1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
3
4 /*
5 * e100.c: Intel(R) PRO/100 ethernet driver
6 *
7 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
8 * original e100 driver, but better described as a munging of
9 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
10 *
11 * References:
12 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
13 * Open Source Software Developers Manual,
14 * http://sourceforge.net/projects/e1000
15 *
16 *
17 * Theory of Operation
18 *
19 * I. General
20 *
21 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
22 * controller family, which includes the 82557, 82558, 82559, 82550,
23 * 82551, and 82562 devices. 82558 and greater controllers
24 * integrate the Intel 82555 PHY. The controllers are used in
25 * server and client network interface cards, as well as in
26 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
27 * configurations. 8255x supports a 32-bit linear addressing
28 * mode and operates at 33Mhz PCI clock rate.
29 *
30 * II. Driver Operation
31 *
32 * Memory-mapped mode is used exclusively to access the device's
33 * shared-memory structure, the Control/Status Registers (CSR). All
34 * setup, configuration, and control of the device, including queuing
35 * of Tx, Rx, and configuration commands is through the CSR.
36 * cmd_lock serializes accesses to the CSR command register. cb_lock
37 * protects the shared Command Block List (CBL).
38 *
39 * 8255x is highly MII-compliant and all access to the PHY go
40 * through the Management Data Interface (MDI). Consequently, the
41 * driver leverages the mii.c library shared with other MII-compliant
42 * devices.
43 *
44 * Big- and Little-Endian byte order as well as 32- and 64-bit
45 * archs are supported. Weak-ordered memory and non-cache-coherent
46 * archs are supported.
47 *
48 * III. Transmit
49 *
50 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
51 * together in a fixed-size ring (CBL) thus forming the flexible mode
52 * memory structure. A TCB marked with the suspend-bit indicates
53 * the end of the ring. The last TCB processed suspends the
54 * controller, and the controller can be restarted by issue a CU
55 * resume command to continue from the suspend point, or a CU start
56 * command to start at a given position in the ring.
57 *
58 * Non-Tx commands (config, multicast setup, etc) are linked
59 * into the CBL ring along with Tx commands. The common structure
60 * used for both Tx and non-Tx commands is the Command Block (CB).
61 *
62 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
63 * is the next CB to check for completion; cb_to_send is the first
64 * CB to start on in case of a previous failure to resume. CB clean
65 * up happens in interrupt context in response to a CU interrupt.
66 * cbs_avail keeps track of number of free CB resources available.
67 *
68 * Hardware padding of short packets to minimum packet size is
69 * enabled. 82557 pads with 7Eh, while the later controllers pad
70 * with 00h.
71 *
72 * IV. Receive
73 *
74 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
75 * Descriptors (RFD) + data buffer, thus forming the simplified mode
76 * memory structure. Rx skbs are allocated to contain both the RFD
77 * and the data buffer, but the RFD is pulled off before the skb is
78 * indicated. The data buffer is aligned such that encapsulated
79 * protocol headers are u32-aligned. Since the RFD is part of the
80 * mapped shared memory, and completion status is contained within
81 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
82 * view from software and hardware.
83 *
84 * In order to keep updates to the RFD link field from colliding with
85 * hardware writes to mark packets complete, we use the feature that
86 * hardware will not write to a size 0 descriptor and mark the previous
87 * packet as end-of-list (EL). After updating the link, we remove EL
88 * and only then restore the size such that hardware may use the
89 * previous-to-end RFD.
90 *
91 * Under typical operation, the receive unit (RU) is start once,
92 * and the controller happily fills RFDs as frames arrive. If
93 * replacement RFDs cannot be allocated, or the RU goes non-active,
94 * the RU must be restarted. Frame arrival generates an interrupt,
95 * and Rx indication and re-allocation happen in the same context,
96 * therefore no locking is required. A software-generated interrupt
97 * is generated from the watchdog to recover from a failed allocation
98 * scenario where all Rx resources have been indicated and none re-
99 * placed.
100 *
101 * V. Miscellaneous
102 *
103 * VLAN offloading of tagging, stripping and filtering is not
104 * supported, but driver will accommodate the extra 4-byte VLAN tag
105 * for processing by upper layers. Tx/Rx Checksum offloading is not
106 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
107 * not supported (hardware limitation).
108 *
109 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
110 *
111 * Thanks to JC (jchapman@katalix.com) for helping with
112 * testing/troubleshooting the development driver.
113 *
114 * TODO:
115 * o several entry points race with dev->close
116 * o check for tx-no-resources/stop Q races with tx clean/wake Q
117 *
118 * FIXES:
119 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
120 * - Stratus87247: protect MDI control register manipulations
121 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
122 * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
123 */
124
125 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
126
127 #include <linux/hardirq.h>
128 #include <linux/interrupt.h>
129 #include <linux/module.h>
130 #include <linux/moduleparam.h>
131 #include <linux/kernel.h>
132 #include <linux/types.h>
133 #include <linux/sched.h>
134 #include <linux/slab.h>
135 #include <linux/delay.h>
136 #include <linux/init.h>
137 #include <linux/pci.h>
138 #include <linux/dma-mapping.h>
139 #include <linux/dmapool.h>
140 #include <linux/netdevice.h>
141 #include <linux/etherdevice.h>
142 #include <linux/mii.h>
143 #include <linux/if_vlan.h>
144 #include <linux/skbuff.h>
145 #include <linux/ethtool.h>
146 #include <linux/string.h>
147 #include <linux/firmware.h>
148 #include <linux/rtnetlink.h>
149 #include <asm/unaligned.h>
150
151
152 #define DRV_NAME "e100"
153 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
154 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
155
156 #define E100_WATCHDOG_PERIOD (2 * HZ)
157 #define E100_NAPI_WEIGHT 16
158
159 #define FIRMWARE_D101M "e100/d101m_ucode.bin"
160 #define FIRMWARE_D101S "e100/d101s_ucode.bin"
161 #define FIRMWARE_D102E "e100/d102e_ucode.bin"
162
163 MODULE_DESCRIPTION(DRV_DESCRIPTION);
164 MODULE_AUTHOR(DRV_COPYRIGHT);
165 MODULE_LICENSE("GPL v2");
166 MODULE_FIRMWARE(FIRMWARE_D101M);
167 MODULE_FIRMWARE(FIRMWARE_D101S);
168 MODULE_FIRMWARE(FIRMWARE_D102E);
169
170 static int debug = 3;
171 static int eeprom_bad_csum_allow = 0;
172 static int use_io = 0;
173 module_param(debug, int, 0);
174 module_param(eeprom_bad_csum_allow, int, 0);
175 module_param(use_io, int, 0);
176 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
177 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
178 MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
179
180 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
181 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
182 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
183 static const struct pci_device_id e100_id_table[] = {
184 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
185 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
186 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
187 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
188 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
189 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
190 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
191 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
192 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
193 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
194 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
195 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
196 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
197 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
198 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
199 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
200 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
201 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
202 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
203 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
204 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
205 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
206 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
207 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
208 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
209 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
210 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
211 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
212 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
213 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
214 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
215 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
216 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
217 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
218 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
219 INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
220 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
221 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
222 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
223 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
224 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
225 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
226 { 0, }
227 };
228 MODULE_DEVICE_TABLE(pci, e100_id_table);
229
230 enum mac {
231 mac_82557_D100_A = 0,
232 mac_82557_D100_B = 1,
233 mac_82557_D100_C = 2,
234 mac_82558_D101_A4 = 4,
235 mac_82558_D101_B0 = 5,
236 mac_82559_D101M = 8,
237 mac_82559_D101S = 9,
238 mac_82550_D102 = 12,
239 mac_82550_D102_C = 13,
240 mac_82551_E = 14,
241 mac_82551_F = 15,
242 mac_82551_10 = 16,
243 mac_unknown = 0xFF,
244 };
245
246 enum phy {
247 phy_100a = 0x000003E0,
248 phy_100c = 0x035002A8,
249 phy_82555_tx = 0x015002A8,
250 phy_nsc_tx = 0x5C002000,
251 phy_82562_et = 0x033002A8,
252 phy_82562_em = 0x032002A8,
253 phy_82562_ek = 0x031002A8,
254 phy_82562_eh = 0x017002A8,
255 phy_82552_v = 0xd061004d,
256 phy_unknown = 0xFFFFFFFF,
257 };
258
259 /* CSR (Control/Status Registers) */
260 struct csr {
261 struct {
262 u8 status;
263 u8 stat_ack;
264 u8 cmd_lo;
265 u8 cmd_hi;
266 u32 gen_ptr;
267 } scb;
268 u32 port;
269 u16 flash_ctrl;
270 u8 eeprom_ctrl_lo;
271 u8 eeprom_ctrl_hi;
272 u32 mdi_ctrl;
273 u32 rx_dma_count;
274 };
275
276 enum scb_status {
277 rus_no_res = 0x08,
278 rus_ready = 0x10,
279 rus_mask = 0x3C,
280 };
281
282 enum ru_state {
283 RU_SUSPENDED = 0,
284 RU_RUNNING = 1,
285 RU_UNINITIALIZED = -1,
286 };
287
288 enum scb_stat_ack {
289 stat_ack_not_ours = 0x00,
290 stat_ack_sw_gen = 0x04,
291 stat_ack_rnr = 0x10,
292 stat_ack_cu_idle = 0x20,
293 stat_ack_frame_rx = 0x40,
294 stat_ack_cu_cmd_done = 0x80,
295 stat_ack_not_present = 0xFF,
296 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
297 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
298 };
299
300 enum scb_cmd_hi {
301 irq_mask_none = 0x00,
302 irq_mask_all = 0x01,
303 irq_sw_gen = 0x02,
304 };
305
306 enum scb_cmd_lo {
307 cuc_nop = 0x00,
308 ruc_start = 0x01,
309 ruc_load_base = 0x06,
310 cuc_start = 0x10,
311 cuc_resume = 0x20,
312 cuc_dump_addr = 0x40,
313 cuc_dump_stats = 0x50,
314 cuc_load_base = 0x60,
315 cuc_dump_reset = 0x70,
316 };
317
318 enum cuc_dump {
319 cuc_dump_complete = 0x0000A005,
320 cuc_dump_reset_complete = 0x0000A007,
321 };
322
323 enum port {
324 software_reset = 0x0000,
325 selftest = 0x0001,
326 selective_reset = 0x0002,
327 };
328
329 enum eeprom_ctrl_lo {
330 eesk = 0x01,
331 eecs = 0x02,
332 eedi = 0x04,
333 eedo = 0x08,
334 };
335
336 enum mdi_ctrl {
337 mdi_write = 0x04000000,
338 mdi_read = 0x08000000,
339 mdi_ready = 0x10000000,
340 };
341
342 enum eeprom_op {
343 op_write = 0x05,
344 op_read = 0x06,
345 op_ewds = 0x10,
346 op_ewen = 0x13,
347 };
348
349 enum eeprom_offsets {
350 eeprom_cnfg_mdix = 0x03,
351 eeprom_phy_iface = 0x06,
352 eeprom_id = 0x0A,
353 eeprom_config_asf = 0x0D,
354 eeprom_smbus_addr = 0x90,
355 };
356
357 enum eeprom_cnfg_mdix {
358 eeprom_mdix_enabled = 0x0080,
359 };
360
361 enum eeprom_phy_iface {
362 NoSuchPhy = 0,
363 I82553AB,
364 I82553C,
365 I82503,
366 DP83840,
367 S80C240,
368 S80C24,
369 I82555,
370 DP83840A = 10,
371 };
372
373 enum eeprom_id {
374 eeprom_id_wol = 0x0020,
375 };
376
377 enum eeprom_config_asf {
378 eeprom_asf = 0x8000,
379 eeprom_gcl = 0x4000,
380 };
381
382 enum cb_status {
383 cb_complete = 0x8000,
384 cb_ok = 0x2000,
385 };
386
387 /*
388 * cb_command - Command Block flags
389 * @cb_tx_nc: 0: controller does CRC (normal), 1: CRC from skb memory
390 */
391 enum cb_command {
392 cb_nop = 0x0000,
393 cb_iaaddr = 0x0001,
394 cb_config = 0x0002,
395 cb_multi = 0x0003,
396 cb_tx = 0x0004,
397 cb_ucode = 0x0005,
398 cb_dump = 0x0006,
399 cb_tx_sf = 0x0008,
400 cb_tx_nc = 0x0010,
401 cb_cid = 0x1f00,
402 cb_i = 0x2000,
403 cb_s = 0x4000,
404 cb_el = 0x8000,
405 };
406
407 struct rfd {
408 __le16 status;
409 __le16 command;
410 __le32 link;
411 __le32 rbd;
412 __le16 actual_size;
413 __le16 size;
414 };
415
416 struct rx {
417 struct rx *next, *prev;
418 struct sk_buff *skb;
419 dma_addr_t dma_addr;
420 };
421
422 #if defined(__BIG_ENDIAN_BITFIELD)
423 #define X(a,b) b,a
424 #else
425 #define X(a,b) a,b
426 #endif
427 struct config {
428 /*0*/ u8 X(byte_count:6, pad0:2);
429 /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
430 /*2*/ u8 adaptive_ifs;
431 /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
432 term_write_cache_line:1), pad3:4);
433 /*4*/ u8 X(rx_dma_max_count:7, pad4:1);
434 /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
435 /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
436 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
437 rx_save_overruns : 1), rx_save_bad_frames : 1);
438 /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
439 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
440 tx_dynamic_tbd:1);
441 /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
442 /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
443 link_status_wake:1), arp_wake:1), mcmatch_wake:1);
444 /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
445 loopback:2);
446 /*11*/ u8 X(linear_priority:3, pad11:5);
447 /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
448 /*13*/ u8 ip_addr_lo;
449 /*14*/ u8 ip_addr_hi;
450 /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
451 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
452 pad15_2:1), crs_or_cdt:1);
453 /*16*/ u8 fc_delay_lo;
454 /*17*/ u8 fc_delay_hi;
455 /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
456 rx_long_ok:1), fc_priority_threshold:3), pad18:1);
457 /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
458 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
459 full_duplex_force:1), full_duplex_pin:1);
460 /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
461 /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
462 /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
463 u8 pad_d102[9];
464 };
465
466 #define E100_MAX_MULTICAST_ADDRS 64
467 struct multi {
468 __le16 count;
469 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
470 };
471
472 /* Important: keep total struct u32-aligned */
473 #define UCODE_SIZE 134
474 struct cb {
475 __le16 status;
476 __le16 command;
477 __le32 link;
478 union {
479 u8 iaaddr[ETH_ALEN];
480 __le32 ucode[UCODE_SIZE];
481 struct config config;
482 struct multi multi;
483 struct {
484 u32 tbd_array;
485 u16 tcb_byte_count;
486 u8 threshold;
487 u8 tbd_count;
488 struct {
489 __le32 buf_addr;
490 __le16 size;
491 u16 eol;
492 } tbd;
493 } tcb;
494 __le32 dump_buffer_addr;
495 } u;
496 struct cb *next, *prev;
497 dma_addr_t dma_addr;
498 struct sk_buff *skb;
499 };
500
501 enum loopback {
502 lb_none = 0, lb_mac = 1, lb_phy = 3,
503 };
504
505 struct stats {
506 __le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
507 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
508 tx_multiple_collisions, tx_total_collisions;
509 __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
510 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
511 rx_short_frame_errors;
512 __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
513 __le16 xmt_tco_frames, rcv_tco_frames;
514 __le32 complete;
515 };
516
517 struct mem {
518 struct {
519 u32 signature;
520 u32 result;
521 } selftest;
522 struct stats stats;
523 u8 dump_buf[596];
524 };
525
526 struct param_range {
527 u32 min;
528 u32 max;
529 u32 count;
530 };
531
532 struct params {
533 struct param_range rfds;
534 struct param_range cbs;
535 };
536
537 struct nic {
538 /* Begin: frequently used values: keep adjacent for cache effect */
539 u32 msg_enable ____cacheline_aligned;
540 struct net_device *netdev;
541 struct pci_dev *pdev;
542 u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
543
544 struct rx *rxs ____cacheline_aligned;
545 struct rx *rx_to_use;
546 struct rx *rx_to_clean;
547 struct rfd blank_rfd;
548 enum ru_state ru_running;
549
550 spinlock_t cb_lock ____cacheline_aligned;
551 spinlock_t cmd_lock;
552 struct csr __iomem *csr;
553 enum scb_cmd_lo cuc_cmd;
554 unsigned int cbs_avail;
555 struct napi_struct napi;
556 struct cb *cbs;
557 struct cb *cb_to_use;
558 struct cb *cb_to_send;
559 struct cb *cb_to_clean;
560 __le16 tx_command;
561 /* End: frequently used values: keep adjacent for cache effect */
562
563 enum {
564 ich = (1 << 0),
565 promiscuous = (1 << 1),
566 multicast_all = (1 << 2),
567 wol_magic = (1 << 3),
568 ich_10h_workaround = (1 << 4),
569 } flags ____cacheline_aligned;
570
571 enum mac mac;
572 enum phy phy;
573 struct params params;
574 struct timer_list watchdog;
575 struct mii_if_info mii;
576 struct work_struct tx_timeout_task;
577 enum loopback loopback;
578
579 struct mem *mem;
580 dma_addr_t dma_addr;
581
582 struct dma_pool *cbs_pool;
583 dma_addr_t cbs_dma_addr;
584 u8 adaptive_ifs;
585 u8 tx_threshold;
586 u32 tx_frames;
587 u32 tx_collisions;
588 u32 tx_deferred;
589 u32 tx_single_collisions;
590 u32 tx_multiple_collisions;
591 u32 tx_fc_pause;
592 u32 tx_tco_frames;
593
594 u32 rx_fc_pause;
595 u32 rx_fc_unsupported;
596 u32 rx_tco_frames;
597 u32 rx_short_frame_errors;
598 u32 rx_over_length_errors;
599
600 u16 eeprom_wc;
601 __le16 eeprom[256];
602 spinlock_t mdio_lock;
603 const struct firmware *fw;
604 };
605
e100_write_flush(struct nic *nic)606 static inline void e100_write_flush(struct nic *nic)
607 {
608 /* Flush previous PCI writes through intermediate bridges
609 * by doing a benign read */
610 (void)ioread8(&nic->csr->scb.status);
611 }
612
e100_enable_irq(struct nic *nic)613 static void e100_enable_irq(struct nic *nic)
614 {
615 unsigned long flags;
616
617 spin_lock_irqsave(&nic->cmd_lock, flags);
618 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
619 e100_write_flush(nic);
620 spin_unlock_irqrestore(&nic->cmd_lock, flags);
621 }
622
e100_disable_irq(struct nic *nic)623 static void e100_disable_irq(struct nic *nic)
624 {
625 unsigned long flags;
626
627 spin_lock_irqsave(&nic->cmd_lock, flags);
628 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
629 e100_write_flush(nic);
630 spin_unlock_irqrestore(&nic->cmd_lock, flags);
631 }
632
e100_hw_reset(struct nic *nic)633 static void e100_hw_reset(struct nic *nic)
634 {
635 /* Put CU and RU into idle with a selective reset to get
636 * device off of PCI bus */
637 iowrite32(selective_reset, &nic->csr->port);
638 e100_write_flush(nic); udelay(20);
639
640 /* Now fully reset device */
641 iowrite32(software_reset, &nic->csr->port);
642 e100_write_flush(nic); udelay(20);
643
644 /* Mask off our interrupt line - it's unmasked after reset */
645 e100_disable_irq(nic);
646 }
647
e100_self_test(struct nic *nic)648 static int e100_self_test(struct nic *nic)
649 {
650 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
651
652 /* Passing the self-test is a pretty good indication
653 * that the device can DMA to/from host memory */
654
655 nic->mem->selftest.signature = 0;
656 nic->mem->selftest.result = 0xFFFFFFFF;
657
658 iowrite32(selftest | dma_addr, &nic->csr->port);
659 e100_write_flush(nic);
660 /* Wait 10 msec for self-test to complete */
661 msleep(10);
662
663 /* Interrupts are enabled after self-test */
664 e100_disable_irq(nic);
665
666 /* Check results of self-test */
667 if (nic->mem->selftest.result != 0) {
668 netif_err(nic, hw, nic->netdev,
669 "Self-test failed: result=0x%08X\n",
670 nic->mem->selftest.result);
671 return -ETIMEDOUT;
672 }
673 if (nic->mem->selftest.signature == 0) {
674 netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
675 return -ETIMEDOUT;
676 }
677
678 return 0;
679 }
680
e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)681 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
682 {
683 u32 cmd_addr_data[3];
684 u8 ctrl;
685 int i, j;
686
687 /* Three cmds: write/erase enable, write data, write/erase disable */
688 cmd_addr_data[0] = op_ewen << (addr_len - 2);
689 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
690 le16_to_cpu(data);
691 cmd_addr_data[2] = op_ewds << (addr_len - 2);
692
693 /* Bit-bang cmds to write word to eeprom */
694 for (j = 0; j < 3; j++) {
695
696 /* Chip select */
697 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
698 e100_write_flush(nic); udelay(4);
699
700 for (i = 31; i >= 0; i--) {
701 ctrl = (cmd_addr_data[j] & (1 << i)) ?
702 eecs | eedi : eecs;
703 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
704 e100_write_flush(nic); udelay(4);
705
706 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
707 e100_write_flush(nic); udelay(4);
708 }
709 /* Wait 10 msec for cmd to complete */
710 msleep(10);
711
712 /* Chip deselect */
713 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
714 e100_write_flush(nic); udelay(4);
715 }
716 };
717
718 /* General technique stolen from the eepro100 driver - very clever */
e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)719 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
720 {
721 u32 cmd_addr_data;
722 u16 data = 0;
723 u8 ctrl;
724 int i;
725
726 cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
727
728 /* Chip select */
729 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
730 e100_write_flush(nic); udelay(4);
731
732 /* Bit-bang to read word from eeprom */
733 for (i = 31; i >= 0; i--) {
734 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
735 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
736 e100_write_flush(nic); udelay(4);
737
738 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
739 e100_write_flush(nic); udelay(4);
740
741 /* Eeprom drives a dummy zero to EEDO after receiving
742 * complete address. Use this to adjust addr_len. */
743 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
744 if (!(ctrl & eedo) && i > 16) {
745 *addr_len -= (i - 16);
746 i = 17;
747 }
748
749 data = (data << 1) | (ctrl & eedo ? 1 : 0);
750 }
751
752 /* Chip deselect */
753 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
754 e100_write_flush(nic); udelay(4);
755
756 return cpu_to_le16(data);
757 };
758
759 /* Load entire EEPROM image into driver cache and validate checksum */
e100_eeprom_load(struct nic *nic)760 static int e100_eeprom_load(struct nic *nic)
761 {
762 u16 addr, addr_len = 8, checksum = 0;
763
764 /* Try reading with an 8-bit addr len to discover actual addr len */
765 e100_eeprom_read(nic, &addr_len, 0);
766 nic->eeprom_wc = 1 << addr_len;
767
768 for (addr = 0; addr < nic->eeprom_wc; addr++) {
769 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
770 if (addr < nic->eeprom_wc - 1)
771 checksum += le16_to_cpu(nic->eeprom[addr]);
772 }
773
774 /* The checksum, stored in the last word, is calculated such that
775 * the sum of words should be 0xBABA */
776 if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
777 netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
778 if (!eeprom_bad_csum_allow)
779 return -EAGAIN;
780 }
781
782 return 0;
783 }
784
785 /* Save (portion of) driver EEPROM cache to device and update checksum */
e100_eeprom_save(struct nic *nic, u16 start, u16 count)786 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
787 {
788 u16 addr, addr_len = 8, checksum = 0;
789
790 /* Try reading with an 8-bit addr len to discover actual addr len */
791 e100_eeprom_read(nic, &addr_len, 0);
792 nic->eeprom_wc = 1 << addr_len;
793
794 if (start + count >= nic->eeprom_wc)
795 return -EINVAL;
796
797 for (addr = start; addr < start + count; addr++)
798 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
799
800 /* The checksum, stored in the last word, is calculated such that
801 * the sum of words should be 0xBABA */
802 for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
803 checksum += le16_to_cpu(nic->eeprom[addr]);
804 nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
805 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
806 nic->eeprom[nic->eeprom_wc - 1]);
807
808 return 0;
809 }
810
811 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
812 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */
e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)813 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
814 {
815 unsigned long flags;
816 unsigned int i;
817 int err = 0;
818
819 spin_lock_irqsave(&nic->cmd_lock, flags);
820
821 /* Previous command is accepted when SCB clears */
822 for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
823 if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
824 break;
825 cpu_relax();
826 if (unlikely(i > E100_WAIT_SCB_FAST))
827 udelay(5);
828 }
829 if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
830 err = -EAGAIN;
831 goto err_unlock;
832 }
833
834 if (unlikely(cmd != cuc_resume))
835 iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
836 iowrite8(cmd, &nic->csr->scb.cmd_lo);
837
838 err_unlock:
839 spin_unlock_irqrestore(&nic->cmd_lock, flags);
840
841 return err;
842 }
843
e100_exec_cb(struct nic *nic, struct sk_buff *skb, int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))844 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
845 int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
846 {
847 struct cb *cb;
848 unsigned long flags;
849 int err;
850
851 spin_lock_irqsave(&nic->cb_lock, flags);
852
853 if (unlikely(!nic->cbs_avail)) {
854 err = -ENOMEM;
855 goto err_unlock;
856 }
857
858 cb = nic->cb_to_use;
859 nic->cb_to_use = cb->next;
860 nic->cbs_avail--;
861 cb->skb = skb;
862
863 err = cb_prepare(nic, cb, skb);
864 if (err)
865 goto err_unlock;
866
867 if (unlikely(!nic->cbs_avail))
868 err = -ENOSPC;
869
870
871 /* Order is important otherwise we'll be in a race with h/w:
872 * set S-bit in current first, then clear S-bit in previous. */
873 cb->command |= cpu_to_le16(cb_s);
874 dma_wmb();
875 cb->prev->command &= cpu_to_le16(~cb_s);
876
877 while (nic->cb_to_send != nic->cb_to_use) {
878 if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
879 nic->cb_to_send->dma_addr))) {
880 /* Ok, here's where things get sticky. It's
881 * possible that we can't schedule the command
882 * because the controller is too busy, so
883 * let's just queue the command and try again
884 * when another command is scheduled. */
885 if (err == -ENOSPC) {
886 //request a reset
887 schedule_work(&nic->tx_timeout_task);
888 }
889 break;
890 } else {
891 nic->cuc_cmd = cuc_resume;
892 nic->cb_to_send = nic->cb_to_send->next;
893 }
894 }
895
896 err_unlock:
897 spin_unlock_irqrestore(&nic->cb_lock, flags);
898
899 return err;
900 }
901
mdio_read(struct net_device *netdev, int addr, int reg)902 static int mdio_read(struct net_device *netdev, int addr, int reg)
903 {
904 struct nic *nic = netdev_priv(netdev);
905 return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
906 }
907
mdio_write(struct net_device *netdev, int addr, int reg, int data)908 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
909 {
910 struct nic *nic = netdev_priv(netdev);
911
912 nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
913 }
914
915 /* the standard mdio_ctrl() function for usual MII-compliant hardware */
mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)916 static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
917 {
918 u32 data_out = 0;
919 unsigned int i;
920 unsigned long flags;
921
922
923 /*
924 * Stratus87247: we shouldn't be writing the MDI control
925 * register until the Ready bit shows True. Also, since
926 * manipulation of the MDI control registers is a multi-step
927 * procedure it should be done under lock.
928 */
929 spin_lock_irqsave(&nic->mdio_lock, flags);
930 for (i = 100; i; --i) {
931 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
932 break;
933 udelay(20);
934 }
935 if (unlikely(!i)) {
936 netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
937 spin_unlock_irqrestore(&nic->mdio_lock, flags);
938 return 0; /* No way to indicate timeout error */
939 }
940 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
941
942 for (i = 0; i < 100; i++) {
943 udelay(20);
944 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
945 break;
946 }
947 spin_unlock_irqrestore(&nic->mdio_lock, flags);
948 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
949 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
950 dir == mdi_read ? "READ" : "WRITE",
951 addr, reg, data, data_out);
952 return (u16)data_out;
953 }
954
955 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
mdio_ctrl_phy_82552_v(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)956 static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
957 u32 addr,
958 u32 dir,
959 u32 reg,
960 u16 data)
961 {
962 if ((reg == MII_BMCR) && (dir == mdi_write)) {
963 if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
964 u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
965 MII_ADVERTISE);
966
967 /*
968 * Workaround Si issue where sometimes the part will not
969 * autoneg to 100Mbps even when advertised.
970 */
971 if (advert & ADVERTISE_100FULL)
972 data |= BMCR_SPEED100 | BMCR_FULLDPLX;
973 else if (advert & ADVERTISE_100HALF)
974 data |= BMCR_SPEED100;
975 }
976 }
977 return mdio_ctrl_hw(nic, addr, dir, reg, data);
978 }
979
980 /* Fully software-emulated mdio_ctrl() function for cards without
981 * MII-compliant PHYs.
982 * For now, this is mainly geared towards 80c24 support; in case of further
983 * requirements for other types (i82503, ...?) either extend this mechanism
984 * or split it, whichever is cleaner.
985 */
mdio_ctrl_phy_mii_emulated(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)986 static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
987 u32 addr,
988 u32 dir,
989 u32 reg,
990 u16 data)
991 {
992 /* might need to allocate a netdev_priv'ed register array eventually
993 * to be able to record state changes, but for now
994 * some fully hardcoded register handling ought to be ok I guess. */
995
996 if (dir == mdi_read) {
997 switch (reg) {
998 case MII_BMCR:
999 /* Auto-negotiation, right? */
1000 return BMCR_ANENABLE |
1001 BMCR_FULLDPLX;
1002 case MII_BMSR:
1003 return BMSR_LSTATUS /* for mii_link_ok() */ |
1004 BMSR_ANEGCAPABLE |
1005 BMSR_10FULL;
1006 case MII_ADVERTISE:
1007 /* 80c24 is a "combo card" PHY, right? */
1008 return ADVERTISE_10HALF |
1009 ADVERTISE_10FULL;
1010 default:
1011 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1012 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1013 dir == mdi_read ? "READ" : "WRITE",
1014 addr, reg, data);
1015 return 0xFFFF;
1016 }
1017 } else {
1018 switch (reg) {
1019 default:
1020 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1021 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1022 dir == mdi_read ? "READ" : "WRITE",
1023 addr, reg, data);
1024 return 0xFFFF;
1025 }
1026 }
1027 }
e100_phy_supports_mii(struct nic *nic)1028 static inline int e100_phy_supports_mii(struct nic *nic)
1029 {
1030 /* for now, just check it by comparing whether we
1031 are using MII software emulation.
1032 */
1033 return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1034 }
1035
e100_get_defaults(struct nic *nic)1036 static void e100_get_defaults(struct nic *nic)
1037 {
1038 struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1039 struct param_range cbs = { .min = 64, .max = 256, .count = 128 };
1040
1041 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1042 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1043 if (nic->mac == mac_unknown)
1044 nic->mac = mac_82557_D100_A;
1045
1046 nic->params.rfds = rfds;
1047 nic->params.cbs = cbs;
1048
1049 /* Quadwords to DMA into FIFO before starting frame transmit */
1050 nic->tx_threshold = 0xE0;
1051
1052 /* no interrupt for every tx completion, delay = 256us if not 557 */
1053 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1054 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1055
1056 /* Template for a freshly allocated RFD */
1057 nic->blank_rfd.command = 0;
1058 nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1059 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1060
1061 /* MII setup */
1062 nic->mii.phy_id_mask = 0x1F;
1063 nic->mii.reg_num_mask = 0x1F;
1064 nic->mii.dev = nic->netdev;
1065 nic->mii.mdio_read = mdio_read;
1066 nic->mii.mdio_write = mdio_write;
1067 }
1068
e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)1069 static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1070 {
1071 struct config *config = &cb->u.config;
1072 u8 *c = (u8 *)config;
1073 struct net_device *netdev = nic->netdev;
1074
1075 cb->command = cpu_to_le16(cb_config);
1076
1077 memset(config, 0, sizeof(struct config));
1078
1079 config->byte_count = 0x16; /* bytes in this struct */
1080 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
1081 config->direct_rx_dma = 0x1; /* reserved */
1082 config->standard_tcb = 0x1; /* 1=standard, 0=extended */
1083 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
1084 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
1085 config->tx_underrun_retry = 0x3; /* # of underrun retries */
1086 if (e100_phy_supports_mii(nic))
1087 config->mii_mode = 1; /* 1=MII mode, 0=i82503 mode */
1088 config->pad10 = 0x6;
1089 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
1090 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
1091 config->ifs = 0x6; /* x16 = inter frame spacing */
1092 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
1093 config->pad15_1 = 0x1;
1094 config->pad15_2 = 0x1;
1095 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
1096 config->fc_delay_hi = 0x40; /* time delay for fc frame */
1097 config->tx_padding = 0x1; /* 1=pad short frames */
1098 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
1099 config->pad18 = 0x1;
1100 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
1101 config->pad20_1 = 0x1F;
1102 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
1103 config->pad21_1 = 0x5;
1104
1105 config->adaptive_ifs = nic->adaptive_ifs;
1106 config->loopback = nic->loopback;
1107
1108 if (nic->mii.force_media && nic->mii.full_duplex)
1109 config->full_duplex_force = 0x1; /* 1=force, 0=auto */
1110
1111 if (nic->flags & promiscuous || nic->loopback) {
1112 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
1113 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
1114 config->promiscuous_mode = 0x1; /* 1=on, 0=off */
1115 }
1116
1117 if (unlikely(netdev->features & NETIF_F_RXFCS))
1118 config->rx_crc_transfer = 0x1; /* 1=save, 0=discard */
1119
1120 if (nic->flags & multicast_all)
1121 config->multicast_all = 0x1; /* 1=accept, 0=no */
1122
1123 /* disable WoL when up */
1124 if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1125 config->magic_packet_disable = 0x1; /* 1=off, 0=on */
1126
1127 if (nic->mac >= mac_82558_D101_A4) {
1128 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
1129 config->mwi_enable = 0x1; /* 1=enable, 0=disable */
1130 config->standard_tcb = 0x0; /* 1=standard, 0=extended */
1131 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
1132 if (nic->mac >= mac_82559_D101M) {
1133 config->tno_intr = 0x1; /* TCO stats enable */
1134 /* Enable TCO in extended config */
1135 if (nic->mac >= mac_82551_10) {
1136 config->byte_count = 0x20; /* extended bytes */
1137 config->rx_d102_mode = 0x1; /* GMRC for TCO */
1138 }
1139 } else {
1140 config->standard_stat_counter = 0x0;
1141 }
1142 }
1143
1144 if (netdev->features & NETIF_F_RXALL) {
1145 config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
1146 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
1147 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
1148 }
1149
1150 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n",
1151 c + 0);
1152 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n",
1153 c + 8);
1154 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n",
1155 c + 16);
1156 return 0;
1157 }
1158
1159 /*************************************************************************
1160 * CPUSaver parameters
1161 *
1162 * All CPUSaver parameters are 16-bit literals that are part of a
1163 * "move immediate value" instruction. By changing the value of
1164 * the literal in the instruction before the code is loaded, the
1165 * driver can change the algorithm.
1166 *
1167 * INTDELAY - This loads the dead-man timer with its initial value.
1168 * When this timer expires the interrupt is asserted, and the
1169 * timer is reset each time a new packet is received. (see
1170 * BUNDLEMAX below to set the limit on number of chained packets)
1171 * The current default is 0x600 or 1536. Experiments show that
1172 * the value should probably stay within the 0x200 - 0x1000.
1173 *
1174 * BUNDLEMAX -
1175 * This sets the maximum number of frames that will be bundled. In
1176 * some situations, such as the TCP windowing algorithm, it may be
1177 * better to limit the growth of the bundle size than let it go as
1178 * high as it can, because that could cause too much added latency.
1179 * The default is six, because this is the number of packets in the
1180 * default TCP window size. A value of 1 would make CPUSaver indicate
1181 * an interrupt for every frame received. If you do not want to put
1182 * a limit on the bundle size, set this value to xFFFF.
1183 *
1184 * BUNDLESMALL -
1185 * This contains a bit-mask describing the minimum size frame that
1186 * will be bundled. The default masks the lower 7 bits, which means
1187 * that any frame less than 128 bytes in length will not be bundled,
1188 * but will instead immediately generate an interrupt. This does
1189 * not affect the current bundle in any way. Any frame that is 128
1190 * bytes or large will be bundled normally. This feature is meant
1191 * to provide immediate indication of ACK frames in a TCP environment.
1192 * Customers were seeing poor performance when a machine with CPUSaver
1193 * enabled was sending but not receiving. The delay introduced when
1194 * the ACKs were received was enough to reduce total throughput, because
1195 * the sender would sit idle until the ACK was finally seen.
1196 *
1197 * The current default is 0xFF80, which masks out the lower 7 bits.
1198 * This means that any frame which is x7F (127) bytes or smaller
1199 * will cause an immediate interrupt. Because this value must be a
1200 * bit mask, there are only a few valid values that can be used. To
1201 * turn this feature off, the driver can write the value xFFFF to the
1202 * lower word of this instruction (in the same way that the other
1203 * parameters are used). Likewise, a value of 0xF800 (2047) would
1204 * cause an interrupt to be generated for every frame, because all
1205 * standard Ethernet frames are <= 2047 bytes in length.
1206 *************************************************************************/
1207
1208 /* if you wish to disable the ucode functionality, while maintaining the
1209 * workarounds it provides, set the following defines to:
1210 * BUNDLESMALL 0
1211 * BUNDLEMAX 1
1212 * INTDELAY 1
1213 */
1214 #define BUNDLESMALL 1
1215 #define BUNDLEMAX (u16)6
1216 #define INTDELAY (u16)1536 /* 0x600 */
1217
1218 /* Initialize firmware */
e100_request_firmware(struct nic *nic)1219 static const struct firmware *e100_request_firmware(struct nic *nic)
1220 {
1221 const char *fw_name;
1222 const struct firmware *fw = nic->fw;
1223 u8 timer, bundle, min_size;
1224 int err = 0;
1225 bool required = false;
1226
1227 /* do not load u-code for ICH devices */
1228 if (nic->flags & ich)
1229 return NULL;
1230
1231 /* Search for ucode match against h/w revision
1232 *
1233 * Based on comments in the source code for the FreeBSD fxp
1234 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1235 *
1236 * "fixes for bugs in the B-step hardware (specifically, bugs
1237 * with Inline Receive)."
1238 *
1239 * So we must fail if it cannot be loaded.
1240 *
1241 * The other microcode files are only required for the optional
1242 * CPUSaver feature. Nice to have, but no reason to fail.
1243 */
1244 if (nic->mac == mac_82559_D101M) {
1245 fw_name = FIRMWARE_D101M;
1246 } else if (nic->mac == mac_82559_D101S) {
1247 fw_name = FIRMWARE_D101S;
1248 } else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1249 fw_name = FIRMWARE_D102E;
1250 required = true;
1251 } else { /* No ucode on other devices */
1252 return NULL;
1253 }
1254
1255 /* If the firmware has not previously been loaded, request a pointer
1256 * to it. If it was previously loaded, we are reinitializing the
1257 * adapter, possibly in a resume from hibernate, in which case
1258 * request_firmware() cannot be used.
1259 */
1260 if (!fw)
1261 err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1262
1263 if (err) {
1264 if (required) {
1265 netif_err(nic, probe, nic->netdev,
1266 "Failed to load firmware \"%s\": %d\n",
1267 fw_name, err);
1268 return ERR_PTR(err);
1269 } else {
1270 netif_info(nic, probe, nic->netdev,
1271 "CPUSaver disabled. Needs \"%s\": %d\n",
1272 fw_name, err);
1273 return NULL;
1274 }
1275 }
1276
1277 /* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1278 indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1279 if (fw->size != UCODE_SIZE * 4 + 3) {
1280 netif_err(nic, probe, nic->netdev,
1281 "Firmware \"%s\" has wrong size %zu\n",
1282 fw_name, fw->size);
1283 release_firmware(fw);
1284 return ERR_PTR(-EINVAL);
1285 }
1286
1287 /* Read timer, bundle and min_size from end of firmware blob */
1288 timer = fw->data[UCODE_SIZE * 4];
1289 bundle = fw->data[UCODE_SIZE * 4 + 1];
1290 min_size = fw->data[UCODE_SIZE * 4 + 2];
1291
1292 if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1293 min_size >= UCODE_SIZE) {
1294 netif_err(nic, probe, nic->netdev,
1295 "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1296 fw_name, timer, bundle, min_size);
1297 release_firmware(fw);
1298 return ERR_PTR(-EINVAL);
1299 }
1300
1301 /* OK, firmware is validated and ready to use. Save a pointer
1302 * to it in the nic */
1303 nic->fw = fw;
1304 return fw;
1305 }
1306
e100_setup_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb)1307 static int e100_setup_ucode(struct nic *nic, struct cb *cb,
1308 struct sk_buff *skb)
1309 {
1310 const struct firmware *fw = (void *)skb;
1311 u8 timer, bundle, min_size;
1312
1313 /* It's not a real skb; we just abused the fact that e100_exec_cb
1314 will pass it through to here... */
1315 cb->skb = NULL;
1316
1317 /* firmware is stored as little endian already */
1318 memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1319
1320 /* Read timer, bundle and min_size from end of firmware blob */
1321 timer = fw->data[UCODE_SIZE * 4];
1322 bundle = fw->data[UCODE_SIZE * 4 + 1];
1323 min_size = fw->data[UCODE_SIZE * 4 + 2];
1324
1325 /* Insert user-tunable settings in cb->u.ucode */
1326 cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1327 cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1328 cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1329 cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1330 cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1331 cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1332
1333 cb->command = cpu_to_le16(cb_ucode | cb_el);
1334 return 0;
1335 }
1336
e100_load_ucode_wait(struct nic *nic)1337 static inline int e100_load_ucode_wait(struct nic *nic)
1338 {
1339 const struct firmware *fw;
1340 int err = 0, counter = 50;
1341 struct cb *cb = nic->cb_to_clean;
1342
1343 fw = e100_request_firmware(nic);
1344 /* If it's NULL, then no ucode is required */
1345 if (IS_ERR_OR_NULL(fw))
1346 return PTR_ERR_OR_ZERO(fw);
1347
1348 if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1349 netif_err(nic, probe, nic->netdev,
1350 "ucode cmd failed with error %d\n", err);
1351
1352 /* must restart cuc */
1353 nic->cuc_cmd = cuc_start;
1354
1355 /* wait for completion */
1356 e100_write_flush(nic);
1357 udelay(10);
1358
1359 /* wait for possibly (ouch) 500ms */
1360 while (!(cb->status & cpu_to_le16(cb_complete))) {
1361 msleep(10);
1362 if (!--counter) break;
1363 }
1364
1365 /* ack any interrupts, something could have been set */
1366 iowrite8(~0, &nic->csr->scb.stat_ack);
1367
1368 /* if the command failed, or is not OK, notify and return */
1369 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1370 netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1371 err = -EPERM;
1372 }
1373
1374 return err;
1375 }
1376
e100_setup_iaaddr(struct nic *nic, struct cb *cb, struct sk_buff *skb)1377 static int e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1378 struct sk_buff *skb)
1379 {
1380 cb->command = cpu_to_le16(cb_iaaddr);
1381 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1382 return 0;
1383 }
1384
e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)1385 static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1386 {
1387 cb->command = cpu_to_le16(cb_dump);
1388 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1389 offsetof(struct mem, dump_buf));
1390 return 0;
1391 }
1392
e100_phy_check_without_mii(struct nic *nic)1393 static int e100_phy_check_without_mii(struct nic *nic)
1394 {
1395 u8 phy_type;
1396 int without_mii;
1397
1398 phy_type = (le16_to_cpu(nic->eeprom[eeprom_phy_iface]) >> 8) & 0x0f;
1399
1400 switch (phy_type) {
1401 case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1402 case I82503: /* Non-MII PHY; UNTESTED! */
1403 case S80C24: /* Non-MII PHY; tested and working */
1404 /* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1405 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1406 * doesn't have a programming interface of any sort. The
1407 * media is sensed automatically based on how the link partner
1408 * is configured. This is, in essence, manual configuration.
1409 */
1410 netif_info(nic, probe, nic->netdev,
1411 "found MII-less i82503 or 80c24 or other PHY\n");
1412
1413 nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1414 nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1415
1416 /* these might be needed for certain MII-less cards...
1417 * nic->flags |= ich;
1418 * nic->flags |= ich_10h_workaround; */
1419
1420 without_mii = 1;
1421 break;
1422 default:
1423 without_mii = 0;
1424 break;
1425 }
1426 return without_mii;
1427 }
1428
1429 #define NCONFIG_AUTO_SWITCH 0x0080
1430 #define MII_NSC_CONG MII_RESV1
1431 #define NSC_CONG_ENABLE 0x0100
1432 #define NSC_CONG_TXREADY 0x0400
1433 #define ADVERTISE_FC_SUPPORTED 0x0400
e100_phy_init(struct nic *nic)1434 static int e100_phy_init(struct nic *nic)
1435 {
1436 struct net_device *netdev = nic->netdev;
1437 u32 addr;
1438 u16 bmcr, stat, id_lo, id_hi, cong;
1439
1440 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1441 for (addr = 0; addr < 32; addr++) {
1442 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1443 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1444 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1445 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1446 if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1447 break;
1448 }
1449 if (addr == 32) {
1450 /* uhoh, no PHY detected: check whether we seem to be some
1451 * weird, rare variant which is *known* to not have any MII.
1452 * But do this AFTER MII checking only, since this does
1453 * lookup of EEPROM values which may easily be unreliable. */
1454 if (e100_phy_check_without_mii(nic))
1455 return 0; /* simply return and hope for the best */
1456 else {
1457 /* for unknown cases log a fatal error */
1458 netif_err(nic, hw, nic->netdev,
1459 "Failed to locate any known PHY, aborting\n");
1460 return -EAGAIN;
1461 }
1462 } else
1463 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1464 "phy_addr = %d\n", nic->mii.phy_id);
1465
1466 /* Get phy ID */
1467 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1468 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1469 nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1470 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1471 "phy ID = 0x%08X\n", nic->phy);
1472
1473 /* Select the phy and isolate the rest */
1474 for (addr = 0; addr < 32; addr++) {
1475 if (addr != nic->mii.phy_id) {
1476 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1477 } else if (nic->phy != phy_82552_v) {
1478 bmcr = mdio_read(netdev, addr, MII_BMCR);
1479 mdio_write(netdev, addr, MII_BMCR,
1480 bmcr & ~BMCR_ISOLATE);
1481 }
1482 }
1483 /*
1484 * Workaround for 82552:
1485 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1486 * other phy_id's) using bmcr value from addr discovery loop above.
1487 */
1488 if (nic->phy == phy_82552_v)
1489 mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1490 bmcr & ~BMCR_ISOLATE);
1491
1492 /* Handle National tx phys */
1493 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1494 if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1495 /* Disable congestion control */
1496 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1497 cong |= NSC_CONG_TXREADY;
1498 cong &= ~NSC_CONG_ENABLE;
1499 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1500 }
1501
1502 if (nic->phy == phy_82552_v) {
1503 u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1504
1505 /* assign special tweaked mdio_ctrl() function */
1506 nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1507
1508 /* Workaround Si not advertising flow-control during autoneg */
1509 advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1510 mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1511
1512 /* Reset for the above changes to take effect */
1513 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1514 bmcr |= BMCR_RESET;
1515 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1516 } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1517 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1518 (le16_to_cpu(nic->eeprom[eeprom_cnfg_mdix]) & eeprom_mdix_enabled))) {
1519 /* enable/disable MDI/MDI-X auto-switching. */
1520 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1521 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1522 }
1523
1524 return 0;
1525 }
1526
e100_hw_init(struct nic *nic)1527 static int e100_hw_init(struct nic *nic)
1528 {
1529 int err = 0;
1530
1531 e100_hw_reset(nic);
1532
1533 netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1534 if ((err = e100_self_test(nic)))
1535 return err;
1536
1537 if ((err = e100_phy_init(nic)))
1538 return err;
1539 if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1540 return err;
1541 if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1542 return err;
1543 if ((err = e100_load_ucode_wait(nic)))
1544 return err;
1545 if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1546 return err;
1547 if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1548 return err;
1549 if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1550 nic->dma_addr + offsetof(struct mem, stats))))
1551 return err;
1552 if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1553 return err;
1554
1555 e100_disable_irq(nic);
1556
1557 return 0;
1558 }
1559
e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)1560 static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1561 {
1562 struct net_device *netdev = nic->netdev;
1563 struct netdev_hw_addr *ha;
1564 u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1565
1566 cb->command = cpu_to_le16(cb_multi);
1567 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1568 i = 0;
1569 netdev_for_each_mc_addr(ha, netdev) {
1570 if (i == count)
1571 break;
1572 memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1573 ETH_ALEN);
1574 }
1575 return 0;
1576 }
1577
e100_set_multicast_list(struct net_device *netdev)1578 static void e100_set_multicast_list(struct net_device *netdev)
1579 {
1580 struct nic *nic = netdev_priv(netdev);
1581
1582 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1583 "mc_count=%d, flags=0x%04X\n",
1584 netdev_mc_count(netdev), netdev->flags);
1585
1586 if (netdev->flags & IFF_PROMISC)
1587 nic->flags |= promiscuous;
1588 else
1589 nic->flags &= ~promiscuous;
1590
1591 if (netdev->flags & IFF_ALLMULTI ||
1592 netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1593 nic->flags |= multicast_all;
1594 else
1595 nic->flags &= ~multicast_all;
1596
1597 e100_exec_cb(nic, NULL, e100_configure);
1598 e100_exec_cb(nic, NULL, e100_multi);
1599 }
1600
e100_update_stats(struct nic *nic)1601 static void e100_update_stats(struct nic *nic)
1602 {
1603 struct net_device *dev = nic->netdev;
1604 struct net_device_stats *ns = &dev->stats;
1605 struct stats *s = &nic->mem->stats;
1606 __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1607 (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1608 &s->complete;
1609
1610 /* Device's stats reporting may take several microseconds to
1611 * complete, so we're always waiting for results of the
1612 * previous command. */
1613
1614 if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1615 *complete = 0;
1616 nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1617 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1618 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1619 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1620 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1621 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1622 ns->collisions += nic->tx_collisions;
1623 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1624 le32_to_cpu(s->tx_lost_crs);
1625 nic->rx_short_frame_errors +=
1626 le32_to_cpu(s->rx_short_frame_errors);
1627 ns->rx_length_errors = nic->rx_short_frame_errors +
1628 nic->rx_over_length_errors;
1629 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1630 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1631 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1632 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1633 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1634 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1635 le32_to_cpu(s->rx_alignment_errors) +
1636 le32_to_cpu(s->rx_short_frame_errors) +
1637 le32_to_cpu(s->rx_cdt_errors);
1638 nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1639 nic->tx_single_collisions +=
1640 le32_to_cpu(s->tx_single_collisions);
1641 nic->tx_multiple_collisions +=
1642 le32_to_cpu(s->tx_multiple_collisions);
1643 if (nic->mac >= mac_82558_D101_A4) {
1644 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1645 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1646 nic->rx_fc_unsupported +=
1647 le32_to_cpu(s->fc_rcv_unsupported);
1648 if (nic->mac >= mac_82559_D101M) {
1649 nic->tx_tco_frames +=
1650 le16_to_cpu(s->xmt_tco_frames);
1651 nic->rx_tco_frames +=
1652 le16_to_cpu(s->rcv_tco_frames);
1653 }
1654 }
1655 }
1656
1657
1658 if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1659 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1660 "exec cuc_dump_reset failed\n");
1661 }
1662
e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)1663 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1664 {
1665 /* Adjust inter-frame-spacing (IFS) between two transmits if
1666 * we're getting collisions on a half-duplex connection. */
1667
1668 if (duplex == DUPLEX_HALF) {
1669 u32 prev = nic->adaptive_ifs;
1670 u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1671
1672 if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1673 (nic->tx_frames > min_frames)) {
1674 if (nic->adaptive_ifs < 60)
1675 nic->adaptive_ifs += 5;
1676 } else if (nic->tx_frames < min_frames) {
1677 if (nic->adaptive_ifs >= 5)
1678 nic->adaptive_ifs -= 5;
1679 }
1680 if (nic->adaptive_ifs != prev)
1681 e100_exec_cb(nic, NULL, e100_configure);
1682 }
1683 }
1684
e100_watchdog(struct timer_list *t)1685 static void e100_watchdog(struct timer_list *t)
1686 {
1687 struct nic *nic = from_timer(nic, t, watchdog);
1688 struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
1689 u32 speed;
1690
1691 netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1692 "right now = %ld\n", jiffies);
1693
1694 /* mii library handles link maintenance tasks */
1695
1696 mii_ethtool_gset(&nic->mii, &cmd);
1697 speed = ethtool_cmd_speed(&cmd);
1698
1699 if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1700 netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1701 speed == SPEED_100 ? 100 : 10,
1702 cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1703 } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1704 netdev_info(nic->netdev, "NIC Link is Down\n");
1705 }
1706
1707 mii_check_link(&nic->mii);
1708
1709 /* Software generated interrupt to recover from (rare) Rx
1710 * allocation failure.
1711 * Unfortunately have to use a spinlock to not re-enable interrupts
1712 * accidentally, due to hardware that shares a register between the
1713 * interrupt mask bit and the SW Interrupt generation bit */
1714 spin_lock_irq(&nic->cmd_lock);
1715 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1716 e100_write_flush(nic);
1717 spin_unlock_irq(&nic->cmd_lock);
1718
1719 e100_update_stats(nic);
1720 e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1721
1722 if (nic->mac <= mac_82557_D100_C)
1723 /* Issue a multicast command to workaround a 557 lock up */
1724 e100_set_multicast_list(nic->netdev);
1725
1726 if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1727 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1728 nic->flags |= ich_10h_workaround;
1729 else
1730 nic->flags &= ~ich_10h_workaround;
1731
1732 mod_timer(&nic->watchdog,
1733 round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1734 }
1735
e100_xmit_prepare(struct nic *nic, struct cb *cb, struct sk_buff *skb)1736 static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
1737 struct sk_buff *skb)
1738 {
1739 dma_addr_t dma_addr;
1740 cb->command = nic->tx_command;
1741
1742 dma_addr = dma_map_single(&nic->pdev->dev, skb->data, skb->len,
1743 DMA_TO_DEVICE);
1744 /* If we can't map the skb, have the upper layer try later */
1745 if (dma_mapping_error(&nic->pdev->dev, dma_addr))
1746 return -ENOMEM;
1747
1748 /*
1749 * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1750 * testing, ie sending frames with bad CRC.
1751 */
1752 if (unlikely(skb->no_fcs))
1753 cb->command |= cpu_to_le16(cb_tx_nc);
1754 else
1755 cb->command &= ~cpu_to_le16(cb_tx_nc);
1756
1757 /* interrupt every 16 packets regardless of delay */
1758 if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1759 cb->command |= cpu_to_le16(cb_i);
1760 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1761 cb->u.tcb.tcb_byte_count = 0;
1762 cb->u.tcb.threshold = nic->tx_threshold;
1763 cb->u.tcb.tbd_count = 1;
1764 cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);
1765 cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1766 skb_tx_timestamp(skb);
1767 return 0;
1768 }
1769
e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev)1770 static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1771 struct net_device *netdev)
1772 {
1773 struct nic *nic = netdev_priv(netdev);
1774 int err;
1775
1776 if (nic->flags & ich_10h_workaround) {
1777 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1778 Issue a NOP command followed by a 1us delay before
1779 issuing the Tx command. */
1780 if (e100_exec_cmd(nic, cuc_nop, 0))
1781 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1782 "exec cuc_nop failed\n");
1783 udelay(1);
1784 }
1785
1786 err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1787
1788 switch (err) {
1789 case -ENOSPC:
1790 /* We queued the skb, but now we're out of space. */
1791 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1792 "No space for CB\n");
1793 netif_stop_queue(netdev);
1794 break;
1795 case -ENOMEM:
1796 /* This is a hard error - log it. */
1797 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1798 "Out of Tx resources, returning skb\n");
1799 netif_stop_queue(netdev);
1800 return NETDEV_TX_BUSY;
1801 }
1802
1803 return NETDEV_TX_OK;
1804 }
1805
e100_tx_clean(struct nic *nic)1806 static int e100_tx_clean(struct nic *nic)
1807 {
1808 struct net_device *dev = nic->netdev;
1809 struct cb *cb;
1810 int tx_cleaned = 0;
1811
1812 spin_lock(&nic->cb_lock);
1813
1814 /* Clean CBs marked complete */
1815 for (cb = nic->cb_to_clean;
1816 cb->status & cpu_to_le16(cb_complete);
1817 cb = nic->cb_to_clean = cb->next) {
1818 dma_rmb(); /* read skb after status */
1819 netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1820 "cb[%d]->status = 0x%04X\n",
1821 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1822 cb->status);
1823
1824 if (likely(cb->skb != NULL)) {
1825 dev->stats.tx_packets++;
1826 dev->stats.tx_bytes += cb->skb->len;
1827
1828 dma_unmap_single(&nic->pdev->dev,
1829 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1830 le16_to_cpu(cb->u.tcb.tbd.size),
1831 DMA_TO_DEVICE);
1832 dev_kfree_skb_any(cb->skb);
1833 cb->skb = NULL;
1834 tx_cleaned = 1;
1835 }
1836 cb->status = 0;
1837 nic->cbs_avail++;
1838 }
1839
1840 spin_unlock(&nic->cb_lock);
1841
1842 /* Recover from running out of Tx resources in xmit_frame */
1843 if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1844 netif_wake_queue(nic->netdev);
1845
1846 return tx_cleaned;
1847 }
1848
e100_clean_cbs(struct nic *nic)1849 static void e100_clean_cbs(struct nic *nic)
1850 {
1851 if (nic->cbs) {
1852 while (nic->cbs_avail != nic->params.cbs.count) {
1853 struct cb *cb = nic->cb_to_clean;
1854 if (cb->skb) {
1855 dma_unmap_single(&nic->pdev->dev,
1856 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1857 le16_to_cpu(cb->u.tcb.tbd.size),
1858 DMA_TO_DEVICE);
1859 dev_kfree_skb(cb->skb);
1860 }
1861 nic->cb_to_clean = nic->cb_to_clean->next;
1862 nic->cbs_avail++;
1863 }
1864 dma_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1865 nic->cbs = NULL;
1866 nic->cbs_avail = 0;
1867 }
1868 nic->cuc_cmd = cuc_start;
1869 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1870 nic->cbs;
1871 }
1872
e100_alloc_cbs(struct nic *nic)1873 static int e100_alloc_cbs(struct nic *nic)
1874 {
1875 struct cb *cb;
1876 unsigned int i, count = nic->params.cbs.count;
1877
1878 nic->cuc_cmd = cuc_start;
1879 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1880 nic->cbs_avail = 0;
1881
1882 nic->cbs = dma_pool_zalloc(nic->cbs_pool, GFP_KERNEL,
1883 &nic->cbs_dma_addr);
1884 if (!nic->cbs)
1885 return -ENOMEM;
1886
1887 for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1888 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1889 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1890
1891 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1892 cb->link = cpu_to_le32(nic->cbs_dma_addr +
1893 ((i+1) % count) * sizeof(struct cb));
1894 }
1895
1896 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1897 nic->cbs_avail = count;
1898
1899 return 0;
1900 }
1901
e100_start_receiver(struct nic *nic, struct rx *rx)1902 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1903 {
1904 if (!nic->rxs) return;
1905 if (RU_SUSPENDED != nic->ru_running) return;
1906
1907 /* handle init time starts */
1908 if (!rx) rx = nic->rxs;
1909
1910 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1911 if (rx->skb) {
1912 e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1913 nic->ru_running = RU_RUNNING;
1914 }
1915 }
1916
1917 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
e100_rx_alloc_skb(struct nic *nic, struct rx *rx)1918 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1919 {
1920 if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1921 return -ENOMEM;
1922
1923 /* Init, and map the RFD. */
1924 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1925 rx->dma_addr = dma_map_single(&nic->pdev->dev, rx->skb->data,
1926 RFD_BUF_LEN, DMA_BIDIRECTIONAL);
1927
1928 if (dma_mapping_error(&nic->pdev->dev, rx->dma_addr)) {
1929 dev_kfree_skb_any(rx->skb);
1930 rx->skb = NULL;
1931 rx->dma_addr = 0;
1932 return -ENOMEM;
1933 }
1934
1935 /* Link the RFD to end of RFA by linking previous RFD to
1936 * this one. We are safe to touch the previous RFD because
1937 * it is protected by the before last buffer's el bit being set */
1938 if (rx->prev->skb) {
1939 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1940 put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1941 dma_sync_single_for_device(&nic->pdev->dev,
1942 rx->prev->dma_addr,
1943 sizeof(struct rfd),
1944 DMA_BIDIRECTIONAL);
1945 }
1946
1947 return 0;
1948 }
1949
e100_rx_indicate(struct nic *nic, struct rx *rx, unsigned int *work_done, unsigned int work_to_do)1950 static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1951 unsigned int *work_done, unsigned int work_to_do)
1952 {
1953 struct net_device *dev = nic->netdev;
1954 struct sk_buff *skb = rx->skb;
1955 struct rfd *rfd = (struct rfd *)skb->data;
1956 u16 rfd_status, actual_size;
1957 u16 fcs_pad = 0;
1958
1959 if (unlikely(work_done && *work_done >= work_to_do))
1960 return -EAGAIN;
1961
1962 /* Need to sync before taking a peek at cb_complete bit */
1963 dma_sync_single_for_cpu(&nic->pdev->dev, rx->dma_addr,
1964 sizeof(struct rfd), DMA_BIDIRECTIONAL);
1965 rfd_status = le16_to_cpu(rfd->status);
1966
1967 netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1968 "status=0x%04X\n", rfd_status);
1969 dma_rmb(); /* read size after status bit */
1970
1971 /* If data isn't ready, nothing to indicate */
1972 if (unlikely(!(rfd_status & cb_complete))) {
1973 /* If the next buffer has the el bit, but we think the receiver
1974 * is still running, check to see if it really stopped while
1975 * we had interrupts off.
1976 * This allows for a fast restart without re-enabling
1977 * interrupts */
1978 if ((le16_to_cpu(rfd->command) & cb_el) &&
1979 (RU_RUNNING == nic->ru_running))
1980
1981 if (ioread8(&nic->csr->scb.status) & rus_no_res)
1982 nic->ru_running = RU_SUSPENDED;
1983 dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
1984 sizeof(struct rfd),
1985 DMA_FROM_DEVICE);
1986 return -ENODATA;
1987 }
1988
1989 /* Get actual data size */
1990 if (unlikely(dev->features & NETIF_F_RXFCS))
1991 fcs_pad = 4;
1992 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1993 if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1994 actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1995
1996 /* Get data */
1997 dma_unmap_single(&nic->pdev->dev, rx->dma_addr, RFD_BUF_LEN,
1998 DMA_BIDIRECTIONAL);
1999
2000 /* If this buffer has the el bit, but we think the receiver
2001 * is still running, check to see if it really stopped while
2002 * we had interrupts off.
2003 * This allows for a fast restart without re-enabling interrupts.
2004 * This can happen when the RU sees the size change but also sees
2005 * the el bit set. */
2006 if ((le16_to_cpu(rfd->command) & cb_el) &&
2007 (RU_RUNNING == nic->ru_running)) {
2008
2009 if (ioread8(&nic->csr->scb.status) & rus_no_res)
2010 nic->ru_running = RU_SUSPENDED;
2011 }
2012
2013 /* Pull off the RFD and put the actual data (minus eth hdr) */
2014 skb_reserve(skb, sizeof(struct rfd));
2015 skb_put(skb, actual_size);
2016 skb->protocol = eth_type_trans(skb, nic->netdev);
2017
2018 /* If we are receiving all frames, then don't bother
2019 * checking for errors.
2020 */
2021 if (unlikely(dev->features & NETIF_F_RXALL)) {
2022 if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
2023 /* Received oversized frame, but keep it. */
2024 nic->rx_over_length_errors++;
2025 goto process_skb;
2026 }
2027
2028 if (unlikely(!(rfd_status & cb_ok))) {
2029 /* Don't indicate if hardware indicates errors */
2030 dev_kfree_skb_any(skb);
2031 } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
2032 /* Don't indicate oversized frames */
2033 nic->rx_over_length_errors++;
2034 dev_kfree_skb_any(skb);
2035 } else {
2036 process_skb:
2037 dev->stats.rx_packets++;
2038 dev->stats.rx_bytes += (actual_size - fcs_pad);
2039 netif_receive_skb(skb);
2040 if (work_done)
2041 (*work_done)++;
2042 }
2043
2044 rx->skb = NULL;
2045
2046 return 0;
2047 }
2048
e100_rx_clean(struct nic *nic, unsigned int *work_done, unsigned int work_to_do)2049 static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
2050 unsigned int work_to_do)
2051 {
2052 struct rx *rx;
2053 int restart_required = 0, err = 0;
2054 struct rx *old_before_last_rx, *new_before_last_rx;
2055 struct rfd *old_before_last_rfd, *new_before_last_rfd;
2056
2057 /* Indicate newly arrived packets */
2058 for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2059 err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2060 /* Hit quota or no more to clean */
2061 if (-EAGAIN == err || -ENODATA == err)
2062 break;
2063 }
2064
2065
2066 /* On EAGAIN, hit quota so have more work to do, restart once
2067 * cleanup is complete.
2068 * Else, are we already rnr? then pay attention!!! this ensures that
2069 * the state machine progression never allows a start with a
2070 * partially cleaned list, avoiding a race between hardware
2071 * and rx_to_clean when in NAPI mode */
2072 if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2073 restart_required = 1;
2074
2075 old_before_last_rx = nic->rx_to_use->prev->prev;
2076 old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2077
2078 /* Alloc new skbs to refill list */
2079 for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2080 if (unlikely(e100_rx_alloc_skb(nic, rx)))
2081 break; /* Better luck next time (see watchdog) */
2082 }
2083
2084 new_before_last_rx = nic->rx_to_use->prev->prev;
2085 if (new_before_last_rx != old_before_last_rx) {
2086 /* Set the el-bit on the buffer that is before the last buffer.
2087 * This lets us update the next pointer on the last buffer
2088 * without worrying about hardware touching it.
2089 * We set the size to 0 to prevent hardware from touching this
2090 * buffer.
2091 * When the hardware hits the before last buffer with el-bit
2092 * and size of 0, it will RNR interrupt, the RUS will go into
2093 * the No Resources state. It will not complete nor write to
2094 * this buffer. */
2095 new_before_last_rfd =
2096 (struct rfd *)new_before_last_rx->skb->data;
2097 new_before_last_rfd->size = 0;
2098 new_before_last_rfd->command |= cpu_to_le16(cb_el);
2099 dma_sync_single_for_device(&nic->pdev->dev,
2100 new_before_last_rx->dma_addr,
2101 sizeof(struct rfd),
2102 DMA_BIDIRECTIONAL);
2103
2104 /* Now that we have a new stopping point, we can clear the old
2105 * stopping point. We must sync twice to get the proper
2106 * ordering on the hardware side of things. */
2107 old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2108 dma_sync_single_for_device(&nic->pdev->dev,
2109 old_before_last_rx->dma_addr,
2110 sizeof(struct rfd),
2111 DMA_BIDIRECTIONAL);
2112 old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
2113 + ETH_FCS_LEN);
2114 dma_sync_single_for_device(&nic->pdev->dev,
2115 old_before_last_rx->dma_addr,
2116 sizeof(struct rfd),
2117 DMA_BIDIRECTIONAL);
2118 }
2119
2120 if (restart_required) {
2121 // ack the rnr?
2122 iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2123 e100_start_receiver(nic, nic->rx_to_clean);
2124 if (work_done)
2125 (*work_done)++;
2126 }
2127 }
2128
e100_rx_clean_list(struct nic *nic)2129 static void e100_rx_clean_list(struct nic *nic)
2130 {
2131 struct rx *rx;
2132 unsigned int i, count = nic->params.rfds.count;
2133
2134 nic->ru_running = RU_UNINITIALIZED;
2135
2136 if (nic->rxs) {
2137 for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2138 if (rx->skb) {
2139 dma_unmap_single(&nic->pdev->dev,
2140 rx->dma_addr, RFD_BUF_LEN,
2141 DMA_BIDIRECTIONAL);
2142 dev_kfree_skb(rx->skb);
2143 }
2144 }
2145 kfree(nic->rxs);
2146 nic->rxs = NULL;
2147 }
2148
2149 nic->rx_to_use = nic->rx_to_clean = NULL;
2150 }
2151
e100_rx_alloc_list(struct nic *nic)2152 static int e100_rx_alloc_list(struct nic *nic)
2153 {
2154 struct rx *rx;
2155 unsigned int i, count = nic->params.rfds.count;
2156 struct rfd *before_last;
2157
2158 nic->rx_to_use = nic->rx_to_clean = NULL;
2159 nic->ru_running = RU_UNINITIALIZED;
2160
2161 if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_KERNEL)))
2162 return -ENOMEM;
2163
2164 for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2165 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2166 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2167 if (e100_rx_alloc_skb(nic, rx)) {
2168 e100_rx_clean_list(nic);
2169 return -ENOMEM;
2170 }
2171 }
2172 /* Set the el-bit on the buffer that is before the last buffer.
2173 * This lets us update the next pointer on the last buffer without
2174 * worrying about hardware touching it.
2175 * We set the size to 0 to prevent hardware from touching this buffer.
2176 * When the hardware hits the before last buffer with el-bit and size
2177 * of 0, it will RNR interrupt, the RU will go into the No Resources
2178 * state. It will not complete nor write to this buffer. */
2179 rx = nic->rxs->prev->prev;
2180 before_last = (struct rfd *)rx->skb->data;
2181 before_last->command |= cpu_to_le16(cb_el);
2182 before_last->size = 0;
2183 dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
2184 sizeof(struct rfd), DMA_BIDIRECTIONAL);
2185
2186 nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2187 nic->ru_running = RU_SUSPENDED;
2188
2189 return 0;
2190 }
2191
e100_intr(int irq, void *dev_id)2192 static irqreturn_t e100_intr(int irq, void *dev_id)
2193 {
2194 struct net_device *netdev = dev_id;
2195 struct nic *nic = netdev_priv(netdev);
2196 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2197
2198 netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2199 "stat_ack = 0x%02X\n", stat_ack);
2200
2201 if (stat_ack == stat_ack_not_ours || /* Not our interrupt */
2202 stat_ack == stat_ack_not_present) /* Hardware is ejected */
2203 return IRQ_NONE;
2204
2205 /* Ack interrupt(s) */
2206 iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2207
2208 /* We hit Receive No Resource (RNR); restart RU after cleaning */
2209 if (stat_ack & stat_ack_rnr)
2210 nic->ru_running = RU_SUSPENDED;
2211
2212 if (likely(napi_schedule_prep(&nic->napi))) {
2213 e100_disable_irq(nic);
2214 __napi_schedule(&nic->napi);
2215 }
2216
2217 return IRQ_HANDLED;
2218 }
2219
e100_poll(struct napi_struct *napi, int budget)2220 static int e100_poll(struct napi_struct *napi, int budget)
2221 {
2222 struct nic *nic = container_of(napi, struct nic, napi);
2223 unsigned int work_done = 0;
2224
2225 e100_rx_clean(nic, &work_done, budget);
2226 e100_tx_clean(nic);
2227
2228 /* If budget fully consumed, continue polling */
2229 if (work_done == budget)
2230 return budget;
2231
2232 /* only re-enable interrupt if stack agrees polling is really done */
2233 if (likely(napi_complete_done(napi, work_done)))
2234 e100_enable_irq(nic);
2235
2236 return work_done;
2237 }
2238
2239 #ifdef CONFIG_NET_POLL_CONTROLLER
e100_netpoll(struct net_device *netdev)2240 static void e100_netpoll(struct net_device *netdev)
2241 {
2242 struct nic *nic = netdev_priv(netdev);
2243
2244 e100_disable_irq(nic);
2245 e100_intr(nic->pdev->irq, netdev);
2246 e100_tx_clean(nic);
2247 e100_enable_irq(nic);
2248 }
2249 #endif
2250
e100_set_mac_address(struct net_device *netdev, void *p)2251 static int e100_set_mac_address(struct net_device *netdev, void *p)
2252 {
2253 struct nic *nic = netdev_priv(netdev);
2254 struct sockaddr *addr = p;
2255
2256 if (!is_valid_ether_addr(addr->sa_data))
2257 return -EADDRNOTAVAIL;
2258
2259 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2260 e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2261
2262 return 0;
2263 }
2264
e100_asf(struct nic *nic)2265 static int e100_asf(struct nic *nic)
2266 {
2267 /* ASF can be enabled from eeprom */
2268 return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2269 (le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_asf) &&
2270 !(le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_gcl) &&
2271 ((le16_to_cpu(nic->eeprom[eeprom_smbus_addr]) & 0xFF) != 0xFE);
2272 }
2273
e100_up(struct nic *nic)2274 static int e100_up(struct nic *nic)
2275 {
2276 int err;
2277
2278 if ((err = e100_rx_alloc_list(nic)))
2279 return err;
2280 if ((err = e100_alloc_cbs(nic)))
2281 goto err_rx_clean_list;
2282 if ((err = e100_hw_init(nic)))
2283 goto err_clean_cbs;
2284 e100_set_multicast_list(nic->netdev);
2285 e100_start_receiver(nic, NULL);
2286 mod_timer(&nic->watchdog, jiffies);
2287 if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2288 nic->netdev->name, nic->netdev)))
2289 goto err_no_irq;
2290 netif_wake_queue(nic->netdev);
2291 napi_enable(&nic->napi);
2292 /* enable ints _after_ enabling poll, preventing a race between
2293 * disable ints+schedule */
2294 e100_enable_irq(nic);
2295 return 0;
2296
2297 err_no_irq:
2298 del_timer_sync(&nic->watchdog);
2299 err_clean_cbs:
2300 e100_clean_cbs(nic);
2301 err_rx_clean_list:
2302 e100_rx_clean_list(nic);
2303 return err;
2304 }
2305
e100_down(struct nic *nic)2306 static void e100_down(struct nic *nic)
2307 {
2308 /* wait here for poll to complete */
2309 napi_disable(&nic->napi);
2310 netif_stop_queue(nic->netdev);
2311 e100_hw_reset(nic);
2312 free_irq(nic->pdev->irq, nic->netdev);
2313 del_timer_sync(&nic->watchdog);
2314 netif_carrier_off(nic->netdev);
2315 e100_clean_cbs(nic);
2316 e100_rx_clean_list(nic);
2317 }
2318
e100_tx_timeout(struct net_device *netdev, unsigned int txqueue)2319 static void e100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
2320 {
2321 struct nic *nic = netdev_priv(netdev);
2322
2323 /* Reset outside of interrupt context, to avoid request_irq
2324 * in interrupt context */
2325 schedule_work(&nic->tx_timeout_task);
2326 }
2327
e100_tx_timeout_task(struct work_struct *work)2328 static void e100_tx_timeout_task(struct work_struct *work)
2329 {
2330 struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2331 struct net_device *netdev = nic->netdev;
2332
2333 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2334 "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2335
2336 rtnl_lock();
2337 if (netif_running(netdev)) {
2338 e100_down(netdev_priv(netdev));
2339 e100_up(netdev_priv(netdev));
2340 }
2341 rtnl_unlock();
2342 }
2343
e100_loopback_test(struct nic *nic, enum loopback loopback_mode)2344 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2345 {
2346 int err;
2347 struct sk_buff *skb;
2348
2349 /* Use driver resources to perform internal MAC or PHY
2350 * loopback test. A single packet is prepared and transmitted
2351 * in loopback mode, and the test passes if the received
2352 * packet compares byte-for-byte to the transmitted packet. */
2353
2354 if ((err = e100_rx_alloc_list(nic)))
2355 return err;
2356 if ((err = e100_alloc_cbs(nic)))
2357 goto err_clean_rx;
2358
2359 /* ICH PHY loopback is broken so do MAC loopback instead */
2360 if (nic->flags & ich && loopback_mode == lb_phy)
2361 loopback_mode = lb_mac;
2362
2363 nic->loopback = loopback_mode;
2364 if ((err = e100_hw_init(nic)))
2365 goto err_loopback_none;
2366
2367 if (loopback_mode == lb_phy)
2368 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2369 BMCR_LOOPBACK);
2370
2371 e100_start_receiver(nic, NULL);
2372
2373 if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2374 err = -ENOMEM;
2375 goto err_loopback_none;
2376 }
2377 skb_put(skb, ETH_DATA_LEN);
2378 memset(skb->data, 0xFF, ETH_DATA_LEN);
2379 e100_xmit_frame(skb, nic->netdev);
2380
2381 msleep(10);
2382
2383 dma_sync_single_for_cpu(&nic->pdev->dev, nic->rx_to_clean->dma_addr,
2384 RFD_BUF_LEN, DMA_BIDIRECTIONAL);
2385
2386 if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2387 skb->data, ETH_DATA_LEN))
2388 err = -EAGAIN;
2389
2390 err_loopback_none:
2391 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2392 nic->loopback = lb_none;
2393 e100_clean_cbs(nic);
2394 e100_hw_reset(nic);
2395 err_clean_rx:
2396 e100_rx_clean_list(nic);
2397 return err;
2398 }
2399
2400 #define MII_LED_CONTROL 0x1B
2401 #define E100_82552_LED_OVERRIDE 0x19
2402 #define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */
2403 #define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */
2404
e100_get_link_ksettings(struct net_device *netdev, struct ethtool_link_ksettings *cmd)2405 static int e100_get_link_ksettings(struct net_device *netdev,
2406 struct ethtool_link_ksettings *cmd)
2407 {
2408 struct nic *nic = netdev_priv(netdev);
2409
2410 mii_ethtool_get_link_ksettings(&nic->mii, cmd);
2411
2412 return 0;
2413 }
2414
e100_set_link_ksettings(struct net_device *netdev, const struct ethtool_link_ksettings *cmd)2415 static int e100_set_link_ksettings(struct net_device *netdev,
2416 const struct ethtool_link_ksettings *cmd)
2417 {
2418 struct nic *nic = netdev_priv(netdev);
2419 int err;
2420
2421 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2422 err = mii_ethtool_set_link_ksettings(&nic->mii, cmd);
2423 e100_exec_cb(nic, NULL, e100_configure);
2424
2425 return err;
2426 }
2427
e100_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *info)2428 static void e100_get_drvinfo(struct net_device *netdev,
2429 struct ethtool_drvinfo *info)
2430 {
2431 struct nic *nic = netdev_priv(netdev);
2432 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2433 strlcpy(info->bus_info, pci_name(nic->pdev),
2434 sizeof(info->bus_info));
2435 }
2436
2437 #define E100_PHY_REGS 0x1D
e100_get_regs_len(struct net_device *netdev)2438 static int e100_get_regs_len(struct net_device *netdev)
2439 {
2440 struct nic *nic = netdev_priv(netdev);
2441
2442 /* We know the number of registers, and the size of the dump buffer.
2443 * Calculate the total size in bytes.
2444 */
2445 return (1 + E100_PHY_REGS) * sizeof(u32) + sizeof(nic->mem->dump_buf);
2446 }
2447
e100_get_regs(struct net_device *netdev, struct ethtool_regs *regs, void *p)2448 static void e100_get_regs(struct net_device *netdev,
2449 struct ethtool_regs *regs, void *p)
2450 {
2451 struct nic *nic = netdev_priv(netdev);
2452 u32 *buff = p;
2453 int i;
2454
2455 regs->version = (1 << 24) | nic->pdev->revision;
2456 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2457 ioread8(&nic->csr->scb.cmd_lo) << 16 |
2458 ioread16(&nic->csr->scb.status);
2459 for (i = 0; i < E100_PHY_REGS; i++)
2460 /* Note that we read the registers in reverse order. This
2461 * ordering is the ABI apparently used by ethtool and other
2462 * applications.
2463 */
2464 buff[1 + i] = mdio_read(netdev, nic->mii.phy_id,
2465 E100_PHY_REGS - 1 - i);
2466 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2467 e100_exec_cb(nic, NULL, e100_dump);
2468 msleep(10);
2469 memcpy(&buff[1 + E100_PHY_REGS], nic->mem->dump_buf,
2470 sizeof(nic->mem->dump_buf));
2471 }
2472
e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)2473 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2474 {
2475 struct nic *nic = netdev_priv(netdev);
2476 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
2477 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2478 }
2479
e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)2480 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2481 {
2482 struct nic *nic = netdev_priv(netdev);
2483
2484 if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2485 !device_can_wakeup(&nic->pdev->dev))
2486 return -EOPNOTSUPP;
2487
2488 if (wol->wolopts)
2489 nic->flags |= wol_magic;
2490 else
2491 nic->flags &= ~wol_magic;
2492
2493 device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2494
2495 e100_exec_cb(nic, NULL, e100_configure);
2496
2497 return 0;
2498 }
2499
e100_get_msglevel(struct net_device *netdev)2500 static u32 e100_get_msglevel(struct net_device *netdev)
2501 {
2502 struct nic *nic = netdev_priv(netdev);
2503 return nic->msg_enable;
2504 }
2505
e100_set_msglevel(struct net_device *netdev, u32 value)2506 static void e100_set_msglevel(struct net_device *netdev, u32 value)
2507 {
2508 struct nic *nic = netdev_priv(netdev);
2509 nic->msg_enable = value;
2510 }
2511
e100_nway_reset(struct net_device *netdev)2512 static int e100_nway_reset(struct net_device *netdev)
2513 {
2514 struct nic *nic = netdev_priv(netdev);
2515 return mii_nway_restart(&nic->mii);
2516 }
2517
e100_get_link(struct net_device *netdev)2518 static u32 e100_get_link(struct net_device *netdev)
2519 {
2520 struct nic *nic = netdev_priv(netdev);
2521 return mii_link_ok(&nic->mii);
2522 }
2523
e100_get_eeprom_len(struct net_device *netdev)2524 static int e100_get_eeprom_len(struct net_device *netdev)
2525 {
2526 struct nic *nic = netdev_priv(netdev);
2527 return nic->eeprom_wc << 1;
2528 }
2529
2530 #define E100_EEPROM_MAGIC 0x1234
e100_get_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, u8 *bytes)2531 static int e100_get_eeprom(struct net_device *netdev,
2532 struct ethtool_eeprom *eeprom, u8 *bytes)
2533 {
2534 struct nic *nic = netdev_priv(netdev);
2535
2536 eeprom->magic = E100_EEPROM_MAGIC;
2537 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2538
2539 return 0;
2540 }
2541
e100_set_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, u8 *bytes)2542 static int e100_set_eeprom(struct net_device *netdev,
2543 struct ethtool_eeprom *eeprom, u8 *bytes)
2544 {
2545 struct nic *nic = netdev_priv(netdev);
2546
2547 if (eeprom->magic != E100_EEPROM_MAGIC)
2548 return -EINVAL;
2549
2550 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2551
2552 return e100_eeprom_save(nic, eeprom->offset >> 1,
2553 (eeprom->len >> 1) + 1);
2554 }
2555
e100_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)2556 static void e100_get_ringparam(struct net_device *netdev,
2557 struct ethtool_ringparam *ring)
2558 {
2559 struct nic *nic = netdev_priv(netdev);
2560 struct param_range *rfds = &nic->params.rfds;
2561 struct param_range *cbs = &nic->params.cbs;
2562
2563 ring->rx_max_pending = rfds->max;
2564 ring->tx_max_pending = cbs->max;
2565 ring->rx_pending = rfds->count;
2566 ring->tx_pending = cbs->count;
2567 }
2568
e100_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)2569 static int e100_set_ringparam(struct net_device *netdev,
2570 struct ethtool_ringparam *ring)
2571 {
2572 struct nic *nic = netdev_priv(netdev);
2573 struct param_range *rfds = &nic->params.rfds;
2574 struct param_range *cbs = &nic->params.cbs;
2575
2576 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2577 return -EINVAL;
2578
2579 if (netif_running(netdev))
2580 e100_down(nic);
2581 rfds->count = max(ring->rx_pending, rfds->min);
2582 rfds->count = min(rfds->count, rfds->max);
2583 cbs->count = max(ring->tx_pending, cbs->min);
2584 cbs->count = min(cbs->count, cbs->max);
2585 netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2586 rfds->count, cbs->count);
2587 if (netif_running(netdev))
2588 e100_up(nic);
2589
2590 return 0;
2591 }
2592
2593 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2594 "Link test (on/offline)",
2595 "Eeprom test (on/offline)",
2596 "Self test (offline)",
2597 "Mac loopback (offline)",
2598 "Phy loopback (offline)",
2599 };
2600 #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test)
2601
e100_diag_test(struct net_device *netdev, struct ethtool_test *test, u64 *data)2602 static void e100_diag_test(struct net_device *netdev,
2603 struct ethtool_test *test, u64 *data)
2604 {
2605 struct ethtool_cmd cmd;
2606 struct nic *nic = netdev_priv(netdev);
2607 int i;
2608
2609 memset(data, 0, E100_TEST_LEN * sizeof(u64));
2610 data[0] = !mii_link_ok(&nic->mii);
2611 data[1] = e100_eeprom_load(nic);
2612 if (test->flags & ETH_TEST_FL_OFFLINE) {
2613
2614 /* save speed, duplex & autoneg settings */
2615 mii_ethtool_gset(&nic->mii, &cmd);
2616
2617 if (netif_running(netdev))
2618 e100_down(nic);
2619 data[2] = e100_self_test(nic);
2620 data[3] = e100_loopback_test(nic, lb_mac);
2621 data[4] = e100_loopback_test(nic, lb_phy);
2622
2623 /* restore speed, duplex & autoneg settings */
2624 mii_ethtool_sset(&nic->mii, &cmd);
2625
2626 if (netif_running(netdev))
2627 e100_up(nic);
2628 }
2629 for (i = 0; i < E100_TEST_LEN; i++)
2630 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2631
2632 msleep_interruptible(4 * 1000);
2633 }
2634
e100_set_phys_id(struct net_device *netdev, enum ethtool_phys_id_state state)2635 static int e100_set_phys_id(struct net_device *netdev,
2636 enum ethtool_phys_id_state state)
2637 {
2638 struct nic *nic = netdev_priv(netdev);
2639 enum led_state {
2640 led_on = 0x01,
2641 led_off = 0x04,
2642 led_on_559 = 0x05,
2643 led_on_557 = 0x07,
2644 };
2645 u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2646 MII_LED_CONTROL;
2647 u16 leds = 0;
2648
2649 switch (state) {
2650 case ETHTOOL_ID_ACTIVE:
2651 return 2;
2652
2653 case ETHTOOL_ID_ON:
2654 leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2655 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2656 break;
2657
2658 case ETHTOOL_ID_OFF:
2659 leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2660 break;
2661
2662 case ETHTOOL_ID_INACTIVE:
2663 break;
2664 }
2665
2666 mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
2667 return 0;
2668 }
2669
2670 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2671 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2672 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2673 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2674 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2675 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2676 "tx_heartbeat_errors", "tx_window_errors",
2677 /* device-specific stats */
2678 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2679 "tx_flow_control_pause", "rx_flow_control_pause",
2680 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2681 "rx_short_frame_errors", "rx_over_length_errors",
2682 };
2683 #define E100_NET_STATS_LEN 21
2684 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats)
2685
e100_get_sset_count(struct net_device *netdev, int sset)2686 static int e100_get_sset_count(struct net_device *netdev, int sset)
2687 {
2688 switch (sset) {
2689 case ETH_SS_TEST:
2690 return E100_TEST_LEN;
2691 case ETH_SS_STATS:
2692 return E100_STATS_LEN;
2693 default:
2694 return -EOPNOTSUPP;
2695 }
2696 }
2697
e100_get_ethtool_stats(struct net_device *netdev, struct ethtool_stats *stats, u64 *data)2698 static void e100_get_ethtool_stats(struct net_device *netdev,
2699 struct ethtool_stats *stats, u64 *data)
2700 {
2701 struct nic *nic = netdev_priv(netdev);
2702 int i;
2703
2704 for (i = 0; i < E100_NET_STATS_LEN; i++)
2705 data[i] = ((unsigned long *)&netdev->stats)[i];
2706
2707 data[i++] = nic->tx_deferred;
2708 data[i++] = nic->tx_single_collisions;
2709 data[i++] = nic->tx_multiple_collisions;
2710 data[i++] = nic->tx_fc_pause;
2711 data[i++] = nic->rx_fc_pause;
2712 data[i++] = nic->rx_fc_unsupported;
2713 data[i++] = nic->tx_tco_frames;
2714 data[i++] = nic->rx_tco_frames;
2715 data[i++] = nic->rx_short_frame_errors;
2716 data[i++] = nic->rx_over_length_errors;
2717 }
2718
e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)2719 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2720 {
2721 switch (stringset) {
2722 case ETH_SS_TEST:
2723 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2724 break;
2725 case ETH_SS_STATS:
2726 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2727 break;
2728 }
2729 }
2730
2731 static const struct ethtool_ops e100_ethtool_ops = {
2732 .get_drvinfo = e100_get_drvinfo,
2733 .get_regs_len = e100_get_regs_len,
2734 .get_regs = e100_get_regs,
2735 .get_wol = e100_get_wol,
2736 .set_wol = e100_set_wol,
2737 .get_msglevel = e100_get_msglevel,
2738 .set_msglevel = e100_set_msglevel,
2739 .nway_reset = e100_nway_reset,
2740 .get_link = e100_get_link,
2741 .get_eeprom_len = e100_get_eeprom_len,
2742 .get_eeprom = e100_get_eeprom,
2743 .set_eeprom = e100_set_eeprom,
2744 .get_ringparam = e100_get_ringparam,
2745 .set_ringparam = e100_set_ringparam,
2746 .self_test = e100_diag_test,
2747 .get_strings = e100_get_strings,
2748 .set_phys_id = e100_set_phys_id,
2749 .get_ethtool_stats = e100_get_ethtool_stats,
2750 .get_sset_count = e100_get_sset_count,
2751 .get_ts_info = ethtool_op_get_ts_info,
2752 .get_link_ksettings = e100_get_link_ksettings,
2753 .set_link_ksettings = e100_set_link_ksettings,
2754 };
2755
e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)2756 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2757 {
2758 struct nic *nic = netdev_priv(netdev);
2759
2760 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2761 }
2762
e100_alloc(struct nic *nic)2763 static int e100_alloc(struct nic *nic)
2764 {
2765 nic->mem = dma_alloc_coherent(&nic->pdev->dev, sizeof(struct mem),
2766 &nic->dma_addr, GFP_KERNEL);
2767 return nic->mem ? 0 : -ENOMEM;
2768 }
2769
e100_free(struct nic *nic)2770 static void e100_free(struct nic *nic)
2771 {
2772 if (nic->mem) {
2773 dma_free_coherent(&nic->pdev->dev, sizeof(struct mem),
2774 nic->mem, nic->dma_addr);
2775 nic->mem = NULL;
2776 }
2777 }
2778
e100_open(struct net_device *netdev)2779 static int e100_open(struct net_device *netdev)
2780 {
2781 struct nic *nic = netdev_priv(netdev);
2782 int err = 0;
2783
2784 netif_carrier_off(netdev);
2785 if ((err = e100_up(nic)))
2786 netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2787 return err;
2788 }
2789
e100_close(struct net_device *netdev)2790 static int e100_close(struct net_device *netdev)
2791 {
2792 e100_down(netdev_priv(netdev));
2793 return 0;
2794 }
2795
e100_set_features(struct net_device *netdev, netdev_features_t features)2796 static int e100_set_features(struct net_device *netdev,
2797 netdev_features_t features)
2798 {
2799 struct nic *nic = netdev_priv(netdev);
2800 netdev_features_t changed = features ^ netdev->features;
2801
2802 if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
2803 return 0;
2804
2805 netdev->features = features;
2806 e100_exec_cb(nic, NULL, e100_configure);
2807 return 1;
2808 }
2809
2810 static const struct net_device_ops e100_netdev_ops = {
2811 .ndo_open = e100_open,
2812 .ndo_stop = e100_close,
2813 .ndo_start_xmit = e100_xmit_frame,
2814 .ndo_validate_addr = eth_validate_addr,
2815 .ndo_set_rx_mode = e100_set_multicast_list,
2816 .ndo_set_mac_address = e100_set_mac_address,
2817 .ndo_do_ioctl = e100_do_ioctl,
2818 .ndo_tx_timeout = e100_tx_timeout,
2819 #ifdef CONFIG_NET_POLL_CONTROLLER
2820 .ndo_poll_controller = e100_netpoll,
2821 #endif
2822 .ndo_set_features = e100_set_features,
2823 };
2824
e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)2825 static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2826 {
2827 struct net_device *netdev;
2828 struct nic *nic;
2829 int err;
2830
2831 if (!(netdev = alloc_etherdev(sizeof(struct nic))))
2832 return -ENOMEM;
2833
2834 netdev->hw_features |= NETIF_F_RXFCS;
2835 netdev->priv_flags |= IFF_SUPP_NOFCS;
2836 netdev->hw_features |= NETIF_F_RXALL;
2837
2838 netdev->netdev_ops = &e100_netdev_ops;
2839 netdev->ethtool_ops = &e100_ethtool_ops;
2840 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2841 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2842
2843 nic = netdev_priv(netdev);
2844 netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2845 nic->netdev = netdev;
2846 nic->pdev = pdev;
2847 nic->msg_enable = (1 << debug) - 1;
2848 nic->mdio_ctrl = mdio_ctrl_hw;
2849 pci_set_drvdata(pdev, netdev);
2850
2851 if ((err = pci_enable_device(pdev))) {
2852 netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2853 goto err_out_free_dev;
2854 }
2855
2856 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2857 netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2858 err = -ENODEV;
2859 goto err_out_disable_pdev;
2860 }
2861
2862 if ((err = pci_request_regions(pdev, DRV_NAME))) {
2863 netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2864 goto err_out_disable_pdev;
2865 }
2866
2867 if ((err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
2868 netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2869 goto err_out_free_res;
2870 }
2871
2872 SET_NETDEV_DEV(netdev, &pdev->dev);
2873
2874 if (use_io)
2875 netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2876
2877 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2878 if (!nic->csr) {
2879 netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2880 err = -ENOMEM;
2881 goto err_out_free_res;
2882 }
2883
2884 if (ent->driver_data)
2885 nic->flags |= ich;
2886 else
2887 nic->flags &= ~ich;
2888
2889 e100_get_defaults(nic);
2890
2891 /* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2892 if (nic->mac < mac_82558_D101_A4)
2893 netdev->features |= NETIF_F_VLAN_CHALLENGED;
2894
2895 /* locks must be initialized before calling hw_reset */
2896 spin_lock_init(&nic->cb_lock);
2897 spin_lock_init(&nic->cmd_lock);
2898 spin_lock_init(&nic->mdio_lock);
2899
2900 /* Reset the device before pci_set_master() in case device is in some
2901 * funky state and has an interrupt pending - hint: we don't have the
2902 * interrupt handler registered yet. */
2903 e100_hw_reset(nic);
2904
2905 pci_set_master(pdev);
2906
2907 timer_setup(&nic->watchdog, e100_watchdog, 0);
2908
2909 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2910
2911 if ((err = e100_alloc(nic))) {
2912 netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2913 goto err_out_iounmap;
2914 }
2915
2916 if ((err = e100_eeprom_load(nic)))
2917 goto err_out_free;
2918
2919 e100_phy_init(nic);
2920
2921 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2922 if (!is_valid_ether_addr(netdev->dev_addr)) {
2923 if (!eeprom_bad_csum_allow) {
2924 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2925 err = -EAGAIN;
2926 goto err_out_free;
2927 } else {
2928 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2929 }
2930 }
2931
2932 /* Wol magic packet can be enabled from eeprom */
2933 if ((nic->mac >= mac_82558_D101_A4) &&
2934 (le16_to_cpu(nic->eeprom[eeprom_id]) & eeprom_id_wol)) {
2935 nic->flags |= wol_magic;
2936 device_set_wakeup_enable(&pdev->dev, true);
2937 }
2938
2939 /* ack any pending wake events, disable PME */
2940 pci_pme_active(pdev, false);
2941
2942 strcpy(netdev->name, "eth%d");
2943 if ((err = register_netdev(netdev))) {
2944 netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2945 goto err_out_free;
2946 }
2947 nic->cbs_pool = dma_pool_create(netdev->name,
2948 &nic->pdev->dev,
2949 nic->params.cbs.max * sizeof(struct cb),
2950 sizeof(u32),
2951 0);
2952 if (!nic->cbs_pool) {
2953 netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n");
2954 err = -ENOMEM;
2955 goto err_out_pool;
2956 }
2957 netif_info(nic, probe, nic->netdev,
2958 "addr 0x%llx, irq %d, MAC addr %pM\n",
2959 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2960 pdev->irq, netdev->dev_addr);
2961
2962 return 0;
2963
2964 err_out_pool:
2965 unregister_netdev(netdev);
2966 err_out_free:
2967 e100_free(nic);
2968 err_out_iounmap:
2969 pci_iounmap(pdev, nic->csr);
2970 err_out_free_res:
2971 pci_release_regions(pdev);
2972 err_out_disable_pdev:
2973 pci_disable_device(pdev);
2974 err_out_free_dev:
2975 free_netdev(netdev);
2976 return err;
2977 }
2978
e100_remove(struct pci_dev *pdev)2979 static void e100_remove(struct pci_dev *pdev)
2980 {
2981 struct net_device *netdev = pci_get_drvdata(pdev);
2982
2983 if (netdev) {
2984 struct nic *nic = netdev_priv(netdev);
2985 unregister_netdev(netdev);
2986 e100_free(nic);
2987 pci_iounmap(pdev, nic->csr);
2988 dma_pool_destroy(nic->cbs_pool);
2989 free_netdev(netdev);
2990 pci_release_regions(pdev);
2991 pci_disable_device(pdev);
2992 }
2993 }
2994
2995 #define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */
2996 #define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */
2997 #define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */
__e100_shutdown(struct pci_dev *pdev, bool *enable_wake)2998 static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
2999 {
3000 struct net_device *netdev = pci_get_drvdata(pdev);
3001 struct nic *nic = netdev_priv(netdev);
3002
3003 netif_device_detach(netdev);
3004
3005 if (netif_running(netdev))
3006 e100_down(nic);
3007
3008 if ((nic->flags & wol_magic) | e100_asf(nic)) {
3009 /* enable reverse auto-negotiation */
3010 if (nic->phy == phy_82552_v) {
3011 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3012 E100_82552_SMARTSPEED);
3013
3014 mdio_write(netdev, nic->mii.phy_id,
3015 E100_82552_SMARTSPEED, smartspeed |
3016 E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
3017 }
3018 *enable_wake = true;
3019 } else {
3020 *enable_wake = false;
3021 }
3022
3023 pci_disable_device(pdev);
3024 }
3025
__e100_power_off(struct pci_dev *pdev, bool wake)3026 static int __e100_power_off(struct pci_dev *pdev, bool wake)
3027 {
3028 if (wake)
3029 return pci_prepare_to_sleep(pdev);
3030
3031 pci_wake_from_d3(pdev, false);
3032 pci_set_power_state(pdev, PCI_D3hot);
3033
3034 return 0;
3035 }
3036
e100_suspend(struct device *dev_d)3037 static int __maybe_unused e100_suspend(struct device *dev_d)
3038 {
3039 bool wake;
3040
3041 __e100_shutdown(to_pci_dev(dev_d), &wake);
3042
3043 return 0;
3044 }
3045
e100_resume(struct device *dev_d)3046 static int __maybe_unused e100_resume(struct device *dev_d)
3047 {
3048 struct net_device *netdev = dev_get_drvdata(dev_d);
3049 struct nic *nic = netdev_priv(netdev);
3050 int err;
3051
3052 err = pci_enable_device(to_pci_dev(dev_d));
3053 if (err) {
3054 netdev_err(netdev, "Resume cannot enable PCI device, aborting\n");
3055 return err;
3056 }
3057 pci_set_master(to_pci_dev(dev_d));
3058
3059 /* disable reverse auto-negotiation */
3060 if (nic->phy == phy_82552_v) {
3061 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3062 E100_82552_SMARTSPEED);
3063
3064 mdio_write(netdev, nic->mii.phy_id,
3065 E100_82552_SMARTSPEED,
3066 smartspeed & ~(E100_82552_REV_ANEG));
3067 }
3068
3069 if (netif_running(netdev))
3070 e100_up(nic);
3071
3072 netif_device_attach(netdev);
3073
3074 return 0;
3075 }
3076
e100_shutdown(struct pci_dev *pdev)3077 static void e100_shutdown(struct pci_dev *pdev)
3078 {
3079 bool wake;
3080 __e100_shutdown(pdev, &wake);
3081 if (system_state == SYSTEM_POWER_OFF)
3082 __e100_power_off(pdev, wake);
3083 }
3084
3085 /* ------------------ PCI Error Recovery infrastructure -------------- */
3086 /**
3087 * e100_io_error_detected - called when PCI error is detected.
3088 * @pdev: Pointer to PCI device
3089 * @state: The current pci connection state
3090 */
e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)3091 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3092 {
3093 struct net_device *netdev = pci_get_drvdata(pdev);
3094 struct nic *nic = netdev_priv(netdev);
3095
3096 netif_device_detach(netdev);
3097
3098 if (state == pci_channel_io_perm_failure)
3099 return PCI_ERS_RESULT_DISCONNECT;
3100
3101 if (netif_running(netdev))
3102 e100_down(nic);
3103 pci_disable_device(pdev);
3104
3105 /* Request a slot reset. */
3106 return PCI_ERS_RESULT_NEED_RESET;
3107 }
3108
3109 /**
3110 * e100_io_slot_reset - called after the pci bus has been reset.
3111 * @pdev: Pointer to PCI device
3112 *
3113 * Restart the card from scratch.
3114 */
e100_io_slot_reset(struct pci_dev *pdev)3115 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3116 {
3117 struct net_device *netdev = pci_get_drvdata(pdev);
3118 struct nic *nic = netdev_priv(netdev);
3119
3120 if (pci_enable_device(pdev)) {
3121 pr_err("Cannot re-enable PCI device after reset\n");
3122 return PCI_ERS_RESULT_DISCONNECT;
3123 }
3124 pci_set_master(pdev);
3125
3126 /* Only one device per card can do a reset */
3127 if (0 != PCI_FUNC(pdev->devfn))
3128 return PCI_ERS_RESULT_RECOVERED;
3129 e100_hw_reset(nic);
3130 e100_phy_init(nic);
3131
3132 return PCI_ERS_RESULT_RECOVERED;
3133 }
3134
3135 /**
3136 * e100_io_resume - resume normal operations
3137 * @pdev: Pointer to PCI device
3138 *
3139 * Resume normal operations after an error recovery
3140 * sequence has been completed.
3141 */
e100_io_resume(struct pci_dev *pdev)3142 static void e100_io_resume(struct pci_dev *pdev)
3143 {
3144 struct net_device *netdev = pci_get_drvdata(pdev);
3145 struct nic *nic = netdev_priv(netdev);
3146
3147 /* ack any pending wake events, disable PME */
3148 pci_enable_wake(pdev, PCI_D0, 0);
3149
3150 netif_device_attach(netdev);
3151 if (netif_running(netdev)) {
3152 e100_open(netdev);
3153 mod_timer(&nic->watchdog, jiffies);
3154 }
3155 }
3156
3157 static const struct pci_error_handlers e100_err_handler = {
3158 .error_detected = e100_io_error_detected,
3159 .slot_reset = e100_io_slot_reset,
3160 .resume = e100_io_resume,
3161 };
3162
3163 static SIMPLE_DEV_PM_OPS(e100_pm_ops, e100_suspend, e100_resume);
3164
3165 static struct pci_driver e100_driver = {
3166 .name = DRV_NAME,
3167 .id_table = e100_id_table,
3168 .probe = e100_probe,
3169 .remove = e100_remove,
3170
3171 /* Power Management hooks */
3172 .driver.pm = &e100_pm_ops,
3173
3174 .shutdown = e100_shutdown,
3175 .err_handler = &e100_err_handler,
3176 };
3177
e100_init_module(void)3178 static int __init e100_init_module(void)
3179 {
3180 if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3181 pr_info("%s\n", DRV_DESCRIPTION);
3182 pr_info("%s\n", DRV_COPYRIGHT);
3183 }
3184 return pci_register_driver(&e100_driver);
3185 }
3186
e100_cleanup_module(void)3187 static void __exit e100_cleanup_module(void)
3188 {
3189 pci_unregister_driver(&e100_driver);
3190 }
3191
3192 module_init(e100_init_module);
3193 module_exit(e100_cleanup_module);
3194