1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 /* ethtool support for e1000 */
5
6 #include <linux/netdevice.h>
7 #include <linux/interrupt.h>
8 #include <linux/ethtool.h>
9 #include <linux/pci.h>
10 #include <linux/slab.h>
11 #include <linux/delay.h>
12 #include <linux/vmalloc.h>
13 #include <linux/pm_runtime.h>
14
15 #include "e1000.h"
16
17 enum { NETDEV_STATS, E1000_STATS };
18
19 struct e1000_stats {
20 char stat_string[ETH_GSTRING_LEN];
21 int type;
22 int sizeof_stat;
23 int stat_offset;
24 };
25
26 static const char e1000e_priv_flags_strings[][ETH_GSTRING_LEN] = {
27 #define E1000E_PRIV_FLAGS_S0IX_ENABLED BIT(0)
28 "s0ix-enabled",
29 };
30
31 #define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings)
32
33 #define E1000_STAT(str, m) { \
34 .stat_string = str, \
35 .type = E1000_STATS, \
36 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
37 .stat_offset = offsetof(struct e1000_adapter, m) }
38 #define E1000_NETDEV_STAT(str, m) { \
39 .stat_string = str, \
40 .type = NETDEV_STATS, \
41 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
42 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
43
44 static const struct e1000_stats e1000_gstrings_stats[] = {
45 E1000_STAT("rx_packets", stats.gprc),
46 E1000_STAT("tx_packets", stats.gptc),
47 E1000_STAT("rx_bytes", stats.gorc),
48 E1000_STAT("tx_bytes", stats.gotc),
49 E1000_STAT("rx_broadcast", stats.bprc),
50 E1000_STAT("tx_broadcast", stats.bptc),
51 E1000_STAT("rx_multicast", stats.mprc),
52 E1000_STAT("tx_multicast", stats.mptc),
53 E1000_NETDEV_STAT("rx_errors", rx_errors),
54 E1000_NETDEV_STAT("tx_errors", tx_errors),
55 E1000_NETDEV_STAT("tx_dropped", tx_dropped),
56 E1000_STAT("multicast", stats.mprc),
57 E1000_STAT("collisions", stats.colc),
58 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
59 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
60 E1000_STAT("rx_crc_errors", stats.crcerrs),
61 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
62 E1000_STAT("rx_no_buffer_count", stats.rnbc),
63 E1000_STAT("rx_missed_errors", stats.mpc),
64 E1000_STAT("tx_aborted_errors", stats.ecol),
65 E1000_STAT("tx_carrier_errors", stats.tncrs),
66 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
67 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
68 E1000_STAT("tx_window_errors", stats.latecol),
69 E1000_STAT("tx_abort_late_coll", stats.latecol),
70 E1000_STAT("tx_deferred_ok", stats.dc),
71 E1000_STAT("tx_single_coll_ok", stats.scc),
72 E1000_STAT("tx_multi_coll_ok", stats.mcc),
73 E1000_STAT("tx_timeout_count", tx_timeout_count),
74 E1000_STAT("tx_restart_queue", restart_queue),
75 E1000_STAT("rx_long_length_errors", stats.roc),
76 E1000_STAT("rx_short_length_errors", stats.ruc),
77 E1000_STAT("rx_align_errors", stats.algnerrc),
78 E1000_STAT("tx_tcp_seg_good", stats.tsctc),
79 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
80 E1000_STAT("rx_flow_control_xon", stats.xonrxc),
81 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
82 E1000_STAT("tx_flow_control_xon", stats.xontxc),
83 E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
84 E1000_STAT("rx_csum_offload_good", hw_csum_good),
85 E1000_STAT("rx_csum_offload_errors", hw_csum_err),
86 E1000_STAT("rx_header_split", rx_hdr_split),
87 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
88 E1000_STAT("tx_smbus", stats.mgptc),
89 E1000_STAT("rx_smbus", stats.mgprc),
90 E1000_STAT("dropped_smbus", stats.mgpdc),
91 E1000_STAT("rx_dma_failed", rx_dma_failed),
92 E1000_STAT("tx_dma_failed", tx_dma_failed),
93 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
94 E1000_STAT("uncorr_ecc_errors", uncorr_errors),
95 E1000_STAT("corr_ecc_errors", corr_errors),
96 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
97 E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
98 };
99
100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103 "Register test (offline)", "Eeprom test (offline)",
104 "Interrupt test (offline)", "Loopback test (offline)",
105 "Link test (on/offline)"
106 };
107
108 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
109
e1000_get_link_ksettings(struct net_device *netdev, struct ethtool_link_ksettings *cmd)110 static int e1000_get_link_ksettings(struct net_device *netdev,
111 struct ethtool_link_ksettings *cmd)
112 {
113 struct e1000_adapter *adapter = netdev_priv(netdev);
114 struct e1000_hw *hw = &adapter->hw;
115 u32 speed, supported, advertising;
116
117 if (hw->phy.media_type == e1000_media_type_copper) {
118 supported = (SUPPORTED_10baseT_Half |
119 SUPPORTED_10baseT_Full |
120 SUPPORTED_100baseT_Half |
121 SUPPORTED_100baseT_Full |
122 SUPPORTED_1000baseT_Full |
123 SUPPORTED_Autoneg |
124 SUPPORTED_TP);
125 if (hw->phy.type == e1000_phy_ife)
126 supported &= ~SUPPORTED_1000baseT_Full;
127 advertising = ADVERTISED_TP;
128
129 if (hw->mac.autoneg == 1) {
130 advertising |= ADVERTISED_Autoneg;
131 /* the e1000 autoneg seems to match ethtool nicely */
132 advertising |= hw->phy.autoneg_advertised;
133 }
134
135 cmd->base.port = PORT_TP;
136 cmd->base.phy_address = hw->phy.addr;
137 } else {
138 supported = (SUPPORTED_1000baseT_Full |
139 SUPPORTED_FIBRE |
140 SUPPORTED_Autoneg);
141
142 advertising = (ADVERTISED_1000baseT_Full |
143 ADVERTISED_FIBRE |
144 ADVERTISED_Autoneg);
145
146 cmd->base.port = PORT_FIBRE;
147 }
148
149 speed = SPEED_UNKNOWN;
150 cmd->base.duplex = DUPLEX_UNKNOWN;
151
152 if (netif_running(netdev)) {
153 if (netif_carrier_ok(netdev)) {
154 speed = adapter->link_speed;
155 cmd->base.duplex = adapter->link_duplex - 1;
156 }
157 } else if (!pm_runtime_suspended(netdev->dev.parent)) {
158 u32 status = er32(STATUS);
159
160 if (status & E1000_STATUS_LU) {
161 if (status & E1000_STATUS_SPEED_1000)
162 speed = SPEED_1000;
163 else if (status & E1000_STATUS_SPEED_100)
164 speed = SPEED_100;
165 else
166 speed = SPEED_10;
167
168 if (status & E1000_STATUS_FD)
169 cmd->base.duplex = DUPLEX_FULL;
170 else
171 cmd->base.duplex = DUPLEX_HALF;
172 }
173 }
174
175 cmd->base.speed = speed;
176 cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
177 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
178
179 /* MDI-X => 2; MDI =>1; Invalid =>0 */
180 if ((hw->phy.media_type == e1000_media_type_copper) &&
181 netif_carrier_ok(netdev))
182 cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
183 ETH_TP_MDI_X : ETH_TP_MDI;
184 else
185 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
186
187 if (hw->phy.mdix == AUTO_ALL_MODES)
188 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
189 else
190 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
191
192 if (hw->phy.media_type != e1000_media_type_copper)
193 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
194
195 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
196 supported);
197 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
198 advertising);
199
200 return 0;
201 }
202
e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)203 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
204 {
205 struct e1000_mac_info *mac = &adapter->hw.mac;
206
207 mac->autoneg = 0;
208
209 /* Make sure dplx is at most 1 bit and lsb of speed is not set
210 * for the switch() below to work
211 */
212 if ((spd & 1) || (dplx & ~1))
213 goto err_inval;
214
215 /* Fiber NICs only allow 1000 gbps Full duplex */
216 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
217 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
218 goto err_inval;
219 }
220
221 switch (spd + dplx) {
222 case SPEED_10 + DUPLEX_HALF:
223 mac->forced_speed_duplex = ADVERTISE_10_HALF;
224 break;
225 case SPEED_10 + DUPLEX_FULL:
226 mac->forced_speed_duplex = ADVERTISE_10_FULL;
227 break;
228 case SPEED_100 + DUPLEX_HALF:
229 mac->forced_speed_duplex = ADVERTISE_100_HALF;
230 break;
231 case SPEED_100 + DUPLEX_FULL:
232 mac->forced_speed_duplex = ADVERTISE_100_FULL;
233 break;
234 case SPEED_1000 + DUPLEX_FULL:
235 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
236 mac->autoneg = 1;
237 adapter->hw.phy.autoneg_advertised =
238 ADVERTISE_1000_FULL;
239 } else {
240 mac->forced_speed_duplex = ADVERTISE_1000_FULL;
241 }
242 break;
243 case SPEED_1000 + DUPLEX_HALF: /* not supported */
244 default:
245 goto err_inval;
246 }
247
248 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
249 adapter->hw.phy.mdix = AUTO_ALL_MODES;
250
251 return 0;
252
253 err_inval:
254 e_err("Unsupported Speed/Duplex configuration\n");
255 return -EINVAL;
256 }
257
e1000_set_link_ksettings(struct net_device *netdev, const struct ethtool_link_ksettings *cmd)258 static int e1000_set_link_ksettings(struct net_device *netdev,
259 const struct ethtool_link_ksettings *cmd)
260 {
261 struct e1000_adapter *adapter = netdev_priv(netdev);
262 struct e1000_hw *hw = &adapter->hw;
263 int ret_val = 0;
264 u32 advertising;
265
266 ethtool_convert_link_mode_to_legacy_u32(&advertising,
267 cmd->link_modes.advertising);
268
269 pm_runtime_get_sync(netdev->dev.parent);
270
271 /* When SoL/IDER sessions are active, autoneg/speed/duplex
272 * cannot be changed
273 */
274 if (hw->phy.ops.check_reset_block &&
275 hw->phy.ops.check_reset_block(hw)) {
276 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
277 ret_val = -EINVAL;
278 goto out;
279 }
280
281 /* MDI setting is only allowed when autoneg enabled because
282 * some hardware doesn't allow MDI setting when speed or
283 * duplex is forced.
284 */
285 if (cmd->base.eth_tp_mdix_ctrl) {
286 if (hw->phy.media_type != e1000_media_type_copper) {
287 ret_val = -EOPNOTSUPP;
288 goto out;
289 }
290
291 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
292 (cmd->base.autoneg != AUTONEG_ENABLE)) {
293 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
294 ret_val = -EINVAL;
295 goto out;
296 }
297 }
298
299 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
300 usleep_range(1000, 2000);
301
302 if (cmd->base.autoneg == AUTONEG_ENABLE) {
303 hw->mac.autoneg = 1;
304 if (hw->phy.media_type == e1000_media_type_fiber)
305 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
306 ADVERTISED_FIBRE | ADVERTISED_Autoneg;
307 else
308 hw->phy.autoneg_advertised = advertising |
309 ADVERTISED_TP | ADVERTISED_Autoneg;
310 advertising = hw->phy.autoneg_advertised;
311 if (adapter->fc_autoneg)
312 hw->fc.requested_mode = e1000_fc_default;
313 } else {
314 u32 speed = cmd->base.speed;
315 /* calling this overrides forced MDI setting */
316 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
317 ret_val = -EINVAL;
318 goto out;
319 }
320 }
321
322 /* MDI-X => 2; MDI => 1; Auto => 3 */
323 if (cmd->base.eth_tp_mdix_ctrl) {
324 /* fix up the value for auto (3 => 0) as zero is mapped
325 * internally to auto
326 */
327 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
328 hw->phy.mdix = AUTO_ALL_MODES;
329 else
330 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
331 }
332
333 /* reset the link */
334 if (netif_running(adapter->netdev)) {
335 e1000e_down(adapter, true);
336 e1000e_up(adapter);
337 } else {
338 e1000e_reset(adapter);
339 }
340
341 out:
342 pm_runtime_put_sync(netdev->dev.parent);
343 clear_bit(__E1000_RESETTING, &adapter->state);
344 return ret_val;
345 }
346
e1000_get_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause)347 static void e1000_get_pauseparam(struct net_device *netdev,
348 struct ethtool_pauseparam *pause)
349 {
350 struct e1000_adapter *adapter = netdev_priv(netdev);
351 struct e1000_hw *hw = &adapter->hw;
352
353 pause->autoneg =
354 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
355
356 if (hw->fc.current_mode == e1000_fc_rx_pause) {
357 pause->rx_pause = 1;
358 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
359 pause->tx_pause = 1;
360 } else if (hw->fc.current_mode == e1000_fc_full) {
361 pause->rx_pause = 1;
362 pause->tx_pause = 1;
363 }
364 }
365
e1000_set_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause)366 static int e1000_set_pauseparam(struct net_device *netdev,
367 struct ethtool_pauseparam *pause)
368 {
369 struct e1000_adapter *adapter = netdev_priv(netdev);
370 struct e1000_hw *hw = &adapter->hw;
371 int retval = 0;
372
373 adapter->fc_autoneg = pause->autoneg;
374
375 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
376 usleep_range(1000, 2000);
377
378 pm_runtime_get_sync(netdev->dev.parent);
379
380 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
381 hw->fc.requested_mode = e1000_fc_default;
382 if (netif_running(adapter->netdev)) {
383 e1000e_down(adapter, true);
384 e1000e_up(adapter);
385 } else {
386 e1000e_reset(adapter);
387 }
388 } else {
389 if (pause->rx_pause && pause->tx_pause)
390 hw->fc.requested_mode = e1000_fc_full;
391 else if (pause->rx_pause && !pause->tx_pause)
392 hw->fc.requested_mode = e1000_fc_rx_pause;
393 else if (!pause->rx_pause && pause->tx_pause)
394 hw->fc.requested_mode = e1000_fc_tx_pause;
395 else if (!pause->rx_pause && !pause->tx_pause)
396 hw->fc.requested_mode = e1000_fc_none;
397
398 hw->fc.current_mode = hw->fc.requested_mode;
399
400 if (hw->phy.media_type == e1000_media_type_fiber) {
401 retval = hw->mac.ops.setup_link(hw);
402 /* implicit goto out */
403 } else {
404 retval = e1000e_force_mac_fc(hw);
405 if (retval)
406 goto out;
407 e1000e_set_fc_watermarks(hw);
408 }
409 }
410
411 out:
412 pm_runtime_put_sync(netdev->dev.parent);
413 clear_bit(__E1000_RESETTING, &adapter->state);
414 return retval;
415 }
416
e1000_get_msglevel(struct net_device *netdev)417 static u32 e1000_get_msglevel(struct net_device *netdev)
418 {
419 struct e1000_adapter *adapter = netdev_priv(netdev);
420 return adapter->msg_enable;
421 }
422
e1000_set_msglevel(struct net_device *netdev, u32 data)423 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
424 {
425 struct e1000_adapter *adapter = netdev_priv(netdev);
426 adapter->msg_enable = data;
427 }
428
e1000_get_regs_len(struct net_device __always_unused *netdev)429 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
430 {
431 #define E1000_REGS_LEN 32 /* overestimate */
432 return E1000_REGS_LEN * sizeof(u32);
433 }
434
e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs, void *p)435 static void e1000_get_regs(struct net_device *netdev,
436 struct ethtool_regs *regs, void *p)
437 {
438 struct e1000_adapter *adapter = netdev_priv(netdev);
439 struct e1000_hw *hw = &adapter->hw;
440 u32 *regs_buff = p;
441 u16 phy_data;
442
443 pm_runtime_get_sync(netdev->dev.parent);
444
445 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
446
447 regs->version = (1u << 24) |
448 (adapter->pdev->revision << 16) |
449 adapter->pdev->device;
450
451 regs_buff[0] = er32(CTRL);
452 regs_buff[1] = er32(STATUS);
453
454 regs_buff[2] = er32(RCTL);
455 regs_buff[3] = er32(RDLEN(0));
456 regs_buff[4] = er32(RDH(0));
457 regs_buff[5] = er32(RDT(0));
458 regs_buff[6] = er32(RDTR);
459
460 regs_buff[7] = er32(TCTL);
461 regs_buff[8] = er32(TDLEN(0));
462 regs_buff[9] = er32(TDH(0));
463 regs_buff[10] = er32(TDT(0));
464 regs_buff[11] = er32(TIDV);
465
466 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
467
468 /* ethtool doesn't use anything past this point, so all this
469 * code is likely legacy junk for apps that may or may not exist
470 */
471 if (hw->phy.type == e1000_phy_m88) {
472 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
473 regs_buff[13] = (u32)phy_data; /* cable length */
474 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
475 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
476 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
477 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
478 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
479 regs_buff[18] = regs_buff[13]; /* cable polarity */
480 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
481 regs_buff[20] = regs_buff[17]; /* polarity correction */
482 /* phy receive errors */
483 regs_buff[22] = adapter->phy_stats.receive_errors;
484 regs_buff[23] = regs_buff[13]; /* mdix mode */
485 }
486 regs_buff[21] = 0; /* was idle_errors */
487 e1e_rphy(hw, MII_STAT1000, &phy_data);
488 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
489 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
490
491 pm_runtime_put_sync(netdev->dev.parent);
492 }
493
e1000_get_eeprom_len(struct net_device *netdev)494 static int e1000_get_eeprom_len(struct net_device *netdev)
495 {
496 struct e1000_adapter *adapter = netdev_priv(netdev);
497 return adapter->hw.nvm.word_size * 2;
498 }
499
e1000_get_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, u8 *bytes)500 static int e1000_get_eeprom(struct net_device *netdev,
501 struct ethtool_eeprom *eeprom, u8 *bytes)
502 {
503 struct e1000_adapter *adapter = netdev_priv(netdev);
504 struct e1000_hw *hw = &adapter->hw;
505 u16 *eeprom_buff;
506 int first_word;
507 int last_word;
508 int ret_val = 0;
509 u16 i;
510
511 if (eeprom->len == 0)
512 return -EINVAL;
513
514 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
515
516 first_word = eeprom->offset >> 1;
517 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
518
519 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
520 GFP_KERNEL);
521 if (!eeprom_buff)
522 return -ENOMEM;
523
524 pm_runtime_get_sync(netdev->dev.parent);
525
526 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
527 ret_val = e1000_read_nvm(hw, first_word,
528 last_word - first_word + 1,
529 eeprom_buff);
530 } else {
531 for (i = 0; i < last_word - first_word + 1; i++) {
532 ret_val = e1000_read_nvm(hw, first_word + i, 1,
533 &eeprom_buff[i]);
534 if (ret_val)
535 break;
536 }
537 }
538
539 pm_runtime_put_sync(netdev->dev.parent);
540
541 if (ret_val) {
542 /* a read error occurred, throw away the result */
543 memset(eeprom_buff, 0xff, sizeof(u16) *
544 (last_word - first_word + 1));
545 } else {
546 /* Device's eeprom is always little-endian, word addressable */
547 for (i = 0; i < last_word - first_word + 1; i++)
548 le16_to_cpus(&eeprom_buff[i]);
549 }
550
551 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
552 kfree(eeprom_buff);
553
554 return ret_val;
555 }
556
e1000_set_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, u8 *bytes)557 static int e1000_set_eeprom(struct net_device *netdev,
558 struct ethtool_eeprom *eeprom, u8 *bytes)
559 {
560 struct e1000_adapter *adapter = netdev_priv(netdev);
561 struct e1000_hw *hw = &adapter->hw;
562 u16 *eeprom_buff;
563 void *ptr;
564 int max_len;
565 int first_word;
566 int last_word;
567 int ret_val = 0;
568 u16 i;
569
570 if (eeprom->len == 0)
571 return -EOPNOTSUPP;
572
573 if (eeprom->magic !=
574 (adapter->pdev->vendor | (adapter->pdev->device << 16)))
575 return -EFAULT;
576
577 if (adapter->flags & FLAG_READ_ONLY_NVM)
578 return -EINVAL;
579
580 max_len = hw->nvm.word_size * 2;
581
582 first_word = eeprom->offset >> 1;
583 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
584 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
585 if (!eeprom_buff)
586 return -ENOMEM;
587
588 ptr = (void *)eeprom_buff;
589
590 pm_runtime_get_sync(netdev->dev.parent);
591
592 if (eeprom->offset & 1) {
593 /* need read/modify/write of first changed EEPROM word */
594 /* only the second byte of the word is being modified */
595 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
596 ptr++;
597 }
598 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
599 /* need read/modify/write of last changed EEPROM word */
600 /* only the first byte of the word is being modified */
601 ret_val = e1000_read_nvm(hw, last_word, 1,
602 &eeprom_buff[last_word - first_word]);
603
604 if (ret_val)
605 goto out;
606
607 /* Device's eeprom is always little-endian, word addressable */
608 for (i = 0; i < last_word - first_word + 1; i++)
609 le16_to_cpus(&eeprom_buff[i]);
610
611 memcpy(ptr, bytes, eeprom->len);
612
613 for (i = 0; i < last_word - first_word + 1; i++)
614 cpu_to_le16s(&eeprom_buff[i]);
615
616 ret_val = e1000_write_nvm(hw, first_word,
617 last_word - first_word + 1, eeprom_buff);
618
619 if (ret_val)
620 goto out;
621
622 /* Update the checksum over the first part of the EEPROM if needed
623 * and flush shadow RAM for applicable controllers
624 */
625 if ((first_word <= NVM_CHECKSUM_REG) ||
626 (hw->mac.type == e1000_82583) ||
627 (hw->mac.type == e1000_82574) ||
628 (hw->mac.type == e1000_82573))
629 ret_val = e1000e_update_nvm_checksum(hw);
630
631 out:
632 pm_runtime_put_sync(netdev->dev.parent);
633 kfree(eeprom_buff);
634 return ret_val;
635 }
636
e1000_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)637 static void e1000_get_drvinfo(struct net_device *netdev,
638 struct ethtool_drvinfo *drvinfo)
639 {
640 struct e1000_adapter *adapter = netdev_priv(netdev);
641
642 strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
643
644 /* EEPROM image version # is reported as firmware version # for
645 * PCI-E controllers
646 */
647 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
648 "%d.%d-%d",
649 (adapter->eeprom_vers & 0xF000) >> 12,
650 (adapter->eeprom_vers & 0x0FF0) >> 4,
651 (adapter->eeprom_vers & 0x000F));
652
653 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
654 sizeof(drvinfo->bus_info));
655 }
656
e1000_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)657 static void e1000_get_ringparam(struct net_device *netdev,
658 struct ethtool_ringparam *ring)
659 {
660 struct e1000_adapter *adapter = netdev_priv(netdev);
661
662 ring->rx_max_pending = E1000_MAX_RXD;
663 ring->tx_max_pending = E1000_MAX_TXD;
664 ring->rx_pending = adapter->rx_ring_count;
665 ring->tx_pending = adapter->tx_ring_count;
666 }
667
e1000_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)668 static int e1000_set_ringparam(struct net_device *netdev,
669 struct ethtool_ringparam *ring)
670 {
671 struct e1000_adapter *adapter = netdev_priv(netdev);
672 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
673 int err = 0, size = sizeof(struct e1000_ring);
674 bool set_tx = false, set_rx = false;
675 u16 new_rx_count, new_tx_count;
676
677 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
678 return -EINVAL;
679
680 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
681 E1000_MAX_RXD);
682 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
683
684 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
685 E1000_MAX_TXD);
686 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
687
688 if ((new_tx_count == adapter->tx_ring_count) &&
689 (new_rx_count == adapter->rx_ring_count))
690 /* nothing to do */
691 return 0;
692
693 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
694 usleep_range(1000, 2000);
695
696 if (!netif_running(adapter->netdev)) {
697 /* Set counts now and allocate resources during open() */
698 adapter->tx_ring->count = new_tx_count;
699 adapter->rx_ring->count = new_rx_count;
700 adapter->tx_ring_count = new_tx_count;
701 adapter->rx_ring_count = new_rx_count;
702 goto clear_reset;
703 }
704
705 set_tx = (new_tx_count != adapter->tx_ring_count);
706 set_rx = (new_rx_count != adapter->rx_ring_count);
707
708 /* Allocate temporary storage for ring updates */
709 if (set_tx) {
710 temp_tx = vmalloc(size);
711 if (!temp_tx) {
712 err = -ENOMEM;
713 goto free_temp;
714 }
715 }
716 if (set_rx) {
717 temp_rx = vmalloc(size);
718 if (!temp_rx) {
719 err = -ENOMEM;
720 goto free_temp;
721 }
722 }
723
724 pm_runtime_get_sync(netdev->dev.parent);
725
726 e1000e_down(adapter, true);
727
728 /* We can't just free everything and then setup again, because the
729 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
730 * structs. First, attempt to allocate new resources...
731 */
732 if (set_tx) {
733 memcpy(temp_tx, adapter->tx_ring, size);
734 temp_tx->count = new_tx_count;
735 err = e1000e_setup_tx_resources(temp_tx);
736 if (err)
737 goto err_setup;
738 }
739 if (set_rx) {
740 memcpy(temp_rx, adapter->rx_ring, size);
741 temp_rx->count = new_rx_count;
742 err = e1000e_setup_rx_resources(temp_rx);
743 if (err)
744 goto err_setup_rx;
745 }
746
747 /* ...then free the old resources and copy back any new ring data */
748 if (set_tx) {
749 e1000e_free_tx_resources(adapter->tx_ring);
750 memcpy(adapter->tx_ring, temp_tx, size);
751 adapter->tx_ring_count = new_tx_count;
752 }
753 if (set_rx) {
754 e1000e_free_rx_resources(adapter->rx_ring);
755 memcpy(adapter->rx_ring, temp_rx, size);
756 adapter->rx_ring_count = new_rx_count;
757 }
758
759 err_setup_rx:
760 if (err && set_tx)
761 e1000e_free_tx_resources(temp_tx);
762 err_setup:
763 e1000e_up(adapter);
764 pm_runtime_put_sync(netdev->dev.parent);
765 free_temp:
766 vfree(temp_tx);
767 vfree(temp_rx);
768 clear_reset:
769 clear_bit(__E1000_RESETTING, &adapter->state);
770 return err;
771 }
772
reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg, int offset, u32 mask, u32 write)773 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
774 int reg, int offset, u32 mask, u32 write)
775 {
776 u32 pat, val;
777 static const u32 test[] = {
778 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
779 };
780 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
781 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
782 (test[pat] & write));
783 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
784 if (val != (test[pat] & write & mask)) {
785 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
786 reg + (offset << 2), val,
787 (test[pat] & write & mask));
788 *data = reg;
789 return true;
790 }
791 }
792 return false;
793 }
794
reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg, u32 mask, u32 write)795 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
796 int reg, u32 mask, u32 write)
797 {
798 u32 val;
799
800 __ew32(&adapter->hw, reg, write & mask);
801 val = __er32(&adapter->hw, reg);
802 if ((write & mask) != (val & mask)) {
803 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
804 reg, (val & mask), (write & mask));
805 *data = reg;
806 return true;
807 }
808 return false;
809 }
810
811 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
812 do { \
813 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
814 return 1; \
815 } while (0)
816 #define REG_PATTERN_TEST(reg, mask, write) \
817 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
818
819 #define REG_SET_AND_CHECK(reg, mask, write) \
820 do { \
821 if (reg_set_and_check(adapter, data, reg, mask, write)) \
822 return 1; \
823 } while (0)
824
e1000_reg_test(struct e1000_adapter *adapter, u64 *data)825 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
826 {
827 struct e1000_hw *hw = &adapter->hw;
828 struct e1000_mac_info *mac = &adapter->hw.mac;
829 u32 value;
830 u32 before;
831 u32 after;
832 u32 i;
833 u32 toggle;
834 u32 mask;
835 u32 wlock_mac = 0;
836
837 /* The status register is Read Only, so a write should fail.
838 * Some bits that get toggled are ignored. There are several bits
839 * on newer hardware that are r/w.
840 */
841 switch (mac->type) {
842 case e1000_82571:
843 case e1000_82572:
844 case e1000_80003es2lan:
845 toggle = 0x7FFFF3FF;
846 break;
847 default:
848 toggle = 0x7FFFF033;
849 break;
850 }
851
852 before = er32(STATUS);
853 value = (er32(STATUS) & toggle);
854 ew32(STATUS, toggle);
855 after = er32(STATUS) & toggle;
856 if (value != after) {
857 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
858 after, value);
859 *data = 1;
860 return 1;
861 }
862 /* restore previous status */
863 ew32(STATUS, before);
864
865 if (!(adapter->flags & FLAG_IS_ICH)) {
866 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
867 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
868 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
869 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
870 }
871
872 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
873 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
874 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
875 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
876 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
877 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
878 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
879 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
880 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
881 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
882
883 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
884
885 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
886 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
887 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
888
889 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
890 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
891 if (!(adapter->flags & FLAG_IS_ICH))
892 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
893 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
894 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
895 mask = 0x8003FFFF;
896 switch (mac->type) {
897 case e1000_ich10lan:
898 case e1000_pchlan:
899 case e1000_pch2lan:
900 case e1000_pch_lpt:
901 case e1000_pch_spt:
902 case e1000_pch_cnp:
903 case e1000_pch_tgp:
904 case e1000_pch_adp:
905 case e1000_pch_mtp:
906 mask |= BIT(18);
907 break;
908 default:
909 break;
910 }
911
912 if (mac->type >= e1000_pch_lpt)
913 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
914 E1000_FWSM_WLOCK_MAC_SHIFT;
915
916 for (i = 0; i < mac->rar_entry_count; i++) {
917 if (mac->type >= e1000_pch_lpt) {
918 /* Cannot test write-protected SHRAL[n] registers */
919 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
920 continue;
921
922 /* SHRAH[9] different than the others */
923 if (i == 10)
924 mask |= BIT(30);
925 else
926 mask &= ~BIT(30);
927 }
928 if (mac->type == e1000_pch2lan) {
929 /* SHRAH[0,1,2] different than previous */
930 if (i == 1)
931 mask &= 0xFFF4FFFF;
932 /* SHRAH[3] different than SHRAH[0,1,2] */
933 if (i == 4)
934 mask |= BIT(30);
935 /* RAR[1-6] owned by management engine - skipping */
936 if (i > 0)
937 i += 6;
938 }
939
940 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
941 0xFFFFFFFF);
942 /* reset index to actual value */
943 if ((mac->type == e1000_pch2lan) && (i > 6))
944 i -= 6;
945 }
946
947 for (i = 0; i < mac->mta_reg_count; i++)
948 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
949
950 *data = 0;
951
952 return 0;
953 }
954
e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)955 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
956 {
957 u16 temp;
958 u16 checksum = 0;
959 u16 i;
960
961 *data = 0;
962 /* Read and add up the contents of the EEPROM */
963 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
964 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
965 *data = 1;
966 return *data;
967 }
968 checksum += temp;
969 }
970
971 /* If Checksum is not Correct return error else test passed */
972 if ((checksum != (u16)NVM_SUM) && !(*data))
973 *data = 2;
974
975 return *data;
976 }
977
e1000_test_intr(int __always_unused irq, void *data)978 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
979 {
980 struct net_device *netdev = (struct net_device *)data;
981 struct e1000_adapter *adapter = netdev_priv(netdev);
982 struct e1000_hw *hw = &adapter->hw;
983
984 adapter->test_icr |= er32(ICR);
985
986 return IRQ_HANDLED;
987 }
988
e1000_intr_test(struct e1000_adapter *adapter, u64 *data)989 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
990 {
991 struct net_device *netdev = adapter->netdev;
992 struct e1000_hw *hw = &adapter->hw;
993 u32 mask;
994 u32 shared_int = 1;
995 u32 irq = adapter->pdev->irq;
996 int i;
997 int ret_val = 0;
998 int int_mode = E1000E_INT_MODE_LEGACY;
999
1000 *data = 0;
1001
1002 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
1003 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
1004 int_mode = adapter->int_mode;
1005 e1000e_reset_interrupt_capability(adapter);
1006 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1007 e1000e_set_interrupt_capability(adapter);
1008 }
1009 /* Hook up test interrupt handler just for this test */
1010 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1011 netdev)) {
1012 shared_int = 0;
1013 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1014 netdev)) {
1015 *data = 1;
1016 ret_val = -1;
1017 goto out;
1018 }
1019 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1020
1021 /* Disable all the interrupts */
1022 ew32(IMC, 0xFFFFFFFF);
1023 e1e_flush();
1024 usleep_range(10000, 11000);
1025
1026 /* Test each interrupt */
1027 for (i = 0; i < 10; i++) {
1028 /* Interrupt to test */
1029 mask = BIT(i);
1030
1031 if (adapter->flags & FLAG_IS_ICH) {
1032 switch (mask) {
1033 case E1000_ICR_RXSEQ:
1034 continue;
1035 case 0x00000100:
1036 if (adapter->hw.mac.type == e1000_ich8lan ||
1037 adapter->hw.mac.type == e1000_ich9lan)
1038 continue;
1039 break;
1040 default:
1041 break;
1042 }
1043 }
1044
1045 if (!shared_int) {
1046 /* Disable the interrupt to be reported in
1047 * the cause register and then force the same
1048 * interrupt and see if one gets posted. If
1049 * an interrupt was posted to the bus, the
1050 * test failed.
1051 */
1052 adapter->test_icr = 0;
1053 ew32(IMC, mask);
1054 ew32(ICS, mask);
1055 e1e_flush();
1056 usleep_range(10000, 11000);
1057
1058 if (adapter->test_icr & mask) {
1059 *data = 3;
1060 break;
1061 }
1062 }
1063
1064 /* Enable the interrupt to be reported in
1065 * the cause register and then force the same
1066 * interrupt and see if one gets posted. If
1067 * an interrupt was not posted to the bus, the
1068 * test failed.
1069 */
1070 adapter->test_icr = 0;
1071 ew32(IMS, mask);
1072 ew32(ICS, mask);
1073 e1e_flush();
1074 usleep_range(10000, 11000);
1075
1076 if (!(adapter->test_icr & mask)) {
1077 *data = 4;
1078 break;
1079 }
1080
1081 if (!shared_int) {
1082 /* Disable the other interrupts to be reported in
1083 * the cause register and then force the other
1084 * interrupts and see if any get posted. If
1085 * an interrupt was posted to the bus, the
1086 * test failed.
1087 */
1088 adapter->test_icr = 0;
1089 ew32(IMC, ~mask & 0x00007FFF);
1090 ew32(ICS, ~mask & 0x00007FFF);
1091 e1e_flush();
1092 usleep_range(10000, 11000);
1093
1094 if (adapter->test_icr) {
1095 *data = 5;
1096 break;
1097 }
1098 }
1099 }
1100
1101 /* Disable all the interrupts */
1102 ew32(IMC, 0xFFFFFFFF);
1103 e1e_flush();
1104 usleep_range(10000, 11000);
1105
1106 /* Unhook test interrupt handler */
1107 free_irq(irq, netdev);
1108
1109 out:
1110 if (int_mode == E1000E_INT_MODE_MSIX) {
1111 e1000e_reset_interrupt_capability(adapter);
1112 adapter->int_mode = int_mode;
1113 e1000e_set_interrupt_capability(adapter);
1114 }
1115
1116 return ret_val;
1117 }
1118
e1000_free_desc_rings(struct e1000_adapter *adapter)1119 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1120 {
1121 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1122 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1123 struct pci_dev *pdev = adapter->pdev;
1124 struct e1000_buffer *buffer_info;
1125 int i;
1126
1127 if (tx_ring->desc && tx_ring->buffer_info) {
1128 for (i = 0; i < tx_ring->count; i++) {
1129 buffer_info = &tx_ring->buffer_info[i];
1130
1131 if (buffer_info->dma)
1132 dma_unmap_single(&pdev->dev,
1133 buffer_info->dma,
1134 buffer_info->length,
1135 DMA_TO_DEVICE);
1136 dev_kfree_skb(buffer_info->skb);
1137 }
1138 }
1139
1140 if (rx_ring->desc && rx_ring->buffer_info) {
1141 for (i = 0; i < rx_ring->count; i++) {
1142 buffer_info = &rx_ring->buffer_info[i];
1143
1144 if (buffer_info->dma)
1145 dma_unmap_single(&pdev->dev,
1146 buffer_info->dma,
1147 2048, DMA_FROM_DEVICE);
1148 dev_kfree_skb(buffer_info->skb);
1149 }
1150 }
1151
1152 if (tx_ring->desc) {
1153 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1154 tx_ring->dma);
1155 tx_ring->desc = NULL;
1156 }
1157 if (rx_ring->desc) {
1158 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1159 rx_ring->dma);
1160 rx_ring->desc = NULL;
1161 }
1162
1163 kfree(tx_ring->buffer_info);
1164 tx_ring->buffer_info = NULL;
1165 kfree(rx_ring->buffer_info);
1166 rx_ring->buffer_info = NULL;
1167 }
1168
e1000_setup_desc_rings(struct e1000_adapter *adapter)1169 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1170 {
1171 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1172 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1173 struct pci_dev *pdev = adapter->pdev;
1174 struct e1000_hw *hw = &adapter->hw;
1175 u32 rctl;
1176 int i;
1177 int ret_val;
1178
1179 /* Setup Tx descriptor ring and Tx buffers */
1180
1181 if (!tx_ring->count)
1182 tx_ring->count = E1000_DEFAULT_TXD;
1183
1184 tx_ring->buffer_info = kcalloc(tx_ring->count,
1185 sizeof(struct e1000_buffer), GFP_KERNEL);
1186 if (!tx_ring->buffer_info) {
1187 ret_val = 1;
1188 goto err_nomem;
1189 }
1190
1191 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1192 tx_ring->size = ALIGN(tx_ring->size, 4096);
1193 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1194 &tx_ring->dma, GFP_KERNEL);
1195 if (!tx_ring->desc) {
1196 ret_val = 2;
1197 goto err_nomem;
1198 }
1199 tx_ring->next_to_use = 0;
1200 tx_ring->next_to_clean = 0;
1201
1202 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1203 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1204 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1205 ew32(TDH(0), 0);
1206 ew32(TDT(0), 0);
1207 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1208 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1209 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1210
1211 for (i = 0; i < tx_ring->count; i++) {
1212 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1213 struct sk_buff *skb;
1214 unsigned int skb_size = 1024;
1215
1216 skb = alloc_skb(skb_size, GFP_KERNEL);
1217 if (!skb) {
1218 ret_val = 3;
1219 goto err_nomem;
1220 }
1221 skb_put(skb, skb_size);
1222 tx_ring->buffer_info[i].skb = skb;
1223 tx_ring->buffer_info[i].length = skb->len;
1224 tx_ring->buffer_info[i].dma =
1225 dma_map_single(&pdev->dev, skb->data, skb->len,
1226 DMA_TO_DEVICE);
1227 if (dma_mapping_error(&pdev->dev,
1228 tx_ring->buffer_info[i].dma)) {
1229 ret_val = 4;
1230 goto err_nomem;
1231 }
1232 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1233 tx_desc->lower.data = cpu_to_le32(skb->len);
1234 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1235 E1000_TXD_CMD_IFCS |
1236 E1000_TXD_CMD_RS);
1237 tx_desc->upper.data = 0;
1238 }
1239
1240 /* Setup Rx descriptor ring and Rx buffers */
1241
1242 if (!rx_ring->count)
1243 rx_ring->count = E1000_DEFAULT_RXD;
1244
1245 rx_ring->buffer_info = kcalloc(rx_ring->count,
1246 sizeof(struct e1000_buffer), GFP_KERNEL);
1247 if (!rx_ring->buffer_info) {
1248 ret_val = 5;
1249 goto err_nomem;
1250 }
1251
1252 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1253 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1254 &rx_ring->dma, GFP_KERNEL);
1255 if (!rx_ring->desc) {
1256 ret_val = 6;
1257 goto err_nomem;
1258 }
1259 rx_ring->next_to_use = 0;
1260 rx_ring->next_to_clean = 0;
1261
1262 rctl = er32(RCTL);
1263 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1264 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1265 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1266 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1267 ew32(RDLEN(0), rx_ring->size);
1268 ew32(RDH(0), 0);
1269 ew32(RDT(0), 0);
1270 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1271 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1272 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1273 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1274 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1275 ew32(RCTL, rctl);
1276
1277 for (i = 0; i < rx_ring->count; i++) {
1278 union e1000_rx_desc_extended *rx_desc;
1279 struct sk_buff *skb;
1280
1281 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1282 if (!skb) {
1283 ret_val = 7;
1284 goto err_nomem;
1285 }
1286 skb_reserve(skb, NET_IP_ALIGN);
1287 rx_ring->buffer_info[i].skb = skb;
1288 rx_ring->buffer_info[i].dma =
1289 dma_map_single(&pdev->dev, skb->data, 2048,
1290 DMA_FROM_DEVICE);
1291 if (dma_mapping_error(&pdev->dev,
1292 rx_ring->buffer_info[i].dma)) {
1293 ret_val = 8;
1294 goto err_nomem;
1295 }
1296 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1297 rx_desc->read.buffer_addr =
1298 cpu_to_le64(rx_ring->buffer_info[i].dma);
1299 memset(skb->data, 0x00, skb->len);
1300 }
1301
1302 return 0;
1303
1304 err_nomem:
1305 e1000_free_desc_rings(adapter);
1306 return ret_val;
1307 }
1308
e1000_phy_disable_receiver(struct e1000_adapter *adapter)1309 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1310 {
1311 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1312 e1e_wphy(&adapter->hw, 29, 0x001F);
1313 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1314 e1e_wphy(&adapter->hw, 29, 0x001A);
1315 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1316 }
1317
e1000_integrated_phy_loopback(struct e1000_adapter *adapter)1318 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1319 {
1320 struct e1000_hw *hw = &adapter->hw;
1321 u32 ctrl_reg = 0;
1322 u16 phy_reg = 0;
1323 s32 ret_val = 0;
1324
1325 hw->mac.autoneg = 0;
1326
1327 if (hw->phy.type == e1000_phy_ife) {
1328 /* force 100, set loopback */
1329 e1e_wphy(hw, MII_BMCR, 0x6100);
1330
1331 /* Now set up the MAC to the same speed/duplex as the PHY. */
1332 ctrl_reg = er32(CTRL);
1333 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1334 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1335 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1336 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1337 E1000_CTRL_FD); /* Force Duplex to FULL */
1338
1339 ew32(CTRL, ctrl_reg);
1340 e1e_flush();
1341 usleep_range(500, 1000);
1342
1343 return 0;
1344 }
1345
1346 /* Specific PHY configuration for loopback */
1347 switch (hw->phy.type) {
1348 case e1000_phy_m88:
1349 /* Auto-MDI/MDIX Off */
1350 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1351 /* reset to update Auto-MDI/MDIX */
1352 e1e_wphy(hw, MII_BMCR, 0x9140);
1353 /* autoneg off */
1354 e1e_wphy(hw, MII_BMCR, 0x8140);
1355 break;
1356 case e1000_phy_gg82563:
1357 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1358 break;
1359 case e1000_phy_bm:
1360 /* Set Default MAC Interface speed to 1GB */
1361 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1362 phy_reg &= ~0x0007;
1363 phy_reg |= 0x006;
1364 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1365 /* Assert SW reset for above settings to take effect */
1366 hw->phy.ops.commit(hw);
1367 usleep_range(1000, 2000);
1368 /* Force Full Duplex */
1369 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1370 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1371 /* Set Link Up (in force link) */
1372 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1373 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1374 /* Force Link */
1375 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1376 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1377 /* Set Early Link Enable */
1378 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1379 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1380 break;
1381 case e1000_phy_82577:
1382 case e1000_phy_82578:
1383 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1384 ret_val = hw->phy.ops.acquire(hw);
1385 if (ret_val) {
1386 e_err("Cannot setup 1Gbps loopback.\n");
1387 return ret_val;
1388 }
1389 e1000_configure_k1_ich8lan(hw, false);
1390 hw->phy.ops.release(hw);
1391 break;
1392 case e1000_phy_82579:
1393 /* Disable PHY energy detect power down */
1394 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1395 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1396 /* Disable full chip energy detect */
1397 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1398 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1399 /* Enable loopback on the PHY */
1400 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1401 break;
1402 default:
1403 break;
1404 }
1405
1406 /* force 1000, set loopback */
1407 e1e_wphy(hw, MII_BMCR, 0x4140);
1408 msleep(250);
1409
1410 /* Now set up the MAC to the same speed/duplex as the PHY. */
1411 ctrl_reg = er32(CTRL);
1412 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1413 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1414 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1415 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1416 E1000_CTRL_FD); /* Force Duplex to FULL */
1417
1418 if (adapter->flags & FLAG_IS_ICH)
1419 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1420
1421 if (hw->phy.media_type == e1000_media_type_copper &&
1422 hw->phy.type == e1000_phy_m88) {
1423 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1424 } else {
1425 /* Set the ILOS bit on the fiber Nic if half duplex link is
1426 * detected.
1427 */
1428 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1429 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1430 }
1431
1432 ew32(CTRL, ctrl_reg);
1433
1434 /* Disable the receiver on the PHY so when a cable is plugged in, the
1435 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1436 */
1437 if (hw->phy.type == e1000_phy_m88)
1438 e1000_phy_disable_receiver(adapter);
1439
1440 usleep_range(500, 1000);
1441
1442 return 0;
1443 }
1444
e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)1445 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1446 {
1447 struct e1000_hw *hw = &adapter->hw;
1448 u32 ctrl = er32(CTRL);
1449 int link;
1450
1451 /* special requirements for 82571/82572 fiber adapters */
1452
1453 /* jump through hoops to make sure link is up because serdes
1454 * link is hardwired up
1455 */
1456 ctrl |= E1000_CTRL_SLU;
1457 ew32(CTRL, ctrl);
1458
1459 /* disable autoneg */
1460 ctrl = er32(TXCW);
1461 ctrl &= ~BIT(31);
1462 ew32(TXCW, ctrl);
1463
1464 link = (er32(STATUS) & E1000_STATUS_LU);
1465
1466 if (!link) {
1467 /* set invert loss of signal */
1468 ctrl = er32(CTRL);
1469 ctrl |= E1000_CTRL_ILOS;
1470 ew32(CTRL, ctrl);
1471 }
1472
1473 /* special write to serdes control register to enable SerDes analog
1474 * loopback
1475 */
1476 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1477 e1e_flush();
1478 usleep_range(10000, 11000);
1479
1480 return 0;
1481 }
1482
1483 /* only call this for fiber/serdes connections to es2lan */
e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)1484 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1485 {
1486 struct e1000_hw *hw = &adapter->hw;
1487 u32 ctrlext = er32(CTRL_EXT);
1488 u32 ctrl = er32(CTRL);
1489
1490 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1491 * on mac_type 80003es2lan)
1492 */
1493 adapter->tx_fifo_head = ctrlext;
1494
1495 /* clear the serdes mode bits, putting the device into mac loopback */
1496 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1497 ew32(CTRL_EXT, ctrlext);
1498
1499 /* force speed to 1000/FD, link up */
1500 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1501 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1502 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1503 ew32(CTRL, ctrl);
1504
1505 /* set mac loopback */
1506 ctrl = er32(RCTL);
1507 ctrl |= E1000_RCTL_LBM_MAC;
1508 ew32(RCTL, ctrl);
1509
1510 /* set testing mode parameters (no need to reset later) */
1511 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1512 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1513 ew32(KMRNCTRLSTA,
1514 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1515
1516 return 0;
1517 }
1518
e1000_setup_loopback_test(struct e1000_adapter *adapter)1519 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1520 {
1521 struct e1000_hw *hw = &adapter->hw;
1522 u32 rctl, fext_nvm11, tarc0;
1523
1524 if (hw->mac.type >= e1000_pch_spt) {
1525 fext_nvm11 = er32(FEXTNVM11);
1526 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1527 ew32(FEXTNVM11, fext_nvm11);
1528 tarc0 = er32(TARC(0));
1529 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1530 tarc0 &= 0xcfffffff;
1531 /* set bit 29 (value of MULR requests is now 2) */
1532 tarc0 |= 0x20000000;
1533 ew32(TARC(0), tarc0);
1534 }
1535 if (hw->phy.media_type == e1000_media_type_fiber ||
1536 hw->phy.media_type == e1000_media_type_internal_serdes) {
1537 switch (hw->mac.type) {
1538 case e1000_80003es2lan:
1539 return e1000_set_es2lan_mac_loopback(adapter);
1540 case e1000_82571:
1541 case e1000_82572:
1542 return e1000_set_82571_fiber_loopback(adapter);
1543 default:
1544 rctl = er32(RCTL);
1545 rctl |= E1000_RCTL_LBM_TCVR;
1546 ew32(RCTL, rctl);
1547 return 0;
1548 }
1549 } else if (hw->phy.media_type == e1000_media_type_copper) {
1550 return e1000_integrated_phy_loopback(adapter);
1551 }
1552
1553 return 7;
1554 }
1555
e1000_loopback_cleanup(struct e1000_adapter *adapter)1556 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1557 {
1558 struct e1000_hw *hw = &adapter->hw;
1559 u32 rctl, fext_nvm11, tarc0;
1560 u16 phy_reg;
1561
1562 rctl = er32(RCTL);
1563 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1564 ew32(RCTL, rctl);
1565
1566 switch (hw->mac.type) {
1567 case e1000_pch_spt:
1568 case e1000_pch_cnp:
1569 case e1000_pch_tgp:
1570 case e1000_pch_adp:
1571 case e1000_pch_mtp:
1572 fext_nvm11 = er32(FEXTNVM11);
1573 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1574 ew32(FEXTNVM11, fext_nvm11);
1575 tarc0 = er32(TARC(0));
1576 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1577 /* set bit 29 (value of MULR requests is now 0) */
1578 tarc0 &= 0xcfffffff;
1579 ew32(TARC(0), tarc0);
1580 fallthrough;
1581 case e1000_80003es2lan:
1582 if (hw->phy.media_type == e1000_media_type_fiber ||
1583 hw->phy.media_type == e1000_media_type_internal_serdes) {
1584 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1585 ew32(CTRL_EXT, adapter->tx_fifo_head);
1586 adapter->tx_fifo_head = 0;
1587 }
1588 fallthrough;
1589 case e1000_82571:
1590 case e1000_82572:
1591 if (hw->phy.media_type == e1000_media_type_fiber ||
1592 hw->phy.media_type == e1000_media_type_internal_serdes) {
1593 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1594 e1e_flush();
1595 usleep_range(10000, 11000);
1596 break;
1597 }
1598 fallthrough;
1599 default:
1600 hw->mac.autoneg = 1;
1601 if (hw->phy.type == e1000_phy_gg82563)
1602 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1603 e1e_rphy(hw, MII_BMCR, &phy_reg);
1604 if (phy_reg & BMCR_LOOPBACK) {
1605 phy_reg &= ~BMCR_LOOPBACK;
1606 e1e_wphy(hw, MII_BMCR, phy_reg);
1607 if (hw->phy.ops.commit)
1608 hw->phy.ops.commit(hw);
1609 }
1610 break;
1611 }
1612 }
1613
e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)1614 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1615 unsigned int frame_size)
1616 {
1617 memset(skb->data, 0xFF, frame_size);
1618 frame_size &= ~1;
1619 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1620 skb->data[frame_size / 2 + 10] = 0xBE;
1621 skb->data[frame_size / 2 + 12] = 0xAF;
1622 }
1623
e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)1624 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1625 unsigned int frame_size)
1626 {
1627 frame_size &= ~1;
1628 if (*(skb->data + 3) == 0xFF)
1629 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1630 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1631 return 0;
1632 return 13;
1633 }
1634
e1000_run_loopback_test(struct e1000_adapter *adapter)1635 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1636 {
1637 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1638 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1639 struct pci_dev *pdev = adapter->pdev;
1640 struct e1000_hw *hw = &adapter->hw;
1641 struct e1000_buffer *buffer_info;
1642 int i, j, k, l;
1643 int lc;
1644 int good_cnt;
1645 int ret_val = 0;
1646 unsigned long time;
1647
1648 ew32(RDT(0), rx_ring->count - 1);
1649
1650 /* Calculate the loop count based on the largest descriptor ring
1651 * The idea is to wrap the largest ring a number of times using 64
1652 * send/receive pairs during each loop
1653 */
1654
1655 if (rx_ring->count <= tx_ring->count)
1656 lc = ((tx_ring->count / 64) * 2) + 1;
1657 else
1658 lc = ((rx_ring->count / 64) * 2) + 1;
1659
1660 k = 0;
1661 l = 0;
1662 /* loop count loop */
1663 for (j = 0; j <= lc; j++) {
1664 /* send the packets */
1665 for (i = 0; i < 64; i++) {
1666 buffer_info = &tx_ring->buffer_info[k];
1667
1668 e1000_create_lbtest_frame(buffer_info->skb, 1024);
1669 dma_sync_single_for_device(&pdev->dev,
1670 buffer_info->dma,
1671 buffer_info->length,
1672 DMA_TO_DEVICE);
1673 k++;
1674 if (k == tx_ring->count)
1675 k = 0;
1676 }
1677 ew32(TDT(0), k);
1678 e1e_flush();
1679 msleep(200);
1680 time = jiffies; /* set the start time for the receive */
1681 good_cnt = 0;
1682 /* receive the sent packets */
1683 do {
1684 buffer_info = &rx_ring->buffer_info[l];
1685
1686 dma_sync_single_for_cpu(&pdev->dev,
1687 buffer_info->dma, 2048,
1688 DMA_FROM_DEVICE);
1689
1690 ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1691 1024);
1692 if (!ret_val)
1693 good_cnt++;
1694 l++;
1695 if (l == rx_ring->count)
1696 l = 0;
1697 /* time + 20 msecs (200 msecs on 2.4) is more than
1698 * enough time to complete the receives, if it's
1699 * exceeded, break and error off
1700 */
1701 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1702 if (good_cnt != 64) {
1703 ret_val = 13; /* ret_val is the same as mis-compare */
1704 break;
1705 }
1706 if (time_after(jiffies, time + 20)) {
1707 ret_val = 14; /* error code for time out error */
1708 break;
1709 }
1710 }
1711 return ret_val;
1712 }
1713
e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)1714 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1715 {
1716 struct e1000_hw *hw = &adapter->hw;
1717
1718 /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1719 if (hw->phy.ops.check_reset_block &&
1720 hw->phy.ops.check_reset_block(hw)) {
1721 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1722 *data = 0;
1723 goto out;
1724 }
1725
1726 *data = e1000_setup_desc_rings(adapter);
1727 if (*data)
1728 goto out;
1729
1730 *data = e1000_setup_loopback_test(adapter);
1731 if (*data)
1732 goto err_loopback;
1733
1734 *data = e1000_run_loopback_test(adapter);
1735 e1000_loopback_cleanup(adapter);
1736
1737 err_loopback:
1738 e1000_free_desc_rings(adapter);
1739 out:
1740 return *data;
1741 }
1742
e1000_link_test(struct e1000_adapter *adapter, u64 *data)1743 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1744 {
1745 struct e1000_hw *hw = &adapter->hw;
1746
1747 *data = 0;
1748 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1749 int i = 0;
1750
1751 hw->mac.serdes_has_link = false;
1752
1753 /* On some blade server designs, link establishment
1754 * could take as long as 2-3 minutes
1755 */
1756 do {
1757 hw->mac.ops.check_for_link(hw);
1758 if (hw->mac.serdes_has_link)
1759 return *data;
1760 msleep(20);
1761 } while (i++ < 3750);
1762
1763 *data = 1;
1764 } else {
1765 hw->mac.ops.check_for_link(hw);
1766 if (hw->mac.autoneg)
1767 /* On some Phy/switch combinations, link establishment
1768 * can take a few seconds more than expected.
1769 */
1770 msleep_interruptible(5000);
1771
1772 if (!(er32(STATUS) & E1000_STATUS_LU))
1773 *data = 1;
1774 }
1775 return *data;
1776 }
1777
e1000e_get_sset_count(struct net_device __always_unused *netdev, int sset)1778 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1779 int sset)
1780 {
1781 switch (sset) {
1782 case ETH_SS_TEST:
1783 return E1000_TEST_LEN;
1784 case ETH_SS_STATS:
1785 return E1000_STATS_LEN;
1786 case ETH_SS_PRIV_FLAGS:
1787 return E1000E_PRIV_FLAGS_STR_LEN;
1788 default:
1789 return -EOPNOTSUPP;
1790 }
1791 }
1792
e1000_diag_test(struct net_device *netdev, struct ethtool_test *eth_test, u64 *data)1793 static void e1000_diag_test(struct net_device *netdev,
1794 struct ethtool_test *eth_test, u64 *data)
1795 {
1796 struct e1000_adapter *adapter = netdev_priv(netdev);
1797 u16 autoneg_advertised;
1798 u8 forced_speed_duplex;
1799 u8 autoneg;
1800 bool if_running = netif_running(netdev);
1801
1802 pm_runtime_get_sync(netdev->dev.parent);
1803
1804 set_bit(__E1000_TESTING, &adapter->state);
1805
1806 if (!if_running) {
1807 /* Get control of and reset hardware */
1808 if (adapter->flags & FLAG_HAS_AMT)
1809 e1000e_get_hw_control(adapter);
1810
1811 e1000e_power_up_phy(adapter);
1812
1813 adapter->hw.phy.autoneg_wait_to_complete = 1;
1814 e1000e_reset(adapter);
1815 adapter->hw.phy.autoneg_wait_to_complete = 0;
1816 }
1817
1818 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1819 /* Offline tests */
1820
1821 /* save speed, duplex, autoneg settings */
1822 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1823 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1824 autoneg = adapter->hw.mac.autoneg;
1825
1826 e_info("offline testing starting\n");
1827
1828 if (if_running)
1829 /* indicate we're in test mode */
1830 e1000e_close(netdev);
1831
1832 if (e1000_reg_test(adapter, &data[0]))
1833 eth_test->flags |= ETH_TEST_FL_FAILED;
1834
1835 e1000e_reset(adapter);
1836 if (e1000_eeprom_test(adapter, &data[1]))
1837 eth_test->flags |= ETH_TEST_FL_FAILED;
1838
1839 e1000e_reset(adapter);
1840 if (e1000_intr_test(adapter, &data[2]))
1841 eth_test->flags |= ETH_TEST_FL_FAILED;
1842
1843 e1000e_reset(adapter);
1844 if (e1000_loopback_test(adapter, &data[3]))
1845 eth_test->flags |= ETH_TEST_FL_FAILED;
1846
1847 /* force this routine to wait until autoneg complete/timeout */
1848 adapter->hw.phy.autoneg_wait_to_complete = 1;
1849 e1000e_reset(adapter);
1850 adapter->hw.phy.autoneg_wait_to_complete = 0;
1851
1852 if (e1000_link_test(adapter, &data[4]))
1853 eth_test->flags |= ETH_TEST_FL_FAILED;
1854
1855 /* restore speed, duplex, autoneg settings */
1856 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1857 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1858 adapter->hw.mac.autoneg = autoneg;
1859 e1000e_reset(adapter);
1860
1861 clear_bit(__E1000_TESTING, &adapter->state);
1862 if (if_running)
1863 e1000e_open(netdev);
1864 } else {
1865 /* Online tests */
1866
1867 e_info("online testing starting\n");
1868
1869 /* register, eeprom, intr and loopback tests not run online */
1870 data[0] = 0;
1871 data[1] = 0;
1872 data[2] = 0;
1873 data[3] = 0;
1874
1875 if (e1000_link_test(adapter, &data[4]))
1876 eth_test->flags |= ETH_TEST_FL_FAILED;
1877
1878 clear_bit(__E1000_TESTING, &adapter->state);
1879 }
1880
1881 if (!if_running) {
1882 e1000e_reset(adapter);
1883
1884 if (adapter->flags & FLAG_HAS_AMT)
1885 e1000e_release_hw_control(adapter);
1886 }
1887
1888 msleep_interruptible(4 * 1000);
1889
1890 pm_runtime_put_sync(netdev->dev.parent);
1891 }
1892
e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)1893 static void e1000_get_wol(struct net_device *netdev,
1894 struct ethtool_wolinfo *wol)
1895 {
1896 struct e1000_adapter *adapter = netdev_priv(netdev);
1897
1898 wol->supported = 0;
1899 wol->wolopts = 0;
1900
1901 if (!(adapter->flags & FLAG_HAS_WOL) ||
1902 !device_can_wakeup(&adapter->pdev->dev))
1903 return;
1904
1905 wol->supported = WAKE_UCAST | WAKE_MCAST |
1906 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1907
1908 /* apply any specific unsupported masks here */
1909 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1910 wol->supported &= ~WAKE_UCAST;
1911
1912 if (adapter->wol & E1000_WUFC_EX)
1913 e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1914 }
1915
1916 if (adapter->wol & E1000_WUFC_EX)
1917 wol->wolopts |= WAKE_UCAST;
1918 if (adapter->wol & E1000_WUFC_MC)
1919 wol->wolopts |= WAKE_MCAST;
1920 if (adapter->wol & E1000_WUFC_BC)
1921 wol->wolopts |= WAKE_BCAST;
1922 if (adapter->wol & E1000_WUFC_MAG)
1923 wol->wolopts |= WAKE_MAGIC;
1924 if (adapter->wol & E1000_WUFC_LNKC)
1925 wol->wolopts |= WAKE_PHY;
1926 }
1927
e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)1928 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1929 {
1930 struct e1000_adapter *adapter = netdev_priv(netdev);
1931
1932 if (!(adapter->flags & FLAG_HAS_WOL) ||
1933 !device_can_wakeup(&adapter->pdev->dev) ||
1934 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1935 WAKE_MAGIC | WAKE_PHY)))
1936 return -EOPNOTSUPP;
1937
1938 /* these settings will always override what we currently have */
1939 adapter->wol = 0;
1940
1941 if (wol->wolopts & WAKE_UCAST)
1942 adapter->wol |= E1000_WUFC_EX;
1943 if (wol->wolopts & WAKE_MCAST)
1944 adapter->wol |= E1000_WUFC_MC;
1945 if (wol->wolopts & WAKE_BCAST)
1946 adapter->wol |= E1000_WUFC_BC;
1947 if (wol->wolopts & WAKE_MAGIC)
1948 adapter->wol |= E1000_WUFC_MAG;
1949 if (wol->wolopts & WAKE_PHY)
1950 adapter->wol |= E1000_WUFC_LNKC;
1951
1952 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1953
1954 return 0;
1955 }
1956
e1000_set_phys_id(struct net_device *netdev, enum ethtool_phys_id_state state)1957 static int e1000_set_phys_id(struct net_device *netdev,
1958 enum ethtool_phys_id_state state)
1959 {
1960 struct e1000_adapter *adapter = netdev_priv(netdev);
1961 struct e1000_hw *hw = &adapter->hw;
1962
1963 switch (state) {
1964 case ETHTOOL_ID_ACTIVE:
1965 pm_runtime_get_sync(netdev->dev.parent);
1966
1967 if (!hw->mac.ops.blink_led)
1968 return 2; /* cycle on/off twice per second */
1969
1970 hw->mac.ops.blink_led(hw);
1971 break;
1972
1973 case ETHTOOL_ID_INACTIVE:
1974 if (hw->phy.type == e1000_phy_ife)
1975 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1976 hw->mac.ops.led_off(hw);
1977 hw->mac.ops.cleanup_led(hw);
1978 pm_runtime_put_sync(netdev->dev.parent);
1979 break;
1980
1981 case ETHTOOL_ID_ON:
1982 hw->mac.ops.led_on(hw);
1983 break;
1984
1985 case ETHTOOL_ID_OFF:
1986 hw->mac.ops.led_off(hw);
1987 break;
1988 }
1989
1990 return 0;
1991 }
1992
e1000_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ec)1993 static int e1000_get_coalesce(struct net_device *netdev,
1994 struct ethtool_coalesce *ec)
1995 {
1996 struct e1000_adapter *adapter = netdev_priv(netdev);
1997
1998 if (adapter->itr_setting <= 4)
1999 ec->rx_coalesce_usecs = adapter->itr_setting;
2000 else
2001 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
2002
2003 return 0;
2004 }
2005
e1000_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ec)2006 static int e1000_set_coalesce(struct net_device *netdev,
2007 struct ethtool_coalesce *ec)
2008 {
2009 struct e1000_adapter *adapter = netdev_priv(netdev);
2010
2011 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2012 ((ec->rx_coalesce_usecs > 4) &&
2013 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2014 (ec->rx_coalesce_usecs == 2))
2015 return -EINVAL;
2016
2017 if (ec->rx_coalesce_usecs == 4) {
2018 adapter->itr_setting = 4;
2019 adapter->itr = adapter->itr_setting;
2020 } else if (ec->rx_coalesce_usecs <= 3) {
2021 adapter->itr = 20000;
2022 adapter->itr_setting = ec->rx_coalesce_usecs;
2023 } else {
2024 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2025 adapter->itr_setting = adapter->itr & ~3;
2026 }
2027
2028 pm_runtime_get_sync(netdev->dev.parent);
2029
2030 if (adapter->itr_setting != 0)
2031 e1000e_write_itr(adapter, adapter->itr);
2032 else
2033 e1000e_write_itr(adapter, 0);
2034
2035 pm_runtime_put_sync(netdev->dev.parent);
2036
2037 return 0;
2038 }
2039
e1000_nway_reset(struct net_device *netdev)2040 static int e1000_nway_reset(struct net_device *netdev)
2041 {
2042 struct e1000_adapter *adapter = netdev_priv(netdev);
2043
2044 if (!netif_running(netdev))
2045 return -EAGAIN;
2046
2047 if (!adapter->hw.mac.autoneg)
2048 return -EINVAL;
2049
2050 pm_runtime_get_sync(netdev->dev.parent);
2051 e1000e_reinit_locked(adapter);
2052 pm_runtime_put_sync(netdev->dev.parent);
2053
2054 return 0;
2055 }
2056
e1000_get_ethtool_stats(struct net_device *netdev, struct ethtool_stats __always_unused *stats, u64 *data)2057 static void e1000_get_ethtool_stats(struct net_device *netdev,
2058 struct ethtool_stats __always_unused *stats,
2059 u64 *data)
2060 {
2061 struct e1000_adapter *adapter = netdev_priv(netdev);
2062 struct rtnl_link_stats64 net_stats;
2063 int i;
2064 char *p = NULL;
2065
2066 pm_runtime_get_sync(netdev->dev.parent);
2067
2068 dev_get_stats(netdev, &net_stats);
2069
2070 pm_runtime_put_sync(netdev->dev.parent);
2071
2072 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2073 switch (e1000_gstrings_stats[i].type) {
2074 case NETDEV_STATS:
2075 p = (char *)&net_stats +
2076 e1000_gstrings_stats[i].stat_offset;
2077 break;
2078 case E1000_STATS:
2079 p = (char *)adapter +
2080 e1000_gstrings_stats[i].stat_offset;
2081 break;
2082 default:
2083 data[i] = 0;
2084 continue;
2085 }
2086
2087 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2088 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2089 }
2090 }
2091
e1000_get_strings(struct net_device __always_unused *netdev, u32 stringset, u8 *data)2092 static void e1000_get_strings(struct net_device __always_unused *netdev,
2093 u32 stringset, u8 *data)
2094 {
2095 u8 *p = data;
2096 int i;
2097
2098 switch (stringset) {
2099 case ETH_SS_TEST:
2100 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2101 break;
2102 case ETH_SS_STATS:
2103 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2104 memcpy(p, e1000_gstrings_stats[i].stat_string,
2105 ETH_GSTRING_LEN);
2106 p += ETH_GSTRING_LEN;
2107 }
2108 break;
2109 case ETH_SS_PRIV_FLAGS:
2110 memcpy(data, e1000e_priv_flags_strings,
2111 E1000E_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2112 break;
2113 }
2114 }
2115
e1000_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *info, u32 __always_unused *rule_locs)2116 static int e1000_get_rxnfc(struct net_device *netdev,
2117 struct ethtool_rxnfc *info,
2118 u32 __always_unused *rule_locs)
2119 {
2120 info->data = 0;
2121
2122 switch (info->cmd) {
2123 case ETHTOOL_GRXFH: {
2124 struct e1000_adapter *adapter = netdev_priv(netdev);
2125 struct e1000_hw *hw = &adapter->hw;
2126 u32 mrqc;
2127
2128 pm_runtime_get_sync(netdev->dev.parent);
2129 mrqc = er32(MRQC);
2130 pm_runtime_put_sync(netdev->dev.parent);
2131
2132 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2133 return 0;
2134
2135 switch (info->flow_type) {
2136 case TCP_V4_FLOW:
2137 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2138 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2139 fallthrough;
2140 case UDP_V4_FLOW:
2141 case SCTP_V4_FLOW:
2142 case AH_ESP_V4_FLOW:
2143 case IPV4_FLOW:
2144 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2145 info->data |= RXH_IP_SRC | RXH_IP_DST;
2146 break;
2147 case TCP_V6_FLOW:
2148 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2149 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2150 fallthrough;
2151 case UDP_V6_FLOW:
2152 case SCTP_V6_FLOW:
2153 case AH_ESP_V6_FLOW:
2154 case IPV6_FLOW:
2155 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2156 info->data |= RXH_IP_SRC | RXH_IP_DST;
2157 break;
2158 default:
2159 break;
2160 }
2161 return 0;
2162 }
2163 default:
2164 return -EOPNOTSUPP;
2165 }
2166 }
2167
e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)2168 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2169 {
2170 struct e1000_adapter *adapter = netdev_priv(netdev);
2171 struct e1000_hw *hw = &adapter->hw;
2172 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2173 u32 ret_val;
2174
2175 if (!(adapter->flags2 & FLAG2_HAS_EEE))
2176 return -EOPNOTSUPP;
2177
2178 switch (hw->phy.type) {
2179 case e1000_phy_82579:
2180 cap_addr = I82579_EEE_CAPABILITY;
2181 lpa_addr = I82579_EEE_LP_ABILITY;
2182 pcs_stat_addr = I82579_EEE_PCS_STATUS;
2183 break;
2184 case e1000_phy_i217:
2185 cap_addr = I217_EEE_CAPABILITY;
2186 lpa_addr = I217_EEE_LP_ABILITY;
2187 pcs_stat_addr = I217_EEE_PCS_STATUS;
2188 break;
2189 default:
2190 return -EOPNOTSUPP;
2191 }
2192
2193 pm_runtime_get_sync(netdev->dev.parent);
2194
2195 ret_val = hw->phy.ops.acquire(hw);
2196 if (ret_val) {
2197 pm_runtime_put_sync(netdev->dev.parent);
2198 return -EBUSY;
2199 }
2200
2201 /* EEE Capability */
2202 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2203 if (ret_val)
2204 goto release;
2205 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2206
2207 /* EEE Advertised */
2208 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2209
2210 /* EEE Link Partner Advertised */
2211 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2212 if (ret_val)
2213 goto release;
2214 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2215
2216 /* EEE PCS Status */
2217 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2218 if (ret_val)
2219 goto release;
2220 if (hw->phy.type == e1000_phy_82579)
2221 phy_data <<= 8;
2222
2223 /* Result of the EEE auto negotiation - there is no register that
2224 * has the status of the EEE negotiation so do a best-guess based
2225 * on whether Tx or Rx LPI indications have been received.
2226 */
2227 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2228 edata->eee_active = true;
2229
2230 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2231 edata->tx_lpi_enabled = true;
2232 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2233
2234 release:
2235 hw->phy.ops.release(hw);
2236 if (ret_val)
2237 ret_val = -ENODATA;
2238
2239 pm_runtime_put_sync(netdev->dev.parent);
2240
2241 return ret_val;
2242 }
2243
e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)2244 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2245 {
2246 struct e1000_adapter *adapter = netdev_priv(netdev);
2247 struct e1000_hw *hw = &adapter->hw;
2248 struct ethtool_eee eee_curr;
2249 s32 ret_val;
2250
2251 ret_val = e1000e_get_eee(netdev, &eee_curr);
2252 if (ret_val)
2253 return ret_val;
2254
2255 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2256 e_err("Setting EEE tx-lpi is not supported\n");
2257 return -EINVAL;
2258 }
2259
2260 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2261 e_err("Setting EEE Tx LPI timer is not supported\n");
2262 return -EINVAL;
2263 }
2264
2265 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2266 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2267 return -EINVAL;
2268 }
2269
2270 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2271
2272 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2273
2274 pm_runtime_get_sync(netdev->dev.parent);
2275
2276 /* reset the link */
2277 if (netif_running(netdev))
2278 e1000e_reinit_locked(adapter);
2279 else
2280 e1000e_reset(adapter);
2281
2282 pm_runtime_put_sync(netdev->dev.parent);
2283
2284 return 0;
2285 }
2286
e1000e_get_ts_info(struct net_device *netdev, struct ethtool_ts_info *info)2287 static int e1000e_get_ts_info(struct net_device *netdev,
2288 struct ethtool_ts_info *info)
2289 {
2290 struct e1000_adapter *adapter = netdev_priv(netdev);
2291
2292 ethtool_op_get_ts_info(netdev, info);
2293
2294 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2295 return 0;
2296
2297 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2298 SOF_TIMESTAMPING_RX_HARDWARE |
2299 SOF_TIMESTAMPING_RAW_HARDWARE);
2300
2301 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2302
2303 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2304 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2305 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2306 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2307 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2308 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2309 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2310 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2311 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2312 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2313 BIT(HWTSTAMP_FILTER_ALL));
2314
2315 if (adapter->ptp_clock)
2316 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2317
2318 return 0;
2319 }
2320
e1000e_get_priv_flags(struct net_device *netdev)2321 static u32 e1000e_get_priv_flags(struct net_device *netdev)
2322 {
2323 struct e1000_adapter *adapter = netdev_priv(netdev);
2324 u32 priv_flags = 0;
2325
2326 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
2327 priv_flags |= E1000E_PRIV_FLAGS_S0IX_ENABLED;
2328
2329 return priv_flags;
2330 }
2331
e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags)2332 static int e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags)
2333 {
2334 struct e1000_adapter *adapter = netdev_priv(netdev);
2335 unsigned int flags2 = adapter->flags2;
2336
2337 flags2 &= ~FLAG2_ENABLE_S0IX_FLOWS;
2338 if (priv_flags & E1000E_PRIV_FLAGS_S0IX_ENABLED) {
2339 struct e1000_hw *hw = &adapter->hw;
2340
2341 if (hw->mac.type < e1000_pch_cnp)
2342 return -EINVAL;
2343 flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
2344 }
2345
2346 if (flags2 != adapter->flags2)
2347 adapter->flags2 = flags2;
2348
2349 return 0;
2350 }
2351
2352 static const struct ethtool_ops e1000_ethtool_ops = {
2353 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
2354 .get_drvinfo = e1000_get_drvinfo,
2355 .get_regs_len = e1000_get_regs_len,
2356 .get_regs = e1000_get_regs,
2357 .get_wol = e1000_get_wol,
2358 .set_wol = e1000_set_wol,
2359 .get_msglevel = e1000_get_msglevel,
2360 .set_msglevel = e1000_set_msglevel,
2361 .nway_reset = e1000_nway_reset,
2362 .get_link = ethtool_op_get_link,
2363 .get_eeprom_len = e1000_get_eeprom_len,
2364 .get_eeprom = e1000_get_eeprom,
2365 .set_eeprom = e1000_set_eeprom,
2366 .get_ringparam = e1000_get_ringparam,
2367 .set_ringparam = e1000_set_ringparam,
2368 .get_pauseparam = e1000_get_pauseparam,
2369 .set_pauseparam = e1000_set_pauseparam,
2370 .self_test = e1000_diag_test,
2371 .get_strings = e1000_get_strings,
2372 .set_phys_id = e1000_set_phys_id,
2373 .get_ethtool_stats = e1000_get_ethtool_stats,
2374 .get_sset_count = e1000e_get_sset_count,
2375 .get_coalesce = e1000_get_coalesce,
2376 .set_coalesce = e1000_set_coalesce,
2377 .get_rxnfc = e1000_get_rxnfc,
2378 .get_ts_info = e1000e_get_ts_info,
2379 .get_eee = e1000e_get_eee,
2380 .set_eee = e1000e_set_eee,
2381 .get_link_ksettings = e1000_get_link_ksettings,
2382 .set_link_ksettings = e1000_set_link_ksettings,
2383 .get_priv_flags = e1000e_get_priv_flags,
2384 .set_priv_flags = e1000e_set_priv_flags,
2385 };
2386
e1000e_set_ethtool_ops(struct net_device *netdev)2387 void e1000e_set_ethtool_ops(struct net_device *netdev)
2388 {
2389 netdev->ethtool_ops = &e1000_ethtool_ops;
2390 }
2391