	adapter->nfc_rule_count = 0;
3685 
3686 	spin_lock_init(&adapter->stats64_lock);
3687 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3688 	adapter->flags |= IGC_FLAG_HAS_MSIX;
3689 
3690 	igc_init_queue_configuration(adapter);
3691 
3692 	/* This call may decrease the number of queues */
3693 	if (igc_init_interrupt_scheme(adapter, true)) {
3694 		netdev_err(netdev, "Unable to allocate memory for queues\n");
3695 		return -ENOMEM;
3696 	}
3697 
3698 	/* Explicitly disable IRQ since the NIC can be in any state. */
3699 	igc_irq_disable(adapter);
3700 
3701 	set_bit(__IGC_DOWN, &adapter->state);
3702 
3703 	return 0;
3704 }
3705 
3706 /**
3707  * igc_up - Open the interface and prepare it to handle traffic
3708  * @adapter: board private structure
3709  */
igc_up(struct igc_adapter *adapter)3710 void igc_up(struct igc_adapter *adapter)
3711 {
3712 	struct igc_hw *hw = &adapter->hw;
3713 	int i = 0;
3714 
3715 	/* hardware has been reset, we need to reload some things */
3716 	igc_configure(adapter);
3717 
3718 	clear_bit(__IGC_DOWN, &adapter->state);
3719 
3720 	for (i = 0; i < adapter->num_q_vectors; i++)
3721 		napi_enable(&adapter->q_vector[i]->napi);
3722 
3723 	if (adapter->msix_entries)
3724 		igc_configure_msix(adapter);
3725 	else
3726 		igc_assign_vector(adapter->q_vector[0], 0);
3727 
3728 	/* Clear any pending interrupts. */
3729 	rd32(IGC_ICR);
3730 	igc_irq_enable(adapter);
3731 
3732 	netif_tx_start_all_queues(adapter->netdev);
3733 
3734 	/* start the watchdog. */
3735 	hw->mac.get_link_status = 1;
3736 	schedule_work(&adapter->watchdog_task);
3737 }
3738 
3739 /**
3740  * igc_update_stats - Update the board statistics counters
3741  * @adapter: board private structure
3742  */
igc_update_stats(struct igc_adapter *adapter)3743 void igc_update_stats(struct igc_adapter *adapter)
3744 {
3745 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
3746 	struct pci_dev *pdev = adapter->pdev;
3747 	struct igc_hw *hw = &adapter->hw;
3748 	u64 _bytes, _packets;
3749 	u64 bytes, packets;
3750 	unsigned int start;
3751 	u32 mpc;
3752 	int i;
3753 
3754 	/* Prevent stats update while adapter is being reset, or if the pci
3755 	 * connection is down.
3756 	 */
3757 	if (adapter->link_speed == 0)
3758 		return;
3759 	if (pci_channel_offline(pdev))
3760 		return;
3761 
3762 	packets = 0;
3763 	bytes = 0;
3764 
3765 	rcu_read_lock();
3766 	for (i = 0; i < adapter->num_rx_queues; i++) {
3767 		struct igc_ring *ring = adapter->rx_ring[i];
3768 		u32 rqdpc = rd32(IGC_RQDPC(i));
3769 
3770 		if (hw->mac.type >= igc_i225)
3771 			wr32(IGC_RQDPC(i), 0);
3772 
3773 		if (rqdpc) {
3774 			ring->rx_stats.drops += rqdpc;
3775 			net_stats->rx_fifo_errors += rqdpc;
3776 		}
3777 
3778 		do {
3779 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
3780 			_bytes = ring->rx_stats.bytes;
3781 			_packets = ring->rx_stats.packets;
3782 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
3783 		bytes += _bytes;
3784 		packets += _packets;
3785 	}
3786 
3787 	net_stats->rx_bytes = bytes;
3788 	net_stats->rx_packets = packets;
3789 
3790 	packets = 0;
3791 	bytes = 0;
3792 	for (i = 0; i < adapter->num_tx_queues; i++) {
3793 		struct igc_ring *ring = adapter->tx_ring[i];
3794 
3795 		do {
3796 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
3797 			_bytes = ring->tx_stats.bytes;
3798 			_packets = ring->tx_stats.packets;
3799 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
3800 		bytes += _bytes;
3801 		packets += _packets;
3802 	}
3803 	net_stats->tx_bytes = bytes;
3804 	net_stats->tx_packets = packets;
3805 	rcu_read_unlock();
3806 
3807 	/* read stats registers */
3808 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
3809 	adapter->stats.gprc += rd32(IGC_GPRC);
3810 	adapter->stats.gorc += rd32(IGC_GORCL);
3811 	rd32(IGC_GORCH); /* clear GORCL */
3812 	adapter->stats.bprc += rd32(IGC_BPRC);
3813 	adapter->stats.mprc += rd32(IGC_MPRC);
3814 	adapter->stats.roc += rd32(IGC_ROC);
3815 
3816 	adapter->stats.prc64 += rd32(IGC_PRC64);
3817 	adapter->stats.prc127 += rd32(IGC_PRC127);
3818 	adapter->stats.prc255 += rd32(IGC_PRC255);
3819 	adapter->stats.prc511 += rd32(IGC_PRC511);
3820 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
3821 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
3822 	adapter->stats.tlpic += rd32(IGC_TLPIC);
3823 	adapter->stats.rlpic += rd32(IGC_RLPIC);
3824 
3825 	mpc = rd32(IGC_MPC);
3826 	adapter->stats.mpc += mpc;
3827 	net_stats->rx_fifo_errors += mpc;
3828 	adapter->stats.scc += rd32(IGC_SCC);
3829 	adapter->stats.ecol += rd32(IGC_ECOL);
3830 	adapter->stats.mcc += rd32(IGC_MCC);
3831 	adapter->stats.latecol += rd32(IGC_LATECOL);
3832 	adapter->stats.dc += rd32(IGC_DC);
3833 	adapter->stats.rlec += rd32(IGC_RLEC);
3834 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
3835 	adapter->stats.xontxc += rd32(IGC_XONTXC);
3836 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
3837 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
3838 	adapter->stats.fcruc += rd32(IGC_FCRUC);
3839 	adapter->stats.gptc += rd32(IGC_GPTC);
3840 	adapter->stats.gotc += rd32(IGC_GOTCL);
3841 	rd32(IGC_GOTCH); /* clear GOTCL */
3842 	adapter->stats.rnbc += rd32(IGC_RNBC);
3843 	adapter->stats.ruc += rd32(IGC_RUC);
3844 	adapter->stats.rfc += rd32(IGC_RFC);
3845 	adapter->stats.rjc += rd32(IGC_RJC);
3846 	adapter->stats.tor += rd32(IGC_TORH);
3847 	adapter->stats.tot += rd32(IGC_TOTH);
3848 	adapter->stats.tpr += rd32(IGC_TPR);
3849 
3850 	adapter->stats.ptc64 += rd32(IGC_PTC64);
3851 	adapter->stats.ptc127 += rd32(IGC_PTC127);
3852 	adapter->stats.ptc255 += rd32(IGC_PTC255);
3853 	adapter->stats.ptc511 += rd32(IGC_PTC511);
3854 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
3855 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
3856 
3857 	adapter->stats.mptc += rd32(IGC_MPTC);
3858 	adapter->stats.bptc += rd32(IGC_BPTC);
3859 
3860 	adapter->stats.tpt += rd32(IGC_TPT);
3861 	adapter->stats.colc += rd32(IGC_COLC);
3862 	adapter->stats.colc += rd32(IGC_RERC);
3863 
3864 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
3865 
3866 	adapter->stats.tsctc += rd32(IGC_TSCTC);
3867 
3868 	adapter->stats.iac += rd32(IGC_IAC);
3869 
3870 	/* Fill out the OS statistics structure */
3871 	net_stats->multicast = adapter->stats.mprc;
3872 	net_stats->collisions = adapter->stats.colc;
3873 
3874 	/* Rx Errors */
3875 
3876 	/* RLEC on some newer hardware can be incorrect so build
3877 	 * our own version based on RUC and ROC
3878 	 */
3879 	net_stats->rx_errors = adapter->stats.rxerrc +
3880 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3881 		adapter->stats.ruc + adapter->stats.roc +
3882 		adapter->stats.cexterr;
3883 	net_stats->rx_length_errors = adapter->stats.ruc +
3884 				      adapter->stats.roc;
3885 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
3886 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
3887 	net_stats->rx_missed_errors = adapter->stats.mpc;
3888 
3889 	/* Tx Errors */
3890 	net_stats->tx_errors = adapter->stats.ecol +
3891 			       adapter->stats.latecol;
3892 	net_stats->tx_aborted_errors = adapter->stats.ecol;
3893 	net_stats->tx_window_errors = adapter->stats.latecol;
3894 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
3895 
3896 	/* Tx Dropped needs to be maintained elsewhere */
3897 
3898 	/* Management Stats */
3899 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
3900 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
3901 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
3902 }
3903 
3904 /**
3905  * igc_down - Close the interface
3906  * @adapter: board private structure
3907  */
igc_down(struct igc_adapter *adapter)3908 void igc_down(struct igc_adapter *adapter)
3909 {
3910 	struct net_device *netdev = adapter->netdev;
3911 	struct igc_hw *hw = &adapter->hw;
3912 	u32 tctl, rctl;
3913 	int i = 0;
3914 
3915 	set_bit(__IGC_DOWN, &adapter->state);
3916 
3917 	igc_ptp_suspend(adapter);
3918 
3919 	if (pci_device_is_present(adapter->pdev)) {
3920 		/* disable receives in the hardware */
3921 		rctl = rd32(IGC_RCTL);
3922 		wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
3923 		/* flush and sleep below */
3924 	}
3925 	/* set trans_start so we don't get spurious watchdogs during reset */
3926 	netif_trans_update(netdev);
3927 
3928 	netif_carrier_off(netdev);
3929 	netif_tx_stop_all_queues(netdev);
3930 
3931 	if (pci_device_is_present(adapter->pdev)) {
3932 		/* disable transmits in the hardware */
3933 		tctl = rd32(IGC_TCTL);
3934 		tctl &= ~IGC_TCTL_EN;
3935 		wr32(IGC_TCTL, tctl);
3936 		/* flush both disables and wait for them to finish */
3937 		wrfl();
3938 		usleep_range(10000, 20000);
3939 
3940 		igc_irq_disable(adapter);
3941 	}
3942 
3943 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
3944 
3945 	for (i = 0; i < adapter->num_q_vectors; i++) {
3946 		if (adapter->q_vector[i]) {
3947 			napi_synchronize(&adapter->q_vector[i]->napi);
3948 			napi_disable(&adapter->q_vector[i]->napi);
3949 		}
3950 	}
3951 
3952 	del_timer_sync(&adapter->watchdog_timer);
3953 	del_timer_sync(&adapter->phy_info_timer);
3954 
3955 	/* record the stats before reset*/
3956 	spin_lock(&adapter->stats64_lock);
3957 	igc_update_stats(adapter);
3958 	spin_unlock(&adapter->stats64_lock);
3959 
3960 	adapter->link_speed = 0;
3961 	adapter->link_duplex = 0;
3962 
3963 	if (!pci_channel_offline(adapter->pdev))
3964 		igc_reset(adapter);
3965 
3966 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
3967 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
3968 
3969 	igc_clean_all_tx_rings(adapter);
3970 	igc_clean_all_rx_rings(adapter);
3971 }
3972 
igc_reinit_locked(struct igc_adapter *adapter)3973 void igc_reinit_locked(struct igc_adapter *adapter)
3974 {
3975 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
3976 		usleep_range(1000, 2000);
3977 	igc_down(adapter);
3978 	igc_up(adapter);
3979 	clear_bit(__IGC_RESETTING, &adapter->state);
3980 }
3981 
igc_reset_task(struct work_struct *work)3982 static void igc_reset_task(struct work_struct *work)
3983 {
3984 	struct igc_adapter *adapter;
3985 
3986 	adapter = container_of(work, struct igc_adapter, reset_task);
3987 
3988 	rtnl_lock();
3989 	/* If we're already down or resetting, just bail */
3990 	if (test_bit(__IGC_DOWN, &adapter->state) ||
3991 	    test_bit(__IGC_RESETTING, &adapter->state)) {
3992 		rtnl_unlock();
3993 		return;
3994 	}
3995 
3996 	igc_rings_dump(adapter);
3997 	igc_regs_dump(adapter);
3998 	netdev_err(adapter->netdev, "Reset adapter\n");
3999 	igc_reinit_locked(adapter);
4000 	rtnl_unlock();
4001 }
4002 
4003 /**
4004  * igc_change_mtu - Change the Maximum Transfer Unit
4005  * @netdev: network interface device structure
4006  * @new_mtu: new value for maximum frame size
4007  *
4008  * Returns 0 on success, negative on failure
4009  */
igc_change_mtu(struct net_device *netdev, int new_mtu)4010 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
4011 {
4012 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4013 	struct igc_adapter *adapter = netdev_priv(netdev);
4014 
4015 	/* adjust max frame to be at least the size of a standard frame */
4016 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
4017 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
4018 
4019 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4020 		usleep_range(1000, 2000);
4021 
4022 	/* igc_down has a dependency on max_frame_size */
4023 	adapter->max_frame_size = max_frame;
4024 
4025 	if (netif_running(netdev))
4026 		igc_down(adapter);
4027 
4028 	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4029 	netdev->mtu = new_mtu;
4030 
4031 	if (netif_running(netdev))
4032 		igc_up(adapter);
4033 	else
4034 		igc_reset(adapter);
4035 
4036 	clear_bit(__IGC_RESETTING, &adapter->state);
4037 
4038 	return 0;
4039 }
4040 
4041 /**
4042  * igc_get_stats64 - Get System Network Statistics
4043  * @netdev: network interface device structure
4044  * @stats: rtnl_link_stats64 pointer
4045  *
4046  * Returns the address of the device statistics structure.
4047  * The statistics are updated here and also from the timer callback.
4048  */
igc_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)4049 static void igc_get_stats64(struct net_device *netdev,
4050 			    struct rtnl_link_stats64 *stats)
4051 {
4052 	struct igc_adapter *adapter = netdev_priv(netdev);
4053 
4054 	spin_lock(&adapter->stats64_lock);
4055 	if (!test_bit(__IGC_RESETTING, &adapter->state))
4056 		igc_update_stats(adapter);
4057 	memcpy(stats, &adapter->stats64, sizeof(*stats));
4058 	spin_unlock(&adapter->stats64_lock);
4059 }
4060 
igc_fix_features(struct net_device *netdev, netdev_features_t features)4061 static netdev_features_t igc_fix_features(struct net_device *netdev,
4062 					  netdev_features_t features)
4063 {
4064 	/* Since there is no support for separate Rx/Tx vlan accel
4065 	 * enable/disable make sure Tx flag is always in same state as Rx.
4066 	 */
4067 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
4068 		features |= NETIF_F_HW_VLAN_CTAG_TX;
4069 	else
4070 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4071 
4072 	return features;
4073 }
4074 
igc_set_features(struct net_device *netdev, netdev_features_t features)4075 static int igc_set_features(struct net_device *netdev,
4076 			    netdev_features_t features)
4077 {
4078 	netdev_features_t changed = netdev->features ^ features;
4079 	struct igc_adapter *adapter = netdev_priv(netdev);
4080 
4081 	/* Add VLAN support */
4082 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
4083 		return 0;
4084 
4085 	if (!(features & NETIF_F_NTUPLE))
4086 		igc_flush_nfc_rules(adapter);
4087 
4088 	netdev->features = features;
4089 
4090 	if (netif_running(netdev))
4091 		igc_reinit_locked(adapter);
4092 	else
4093 		igc_reset(adapter);
4094 
4095 	return 1;
4096 }
4097 
4098 static netdev_features_t
igc_features_check(struct sk_buff *skb, struct net_device *dev, netdev_features_t features)4099 igc_features_check(struct sk_buff *skb, struct net_device *dev,
4100 		   netdev_features_t features)
4101 {
4102 	unsigned int network_hdr_len, mac_hdr_len;
4103 
4104 	/* Make certain the headers can be described by a context descriptor */
4105 	mac_hdr_len = skb_network_header(skb) - skb->data;
4106 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
4107 		return features & ~(NETIF_F_HW_CSUM |
4108 				    NETIF_F_SCTP_CRC |
4109 				    NETIF_F_HW_VLAN_CTAG_TX |
4110 				    NETIF_F_TSO |
4111 				    NETIF_F_TSO6);
4112 
4113 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4114 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
4115 		return features & ~(NETIF_F_HW_CSUM |
4116 				    NETIF_F_SCTP_CRC |
4117 				    NETIF_F_TSO |
4118 				    NETIF_F_TSO6);
4119 
4120 	/* We can only support IPv4 TSO in tunnels if we can mangle the
4121 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
4122 	 */
4123 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
4124 		features &= ~NETIF_F_TSO;
4125 
4126 	return features;
4127 }
4128 
igc_tsync_interrupt(struct igc_adapter *adapter)4129 static void igc_tsync_interrupt(struct igc_adapter *adapter)
4130 {
4131 	struct igc_hw *hw = &adapter->hw;
4132 	u32 tsicr = rd32(IGC_TSICR);
4133 	u32 ack = 0;
4134 
4135 	if (tsicr & IGC_TSICR_TXTS) {
4136 		/* retrieve hardware timestamp */
4137 		schedule_work(&adapter->ptp_tx_work);
4138 		ack |= IGC_TSICR_TXTS;
4139 	}
4140 
4141 	/* acknowledge the interrupts */
4142 	wr32(IGC_TSICR, ack);
4143 }
4144 
4145 /**
4146  * igc_msix_other - msix other interrupt handler
4147  * @irq: interrupt number
4148  * @data: pointer to a q_vector
4149  */
igc_msix_other(int irq, void *data)4150 static irqreturn_t igc_msix_other(int irq, void *data)
4151 {
4152 	struct igc_adapter *adapter = data;
4153 	struct igc_hw *hw = &adapter->hw;
4154 	u32 icr = rd32(IGC_ICR);
4155 
4156 	/* reading ICR causes bit 31 of EICR to be cleared */
4157 	if (icr & IGC_ICR_DRSTA)
4158 		schedule_work(&adapter->reset_task);
4159 
4160 	if (icr & IGC_ICR_DOUTSYNC) {
4161 		/* HW is reporting DMA is out of sync */
4162 		adapter->stats.doosync++;
4163 	}
4164 
4165 	if (icr & IGC_ICR_LSC) {
4166 		hw->mac.get_link_status = 1;
4167 		/* guard against interrupt when we're going down */
4168 		if (!test_bit(__IGC_DOWN, &adapter->state))
4169 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4170 	}
4171 
4172 	if (icr & IGC_ICR_TS)
4173 		igc_tsync_interrupt(adapter);
4174 
4175 	wr32(IGC_EIMS, adapter->eims_other);
4176 
4177 	return IRQ_HANDLED;
4178 }
4179 
igc_write_itr(struct igc_q_vector *q_vector)4180 static void igc_write_itr(struct igc_q_vector *q_vector)
4181 {
4182 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
4183 
4184 	if (!q_vector->set_itr)
4185 		return;
4186 
4187 	if (!itr_val)
4188 		itr_val = IGC_ITR_VAL_MASK;
4189 
4190 	itr_val |= IGC_EITR_CNT_IGNR;
4191 
4192 	writel(itr_val, q_vector->itr_register);
4193 	q_vector->set_itr = 0;
4194 }
4195 
igc_msix_ring(int irq, void *data)4196 static irqreturn_t igc_msix_ring(int irq, void *data)
4197 {
4198 	struct igc_q_vector *q_vector = data;
4199 
4200 	/* Write the ITR value calculated from the previous interrupt. */
4201 	igc_write_itr(q_vector);
4202 
4203 	napi_schedule(&q_vector->napi);
4204 
4205 	return IRQ_HANDLED;
4206 }
4207 
4208 /**
4209  * igc_request_msix - Initialize MSI-X interrupts
4210  * @adapter: Pointer to adapter structure
4211  *
4212  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
4213  * kernel.
4214  */
igc_request_msix(struct igc_adapter *adapter)4215 static int igc_request_msix(struct igc_adapter *adapter)
4216 {
4217 	unsigned int num_q_vectors = adapter->num_q_vectors;
4218 	int i = 0, err = 0, vector = 0, free_vector = 0;
4219 	struct net_device *netdev = adapter->netdev;
4220 
4221 	err = request_irq(adapter->msix_entries[vector].vector,
4222 			  &igc_msix_other, 0, netdev->name, adapter);
4223 	if (err)
4224 		goto err_out;
4225 
4226 	if (num_q_vectors > MAX_Q_VECTORS) {
4227 		num_q_vectors = MAX_Q_VECTORS;
4228 		dev_warn(&adapter->pdev->dev,
4229 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
4230 			 adapter->num_q_vectors, MAX_Q_VECTORS);
4231 	}
4232 	for (i = 0; i < num_q_vectors; i++) {
4233 		struct igc_q_vector *q_vector = adapter->q_vector[i];
4234 
4235 		vector++;
4236 
4237 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
4238 
4239 		if (q_vector->rx.ring && q_vector->tx.ring)
4240 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
4241 				q_vector->rx.ring->queue_index);
4242 		else if (q_vector->tx.ring)
4243 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
4244 				q_vector->tx.ring->queue_index);
4245 		else if (q_vector->rx.ring)
4246 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
4247 				q_vector->rx.ring->queue_index);
4248 		else
4249 			sprintf(q_vector->name, "%s-unused", netdev->name);
4250 
4251 		err = request_irq(adapter->msix_entries[vector].vector,
4252 				  igc_msix_ring, 0, q_vector->name,
4253 				  q_vector);
4254 		if (err)
4255 			goto err_free;
4256 	}
4257 
4258 	igc_configure_msix(adapter);
4259 	return 0;
4260 
4261 err_free:
4262 	/* free already assigned IRQs */
4263 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
4264 
4265 	vector--;
4266 	for (i = 0; i < vector; i++) {
4267 		free_irq(adapter->msix_entries[free_vector++].vector,
4268 			 adapter->q_vector[i]);
4269 	}
4270 err_out:
4271 	return err;
4272 }
4273 
4274 /**
4275  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
4276  * @adapter: Pointer to adapter structure
4277  *
4278  * This function resets the device so that it has 0 rx queues, tx queues, and
4279  * MSI-X interrupts allocated.
4280  */
igc_clear_interrupt_scheme(struct igc_adapter *adapter)4281 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
4282 {
4283 	igc_free_q_vectors(adapter);
4284 	igc_reset_interrupt_capability(adapter);
4285 }
4286 
4287 /* Need to wait a few seconds after link up to get diagnostic information from
4288  * the phy
4289  */
igc_update_phy_info(struct timer_list *t)4290 static void igc_update_phy_info(struct timer_list *t)
4291 {
4292 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4293 
4294 	igc_get_phy_info(&adapter->hw);
4295 }
4296 
4297 /**
4298  * igc_has_link - check shared code for link and determine up/down
4299  * @adapter: pointer to driver private info
4300  */
igc_has_link(struct igc_adapter *adapter)4301 bool igc_has_link(struct igc_adapter *adapter)
4302 {
4303 	struct igc_hw *hw = &adapter->hw;
4304 	bool link_active = false;
4305 
4306 	/* get_link_status is set on LSC (link status) interrupt or
4307 	 * rx sequence error interrupt.  get_link_status will stay
4308 	 * false until the igc_check_for_link establishes link
4309 	 * for copper adapters ONLY
4310 	 */
4311 	if (!hw->mac.get_link_status)
4312 		return true;
4313 	hw->mac.ops.check_for_link(hw);
4314 	link_active = !hw->mac.get_link_status;
4315 
4316 	if (hw->mac.type == igc_i225) {
4317 		if (!netif_carrier_ok(adapter->netdev)) {
4318 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4319 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
4320 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
4321 			adapter->link_check_timeout = jiffies;
4322 		}
4323 	}
4324 
4325 	return link_active;
4326 }
4327 
4328 /**
4329  * igc_watchdog - Timer Call-back
4330  * @t: timer for the watchdog
4331  */
igc_watchdog(struct timer_list *t)4332 static void igc_watchdog(struct timer_list *t)
4333 {
4334 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4335 	/* Do the rest outside of interrupt context */
4336 	schedule_work(&adapter->watchdog_task);
4337 }
4338 
igc_watchdog_task(struct work_struct *work)4339 static void igc_watchdog_task(struct work_struct *work)
4340 {
4341 	struct igc_adapter *adapter = container_of(work,
4342 						   struct igc_adapter,
4343 						   watchdog_task);
4344 	struct net_device *netdev = adapter->netdev;
4345 	struct igc_hw *hw = &adapter->hw;
4346 	struct igc_phy_info *phy = &hw->phy;
4347 	u16 phy_data, retry_count = 20;
4348 	u32 link;
4349 	int i;
4350 
4351 	link = igc_has_link(adapter);
4352 
4353 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
4354 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4355 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4356 		else
4357 			link = false;
4358 	}
4359 
4360 	if (link) {
4361 		/* Cancel scheduled suspend requests. */
4362 		pm_runtime_resume(netdev->dev.parent);
4363 
4364 		if (!netif_carrier_ok(netdev)) {
4365 			u32 ctrl;
4366 
4367 			hw->mac.ops.get_speed_and_duplex(hw,
4368 							 &adapter->link_speed,
4369 							 &adapter->link_duplex);
4370 
4371 			ctrl = rd32(IGC_CTRL);
4372 			/* Link status message must follow this format */
4373 			netdev_info(netdev,
4374 				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4375 				    adapter->link_speed,
4376 				    adapter->link_duplex == FULL_DUPLEX ?
4377 				    "Full" : "Half",
4378 				    (ctrl & IGC_CTRL_TFCE) &&
4379 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
4380 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
4381 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
4382 
4383 			/* disable EEE if enabled */
4384 			if ((adapter->flags & IGC_FLAG_EEE) &&
4385 			    adapter->link_duplex == HALF_DUPLEX) {
4386 				netdev_info(netdev,
4387 					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
4388 				adapter->hw.dev_spec._base.eee_enable = false;
4389 				adapter->flags &= ~IGC_FLAG_EEE;
4390 			}
4391 
4392 			/* check if SmartSpeed worked */
4393 			igc_check_downshift(hw);
4394 			if (phy->speed_downgraded)
4395 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4396 
4397 			/* adjust timeout factor according to speed/duplex */
4398 			adapter->tx_timeout_factor = 1;
4399 			switch (adapter->link_speed) {
4400 			case SPEED_10:
4401 				adapter->tx_timeout_factor = 14;
4402 				break;
4403 			case SPEED_100:
4404 				/* maybe add some timeout factor ? */
4405 				break;
4406 			}
4407 
4408 			if (adapter->link_speed != SPEED_1000)
4409 				goto no_wait;
4410 
4411 			/* wait for Remote receiver status OK */
4412 retry_read_status:
4413 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
4414 					      &phy_data)) {
4415 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4416 				    retry_count) {
4417 					msleep(100);
4418 					retry_count--;
4419 					goto retry_read_status;
4420 				} else if (!retry_count) {
4421 					netdev_err(netdev, "exceed max 2 second\n");
4422 				}
4423 			} else {
4424 				netdev_err(netdev, "read 1000Base-T Status Reg\n");
4425 			}
4426 no_wait:
4427 			netif_carrier_on(netdev);
4428 
4429 			/* link state has changed, schedule phy info update */
4430 			if (!test_bit(__IGC_DOWN, &adapter->state))
4431 				mod_timer(&adapter->phy_info_timer,
4432 					  round_jiffies(jiffies + 2 * HZ));
4433 		}
4434 	} else {
4435 		if (netif_carrier_ok(netdev)) {
4436 			adapter->link_speed = 0;
4437 			adapter->link_duplex = 0;
4438 
4439 			/* Links status message must follow this format */
4440 			netdev_info(netdev, "NIC Link is Down\n");
4441 			netif_carrier_off(netdev);
4442 
4443 			/* link state has changed, schedule phy info update */
4444 			if (!test_bit(__IGC_DOWN, &adapter->state))
4445 				mod_timer(&adapter->phy_info_timer,
4446 					  round_jiffies(jiffies + 2 * HZ));
4447 
4448 			/* link is down, time to check for alternate media */
4449 			if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
4450 				if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4451 					schedule_work(&adapter->reset_task);
4452 					/* return immediately */
4453 					return;
4454 				}
4455 			}
4456 			pm_schedule_suspend(netdev->dev.parent,
4457 					    MSEC_PER_SEC * 5);
4458 
4459 		/* also check for alternate media here */
4460 		} else if (!netif_carrier_ok(netdev) &&
4461 			   (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
4462 			if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4463 				schedule_work(&adapter->reset_task);
4464 				/* return immediately */
4465 				return;
4466 			}
4467 		}
4468 	}
4469 
4470 	spin_lock(&adapter->stats64_lock);
4471 	igc_update_stats(adapter);
4472 	spin_unlock(&adapter->stats64_lock);
4473 
4474 	for (i = 0; i < adapter->num_tx_queues; i++) {
4475 		struct igc_ring *tx_ring = adapter->tx_ring[i];
4476 
4477 		if (!netif_carrier_ok(netdev)) {
4478 			/* We've lost link, so the controller stops DMA,
4479 			 * but we've got queued Tx work that's never going
4480 			 * to get done, so reset controller to flush Tx.
4481 			 * (Do the reset outside of interrupt context).
4482 			 */
4483 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
4484 				adapter->tx_timeout_count++;
4485 				schedule_work(&adapter->reset_task);
4486 				/* return immediately since reset is imminent */
4487 				return;
4488 			}
4489 		}
4490 
4491 		/* Force detection of hung controller every watchdog period */
4492 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4493 	}
4494 
4495 	/* Cause software interrupt to ensure Rx ring is cleaned */
4496 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4497 		u32 eics = 0;
4498 
4499 		for (i = 0; i < adapter->num_q_vectors; i++)
4500 			eics |= adapter->q_vector[i]->eims_value;
4501 		wr32(IGC_EICS, eics);
4502 	} else {
4503 		wr32(IGC_ICS, IGC_ICS_RXDMT0);
4504 	}
4505 
4506 	igc_ptp_tx_hang(adapter);
4507 
4508 	/* Reset the timer */
4509 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
4510 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
4511 			mod_timer(&adapter->watchdog_timer,
4512 				  round_jiffies(jiffies +  HZ));
4513 		else
4514 			mod_timer(&adapter->watchdog_timer,
4515 				  round_jiffies(jiffies + 2 * HZ));
4516 	}
4517 }
4518 
4519 /**
4520  * igc_intr_msi - Interrupt Handler
4521  * @irq: interrupt number
4522  * @data: pointer to a network interface device structure
4523  */
igc_intr_msi(int irq, void *data)4524 static irqreturn_t igc_intr_msi(int irq, void *data)
4525 {
4526 	struct igc_adapter *adapter = data;
4527 	struct igc_q_vector *q_vector = adapter->q_vector[0];
4528 	struct igc_hw *hw = &adapter->hw;
4529 	/* read ICR disables interrupts using IAM */
4530 	u32 icr = rd32(IGC_ICR);
4531 
4532 	igc_write_itr(q_vector);
4533 
4534 	if (icr & IGC_ICR_DRSTA)
4535 		schedule_work(&adapter->reset_task);
4536 
4537 	if (icr & IGC_ICR_DOUTSYNC) {
4538 		/* HW is reporting DMA is out of sync */
4539 		adapter->stats.doosync++;
4540 	}
4541 
4542 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4543 		hw->mac.get_link_status = 1;
4544 		if (!test_bit(__IGC_DOWN, &adapter->state))
4545 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4546 	}
4547 
4548 	if (icr & IGC_ICR_TS)
4549 		igc_tsync_interrupt(adapter);
4550 
4551 	napi_schedule(&q_vector->napi);
4552 
4553 	return IRQ_HANDLED;
4554 }
4555 
4556 /**
4557  * igc_intr - Legacy Interrupt Handler
4558  * @irq: interrupt number
4559  * @data: pointer to a network interface device structure
4560  */
igc_intr(int irq, void *data)4561 static irqreturn_t igc_intr(int irq, void *data)
4562 {
4563 	struct igc_adapter *adapter = data;
4564 	struct igc_q_vector *q_vector = adapter->q_vector[0];
4565 	struct igc_hw *hw = &adapter->hw;
4566 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
4567 	 * need for the IMC write
4568 	 */
4569 	u32 icr = rd32(IGC_ICR);
4570 
4571 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4572 	 * not set, then the adapter didn't send an interrupt
4573 	 */
4574 	if (!(icr & IGC_ICR_INT_ASSERTED))
4575 		return IRQ_NONE;
4576 
4577 	igc_write_itr(q_vector);
4578 
4579 	if (icr & IGC_ICR_DRSTA)
4580 		schedule_work(&adapter->reset_task);
4581 
4582 	if (icr & IGC_ICR_DOUTSYNC) {
4583 		/* HW is reporting DMA is out of sync */
4584 		adapter->stats.doosync++;
4585 	}
4586 
4587 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4588 		hw->mac.get_link_status = 1;
4589 		/* guard against interrupt when we're going down */
4590 		if (!test_bit(__IGC_DOWN, &adapter->state))
4591 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4592 	}
4593 
4594 	if (icr & IGC_ICR_TS)
4595 		igc_tsync_interrupt(adapter);
4596 
4597 	napi_schedule(&q_vector->napi);
4598 
4599 	return IRQ_HANDLED;
4600 }
4601 
igc_free_irq(struct igc_adapter *adapter)4602 static void igc_free_irq(struct igc_adapter *adapter)
4603 {
4604 	if (adapter->msix_entries) {
4605 		int vector = 0, i;
4606 
4607 		free_irq(adapter->msix_entries[vector++].vector, adapter);
4608 
4609 		for (i = 0; i < adapter->num_q_vectors; i++)
4610 			free_irq(adapter->msix_entries[vector++].vector,
4611 				 adapter->q_vector[i]);
4612 	} else {
4613 		free_irq(adapter->pdev->irq, adapter);
4614 	}
4615 }
4616 
4617 /**
4618  * igc_request_irq - initialize interrupts
4619  * @adapter: Pointer to adapter structure
4620  *
4621  * Attempts to configure interrupts using the best available
4622  * capabilities of the hardware and kernel.
4623  */
igc_request_irq(struct igc_adapter *adapter)4624 static int igc_request_irq(struct igc_adapter *adapter)
4625 {
4626 	struct net_device *netdev = adapter->netdev;
4627 	struct pci_dev *pdev = adapter->pdev;
4628 	int err = 0;
4629 
4630 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4631 		err = igc_request_msix(adapter);
4632 		if (!err)
4633 			goto request_done;
4634 		/* fall back to MSI */
4635 		igc_free_all_tx_resources(adapter);
4636 		igc_free_all_rx_resources(adapter);
4637 
4638 		igc_clear_interrupt_scheme(adapter);
4639 		err = igc_init_interrupt_scheme(adapter, false);
4640 		if (err)
4641 			goto request_done;
4642 		igc_setup_all_tx_resources(adapter);
4643 		igc_setup_all_rx_resources(adapter);
4644 		igc_configure(adapter);
4645 	}
4646 
4647 	igc_assign_vector(adapter->q_vector[0], 0);
4648 
4649 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
4650 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
4651 				  netdev->name, adapter);
4652 		if (!err)
4653 			goto request_done;
4654 
4655 		/* fall back to legacy interrupts */
4656 		igc_reset_interrupt_capability(adapter);
4657 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
4658 	}
4659 
4660 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
4661 			  netdev->name, adapter);
4662 
4663 	if (err)
4664 		netdev_err(netdev, "Error %d getting interrupt\n", err);
4665 
4666 request_done:
4667 	return err;
4668 }
4669 
4670 /**
4671  * __igc_open - Called when a network interface is made active
4672  * @netdev: network interface device structure
4673  * @resuming: boolean indicating if the device is resuming
4674  *
4675  * Returns 0 on success, negative value on failure
4676  *
4677  * The open entry point is called when a network interface is made
4678  * active by the system (IFF_UP).  At this point all resources needed
4679  * for transmit and receive operations are allocated, the interrupt
4680  * handler is registered with the OS, the watchdog timer is started,
4681  * and the stack is notified that the interface is ready.
4682  */
__igc_open(struct net_device *netdev, bool resuming)4683 static int __igc_open(struct net_device *netdev, bool resuming)
4684 {
4685 	struct igc_adapter *adapter = netdev_priv(netdev);
4686 	struct pci_dev *pdev = adapter->pdev;
4687 	struct igc_hw *hw = &adapter->hw;
4688 	int err = 0;
4689 	int i = 0;
4690 
4691 	/* disallow open during test */
4692 
4693 	if (test_bit(__IGC_TESTING, &adapter->state)) {
4694 		WARN_ON(resuming);
4695 		return -EBUSY;
4696 	}
4697 
4698 	if (!resuming)
4699 		pm_runtime_get_sync(&pdev->dev);
4700 
4701 	netif_carrier_off(netdev);
4702 
4703 	/* allocate transmit descriptors */
4704 	err = igc_setup_all_tx_resources(adapter);
4705 	if (err)
4706 		goto err_setup_tx;
4707 
4708 	/* allocate receive descriptors */
4709 	err = igc_setup_all_rx_resources(adapter);
4710 	if (err)
4711 		goto err_setup_rx;
4712 
4713 	igc_power_up_link(adapter);
4714 
4715 	igc_configure(adapter);
4716 
4717 	err = igc_request_irq(adapter);
4718 	if (err)
4719 		goto err_req_irq;
4720 
4721 	/* Notify the stack of the actual queue counts. */
4722 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
4723 	if (err)
4724 		goto err_set_queues;
4725 
4726 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
4727 	if (err)
4728 		goto err_set_queues;
4729 
4730 	clear_bit(__IGC_DOWN, &adapter->state);
4731 
4732 	for (i = 0; i < adapter->num_q_vectors; i++)
4733 		napi_enable(&adapter->q_vector[i]->napi);
4734 
4735 	/* Clear any pending interrupts. */
4736 	rd32(IGC_ICR);
4737 	igc_irq_enable(adapter);
4738 
4739 	if (!resuming)
4740 		pm_runtime_put(&pdev->dev);
4741 
4742 	netif_tx_start_all_queues(netdev);
4743 
4744 	/* start the watchdog. */
4745 	hw->mac.get_link_status = 1;
4746 	schedule_work(&adapter->watchdog_task);
4747 
4748 	return IGC_SUCCESS;
4749 
4750 err_set_queues:
4751 	igc_free_irq(adapter);
4752 err_req_irq:
4753 	igc_release_hw_control(adapter);
4754 	igc_power_down_phy_copper_base(&adapter->hw);
4755 	igc_free_all_rx_resources(adapter);
4756 err_setup_rx:
4757 	igc_free_all_tx_resources(adapter);
4758 err_setup_tx:
4759 	igc_reset(adapter);
4760 	if (!resuming)
4761 		pm_runtime_put(&pdev->dev);
4762 
4763 	return err;
4764 }
4765 
igc_open(struct net_device *netdev)4766 int igc_open(struct net_device *netdev)
4767 {
4768 	return __igc_open(netdev, false);
4769 }
4770 
4771 /**
4772  * __igc_close - Disables a network interface
4773  * @netdev: network interface device structure
4774  * @suspending: boolean indicating the device is suspending
4775  *
4776  * Returns 0, this is not allowed to fail
4777  *
4778  * The close entry point is called when an interface is de-activated
4779  * by the OS.  The hardware is still under the driver's control, but
4780  * needs to be disabled.  A global MAC reset is issued to stop the
4781  * hardware, and all transmit and receive resources are freed.
4782  */
__igc_close(struct net_device *netdev, bool suspending)4783 static int __igc_close(struct net_device *netdev, bool suspending)
4784 {
4785 	struct igc_adapter *adapter = netdev_priv(netdev);
4786 	struct pci_dev *pdev = adapter->pdev;
4787 
4788 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
4789 
4790 	if (!suspending)
4791 		pm_runtime_get_sync(&pdev->dev);
4792 
4793 	igc_down(adapter);
4794 
4795 	igc_release_hw_control(adapter);
4796 
4797 	igc_free_irq(adapter);
4798 
4799 	igc_free_all_tx_resources(adapter);
4800 	igc_free_all_rx_resources(adapter);
4801 
4802 	if (!suspending)
4803 		pm_runtime_put_sync(&pdev->dev);
4804 
4805 	return 0;
4806 }
4807 
igc_close(struct net_device *netdev)4808 int igc_close(struct net_device *netdev)
4809 {
4810 	if (netif_device_present(netdev) || netdev->dismantle)
4811 		return __igc_close(netdev, false);
4812 	return 0;
4813 }
4814 
4815 /**
4816  * igc_ioctl - Access the hwtstamp interface
4817  * @netdev: network interface device structure
4818  * @ifr: interface request data
4819  * @cmd: ioctl command
4820  **/
igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)4821 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4822 {
4823 	switch (cmd) {
4824 	case SIOCGHWTSTAMP:
4825 		return igc_ptp_get_ts_config(netdev, ifr);
4826 	case SIOCSHWTSTAMP:
4827 		return igc_ptp_set_ts_config(netdev, ifr);
4828 	default:
4829 		return -EOPNOTSUPP;
4830 	}
4831 }
4832 
igc_save_launchtime_params(struct igc_adapter *adapter, int queue, bool enable)4833 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
4834 				      bool enable)
4835 {
4836 	struct igc_ring *ring;
4837 	int i;
4838 
4839 	if (queue < 0 || queue >= adapter->num_tx_queues)
4840 		return -EINVAL;
4841 
4842 	ring = adapter->tx_ring[queue];
4843 	ring->launchtime_enable = enable;
4844 
4845 	if (adapter->base_time)
4846 		return 0;
4847 
4848 	adapter->cycle_time = NSEC_PER_SEC;
4849 
4850 	for (i = 0; i < adapter->num_tx_queues; i++) {
4851 		ring = adapter->tx_ring[i];
4852 		ring->start_time = 0;
4853 		ring->end_time = NSEC_PER_SEC;
4854 	}
4855 
4856 	return 0;
4857 }
4858 
is_base_time_past(ktime_t base_time, const struct timespec64 *now)4859 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
4860 {
4861 	struct timespec64 b;
4862 
4863 	b = ktime_to_timespec64(base_time);
4864 
4865 	return timespec64_compare(now, &b) > 0;
4866 }
4867 
validate_schedule(struct igc_adapter *adapter, const struct tc_taprio_qopt_offload *qopt)4868 static bool validate_schedule(struct igc_adapter *adapter,
4869 			      const struct tc_taprio_qopt_offload *qopt)
4870 {
4871 	int queue_uses[IGC_MAX_TX_QUEUES] = { };
4872 	struct timespec64 now;
4873 	size_t n;
4874 
4875 	if (qopt->cycle_time_extension)
4876 		return false;
4877 
4878 	igc_ptp_read(adapter, &now);
4879 
4880 	/* If we program the controller's BASET registers with a time
4881 	 * in the future, it will hold all the packets until that
4882 	 * time, causing a lot of TX Hangs, so to avoid that, we
4883 	 * reject schedules that would start in the future.
4884 	 */
4885 	if (!is_base_time_past(qopt->base_time, &now))
4886 		return false;
4887 
4888 	for (n = 0; n < qopt->num_entries; n++) {
4889 		const struct tc_taprio_sched_entry *e, *prev;
4890 		int i;
4891 
4892 		prev = n ? &qopt->entries[n - 1] : NULL;
4893 		e = &qopt->entries[n];
4894 
4895 		/* i225 only supports "global" frame preemption
4896 		 * settings.
4897 		 */
4898 		if (e->command != TC_TAPRIO_CMD_SET_GATES)
4899 			return false;
4900 
4901 		for (i = 0; i < adapter->num_tx_queues; i++)
4902 			if (e->gate_mask & BIT(i)) {
4903 				queue_uses[i]++;
4904 
4905 				/* There are limitations: A single queue cannot
4906 				 * be opened and closed multiple times per cycle
4907 				 * unless the gate stays open. Check for it.
4908 				 */
4909 				if (queue_uses[i] > 1 &&
4910 				    !(prev->gate_mask & BIT(i)))
4911 					return false;
4912 			}
4913 	}
4914 
4915 	return true;
4916 }
4917 
igc_tsn_enable_launchtime(struct igc_adapter *adapter, struct tc_etf_qopt_offload *qopt)4918 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
4919 				     struct tc_etf_qopt_offload *qopt)
4920 {
4921 	struct igc_hw *hw = &adapter->hw;
4922 	int err;
4923 
4924 	if (hw->mac.type != igc_i225)
4925 		return -EOPNOTSUPP;
4926 
4927 	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
4928 	if (err)
4929 		return err;
4930 
4931 	return igc_tsn_offload_apply(adapter);
4932 }
4933 
igc_save_qbv_schedule(struct igc_adapter *adapter, struct tc_taprio_qopt_offload *qopt)4934 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
4935 				 struct tc_taprio_qopt_offload *qopt)
4936 {
4937 	bool queue_configured[IGC_MAX_TX_QUEUES] = { };
4938 	u32 start_time = 0, end_time = 0;
4939 	size_t n;
4940 	int i;
4941 
4942 	if (!qopt->enable) {
4943 		adapter->base_time = 0;
4944 		return 0;
4945 	}
4946 
4947 	if (qopt->base_time < 0)
4948 		return -ERANGE;
4949 
4950 	if (adapter->base_time)
4951 		return -EALREADY;
4952 
4953 	if (!validate_schedule(adapter, qopt))
4954 		return -EINVAL;
4955 
4956 	adapter->cycle_time = qopt->cycle_time;
4957 	adapter->base_time = qopt->base_time;
4958 
4959 	for (n = 0; n < qopt->num_entries; n++) {
4960 		struct tc_taprio_sched_entry *e = &qopt->entries[n];
4961 
4962 		end_time += e->interval;
4963 
4964 		/* If any of the conditions below are true, we need to manually
4965 		 * control the end time of the cycle.
4966 		 * 1. Qbv users can specify a cycle time that is not equal
4967 		 * to the total GCL intervals. Hence, recalculation is
4968 		 * necessary here to exclude the time interval that
4969 		 * exceeds the cycle time.
4970 		 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
4971 		 * once the end of the list is reached, it will switch
4972 		 * to the END_OF_CYCLE state and leave the gates in the
4973 		 * same state until the next cycle is started.
4974 		 */
4975 		if (end_time > adapter->cycle_time ||
4976 		    n + 1 == qopt->num_entries)
4977 			end_time = adapter->cycle_time;
4978 
4979 		for (i = 0; i < adapter->num_tx_queues; i++) {
4980 			struct igc_ring *ring = adapter->tx_ring[i];
4981 
4982 			if (!(e->gate_mask & BIT(i)))
4983 				continue;
4984 
4985 			/* Check whether a queue stays open for more than one
4986 			 * entry. If so, keep the start and advance the end
4987 			 * time.
4988 			 */
4989 			if (!queue_configured[i])
4990 				ring->start_time = start_time;
4991 			ring->end_time = end_time;
4992 
4993 			queue_configured[i] = true;
4994 		}
4995 
4996 		start_time += e->interval;
4997 	}
4998 
4999 	/* Check whether a queue gets configured.
5000 	 * If not, set the start and end time to be end time.
5001 	 */
5002 	for (i = 0; i < adapter->num_tx_queues; i++) {
5003 		if (!queue_configured[i]) {
5004 			struct igc_ring *ring = adapter->tx_ring[i];
5005 
5006 			ring->start_time = end_time;
5007 			ring->end_time = end_time;
5008 		}
5009 	}
5010 
5011 	return 0;
5012 }
5013 
igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter, struct tc_taprio_qopt_offload *qopt)5014 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
5015 					 struct tc_taprio_qopt_offload *qopt)
5016 {
5017 	struct igc_hw *hw = &adapter->hw;
5018 	int err;
5019 
5020 	if (hw->mac.type != igc_i225)
5021 		return -EOPNOTSUPP;
5022 
5023 	err = igc_save_qbv_schedule(adapter, qopt);
5024 	if (err)
5025 		return err;
5026 
5027 	return igc_tsn_offload_apply(adapter);
5028 }
5029 
igc_setup_tc(struct net_device *dev, enum tc_setup_type type, void *type_data)5030 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
5031 			void *type_data)
5032 {
5033 	struct igc_adapter *adapter = netdev_priv(dev);
5034 
5035 	switch (type) {
5036 	case TC_SETUP_QDISC_TAPRIO:
5037 		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
5038 
5039 	case TC_SETUP_QDISC_ETF:
5040 		return igc_tsn_enable_launchtime(adapter, type_data);
5041 
5042 	default:
5043 		return -EOPNOTSUPP;
5044 	}
5045 }
5046 
5047 static const struct net_device_ops igc_netdev_ops = {
5048 	.ndo_open		= igc_open,
5049 	.ndo_stop		= igc_close,
5050 	.ndo_start_xmit		= igc_xmit_frame,
5051 	.ndo_set_rx_mode	= igc_set_rx_mode,
5052 	.ndo_set_mac_address	= igc_set_mac,
5053 	.ndo_change_mtu		= igc_change_mtu,
5054 	.ndo_get_stats64	= igc_get_stats64,
5055 	.ndo_fix_features	= igc_fix_features,
5056 	.ndo_set_features	= igc_set_features,
5057 	.ndo_features_check	= igc_features_check,
5058 	.ndo_do_ioctl		= igc_ioctl,
5059 	.ndo_setup_tc		= igc_setup_tc,
5060 };
5061 
5062 /* PCIe configuration access */
igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)5063 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
5064 {
5065 	struct igc_adapter *adapter = hw->back;
5066 
5067 	pci_read_config_word(adapter->pdev, reg, value);
5068 }
5069 
igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)5070 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
5071 {
5072 	struct igc_adapter *adapter = hw->back;
5073 
5074 	pci_write_config_word(adapter->pdev, reg, *value);
5075 }
5076 
igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)5077 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
5078 {
5079 	struct igc_adapter *adapter = hw->back;
5080 
5081 	if (!pci_is_pcie(adapter->pdev))
5082 		return -IGC_ERR_CONFIG;
5083 
5084 	pcie_capability_read_word(adapter->pdev, reg, value);
5085 
5086 	return IGC_SUCCESS;
5087 }
5088 
igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)5089 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
5090 {
5091 	struct igc_adapter *adapter = hw->back;
5092 
5093 	if (!pci_is_pcie(adapter->pdev))
5094 		return -IGC_ERR_CONFIG;
5095 
5096 	pcie_capability_write_word(adapter->pdev, reg, *value);
5097 
5098 	return IGC_SUCCESS;
5099 }
5100 
igc_rd32(struct igc_hw *hw, u32 reg)5101 u32 igc_rd32(struct igc_hw *hw, u32 reg)
5102 {
5103 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
5104 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
5105 	u32 value = 0;
5106 
5107 	if (IGC_REMOVED(hw_addr))
5108 		return ~value;
5109 
5110 	value = readl(&hw_addr[reg]);
5111 
5112 	/* reads should not return all F's */
5113 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
5114 		struct net_device *netdev = igc->netdev;
5115 
5116 		hw->hw_addr = NULL;
5117 		netif_device_detach(netdev);
5118 		netdev_err(netdev, "PCIe link lost, device now detached\n");
5119 		WARN(pci_device_is_present(igc->pdev),
5120 		     "igc: Failed to read reg 0x%x!\n", reg);
5121 	}
5122 
5123 	return value;
5124 }
5125 
igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)5126 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
5127 {
5128 	struct igc_mac_info *mac = &adapter->hw.mac;
5129 
5130 	mac->autoneg = 0;
5131 
5132 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5133 	 * for the switch() below to work
5134 	 */
5135 	if ((spd & 1) || (dplx & ~1))
5136 		goto err_inval;
5137 
5138 	switch (spd + dplx) {
5139 	case SPEED_10 + DUPLEX_HALF:
5140 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
5141 		break;
5142 	case SPEED_10 + DUPLEX_FULL:
5143 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
5144 		break;
5145 	case SPEED_100 + DUPLEX_HALF:
5146 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
5147 		break;
5148 	case SPEED_100 + DUPLEX_FULL:
5149 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
5150 		break;
5151 	case SPEED_1000 + DUPLEX_FULL:
5152 		mac->autoneg = 1;
5153 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5154 		break;
5155 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5156 		goto err_inval;
5157 	case SPEED_2500 + DUPLEX_FULL:
5158 		mac->autoneg = 1;
5159 		adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
5160 		break;
5161 	case SPEED_2500 + DUPLEX_HALF: /* not supported */
5162 	default:
5163 		goto err_inval;
5164 	}
5165 
5166 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5167 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
5168 
5169 	return 0;
5170 
5171 err_inval:
5172 	netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n");
5173 	return -EINVAL;
5174 }
5175 
5176 /**
5177  * igc_probe - Device Initialization Routine
5178  * @pdev: PCI device information struct
5179  * @ent: entry in igc_pci_tbl
5180  *
5181  * Returns 0 on success, negative on failure
5182  *
5183  * igc_probe initializes an adapter identified by a pci_dev structure.
5184  * The OS initialization, configuring the adapter private structure,
5185  * and a hardware reset occur.
5186  */
igc_probe(struct pci_dev *pdev, const struct pci_device_id *ent)5187 static int igc_probe(struct pci_dev *pdev,
5188 		     const struct pci_device_id *ent)
5189 {
5190 	struct igc_adapter *adapter;
5191 	struct net_device *netdev;
5192 	struct igc_hw *hw;
5193 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
5194 	int err, pci_using_dac;
5195 
5196 	err = pci_enable_device_mem(pdev);
5197 	if (err)
5198 		return err;
5199 
5200 	pci_using_dac = 0;
5201 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
5202 	if (!err) {
5203 		pci_using_dac = 1;
5204 	} else {
5205 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
5206 		if (err) {
5207 			dev_err(&pdev->dev,
5208 				"No usable DMA configuration, aborting\n");
5209 			goto err_dma;
5210 		}
5211 	}
5212 
5213 	err = pci_request_mem_regions(pdev, igc_driver_name);
5214 	if (err)
5215 		goto err_pci_reg;
5216 
5217 	pci_enable_pcie_error_reporting(pdev);
5218 
5219 	err = pci_enable_ptm(pdev, NULL);
5220 	if (err < 0)
5221 		dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
5222 
5223 	pci_set_master(pdev);
5224 
5225 	err = -ENOMEM;
5226 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
5227 				   IGC_MAX_TX_QUEUES);
5228 
5229 	if (!netdev)
5230 		goto err_alloc_etherdev;
5231 
5232 	SET_NETDEV_DEV(netdev, &pdev->dev);
5233 
5234 	pci_set_drvdata(pdev, netdev);
5235 	adapter = netdev_priv(netdev);
5236 	adapter->netdev = netdev;
5237 	adapter->pdev = pdev;
5238 	hw = &adapter->hw;
5239 	hw->back = adapter;
5240 	adapter->port_num = hw->bus.func;
5241 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
5242 
5243 	err = pci_save_state(pdev);
5244 	if (err)
5245 		goto err_ioremap;
5246 
5247 	err = -EIO;
5248 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
5249 				   pci_resource_len(pdev, 0));
5250 	if (!adapter->io_addr)
5251 		goto err_ioremap;
5252 
5253 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
5254 	hw->hw_addr = adapter->io_addr;
5255 
5256 	netdev->netdev_ops = &igc_netdev_ops;
5257 	igc_ethtool_set_ops(netdev);
5258 	netdev->watchdog_timeo = 5 * HZ;
5259 
5260 	netdev->mem_start = pci_resource_start(pdev, 0);
5261 	netdev->mem_end = pci_resource_end(pdev, 0);
5262 
5263 	/* PCI config space info */
5264 	hw->vendor_id = pdev->vendor;
5265 	hw->device_id = pdev->device;
5266 	hw->revision_id = pdev->revision;
5267 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
5268 	hw->subsystem_device_id = pdev->subsystem_device;
5269 
5270 	/* Copy the default MAC and PHY function pointers */
5271 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5272 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5273 
5274 	/* Initialize skew-specific constants */
5275 	err = ei->get_invariants(hw);
5276 	if (err)
5277 		goto err_sw_init;
5278 
5279 	/* Add supported features to the features list*/
5280 	netdev->features |= NETIF_F_SG;
5281 	netdev->features |= NETIF_F_TSO;
5282 	netdev->features |= NETIF_F_TSO6;
5283 	netdev->features |= NETIF_F_TSO_ECN;
5284 	netdev->features |= NETIF_F_RXHASH;
5285 	netdev->features |= NETIF_F_RXCSUM;
5286 	netdev->features |= NETIF_F_HW_CSUM;
5287 	netdev->features |= NETIF_F_SCTP_CRC;
5288 	netdev->features |= NETIF_F_HW_TC;
5289 
5290 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
5291 				  NETIF_F_GSO_GRE_CSUM | \
5292 				  NETIF_F_GSO_IPXIP4 | \
5293 				  NETIF_F_GSO_IPXIP6 | \
5294 				  NETIF_F_GSO_UDP_TUNNEL | \
5295 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
5296 
5297 	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
5298 	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
5299 
5300 	/* setup the private structure */
5301 	err = igc_sw_init(adapter);
5302 	if (err)
5303 		goto err_sw_init;
5304 
5305 	/* copy netdev features into list of user selectable features */
5306 	netdev->hw_features |= NETIF_F_NTUPLE;
5307 	netdev->hw_features |= netdev->features;
5308 
5309 	if (pci_using_dac)
5310 		netdev->features |= NETIF_F_HIGHDMA;
5311 
5312 	/* MTU range: 68 - 9216 */
5313 	netdev->min_mtu = ETH_MIN_MTU;
5314 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
5315 
5316 	/* before reading the NVM, reset the controller to put the device in a
5317 	 * known good starting state
5318 	 */
5319 	hw->mac.ops.reset_hw(hw);
5320 
5321 	if (igc_get_flash_presence_i225(hw)) {
5322 		if (hw->nvm.ops.validate(hw) < 0) {
5323 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
5324 			err = -EIO;
5325 			goto err_eeprom;
5326 		}
5327 	}
5328 
5329 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
5330 		/* copy the MAC address out of the NVM */
5331 		if (hw->mac.ops.read_mac_addr(hw))
5332 			dev_err(&pdev->dev, "NVM Read Error\n");
5333 	}
5334 
5335 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
5336 
5337 	if (!is_valid_ether_addr(netdev->dev_addr)) {
5338 		dev_err(&pdev->dev, "Invalid MAC Address\n");
5339 		err = -EIO;
5340 		goto err_eeprom;
5341 	}
5342 
5343 	/* configure RXPBSIZE and TXPBSIZE */
5344 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
5345 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
5346 
5347 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
5348 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
5349 
5350 	INIT_WORK(&adapter->reset_task, igc_reset_task);
5351 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
5352 
5353 	/* Initialize link properties that are user-changeable */
5354 	adapter->fc_autoneg = true;
5355 	hw->mac.autoneg = true;
5356 	hw->phy.autoneg_advertised = 0xaf;
5357 
5358 	hw->fc.requested_mode = igc_fc_default;
5359 	hw->fc.current_mode = igc_fc_default;
5360 
5361 	/* By default, support wake on port A */
5362 	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
5363 
5364 	/* initialize the wol settings based on the eeprom settings */
5365 	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
5366 		adapter->wol |= IGC_WUFC_MAG;
5367 
5368 	device_set_wakeup_enable(&adapter->pdev->dev,
5369 				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
5370 
5371 	igc_ptp_init(adapter);
5372 
5373 	/* reset the hardware with the new settings */
5374 	igc_reset(adapter);
5375 
5376 	/* let the f/w know that the h/w is now under the control of the
5377 	 * driver.
5378 	 */
5379 	igc_get_hw_control(adapter);
5380 
5381 	strncpy(netdev->name, "eth%d", IFNAMSIZ);
5382 	err = register_netdev(netdev);
5383 	if (err)
5384 		goto err_register;
5385 
5386 	 /* carrier off reporting is important to ethtool even BEFORE open */
5387 	netif_carrier_off(netdev);
5388 
5389 	/* Check if Media Autosense is enabled */
5390 	adapter->ei = *ei;
5391 
5392 	/* print pcie link status and MAC address */
5393 	pcie_print_link_status(pdev);
5394 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
5395 
5396 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
5397 	/* Disable EEE for internal PHY devices */
5398 	hw->dev_spec._base.eee_enable = false;
5399 	adapter->flags &= ~IGC_FLAG_EEE;
5400 	igc_set_eee_i225(hw, false, false, false);
5401 
5402 	pm_runtime_put_noidle(&pdev->dev);
5403 
5404 	return 0;
5405 
5406 err_register:
5407 	igc_release_hw_control(adapter);
5408 err_eeprom:
5409 	if (!igc_check_reset_block(hw))
5410 		igc_reset_phy(hw);
5411 err_sw_init:
5412 	igc_clear_interrupt_scheme(adapter);
5413 	iounmap(adapter->io_addr);
5414 err_ioremap:
5415 	free_netdev(netdev);
5416 err_alloc_etherdev:
5417 	pci_disable_pcie_error_reporting(pdev);
5418 	pci_release_mem_regions(pdev);
5419 err_pci_reg:
5420 err_dma:
5421 	pci_disable_device(pdev);
5422 	return err;
5423 }
5424 
5425 /**
5426  * igc_remove - Device Removal Routine
5427  * @pdev: PCI device information struct
5428  *
5429  * igc_remove is called by the PCI subsystem to alert the driver
5430  * that it should release a PCI device.  This could be caused by a
5431  * Hot-Plug event, or because the driver is going to be removed from
5432  * memory.
5433  */
igc_remove(struct pci_dev *pdev)5434 static void igc_remove(struct pci_dev *pdev)
5435 {
5436 	struct net_device *netdev = pci_get_drvdata(pdev);
5437 	struct igc_adapter *adapter = netdev_priv(netdev);
5438 
5439 	pm_runtime_get_noresume(&pdev->dev);
5440 
5441 	igc_flush_nfc_rules(adapter);
5442 
5443 	igc_ptp_stop(adapter);
5444 
5445 	set_bit(__IGC_DOWN, &adapter->state);
5446 
5447 	del_timer_sync(&adapter->watchdog_timer);
5448 	del_timer_sync(&adapter->phy_info_timer);
5449 
5450 	cancel_work_sync(&adapter->reset_task);
5451 	cancel_work_sync(&adapter->watchdog_task);
5452 
5453 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
5454 	 * would have already happened in close and is redundant.
5455 	 */
5456 	igc_release_hw_control(adapter);
5457 	unregister_netdev(netdev);
5458 
5459 	igc_clear_interrupt_scheme(adapter);
5460 	pci_iounmap(pdev, adapter->io_addr);
5461 	pci_release_mem_regions(pdev);
5462 
5463 	free_netdev(netdev);
5464 
5465 	pci_disable_pcie_error_reporting(pdev);
5466 
5467 	pci_disable_device(pdev);
5468 }
5469 
__igc_shutdown(struct pci_dev *pdev, bool *enable_wake, bool runtime)5470 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
5471 			  bool runtime)
5472 {
5473 	struct net_device *netdev = pci_get_drvdata(pdev);
5474 	struct igc_adapter *adapter = netdev_priv(netdev);
5475 	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
5476 	struct igc_hw *hw = &adapter->hw;
5477 	u32 ctrl, rctl, status;
5478 	bool wake;
5479 
5480 	rtnl_lock();
5481 	netif_device_detach(netdev);
5482 
5483 	if (netif_running(netdev))
5484 		__igc_close(netdev, true);
5485 
5486 	igc_ptp_suspend(adapter);
5487 
5488 	igc_clear_interrupt_scheme(adapter);
5489 	rtnl_unlock();
5490 
5491 	status = rd32(IGC_STATUS);
5492 	if (status & IGC_STATUS_LU)
5493 		wufc &= ~IGC_WUFC_LNKC;
5494 
5495 	if (wufc) {
5496 		igc_setup_rctl(adapter);
5497 		igc_set_rx_mode(netdev);
5498 
5499 		/* turn on all-multi mode if wake on multicast is enabled */
5500 		if (wufc & IGC_WUFC_MC) {
5501 			rctl = rd32(IGC_RCTL);
5502 			rctl |= IGC_RCTL_MPE;
5503 			wr32(IGC_RCTL, rctl);
5504 		}
5505 
5506 		ctrl = rd32(IGC_CTRL);
5507 		ctrl |= IGC_CTRL_ADVD3WUC;
5508 		wr32(IGC_CTRL, ctrl);
5509 
5510 		/* Allow time for pending master requests to run */
5511 		igc_disable_pcie_master(hw);
5512 
5513 		wr32(IGC_WUC, IGC_WUC_PME_EN);
5514 		wr32(IGC_WUFC, wufc);
5515 	} else {
5516 		wr32(IGC_WUC, 0);
5517 		wr32(IGC_WUFC, 0);
5518 	}
5519 
5520 	wake = wufc || adapter->en_mng_pt;
5521 	if (!wake)
5522 		igc_power_down_phy_copper_base(&adapter->hw);
5523 	else
5524 		igc_power_up_link(adapter);
5525 
5526 	if (enable_wake)
5527 		*enable_wake = wake;
5528 
5529 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
5530 	 * would have already happened in close and is redundant.
5531 	 */
5532 	igc_release_hw_control(adapter);
5533 
5534 	pci_disable_device(pdev);
5535 
5536 	return 0;
5537 }
5538 
5539 #ifdef CONFIG_PM
igc_runtime_suspend(struct device *dev)5540 static int __maybe_unused igc_runtime_suspend(struct device *dev)
5541 {
5542 	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
5543 }
5544 
igc_deliver_wake_packet(struct net_device *netdev)5545 static void igc_deliver_wake_packet(struct net_device *netdev)
5546 {
5547 	struct igc_adapter *adapter = netdev_priv(netdev);
5548 	struct igc_hw *hw = &adapter->hw;
5549 	struct sk_buff *skb;
5550 	u32 wupl;
5551 
5552 	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
5553 
5554 	/* WUPM stores only the first 128 bytes of the wake packet.
5555 	 * Read the packet only if we have the whole thing.
5556 	 */
5557 	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
5558 		return;
5559 
5560 	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
5561 	if (!skb)
5562 		return;
5563 
5564 	skb_put(skb, wupl);
5565 
5566 	/* Ensure reads are 32-bit aligned */
5567 	wupl = roundup(wupl, 4);
5568 
5569 	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
5570 
5571 	skb->protocol = eth_type_trans(skb, netdev);
5572 	netif_rx(skb);
5573 }
5574 
igc_resume(struct device *dev)5575 static int __maybe_unused igc_resume(struct device *dev)
5576 {
5577 	struct pci_dev *pdev = to_pci_dev(dev);
5578 	struct net_device *netdev = pci_get_drvdata(pdev);
5579 	struct igc_adapter *adapter = netdev_priv(netdev);
5580 	struct igc_hw *hw = &adapter->hw;
5581 	u32 err, val;
5582 
5583 	pci_set_power_state(pdev, PCI_D0);
5584 	pci_restore_state(pdev);
5585 	pci_save_state(pdev);
5586 
5587 	if (!pci_device_is_present(pdev))
5588 		return -ENODEV;
5589 	err = pci_enable_device_mem(pdev);
5590 	if (err) {
5591 		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
5592 		return err;
5593 	}
5594 	pci_set_master(pdev);
5595 
5596 	pci_enable_wake(pdev, PCI_D3hot, 0);
5597 	pci_enable_wake(pdev, PCI_D3cold, 0);
5598 
5599 	if (igc_init_interrupt_scheme(adapter, true)) {
5600 		netdev_err(netdev, "Unable to allocate memory for queues\n");
5601 		return -ENOMEM;
5602 	}
5603 
5604 	igc_reset(adapter);
5605 
5606 	/* let the f/w know that the h/w is now under the control of the
5607 	 * driver.
5608 	 */
5609 	igc_get_hw_control(adapter);
5610 
5611 	val = rd32(IGC_WUS);
5612 	if (val & WAKE_PKT_WUS)
5613 		igc_deliver_wake_packet(netdev);
5614 
5615 	wr32(IGC_WUS, ~0);
5616 
5617 	rtnl_lock();
5618 	if (!err && netif_running(netdev))
5619 		err = __igc_open(netdev, true);
5620 
5621 	if (!err)
5622 		netif_device_attach(netdev);
5623 	rtnl_unlock();
5624 
5625 	return err;
5626 }
5627 
igc_runtime_resume(struct device *dev)5628 static int __maybe_unused igc_runtime_resume(struct device *dev)
5629 {
5630 	return igc_resume(dev);
5631 }
5632 
igc_suspend(struct device *dev)5633 static int __maybe_unused igc_suspend(struct device *dev)
5634 {
5635 	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
5636 }
5637 
igc_runtime_idle(struct device *dev)5638 static int __maybe_unused igc_runtime_idle(struct device *dev)
5639 {
5640 	struct net_device *netdev = dev_get_drvdata(dev);
5641 	struct igc_adapter *adapter = netdev_priv(netdev);
5642 
5643 	if (!igc_has_link(adapter))
5644 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
5645 
5646 	return -EBUSY;
5647 }
5648 #endif /* CONFIG_PM */
5649 
igc_shutdown(struct pci_dev *pdev)5650 static void igc_shutdown(struct pci_dev *pdev)
5651 {
5652 	bool wake;
5653 
5654 	__igc_shutdown(pdev, &wake, 0);
5655 
5656 	if (system_state == SYSTEM_POWER_OFF) {
5657 		pci_wake_from_d3(pdev, wake);
5658 		pci_set_power_state(pdev, PCI_D3hot);
5659 	}
5660 }
5661 
5662 /**
5663  *  igc_io_error_detected - called when PCI error is detected
5664  *  @pdev: Pointer to PCI device
5665  *  @state: The current PCI connection state
5666  *
5667  *  This function is called after a PCI bus error affecting
5668  *  this device has been detected.
5669  **/
igc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)5670 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
5671 					      pci_channel_state_t state)
5672 {
5673 	struct net_device *netdev = pci_get_drvdata(pdev);
5674 	struct igc_adapter *adapter = netdev_priv(netdev);
5675 
5676 	netif_device_detach(netdev);
5677 
5678 	if (state == pci_channel_io_perm_failure)
5679 		return PCI_ERS_RESULT_DISCONNECT;
5680 
5681 	if (netif_running(netdev))
5682 		igc_down(adapter);
5683 	pci_disable_device(pdev);
5684 
5685 	/* Request a slot reset. */
5686 	return PCI_ERS_RESULT_NEED_RESET;
5687 }
5688 
5689 /**
5690  *  igc_io_slot_reset - called after the PCI bus has been reset.
5691  *  @pdev: Pointer to PCI device
5692  *
5693  *  Restart the card from scratch, as if from a cold-boot. Implementation
5694  *  resembles the first-half of the igc_resume routine.
5695  **/
igc_io_slot_reset(struct pci_dev *pdev)5696 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
5697 {
5698 	struct net_device *netdev = pci_get_drvdata(pdev);
5699 	struct igc_adapter *adapter = netdev_priv(netdev);
5700 	struct igc_hw *hw = &adapter->hw;
5701 	pci_ers_result_t result;
5702 
5703 	if (pci_enable_device_mem(pdev)) {
5704 		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
5705 		result = PCI_ERS_RESULT_DISCONNECT;
5706 	} else {
5707 		pci_set_master(pdev);
5708 		pci_restore_state(pdev);
5709 		pci_save_state(pdev);
5710 
5711 		pci_enable_wake(pdev, PCI_D3hot, 0);
5712 		pci_enable_wake(pdev, PCI_D3cold, 0);
5713 
5714 		/* In case of PCI error, adapter loses its HW address
5715 		 * so we should re-assign it here.
5716 		 */
5717 		hw->hw_addr = adapter->io_addr;
5718 
5719 		igc_reset(adapter);
5720 		wr32(IGC_WUS, ~0);
5721 		result = PCI_ERS_RESULT_RECOVERED;
5722 	}
5723 
5724 	return result;
5725 }
5726 
5727 /**
5728  *  igc_io_resume - called when traffic can start to flow again.
5729  *  @pdev: Pointer to PCI device
5730  *
5731  *  This callback is called when the error recovery driver tells us that
5732  *  its OK to resume normal operation. Implementation resembles the
5733  *  second-half of the igc_resume routine.
5734  */
igc_io_resume(struct pci_dev *pdev)5735 static void igc_io_resume(struct pci_dev *pdev)
5736 {
5737 	struct net_device *netdev = pci_get_drvdata(pdev);
5738 	struct igc_adapter *adapter = netdev_priv(netdev);
5739 
5740 	rtnl_lock();
5741 	if (netif_running(netdev)) {
5742 		if (igc_open(netdev)) {
5743 			netdev_err(netdev, "igc_open failed after reset\n");
5744 			return;
5745 		}
5746 	}
5747 
5748 	netif_device_attach(netdev);
5749 
5750 	/* let the f/w know that the h/w is now under the control of the
5751 	 * driver.
5752 	 */
5753 	igc_get_hw_control(adapter);
5754 	rtnl_unlock();
5755 }
5756 
5757 static const struct pci_error_handlers igc_err_handler = {
5758 	.error_detected = igc_io_error_detected,
5759 	.slot_reset = igc_io_slot_reset,
5760 	.resume = igc_io_resume,
5761 };
5762 
5763 #ifdef CONFIG_PM
5764 static const struct dev_pm_ops igc_pm_ops = {
5765 	SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
5766 	SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
5767 			   igc_runtime_idle)
5768 };
5769 #endif
5770 
5771 static struct pci_driver igc_driver = {
5772 	.name     = igc_driver_name,
5773 	.id_table = igc_pci_tbl,
5774 	.probe    = igc_probe,
5775 	.remove   = igc_remove,
5776 #ifdef CONFIG_PM
5777 	.driver.pm = &igc_pm_ops,
5778 #endif
5779 	.shutdown = igc_shutdown,
5780 	.err_handler = &igc_err_handler,
5781 };
5782 
5783 /**
5784  * igc_reinit_queues - return error
5785  * @adapter: pointer to adapter structure
5786  */
igc_reinit_queues(struct igc_adapter *adapter)5787 int igc_reinit_queues(struct igc_adapter *adapter)
5788 {
5789 	struct net_device *netdev = adapter->netdev;
5790 	int err = 0;
5791 
5792 	if (netif_running(netdev))
5793 		igc_close(netdev);
5794 
5795 	igc_reset_interrupt_capability(adapter);
5796 
5797 	if (igc_init_interrupt_scheme(adapter, true)) {
5798 		netdev_err(netdev, "Unable to allocate memory for queues\n");
5799 		return -ENOMEM;
5800 	}
5801 
5802 	if (netif_running(netdev))
5803 		err = igc_open(netdev);
5804 
5805 	return err;
5806 }
5807 
5808 /**
5809  * igc_get_hw_dev - return device
5810  * @hw: pointer to hardware structure
5811  *
5812  * used by hardware layer to print debugging information
5813  */
igc_get_hw_dev(struct igc_hw *hw)5814 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
5815 {
5816 	struct igc_adapter *adapter = hw->back;
5817 
5818 	return adapter->netdev;
5819 }
5820 
5821 /**
5822  * igc_init_module - Driver Registration Routine
5823  *
5824  * igc_init_module is the first routine called when the driver is
5825  * loaded. All it does is register with the PCI subsystem.
5826  */
igc_init_module(void)5827 static int __init igc_init_module(void)
5828 {
5829 	int ret;
5830 
5831 	pr_info("%s\n", igc_driver_string);
5832 	pr_info("%s\n", igc_copyright);
5833 
5834 	ret = pci_register_driver(&igc_driver);
5835 	return ret;
5836 }
5837 
5838 module_init(igc_init_module);
5839 
5840 /**
5841  * igc_exit_module - Driver Exit Cleanup Routine
5842  *
5843  * igc_exit_module is called just before the driver is removed
5844  * from memory.
5845  */
igc_exit_module(void)5846 static void __exit igc_exit_module(void)
5847 {
5848 	pci_unregister_driver(&igc_driver);
5849 }
5850 
5851 module_exit(igc_exit_module);
5852 /* igc_main.c */
5853