1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2006 Intel Corporation. */
3
4/*
5 *	e100.c: Intel(R) PRO/100 ethernet driver
6 *
7 *	(Re)written 2003 by scott.feldman@intel.com.  Based loosely on
8 *	original e100 driver, but better described as a munging of
9 *	e100, e1000, eepro100, tg3, 8139cp, and other drivers.
10 *
11 *	References:
12 *		Intel 8255x 10/100 Mbps Ethernet Controller Family,
13 *		Open Source Software Developers Manual,
14 *		http://sourceforge.net/projects/e1000
15 *
16 *
17 *	                      Theory of Operation
18 *
19 *	I.   General
20 *
21 *	The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
22 *	controller family, which includes the 82557, 82558, 82559, 82550,
23 *	82551, and 82562 devices.  82558 and greater controllers
24 *	integrate the Intel 82555 PHY.  The controllers are used in
25 *	server and client network interface cards, as well as in
26 *	LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
27 *	configurations.  8255x supports a 32-bit linear addressing
28 *	mode and operates at 33Mhz PCI clock rate.
29 *
30 *	II.  Driver Operation
31 *
32 *	Memory-mapped mode is used exclusively to access the device's
33 *	shared-memory structure, the Control/Status Registers (CSR). All
34 *	setup, configuration, and control of the device, including queuing
35 *	of Tx, Rx, and configuration commands is through the CSR.
36 *	cmd_lock serializes accesses to the CSR command register.  cb_lock
37 *	protects the shared Command Block List (CBL).
38 *
39 *	8255x is highly MII-compliant and all access to the PHY go
40 *	through the Management Data Interface (MDI).  Consequently, the
41 *	driver leverages the mii.c library shared with other MII-compliant
42 *	devices.
43 *
44 *	Big- and Little-Endian byte order as well as 32- and 64-bit
45 *	archs are supported.  Weak-ordered memory and non-cache-coherent
46 *	archs are supported.
47 *
48 *	III. Transmit
49 *
50 *	A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
51 *	together in a fixed-size ring (CBL) thus forming the flexible mode
52 *	memory structure.  A TCB marked with the suspend-bit indicates
53 *	the end of the ring.  The last TCB processed suspends the
54 *	controller, and the controller can be restarted by issue a CU
55 *	resume command to continue from the suspend point, or a CU start
56 *	command to start at a given position in the ring.
57 *
58 *	Non-Tx commands (config, multicast setup, etc) are linked
59 *	into the CBL ring along with Tx commands.  The common structure
60 *	used for both Tx and non-Tx commands is the Command Block (CB).
61 *
62 *	cb_to_use is the next CB to use for queuing a command; cb_to_clean
63 *	is the next CB to check for completion; cb_to_send is the first
64 *	CB to start on in case of a previous failure to resume.  CB clean
65 *	up happens in interrupt context in response to a CU interrupt.
66 *	cbs_avail keeps track of number of free CB resources available.
67 *
68 * 	Hardware padding of short packets to minimum packet size is
69 * 	enabled.  82557 pads with 7Eh, while the later controllers pad
70 * 	with 00h.
71 *
72 *	IV.  Receive
73 *
74 *	The Receive Frame Area (RFA) comprises a ring of Receive Frame
75 *	Descriptors (RFD) + data buffer, thus forming the simplified mode
76 *	memory structure.  Rx skbs are allocated to contain both the RFD
77 *	and the data buffer, but the RFD is pulled off before the skb is
78 *	indicated.  The data buffer is aligned such that encapsulated
79 *	protocol headers are u32-aligned.  Since the RFD is part of the
80 *	mapped shared memory, and completion status is contained within
81 *	the RFD, the RFD must be dma_sync'ed to maintain a consistent
82 *	view from software and hardware.
83 *
84 *	In order to keep updates to the RFD link field from colliding with
85 *	hardware writes to mark packets complete, we use the feature that
86 *	hardware will not write to a size 0 descriptor and mark the previous
87 *	packet as end-of-list (EL).   After updating the link, we remove EL
88 *	and only then restore the size such that hardware may use the
89 *	previous-to-end RFD.
90 *
91 *	Under typical operation, the  receive unit (RU) is start once,
92 *	and the controller happily fills RFDs as frames arrive.  If
93 *	replacement RFDs cannot be allocated, or the RU goes non-active,
94 *	the RU must be restarted.  Frame arrival generates an interrupt,
95 *	and Rx indication and re-allocation happen in the same context,
96 *	therefore no locking is required.  A software-generated interrupt
97 *	is generated from the watchdog to recover from a failed allocation
98 *	scenario where all Rx resources have been indicated and none re-
99 *	placed.
100 *
101 *	V.   Miscellaneous
102 *
103 * 	VLAN offloading of tagging, stripping and filtering is not
104 * 	supported, but driver will accommodate the extra 4-byte VLAN tag
105 * 	for processing by upper layers.  Tx/Rx Checksum offloading is not
106 * 	supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
107 * 	not supported (hardware limitation).
108 *
109 * 	MagicPacket(tm) WoL support is enabled/disabled via ethtool.
110 *
111 * 	Thanks to JC (jchapman@katalix.com) for helping with
112 * 	testing/troubleshooting the development driver.
113 *
114 * 	TODO:
115 * 	o several entry points race with dev->close
116 * 	o check for tx-no-resources/stop Q races with tx clean/wake Q
117 *
118 *	FIXES:
119 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
120 *	- Stratus87247: protect MDI control register manipulations
121 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
122 *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
123 */
124
125#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
126
127#include <linux/hardirq.h>
128#include <linux/interrupt.h>
129#include <linux/module.h>
130#include <linux/moduleparam.h>
131#include <linux/kernel.h>
132#include <linux/types.h>
133#include <linux/sched.h>
134#include <linux/slab.h>
135#include <linux/delay.h>
136#include <linux/init.h>
137#include <linux/pci.h>
138#include <linux/dma-mapping.h>
139#include <linux/dmapool.h>
140#include <linux/netdevice.h>
141#include <linux/etherdevice.h>
142#include <linux/mii.h>
143#include <linux/if_vlan.h>
144#include <linux/skbuff.h>
145#include <linux/ethtool.h>
146#include <linux/string.h>
147#include <linux/firmware.h>
148#include <linux/rtnetlink.h>
149#include <asm/unaligned.h>
150
151
152#define DRV_NAME		"e100"
153#define DRV_DESCRIPTION		"Intel(R) PRO/100 Network Driver"
154#define DRV_COPYRIGHT		"Copyright(c) 1999-2006 Intel Corporation"
155
156#define E100_WATCHDOG_PERIOD	(2 * HZ)
157#define E100_NAPI_WEIGHT	16
158
159#define FIRMWARE_D101M		"e100/d101m_ucode.bin"
160#define FIRMWARE_D101S		"e100/d101s_ucode.bin"
161#define FIRMWARE_D102E		"e100/d102e_ucode.bin"
162
163MODULE_DESCRIPTION(DRV_DESCRIPTION);
164MODULE_AUTHOR(DRV_COPYRIGHT);
165MODULE_LICENSE("GPL v2");
166MODULE_FIRMWARE(FIRMWARE_D101M);
167MODULE_FIRMWARE(FIRMWARE_D101S);
168MODULE_FIRMWARE(FIRMWARE_D102E);
169
170static int debug = 3;
171static int eeprom_bad_csum_allow = 0;
172static int use_io = 0;
173module_param(debug, int, 0);
174module_param(eeprom_bad_csum_allow, int, 0);
175module_param(use_io, int, 0);
176MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
177MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
178MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
179
180#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
181	PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
182	PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
183static const struct pci_device_id e100_id_table[] = {
184	INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
185	INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
186	INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
187	INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
188	INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
189	INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
190	INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
191	INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
192	INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
193	INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
194	INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
195	INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
196	INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
197	INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
198	INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
199	INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
200	INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
201	INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
202	INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
203	INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
204	INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
205	INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
206	INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
207	INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
208	INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
209	INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
210	INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
211	INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
212	INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
213	INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
214	INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
215	INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
216	INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
217	INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
218	INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
219	INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
220	INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
221	INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
222	INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
223	INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
224	INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
225	INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
226	{ 0, }
227};
228MODULE_DEVICE_TABLE(pci, e100_id_table);
229
230enum mac {
231	mac_82557_D100_A  = 0,
232	mac_82557_D100_B  = 1,
233	mac_82557_D100_C  = 2,
234	mac_82558_D101_A4 = 4,
235	mac_82558_D101_B0 = 5,
236	mac_82559_D101M   = 8,
237	mac_82559_D101S   = 9,
238	mac_82550_D102    = 12,
239	mac_82550_D102_C  = 13,
240	mac_82551_E       = 14,
241	mac_82551_F       = 15,
242	mac_82551_10      = 16,
243	mac_unknown       = 0xFF,
244};
245
246enum phy {
247	phy_100a     = 0x000003E0,
248	phy_100c     = 0x035002A8,
249	phy_82555_tx = 0x015002A8,
250	phy_nsc_tx   = 0x5C002000,
251	phy_82562_et = 0x033002A8,
252	phy_82562_em = 0x032002A8,
253	phy_82562_ek = 0x031002A8,
254	phy_82562_eh = 0x017002A8,
255	phy_82552_v  = 0xd061004d,
256	phy_unknown  = 0xFFFFFFFF,
257};
258
259/* CSR (Control/Status Registers) */
260struct csr {
261	struct {
262		u8 status;
263		u8 stat_ack;
264		u8 cmd_lo;
265		u8 cmd_hi;
266		u32 gen_ptr;
267	} scb;
268	u32 port;
269	u16 flash_ctrl;
270	u8 eeprom_ctrl_lo;
271	u8 eeprom_ctrl_hi;
272	u32 mdi_ctrl;
273	u32 rx_dma_count;
274};
275
276enum scb_status {
277	rus_no_res       = 0x08,
278	rus_ready        = 0x10,
279	rus_mask         = 0x3C,
280};
281
282enum ru_state  {
283	RU_SUSPENDED = 0,
284	RU_RUNNING	 = 1,
285	RU_UNINITIALIZED = -1,
286};
287
288enum scb_stat_ack {
289	stat_ack_not_ours    = 0x00,
290	stat_ack_sw_gen      = 0x04,
291	stat_ack_rnr         = 0x10,
292	stat_ack_cu_idle     = 0x20,
293	stat_ack_frame_rx    = 0x40,
294	stat_ack_cu_cmd_done = 0x80,
295	stat_ack_not_present = 0xFF,
296	stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
297	stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
298};
299
300enum scb_cmd_hi {
301	irq_mask_none = 0x00,
302	irq_mask_all  = 0x01,
303	irq_sw_gen    = 0x02,
304};
305
306enum scb_cmd_lo {
307	cuc_nop        = 0x00,
308	ruc_start      = 0x01,
309	ruc_load_base  = 0x06,
310	cuc_start      = 0x10,
311	cuc_resume     = 0x20,
312	cuc_dump_addr  = 0x40,
313	cuc_dump_stats = 0x50,
314	cuc_load_base  = 0x60,
315	cuc_dump_reset = 0x70,
316};
317
318enum cuc_dump {
319	cuc_dump_complete       = 0x0000A005,
320	cuc_dump_reset_complete = 0x0000A007,
321};
322
323enum port {
324	software_reset  = 0x0000,
325	selftest        = 0x0001,
326	selective_reset = 0x0002,
327};
328
329enum eeprom_ctrl_lo {
330	eesk = 0x01,
331	eecs = 0x02,
332	eedi = 0x04,
333	eedo = 0x08,
334};
335
336enum mdi_ctrl {
337	mdi_write = 0x04000000,
338	mdi_read  = 0x08000000,
339	mdi_ready = 0x10000000,
340};
341
342enum eeprom_op {
343	op_write = 0x05,
344	op_read  = 0x06,
345	op_ewds  = 0x10,
346	op_ewen  = 0x13,
347};
348
349enum eeprom_offsets {
350	eeprom_cnfg_mdix  = 0x03,
351	eeprom_phy_iface  = 0x06,
352	eeprom_id         = 0x0A,
353	eeprom_config_asf = 0x0D,
354	eeprom_smbus_addr = 0x90,
355};
356
357enum eeprom_cnfg_mdix {
358	eeprom_mdix_enabled = 0x0080,
359};
360
361enum eeprom_phy_iface {
362	NoSuchPhy = 0,
363	I82553AB,
364	I82553C,
365	I82503,
366	DP83840,
367	S80C240,
368	S80C24,
369	I82555,
370	DP83840A = 10,
371};
372
373enum eeprom_id {
374	eeprom_id_wol = 0x0020,
375};
376
377enum eeprom_config_asf {
378	eeprom_asf = 0x8000,
379	eeprom_gcl = 0x4000,
380};
381
382enum cb_status {
383	cb_complete = 0x8000,
384	cb_ok       = 0x2000,
385};
386
387/*
388 * cb_command - Command Block flags
389 * @cb_tx_nc:  0: controller does CRC (normal),  1: CRC from skb memory
390 */
391enum cb_command {
392	cb_nop    = 0x0000,
393	cb_iaaddr = 0x0001,
394	cb_config = 0x0002,
395	cb_multi  = 0x0003,
396	cb_tx     = 0x0004,
397	cb_ucode  = 0x0005,
398	cb_dump   = 0x0006,
399	cb_tx_sf  = 0x0008,
400	cb_tx_nc  = 0x0010,
401	cb_cid    = 0x1f00,
402	cb_i      = 0x2000,
403	cb_s      = 0x4000,
404	cb_el     = 0x8000,
405};
406
407struct rfd {
408	__le16 status;
409	__le16 command;
410	__le32 link;
411	__le32 rbd;
412	__le16 actual_size;
413	__le16 size;
414};
415
416struct rx {
417	struct rx *next, *prev;
418	struct sk_buff *skb;
419	dma_addr_t dma_addr;
420};
421
422#if defined(__BIG_ENDIAN_BITFIELD)
423#define X(a,b)	b,a
424#else
425#define X(a,b)	a,b
426#endif
427struct config {
428/*0*/	u8 X(byte_count:6, pad0:2);
429/*1*/	u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
430/*2*/	u8 adaptive_ifs;
431/*3*/	u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
432	   term_write_cache_line:1), pad3:4);
433/*4*/	u8 X(rx_dma_max_count:7, pad4:1);
434/*5*/	u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
435/*6*/	u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
436	   tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
437	   rx_save_overruns : 1), rx_save_bad_frames : 1);
438/*7*/	u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
439	   pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
440	   tx_dynamic_tbd:1);
441/*8*/	u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
442/*9*/	u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
443	   link_status_wake:1), arp_wake:1), mcmatch_wake:1);
444/*10*/	u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
445	   loopback:2);
446/*11*/	u8 X(linear_priority:3, pad11:5);
447/*12*/	u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
448/*13*/	u8 ip_addr_lo;
449/*14*/	u8 ip_addr_hi;
450/*15*/	u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
451	   wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
452	   pad15_2:1), crs_or_cdt:1);
453/*16*/	u8 fc_delay_lo;
454/*17*/	u8 fc_delay_hi;
455/*18*/	u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
456	   rx_long_ok:1), fc_priority_threshold:3), pad18:1);
457/*19*/	u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
458	   fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
459	   full_duplex_force:1), full_duplex_pin:1);
460/*20*/	u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
461/*21*/	u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
462/*22*/	u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
463	u8 pad_d102[9];
464};
465
466#define E100_MAX_MULTICAST_ADDRS	64
467struct multi {
468	__le16 count;
469	u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
470};
471
472/* Important: keep total struct u32-aligned */
473#define UCODE_SIZE			134
474struct cb {
475	__le16 status;
476	__le16 command;
477	__le32 link;
478	union {
479		u8 iaaddr[ETH_ALEN];
480		__le32 ucode[UCODE_SIZE];
481		struct config config;
482		struct multi multi;
483		struct {
484			u32 tbd_array;
485			u16 tcb_byte_count;
486			u8 threshold;
487			u8 tbd_count;
488			struct {
489				__le32 buf_addr;
490				__le16 size;
491				u16 eol;
492			} tbd;
493		} tcb;
494		__le32 dump_buffer_addr;
495	} u;
496	struct cb *next, *prev;
497	dma_addr_t dma_addr;
498	struct sk_buff *skb;
499};
500
501enum loopback {
502	lb_none = 0, lb_mac = 1, lb_phy = 3,
503};
504
505struct stats {
506	__le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
507		tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
508		tx_multiple_collisions, tx_total_collisions;
509	__le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
510		rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
511		rx_short_frame_errors;
512	__le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
513	__le16 xmt_tco_frames, rcv_tco_frames;
514	__le32 complete;
515};
516
517struct mem {
518	struct {
519		u32 signature;
520		u32 result;
521	} selftest;
522	struct stats stats;
523	u8 dump_buf[596];
524};
525
526struct param_range {
527	u32 min;
528	u32 max;
529	u32 count;
530};
531
532struct params {
533	struct param_range rfds;
534	struct param_range cbs;
535};
536
537struct nic {
538	/* Begin: frequently used values: keep adjacent for cache effect */
539	u32 msg_enable				____cacheline_aligned;
540	struct net_device *netdev;
541	struct pci_dev *pdev;
542	u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
543
544	struct rx *rxs				____cacheline_aligned;
545	struct rx *rx_to_use;
546	struct rx *rx_to_clean;
547	struct rfd blank_rfd;
548	enum ru_state ru_running;
549
550	spinlock_t cb_lock			____cacheline_aligned;
551	spinlock_t cmd_lock;
552	struct csr __iomem *csr;
553	enum scb_cmd_lo cuc_cmd;
554	unsigned int cbs_avail;
555	struct napi_struct napi;
556	struct cb *cbs;
557	struct cb *cb_to_use;
558	struct cb *cb_to_send;
559	struct cb *cb_to_clean;
560	__le16 tx_command;
561	/* End: frequently used values: keep adjacent for cache effect */
562
563	enum {
564		ich                = (1 << 0),
565		promiscuous        = (1 << 1),
566		multicast_all      = (1 << 2),
567		wol_magic          = (1 << 3),
568		ich_10h_workaround = (1 << 4),
569	} flags					____cacheline_aligned;
570
571	enum mac mac;
572	enum phy phy;
573	struct params params;
574	struct timer_list watchdog;
575	struct mii_if_info mii;
576	struct work_struct tx_timeout_task;
577	enum loopback loopback;
578
579	struct mem *mem;
580	dma_addr_t dma_addr;
581
582	struct dma_pool *cbs_pool;
583	dma_addr_t cbs_dma_addr;
584	u8 adaptive_ifs;
585	u8 tx_threshold;
586	u32 tx_frames;
587	u32 tx_collisions;
588	u32 tx_deferred;
589	u32 tx_single_collisions;
590	u32 tx_multiple_collisions;
591	u32 tx_fc_pause;
592	u32 tx_tco_frames;
593
594	u32 rx_fc_pause;
595	u32 rx_fc_unsupported;
596	u32 rx_tco_frames;
597	u32 rx_short_frame_errors;
598	u32 rx_over_length_errors;
599
600	u16 eeprom_wc;
601	__le16 eeprom[256];
602	spinlock_t mdio_lock;
603	const struct firmware *fw;
604};
605
606static inline void e100_write_flush(struct nic *nic)
607{
608	/* Flush previous PCI writes through intermediate bridges
609	 * by doing a benign read */
610	(void)ioread8(&nic->csr->scb.status);
611}
612
613static void e100_enable_irq(struct nic *nic)
614{
615	unsigned long flags;
616
617	spin_lock_irqsave(&nic->cmd_lock, flags);
618	iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
619	e100_write_flush(nic);
620	spin_unlock_irqrestore(&nic->cmd_lock, flags);
621}
622
623static void e100_disable_irq(struct nic *nic)
624{
625	unsigned long flags;
626
627	spin_lock_irqsave(&nic->cmd_lock, flags);
628	iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
629	e100_write_flush(nic);
630	spin_unlock_irqrestore(&nic->cmd_lock, flags);
631}
632
633static void e100_hw_reset(struct nic *nic)
634{
635	/* Put CU and RU into idle with a selective reset to get
636	 * device off of PCI bus */
637	iowrite32(selective_reset, &nic->csr->port);
638	e100_write_flush(nic); udelay(20);
639
640	/* Now fully reset device */
641	iowrite32(software_reset, &nic->csr->port);
642	e100_write_flush(nic); udelay(20);
643
644	/* Mask off our interrupt line - it's unmasked after reset */
645	e100_disable_irq(nic);
646}
647
648static int e100_self_test(struct nic *nic)
649{
650	u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
651
652	/* Passing the self-test is a pretty good indication
653	 * that the device can DMA to/from host memory */
654
655	nic->mem->selftest.signature = 0;
656	nic->mem->selftest.result = 0xFFFFFFFF;
657
658	iowrite32(selftest | dma_addr, &nic->csr->port);
659	e100_write_flush(nic);
660	/* Wait 10 msec for self-test to complete */
661	msleep(10);
662
663	/* Interrupts are enabled after self-test */
664	e100_disable_irq(nic);
665
666	/* Check results of self-test */
667	if (nic->mem->selftest.result != 0) {
668		netif_err(nic, hw, nic->netdev,
669			  "Self-test failed: result=0x%08X\n",
670			  nic->mem->selftest.result);
671		return -ETIMEDOUT;
672	}
673	if (nic->mem->selftest.signature == 0) {
674		netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
675		return -ETIMEDOUT;
676	}
677
678	return 0;
679}
680
681static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
682{
683	u32 cmd_addr_data[3];
684	u8 ctrl;
685	int i, j;
686
687	/* Three cmds: write/erase enable, write data, write/erase disable */
688	cmd_addr_data[0] = op_ewen << (addr_len - 2);
689	cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
690		le16_to_cpu(data);
691	cmd_addr_data[2] = op_ewds << (addr_len - 2);
692
693	/* Bit-bang cmds to write word to eeprom */
694	for (j = 0; j < 3; j++) {
695
696		/* Chip select */
697		iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
698		e100_write_flush(nic); udelay(4);
699
700		for (i = 31; i >= 0; i--) {
701			ctrl = (cmd_addr_data[j] & (1 << i)) ?
702				eecs | eedi : eecs;
703			iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
704			e100_write_flush(nic); udelay(4);
705
706			iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
707			e100_write_flush(nic); udelay(4);
708		}
709		/* Wait 10 msec for cmd to complete */
710		msleep(10);
711
712		/* Chip deselect */
713		iowrite8(0, &nic->csr->eeprom_ctrl_lo);
714		e100_write_flush(nic); udelay(4);
715	}
716};
717
718/* General technique stolen from the eepro100 driver - very clever */
719static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
720{
721	u32 cmd_addr_data;
722	u16 data = 0;
723	u8 ctrl;
724	int i;
725
726	cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
727
728	/* Chip select */
729	iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
730	e100_write_flush(nic); udelay(4);
731
732	/* Bit-bang to read word from eeprom */
733	for (i = 31; i >= 0; i--) {
734		ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
735		iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
736		e100_write_flush(nic); udelay(4);
737
738		iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
739		e100_write_flush(nic); udelay(4);
740
741		/* Eeprom drives a dummy zero to EEDO after receiving
742		 * complete address.  Use this to adjust addr_len. */
743		ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
744		if (!(ctrl & eedo) && i > 16) {
745			*addr_len -= (i - 16);
746			i = 17;
747		}
748
749		data = (data << 1) | (ctrl & eedo ? 1 : 0);
750	}
751
752	/* Chip deselect */
753	iowrite8(0, &nic->csr->eeprom_ctrl_lo);
754	e100_write_flush(nic); udelay(4);
755
756	return cpu_to_le16(data);
757};
758
759/* Load entire EEPROM image into driver cache and validate checksum */
760static int e100_eeprom_load(struct nic *nic)
761{
762	u16 addr, addr_len = 8, checksum = 0;
763
764	/* Try reading with an 8-bit addr len to discover actual addr len */
765	e100_eeprom_read(nic, &addr_len, 0);
766	nic->eeprom_wc = 1 << addr_len;
767
768	for (addr = 0; addr < nic->eeprom_wc; addr++) {
769		nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
770		if (addr < nic->eeprom_wc - 1)
771			checksum += le16_to_cpu(nic->eeprom[addr]);
772	}
773
774	/* The checksum, stored in the last word, is calculated such that
775	 * the sum of words should be 0xBABA */
776	if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
777		netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
778		if (!eeprom_bad_csum_allow)
779			return -EAGAIN;
780	}
781
782	return 0;
783}
784
785/* Save (portion of) driver EEPROM cache to device and update checksum */
786static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
787{
788	u16 addr, addr_len = 8, checksum = 0;
789
790	/* Try reading with an 8-bit addr len to discover actual addr len */
791	e100_eeprom_read(nic, &addr_len, 0);
792	nic->eeprom_wc = 1 << addr_len;
793
794	if (start + count >= nic->eeprom_wc)
795		return -EINVAL;
796
797	for (addr = start; addr < start + count; addr++)
798		e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
799
800	/* The checksum, stored in the last word, is calculated such that
801	 * the sum of words should be 0xBABA */
802	for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
803		checksum += le16_to_cpu(nic->eeprom[addr]);
804	nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
805	e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
806		nic->eeprom[nic->eeprom_wc - 1]);
807
808	return 0;
809}
810
811#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
812#define E100_WAIT_SCB_FAST 20       /* delay like the old code */
813static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
814{
815	unsigned long flags;
816	unsigned int i;
817	int err = 0;
818
819	spin_lock_irqsave(&nic->cmd_lock, flags);
820
821	/* Previous command is accepted when SCB clears */
822	for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
823		if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
824			break;
825		cpu_relax();
826		if (unlikely(i > E100_WAIT_SCB_FAST))
827			udelay(5);
828	}
829	if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
830		err = -EAGAIN;
831		goto err_unlock;
832	}
833
834	if (unlikely(cmd != cuc_resume))
835		iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
836	iowrite8(cmd, &nic->csr->scb.cmd_lo);
837
838err_unlock:
839	spin_unlock_irqrestore(&nic->cmd_lock, flags);
840
841	return err;
842}
843
844static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
845	int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
846{
847	struct cb *cb;
848	unsigned long flags;
849	int err;
850
851	spin_lock_irqsave(&nic->cb_lock, flags);
852
853	if (unlikely(!nic->cbs_avail)) {
854		err = -ENOMEM;
855		goto err_unlock;
856	}
857
858	cb = nic->cb_to_use;
859	nic->cb_to_use = cb->next;
860	nic->cbs_avail--;
861	cb->skb = skb;
862
863	err = cb_prepare(nic, cb, skb);
864	if (err)
865		goto err_unlock;
866
867	if (unlikely(!nic->cbs_avail))
868		err = -ENOSPC;
869
870
871	/* Order is important otherwise we'll be in a race with h/w:
872	 * set S-bit in current first, then clear S-bit in previous. */
873	cb->command |= cpu_to_le16(cb_s);
874	dma_wmb();
875	cb->prev->command &= cpu_to_le16(~cb_s);
876
877	while (nic->cb_to_send != nic->cb_to_use) {
878		if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
879			nic->cb_to_send->dma_addr))) {
880			/* Ok, here's where things get sticky.  It's
881			 * possible that we can't schedule the command
882			 * because the controller is too busy, so
883			 * let's just queue the command and try again
884			 * when another command is scheduled. */
885			if (err == -ENOSPC) {
886				//request a reset
887				schedule_work(&nic->tx_timeout_task);
888			}
889			break;
890		} else {
891			nic->cuc_cmd = cuc_resume;
892			nic->cb_to_send = nic->cb_to_send->next;
893		}
894	}
895
896err_unlock:
897	spin_unlock_irqrestore(&nic->cb_lock, flags);
898
899	return err;
900}
901
902static int mdio_read(struct net_device *netdev, int addr, int reg)
903{
904	struct nic *nic = netdev_priv(netdev);
905	return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
906}
907
908static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
909{
910	struct nic *nic = netdev_priv(netdev);
911
912	nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
913}
914
915/* the standard mdio_ctrl() function for usual MII-compliant hardware */
916static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
917{
918	u32 data_out = 0;
919	unsigned int i;
920	unsigned long flags;
921
922
923	/*
924	 * Stratus87247: we shouldn't be writing the MDI control
925	 * register until the Ready bit shows True.  Also, since
926	 * manipulation of the MDI control registers is a multi-step
927	 * procedure it should be done under lock.
928	 */
929	spin_lock_irqsave(&nic->mdio_lock, flags);
930	for (i = 100; i; --i) {
931		if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
932			break;
933		udelay(20);
934	}
935	if (unlikely(!i)) {
936		netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
937		spin_unlock_irqrestore(&nic->mdio_lock, flags);
938		return 0;		/* No way to indicate timeout error */
939	}
940	iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
941
942	for (i = 0; i < 100; i++) {
943		udelay(20);
944		if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
945			break;
946	}
947	spin_unlock_irqrestore(&nic->mdio_lock, flags);
948	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
949		     "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
950		     dir == mdi_read ? "READ" : "WRITE",
951		     addr, reg, data, data_out);
952	return (u16)data_out;
953}
954
955/* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
956static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
957				 u32 addr,
958				 u32 dir,
959				 u32 reg,
960				 u16 data)
961{
962	if ((reg == MII_BMCR) && (dir == mdi_write)) {
963		if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
964			u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
965							MII_ADVERTISE);
966
967			/*
968			 * Workaround Si issue where sometimes the part will not
969			 * autoneg to 100Mbps even when advertised.
970			 */
971			if (advert & ADVERTISE_100FULL)
972				data |= BMCR_SPEED100 | BMCR_FULLDPLX;
973			else if (advert & ADVERTISE_100HALF)
974				data |= BMCR_SPEED100;
975		}
976	}
977	return mdio_ctrl_hw(nic, addr, dir, reg, data);
978}
979
980/* Fully software-emulated mdio_ctrl() function for cards without
981 * MII-compliant PHYs.
982 * For now, this is mainly geared towards 80c24 support; in case of further
983 * requirements for other types (i82503, ...?) either extend this mechanism
984 * or split it, whichever is cleaner.
985 */
986static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
987				      u32 addr,
988				      u32 dir,
989				      u32 reg,
990				      u16 data)
991{
992	/* might need to allocate a netdev_priv'ed register array eventually
993	 * to be able to record state changes, but for now
994	 * some fully hardcoded register handling ought to be ok I guess. */
995
996	if (dir == mdi_read) {
997		switch (reg) {
998		case MII_BMCR:
999			/* Auto-negotiation, right? */
1000			return  BMCR_ANENABLE |
1001				BMCR_FULLDPLX;
1002		case MII_BMSR:
1003			return	BMSR_LSTATUS /* for mii_link_ok() */ |
1004				BMSR_ANEGCAPABLE |
1005				BMSR_10FULL;
1006		case MII_ADVERTISE:
1007			/* 80c24 is a "combo card" PHY, right? */
1008			return	ADVERTISE_10HALF |
1009				ADVERTISE_10FULL;
1010		default:
1011			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1012				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1013				     dir == mdi_read ? "READ" : "WRITE",
1014				     addr, reg, data);
1015			return 0xFFFF;
1016		}
1017	} else {
1018		switch (reg) {
1019		default:
1020			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1021				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1022				     dir == mdi_read ? "READ" : "WRITE",
1023				     addr, reg, data);
1024			return 0xFFFF;
1025		}
1026	}
1027}
1028static inline int e100_phy_supports_mii(struct nic *nic)
1029{
1030	/* for now, just check it by comparing whether we
1031	   are using MII software emulation.
1032	*/
1033	return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1034}
1035
1036static void e100_get_defaults(struct nic *nic)
1037{
1038	struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1039	struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
1040
1041	/* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1042	nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1043	if (nic->mac == mac_unknown)
1044		nic->mac = mac_82557_D100_A;
1045
1046	nic->params.rfds = rfds;
1047	nic->params.cbs = cbs;
1048
1049	/* Quadwords to DMA into FIFO before starting frame transmit */
1050	nic->tx_threshold = 0xE0;
1051
1052	/* no interrupt for every tx completion, delay = 256us if not 557 */
1053	nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1054		((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1055
1056	/* Template for a freshly allocated RFD */
1057	nic->blank_rfd.command = 0;
1058	nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1059	nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1060
1061	/* MII setup */
1062	nic->mii.phy_id_mask = 0x1F;
1063	nic->mii.reg_num_mask = 0x1F;
1064	nic->mii.dev = nic->netdev;
1065	nic->mii.mdio_read = mdio_read;
1066	nic->mii.mdio_write = mdio_write;
1067}
1068
1069static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1070{
1071	struct config *config = &cb->u.config;
1072	u8 *c = (u8 *)config;
1073	struct net_device *netdev = nic->netdev;
1074
1075	cb->command = cpu_to_le16(cb_config);
1076
1077	memset(config, 0, sizeof(struct config));
1078
1079	config->byte_count = 0x16;		/* bytes in this struct */
1080	config->rx_fifo_limit = 0x8;		/* bytes in FIFO before DMA */
1081	config->direct_rx_dma = 0x1;		/* reserved */
1082	config->standard_tcb = 0x1;		/* 1=standard, 0=extended */
1083	config->standard_stat_counter = 0x1;	/* 1=standard, 0=extended */
1084	config->rx_discard_short_frames = 0x1;	/* 1=discard, 0=pass */
1085	config->tx_underrun_retry = 0x3;	/* # of underrun retries */
1086	if (e100_phy_supports_mii(nic))
1087		config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
1088	config->pad10 = 0x6;
1089	config->no_source_addr_insertion = 0x1;	/* 1=no, 0=yes */
1090	config->preamble_length = 0x2;		/* 0=1, 1=3, 2=7, 3=15 bytes */
1091	config->ifs = 0x6;			/* x16 = inter frame spacing */
1092	config->ip_addr_hi = 0xF2;		/* ARP IP filter - not used */
1093	config->pad15_1 = 0x1;
1094	config->pad15_2 = 0x1;
1095	config->crs_or_cdt = 0x0;		/* 0=CRS only, 1=CRS or CDT */
1096	config->fc_delay_hi = 0x40;		/* time delay for fc frame */
1097	config->tx_padding = 0x1;		/* 1=pad short frames */
1098	config->fc_priority_threshold = 0x7;	/* 7=priority fc disabled */
1099	config->pad18 = 0x1;
1100	config->full_duplex_pin = 0x1;		/* 1=examine FDX# pin */
1101	config->pad20_1 = 0x1F;
1102	config->fc_priority_location = 0x1;	/* 1=byte#31, 0=byte#19 */
1103	config->pad21_1 = 0x5;
1104
1105	config->adaptive_ifs = nic->adaptive_ifs;
1106	config->loopback = nic->loopback;
1107
1108	if (nic->mii.force_media && nic->mii.full_duplex)
1109		config->full_duplex_force = 0x1;	/* 1=force, 0=auto */
1110
1111	if (nic->flags & promiscuous || nic->loopback) {
1112		config->rx_save_bad_frames = 0x1;	/* 1=save, 0=discard */
1113		config->rx_discard_short_frames = 0x0;	/* 1=discard, 0=save */
1114		config->promiscuous_mode = 0x1;		/* 1=on, 0=off */
1115	}
1116
1117	if (unlikely(netdev->features & NETIF_F_RXFCS))
1118		config->rx_crc_transfer = 0x1;	/* 1=save, 0=discard */
1119
1120	if (nic->flags & multicast_all)
1121		config->multicast_all = 0x1;		/* 1=accept, 0=no */
1122
1123	/* disable WoL when up */
1124	if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1125		config->magic_packet_disable = 0x1;	/* 1=off, 0=on */
1126
1127	if (nic->mac >= mac_82558_D101_A4) {
1128		config->fc_disable = 0x1;	/* 1=Tx fc off, 0=Tx fc on */
1129		config->mwi_enable = 0x1;	/* 1=enable, 0=disable */
1130		config->standard_tcb = 0x0;	/* 1=standard, 0=extended */
1131		config->rx_long_ok = 0x1;	/* 1=VLANs ok, 0=standard */
1132		if (nic->mac >= mac_82559_D101M) {
1133			config->tno_intr = 0x1;		/* TCO stats enable */
1134			/* Enable TCO in extended config */
1135			if (nic->mac >= mac_82551_10) {
1136				config->byte_count = 0x20; /* extended bytes */
1137				config->rx_d102_mode = 0x1; /* GMRC for TCO */
1138			}
1139		} else {
1140			config->standard_stat_counter = 0x0;
1141		}
1142	}
1143
1144	if (netdev->features & NETIF_F_RXALL) {
1145		config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
1146		config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1147		config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1148	}
1149
1150	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n",
1151		     c + 0);
1152	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n",
1153		     c + 8);
1154	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n",
1155		     c + 16);
1156	return 0;
1157}
1158
1159/*************************************************************************
1160*  CPUSaver parameters
1161*
1162*  All CPUSaver parameters are 16-bit literals that are part of a
1163*  "move immediate value" instruction.  By changing the value of
1164*  the literal in the instruction before the code is loaded, the
1165*  driver can change the algorithm.
1166*
1167*  INTDELAY - This loads the dead-man timer with its initial value.
1168*    When this timer expires the interrupt is asserted, and the
1169*    timer is reset each time a new packet is received.  (see
1170*    BUNDLEMAX below to set the limit on number of chained packets)
1171*    The current default is 0x600 or 1536.  Experiments show that
1172*    the value should probably stay within the 0x200 - 0x1000.
1173*
1174*  BUNDLEMAX -
1175*    This sets the maximum number of frames that will be bundled.  In
1176*    some situations, such as the TCP windowing algorithm, it may be
1177*    better to limit the growth of the bundle size than let it go as
1178*    high as it can, because that could cause too much added latency.
1179*    The default is six, because this is the number of packets in the
1180*    default TCP window size.  A value of 1 would make CPUSaver indicate
1181*    an interrupt for every frame received.  If you do not want to put
1182*    a limit on the bundle size, set this value to xFFFF.
1183*
1184*  BUNDLESMALL -
1185*    This contains a bit-mask describing the minimum size frame that
1186*    will be bundled.  The default masks the lower 7 bits, which means
1187*    that any frame less than 128 bytes in length will not be bundled,
1188*    but will instead immediately generate an interrupt.  This does
1189*    not affect the current bundle in any way.  Any frame that is 128
1190*    bytes or large will be bundled normally.  This feature is meant
1191*    to provide immediate indication of ACK frames in a TCP environment.
1192*    Customers were seeing poor performance when a machine with CPUSaver
1193*    enabled was sending but not receiving.  The delay introduced when
1194*    the ACKs were received was enough to reduce total throughput, because
1195*    the sender would sit idle until the ACK was finally seen.
1196*
1197*    The current default is 0xFF80, which masks out the lower 7 bits.
1198*    This means that any frame which is x7F (127) bytes or smaller
1199*    will cause an immediate interrupt.  Because this value must be a
1200*    bit mask, there are only a few valid values that can be used.  To
1201*    turn this feature off, the driver can write the value xFFFF to the
1202*    lower word of this instruction (in the same way that the other
1203*    parameters are used).  Likewise, a value of 0xF800 (2047) would
1204*    cause an interrupt to be generated for every frame, because all
1205*    standard Ethernet frames are <= 2047 bytes in length.
1206*************************************************************************/
1207
1208/* if you wish to disable the ucode functionality, while maintaining the
1209 * workarounds it provides, set the following defines to:
1210 * BUNDLESMALL 0
1211 * BUNDLEMAX 1
1212 * INTDELAY 1
1213 */
1214#define BUNDLESMALL 1
1215#define BUNDLEMAX (u16)6
1216#define INTDELAY (u16)1536 /* 0x600 */
1217
1218/* Initialize firmware */
1219static const struct firmware *e100_request_firmware(struct nic *nic)
1220{
1221	const char *fw_name;
1222	const struct firmware *fw = nic->fw;
1223	u8 timer, bundle, min_size;
1224	int err = 0;
1225	bool required = false;
1226
1227	/* do not load u-code for ICH devices */
1228	if (nic->flags & ich)
1229		return NULL;
1230
1231	/* Search for ucode match against h/w revision
1232	 *
1233	 * Based on comments in the source code for the FreeBSD fxp
1234	 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1235	 *
1236	 *    "fixes for bugs in the B-step hardware (specifically, bugs
1237	 *     with Inline Receive)."
1238	 *
1239	 * So we must fail if it cannot be loaded.
1240	 *
1241	 * The other microcode files are only required for the optional
1242	 * CPUSaver feature.  Nice to have, but no reason to fail.
1243	 */
1244	if (nic->mac == mac_82559_D101M) {
1245		fw_name = FIRMWARE_D101M;
1246	} else if (nic->mac == mac_82559_D101S) {
1247		fw_name = FIRMWARE_D101S;
1248	} else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1249		fw_name = FIRMWARE_D102E;
1250		required = true;
1251	} else { /* No ucode on other devices */
1252		return NULL;
1253	}
1254
1255	/* If the firmware has not previously been loaded, request a pointer
1256	 * to it. If it was previously loaded, we are reinitializing the
1257	 * adapter, possibly in a resume from hibernate, in which case
1258	 * request_firmware() cannot be used.
1259	 */
1260	if (!fw)
1261		err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1262
1263	if (err) {
1264		if (required) {
1265			netif_err(nic, probe, nic->netdev,
1266				  "Failed to load firmware \"%s\": %d\n",
1267				  fw_name, err);
1268			return ERR_PTR(err);
1269		} else {
1270			netif_info(nic, probe, nic->netdev,
1271				   "CPUSaver disabled. Needs \"%s\": %d\n",
1272				   fw_name, err);
1273			return NULL;
1274		}
1275	}
1276
1277	/* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1278	   indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1279	if (fw->size != UCODE_SIZE * 4 + 3) {
1280		netif_err(nic, probe, nic->netdev,
1281			  "Firmware \"%s\" has wrong size %zu\n",
1282			  fw_name, fw->size);
1283		release_firmware(fw);
1284		return ERR_PTR(-EINVAL);
1285	}
1286
1287	/* Read timer, bundle and min_size from end of firmware blob */
1288	timer = fw->data[UCODE_SIZE * 4];
1289	bundle = fw->data[UCODE_SIZE * 4 + 1];
1290	min_size = fw->data[UCODE_SIZE * 4 + 2];
1291
1292	if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1293	    min_size >= UCODE_SIZE) {
1294		netif_err(nic, probe, nic->netdev,
1295			  "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1296			  fw_name, timer, bundle, min_size);
1297		release_firmware(fw);
1298		return ERR_PTR(-EINVAL);
1299	}
1300
1301	/* OK, firmware is validated and ready to use. Save a pointer
1302	 * to it in the nic */
1303	nic->fw = fw;
1304	return fw;
1305}
1306
1307static int e100_setup_ucode(struct nic *nic, struct cb *cb,
1308			     struct sk_buff *skb)
1309{
1310	const struct firmware *fw = (void *)skb;
1311	u8 timer, bundle, min_size;
1312
1313	/* It's not a real skb; we just abused the fact that e100_exec_cb
1314	   will pass it through to here... */
1315	cb->skb = NULL;
1316
1317	/* firmware is stored as little endian already */
1318	memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1319
1320	/* Read timer, bundle and min_size from end of firmware blob */
1321	timer = fw->data[UCODE_SIZE * 4];
1322	bundle = fw->data[UCODE_SIZE * 4 + 1];
1323	min_size = fw->data[UCODE_SIZE * 4 + 2];
1324
1325	/* Insert user-tunable settings in cb->u.ucode */
1326	cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1327	cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1328	cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1329	cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1330	cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1331	cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1332
1333	cb->command = cpu_to_le16(cb_ucode | cb_el);
1334	return 0;
1335}
1336
1337static inline int e100_load_ucode_wait(struct nic *nic)
1338{
1339	const struct firmware *fw;
1340	int err = 0, counter = 50;
1341	struct cb *cb = nic->cb_to_clean;
1342
1343	fw = e100_request_firmware(nic);
1344	/* If it's NULL, then no ucode is required */
1345	if (IS_ERR_OR_NULL(fw))
1346		return PTR_ERR_OR_ZERO(fw);
1347
1348	if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1349		netif_err(nic, probe, nic->netdev,
1350			  "ucode cmd failed with error %d\n", err);
1351
1352	/* must restart cuc */
1353	nic->cuc_cmd = cuc_start;
1354
1355	/* wait for completion */
1356	e100_write_flush(nic);
1357	udelay(10);
1358
1359	/* wait for possibly (ouch) 500ms */
1360	while (!(cb->status & cpu_to_le16(cb_complete))) {
1361		msleep(10);
1362		if (!--counter) break;
1363	}
1364
1365	/* ack any interrupts, something could have been set */
1366	iowrite8(~0, &nic->csr->scb.stat_ack);
1367
1368	/* if the command failed, or is not OK, notify and return */
1369	if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1370		netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1371		err = -EPERM;
1372	}
1373
1374	return err;
1375}
1376
1377static int e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1378	struct sk_buff *skb)
1379{
1380	cb->command = cpu_to_le16(cb_iaaddr);
1381	memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1382	return 0;
1383}
1384
1385static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1386{
1387	cb->command = cpu_to_le16(cb_dump);
1388	cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1389		offsetof(struct mem, dump_buf));
1390	return 0;
1391}
1392
1393static int e100_phy_check_without_mii(struct nic *nic)
1394{
1395	u8 phy_type;
1396	int without_mii;
1397
1398	phy_type = (le16_to_cpu(nic->eeprom[eeprom_phy_iface]) >> 8) & 0x0f;
1399
1400	switch (phy_type) {
1401	case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1402	case I82503: /* Non-MII PHY; UNTESTED! */
1403	case S80C24: /* Non-MII PHY; tested and working */
1404		/* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1405		 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1406		 * doesn't have a programming interface of any sort.  The
1407		 * media is sensed automatically based on how the link partner
1408		 * is configured.  This is, in essence, manual configuration.
1409		 */
1410		netif_info(nic, probe, nic->netdev,
1411			   "found MII-less i82503 or 80c24 or other PHY\n");
1412
1413		nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1414		nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1415
1416		/* these might be needed for certain MII-less cards...
1417		 * nic->flags |= ich;
1418		 * nic->flags |= ich_10h_workaround; */
1419
1420		without_mii = 1;
1421		break;
1422	default:
1423		without_mii = 0;
1424		break;
1425	}
1426	return without_mii;
1427}
1428
1429#define NCONFIG_AUTO_SWITCH	0x0080
1430#define MII_NSC_CONG		MII_RESV1
1431#define NSC_CONG_ENABLE		0x0100
1432#define NSC_CONG_TXREADY	0x0400
1433#define ADVERTISE_FC_SUPPORTED	0x0400
1434static int e100_phy_init(struct nic *nic)
1435{
1436	struct net_device *netdev = nic->netdev;
1437	u32 addr;
1438	u16 bmcr, stat, id_lo, id_hi, cong;
1439
1440	/* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1441	for (addr = 0; addr < 32; addr++) {
1442		nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1443		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1444		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1445		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1446		if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1447			break;
1448	}
1449	if (addr == 32) {
1450		/* uhoh, no PHY detected: check whether we seem to be some
1451		 * weird, rare variant which is *known* to not have any MII.
1452		 * But do this AFTER MII checking only, since this does
1453		 * lookup of EEPROM values which may easily be unreliable. */
1454		if (e100_phy_check_without_mii(nic))
1455			return 0; /* simply return and hope for the best */
1456		else {
1457			/* for unknown cases log a fatal error */
1458			netif_err(nic, hw, nic->netdev,
1459				  "Failed to locate any known PHY, aborting\n");
1460			return -EAGAIN;
1461		}
1462	} else
1463		netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1464			     "phy_addr = %d\n", nic->mii.phy_id);
1465
1466	/* Get phy ID */
1467	id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1468	id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1469	nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1470	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1471		     "phy ID = 0x%08X\n", nic->phy);
1472
1473	/* Select the phy and isolate the rest */
1474	for (addr = 0; addr < 32; addr++) {
1475		if (addr != nic->mii.phy_id) {
1476			mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1477		} else if (nic->phy != phy_82552_v) {
1478			bmcr = mdio_read(netdev, addr, MII_BMCR);
1479			mdio_write(netdev, addr, MII_BMCR,
1480				bmcr & ~BMCR_ISOLATE);
1481		}
1482	}
1483	/*
1484	 * Workaround for 82552:
1485	 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1486	 * other phy_id's) using bmcr value from addr discovery loop above.
1487	 */
1488	if (nic->phy == phy_82552_v)
1489		mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1490			bmcr & ~BMCR_ISOLATE);
1491
1492	/* Handle National tx phys */
1493#define NCS_PHY_MODEL_MASK	0xFFF0FFFF
1494	if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1495		/* Disable congestion control */
1496		cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1497		cong |= NSC_CONG_TXREADY;
1498		cong &= ~NSC_CONG_ENABLE;
1499		mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1500	}
1501
1502	if (nic->phy == phy_82552_v) {
1503		u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1504
1505		/* assign special tweaked mdio_ctrl() function */
1506		nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1507
1508		/* Workaround Si not advertising flow-control during autoneg */
1509		advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1510		mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1511
1512		/* Reset for the above changes to take effect */
1513		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1514		bmcr |= BMCR_RESET;
1515		mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1516	} else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1517	   (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1518	   (le16_to_cpu(nic->eeprom[eeprom_cnfg_mdix]) & eeprom_mdix_enabled))) {
1519		/* enable/disable MDI/MDI-X auto-switching. */
1520		mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1521				nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1522	}
1523
1524	return 0;
1525}
1526
1527static int e100_hw_init(struct nic *nic)
1528{
1529	int err = 0;
1530
1531	e100_hw_reset(nic);
1532
1533	netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1534	if ((err = e100_self_test(nic)))
1535		return err;
1536
1537	if ((err = e100_phy_init(nic)))
1538		return err;
1539	if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1540		return err;
1541	if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1542		return err;
1543	if ((err = e100_load_ucode_wait(nic)))
1544		return err;
1545	if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1546		return err;
1547	if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1548		return err;
1549	if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1550		nic->dma_addr + offsetof(struct mem, stats))))
1551		return err;
1552	if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1553		return err;
1554
1555	e100_disable_irq(nic);
1556
1557	return 0;
1558}
1559
1560static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1561{
1562	struct net_device *netdev = nic->netdev;
1563	struct netdev_hw_addr *ha;
1564	u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1565
1566	cb->command = cpu_to_le16(cb_multi);
1567	cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1568	i = 0;
1569	netdev_for_each_mc_addr(ha, netdev) {
1570		if (i == count)
1571			break;
1572		memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1573			ETH_ALEN);
1574	}
1575	return 0;
1576}
1577
1578static void e100_set_multicast_list(struct net_device *netdev)
1579{
1580	struct nic *nic = netdev_priv(netdev);
1581
1582	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1583		     "mc_count=%d, flags=0x%04X\n",
1584		     netdev_mc_count(netdev), netdev->flags);
1585
1586	if (netdev->flags & IFF_PROMISC)
1587		nic->flags |= promiscuous;
1588	else
1589		nic->flags &= ~promiscuous;
1590
1591	if (netdev->flags & IFF_ALLMULTI ||
1592		netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1593		nic->flags |= multicast_all;
1594	else
1595		nic->flags &= ~multicast_all;
1596
1597	e100_exec_cb(nic, NULL, e100_configure);
1598	e100_exec_cb(nic, NULL, e100_multi);
1599}
1600
1601static void e100_update_stats(struct nic *nic)
1602{
1603	struct net_device *dev = nic->netdev;
1604	struct net_device_stats *ns = &dev->stats;
1605	struct stats *s = &nic->mem->stats;
1606	__le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1607		(nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1608		&s->complete;
1609
1610	/* Device's stats reporting may take several microseconds to
1611	 * complete, so we're always waiting for results of the
1612	 * previous command. */
1613
1614	if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1615		*complete = 0;
1616		nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1617		nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1618		ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1619		ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1620		ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1621		ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1622		ns->collisions += nic->tx_collisions;
1623		ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1624			le32_to_cpu(s->tx_lost_crs);
1625		nic->rx_short_frame_errors +=
1626			le32_to_cpu(s->rx_short_frame_errors);
1627		ns->rx_length_errors = nic->rx_short_frame_errors +
1628			nic->rx_over_length_errors;
1629		ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1630		ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1631		ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1632		ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1633		ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1634		ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1635			le32_to_cpu(s->rx_alignment_errors) +
1636			le32_to_cpu(s->rx_short_frame_errors) +
1637			le32_to_cpu(s->rx_cdt_errors);
1638		nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1639		nic->tx_single_collisions +=
1640			le32_to_cpu(s->tx_single_collisions);
1641		nic->tx_multiple_collisions +=
1642			le32_to_cpu(s->tx_multiple_collisions);
1643		if (nic->mac >= mac_82558_D101_A4) {
1644			nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1645			nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1646			nic->rx_fc_unsupported +=
1647				le32_to_cpu(s->fc_rcv_unsupported);
1648			if (nic->mac >= mac_82559_D101M) {
1649				nic->tx_tco_frames +=
1650					le16_to_cpu(s->xmt_tco_frames);
1651				nic->rx_tco_frames +=
1652					le16_to_cpu(s->rcv_tco_frames);
1653			}
1654		}
1655	}
1656
1657
1658	if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1659		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1660			     "exec cuc_dump_reset failed\n");
1661}
1662
1663static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1664{
1665	/* Adjust inter-frame-spacing (IFS) between two transmits if
1666	 * we're getting collisions on a half-duplex connection. */
1667
1668	if (duplex == DUPLEX_HALF) {
1669		u32 prev = nic->adaptive_ifs;
1670		u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1671
1672		if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1673		   (nic->tx_frames > min_frames)) {
1674			if (nic->adaptive_ifs < 60)
1675				nic->adaptive_ifs += 5;
1676		} else if (nic->tx_frames < min_frames) {
1677			if (nic->adaptive_ifs >= 5)
1678				nic->adaptive_ifs -= 5;
1679		}
1680		if (nic->adaptive_ifs != prev)
1681			e100_exec_cb(nic, NULL, e100_configure);
1682	}
1683}
1684
1685static void e100_watchdog(struct timer_list *t)
1686{
1687	struct nic *nic = from_timer(nic, t, watchdog);
1688	struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
1689	u32 speed;
1690
1691	netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1692		     "right now = %ld\n", jiffies);
1693
1694	/* mii library handles link maintenance tasks */
1695
1696	mii_ethtool_gset(&nic->mii, &cmd);
1697	speed = ethtool_cmd_speed(&cmd);
1698
1699	if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1700		netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1701			    speed == SPEED_100 ? 100 : 10,
1702			    cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1703	} else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1704		netdev_info(nic->netdev, "NIC Link is Down\n");
1705	}
1706
1707	mii_check_link(&nic->mii);
1708
1709	/* Software generated interrupt to recover from (rare) Rx
1710	 * allocation failure.
1711	 * Unfortunately have to use a spinlock to not re-enable interrupts
1712	 * accidentally, due to hardware that shares a register between the
1713	 * interrupt mask bit and the SW Interrupt generation bit */
1714	spin_lock_irq(&nic->cmd_lock);
1715	iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1716	e100_write_flush(nic);
1717	spin_unlock_irq(&nic->cmd_lock);
1718
1719	e100_update_stats(nic);
1720	e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1721
1722	if (nic->mac <= mac_82557_D100_C)
1723		/* Issue a multicast command to workaround a 557 lock up */
1724		e100_set_multicast_list(nic->netdev);
1725
1726	if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1727		/* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1728		nic->flags |= ich_10h_workaround;
1729	else
1730		nic->flags &= ~ich_10h_workaround;
1731
1732	mod_timer(&nic->watchdog,
1733		  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1734}
1735
1736static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
1737	struct sk_buff *skb)
1738{
1739	dma_addr_t dma_addr;
1740	cb->command = nic->tx_command;
1741
1742	dma_addr = dma_map_single(&nic->pdev->dev, skb->data, skb->len,
1743				  DMA_TO_DEVICE);
1744	/* If we can't map the skb, have the upper layer try later */
1745	if (dma_mapping_error(&nic->pdev->dev, dma_addr))
1746		return -ENOMEM;
1747
1748	/*
1749	 * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1750	 * testing, ie sending frames with bad CRC.
1751	 */
1752	if (unlikely(skb->no_fcs))
1753		cb->command |= cpu_to_le16(cb_tx_nc);
1754	else
1755		cb->command &= ~cpu_to_le16(cb_tx_nc);
1756
1757	/* interrupt every 16 packets regardless of delay */
1758	if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1759		cb->command |= cpu_to_le16(cb_i);
1760	cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1761	cb->u.tcb.tcb_byte_count = 0;
1762	cb->u.tcb.threshold = nic->tx_threshold;
1763	cb->u.tcb.tbd_count = 1;
1764	cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);
1765	cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1766	skb_tx_timestamp(skb);
1767	return 0;
1768}
1769
1770static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1771				   struct net_device *netdev)
1772{
1773	struct nic *nic = netdev_priv(netdev);
1774	int err;
1775
1776	if (nic->flags & ich_10h_workaround) {
1777		/* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1778		   Issue a NOP command followed by a 1us delay before
1779		   issuing the Tx command. */
1780		if (e100_exec_cmd(nic, cuc_nop, 0))
1781			netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1782				     "exec cuc_nop failed\n");
1783		udelay(1);
1784	}
1785
1786	err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1787
1788	switch (err) {
1789	case -ENOSPC:
1790		/* We queued the skb, but now we're out of space. */
1791		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1792			     "No space for CB\n");
1793		netif_stop_queue(netdev);
1794		break;
1795	case -ENOMEM:
1796		/* This is a hard error - log it. */
1797		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1798			     "Out of Tx resources, returning skb\n");
1799		netif_stop_queue(netdev);
1800		return NETDEV_TX_BUSY;
1801	}
1802
1803	return NETDEV_TX_OK;
1804}
1805
1806static int e100_tx_clean(struct nic *nic)
1807{
1808	struct net_device *dev = nic->netdev;
1809	struct cb *cb;
1810	int tx_cleaned = 0;
1811
1812	spin_lock(&nic->cb_lock);
1813
1814	/* Clean CBs marked complete */
1815	for (cb = nic->cb_to_clean;
1816	    cb->status & cpu_to_le16(cb_complete);
1817	    cb = nic->cb_to_clean = cb->next) {
1818		dma_rmb(); /* read skb after status */
1819		netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1820			     "cb[%d]->status = 0x%04X\n",
1821			     (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1822			     cb->status);
1823
1824		if (likely(cb->skb != NULL)) {
1825			dev->stats.tx_packets++;
1826			dev->stats.tx_bytes += cb->skb->len;
1827
1828			dma_unmap_single(&nic->pdev->dev,
1829					 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1830					 le16_to_cpu(cb->u.tcb.tbd.size),
1831					 DMA_TO_DEVICE);
1832			dev_kfree_skb_any(cb->skb);
1833			cb->skb = NULL;
1834			tx_cleaned = 1;
1835		}
1836		cb->status = 0;
1837		nic->cbs_avail++;
1838	}
1839
1840	spin_unlock(&nic->cb_lock);
1841
1842	/* Recover from running out of Tx resources in xmit_frame */
1843	if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1844		netif_wake_queue(nic->netdev);
1845
1846	return tx_cleaned;
1847}
1848
1849static void e100_clean_cbs(struct nic *nic)
1850{
1851	if (nic->cbs) {
1852		while (nic->cbs_avail != nic->params.cbs.count) {
1853			struct cb *cb = nic->cb_to_clean;
1854			if (cb->skb) {
1855				dma_unmap_single(&nic->pdev->dev,
1856						 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1857						 le16_to_cpu(cb->u.tcb.tbd.size),
1858						 DMA_TO_DEVICE);
1859				dev_kfree_skb(cb->skb);
1860			}
1861			nic->cb_to_clean = nic->cb_to_clean->next;
1862			nic->cbs_avail++;
1863		}
1864		dma_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1865		nic->cbs = NULL;
1866		nic->cbs_avail = 0;
1867	}
1868	nic->cuc_cmd = cuc_start;
1869	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1870		nic->cbs;
1871}
1872
1873static int e100_alloc_cbs(struct nic *nic)
1874{
1875	struct cb *cb;
1876	unsigned int i, count = nic->params.cbs.count;
1877
1878	nic->cuc_cmd = cuc_start;
1879	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1880	nic->cbs_avail = 0;
1881
1882	nic->cbs = dma_pool_zalloc(nic->cbs_pool, GFP_KERNEL,
1883				   &nic->cbs_dma_addr);
1884	if (!nic->cbs)
1885		return -ENOMEM;
1886
1887	for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1888		cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1889		cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1890
1891		cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1892		cb->link = cpu_to_le32(nic->cbs_dma_addr +
1893			((i+1) % count) * sizeof(struct cb));
1894	}
1895
1896	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1897	nic->cbs_avail = count;
1898
1899	return 0;
1900}
1901
1902static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1903{
1904	if (!nic->rxs) return;
1905	if (RU_SUSPENDED != nic->ru_running) return;
1906
1907	/* handle init time starts */
1908	if (!rx) rx = nic->rxs;
1909
1910	/* (Re)start RU if suspended or idle and RFA is non-NULL */
1911	if (rx->skb) {
1912		e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1913		nic->ru_running = RU_RUNNING;
1914	}
1915}
1916
1917#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
1918static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1919{
1920	if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1921		return -ENOMEM;
1922
1923	/* Init, and map the RFD. */
1924	skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1925	rx->dma_addr = dma_map_single(&nic->pdev->dev, rx->skb->data,
1926				      RFD_BUF_LEN, DMA_BIDIRECTIONAL);
1927
1928	if (dma_mapping_error(&nic->pdev->dev, rx->dma_addr)) {
1929		dev_kfree_skb_any(rx->skb);
1930		rx->skb = NULL;
1931		rx->dma_addr = 0;
1932		return -ENOMEM;
1933	}
1934
1935	/* Link the RFD to end of RFA by linking previous RFD to
1936	 * this one.  We are safe to touch the previous RFD because
1937	 * it is protected by the before last buffer's el bit being set */
1938	if (rx->prev->skb) {
1939		struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1940		put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1941		dma_sync_single_for_device(&nic->pdev->dev,
1942					   rx->prev->dma_addr,
1943					   sizeof(struct rfd),
1944					   DMA_BIDIRECTIONAL);
1945	}
1946
1947	return 0;
1948}
1949
1950static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1951	unsigned int *work_done, unsigned int work_to_do)
1952{
1953	struct net_device *dev = nic->netdev;
1954	struct sk_buff *skb = rx->skb;
1955	struct rfd *rfd = (struct rfd *)skb->data;
1956	u16 rfd_status, actual_size;
1957	u16 fcs_pad = 0;
1958
1959	if (unlikely(work_done && *work_done >= work_to_do))
1960		return -EAGAIN;
1961
1962	/* Need to sync before taking a peek at cb_complete bit */
1963	dma_sync_single_for_cpu(&nic->pdev->dev, rx->dma_addr,
1964				sizeof(struct rfd), DMA_BIDIRECTIONAL);
1965	rfd_status = le16_to_cpu(rfd->status);
1966
1967	netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1968		     "status=0x%04X\n", rfd_status);
1969	dma_rmb(); /* read size after status bit */
1970
1971	/* If data isn't ready, nothing to indicate */
1972	if (unlikely(!(rfd_status & cb_complete))) {
1973		/* If the next buffer has the el bit, but we think the receiver
1974		 * is still running, check to see if it really stopped while
1975		 * we had interrupts off.
1976		 * This allows for a fast restart without re-enabling
1977		 * interrupts */
1978		if ((le16_to_cpu(rfd->command) & cb_el) &&
1979		    (RU_RUNNING == nic->ru_running))
1980
1981			if (ioread8(&nic->csr->scb.status) & rus_no_res)
1982				nic->ru_running = RU_SUSPENDED;
1983		dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
1984					   sizeof(struct rfd),
1985					   DMA_FROM_DEVICE);
1986		return -ENODATA;
1987	}
1988
1989	/* Get actual data size */
1990	if (unlikely(dev->features & NETIF_F_RXFCS))
1991		fcs_pad = 4;
1992	actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1993	if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1994		actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1995
1996	/* Get data */
1997	dma_unmap_single(&nic->pdev->dev, rx->dma_addr, RFD_BUF_LEN,
1998			 DMA_BIDIRECTIONAL);
1999
2000	/* If this buffer has the el bit, but we think the receiver
2001	 * is still running, check to see if it really stopped while
2002	 * we had interrupts off.
2003	 * This allows for a fast restart without re-enabling interrupts.
2004	 * This can happen when the RU sees the size change but also sees
2005	 * the el bit set. */
2006	if ((le16_to_cpu(rfd->command) & cb_el) &&
2007	    (RU_RUNNING == nic->ru_running)) {
2008
2009	    if (ioread8(&nic->csr->scb.status) & rus_no_res)
2010		nic->ru_running = RU_SUSPENDED;
2011	}
2012
2013	/* Pull off the RFD and put the actual data (minus eth hdr) */
2014	skb_reserve(skb, sizeof(struct rfd));
2015	skb_put(skb, actual_size);
2016	skb->protocol = eth_type_trans(skb, nic->netdev);
2017
2018	/* If we are receiving all frames, then don't bother
2019	 * checking for errors.
2020	 */
2021	if (unlikely(dev->features & NETIF_F_RXALL)) {
2022		if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
2023			/* Received oversized frame, but keep it. */
2024			nic->rx_over_length_errors++;
2025		goto process_skb;
2026	}
2027
2028	if (unlikely(!(rfd_status & cb_ok))) {
2029		/* Don't indicate if hardware indicates errors */
2030		dev_kfree_skb_any(skb);
2031	} else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
2032		/* Don't indicate oversized frames */
2033		nic->rx_over_length_errors++;
2034		dev_kfree_skb_any(skb);
2035	} else {
2036process_skb:
2037		dev->stats.rx_packets++;
2038		dev->stats.rx_bytes += (actual_size - fcs_pad);
2039		netif_receive_skb(skb);
2040		if (work_done)
2041			(*work_done)++;
2042	}
2043
2044	rx->skb = NULL;
2045
2046	return 0;
2047}
2048
2049static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
2050	unsigned int work_to_do)
2051{
2052	struct rx *rx;
2053	int restart_required = 0, err = 0;
2054	struct rx *old_before_last_rx, *new_before_last_rx;
2055	struct rfd *old_before_last_rfd, *new_before_last_rfd;
2056
2057	/* Indicate newly arrived packets */
2058	for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2059		err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2060		/* Hit quota or no more to clean */
2061		if (-EAGAIN == err || -ENODATA == err)
2062			break;
2063	}
2064
2065
2066	/* On EAGAIN, hit quota so have more work to do, restart once
2067	 * cleanup is complete.
2068	 * Else, are we already rnr? then pay attention!!! this ensures that
2069	 * the state machine progression never allows a start with a
2070	 * partially cleaned list, avoiding a race between hardware
2071	 * and rx_to_clean when in NAPI mode */
2072	if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2073		restart_required = 1;
2074
2075	old_before_last_rx = nic->rx_to_use->prev->prev;
2076	old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2077
2078	/* Alloc new skbs to refill list */
2079	for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2080		if (unlikely(e100_rx_alloc_skb(nic, rx)))
2081			break; /* Better luck next time (see watchdog) */
2082	}
2083
2084	new_before_last_rx = nic->rx_to_use->prev->prev;
2085	if (new_before_last_rx != old_before_last_rx) {
2086		/* Set the el-bit on the buffer that is before the last buffer.
2087		 * This lets us update the next pointer on the last buffer
2088		 * without worrying about hardware touching it.
2089		 * We set the size to 0 to prevent hardware from touching this
2090		 * buffer.
2091		 * When the hardware hits the before last buffer with el-bit
2092		 * and size of 0, it will RNR interrupt, the RUS will go into
2093		 * the No Resources state.  It will not complete nor write to
2094		 * this buffer. */
2095		new_before_last_rfd =
2096			(struct rfd *)new_before_last_rx->skb->data;
2097		new_before_last_rfd->size = 0;
2098		new_before_last_rfd->command |= cpu_to_le16(cb_el);
2099		dma_sync_single_for_device(&nic->pdev->dev,
2100					   new_before_last_rx->dma_addr,
2101					   sizeof(struct rfd),
2102					   DMA_BIDIRECTIONAL);
2103
2104		/* Now that we have a new stopping point, we can clear the old
2105		 * stopping point.  We must sync twice to get the proper
2106		 * ordering on the hardware side of things. */
2107		old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2108		dma_sync_single_for_device(&nic->pdev->dev,
2109					   old_before_last_rx->dma_addr,
2110					   sizeof(struct rfd),
2111					   DMA_BIDIRECTIONAL);
2112		old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
2113							+ ETH_FCS_LEN);
2114		dma_sync_single_for_device(&nic->pdev->dev,
2115					   old_before_last_rx->dma_addr,
2116					   sizeof(struct rfd),
2117					   DMA_BIDIRECTIONAL);
2118	}
2119
2120	if (restart_required) {
2121		// ack the rnr?
2122		iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2123		e100_start_receiver(nic, nic->rx_to_clean);
2124		if (work_done)
2125			(*work_done)++;
2126	}
2127}
2128
2129static void e100_rx_clean_list(struct nic *nic)
2130{
2131	struct rx *rx;
2132	unsigned int i, count = nic->params.rfds.count;
2133
2134	nic->ru_running = RU_UNINITIALIZED;
2135
2136	if (nic->rxs) {
2137		for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2138			if (rx->skb) {
2139				dma_unmap_single(&nic->pdev->dev,
2140						 rx->dma_addr, RFD_BUF_LEN,
2141						 DMA_BIDIRECTIONAL);
2142				dev_kfree_skb(rx->skb);
2143			}
2144		}
2145		kfree(nic->rxs);
2146		nic->rxs = NULL;
2147	}
2148
2149	nic->rx_to_use = nic->rx_to_clean = NULL;
2150}
2151
2152static int e100_rx_alloc_list(struct nic *nic)
2153{
2154	struct rx *rx;
2155	unsigned int i, count = nic->params.rfds.count;
2156	struct rfd *before_last;
2157
2158	nic->rx_to_use = nic->rx_to_clean = NULL;
2159	nic->ru_running = RU_UNINITIALIZED;
2160
2161	if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_KERNEL)))
2162		return -ENOMEM;
2163
2164	for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2165		rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2166		rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2167		if (e100_rx_alloc_skb(nic, rx)) {
2168			e100_rx_clean_list(nic);
2169			return -ENOMEM;
2170		}
2171	}
2172	/* Set the el-bit on the buffer that is before the last buffer.
2173	 * This lets us update the next pointer on the last buffer without
2174	 * worrying about hardware touching it.
2175	 * We set the size to 0 to prevent hardware from touching this buffer.
2176	 * When the hardware hits the before last buffer with el-bit and size
2177	 * of 0, it will RNR interrupt, the RU will go into the No Resources
2178	 * state.  It will not complete nor write to this buffer. */
2179	rx = nic->rxs->prev->prev;
2180	before_last = (struct rfd *)rx->skb->data;
2181	before_last->command |= cpu_to_le16(cb_el);
2182	before_last->size = 0;
2183	dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
2184				   sizeof(struct rfd), DMA_BIDIRECTIONAL);
2185
2186	nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2187	nic->ru_running = RU_SUSPENDED;
2188
2189	return 0;
2190}
2191
2192static irqreturn_t e100_intr(int irq, void *dev_id)
2193{
2194	struct net_device *netdev = dev_id;
2195	struct nic *nic = netdev_priv(netdev);
2196	u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2197
2198	netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2199		     "stat_ack = 0x%02X\n", stat_ack);
2200
2201	if (stat_ack == stat_ack_not_ours ||	/* Not our interrupt */
2202	   stat_ack == stat_ack_not_present)	/* Hardware is ejected */
2203		return IRQ_NONE;
2204
2205	/* Ack interrupt(s) */
2206	iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2207
2208	/* We hit Receive No Resource (RNR); restart RU after cleaning */
2209	if (stat_ack & stat_ack_rnr)
2210		nic->ru_running = RU_SUSPENDED;
2211
2212	if (likely(napi_schedule_prep(&nic->napi))) {
2213		e100_disable_irq(nic);
2214		__napi_schedule(&nic->napi);
2215	}
2216
2217	return IRQ_HANDLED;
2218}
2219
2220static int e100_poll(struct napi_struct *napi, int budget)
2221{
2222	struct nic *nic = container_of(napi, struct nic, napi);
2223	unsigned int work_done = 0;
2224
2225	e100_rx_clean(nic, &work_done, budget);
2226	e100_tx_clean(nic);
2227
2228	/* If budget fully consumed, continue polling */
2229	if (work_done == budget)
2230		return budget;
2231
2232	/* only re-enable interrupt if stack agrees polling is really done */
2233	if (likely(napi_complete_done(napi, work_done)))
2234		e100_enable_irq(nic);
2235
2236	return work_done;
2237}
2238
2239#ifdef CONFIG_NET_POLL_CONTROLLER
2240static void e100_netpoll(struct net_device *netdev)
2241{
2242	struct nic *nic = netdev_priv(netdev);
2243
2244	e100_disable_irq(nic);
2245	e100_intr(nic->pdev->irq, netdev);
2246	e100_tx_clean(nic);
2247	e100_enable_irq(nic);
2248}
2249#endif
2250
2251static int e100_set_mac_address(struct net_device *netdev, void *p)
2252{
2253	struct nic *nic = netdev_priv(netdev);
2254	struct sockaddr *addr = p;
2255
2256	if (!is_valid_ether_addr(addr->sa_data))
2257		return -EADDRNOTAVAIL;
2258
2259	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2260	e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2261
2262	return 0;
2263}
2264
2265static int e100_asf(struct nic *nic)
2266{
2267	/* ASF can be enabled from eeprom */
2268	return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2269	   (le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_asf) &&
2270	   !(le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_gcl) &&
2271	   ((le16_to_cpu(nic->eeprom[eeprom_smbus_addr]) & 0xFF) != 0xFE);
2272}
2273
2274static int e100_up(struct nic *nic)
2275{
2276	int err;
2277
2278	if ((err = e100_rx_alloc_list(nic)))
2279		return err;
2280	if ((err = e100_alloc_cbs(nic)))
2281		goto err_rx_clean_list;
2282	if ((err = e100_hw_init(nic)))
2283		goto err_clean_cbs;
2284	e100_set_multicast_list(nic->netdev);
2285	e100_start_receiver(nic, NULL);
2286	mod_timer(&nic->watchdog, jiffies);
2287	if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2288		nic->netdev->name, nic->netdev)))
2289		goto err_no_irq;
2290	netif_wake_queue(nic->netdev);
2291	napi_enable(&nic->napi);
2292	/* enable ints _after_ enabling poll, preventing a race between
2293	 * disable ints+schedule */
2294	e100_enable_irq(nic);
2295	return 0;
2296
2297err_no_irq:
2298	del_timer_sync(&nic->watchdog);
2299err_clean_cbs:
2300	e100_clean_cbs(nic);
2301err_rx_clean_list:
2302	e100_rx_clean_list(nic);
2303	return err;
2304}
2305
2306static void e100_down(struct nic *nic)
2307{
2308	/* wait here for poll to complete */
2309	napi_disable(&nic->napi);
2310	netif_stop_queue(nic->netdev);
2311	e100_hw_reset(nic);
2312	free_irq(nic->pdev->irq, nic->netdev);
2313	del_timer_sync(&nic->watchdog);
2314	netif_carrier_off(nic->netdev);
2315	e100_clean_cbs(nic);
2316	e100_rx_clean_list(nic);
2317}
2318
2319static void e100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
2320{
2321	struct nic *nic = netdev_priv(netdev);
2322
2323	/* Reset outside of interrupt context, to avoid request_irq
2324	 * in interrupt context */
2325	schedule_work(&nic->tx_timeout_task);
2326}
2327
2328static void e100_tx_timeout_task(struct work_struct *work)
2329{
2330	struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2331	struct net_device *netdev = nic->netdev;
2332
2333	netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2334		     "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2335
2336	rtnl_lock();
2337	if (netif_running(netdev)) {
2338		e100_down(netdev_priv(netdev));
2339		e100_up(netdev_priv(netdev));
2340	}
2341	rtnl_unlock();
2342}
2343
2344static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2345{
2346	int err;
2347	struct sk_buff *skb;
2348
2349	/* Use driver resources to perform internal MAC or PHY
2350	 * loopback test.  A single packet is prepared and transmitted
2351	 * in loopback mode, and the test passes if the received
2352	 * packet compares byte-for-byte to the transmitted packet. */
2353
2354	if ((err = e100_rx_alloc_list(nic)))
2355		return err;
2356	if ((err = e100_alloc_cbs(nic)))
2357		goto err_clean_rx;
2358
2359	/* ICH PHY loopback is broken so do MAC loopback instead */
2360	if (nic->flags & ich && loopback_mode == lb_phy)
2361		loopback_mode = lb_mac;
2362
2363	nic->loopback = loopback_mode;
2364	if ((err = e100_hw_init(nic)))
2365		goto err_loopback_none;
2366
2367	if (loopback_mode == lb_phy)
2368		mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2369			BMCR_LOOPBACK);
2370
2371	e100_start_receiver(nic, NULL);
2372
2373	if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2374		err = -ENOMEM;
2375		goto err_loopback_none;
2376	}
2377	skb_put(skb, ETH_DATA_LEN);
2378	memset(skb->data, 0xFF, ETH_DATA_LEN);
2379	e100_xmit_frame(skb, nic->netdev);
2380
2381	msleep(10);
2382
2383	dma_sync_single_for_cpu(&nic->pdev->dev, nic->rx_to_clean->dma_addr,
2384				RFD_BUF_LEN, DMA_BIDIRECTIONAL);
2385
2386	if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2387	   skb->data, ETH_DATA_LEN))
2388		err = -EAGAIN;
2389
2390err_loopback_none:
2391	mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2392	nic->loopback = lb_none;
2393	e100_clean_cbs(nic);
2394	e100_hw_reset(nic);
2395err_clean_rx:
2396	e100_rx_clean_list(nic);
2397	return err;
2398}
2399
2400#define MII_LED_CONTROL	0x1B
2401#define E100_82552_LED_OVERRIDE 0x19
2402#define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
2403#define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */
2404
2405static int e100_get_link_ksettings(struct net_device *netdev,
2406				   struct ethtool_link_ksettings *cmd)
2407{
2408	struct nic *nic = netdev_priv(netdev);
2409
2410	mii_ethtool_get_link_ksettings(&nic->mii, cmd);
2411
2412	return 0;
2413}
2414
2415static int e100_set_link_ksettings(struct net_device *netdev,
2416				   const struct ethtool_link_ksettings *cmd)
2417{
2418	struct nic *nic = netdev_priv(netdev);
2419	int err;
2420
2421	mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2422	err = mii_ethtool_set_link_ksettings(&nic->mii, cmd);
2423	e100_exec_cb(nic, NULL, e100_configure);
2424
2425	return err;
2426}
2427
2428static void e100_get_drvinfo(struct net_device *netdev,
2429	struct ethtool_drvinfo *info)
2430{
2431	struct nic *nic = netdev_priv(netdev);
2432	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2433	strlcpy(info->bus_info, pci_name(nic->pdev),
2434		sizeof(info->bus_info));
2435}
2436
2437#define E100_PHY_REGS 0x1D
2438static int e100_get_regs_len(struct net_device *netdev)
2439{
2440	struct nic *nic = netdev_priv(netdev);
2441
2442	/* We know the number of registers, and the size of the dump buffer.
2443	 * Calculate the total size in bytes.
2444	 */
2445	return (1 + E100_PHY_REGS) * sizeof(u32) + sizeof(nic->mem->dump_buf);
2446}
2447
2448static void e100_get_regs(struct net_device *netdev,
2449	struct ethtool_regs *regs, void *p)
2450{
2451	struct nic *nic = netdev_priv(netdev);
2452	u32 *buff = p;
2453	int i;
2454
2455	regs->version = (1 << 24) | nic->pdev->revision;
2456	buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2457		ioread8(&nic->csr->scb.cmd_lo) << 16 |
2458		ioread16(&nic->csr->scb.status);
2459	for (i = 0; i < E100_PHY_REGS; i++)
2460		/* Note that we read the registers in reverse order. This
2461		 * ordering is the ABI apparently used by ethtool and other
2462		 * applications.
2463		 */
2464		buff[1 + i] = mdio_read(netdev, nic->mii.phy_id,
2465					E100_PHY_REGS - 1 - i);
2466	memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2467	e100_exec_cb(nic, NULL, e100_dump);
2468	msleep(10);
2469	memcpy(&buff[1 + E100_PHY_REGS], nic->mem->dump_buf,
2470	       sizeof(nic->mem->dump_buf));
2471}
2472
2473static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2474{
2475	struct nic *nic = netdev_priv(netdev);
2476	wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
2477	wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2478}
2479
2480static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2481{
2482	struct nic *nic = netdev_priv(netdev);
2483
2484	if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2485	    !device_can_wakeup(&nic->pdev->dev))
2486		return -EOPNOTSUPP;
2487
2488	if (wol->wolopts)
2489		nic->flags |= wol_magic;
2490	else
2491		nic->flags &= ~wol_magic;
2492
2493	device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2494
2495	e100_exec_cb(nic, NULL, e100_configure);
2496
2497	return 0;
2498}
2499
2500static u32 e100_get_msglevel(struct net_device *netdev)
2501{
2502	struct nic *nic = netdev_priv(netdev);
2503	return nic->msg_enable;
2504}
2505
2506static void e100_set_msglevel(struct net_device *netdev, u32 value)
2507{
2508	struct nic *nic = netdev_priv(netdev);
2509	nic->msg_enable = value;
2510}
2511
2512static int e100_nway_reset(struct net_device *netdev)
2513{
2514	struct nic *nic = netdev_priv(netdev);
2515	return mii_nway_restart(&nic->mii);
2516}
2517
2518static u32 e100_get_link(struct net_device *netdev)
2519{
2520	struct nic *nic = netdev_priv(netdev);
2521	return mii_link_ok(&nic->mii);
2522}
2523
2524static int e100_get_eeprom_len(struct net_device *netdev)
2525{
2526	struct nic *nic = netdev_priv(netdev);
2527	return nic->eeprom_wc << 1;
2528}
2529
2530#define E100_EEPROM_MAGIC	0x1234
2531static int e100_get_eeprom(struct net_device *netdev,
2532	struct ethtool_eeprom *eeprom, u8 *bytes)
2533{
2534	struct nic *nic = netdev_priv(netdev);
2535
2536	eeprom->magic = E100_EEPROM_MAGIC;
2537	memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2538
2539	return 0;
2540}
2541
2542static int e100_set_eeprom(struct net_device *netdev,
2543	struct ethtool_eeprom *eeprom, u8 *bytes)
2544{
2545	struct nic *nic = netdev_priv(netdev);
2546
2547	if (eeprom->magic != E100_EEPROM_MAGIC)
2548		return -EINVAL;
2549
2550	memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2551
2552	return e100_eeprom_save(nic, eeprom->offset >> 1,
2553		(eeprom->len >> 1) + 1);
2554}
2555
2556static void e100_get_ringparam(struct net_device *netdev,
2557	struct ethtool_ringparam *ring)
2558{
2559	struct nic *nic = netdev_priv(netdev);
2560	struct param_range *rfds = &nic->params.rfds;
2561	struct param_range *cbs = &nic->params.cbs;
2562
2563	ring->rx_max_pending = rfds->max;
2564	ring->tx_max_pending = cbs->max;
2565	ring->rx_pending = rfds->count;
2566	ring->tx_pending = cbs->count;
2567}
2568
2569static int e100_set_ringparam(struct net_device *netdev,
2570	struct ethtool_ringparam *ring)
2571{
2572	struct nic *nic = netdev_priv(netdev);
2573	struct param_range *rfds = &nic->params.rfds;
2574	struct param_range *cbs = &nic->params.cbs;
2575
2576	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2577		return -EINVAL;
2578
2579	if (netif_running(netdev))
2580		e100_down(nic);
2581	rfds->count = max(ring->rx_pending, rfds->min);
2582	rfds->count = min(rfds->count, rfds->max);
2583	cbs->count = max(ring->tx_pending, cbs->min);
2584	cbs->count = min(cbs->count, cbs->max);
2585	netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2586		   rfds->count, cbs->count);
2587	if (netif_running(netdev))
2588		e100_up(nic);
2589
2590	return 0;
2591}
2592
2593static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2594	"Link test     (on/offline)",
2595	"Eeprom test   (on/offline)",
2596	"Self test        (offline)",
2597	"Mac loopback     (offline)",
2598	"Phy loopback     (offline)",
2599};
2600#define E100_TEST_LEN	ARRAY_SIZE(e100_gstrings_test)
2601
2602static void e100_diag_test(struct net_device *netdev,
2603	struct ethtool_test *test, u64 *data)
2604{
2605	struct ethtool_cmd cmd;
2606	struct nic *nic = netdev_priv(netdev);
2607	int i;
2608
2609	memset(data, 0, E100_TEST_LEN * sizeof(u64));
2610	data[0] = !mii_link_ok(&nic->mii);
2611	data[1] = e100_eeprom_load(nic);
2612	if (test->flags & ETH_TEST_FL_OFFLINE) {
2613
2614		/* save speed, duplex & autoneg settings */
2615		mii_ethtool_gset(&nic->mii, &cmd);
2616
2617		if (netif_running(netdev))
2618			e100_down(nic);
2619		data[2] = e100_self_test(nic);
2620		data[3] = e100_loopback_test(nic, lb_mac);
2621		data[4] = e100_loopback_test(nic, lb_phy);
2622
2623		/* restore speed, duplex & autoneg settings */
2624		mii_ethtool_sset(&nic->mii, &cmd);
2625
2626		if (netif_running(netdev))
2627			e100_up(nic);
2628	}
2629	for (i = 0; i < E100_TEST_LEN; i++)
2630		test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2631
2632	msleep_interruptible(4 * 1000);
2633}
2634
2635static int e100_set_phys_id(struct net_device *netdev,
2636			    enum ethtool_phys_id_state state)
2637{
2638	struct nic *nic = netdev_priv(netdev);
2639	enum led_state {
2640		led_on     = 0x01,
2641		led_off    = 0x04,
2642		led_on_559 = 0x05,
2643		led_on_557 = 0x07,
2644	};
2645	u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2646		MII_LED_CONTROL;
2647	u16 leds = 0;
2648
2649	switch (state) {
2650	case ETHTOOL_ID_ACTIVE:
2651		return 2;
2652
2653	case ETHTOOL_ID_ON:
2654		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2655		       (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2656		break;
2657
2658	case ETHTOOL_ID_OFF:
2659		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2660		break;
2661
2662	case ETHTOOL_ID_INACTIVE:
2663		break;
2664	}
2665
2666	mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
2667	return 0;
2668}
2669
2670static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2671	"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2672	"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2673	"rx_length_errors", "rx_over_errors", "rx_crc_errors",
2674	"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2675	"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2676	"tx_heartbeat_errors", "tx_window_errors",
2677	/* device-specific stats */
2678	"tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2679	"tx_flow_control_pause", "rx_flow_control_pause",
2680	"rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2681	"rx_short_frame_errors", "rx_over_length_errors",
2682};
2683#define E100_NET_STATS_LEN	21
2684#define E100_STATS_LEN	ARRAY_SIZE(e100_gstrings_stats)
2685
2686static int e100_get_sset_count(struct net_device *netdev, int sset)
2687{
2688	switch (sset) {
2689	case ETH_SS_TEST:
2690		return E100_TEST_LEN;
2691	case ETH_SS_STATS:
2692		return E100_STATS_LEN;
2693	default:
2694		return -EOPNOTSUPP;
2695	}
2696}
2697
2698static void e100_get_ethtool_stats(struct net_device *netdev,
2699	struct ethtool_stats *stats, u64 *data)
2700{
2701	struct nic *nic = netdev_priv(netdev);
2702	int i;
2703
2704	for (i = 0; i < E100_NET_STATS_LEN; i++)
2705		data[i] = ((unsigned long *)&netdev->stats)[i];
2706
2707	data[i++] = nic->tx_deferred;
2708	data[i++] = nic->tx_single_collisions;
2709	data[i++] = nic->tx_multiple_collisions;
2710	data[i++] = nic->tx_fc_pause;
2711	data[i++] = nic->rx_fc_pause;
2712	data[i++] = nic->rx_fc_unsupported;
2713	data[i++] = nic->tx_tco_frames;
2714	data[i++] = nic->rx_tco_frames;
2715	data[i++] = nic->rx_short_frame_errors;
2716	data[i++] = nic->rx_over_length_errors;
2717}
2718
2719static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2720{
2721	switch (stringset) {
2722	case ETH_SS_TEST:
2723		memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2724		break;
2725	case ETH_SS_STATS:
2726		memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2727		break;
2728	}
2729}
2730
2731static const struct ethtool_ops e100_ethtool_ops = {
2732	.get_drvinfo		= e100_get_drvinfo,
2733	.get_regs_len		= e100_get_regs_len,
2734	.get_regs		= e100_get_regs,
2735	.get_wol		= e100_get_wol,
2736	.set_wol		= e100_set_wol,
2737	.get_msglevel		= e100_get_msglevel,
2738	.set_msglevel		= e100_set_msglevel,
2739	.nway_reset		= e100_nway_reset,
2740	.get_link		= e100_get_link,
2741	.get_eeprom_len		= e100_get_eeprom_len,
2742	.get_eeprom		= e100_get_eeprom,
2743	.set_eeprom		= e100_set_eeprom,
2744	.get_ringparam		= e100_get_ringparam,
2745	.set_ringparam		= e100_set_ringparam,
2746	.self_test		= e100_diag_test,
2747	.get_strings		= e100_get_strings,
2748	.set_phys_id		= e100_set_phys_id,
2749	.get_ethtool_stats	= e100_get_ethtool_stats,
2750	.get_sset_count		= e100_get_sset_count,
2751	.get_ts_info		= ethtool_op_get_ts_info,
2752	.get_link_ksettings	= e100_get_link_ksettings,
2753	.set_link_ksettings	= e100_set_link_ksettings,
2754};
2755
2756static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2757{
2758	struct nic *nic = netdev_priv(netdev);
2759
2760	return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2761}
2762
2763static int e100_alloc(struct nic *nic)
2764{
2765	nic->mem = dma_alloc_coherent(&nic->pdev->dev, sizeof(struct mem),
2766				      &nic->dma_addr, GFP_KERNEL);
2767	return nic->mem ? 0 : -ENOMEM;
2768}
2769
2770static void e100_free(struct nic *nic)
2771{
2772	if (nic->mem) {
2773		dma_free_coherent(&nic->pdev->dev, sizeof(struct mem),
2774				  nic->mem, nic->dma_addr);
2775		nic->mem = NULL;
2776	}
2777}
2778
2779static int e100_open(struct net_device *netdev)
2780{
2781	struct nic *nic = netdev_priv(netdev);
2782	int err = 0;
2783
2784	netif_carrier_off(netdev);
2785	if ((err = e100_up(nic)))
2786		netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2787	return err;
2788}
2789
2790static int e100_close(struct net_device *netdev)
2791{
2792	e100_down(netdev_priv(netdev));
2793	return 0;
2794}
2795
2796static int e100_set_features(struct net_device *netdev,
2797			     netdev_features_t features)
2798{
2799	struct nic *nic = netdev_priv(netdev);
2800	netdev_features_t changed = features ^ netdev->features;
2801
2802	if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
2803		return 0;
2804
2805	netdev->features = features;
2806	e100_exec_cb(nic, NULL, e100_configure);
2807	return 1;
2808}
2809
2810static const struct net_device_ops e100_netdev_ops = {
2811	.ndo_open		= e100_open,
2812	.ndo_stop		= e100_close,
2813	.ndo_start_xmit		= e100_xmit_frame,
2814	.ndo_validate_addr	= eth_validate_addr,
2815	.ndo_set_rx_mode	= e100_set_multicast_list,
2816	.ndo_set_mac_address	= e100_set_mac_address,
2817	.ndo_do_ioctl		= e100_do_ioctl,
2818	.ndo_tx_timeout		= e100_tx_timeout,
2819#ifdef CONFIG_NET_POLL_CONTROLLER
2820	.ndo_poll_controller	= e100_netpoll,
2821#endif
2822	.ndo_set_features	= e100_set_features,
2823};
2824
2825static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2826{
2827	struct net_device *netdev;
2828	struct nic *nic;
2829	int err;
2830
2831	if (!(netdev = alloc_etherdev(sizeof(struct nic))))
2832		return -ENOMEM;
2833
2834	netdev->hw_features |= NETIF_F_RXFCS;
2835	netdev->priv_flags |= IFF_SUPP_NOFCS;
2836	netdev->hw_features |= NETIF_F_RXALL;
2837
2838	netdev->netdev_ops = &e100_netdev_ops;
2839	netdev->ethtool_ops = &e100_ethtool_ops;
2840	netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2841	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2842
2843	nic = netdev_priv(netdev);
2844	netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2845	nic->netdev = netdev;
2846	nic->pdev = pdev;
2847	nic->msg_enable = (1 << debug) - 1;
2848	nic->mdio_ctrl = mdio_ctrl_hw;
2849	pci_set_drvdata(pdev, netdev);
2850
2851	if ((err = pci_enable_device(pdev))) {
2852		netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2853		goto err_out_free_dev;
2854	}
2855
2856	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2857		netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2858		err = -ENODEV;
2859		goto err_out_disable_pdev;
2860	}
2861
2862	if ((err = pci_request_regions(pdev, DRV_NAME))) {
2863		netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2864		goto err_out_disable_pdev;
2865	}
2866
2867	if ((err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
2868		netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2869		goto err_out_free_res;
2870	}
2871
2872	SET_NETDEV_DEV(netdev, &pdev->dev);
2873
2874	if (use_io)
2875		netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2876
2877	nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2878	if (!nic->csr) {
2879		netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2880		err = -ENOMEM;
2881		goto err_out_free_res;
2882	}
2883
2884	if (ent->driver_data)
2885		nic->flags |= ich;
2886	else
2887		nic->flags &= ~ich;
2888
2889	e100_get_defaults(nic);
2890
2891	/* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2892	if (nic->mac < mac_82558_D101_A4)
2893		netdev->features |= NETIF_F_VLAN_CHALLENGED;
2894
2895	/* locks must be initialized before calling hw_reset */
2896	spin_lock_init(&nic->cb_lock);
2897	spin_lock_init(&nic->cmd_lock);
2898	spin_lock_init(&nic->mdio_lock);
2899
2900	/* Reset the device before pci_set_master() in case device is in some
2901	 * funky state and has an interrupt pending - hint: we don't have the
2902	 * interrupt handler registered yet. */
2903	e100_hw_reset(nic);
2904
2905	pci_set_master(pdev);
2906
2907	timer_setup(&nic->watchdog, e100_watchdog, 0);
2908
2909	INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2910
2911	if ((err = e100_alloc(nic))) {
2912		netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2913		goto err_out_iounmap;
2914	}
2915
2916	if ((err = e100_eeprom_load(nic)))
2917		goto err_out_free;
2918
2919	e100_phy_init(nic);
2920
2921	memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2922	if (!is_valid_ether_addr(netdev->dev_addr)) {
2923		if (!eeprom_bad_csum_allow) {
2924			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2925			err = -EAGAIN;
2926			goto err_out_free;
2927		} else {
2928			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2929		}
2930	}
2931
2932	/* Wol magic packet can be enabled from eeprom */
2933	if ((nic->mac >= mac_82558_D101_A4) &&
2934	   (le16_to_cpu(nic->eeprom[eeprom_id]) & eeprom_id_wol)) {
2935		nic->flags |= wol_magic;
2936		device_set_wakeup_enable(&pdev->dev, true);
2937	}
2938
2939	/* ack any pending wake events, disable PME */
2940	pci_pme_active(pdev, false);
2941
2942	strcpy(netdev->name, "eth%d");
2943	if ((err = register_netdev(netdev))) {
2944		netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2945		goto err_out_free;
2946	}
2947	nic->cbs_pool = dma_pool_create(netdev->name,
2948			   &nic->pdev->dev,
2949			   nic->params.cbs.max * sizeof(struct cb),
2950			   sizeof(u32),
2951			   0);
2952	if (!nic->cbs_pool) {
2953		netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n");
2954		err = -ENOMEM;
2955		goto err_out_pool;
2956	}
2957	netif_info(nic, probe, nic->netdev,
2958		   "addr 0x%llx, irq %d, MAC addr %pM\n",
2959		   (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2960		   pdev->irq, netdev->dev_addr);
2961
2962	return 0;
2963
2964err_out_pool:
2965	unregister_netdev(netdev);
2966err_out_free:
2967	e100_free(nic);
2968err_out_iounmap:
2969	pci_iounmap(pdev, nic->csr);
2970err_out_free_res:
2971	pci_release_regions(pdev);
2972err_out_disable_pdev:
2973	pci_disable_device(pdev);
2974err_out_free_dev:
2975	free_netdev(netdev);
2976	return err;
2977}
2978
2979static void e100_remove(struct pci_dev *pdev)
2980{
2981	struct net_device *netdev = pci_get_drvdata(pdev);
2982
2983	if (netdev) {
2984		struct nic *nic = netdev_priv(netdev);
2985		unregister_netdev(netdev);
2986		e100_free(nic);
2987		pci_iounmap(pdev, nic->csr);
2988		dma_pool_destroy(nic->cbs_pool);
2989		free_netdev(netdev);
2990		pci_release_regions(pdev);
2991		pci_disable_device(pdev);
2992	}
2993}
2994
2995#define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
2996#define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
2997#define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
2998static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
2999{
3000	struct net_device *netdev = pci_get_drvdata(pdev);
3001	struct nic *nic = netdev_priv(netdev);
3002
3003	netif_device_detach(netdev);
3004
3005	if (netif_running(netdev))
3006		e100_down(nic);
3007
3008	if ((nic->flags & wol_magic) | e100_asf(nic)) {
3009		/* enable reverse auto-negotiation */
3010		if (nic->phy == phy_82552_v) {
3011			u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3012			                           E100_82552_SMARTSPEED);
3013
3014			mdio_write(netdev, nic->mii.phy_id,
3015			           E100_82552_SMARTSPEED, smartspeed |
3016			           E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
3017		}
3018		*enable_wake = true;
3019	} else {
3020		*enable_wake = false;
3021	}
3022
3023	pci_disable_device(pdev);
3024}
3025
3026static int __e100_power_off(struct pci_dev *pdev, bool wake)
3027{
3028	if (wake)
3029		return pci_prepare_to_sleep(pdev);
3030
3031	pci_wake_from_d3(pdev, false);
3032	pci_set_power_state(pdev, PCI_D3hot);
3033
3034	return 0;
3035}
3036
3037static int __maybe_unused e100_suspend(struct device *dev_d)
3038{
3039	bool wake;
3040
3041	__e100_shutdown(to_pci_dev(dev_d), &wake);
3042
3043	return 0;
3044}
3045
3046static int __maybe_unused e100_resume(struct device *dev_d)
3047{
3048	struct net_device *netdev = dev_get_drvdata(dev_d);
3049	struct nic *nic = netdev_priv(netdev);
3050	int err;
3051
3052	err = pci_enable_device(to_pci_dev(dev_d));
3053	if (err) {
3054		netdev_err(netdev, "Resume cannot enable PCI device, aborting\n");
3055		return err;
3056	}
3057	pci_set_master(to_pci_dev(dev_d));
3058
3059	/* disable reverse auto-negotiation */
3060	if (nic->phy == phy_82552_v) {
3061		u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3062		                           E100_82552_SMARTSPEED);
3063
3064		mdio_write(netdev, nic->mii.phy_id,
3065		           E100_82552_SMARTSPEED,
3066		           smartspeed & ~(E100_82552_REV_ANEG));
3067	}
3068
3069	if (netif_running(netdev))
3070		e100_up(nic);
3071
3072	netif_device_attach(netdev);
3073
3074	return 0;
3075}
3076
3077static void e100_shutdown(struct pci_dev *pdev)
3078{
3079	bool wake;
3080	__e100_shutdown(pdev, &wake);
3081	if (system_state == SYSTEM_POWER_OFF)
3082		__e100_power_off(pdev, wake);
3083}
3084
3085/* ------------------ PCI Error Recovery infrastructure  -------------- */
3086/**
3087 * e100_io_error_detected - called when PCI error is detected.
3088 * @pdev: Pointer to PCI device
3089 * @state: The current pci connection state
3090 */
3091static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3092{
3093	struct net_device *netdev = pci_get_drvdata(pdev);
3094	struct nic *nic = netdev_priv(netdev);
3095
3096	netif_device_detach(netdev);
3097
3098	if (state == pci_channel_io_perm_failure)
3099		return PCI_ERS_RESULT_DISCONNECT;
3100
3101	if (netif_running(netdev))
3102		e100_down(nic);
3103	pci_disable_device(pdev);
3104
3105	/* Request a slot reset. */
3106	return PCI_ERS_RESULT_NEED_RESET;
3107}
3108
3109/**
3110 * e100_io_slot_reset - called after the pci bus has been reset.
3111 * @pdev: Pointer to PCI device
3112 *
3113 * Restart the card from scratch.
3114 */
3115static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3116{
3117	struct net_device *netdev = pci_get_drvdata(pdev);
3118	struct nic *nic = netdev_priv(netdev);
3119
3120	if (pci_enable_device(pdev)) {
3121		pr_err("Cannot re-enable PCI device after reset\n");
3122		return PCI_ERS_RESULT_DISCONNECT;
3123	}
3124	pci_set_master(pdev);
3125
3126	/* Only one device per card can do a reset */
3127	if (0 != PCI_FUNC(pdev->devfn))
3128		return PCI_ERS_RESULT_RECOVERED;
3129	e100_hw_reset(nic);
3130	e100_phy_init(nic);
3131
3132	return PCI_ERS_RESULT_RECOVERED;
3133}
3134
3135/**
3136 * e100_io_resume - resume normal operations
3137 * @pdev: Pointer to PCI device
3138 *
3139 * Resume normal operations after an error recovery
3140 * sequence has been completed.
3141 */
3142static void e100_io_resume(struct pci_dev *pdev)
3143{
3144	struct net_device *netdev = pci_get_drvdata(pdev);
3145	struct nic *nic = netdev_priv(netdev);
3146
3147	/* ack any pending wake events, disable PME */
3148	pci_enable_wake(pdev, PCI_D0, 0);
3149
3150	netif_device_attach(netdev);
3151	if (netif_running(netdev)) {
3152		e100_open(netdev);
3153		mod_timer(&nic->watchdog, jiffies);
3154	}
3155}
3156
3157static const struct pci_error_handlers e100_err_handler = {
3158	.error_detected = e100_io_error_detected,
3159	.slot_reset = e100_io_slot_reset,
3160	.resume = e100_io_resume,
3161};
3162
3163static SIMPLE_DEV_PM_OPS(e100_pm_ops, e100_suspend, e100_resume);
3164
3165static struct pci_driver e100_driver = {
3166	.name =         DRV_NAME,
3167	.id_table =     e100_id_table,
3168	.probe =        e100_probe,
3169	.remove =       e100_remove,
3170
3171	/* Power Management hooks */
3172	.driver.pm =	&e100_pm_ops,
3173
3174	.shutdown =     e100_shutdown,
3175	.err_handler = &e100_err_handler,
3176};
3177
3178static int __init e100_init_module(void)
3179{
3180	if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3181		pr_info("%s\n", DRV_DESCRIPTION);
3182		pr_info("%s\n", DRV_COPYRIGHT);
3183	}
3184	return pci_register_driver(&e100_driver);
3185}
3186
3187static void __exit e100_cleanup_module(void)
3188{
3189	pci_unregister_driver(&e100_driver);
3190}
3191
3192module_init(e100_init_module);
3193module_exit(e100_cleanup_module);
3194