1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_flow.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_devlink.h"
11
12 /**
13 * ice_vsi_type_str - maps VSI type enum to string equivalents
14 * @vsi_type: VSI type enum
15 */
ice_vsi_type_str(enum ice_vsi_type vsi_type)16 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
17 {
18 switch (vsi_type) {
19 case ICE_VSI_PF:
20 return "ICE_VSI_PF";
21 case ICE_VSI_VF:
22 return "ICE_VSI_VF";
23 case ICE_VSI_CTRL:
24 return "ICE_VSI_CTRL";
25 case ICE_VSI_LB:
26 return "ICE_VSI_LB";
27 default:
28 return "unknown";
29 }
30 }
31
32 /**
33 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
34 * @vsi: the VSI being configured
35 * @ena: start or stop the Rx rings
36 *
37 * First enable/disable all of the Rx rings, flush any remaining writes, and
38 * then verify that they have all been enabled/disabled successfully. This will
39 * let all of the register writes complete when enabling/disabling the Rx rings
40 * before waiting for the change in hardware to complete.
41 */
ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)42 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
43 {
44 int ret = 0;
45 u16 i;
46
47 for (i = 0; i < vsi->num_rxq; i++)
48 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
49
50 ice_flush(&vsi->back->hw);
51
52 for (i = 0; i < vsi->num_rxq; i++) {
53 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
54 if (ret)
55 break;
56 }
57
58 return ret;
59 }
60
61 /**
62 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
63 * @vsi: VSI pointer
64 *
65 * On error: returns error code (negative)
66 * On success: returns 0
67 */
ice_vsi_alloc_arrays(struct ice_vsi *vsi)68 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
69 {
70 struct ice_pf *pf = vsi->back;
71 struct device *dev;
72
73 dev = ice_pf_to_dev(pf);
74
75 /* allocate memory for both Tx and Rx ring pointers */
76 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
77 sizeof(*vsi->tx_rings), GFP_KERNEL);
78 if (!vsi->tx_rings)
79 return -ENOMEM;
80
81 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
82 sizeof(*vsi->rx_rings), GFP_KERNEL);
83 if (!vsi->rx_rings)
84 goto err_rings;
85
86 /* txq_map needs to have enough space to track both Tx (stack) rings
87 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
88 * so use num_possible_cpus() as we want to always provide XDP ring
89 * per CPU, regardless of queue count settings from user that might
90 * have come from ethtool's set_channels() callback;
91 */
92 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
93 sizeof(*vsi->txq_map), GFP_KERNEL);
94
95 if (!vsi->txq_map)
96 goto err_txq_map;
97
98 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
99 sizeof(*vsi->rxq_map), GFP_KERNEL);
100 if (!vsi->rxq_map)
101 goto err_rxq_map;
102
103 /* There is no need to allocate q_vectors for a loopback VSI. */
104 if (vsi->type == ICE_VSI_LB)
105 return 0;
106
107 /* allocate memory for q_vector pointers */
108 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
109 sizeof(*vsi->q_vectors), GFP_KERNEL);
110 if (!vsi->q_vectors)
111 goto err_vectors;
112
113 return 0;
114
115 err_vectors:
116 devm_kfree(dev, vsi->rxq_map);
117 err_rxq_map:
118 devm_kfree(dev, vsi->txq_map);
119 err_txq_map:
120 devm_kfree(dev, vsi->rx_rings);
121 err_rings:
122 devm_kfree(dev, vsi->tx_rings);
123 return -ENOMEM;
124 }
125
126 /**
127 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
128 * @vsi: the VSI being configured
129 */
ice_vsi_set_num_desc(struct ice_vsi *vsi)130 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
131 {
132 switch (vsi->type) {
133 case ICE_VSI_PF:
134 case ICE_VSI_CTRL:
135 case ICE_VSI_LB:
136 /* a user could change the values of num_[tr]x_desc using
137 * ethtool -G so we should keep those values instead of
138 * overwriting them with the defaults.
139 */
140 if (!vsi->num_rx_desc)
141 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
142 if (!vsi->num_tx_desc)
143 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
144 break;
145 default:
146 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
147 vsi->type);
148 break;
149 }
150 }
151
152 /**
153 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
154 * @vsi: the VSI being configured
155 * @vf_id: ID of the VF being configured
156 *
157 * Return 0 on success and a negative value on error
158 */
ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id)159 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id)
160 {
161 struct ice_pf *pf = vsi->back;
162 struct ice_vf *vf = NULL;
163
164 if (vsi->type == ICE_VSI_VF)
165 vsi->vf_id = vf_id;
166
167 switch (vsi->type) {
168 case ICE_VSI_PF:
169 vsi->alloc_txq = min3(pf->num_lan_msix,
170 ice_get_avail_txq_count(pf),
171 (u16)num_online_cpus());
172 if (vsi->req_txq) {
173 vsi->alloc_txq = vsi->req_txq;
174 vsi->num_txq = vsi->req_txq;
175 }
176
177 pf->num_lan_tx = vsi->alloc_txq;
178
179 /* only 1 Rx queue unless RSS is enabled */
180 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
181 vsi->alloc_rxq = 1;
182 } else {
183 vsi->alloc_rxq = min3(pf->num_lan_msix,
184 ice_get_avail_rxq_count(pf),
185 (u16)num_online_cpus());
186 if (vsi->req_rxq) {
187 vsi->alloc_rxq = vsi->req_rxq;
188 vsi->num_rxq = vsi->req_rxq;
189 }
190 }
191
192 pf->num_lan_rx = vsi->alloc_rxq;
193
194 vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
195 max_t(int, vsi->alloc_rxq,
196 vsi->alloc_txq));
197 break;
198 case ICE_VSI_VF:
199 vf = &pf->vf[vsi->vf_id];
200 if (vf->num_req_qs)
201 vf->num_vf_qs = vf->num_req_qs;
202 vsi->alloc_txq = vf->num_vf_qs;
203 vsi->alloc_rxq = vf->num_vf_qs;
204 /* pf->num_msix_per_vf includes (VF miscellaneous vector +
205 * data queue interrupts). Since vsi->num_q_vectors is number
206 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
207 * original vector count
208 */
209 vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF;
210 break;
211 case ICE_VSI_CTRL:
212 vsi->alloc_txq = 1;
213 vsi->alloc_rxq = 1;
214 vsi->num_q_vectors = 1;
215 break;
216 case ICE_VSI_LB:
217 vsi->alloc_txq = 1;
218 vsi->alloc_rxq = 1;
219 break;
220 default:
221 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type);
222 break;
223 }
224
225 ice_vsi_set_num_desc(vsi);
226 }
227
228 /**
229 * ice_get_free_slot - get the next non-NULL location index in array
230 * @array: array to search
231 * @size: size of the array
232 * @curr: last known occupied index to be used as a search hint
233 *
234 * void * is being used to keep the functionality generic. This lets us use this
235 * function on any array of pointers.
236 */
ice_get_free_slot(void *array, int size, int curr)237 static int ice_get_free_slot(void *array, int size, int curr)
238 {
239 int **tmp_array = (int **)array;
240 int next;
241
242 if (curr < (size - 1) && !tmp_array[curr + 1]) {
243 next = curr + 1;
244 } else {
245 int i = 0;
246
247 while ((i < size) && (tmp_array[i]))
248 i++;
249 if (i == size)
250 next = ICE_NO_VSI;
251 else
252 next = i;
253 }
254 return next;
255 }
256
257 /**
258 * ice_vsi_delete - delete a VSI from the switch
259 * @vsi: pointer to VSI being removed
260 */
ice_vsi_delete(struct ice_vsi *vsi)261 static void ice_vsi_delete(struct ice_vsi *vsi)
262 {
263 struct ice_pf *pf = vsi->back;
264 struct ice_vsi_ctx *ctxt;
265 enum ice_status status;
266
267 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
268 if (!ctxt)
269 return;
270
271 if (vsi->type == ICE_VSI_VF)
272 ctxt->vf_num = vsi->vf_id;
273 ctxt->vsi_num = vsi->vsi_num;
274
275 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
276
277 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
278 if (status)
279 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n",
280 vsi->vsi_num, ice_stat_str(status));
281
282 kfree(ctxt);
283 }
284
285 /**
286 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
287 * @vsi: pointer to VSI being cleared
288 */
ice_vsi_free_arrays(struct ice_vsi *vsi)289 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
290 {
291 struct ice_pf *pf = vsi->back;
292 struct device *dev;
293
294 dev = ice_pf_to_dev(pf);
295
296 /* free the ring and vector containers */
297 if (vsi->q_vectors) {
298 devm_kfree(dev, vsi->q_vectors);
299 vsi->q_vectors = NULL;
300 }
301 if (vsi->tx_rings) {
302 devm_kfree(dev, vsi->tx_rings);
303 vsi->tx_rings = NULL;
304 }
305 if (vsi->rx_rings) {
306 devm_kfree(dev, vsi->rx_rings);
307 vsi->rx_rings = NULL;
308 }
309 if (vsi->txq_map) {
310 devm_kfree(dev, vsi->txq_map);
311 vsi->txq_map = NULL;
312 }
313 if (vsi->rxq_map) {
314 devm_kfree(dev, vsi->rxq_map);
315 vsi->rxq_map = NULL;
316 }
317 }
318
319 /**
320 * ice_vsi_clear - clean up and deallocate the provided VSI
321 * @vsi: pointer to VSI being cleared
322 *
323 * This deallocates the VSI's queue resources, removes it from the PF's
324 * VSI array if necessary, and deallocates the VSI
325 *
326 * Returns 0 on success, negative on failure
327 */
ice_vsi_clear(struct ice_vsi *vsi)328 static int ice_vsi_clear(struct ice_vsi *vsi)
329 {
330 struct ice_pf *pf = NULL;
331 struct device *dev;
332
333 if (!vsi)
334 return 0;
335
336 if (!vsi->back)
337 return -EINVAL;
338
339 pf = vsi->back;
340 dev = ice_pf_to_dev(pf);
341
342 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
343 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
344 return -EINVAL;
345 }
346
347 mutex_lock(&pf->sw_mutex);
348 /* updates the PF for this cleared VSI */
349
350 pf->vsi[vsi->idx] = NULL;
351 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL)
352 pf->next_vsi = vsi->idx;
353
354 ice_vsi_free_arrays(vsi);
355 mutex_unlock(&pf->sw_mutex);
356 devm_kfree(dev, vsi);
357
358 return 0;
359 }
360
361 /**
362 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
363 * @irq: interrupt number
364 * @data: pointer to a q_vector
365 */
ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)366 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
367 {
368 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
369
370 if (!q_vector->tx.ring)
371 return IRQ_HANDLED;
372
373 #define FDIR_RX_DESC_CLEAN_BUDGET 64
374 ice_clean_rx_irq(q_vector->rx.ring, FDIR_RX_DESC_CLEAN_BUDGET);
375 ice_clean_ctrl_tx_irq(q_vector->tx.ring);
376
377 return IRQ_HANDLED;
378 }
379
380 /**
381 * ice_msix_clean_rings - MSIX mode Interrupt Handler
382 * @irq: interrupt number
383 * @data: pointer to a q_vector
384 */
ice_msix_clean_rings(int __always_unused irq, void *data)385 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
386 {
387 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
388
389 if (!q_vector->tx.ring && !q_vector->rx.ring)
390 return IRQ_HANDLED;
391
392 napi_schedule(&q_vector->napi);
393
394 return IRQ_HANDLED;
395 }
396
397 /**
398 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
399 * @pf: board private structure
400 * @vsi_type: type of VSI
401 * @vf_id: ID of the VF being configured
402 *
403 * returns a pointer to a VSI on success, NULL on failure.
404 */
405 static struct ice_vsi *
ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, u16 vf_id)406 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, u16 vf_id)
407 {
408 struct device *dev = ice_pf_to_dev(pf);
409 struct ice_vsi *vsi = NULL;
410
411 /* Need to protect the allocation of the VSIs at the PF level */
412 mutex_lock(&pf->sw_mutex);
413
414 /* If we have already allocated our maximum number of VSIs,
415 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
416 * is available to be populated
417 */
418 if (pf->next_vsi == ICE_NO_VSI) {
419 dev_dbg(dev, "out of VSI slots!\n");
420 goto unlock_pf;
421 }
422
423 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
424 if (!vsi)
425 goto unlock_pf;
426
427 vsi->type = vsi_type;
428 vsi->back = pf;
429 set_bit(__ICE_DOWN, vsi->state);
430
431 if (vsi_type == ICE_VSI_VF)
432 ice_vsi_set_num_qs(vsi, vf_id);
433 else
434 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
435
436 switch (vsi->type) {
437 case ICE_VSI_PF:
438 if (ice_vsi_alloc_arrays(vsi))
439 goto err_rings;
440
441 /* Setup default MSIX irq handler for VSI */
442 vsi->irq_handler = ice_msix_clean_rings;
443 break;
444 case ICE_VSI_CTRL:
445 if (ice_vsi_alloc_arrays(vsi))
446 goto err_rings;
447
448 /* Setup ctrl VSI MSIX irq handler */
449 vsi->irq_handler = ice_msix_clean_ctrl_vsi;
450 break;
451 case ICE_VSI_VF:
452 if (ice_vsi_alloc_arrays(vsi))
453 goto err_rings;
454 break;
455 case ICE_VSI_LB:
456 if (ice_vsi_alloc_arrays(vsi))
457 goto err_rings;
458 break;
459 default:
460 dev_warn(dev, "Unknown VSI type %d\n", vsi->type);
461 goto unlock_pf;
462 }
463
464 if (vsi->type == ICE_VSI_CTRL) {
465 /* Use the last VSI slot as the index for the control VSI */
466 vsi->idx = pf->num_alloc_vsi - 1;
467 pf->ctrl_vsi_idx = vsi->idx;
468 pf->vsi[vsi->idx] = vsi;
469 } else {
470 /* fill slot and make note of the index */
471 vsi->idx = pf->next_vsi;
472 pf->vsi[pf->next_vsi] = vsi;
473
474 /* prepare pf->next_vsi for next use */
475 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
476 pf->next_vsi);
477 }
478 goto unlock_pf;
479
480 err_rings:
481 devm_kfree(dev, vsi);
482 vsi = NULL;
483 unlock_pf:
484 mutex_unlock(&pf->sw_mutex);
485 return vsi;
486 }
487
488 /**
489 * ice_alloc_fd_res - Allocate FD resource for a VSI
490 * @vsi: pointer to the ice_vsi
491 *
492 * This allocates the FD resources
493 *
494 * Returns 0 on success, -EPERM on no-op or -EIO on failure
495 */
ice_alloc_fd_res(struct ice_vsi *vsi)496 static int ice_alloc_fd_res(struct ice_vsi *vsi)
497 {
498 struct ice_pf *pf = vsi->back;
499 u32 g_val, b_val;
500
501 /* Flow Director filters are only allocated/assigned to the PF VSI which
502 * passes the traffic. The CTRL VSI is only used to add/delete filters
503 * so we don't allocate resources to it
504 */
505
506 /* FD filters from guaranteed pool per VSI */
507 g_val = pf->hw.func_caps.fd_fltr_guar;
508 if (!g_val)
509 return -EPERM;
510
511 /* FD filters from best effort pool */
512 b_val = pf->hw.func_caps.fd_fltr_best_effort;
513 if (!b_val)
514 return -EPERM;
515
516 if (vsi->type != ICE_VSI_PF)
517 return -EPERM;
518
519 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
520 return -EPERM;
521
522 vsi->num_gfltr = g_val / pf->num_alloc_vsi;
523
524 /* each VSI gets same "best_effort" quota */
525 vsi->num_bfltr = b_val;
526
527 return 0;
528 }
529
530 /**
531 * ice_vsi_get_qs - Assign queues from PF to VSI
532 * @vsi: the VSI to assign queues to
533 *
534 * Returns 0 on success and a negative value on error
535 */
ice_vsi_get_qs(struct ice_vsi *vsi)536 static int ice_vsi_get_qs(struct ice_vsi *vsi)
537 {
538 struct ice_pf *pf = vsi->back;
539 struct ice_qs_cfg tx_qs_cfg = {
540 .qs_mutex = &pf->avail_q_mutex,
541 .pf_map = pf->avail_txqs,
542 .pf_map_size = pf->max_pf_txqs,
543 .q_count = vsi->alloc_txq,
544 .scatter_count = ICE_MAX_SCATTER_TXQS,
545 .vsi_map = vsi->txq_map,
546 .vsi_map_offset = 0,
547 .mapping_mode = ICE_VSI_MAP_CONTIG
548 };
549 struct ice_qs_cfg rx_qs_cfg = {
550 .qs_mutex = &pf->avail_q_mutex,
551 .pf_map = pf->avail_rxqs,
552 .pf_map_size = pf->max_pf_rxqs,
553 .q_count = vsi->alloc_rxq,
554 .scatter_count = ICE_MAX_SCATTER_RXQS,
555 .vsi_map = vsi->rxq_map,
556 .vsi_map_offset = 0,
557 .mapping_mode = ICE_VSI_MAP_CONTIG
558 };
559 int ret;
560
561 ret = __ice_vsi_get_qs(&tx_qs_cfg);
562 if (ret)
563 return ret;
564 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
565
566 ret = __ice_vsi_get_qs(&rx_qs_cfg);
567 if (ret)
568 return ret;
569 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
570
571 return 0;
572 }
573
574 /**
575 * ice_vsi_put_qs - Release queues from VSI to PF
576 * @vsi: the VSI that is going to release queues
577 */
ice_vsi_put_qs(struct ice_vsi *vsi)578 static void ice_vsi_put_qs(struct ice_vsi *vsi)
579 {
580 struct ice_pf *pf = vsi->back;
581 int i;
582
583 mutex_lock(&pf->avail_q_mutex);
584
585 for (i = 0; i < vsi->alloc_txq; i++) {
586 clear_bit(vsi->txq_map[i], pf->avail_txqs);
587 vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
588 }
589
590 for (i = 0; i < vsi->alloc_rxq; i++) {
591 clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
592 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
593 }
594
595 mutex_unlock(&pf->avail_q_mutex);
596 }
597
598 /**
599 * ice_is_safe_mode
600 * @pf: pointer to the PF struct
601 *
602 * returns true if driver is in safe mode, false otherwise
603 */
ice_is_safe_mode(struct ice_pf *pf)604 bool ice_is_safe_mode(struct ice_pf *pf)
605 {
606 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
607 }
608
609 /**
610 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
611 * @vsi: the VSI being cleaned up
612 *
613 * This function deletes RSS input set for all flows that were configured
614 * for this VSI
615 */
ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)616 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
617 {
618 struct ice_pf *pf = vsi->back;
619 enum ice_status status;
620
621 if (ice_is_safe_mode(pf))
622 return;
623
624 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
625 if (status)
626 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n",
627 vsi->vsi_num, ice_stat_str(status));
628 }
629
630 /**
631 * ice_rss_clean - Delete RSS related VSI structures and configuration
632 * @vsi: the VSI being removed
633 */
ice_rss_clean(struct ice_vsi *vsi)634 static void ice_rss_clean(struct ice_vsi *vsi)
635 {
636 struct ice_pf *pf = vsi->back;
637 struct device *dev;
638
639 dev = ice_pf_to_dev(pf);
640
641 if (vsi->rss_hkey_user)
642 devm_kfree(dev, vsi->rss_hkey_user);
643 if (vsi->rss_lut_user)
644 devm_kfree(dev, vsi->rss_lut_user);
645
646 ice_vsi_clean_rss_flow_fld(vsi);
647 /* remove RSS replay list */
648 if (!ice_is_safe_mode(pf))
649 ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
650 }
651
652 /**
653 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
654 * @vsi: the VSI being configured
655 */
ice_vsi_set_rss_params(struct ice_vsi *vsi)656 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
657 {
658 struct ice_hw_common_caps *cap;
659 struct ice_pf *pf = vsi->back;
660
661 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
662 vsi->rss_size = 1;
663 return;
664 }
665
666 cap = &pf->hw.func_caps.common_cap;
667 switch (vsi->type) {
668 case ICE_VSI_PF:
669 /* PF VSI will inherit RSS instance of PF */
670 vsi->rss_table_size = (u16)cap->rss_table_size;
671 vsi->rss_size = min_t(u16, num_online_cpus(),
672 BIT(cap->rss_table_entry_width));
673 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
674 break;
675 case ICE_VSI_VF:
676 /* VF VSI will get a small RSS table.
677 * For VSI_LUT, LUT size should be set to 64 bytes.
678 */
679 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
680 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
681 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
682 break;
683 case ICE_VSI_LB:
684 break;
685 default:
686 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
687 ice_vsi_type_str(vsi->type));
688 break;
689 }
690 }
691
692 /**
693 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
694 * @ctxt: the VSI context being set
695 *
696 * This initializes a default VSI context for all sections except the Queues.
697 */
ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)698 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
699 {
700 u32 table = 0;
701
702 memset(&ctxt->info, 0, sizeof(ctxt->info));
703 /* VSI's should be allocated from shared pool */
704 ctxt->alloc_from_pool = true;
705 /* Src pruning enabled by default */
706 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
707 /* Traffic from VSI can be sent to LAN */
708 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
709 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy
710 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all
711 * packets untagged/tagged.
712 */
713 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL &
714 ICE_AQ_VSI_VLAN_MODE_M) >>
715 ICE_AQ_VSI_VLAN_MODE_S);
716 /* Have 1:1 UP mapping for both ingress/egress tables */
717 table |= ICE_UP_TABLE_TRANSLATE(0, 0);
718 table |= ICE_UP_TABLE_TRANSLATE(1, 1);
719 table |= ICE_UP_TABLE_TRANSLATE(2, 2);
720 table |= ICE_UP_TABLE_TRANSLATE(3, 3);
721 table |= ICE_UP_TABLE_TRANSLATE(4, 4);
722 table |= ICE_UP_TABLE_TRANSLATE(5, 5);
723 table |= ICE_UP_TABLE_TRANSLATE(6, 6);
724 table |= ICE_UP_TABLE_TRANSLATE(7, 7);
725 ctxt->info.ingress_table = cpu_to_le32(table);
726 ctxt->info.egress_table = cpu_to_le32(table);
727 /* Have 1:1 UP mapping for outer to inner UP table */
728 ctxt->info.outer_up_table = cpu_to_le32(table);
729 /* No Outer tag support outer_tag_flags remains to zero */
730 }
731
732 /**
733 * ice_vsi_setup_q_map - Setup a VSI queue map
734 * @vsi: the VSI being configured
735 * @ctxt: VSI context structure
736 */
ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)737 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
738 {
739 u16 offset = 0, qmap = 0, tx_count = 0;
740 u16 qcount_tx = vsi->alloc_txq;
741 u16 qcount_rx = vsi->alloc_rxq;
742 u16 tx_numq_tc, rx_numq_tc;
743 u16 pow = 0, max_rss = 0;
744 bool ena_tc0 = false;
745 u8 netdev_tc = 0;
746 int i;
747
748 /* at least TC0 should be enabled by default */
749 if (vsi->tc_cfg.numtc) {
750 if (!(vsi->tc_cfg.ena_tc & BIT(0)))
751 ena_tc0 = true;
752 } else {
753 ena_tc0 = true;
754 }
755
756 if (ena_tc0) {
757 vsi->tc_cfg.numtc++;
758 vsi->tc_cfg.ena_tc |= 1;
759 }
760
761 rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc;
762 if (!rx_numq_tc)
763 rx_numq_tc = 1;
764 tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc;
765 if (!tx_numq_tc)
766 tx_numq_tc = 1;
767
768 /* TC mapping is a function of the number of Rx queues assigned to the
769 * VSI for each traffic class and the offset of these queues.
770 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
771 * queues allocated to TC0. No:of queues is a power-of-2.
772 *
773 * If TC is not enabled, the queue offset is set to 0, and allocate one
774 * queue, this way, traffic for the given TC will be sent to the default
775 * queue.
776 *
777 * Setup number and offset of Rx queues for all TCs for the VSI
778 */
779
780 qcount_rx = rx_numq_tc;
781
782 /* qcount will change if RSS is enabled */
783 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) {
784 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) {
785 if (vsi->type == ICE_VSI_PF)
786 max_rss = ICE_MAX_LG_RSS_QS;
787 else
788 max_rss = ICE_MAX_RSS_QS_PER_VF;
789 qcount_rx = min_t(u16, rx_numq_tc, max_rss);
790 if (!vsi->req_rxq)
791 qcount_rx = min_t(u16, qcount_rx,
792 vsi->rss_size);
793 }
794 }
795
796 /* find the (rounded up) power-of-2 of qcount */
797 pow = (u16)order_base_2(qcount_rx);
798
799 ice_for_each_traffic_class(i) {
800 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
801 /* TC is not enabled */
802 vsi->tc_cfg.tc_info[i].qoffset = 0;
803 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
804 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
805 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
806 ctxt->info.tc_mapping[i] = 0;
807 continue;
808 }
809
810 /* TC is enabled */
811 vsi->tc_cfg.tc_info[i].qoffset = offset;
812 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
813 vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc;
814 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
815
816 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
817 ICE_AQ_VSI_TC_Q_OFFSET_M) |
818 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
819 ICE_AQ_VSI_TC_Q_NUM_M);
820 offset += qcount_rx;
821 tx_count += tx_numq_tc;
822 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
823 }
824
825 /* if offset is non-zero, means it is calculated correctly based on
826 * enabled TCs for a given VSI otherwise qcount_rx will always
827 * be correct and non-zero because it is based off - VSI's
828 * allocated Rx queues which is at least 1 (hence qcount_tx will be
829 * at least 1)
830 */
831 if (offset)
832 vsi->num_rxq = offset;
833 else
834 vsi->num_rxq = qcount_rx;
835
836 vsi->num_txq = tx_count;
837
838 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
839 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
840 /* since there is a chance that num_rxq could have been changed
841 * in the above for loop, make num_txq equal to num_rxq.
842 */
843 vsi->num_txq = vsi->num_rxq;
844 }
845
846 /* Rx queue mapping */
847 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
848 /* q_mapping buffer holds the info for the first queue allocated for
849 * this VSI in the PF space and also the number of queues associated
850 * with this VSI.
851 */
852 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
853 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
854 }
855
856 /**
857 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
858 * @ctxt: the VSI context being set
859 * @vsi: the VSI being configured
860 */
ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)861 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
862 {
863 u8 dflt_q_group, dflt_q_prio;
864 u16 dflt_q, report_q, val;
865
866 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL)
867 return;
868
869 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
870 ctxt->info.valid_sections |= cpu_to_le16(val);
871 dflt_q = 0;
872 dflt_q_group = 0;
873 report_q = 0;
874 dflt_q_prio = 0;
875
876 /* enable flow director filtering/programming */
877 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
878 ctxt->info.fd_options = cpu_to_le16(val);
879 /* max of allocated flow director filters */
880 ctxt->info.max_fd_fltr_dedicated =
881 cpu_to_le16(vsi->num_gfltr);
882 /* max of shared flow director filters any VSI may program */
883 ctxt->info.max_fd_fltr_shared =
884 cpu_to_le16(vsi->num_bfltr);
885 /* default queue index within the VSI of the default FD */
886 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
887 ICE_AQ_VSI_FD_DEF_Q_M);
888 /* target queue or queue group to the FD filter */
889 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
890 ICE_AQ_VSI_FD_DEF_GRP_M);
891 ctxt->info.fd_def_q = cpu_to_le16(val);
892 /* queue index on which FD filter completion is reported */
893 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
894 ICE_AQ_VSI_FD_REPORT_Q_M);
895 /* priority of the default qindex action */
896 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
897 ICE_AQ_VSI_FD_DEF_PRIORITY_M);
898 ctxt->info.fd_report_opt = cpu_to_le16(val);
899 }
900
901 /**
902 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
903 * @ctxt: the VSI context being set
904 * @vsi: the VSI being configured
905 */
ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)906 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
907 {
908 u8 lut_type, hash_type;
909 struct device *dev;
910 struct ice_pf *pf;
911
912 pf = vsi->back;
913 dev = ice_pf_to_dev(pf);
914
915 switch (vsi->type) {
916 case ICE_VSI_PF:
917 /* PF VSI will inherit RSS instance of PF */
918 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
919 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
920 break;
921 case ICE_VSI_VF:
922 /* VF VSI will gets a small RSS table which is a VSI LUT type */
923 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
924 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
925 break;
926 default:
927 dev_dbg(dev, "Unsupported VSI type %s\n",
928 ice_vsi_type_str(vsi->type));
929 return;
930 }
931
932 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
933 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
934 (hash_type & ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
935 }
936
937 /**
938 * ice_vsi_init - Create and initialize a VSI
939 * @vsi: the VSI being configured
940 * @init_vsi: is this call creating a VSI
941 *
942 * This initializes a VSI context depending on the VSI type to be added and
943 * passes it down to the add_vsi aq command to create a new VSI.
944 */
ice_vsi_init(struct ice_vsi *vsi, bool init_vsi)945 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi)
946 {
947 struct ice_pf *pf = vsi->back;
948 struct ice_hw *hw = &pf->hw;
949 struct ice_vsi_ctx *ctxt;
950 struct device *dev;
951 int ret = 0;
952
953 dev = ice_pf_to_dev(pf);
954 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
955 if (!ctxt)
956 return -ENOMEM;
957
958 switch (vsi->type) {
959 case ICE_VSI_CTRL:
960 case ICE_VSI_LB:
961 case ICE_VSI_PF:
962 ctxt->flags = ICE_AQ_VSI_TYPE_PF;
963 break;
964 case ICE_VSI_VF:
965 ctxt->flags = ICE_AQ_VSI_TYPE_VF;
966 /* VF number here is the absolute VF number (0-255) */
967 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
968 break;
969 default:
970 ret = -ENODEV;
971 goto out;
972 }
973
974 ice_set_dflt_vsi_ctx(ctxt);
975 if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
976 ice_set_fd_vsi_ctx(ctxt, vsi);
977 /* if the switch is in VEB mode, allow VSI loopback */
978 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
979 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
980
981 /* Set LUT type and HASH type if RSS is enabled */
982 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
983 vsi->type != ICE_VSI_CTRL) {
984 ice_set_rss_vsi_ctx(ctxt, vsi);
985 /* if updating VSI context, make sure to set valid_section:
986 * to indicate which section of VSI context being updated
987 */
988 if (!init_vsi)
989 ctxt->info.valid_sections |=
990 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
991 }
992
993 ctxt->info.sw_id = vsi->port_info->sw_id;
994 ice_vsi_setup_q_map(vsi, ctxt);
995 if (!init_vsi) /* means VSI being updated */
996 /* must to indicate which section of VSI context are
997 * being modified
998 */
999 ctxt->info.valid_sections |=
1000 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1001
1002 /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off
1003 * respectively
1004 */
1005 if (vsi->type == ICE_VSI_VF) {
1006 ctxt->info.valid_sections |=
1007 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1008 if (pf->vf[vsi->vf_id].spoofchk) {
1009 ctxt->info.sec_flags |=
1010 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
1011 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
1012 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
1013 } else {
1014 ctxt->info.sec_flags &=
1015 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
1016 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
1017 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S));
1018 }
1019 }
1020
1021 /* Allow control frames out of main VSI */
1022 if (vsi->type == ICE_VSI_PF) {
1023 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1024 ctxt->info.valid_sections |=
1025 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1026 }
1027
1028 if (init_vsi) {
1029 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1030 if (ret) {
1031 dev_err(dev, "Add VSI failed, err %d\n", ret);
1032 ret = -EIO;
1033 goto out;
1034 }
1035 } else {
1036 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1037 if (ret) {
1038 dev_err(dev, "Update VSI failed, err %d\n", ret);
1039 ret = -EIO;
1040 goto out;
1041 }
1042 }
1043
1044 /* keep context for update VSI operations */
1045 vsi->info = ctxt->info;
1046
1047 /* record VSI number returned */
1048 vsi->vsi_num = ctxt->vsi_num;
1049
1050 out:
1051 kfree(ctxt);
1052 return ret;
1053 }
1054
1055 /**
1056 * ice_free_res - free a block of resources
1057 * @res: pointer to the resource
1058 * @index: starting index previously returned by ice_get_res
1059 * @id: identifier to track owner
1060 *
1061 * Returns number of resources freed
1062 */
ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)1063 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
1064 {
1065 int count = 0;
1066 int i;
1067
1068 if (!res || index >= res->end)
1069 return -EINVAL;
1070
1071 id |= ICE_RES_VALID_BIT;
1072 for (i = index; i < res->end && res->list[i] == id; i++) {
1073 res->list[i] = 0;
1074 count++;
1075 }
1076
1077 return count;
1078 }
1079
1080 /**
1081 * ice_search_res - Search the tracker for a block of resources
1082 * @res: pointer to the resource
1083 * @needed: size of the block needed
1084 * @id: identifier to track owner
1085 *
1086 * Returns the base item index of the block, or -ENOMEM for error
1087 */
ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)1088 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
1089 {
1090 u16 start = 0, end = 0;
1091
1092 if (needed > res->end)
1093 return -ENOMEM;
1094
1095 id |= ICE_RES_VALID_BIT;
1096
1097 do {
1098 /* skip already allocated entries */
1099 if (res->list[end++] & ICE_RES_VALID_BIT) {
1100 start = end;
1101 if ((start + needed) > res->end)
1102 break;
1103 }
1104
1105 if (end == (start + needed)) {
1106 int i = start;
1107
1108 /* there was enough, so assign it to the requestor */
1109 while (i != end)
1110 res->list[i++] = id;
1111
1112 return start;
1113 }
1114 } while (end < res->end);
1115
1116 return -ENOMEM;
1117 }
1118
1119 /**
1120 * ice_get_free_res_count - Get free count from a resource tracker
1121 * @res: Resource tracker instance
1122 */
ice_get_free_res_count(struct ice_res_tracker *res)1123 static u16 ice_get_free_res_count(struct ice_res_tracker *res)
1124 {
1125 u16 i, count = 0;
1126
1127 for (i = 0; i < res->end; i++)
1128 if (!(res->list[i] & ICE_RES_VALID_BIT))
1129 count++;
1130
1131 return count;
1132 }
1133
1134 /**
1135 * ice_get_res - get a block of resources
1136 * @pf: board private structure
1137 * @res: pointer to the resource
1138 * @needed: size of the block needed
1139 * @id: identifier to track owner
1140 *
1141 * Returns the base item index of the block, or negative for error
1142 */
1143 int
ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)1144 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
1145 {
1146 if (!res || !pf)
1147 return -EINVAL;
1148
1149 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
1150 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n",
1151 needed, res->num_entries, id);
1152 return -EINVAL;
1153 }
1154
1155 return ice_search_res(res, needed, id);
1156 }
1157
1158 /**
1159 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1160 * @vsi: ptr to the VSI
1161 *
1162 * This should only be called after ice_vsi_alloc() which allocates the
1163 * corresponding SW VSI structure and initializes num_queue_pairs for the
1164 * newly allocated VSI.
1165 *
1166 * Returns 0 on success or negative on failure
1167 */
ice_vsi_setup_vector_base(struct ice_vsi *vsi)1168 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1169 {
1170 struct ice_pf *pf = vsi->back;
1171 struct device *dev;
1172 u16 num_q_vectors;
1173 int base;
1174
1175 dev = ice_pf_to_dev(pf);
1176 /* SRIOV doesn't grab irq_tracker entries for each VSI */
1177 if (vsi->type == ICE_VSI_VF)
1178 return 0;
1179
1180 if (vsi->base_vector) {
1181 dev_dbg(dev, "VSI %d has non-zero base vector %d\n",
1182 vsi->vsi_num, vsi->base_vector);
1183 return -EEXIST;
1184 }
1185
1186 num_q_vectors = vsi->num_q_vectors;
1187 /* reserve slots from OS requested IRQs */
1188 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, vsi->idx);
1189
1190 if (base < 0) {
1191 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n",
1192 ice_get_free_res_count(pf->irq_tracker),
1193 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors);
1194 return -ENOENT;
1195 }
1196 vsi->base_vector = (u16)base;
1197 pf->num_avail_sw_msix -= num_q_vectors;
1198
1199 return 0;
1200 }
1201
1202 /**
1203 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1204 * @vsi: the VSI having rings deallocated
1205 */
ice_vsi_clear_rings(struct ice_vsi *vsi)1206 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1207 {
1208 int i;
1209
1210 /* Avoid stale references by clearing map from vector to ring */
1211 if (vsi->q_vectors) {
1212 ice_for_each_q_vector(vsi, i) {
1213 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1214
1215 if (q_vector) {
1216 q_vector->tx.ring = NULL;
1217 q_vector->rx.ring = NULL;
1218 }
1219 }
1220 }
1221
1222 if (vsi->tx_rings) {
1223 for (i = 0; i < vsi->alloc_txq; i++) {
1224 if (vsi->tx_rings[i]) {
1225 kfree_rcu(vsi->tx_rings[i], rcu);
1226 WRITE_ONCE(vsi->tx_rings[i], NULL);
1227 }
1228 }
1229 }
1230 if (vsi->rx_rings) {
1231 for (i = 0; i < vsi->alloc_rxq; i++) {
1232 if (vsi->rx_rings[i]) {
1233 kfree_rcu(vsi->rx_rings[i], rcu);
1234 WRITE_ONCE(vsi->rx_rings[i], NULL);
1235 }
1236 }
1237 }
1238 }
1239
1240 /**
1241 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1242 * @vsi: VSI which is having rings allocated
1243 */
ice_vsi_alloc_rings(struct ice_vsi *vsi)1244 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1245 {
1246 struct ice_pf *pf = vsi->back;
1247 struct device *dev;
1248 u16 i;
1249
1250 dev = ice_pf_to_dev(pf);
1251 /* Allocate Tx rings */
1252 for (i = 0; i < vsi->alloc_txq; i++) {
1253 struct ice_ring *ring;
1254
1255 /* allocate with kzalloc(), free with kfree_rcu() */
1256 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1257
1258 if (!ring)
1259 goto err_out;
1260
1261 ring->q_index = i;
1262 ring->reg_idx = vsi->txq_map[i];
1263 ring->ring_active = false;
1264 ring->vsi = vsi;
1265 ring->dev = dev;
1266 ring->count = vsi->num_tx_desc;
1267 ring->txq_teid = ICE_INVAL_TEID;
1268 WRITE_ONCE(vsi->tx_rings[i], ring);
1269 }
1270
1271 /* Allocate Rx rings */
1272 for (i = 0; i < vsi->alloc_rxq; i++) {
1273 struct ice_ring *ring;
1274
1275 /* allocate with kzalloc(), free with kfree_rcu() */
1276 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1277 if (!ring)
1278 goto err_out;
1279
1280 ring->q_index = i;
1281 ring->reg_idx = vsi->rxq_map[i];
1282 ring->ring_active = false;
1283 ring->vsi = vsi;
1284 ring->netdev = vsi->netdev;
1285 ring->dev = dev;
1286 ring->count = vsi->num_rx_desc;
1287 WRITE_ONCE(vsi->rx_rings[i], ring);
1288 }
1289
1290 return 0;
1291
1292 err_out:
1293 ice_vsi_clear_rings(vsi);
1294 return -ENOMEM;
1295 }
1296
1297 /**
1298 * ice_vsi_manage_rss_lut - disable/enable RSS
1299 * @vsi: the VSI being changed
1300 * @ena: boolean value indicating if this is an enable or disable request
1301 *
1302 * In the event of disable request for RSS, this function will zero out RSS
1303 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1304 * LUT.
1305 */
ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)1306 int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1307 {
1308 int err = 0;
1309 u8 *lut;
1310
1311 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1312 if (!lut)
1313 return -ENOMEM;
1314
1315 if (ena) {
1316 if (vsi->rss_lut_user)
1317 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1318 else
1319 ice_fill_rss_lut(lut, vsi->rss_table_size,
1320 vsi->rss_size);
1321 }
1322
1323 err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size);
1324 kfree(lut);
1325 return err;
1326 }
1327
1328 /**
1329 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1330 * @vsi: VSI to be configured
1331 */
ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)1332 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1333 {
1334 struct ice_aqc_get_set_rss_keys *key;
1335 struct ice_pf *pf = vsi->back;
1336 enum ice_status status;
1337 struct device *dev;
1338 int err = 0;
1339 u8 *lut;
1340
1341 dev = ice_pf_to_dev(pf);
1342 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1343
1344 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1345 if (!lut)
1346 return -ENOMEM;
1347
1348 if (vsi->rss_lut_user)
1349 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1350 else
1351 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1352
1353 status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut,
1354 vsi->rss_table_size);
1355
1356 if (status) {
1357 dev_err(dev, "set_rss_lut failed, error %s\n",
1358 ice_stat_str(status));
1359 err = -EIO;
1360 goto ice_vsi_cfg_rss_exit;
1361 }
1362
1363 key = kzalloc(sizeof(*key), GFP_KERNEL);
1364 if (!key) {
1365 err = -ENOMEM;
1366 goto ice_vsi_cfg_rss_exit;
1367 }
1368
1369 if (vsi->rss_hkey_user)
1370 memcpy(key,
1371 (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user,
1372 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1373 else
1374 netdev_rss_key_fill((void *)key,
1375 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1376
1377 status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key);
1378
1379 if (status) {
1380 dev_err(dev, "set_rss_key failed, error %s\n",
1381 ice_stat_str(status));
1382 err = -EIO;
1383 }
1384
1385 kfree(key);
1386 ice_vsi_cfg_rss_exit:
1387 kfree(lut);
1388 return err;
1389 }
1390
1391 /**
1392 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1393 * @vsi: VSI to be configured
1394 *
1395 * This function will only be called during the VF VSI setup. Upon successful
1396 * completion of package download, this function will configure default RSS
1397 * input sets for VF VSI.
1398 */
ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)1399 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1400 {
1401 struct ice_pf *pf = vsi->back;
1402 enum ice_status status;
1403 struct device *dev;
1404
1405 dev = ice_pf_to_dev(pf);
1406 if (ice_is_safe_mode(pf)) {
1407 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1408 vsi->vsi_num);
1409 return;
1410 }
1411
1412 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
1413 if (status)
1414 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n",
1415 vsi->vsi_num, ice_stat_str(status));
1416 }
1417
1418 /**
1419 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1420 * @vsi: VSI to be configured
1421 *
1422 * This function will only be called after successful download package call
1423 * during initialization of PF. Since the downloaded package will erase the
1424 * RSS section, this function will configure RSS input sets for different
1425 * flow types. The last profile added has the highest priority, therefore 2
1426 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1427 * (i.e. IPv4 src/dst TCP src/dst port).
1428 */
ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)1429 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1430 {
1431 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
1432 struct ice_pf *pf = vsi->back;
1433 struct ice_hw *hw = &pf->hw;
1434 enum ice_status status;
1435 struct device *dev;
1436
1437 dev = ice_pf_to_dev(pf);
1438 if (ice_is_safe_mode(pf)) {
1439 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1440 vsi_num);
1441 return;
1442 }
1443 /* configure RSS for IPv4 with input set IP src/dst */
1444 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1445 ICE_FLOW_SEG_HDR_IPV4);
1446 if (status)
1447 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n",
1448 vsi_num, ice_stat_str(status));
1449
1450 /* configure RSS for IPv6 with input set IPv6 src/dst */
1451 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1452 ICE_FLOW_SEG_HDR_IPV6);
1453 if (status)
1454 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n",
1455 vsi_num, ice_stat_str(status));
1456
1457 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1458 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
1459 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
1460 if (status)
1461 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n",
1462 vsi_num, ice_stat_str(status));
1463
1464 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1465 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
1466 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
1467 if (status)
1468 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n",
1469 vsi_num, ice_stat_str(status));
1470
1471 /* configure RSS for sctp4 with input set IP src/dst */
1472 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1473 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
1474 if (status)
1475 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n",
1476 vsi_num, ice_stat_str(status));
1477
1478 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1479 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
1480 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
1481 if (status)
1482 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n",
1483 vsi_num, ice_stat_str(status));
1484
1485 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1486 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
1487 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
1488 if (status)
1489 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n",
1490 vsi_num, ice_stat_str(status));
1491
1492 /* configure RSS for sctp6 with input set IPv6 src/dst */
1493 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1494 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
1495 if (status)
1496 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n",
1497 vsi_num, ice_stat_str(status));
1498 }
1499
1500 /**
1501 * ice_pf_state_is_nominal - checks the PF for nominal state
1502 * @pf: pointer to PF to check
1503 *
1504 * Check the PF's state for a collection of bits that would indicate
1505 * the PF is in a state that would inhibit normal operation for
1506 * driver functionality.
1507 *
1508 * Returns true if PF is in a nominal state, false otherwise
1509 */
ice_pf_state_is_nominal(struct ice_pf *pf)1510 bool ice_pf_state_is_nominal(struct ice_pf *pf)
1511 {
1512 DECLARE_BITMAP(check_bits, __ICE_STATE_NBITS) = { 0 };
1513
1514 if (!pf)
1515 return false;
1516
1517 bitmap_set(check_bits, 0, __ICE_STATE_NOMINAL_CHECK_BITS);
1518 if (bitmap_intersects(pf->state, check_bits, __ICE_STATE_NBITS))
1519 return false;
1520
1521 return true;
1522 }
1523
1524 /**
1525 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1526 * @vsi: the VSI to be updated
1527 */
ice_update_eth_stats(struct ice_vsi *vsi)1528 void ice_update_eth_stats(struct ice_vsi *vsi)
1529 {
1530 struct ice_eth_stats *prev_es, *cur_es;
1531 struct ice_hw *hw = &vsi->back->hw;
1532 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */
1533
1534 prev_es = &vsi->eth_stats_prev;
1535 cur_es = &vsi->eth_stats;
1536
1537 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1538 &prev_es->rx_bytes, &cur_es->rx_bytes);
1539
1540 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1541 &prev_es->rx_unicast, &cur_es->rx_unicast);
1542
1543 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1544 &prev_es->rx_multicast, &cur_es->rx_multicast);
1545
1546 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1547 &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1548
1549 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1550 &prev_es->rx_discards, &cur_es->rx_discards);
1551
1552 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1553 &prev_es->tx_bytes, &cur_es->tx_bytes);
1554
1555 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1556 &prev_es->tx_unicast, &cur_es->tx_unicast);
1557
1558 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1559 &prev_es->tx_multicast, &cur_es->tx_multicast);
1560
1561 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1562 &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1563
1564 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1565 &prev_es->tx_errors, &cur_es->tx_errors);
1566
1567 vsi->stat_offsets_loaded = true;
1568 }
1569
1570 /**
1571 * ice_vsi_add_vlan - Add VSI membership for given VLAN
1572 * @vsi: the VSI being configured
1573 * @vid: VLAN ID to be added
1574 * @action: filter action to be performed on match
1575 */
1576 int
ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action)1577 ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action)
1578 {
1579 struct ice_pf *pf = vsi->back;
1580 struct device *dev;
1581 int err = 0;
1582
1583 dev = ice_pf_to_dev(pf);
1584
1585 if (!ice_fltr_add_vlan(vsi, vid, action)) {
1586 vsi->num_vlan++;
1587 } else {
1588 err = -ENODEV;
1589 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid,
1590 vsi->vsi_num);
1591 }
1592
1593 return err;
1594 }
1595
1596 /**
1597 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
1598 * @vsi: the VSI being configured
1599 * @vid: VLAN ID to be removed
1600 *
1601 * Returns 0 on success and negative on failure
1602 */
ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)1603 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
1604 {
1605 struct ice_pf *pf = vsi->back;
1606 enum ice_status status;
1607 struct device *dev;
1608 int err = 0;
1609
1610 dev = ice_pf_to_dev(pf);
1611
1612 status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI);
1613 if (!status) {
1614 vsi->num_vlan--;
1615 } else if (status == ICE_ERR_DOES_NOT_EXIST) {
1616 dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n",
1617 vid, vsi->vsi_num, ice_stat_str(status));
1618 } else {
1619 dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n",
1620 vid, vsi->vsi_num, ice_stat_str(status));
1621 err = -EIO;
1622 }
1623
1624 return err;
1625 }
1626
1627 /**
1628 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1629 * @vsi: VSI
1630 */
ice_vsi_cfg_frame_size(struct ice_vsi *vsi)1631 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1632 {
1633 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1634 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1635 vsi->rx_buf_len = ICE_RXBUF_2048;
1636 #if (PAGE_SIZE < 8192)
1637 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1638 (vsi->netdev->mtu <= ETH_DATA_LEN)) {
1639 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
1640 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
1641 #endif
1642 } else {
1643 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1644 #if (PAGE_SIZE < 8192)
1645 vsi->rx_buf_len = ICE_RXBUF_3072;
1646 #else
1647 vsi->rx_buf_len = ICE_RXBUF_2048;
1648 #endif
1649 }
1650 }
1651
1652 /**
1653 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1654 * @hw: HW pointer
1655 * @pf_q: index of the Rx queue in the PF's queue space
1656 * @rxdid: flexible descriptor RXDID
1657 * @prio: priority for the RXDID for this queue
1658 */
1659 void
ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio)1660 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio)
1661 {
1662 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1663
1664 /* clear any previous values */
1665 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1666 QRXFLXP_CNTXT_RXDID_PRIO_M |
1667 QRXFLXP_CNTXT_TS_M);
1668
1669 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
1670 QRXFLXP_CNTXT_RXDID_IDX_M;
1671
1672 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
1673 QRXFLXP_CNTXT_RXDID_PRIO_M;
1674
1675 wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1676 }
1677
1678 /**
1679 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1680 * @vsi: the VSI being configured
1681 *
1682 * Return 0 on success and a negative value on error
1683 * Configure the Rx VSI for operation.
1684 */
ice_vsi_cfg_rxqs(struct ice_vsi *vsi)1685 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1686 {
1687 u16 i;
1688
1689 if (vsi->type == ICE_VSI_VF)
1690 goto setup_rings;
1691
1692 ice_vsi_cfg_frame_size(vsi);
1693 setup_rings:
1694 /* set up individual rings */
1695 for (i = 0; i < vsi->num_rxq; i++) {
1696 int err;
1697
1698 err = ice_setup_rx_ctx(vsi->rx_rings[i]);
1699 if (err) {
1700 dev_err(ice_pf_to_dev(vsi->back), "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
1701 i, err);
1702 return err;
1703 }
1704 }
1705
1706 return 0;
1707 }
1708
1709 /**
1710 * ice_vsi_cfg_txqs - Configure the VSI for Tx
1711 * @vsi: the VSI being configured
1712 * @rings: Tx ring array to be configured
1713 * @count: number of Tx ring array elements
1714 *
1715 * Return 0 on success and a negative value on error
1716 * Configure the Tx VSI for operation.
1717 */
1718 static int
ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings, u16 count)1719 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings, u16 count)
1720 {
1721 struct ice_aqc_add_tx_qgrp *qg_buf;
1722 u16 q_idx = 0;
1723 int err = 0;
1724
1725 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1726 if (!qg_buf)
1727 return -ENOMEM;
1728
1729 qg_buf->num_txqs = 1;
1730
1731 for (q_idx = 0; q_idx < count; q_idx++) {
1732 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
1733 if (err)
1734 goto err_cfg_txqs;
1735 }
1736
1737 err_cfg_txqs:
1738 kfree(qg_buf);
1739 return err;
1740 }
1741
1742 /**
1743 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1744 * @vsi: the VSI being configured
1745 *
1746 * Return 0 on success and a negative value on error
1747 * Configure the Tx VSI for operation.
1748 */
ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)1749 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1750 {
1751 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1752 }
1753
1754 /**
1755 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1756 * @vsi: the VSI being configured
1757 *
1758 * Return 0 on success and a negative value on error
1759 * Configure the Tx queues dedicated for XDP in given VSI for operation.
1760 */
ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)1761 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1762 {
1763 int ret;
1764 int i;
1765
1766 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1767 if (ret)
1768 return ret;
1769
1770 for (i = 0; i < vsi->num_xdp_txq; i++)
1771 vsi->xdp_rings[i]->xsk_pool = ice_xsk_pool(vsi->xdp_rings[i]);
1772
1773 return ret;
1774 }
1775
1776 /**
1777 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1778 * @intrl: interrupt rate limit in usecs
1779 * @gran: interrupt rate limit granularity in usecs
1780 *
1781 * This function converts a decimal interrupt rate limit in usecs to the format
1782 * expected by firmware.
1783 */
ice_intrl_usec_to_reg(u8 intrl, u8 gran)1784 u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1785 {
1786 u32 val = intrl / gran;
1787
1788 if (val)
1789 return val | GLINT_RATE_INTRL_ENA_M;
1790 return 0;
1791 }
1792
1793 /**
1794 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1795 * @vsi: the VSI being configured
1796 *
1797 * This configures MSIX mode interrupts for the PF VSI, and should not be used
1798 * for the VF VSI.
1799 */
ice_vsi_cfg_msix(struct ice_vsi *vsi)1800 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1801 {
1802 struct ice_pf *pf = vsi->back;
1803 struct ice_hw *hw = &pf->hw;
1804 u16 txq = 0, rxq = 0;
1805 int i, q;
1806
1807 for (i = 0; i < vsi->num_q_vectors; i++) {
1808 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1809 u16 reg_idx = q_vector->reg_idx;
1810
1811 ice_cfg_itr(hw, q_vector);
1812
1813 wr32(hw, GLINT_RATE(reg_idx),
1814 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
1815
1816 /* Both Transmit Queue Interrupt Cause Control register
1817 * and Receive Queue Interrupt Cause control register
1818 * expects MSIX_INDX field to be the vector index
1819 * within the function space and not the absolute
1820 * vector index across PF or across device.
1821 * For SR-IOV VF VSIs queue vector index always starts
1822 * with 1 since first vector index(0) is used for OICR
1823 * in VF space. Since VMDq and other PF VSIs are within
1824 * the PF function space, use the vector index that is
1825 * tracked for this PF.
1826 */
1827 for (q = 0; q < q_vector->num_ring_tx; q++) {
1828 ice_cfg_txq_interrupt(vsi, txq, reg_idx,
1829 q_vector->tx.itr_idx);
1830 txq++;
1831 }
1832
1833 for (q = 0; q < q_vector->num_ring_rx; q++) {
1834 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
1835 q_vector->rx.itr_idx);
1836 rxq++;
1837 }
1838 }
1839 }
1840
1841 /**
1842 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
1843 * @vsi: the VSI being changed
1844 */
ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)1845 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
1846 {
1847 struct ice_hw *hw = &vsi->back->hw;
1848 struct ice_vsi_ctx *ctxt;
1849 enum ice_status status;
1850 int ret = 0;
1851
1852 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1853 if (!ctxt)
1854 return -ENOMEM;
1855
1856 /* Here we are configuring the VSI to let the driver add VLAN tags by
1857 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag
1858 * insertion happens in the Tx hot path, in ice_tx_map.
1859 */
1860 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL;
1861
1862 /* Preserve existing VLAN strip setting */
1863 ctxt->info.vlan_flags |= (vsi->info.vlan_flags &
1864 ICE_AQ_VSI_VLAN_EMOD_M);
1865
1866 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
1867
1868 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1869 if (status) {
1870 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n",
1871 ice_stat_str(status),
1872 ice_aq_str(hw->adminq.sq_last_status));
1873 ret = -EIO;
1874 goto out;
1875 }
1876
1877 vsi->info.vlan_flags = ctxt->info.vlan_flags;
1878 out:
1879 kfree(ctxt);
1880 return ret;
1881 }
1882
1883 /**
1884 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
1885 * @vsi: the VSI being changed
1886 * @ena: boolean value indicating if this is a enable or disable request
1887 */
ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)1888 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
1889 {
1890 struct ice_hw *hw = &vsi->back->hw;
1891 struct ice_vsi_ctx *ctxt;
1892 enum ice_status status;
1893 int ret = 0;
1894
1895 /* do not allow modifying VLAN stripping when a port VLAN is configured
1896 * on this VSI
1897 */
1898 if (vsi->info.pvid)
1899 return 0;
1900
1901 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1902 if (!ctxt)
1903 return -ENOMEM;
1904
1905 /* Here we are configuring what the VSI should do with the VLAN tag in
1906 * the Rx packet. We can either leave the tag in the packet or put it in
1907 * the Rx descriptor.
1908 */
1909 if (ena)
1910 /* Strip VLAN tag from Rx packet and put it in the desc */
1911 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH;
1912 else
1913 /* Disable stripping. Leave tag in packet */
1914 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING;
1915
1916 /* Allow all packets untagged/tagged */
1917 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL;
1918
1919 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
1920
1921 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1922 if (status) {
1923 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n",
1924 ena, ice_stat_str(status),
1925 ice_aq_str(hw->adminq.sq_last_status));
1926 ret = -EIO;
1927 goto out;
1928 }
1929
1930 vsi->info.vlan_flags = ctxt->info.vlan_flags;
1931 out:
1932 kfree(ctxt);
1933 return ret;
1934 }
1935
1936 /**
1937 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
1938 * @vsi: the VSI whose rings are to be enabled
1939 *
1940 * Returns 0 on success and a negative value on error
1941 */
ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)1942 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
1943 {
1944 return ice_vsi_ctrl_all_rx_rings(vsi, true);
1945 }
1946
1947 /**
1948 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
1949 * @vsi: the VSI whose rings are to be disabled
1950 *
1951 * Returns 0 on success and a negative value on error
1952 */
ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)1953 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
1954 {
1955 return ice_vsi_ctrl_all_rx_rings(vsi, false);
1956 }
1957
1958 /**
1959 * ice_vsi_stop_tx_rings - Disable Tx rings
1960 * @vsi: the VSI being configured
1961 * @rst_src: reset source
1962 * @rel_vmvf_num: Relative ID of VF/VM
1963 * @rings: Tx ring array to be stopped
1964 * @count: number of Tx ring array elements
1965 */
1966 static int
ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, u16 rel_vmvf_num, struct ice_ring **rings, u16 count)1967 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1968 u16 rel_vmvf_num, struct ice_ring **rings, u16 count)
1969 {
1970 u16 q_idx;
1971
1972 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
1973 return -EINVAL;
1974
1975 for (q_idx = 0; q_idx < count; q_idx++) {
1976 struct ice_txq_meta txq_meta = { };
1977 int status;
1978
1979 if (!rings || !rings[q_idx])
1980 return -EINVAL;
1981
1982 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
1983 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
1984 rings[q_idx], &txq_meta);
1985
1986 if (status)
1987 return status;
1988 }
1989
1990 return 0;
1991 }
1992
1993 /**
1994 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
1995 * @vsi: the VSI being configured
1996 * @rst_src: reset source
1997 * @rel_vmvf_num: Relative ID of VF/VM
1998 */
1999 int
ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, u16 rel_vmvf_num)2000 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2001 u16 rel_vmvf_num)
2002 {
2003 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2004 }
2005
2006 /**
2007 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2008 * @vsi: the VSI being configured
2009 */
ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)2010 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2011 {
2012 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2013 }
2014
2015 /**
2016 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
2017 * @vsi: VSI to check whether or not VLAN pruning is enabled.
2018 *
2019 * returns true if Rx VLAN pruning is enabled and false otherwise.
2020 */
ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)2021 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
2022 {
2023 if (!vsi)
2024 return false;
2025
2026 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA);
2027 }
2028
2029 /**
2030 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI
2031 * @vsi: VSI to enable or disable VLAN pruning on
2032 * @ena: set to true to enable VLAN pruning and false to disable it
2033 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode
2034 *
2035 * returns 0 if VSI is updated, negative otherwise
2036 */
ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc)2037 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc)
2038 {
2039 struct ice_vsi_ctx *ctxt;
2040 struct ice_pf *pf;
2041 int status;
2042
2043 if (!vsi)
2044 return -EINVAL;
2045
2046 /* Don't enable VLAN pruning if the netdev is currently in promiscuous
2047 * mode. VLAN pruning will be enabled when the interface exits
2048 * promiscuous mode if any VLAN filters are active.
2049 */
2050 if (vsi->netdev && vsi->netdev->flags & IFF_PROMISC && ena)
2051 return 0;
2052
2053 pf = vsi->back;
2054 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
2055 if (!ctxt)
2056 return -ENOMEM;
2057
2058 ctxt->info = vsi->info;
2059
2060 if (ena)
2061 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2062 else
2063 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2064
2065 if (!vlan_promisc)
2066 ctxt->info.valid_sections =
2067 cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
2068
2069 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL);
2070 if (status) {
2071 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n",
2072 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num,
2073 ice_stat_str(status),
2074 ice_aq_str(pf->hw.adminq.sq_last_status));
2075 goto err_out;
2076 }
2077
2078 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
2079
2080 kfree(ctxt);
2081 return 0;
2082
2083 err_out:
2084 kfree(ctxt);
2085 return -EIO;
2086 }
2087
ice_vsi_set_tc_cfg(struct ice_vsi *vsi)2088 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2089 {
2090 struct ice_dcbx_cfg *cfg = &vsi->port_info->qos_cfg.local_dcbx_cfg;
2091
2092 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg);
2093 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg);
2094 }
2095
2096 /**
2097 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2098 * @vsi: VSI to set the q_vectors register index on
2099 */
2100 static int
ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)2101 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2102 {
2103 u16 i;
2104
2105 if (!vsi || !vsi->q_vectors)
2106 return -EINVAL;
2107
2108 ice_for_each_q_vector(vsi, i) {
2109 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2110
2111 if (!q_vector) {
2112 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n",
2113 i, vsi->vsi_num);
2114 goto clear_reg_idx;
2115 }
2116
2117 if (vsi->type == ICE_VSI_VF) {
2118 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id];
2119
2120 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
2121 } else {
2122 q_vector->reg_idx =
2123 q_vector->v_idx + vsi->base_vector;
2124 }
2125 }
2126
2127 return 0;
2128
2129 clear_reg_idx:
2130 ice_for_each_q_vector(vsi, i) {
2131 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2132
2133 if (q_vector)
2134 q_vector->reg_idx = 0;
2135 }
2136
2137 return -EINVAL;
2138 }
2139
2140 /**
2141 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2142 * @vsi: the VSI being configured
2143 * @tx: bool to determine Tx or Rx rule
2144 * @create: bool to determine create or remove Rule
2145 */
ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)2146 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2147 {
2148 enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2149 enum ice_sw_fwd_act_type act);
2150 struct ice_pf *pf = vsi->back;
2151 enum ice_status status;
2152 struct device *dev;
2153
2154 dev = ice_pf_to_dev(pf);
2155 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2156
2157 if (tx)
2158 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2159 ICE_DROP_PACKET);
2160 else
2161 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, ICE_FWD_TO_VSI);
2162
2163 if (status)
2164 dev_err(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n",
2165 create ? "adding" : "removing", tx ? "TX" : "RX",
2166 vsi->vsi_num, ice_stat_str(status));
2167 }
2168
2169 /**
2170 * ice_vsi_setup - Set up a VSI by a given type
2171 * @pf: board private structure
2172 * @pi: pointer to the port_info instance
2173 * @vsi_type: VSI type
2174 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be
2175 * used only for ICE_VSI_VF VSI type. For other VSI types, should
2176 * fill-in ICE_INVAL_VFID as input.
2177 *
2178 * This allocates the sw VSI structure and its queue resources.
2179 *
2180 * Returns pointer to the successfully allocated and configured VSI sw struct on
2181 * success, NULL on failure.
2182 */
2183 struct ice_vsi *
ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, enum ice_vsi_type vsi_type, u16 vf_id)2184 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2185 enum ice_vsi_type vsi_type, u16 vf_id)
2186 {
2187 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2188 struct device *dev = ice_pf_to_dev(pf);
2189 enum ice_status status;
2190 struct ice_vsi *vsi;
2191 int ret, i;
2192
2193 if (vsi_type == ICE_VSI_VF)
2194 vsi = ice_vsi_alloc(pf, vsi_type, vf_id);
2195 else
2196 vsi = ice_vsi_alloc(pf, vsi_type, ICE_INVAL_VFID);
2197
2198 if (!vsi) {
2199 dev_err(dev, "could not allocate VSI\n");
2200 return NULL;
2201 }
2202
2203 vsi->port_info = pi;
2204 vsi->vsw = pf->first_sw;
2205 if (vsi->type == ICE_VSI_PF)
2206 vsi->ethtype = ETH_P_PAUSE;
2207
2208 if (vsi->type == ICE_VSI_VF)
2209 vsi->vf_id = vf_id;
2210
2211 ice_alloc_fd_res(vsi);
2212
2213 if (ice_vsi_get_qs(vsi)) {
2214 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2215 vsi->idx);
2216 goto unroll_vsi_alloc;
2217 }
2218
2219 /* set RSS capabilities */
2220 ice_vsi_set_rss_params(vsi);
2221
2222 /* set TC configuration */
2223 ice_vsi_set_tc_cfg(vsi);
2224
2225 /* create the VSI */
2226 ret = ice_vsi_init(vsi, true);
2227 if (ret)
2228 goto unroll_get_qs;
2229
2230 switch (vsi->type) {
2231 case ICE_VSI_CTRL:
2232 case ICE_VSI_PF:
2233 ret = ice_vsi_alloc_q_vectors(vsi);
2234 if (ret)
2235 goto unroll_vsi_init;
2236
2237 ret = ice_vsi_setup_vector_base(vsi);
2238 if (ret)
2239 goto unroll_alloc_q_vector;
2240
2241 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2242 if (ret)
2243 goto unroll_vector_base;
2244
2245 ret = ice_vsi_alloc_rings(vsi);
2246 if (ret)
2247 goto unroll_vector_base;
2248
2249 /* Always add VLAN ID 0 switch rule by default. This is needed
2250 * in order to allow all untagged and 0 tagged priority traffic
2251 * if Rx VLAN pruning is enabled. Also there are cases where we
2252 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid()
2253 * so this handles those cases (i.e. adding the PF to a bridge
2254 * without the 8021q module loaded).
2255 */
2256 ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI);
2257 if (ret)
2258 goto unroll_clear_rings;
2259
2260 ice_vsi_map_rings_to_vectors(vsi);
2261
2262 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2263 if (vsi->type != ICE_VSI_CTRL)
2264 /* Do not exit if configuring RSS had an issue, at
2265 * least receive traffic on first queue. Hence no
2266 * need to capture return value
2267 */
2268 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2269 ice_vsi_cfg_rss_lut_key(vsi);
2270 ice_vsi_set_rss_flow_fld(vsi);
2271 }
2272 ice_init_arfs(vsi);
2273 break;
2274 case ICE_VSI_VF:
2275 /* VF driver will take care of creating netdev for this type and
2276 * map queues to vectors through Virtchnl, PF driver only
2277 * creates a VSI and corresponding structures for bookkeeping
2278 * purpose
2279 */
2280 ret = ice_vsi_alloc_q_vectors(vsi);
2281 if (ret)
2282 goto unroll_vsi_init;
2283
2284 ret = ice_vsi_alloc_rings(vsi);
2285 if (ret)
2286 goto unroll_alloc_q_vector;
2287
2288 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2289 if (ret)
2290 goto unroll_vector_base;
2291
2292 /* Do not exit if configuring RSS had an issue, at least
2293 * receive traffic on first queue. Hence no need to capture
2294 * return value
2295 */
2296 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2297 ice_vsi_cfg_rss_lut_key(vsi);
2298 ice_vsi_set_vf_rss_flow_fld(vsi);
2299 }
2300 break;
2301 case ICE_VSI_LB:
2302 ret = ice_vsi_alloc_rings(vsi);
2303 if (ret)
2304 goto unroll_vsi_init;
2305 break;
2306 default:
2307 /* clean up the resources and exit */
2308 goto unroll_vsi_init;
2309 }
2310
2311 /* configure VSI nodes based on number of queues and TC's */
2312 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2313 max_txqs[i] = vsi->alloc_txq;
2314
2315 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2316 max_txqs);
2317 if (status) {
2318 dev_err(dev, "VSI %d failed lan queue config, error %s\n",
2319 vsi->vsi_num, ice_stat_str(status));
2320 goto unroll_clear_rings;
2321 }
2322
2323 /* Add switch rule to drop all Tx Flow Control Frames, of look up
2324 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2325 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2326 * The rule is added once for PF VSI in order to create appropriate
2327 * recipe, since VSI/VSI list is ignored with drop action...
2328 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to
2329 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2330 * settings in the HW.
2331 */
2332 if (!ice_is_safe_mode(pf))
2333 if (vsi->type == ICE_VSI_PF) {
2334 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2335 ICE_DROP_PACKET);
2336 ice_cfg_sw_lldp(vsi, true, true);
2337 }
2338
2339 return vsi;
2340
2341 unroll_clear_rings:
2342 ice_vsi_clear_rings(vsi);
2343 unroll_vector_base:
2344 /* reclaim SW interrupts back to the common pool */
2345 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2346 pf->num_avail_sw_msix += vsi->num_q_vectors;
2347 unroll_alloc_q_vector:
2348 ice_vsi_free_q_vectors(vsi);
2349 unroll_vsi_init:
2350 ice_vsi_delete(vsi);
2351 unroll_get_qs:
2352 ice_vsi_put_qs(vsi);
2353 unroll_vsi_alloc:
2354 ice_vsi_clear(vsi);
2355
2356 return NULL;
2357 }
2358
2359 /**
2360 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2361 * @vsi: the VSI being cleaned up
2362 */
ice_vsi_release_msix(struct ice_vsi *vsi)2363 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2364 {
2365 struct ice_pf *pf = vsi->back;
2366 struct ice_hw *hw = &pf->hw;
2367 u32 txq = 0;
2368 u32 rxq = 0;
2369 int i, q;
2370
2371 for (i = 0; i < vsi->num_q_vectors; i++) {
2372 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2373 u16 reg_idx = q_vector->reg_idx;
2374
2375 wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0);
2376 wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0);
2377 for (q = 0; q < q_vector->num_ring_tx; q++) {
2378 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2379 if (ice_is_xdp_ena_vsi(vsi)) {
2380 u32 xdp_txq = txq + vsi->num_xdp_txq;
2381
2382 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2383 }
2384 txq++;
2385 }
2386
2387 for (q = 0; q < q_vector->num_ring_rx; q++) {
2388 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2389 rxq++;
2390 }
2391 }
2392
2393 ice_flush(hw);
2394 }
2395
2396 /**
2397 * ice_vsi_free_irq - Free the IRQ association with the OS
2398 * @vsi: the VSI being configured
2399 */
ice_vsi_free_irq(struct ice_vsi *vsi)2400 void ice_vsi_free_irq(struct ice_vsi *vsi)
2401 {
2402 struct ice_pf *pf = vsi->back;
2403 int base = vsi->base_vector;
2404 int i;
2405
2406 if (!vsi->q_vectors || !vsi->irqs_ready)
2407 return;
2408
2409 ice_vsi_release_msix(vsi);
2410 if (vsi->type == ICE_VSI_VF)
2411 return;
2412
2413 vsi->irqs_ready = false;
2414 ice_for_each_q_vector(vsi, i) {
2415 u16 vector = i + base;
2416 int irq_num;
2417
2418 irq_num = pf->msix_entries[vector].vector;
2419
2420 /* free only the irqs that were actually requested */
2421 if (!vsi->q_vectors[i] ||
2422 !(vsi->q_vectors[i]->num_ring_tx ||
2423 vsi->q_vectors[i]->num_ring_rx))
2424 continue;
2425
2426 /* clear the affinity notifier in the IRQ descriptor */
2427 irq_set_affinity_notifier(irq_num, NULL);
2428
2429 /* clear the affinity_mask in the IRQ descriptor */
2430 irq_set_affinity_hint(irq_num, NULL);
2431 synchronize_irq(irq_num);
2432 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2433 }
2434 }
2435
2436 /**
2437 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2438 * @vsi: the VSI having resources freed
2439 */
ice_vsi_free_tx_rings(struct ice_vsi *vsi)2440 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2441 {
2442 int i;
2443
2444 if (!vsi->tx_rings)
2445 return;
2446
2447 ice_for_each_txq(vsi, i)
2448 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2449 ice_free_tx_ring(vsi->tx_rings[i]);
2450 }
2451
2452 /**
2453 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2454 * @vsi: the VSI having resources freed
2455 */
ice_vsi_free_rx_rings(struct ice_vsi *vsi)2456 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2457 {
2458 int i;
2459
2460 if (!vsi->rx_rings)
2461 return;
2462
2463 ice_for_each_rxq(vsi, i)
2464 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2465 ice_free_rx_ring(vsi->rx_rings[i]);
2466 }
2467
2468 /**
2469 * ice_vsi_close - Shut down a VSI
2470 * @vsi: the VSI being shut down
2471 */
ice_vsi_close(struct ice_vsi *vsi)2472 void ice_vsi_close(struct ice_vsi *vsi)
2473 {
2474 if (!test_and_set_bit(__ICE_DOWN, vsi->state))
2475 ice_down(vsi);
2476
2477 ice_vsi_free_irq(vsi);
2478 ice_vsi_free_tx_rings(vsi);
2479 ice_vsi_free_rx_rings(vsi);
2480 }
2481
2482 /**
2483 * ice_ena_vsi - resume a VSI
2484 * @vsi: the VSI being resume
2485 * @locked: is the rtnl_lock already held
2486 */
ice_ena_vsi(struct ice_vsi *vsi, bool locked)2487 int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2488 {
2489 int err = 0;
2490
2491 if (!test_bit(__ICE_NEEDS_RESTART, vsi->state))
2492 return 0;
2493
2494 clear_bit(__ICE_NEEDS_RESTART, vsi->state);
2495
2496 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2497 if (netif_running(vsi->netdev)) {
2498 if (!locked)
2499 rtnl_lock();
2500
2501 err = ice_open_internal(vsi->netdev);
2502
2503 if (!locked)
2504 rtnl_unlock();
2505 }
2506 } else if (vsi->type == ICE_VSI_CTRL) {
2507 err = ice_vsi_open_ctrl(vsi);
2508 }
2509
2510 return err;
2511 }
2512
2513 /**
2514 * ice_dis_vsi - pause a VSI
2515 * @vsi: the VSI being paused
2516 * @locked: is the rtnl_lock already held
2517 */
ice_dis_vsi(struct ice_vsi *vsi, bool locked)2518 void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2519 {
2520 if (test_bit(__ICE_DOWN, vsi->state))
2521 return;
2522
2523 set_bit(__ICE_NEEDS_RESTART, vsi->state);
2524
2525 if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2526 if (netif_running(vsi->netdev)) {
2527 if (!locked)
2528 rtnl_lock();
2529
2530 ice_vsi_close(vsi);
2531
2532 if (!locked)
2533 rtnl_unlock();
2534 } else {
2535 ice_vsi_close(vsi);
2536 }
2537 } else if (vsi->type == ICE_VSI_CTRL) {
2538 ice_vsi_close(vsi);
2539 }
2540 }
2541
2542 /**
2543 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2544 * @vsi: the VSI being un-configured
2545 */
ice_vsi_dis_irq(struct ice_vsi *vsi)2546 void ice_vsi_dis_irq(struct ice_vsi *vsi)
2547 {
2548 int base = vsi->base_vector;
2549 struct ice_pf *pf = vsi->back;
2550 struct ice_hw *hw = &pf->hw;
2551 u32 val;
2552 int i;
2553
2554 /* disable interrupt causation from each queue */
2555 if (vsi->tx_rings) {
2556 ice_for_each_txq(vsi, i) {
2557 if (vsi->tx_rings[i]) {
2558 u16 reg;
2559
2560 reg = vsi->tx_rings[i]->reg_idx;
2561 val = rd32(hw, QINT_TQCTL(reg));
2562 val &= ~QINT_TQCTL_CAUSE_ENA_M;
2563 wr32(hw, QINT_TQCTL(reg), val);
2564 }
2565 }
2566 }
2567
2568 if (vsi->rx_rings) {
2569 ice_for_each_rxq(vsi, i) {
2570 if (vsi->rx_rings[i]) {
2571 u16 reg;
2572
2573 reg = vsi->rx_rings[i]->reg_idx;
2574 val = rd32(hw, QINT_RQCTL(reg));
2575 val &= ~QINT_RQCTL_CAUSE_ENA_M;
2576 wr32(hw, QINT_RQCTL(reg), val);
2577 }
2578 }
2579 }
2580
2581 /* disable each interrupt */
2582 ice_for_each_q_vector(vsi, i) {
2583 if (!vsi->q_vectors[i])
2584 continue;
2585 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2586 }
2587
2588 ice_flush(hw);
2589
2590 /* don't call synchronize_irq() for VF's from the host */
2591 if (vsi->type == ICE_VSI_VF)
2592 return;
2593
2594 ice_for_each_q_vector(vsi, i)
2595 synchronize_irq(pf->msix_entries[i + base].vector);
2596 }
2597
2598 /**
2599 * ice_napi_del - Remove NAPI handler for the VSI
2600 * @vsi: VSI for which NAPI handler is to be removed
2601 */
ice_napi_del(struct ice_vsi *vsi)2602 void ice_napi_del(struct ice_vsi *vsi)
2603 {
2604 int v_idx;
2605
2606 if (!vsi->netdev)
2607 return;
2608
2609 ice_for_each_q_vector(vsi, v_idx)
2610 netif_napi_del(&vsi->q_vectors[v_idx]->napi);
2611 }
2612
2613 /**
2614 * ice_vsi_release - Delete a VSI and free its resources
2615 * @vsi: the VSI being removed
2616 *
2617 * Returns 0 on success or < 0 on error
2618 */
ice_vsi_release(struct ice_vsi *vsi)2619 int ice_vsi_release(struct ice_vsi *vsi)
2620 {
2621 struct ice_pf *pf;
2622
2623 if (!vsi->back)
2624 return -ENODEV;
2625 pf = vsi->back;
2626
2627 /* do not unregister while driver is in the reset recovery pending
2628 * state. Since reset/rebuild happens through PF service task workqueue,
2629 * it's not a good idea to unregister netdev that is associated to the
2630 * PF that is running the work queue items currently. This is done to
2631 * avoid check_flush_dependency() warning on this wq
2632 */
2633 if (vsi->netdev && !ice_is_reset_in_progress(pf->state)) {
2634 unregister_netdev(vsi->netdev);
2635 ice_devlink_destroy_port(vsi);
2636 }
2637
2638 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2639 ice_rss_clean(vsi);
2640
2641 /* Disable VSI and free resources */
2642 if (vsi->type != ICE_VSI_LB)
2643 ice_vsi_dis_irq(vsi);
2644 ice_vsi_close(vsi);
2645
2646 /* SR-IOV determines needed MSIX resources all at once instead of per
2647 * VSI since when VFs are spawned we know how many VFs there are and how
2648 * many interrupts each VF needs. SR-IOV MSIX resources are also
2649 * cleared in the same manner.
2650 */
2651 if (vsi->type != ICE_VSI_VF) {
2652 /* reclaim SW interrupts back to the common pool */
2653 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2654 pf->num_avail_sw_msix += vsi->num_q_vectors;
2655 }
2656
2657 if (!ice_is_safe_mode(pf)) {
2658 if (vsi->type == ICE_VSI_PF) {
2659 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2660 ICE_DROP_PACKET);
2661 ice_cfg_sw_lldp(vsi, true, false);
2662 /* The Rx rule will only exist to remove if the LLDP FW
2663 * engine is currently stopped
2664 */
2665 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2666 ice_cfg_sw_lldp(vsi, false, false);
2667 }
2668 }
2669
2670 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi))
2671 ice_clear_dflt_vsi(pf->first_sw);
2672 ice_fltr_remove_all(vsi);
2673 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2674 ice_vsi_delete(vsi);
2675 ice_vsi_free_q_vectors(vsi);
2676
2677 /* make sure unregister_netdev() was called by checking __ICE_DOWN */
2678 if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) {
2679 free_netdev(vsi->netdev);
2680 vsi->netdev = NULL;
2681 }
2682
2683 ice_vsi_clear_rings(vsi);
2684
2685 ice_vsi_put_qs(vsi);
2686
2687 /* retain SW VSI data structure since it is needed to unregister and
2688 * free VSI netdev when PF is not in reset recovery pending state,\
2689 * for ex: during rmmod.
2690 */
2691 if (!ice_is_reset_in_progress(pf->state))
2692 ice_vsi_clear(vsi);
2693
2694 return 0;
2695 }
2696
2697 /**
2698 * ice_vsi_rebuild_update_coalesce_intrl - set interrupt rate limit for a q_vector
2699 * @q_vector: pointer to q_vector which is being updated
2700 * @stored_intrl_setting: original INTRL setting
2701 *
2702 * Set coalesce param in q_vector and update these parameters in HW.
2703 */
2704 static void
ice_vsi_rebuild_update_coalesce_intrl(struct ice_q_vector *q_vector, u16 stored_intrl_setting)2705 ice_vsi_rebuild_update_coalesce_intrl(struct ice_q_vector *q_vector,
2706 u16 stored_intrl_setting)
2707 {
2708 struct ice_hw *hw = &q_vector->vsi->back->hw;
2709
2710 q_vector->intrl = stored_intrl_setting;
2711 wr32(hw, GLINT_RATE(q_vector->reg_idx),
2712 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
2713 }
2714
2715 /**
2716 * ice_vsi_rebuild_update_coalesce_itr - set coalesce for a q_vector
2717 * @q_vector: pointer to q_vector which is being updated
2718 * @rc: pointer to ring container
2719 * @stored_itr_setting: original ITR setting
2720 *
2721 * Set coalesce param in q_vector and update these parameters in HW.
2722 */
2723 static void
ice_vsi_rebuild_update_coalesce_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc, u16 stored_itr_setting)2724 ice_vsi_rebuild_update_coalesce_itr(struct ice_q_vector *q_vector,
2725 struct ice_ring_container *rc,
2726 u16 stored_itr_setting)
2727 {
2728 struct ice_hw *hw = &q_vector->vsi->back->hw;
2729
2730 rc->itr_setting = stored_itr_setting;
2731
2732 /* dynamic ITR values will be updated during Tx/Rx */
2733 if (!ITR_IS_DYNAMIC(rc->itr_setting))
2734 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
2735 ITR_REG_ALIGN(rc->itr_setting) >> ICE_ITR_GRAN_S);
2736 }
2737
2738 /**
2739 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2740 * @vsi: VSI connected with q_vectors
2741 * @coalesce: array of struct with stored coalesce
2742 *
2743 * Returns array size.
2744 */
2745 static int
ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, struct ice_coalesce_stored *coalesce)2746 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2747 struct ice_coalesce_stored *coalesce)
2748 {
2749 int i;
2750
2751 ice_for_each_q_vector(vsi, i) {
2752 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2753
2754 coalesce[i].itr_tx = q_vector->tx.itr_setting;
2755 coalesce[i].itr_rx = q_vector->rx.itr_setting;
2756 coalesce[i].intrl = q_vector->intrl;
2757
2758 if (i < vsi->num_txq)
2759 coalesce[i].tx_valid = true;
2760 if (i < vsi->num_rxq)
2761 coalesce[i].rx_valid = true;
2762 }
2763
2764 return vsi->num_q_vectors;
2765 }
2766
2767 /**
2768 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
2769 * @vsi: VSI connected with q_vectors
2770 * @coalesce: pointer to array of struct with stored coalesce
2771 * @size: size of coalesce array
2772 *
2773 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
2774 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
2775 * to default value.
2776 */
2777 static void
ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, struct ice_coalesce_stored *coalesce, int size)2778 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
2779 struct ice_coalesce_stored *coalesce, int size)
2780 {
2781 int i;
2782
2783 if ((size && !coalesce) || !vsi)
2784 return;
2785
2786 /* There are a couple of cases that have to be handled here:
2787 * 1. The case where the number of queue vectors stays the same, but
2788 * the number of Tx or Rx rings changes (the first for loop)
2789 * 2. The case where the number of queue vectors increased (the
2790 * second for loop)
2791 */
2792 for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
2793 /* There are 2 cases to handle here and they are the same for
2794 * both Tx and Rx:
2795 * if the entry was valid previously (coalesce[i].[tr]x_valid
2796 * and the loop variable is less than the number of rings
2797 * allocated, then write the previous values
2798 *
2799 * if the entry was not valid previously, but the number of
2800 * rings is less than are allocated (this means the number of
2801 * rings increased from previously), then write out the
2802 * values in the first element
2803 */
2804 if (i < vsi->alloc_rxq && coalesce[i].rx_valid)
2805 ice_vsi_rebuild_update_coalesce_itr(vsi->q_vectors[i],
2806 &vsi->q_vectors[i]->rx,
2807 coalesce[i].itr_rx);
2808 else if (i < vsi->alloc_rxq)
2809 ice_vsi_rebuild_update_coalesce_itr(vsi->q_vectors[i],
2810 &vsi->q_vectors[i]->rx,
2811 coalesce[0].itr_rx);
2812
2813 if (i < vsi->alloc_txq && coalesce[i].tx_valid)
2814 ice_vsi_rebuild_update_coalesce_itr(vsi->q_vectors[i],
2815 &vsi->q_vectors[i]->tx,
2816 coalesce[i].itr_tx);
2817 else if (i < vsi->alloc_txq)
2818 ice_vsi_rebuild_update_coalesce_itr(vsi->q_vectors[i],
2819 &vsi->q_vectors[i]->tx,
2820 coalesce[0].itr_tx);
2821
2822 ice_vsi_rebuild_update_coalesce_intrl(vsi->q_vectors[i],
2823 coalesce[i].intrl);
2824 }
2825
2826 /* the number of queue vectors increased so write whatever is in
2827 * the first element
2828 */
2829 for (; i < vsi->num_q_vectors; i++) {
2830 ice_vsi_rebuild_update_coalesce_itr(vsi->q_vectors[i],
2831 &vsi->q_vectors[i]->tx,
2832 coalesce[0].itr_tx);
2833 ice_vsi_rebuild_update_coalesce_itr(vsi->q_vectors[i],
2834 &vsi->q_vectors[i]->rx,
2835 coalesce[0].itr_rx);
2836 ice_vsi_rebuild_update_coalesce_intrl(vsi->q_vectors[i],
2837 coalesce[0].intrl);
2838 }
2839 }
2840
2841 /**
2842 * ice_vsi_rebuild - Rebuild VSI after reset
2843 * @vsi: VSI to be rebuild
2844 * @init_vsi: is this an initialization or a reconfigure of the VSI
2845 *
2846 * Returns 0 on success and negative value on failure
2847 */
ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi)2848 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi)
2849 {
2850 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2851 struct ice_coalesce_stored *coalesce;
2852 int prev_num_q_vectors = 0;
2853 struct ice_vf *vf = NULL;
2854 enum ice_status status;
2855 struct ice_pf *pf;
2856 int ret, i;
2857
2858 if (!vsi)
2859 return -EINVAL;
2860
2861 pf = vsi->back;
2862 if (vsi->type == ICE_VSI_VF)
2863 vf = &pf->vf[vsi->vf_id];
2864
2865 coalesce = kcalloc(vsi->num_q_vectors,
2866 sizeof(struct ice_coalesce_stored), GFP_KERNEL);
2867 if (!coalesce)
2868 return -ENOMEM;
2869
2870 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
2871
2872 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2873 ice_vsi_free_q_vectors(vsi);
2874
2875 /* SR-IOV determines needed MSIX resources all at once instead of per
2876 * VSI since when VFs are spawned we know how many VFs there are and how
2877 * many interrupts each VF needs. SR-IOV MSIX resources are also
2878 * cleared in the same manner.
2879 */
2880 if (vsi->type != ICE_VSI_VF) {
2881 /* reclaim SW interrupts back to the common pool */
2882 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2883 pf->num_avail_sw_msix += vsi->num_q_vectors;
2884 vsi->base_vector = 0;
2885 }
2886
2887 if (ice_is_xdp_ena_vsi(vsi))
2888 /* return value check can be skipped here, it always returns
2889 * 0 if reset is in progress
2890 */
2891 ice_destroy_xdp_rings(vsi);
2892 ice_vsi_put_qs(vsi);
2893 ice_vsi_clear_rings(vsi);
2894 ice_vsi_free_arrays(vsi);
2895 if (vsi->type == ICE_VSI_VF)
2896 ice_vsi_set_num_qs(vsi, vf->vf_id);
2897 else
2898 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
2899
2900 ret = ice_vsi_alloc_arrays(vsi);
2901 if (ret < 0)
2902 goto err_vsi;
2903
2904 ice_vsi_get_qs(vsi);
2905
2906 ice_alloc_fd_res(vsi);
2907 ice_vsi_set_tc_cfg(vsi);
2908
2909 /* Initialize VSI struct elements and create VSI in FW */
2910 ret = ice_vsi_init(vsi, init_vsi);
2911 if (ret < 0)
2912 goto err_vsi;
2913
2914 switch (vsi->type) {
2915 case ICE_VSI_CTRL:
2916 case ICE_VSI_PF:
2917 ret = ice_vsi_alloc_q_vectors(vsi);
2918 if (ret)
2919 goto err_rings;
2920
2921 ret = ice_vsi_setup_vector_base(vsi);
2922 if (ret)
2923 goto err_vectors;
2924
2925 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2926 if (ret)
2927 goto err_vectors;
2928
2929 ret = ice_vsi_alloc_rings(vsi);
2930 if (ret)
2931 goto err_vectors;
2932
2933 ice_vsi_map_rings_to_vectors(vsi);
2934 if (ice_is_xdp_ena_vsi(vsi)) {
2935 vsi->num_xdp_txq = vsi->alloc_rxq;
2936 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
2937 if (ret)
2938 goto err_vectors;
2939 }
2940 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2941 if (vsi->type != ICE_VSI_CTRL)
2942 /* Do not exit if configuring RSS had an issue, at
2943 * least receive traffic on first queue. Hence no
2944 * need to capture return value
2945 */
2946 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2947 ice_vsi_cfg_rss_lut_key(vsi);
2948 break;
2949 case ICE_VSI_VF:
2950 ret = ice_vsi_alloc_q_vectors(vsi);
2951 if (ret)
2952 goto err_rings;
2953
2954 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2955 if (ret)
2956 goto err_vectors;
2957
2958 ret = ice_vsi_alloc_rings(vsi);
2959 if (ret)
2960 goto err_vectors;
2961
2962 break;
2963 default:
2964 break;
2965 }
2966
2967 /* configure VSI nodes based on number of queues and TC's */
2968 for (i = 0; i < vsi->tc_cfg.numtc; i++) {
2969 max_txqs[i] = vsi->alloc_txq;
2970
2971 if (ice_is_xdp_ena_vsi(vsi))
2972 max_txqs[i] += vsi->num_xdp_txq;
2973 }
2974
2975 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2976 max_txqs);
2977 if (status) {
2978 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n",
2979 vsi->vsi_num, ice_stat_str(status));
2980 if (init_vsi) {
2981 ret = -EIO;
2982 goto err_vectors;
2983 } else {
2984 return ice_schedule_reset(pf, ICE_RESET_PFR);
2985 }
2986 }
2987 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
2988 kfree(coalesce);
2989
2990 return 0;
2991
2992 err_vectors:
2993 ice_vsi_free_q_vectors(vsi);
2994 err_rings:
2995 if (vsi->netdev) {
2996 vsi->current_netdev_flags = 0;
2997 unregister_netdev(vsi->netdev);
2998 free_netdev(vsi->netdev);
2999 vsi->netdev = NULL;
3000 }
3001 err_vsi:
3002 ice_vsi_clear(vsi);
3003 set_bit(__ICE_RESET_FAILED, pf->state);
3004 kfree(coalesce);
3005 return ret;
3006 }
3007
3008 /**
3009 * ice_is_reset_in_progress - check for a reset in progress
3010 * @state: PF state field
3011 */
ice_is_reset_in_progress(unsigned long *state)3012 bool ice_is_reset_in_progress(unsigned long *state)
3013 {
3014 return test_bit(__ICE_RESET_OICR_RECV, state) ||
3015 test_bit(__ICE_PFR_REQ, state) ||
3016 test_bit(__ICE_CORER_REQ, state) ||
3017 test_bit(__ICE_GLOBR_REQ, state);
3018 }
3019
3020 #ifdef CONFIG_DCB
3021 /**
3022 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3023 * @vsi: VSI being configured
3024 * @ctx: the context buffer returned from AQ VSI update command
3025 */
ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)3026 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3027 {
3028 vsi->info.mapping_flags = ctx->info.mapping_flags;
3029 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3030 sizeof(vsi->info.q_mapping));
3031 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3032 sizeof(vsi->info.tc_mapping));
3033 }
3034
3035 /**
3036 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3037 * @vsi: VSI to be configured
3038 * @ena_tc: TC bitmap
3039 *
3040 * VSI queues expected to be quiesced before calling this function
3041 */
ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)3042 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3043 {
3044 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3045 struct ice_pf *pf = vsi->back;
3046 struct ice_vsi_ctx *ctx;
3047 enum ice_status status;
3048 struct device *dev;
3049 int i, ret = 0;
3050 u8 num_tc = 0;
3051
3052 dev = ice_pf_to_dev(pf);
3053
3054 ice_for_each_traffic_class(i) {
3055 /* build bitmap of enabled TCs */
3056 if (ena_tc & BIT(i))
3057 num_tc++;
3058 /* populate max_txqs per TC */
3059 max_txqs[i] = vsi->alloc_txq;
3060 }
3061
3062 vsi->tc_cfg.ena_tc = ena_tc;
3063 vsi->tc_cfg.numtc = num_tc;
3064
3065 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3066 if (!ctx)
3067 return -ENOMEM;
3068
3069 ctx->vf_num = 0;
3070 ctx->info = vsi->info;
3071
3072 ice_vsi_setup_q_map(vsi, ctx);
3073
3074 /* must to indicate which section of VSI context are being modified */
3075 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3076 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3077 if (status) {
3078 dev_info(dev, "Failed VSI Update\n");
3079 ret = -EIO;
3080 goto out;
3081 }
3082
3083 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3084 max_txqs);
3085
3086 if (status) {
3087 dev_err(dev, "VSI %d failed TC config, error %s\n",
3088 vsi->vsi_num, ice_stat_str(status));
3089 ret = -EIO;
3090 goto out;
3091 }
3092 ice_vsi_update_q_map(vsi, ctx);
3093 vsi->info.valid_sections = 0;
3094
3095 ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3096 out:
3097 kfree(ctx);
3098 return ret;
3099 }
3100 #endif /* CONFIG_DCB */
3101
3102 /**
3103 * ice_update_ring_stats - Update ring statistics
3104 * @ring: ring to update
3105 * @cont: used to increment per-vector counters
3106 * @pkts: number of processed packets
3107 * @bytes: number of processed bytes
3108 *
3109 * This function assumes that caller has acquired a u64_stats_sync lock.
3110 */
3111 static void
ice_update_ring_stats(struct ice_ring *ring, struct ice_ring_container *cont, u64 pkts, u64 bytes)3112 ice_update_ring_stats(struct ice_ring *ring, struct ice_ring_container *cont,
3113 u64 pkts, u64 bytes)
3114 {
3115 ring->stats.bytes += bytes;
3116 ring->stats.pkts += pkts;
3117 cont->total_bytes += bytes;
3118 cont->total_pkts += pkts;
3119 }
3120
3121 /**
3122 * ice_update_tx_ring_stats - Update Tx ring specific counters
3123 * @tx_ring: ring to update
3124 * @pkts: number of processed packets
3125 * @bytes: number of processed bytes
3126 */
ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes)3127 void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes)
3128 {
3129 u64_stats_update_begin(&tx_ring->syncp);
3130 ice_update_ring_stats(tx_ring, &tx_ring->q_vector->tx, pkts, bytes);
3131 u64_stats_update_end(&tx_ring->syncp);
3132 }
3133
3134 /**
3135 * ice_update_rx_ring_stats - Update Rx ring specific counters
3136 * @rx_ring: ring to update
3137 * @pkts: number of processed packets
3138 * @bytes: number of processed bytes
3139 */
ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes)3140 void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes)
3141 {
3142 u64_stats_update_begin(&rx_ring->syncp);
3143 ice_update_ring_stats(rx_ring, &rx_ring->q_vector->rx, pkts, bytes);
3144 u64_stats_update_end(&rx_ring->syncp);
3145 }
3146
3147 /**
3148 * ice_status_to_errno - convert from enum ice_status to Linux errno
3149 * @err: ice_status value to convert
3150 */
ice_status_to_errno(enum ice_status err)3151 int ice_status_to_errno(enum ice_status err)
3152 {
3153 switch (err) {
3154 case ICE_SUCCESS:
3155 return 0;
3156 case ICE_ERR_DOES_NOT_EXIST:
3157 return -ENOENT;
3158 case ICE_ERR_OUT_OF_RANGE:
3159 return -ENOTTY;
3160 case ICE_ERR_PARAM:
3161 return -EINVAL;
3162 case ICE_ERR_NO_MEMORY:
3163 return -ENOMEM;
3164 case ICE_ERR_MAX_LIMIT:
3165 return -EAGAIN;
3166 default:
3167 return -EINVAL;
3168 }
3169 }
3170
3171 /**
3172 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3173 * @sw: switch to check if its default forwarding VSI is free
3174 *
3175 * Return true if the default forwarding VSI is already being used, else returns
3176 * false signalling that it's available to use.
3177 */
ice_is_dflt_vsi_in_use(struct ice_sw *sw)3178 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw)
3179 {
3180 return (sw->dflt_vsi && sw->dflt_vsi_ena);
3181 }
3182
3183 /**
3184 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3185 * @sw: switch for the default forwarding VSI to compare against
3186 * @vsi: VSI to compare against default forwarding VSI
3187 *
3188 * If this VSI passed in is the default forwarding VSI then return true, else
3189 * return false
3190 */
ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)3191 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
3192 {
3193 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena);
3194 }
3195
3196 /**
3197 * ice_set_dflt_vsi - set the default forwarding VSI
3198 * @sw: switch used to assign the default forwarding VSI
3199 * @vsi: VSI getting set as the default forwarding VSI on the switch
3200 *
3201 * If the VSI passed in is already the default VSI and it's enabled just return
3202 * success.
3203 *
3204 * If there is already a default VSI on the switch and it's enabled then return
3205 * -EEXIST since there can only be one default VSI per switch.
3206 *
3207 * Otherwise try to set the VSI passed in as the switch's default VSI and
3208 * return the result.
3209 */
ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)3210 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
3211 {
3212 enum ice_status status;
3213 struct device *dev;
3214
3215 if (!sw || !vsi)
3216 return -EINVAL;
3217
3218 dev = ice_pf_to_dev(vsi->back);
3219
3220 /* the VSI passed in is already the default VSI */
3221 if (ice_is_vsi_dflt_vsi(sw, vsi)) {
3222 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3223 vsi->vsi_num);
3224 return 0;
3225 }
3226
3227 /* another VSI is already the default VSI for this switch */
3228 if (ice_is_dflt_vsi_in_use(sw)) {
3229 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n",
3230 sw->dflt_vsi->vsi_num);
3231 return -EEXIST;
3232 }
3233
3234 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX);
3235 if (status) {
3236 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n",
3237 vsi->vsi_num, ice_stat_str(status));
3238 return -EIO;
3239 }
3240
3241 sw->dflt_vsi = vsi;
3242 sw->dflt_vsi_ena = true;
3243
3244 return 0;
3245 }
3246
3247 /**
3248 * ice_clear_dflt_vsi - clear the default forwarding VSI
3249 * @sw: switch used to clear the default VSI
3250 *
3251 * If the switch has no default VSI or it's not enabled then return error.
3252 *
3253 * Otherwise try to clear the default VSI and return the result.
3254 */
ice_clear_dflt_vsi(struct ice_sw *sw)3255 int ice_clear_dflt_vsi(struct ice_sw *sw)
3256 {
3257 struct ice_vsi *dflt_vsi;
3258 enum ice_status status;
3259 struct device *dev;
3260
3261 if (!sw)
3262 return -EINVAL;
3263
3264 dev = ice_pf_to_dev(sw->pf);
3265
3266 dflt_vsi = sw->dflt_vsi;
3267
3268 /* there is no default VSI configured */
3269 if (!ice_is_dflt_vsi_in_use(sw))
3270 return -ENODEV;
3271
3272 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false,
3273 ICE_FLTR_RX);
3274 if (status) {
3275 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n",
3276 dflt_vsi->vsi_num, ice_stat_str(status));
3277 return -EIO;
3278 }
3279
3280 sw->dflt_vsi = NULL;
3281 sw->dflt_vsi_ena = false;
3282
3283 return 0;
3284 }
3285