1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 *
6 * Right now, I am very wasteful with the buffers.  I allocate memory
7 * pages and then divide them into 2K frame buffers.  This way I know I
8 * have buffers large enough to hold one frame within one buffer descriptor.
9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10 * will be much more memory efficient and will easily handle lots of
11 * small packets.
12 *
13 * Much better multiple PHY support by Magnus Damm.
14 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 *
16 * Support for FEC controller of ColdFire processors.
17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 *
19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20 * Copyright (c) 2004-2006 Macq Electronique SA.
21 *
22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23 */
24
25#include <linux/module.h>
26#include <linux/kernel.h>
27#include <linux/string.h>
28#include <linux/pm_runtime.h>
29#include <linux/ptrace.h>
30#include <linux/errno.h>
31#include <linux/ioport.h>
32#include <linux/slab.h>
33#include <linux/interrupt.h>
34#include <linux/delay.h>
35#include <linux/netdevice.h>
36#include <linux/etherdevice.h>
37#include <linux/skbuff.h>
38#include <linux/in.h>
39#include <linux/ip.h>
40#include <net/ip.h>
41#include <net/tso.h>
42#include <linux/tcp.h>
43#include <linux/udp.h>
44#include <linux/icmp.h>
45#include <linux/spinlock.h>
46#include <linux/workqueue.h>
47#include <linux/bitops.h>
48#include <linux/io.h>
49#include <linux/irq.h>
50#include <linux/clk.h>
51#include <linux/crc32.h>
52#include <linux/platform_device.h>
53#include <linux/mdio.h>
54#include <linux/phy.h>
55#include <linux/fec.h>
56#include <linux/of.h>
57#include <linux/of_device.h>
58#include <linux/of_gpio.h>
59#include <linux/of_mdio.h>
60#include <linux/of_net.h>
61#include <linux/regulator/consumer.h>
62#include <linux/if_vlan.h>
63#include <linux/pinctrl/consumer.h>
64#include <linux/prefetch.h>
65#include <linux/mfd/syscon.h>
66#include <linux/regmap.h>
67#include <soc/imx/cpuidle.h>
68
69#include <asm/cacheflush.h>
70
71#include "fec.h"
72
73static void set_multicast_list(struct net_device *ndev);
74static void fec_enet_itr_coal_init(struct net_device *ndev);
75
76#define DRIVER_NAME	"fec"
77
78static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
79
80/* Pause frame feild and FIFO threshold */
81#define FEC_ENET_FCE	(1 << 5)
82#define FEC_ENET_RSEM_V	0x84
83#define FEC_ENET_RSFL_V	16
84#define FEC_ENET_RAEM_V	0x8
85#define FEC_ENET_RAFL_V	0x8
86#define FEC_ENET_OPD_V	0xFFF0
87#define FEC_MDIO_PM_TIMEOUT  100 /* ms */
88
89struct fec_devinfo {
90	u32 quirks;
91};
92
93static const struct fec_devinfo fec_imx25_info = {
94	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
95		  FEC_QUIRK_HAS_FRREG,
96};
97
98static const struct fec_devinfo fec_imx27_info = {
99	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
100};
101
102static const struct fec_devinfo fec_imx28_info = {
103	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
104		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
105		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII,
106};
107
108static const struct fec_devinfo fec_imx6q_info = {
109	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
110		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
111		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
112		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII,
113};
114
115static const struct fec_devinfo fec_mvf600_info = {
116	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
117};
118
119static const struct fec_devinfo fec_imx6x_info = {
120	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
121		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
122		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
123		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
124		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
125		  FEC_QUIRK_CLEAR_SETUP_MII,
126};
127
128static const struct fec_devinfo fec_imx6ul_info = {
129	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
130		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
131		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
132		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
133		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII,
134};
135
136static struct platform_device_id fec_devtype[] = {
137	{
138		/* keep it for coldfire */
139		.name = DRIVER_NAME,
140		.driver_data = 0,
141	}, {
142		.name = "imx25-fec",
143		.driver_data = (kernel_ulong_t)&fec_imx25_info,
144	}, {
145		.name = "imx27-fec",
146		.driver_data = (kernel_ulong_t)&fec_imx27_info,
147	}, {
148		.name = "imx28-fec",
149		.driver_data = (kernel_ulong_t)&fec_imx28_info,
150	}, {
151		.name = "imx6q-fec",
152		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
153	}, {
154		.name = "mvf600-fec",
155		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
156	}, {
157		.name = "imx6sx-fec",
158		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
159	}, {
160		.name = "imx6ul-fec",
161		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
162	}, {
163		/* sentinel */
164	}
165};
166MODULE_DEVICE_TABLE(platform, fec_devtype);
167
168enum imx_fec_type {
169	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
170	IMX27_FEC,	/* runs on i.mx27/35/51 */
171	IMX28_FEC,
172	IMX6Q_FEC,
173	MVF600_FEC,
174	IMX6SX_FEC,
175	IMX6UL_FEC,
176};
177
178static const struct of_device_id fec_dt_ids[] = {
179	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
180	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
181	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
182	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
183	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
184	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
185	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
186	{ /* sentinel */ }
187};
188MODULE_DEVICE_TABLE(of, fec_dt_ids);
189
190static unsigned char macaddr[ETH_ALEN];
191module_param_array(macaddr, byte, NULL, 0);
192MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
193
194#if defined(CONFIG_M5272)
195/*
196 * Some hardware gets it MAC address out of local flash memory.
197 * if this is non-zero then assume it is the address to get MAC from.
198 */
199#if defined(CONFIG_NETtel)
200#define	FEC_FLASHMAC	0xf0006006
201#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
202#define	FEC_FLASHMAC	0xf0006000
203#elif defined(CONFIG_CANCam)
204#define	FEC_FLASHMAC	0xf0020000
205#elif defined (CONFIG_M5272C3)
206#define	FEC_FLASHMAC	(0xffe04000 + 4)
207#elif defined(CONFIG_MOD5272)
208#define FEC_FLASHMAC	0xffc0406b
209#else
210#define	FEC_FLASHMAC	0
211#endif
212#endif /* CONFIG_M5272 */
213
214/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
215 *
216 * 2048 byte skbufs are allocated. However, alignment requirements
217 * varies between FEC variants. Worst case is 64, so round down by 64.
218 */
219#define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
220#define PKT_MINBUF_SIZE		64
221
222/* FEC receive acceleration */
223#define FEC_RACC_IPDIS		(1 << 1)
224#define FEC_RACC_PRODIS		(1 << 2)
225#define FEC_RACC_SHIFT16	BIT(7)
226#define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
227
228/* MIB Control Register */
229#define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
230
231/*
232 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
233 * size bits. Other FEC hardware does not, so we need to take that into
234 * account when setting it.
235 */
236#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
237    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
238    defined(CONFIG_ARM64)
239#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
240#else
241#define	OPT_FRAME_SIZE	0
242#endif
243
244/* FEC MII MMFR bits definition */
245#define FEC_MMFR_ST		(1 << 30)
246#define FEC_MMFR_ST_C45		(0)
247#define FEC_MMFR_OP_READ	(2 << 28)
248#define FEC_MMFR_OP_READ_C45	(3 << 28)
249#define FEC_MMFR_OP_WRITE	(1 << 28)
250#define FEC_MMFR_OP_ADDR_WRITE	(0)
251#define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
252#define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
253#define FEC_MMFR_TA		(2 << 16)
254#define FEC_MMFR_DATA(v)	(v & 0xffff)
255/* FEC ECR bits definition */
256#define FEC_ECR_MAGICEN		(1 << 2)
257#define FEC_ECR_SLEEP		(1 << 3)
258
259#define FEC_MII_TIMEOUT		30000 /* us */
260
261/* Transmitter timeout */
262#define TX_TIMEOUT (2 * HZ)
263
264#define FEC_PAUSE_FLAG_AUTONEG	0x1
265#define FEC_PAUSE_FLAG_ENABLE	0x2
266#define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
267#define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
268#define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
269
270#define COPYBREAK_DEFAULT	256
271
272/* Max number of allowed TCP segments for software TSO */
273#define FEC_MAX_TSO_SEGS	100
274#define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
275
276#define IS_TSO_HEADER(txq, addr) \
277	((addr >= txq->tso_hdrs_dma) && \
278	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
279
280static int mii_cnt;
281
282static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
283					     struct bufdesc_prop *bd)
284{
285	return (bdp >= bd->last) ? bd->base
286			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
287}
288
289static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
290					     struct bufdesc_prop *bd)
291{
292	return (bdp <= bd->base) ? bd->last
293			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
294}
295
296static int fec_enet_get_bd_index(struct bufdesc *bdp,
297				 struct bufdesc_prop *bd)
298{
299	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
300}
301
302static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
303{
304	int entries;
305
306	entries = (((const char *)txq->dirty_tx -
307			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
308
309	return entries >= 0 ? entries : entries + txq->bd.ring_size;
310}
311
312static void swap_buffer(void *bufaddr, int len)
313{
314	int i;
315	unsigned int *buf = bufaddr;
316
317	for (i = 0; i < len; i += 4, buf++)
318		swab32s(buf);
319}
320
321static void swap_buffer2(void *dst_buf, void *src_buf, int len)
322{
323	int i;
324	unsigned int *src = src_buf;
325	unsigned int *dst = dst_buf;
326
327	for (i = 0; i < len; i += 4, src++, dst++)
328		*dst = swab32p(src);
329}
330
331static void fec_dump(struct net_device *ndev)
332{
333	struct fec_enet_private *fep = netdev_priv(ndev);
334	struct bufdesc *bdp;
335	struct fec_enet_priv_tx_q *txq;
336	int index = 0;
337
338	netdev_info(ndev, "TX ring dump\n");
339	pr_info("Nr     SC     addr       len  SKB\n");
340
341	txq = fep->tx_queue[0];
342	bdp = txq->bd.base;
343
344	do {
345		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
346			index,
347			bdp == txq->bd.cur ? 'S' : ' ',
348			bdp == txq->dirty_tx ? 'H' : ' ',
349			fec16_to_cpu(bdp->cbd_sc),
350			fec32_to_cpu(bdp->cbd_bufaddr),
351			fec16_to_cpu(bdp->cbd_datlen),
352			txq->tx_skbuff[index]);
353		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
354		index++;
355	} while (bdp != txq->bd.base);
356}
357
358static inline bool is_ipv4_pkt(struct sk_buff *skb)
359{
360	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
361}
362
363static int
364fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
365{
366	/* Only run for packets requiring a checksum. */
367	if (skb->ip_summed != CHECKSUM_PARTIAL)
368		return 0;
369
370	if (unlikely(skb_cow_head(skb, 0)))
371		return -1;
372
373	if (is_ipv4_pkt(skb))
374		ip_hdr(skb)->check = 0;
375	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
376
377	return 0;
378}
379
380static struct bufdesc *
381fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
382			     struct sk_buff *skb,
383			     struct net_device *ndev)
384{
385	struct fec_enet_private *fep = netdev_priv(ndev);
386	struct bufdesc *bdp = txq->bd.cur;
387	struct bufdesc_ex *ebdp;
388	int nr_frags = skb_shinfo(skb)->nr_frags;
389	int frag, frag_len;
390	unsigned short status;
391	unsigned int estatus = 0;
392	skb_frag_t *this_frag;
393	unsigned int index;
394	void *bufaddr;
395	dma_addr_t addr;
396	int i;
397
398	for (frag = 0; frag < nr_frags; frag++) {
399		this_frag = &skb_shinfo(skb)->frags[frag];
400		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
401		ebdp = (struct bufdesc_ex *)bdp;
402
403		status = fec16_to_cpu(bdp->cbd_sc);
404		status &= ~BD_ENET_TX_STATS;
405		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
406		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
407
408		/* Handle the last BD specially */
409		if (frag == nr_frags - 1) {
410			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
411			if (fep->bufdesc_ex) {
412				estatus |= BD_ENET_TX_INT;
413				if (unlikely(skb_shinfo(skb)->tx_flags &
414					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
415					estatus |= BD_ENET_TX_TS;
416			}
417		}
418
419		if (fep->bufdesc_ex) {
420			if (fep->quirks & FEC_QUIRK_HAS_AVB)
421				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
422			if (skb->ip_summed == CHECKSUM_PARTIAL)
423				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
424			ebdp->cbd_bdu = 0;
425			ebdp->cbd_esc = cpu_to_fec32(estatus);
426		}
427
428		bufaddr = skb_frag_address(this_frag);
429
430		index = fec_enet_get_bd_index(bdp, &txq->bd);
431		if (((unsigned long) bufaddr) & fep->tx_align ||
432			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
433			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
434			bufaddr = txq->tx_bounce[index];
435
436			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
437				swap_buffer(bufaddr, frag_len);
438		}
439
440		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
441				      DMA_TO_DEVICE);
442		if (dma_mapping_error(&fep->pdev->dev, addr)) {
443			if (net_ratelimit())
444				netdev_err(ndev, "Tx DMA memory map failed\n");
445			goto dma_mapping_error;
446		}
447
448		bdp->cbd_bufaddr = cpu_to_fec32(addr);
449		bdp->cbd_datlen = cpu_to_fec16(frag_len);
450		/* Make sure the updates to rest of the descriptor are
451		 * performed before transferring ownership.
452		 */
453		wmb();
454		bdp->cbd_sc = cpu_to_fec16(status);
455	}
456
457	return bdp;
458dma_mapping_error:
459	bdp = txq->bd.cur;
460	for (i = 0; i < frag; i++) {
461		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
462		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
463				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
464	}
465	return ERR_PTR(-ENOMEM);
466}
467
468static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
469				   struct sk_buff *skb, struct net_device *ndev)
470{
471	struct fec_enet_private *fep = netdev_priv(ndev);
472	int nr_frags = skb_shinfo(skb)->nr_frags;
473	struct bufdesc *bdp, *last_bdp;
474	void *bufaddr;
475	dma_addr_t addr;
476	unsigned short status;
477	unsigned short buflen;
478	unsigned int estatus = 0;
479	unsigned int index;
480	int entries_free;
481
482	entries_free = fec_enet_get_free_txdesc_num(txq);
483	if (entries_free < MAX_SKB_FRAGS + 1) {
484		dev_kfree_skb_any(skb);
485		if (net_ratelimit())
486			netdev_err(ndev, "NOT enough BD for SG!\n");
487		return NETDEV_TX_OK;
488	}
489
490	/* Protocol checksum off-load for TCP and UDP. */
491	if (fec_enet_clear_csum(skb, ndev)) {
492		dev_kfree_skb_any(skb);
493		return NETDEV_TX_OK;
494	}
495
496	/* Fill in a Tx ring entry */
497	bdp = txq->bd.cur;
498	last_bdp = bdp;
499	status = fec16_to_cpu(bdp->cbd_sc);
500	status &= ~BD_ENET_TX_STATS;
501
502	/* Set buffer length and buffer pointer */
503	bufaddr = skb->data;
504	buflen = skb_headlen(skb);
505
506	index = fec_enet_get_bd_index(bdp, &txq->bd);
507	if (((unsigned long) bufaddr) & fep->tx_align ||
508		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
509		memcpy(txq->tx_bounce[index], skb->data, buflen);
510		bufaddr = txq->tx_bounce[index];
511
512		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
513			swap_buffer(bufaddr, buflen);
514	}
515
516	/* Push the data cache so the CPM does not get stale memory data. */
517	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
518	if (dma_mapping_error(&fep->pdev->dev, addr)) {
519		dev_kfree_skb_any(skb);
520		if (net_ratelimit())
521			netdev_err(ndev, "Tx DMA memory map failed\n");
522		return NETDEV_TX_OK;
523	}
524
525	if (nr_frags) {
526		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
527		if (IS_ERR(last_bdp)) {
528			dma_unmap_single(&fep->pdev->dev, addr,
529					 buflen, DMA_TO_DEVICE);
530			dev_kfree_skb_any(skb);
531			return NETDEV_TX_OK;
532		}
533	} else {
534		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
535		if (fep->bufdesc_ex) {
536			estatus = BD_ENET_TX_INT;
537			if (unlikely(skb_shinfo(skb)->tx_flags &
538				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
539				estatus |= BD_ENET_TX_TS;
540		}
541	}
542	bdp->cbd_bufaddr = cpu_to_fec32(addr);
543	bdp->cbd_datlen = cpu_to_fec16(buflen);
544
545	if (fep->bufdesc_ex) {
546
547		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
548
549		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
550			fep->hwts_tx_en))
551			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
552
553		if (fep->quirks & FEC_QUIRK_HAS_AVB)
554			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
555
556		if (skb->ip_summed == CHECKSUM_PARTIAL)
557			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
558
559		ebdp->cbd_bdu = 0;
560		ebdp->cbd_esc = cpu_to_fec32(estatus);
561	}
562
563	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
564	/* Save skb pointer */
565	txq->tx_skbuff[index] = skb;
566
567	/* Make sure the updates to rest of the descriptor are performed before
568	 * transferring ownership.
569	 */
570	wmb();
571
572	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
573	 * it's the last BD of the frame, and to put the CRC on the end.
574	 */
575	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
576	bdp->cbd_sc = cpu_to_fec16(status);
577
578	/* If this was the last BD in the ring, start at the beginning again. */
579	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
580
581	skb_tx_timestamp(skb);
582
583	/* Make sure the update to bdp and tx_skbuff are performed before
584	 * txq->bd.cur.
585	 */
586	wmb();
587	txq->bd.cur = bdp;
588
589	/* Trigger transmission start */
590	writel(0, txq->bd.reg_desc_active);
591
592	return 0;
593}
594
595static int
596fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
597			  struct net_device *ndev,
598			  struct bufdesc *bdp, int index, char *data,
599			  int size, bool last_tcp, bool is_last)
600{
601	struct fec_enet_private *fep = netdev_priv(ndev);
602	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
603	unsigned short status;
604	unsigned int estatus = 0;
605	dma_addr_t addr;
606
607	status = fec16_to_cpu(bdp->cbd_sc);
608	status &= ~BD_ENET_TX_STATS;
609
610	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
611
612	if (((unsigned long) data) & fep->tx_align ||
613		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
614		memcpy(txq->tx_bounce[index], data, size);
615		data = txq->tx_bounce[index];
616
617		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
618			swap_buffer(data, size);
619	}
620
621	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
622	if (dma_mapping_error(&fep->pdev->dev, addr)) {
623		dev_kfree_skb_any(skb);
624		if (net_ratelimit())
625			netdev_err(ndev, "Tx DMA memory map failed\n");
626		return NETDEV_TX_OK;
627	}
628
629	bdp->cbd_datlen = cpu_to_fec16(size);
630	bdp->cbd_bufaddr = cpu_to_fec32(addr);
631
632	if (fep->bufdesc_ex) {
633		if (fep->quirks & FEC_QUIRK_HAS_AVB)
634			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
635		if (skb->ip_summed == CHECKSUM_PARTIAL)
636			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
637		ebdp->cbd_bdu = 0;
638		ebdp->cbd_esc = cpu_to_fec32(estatus);
639	}
640
641	/* Handle the last BD specially */
642	if (last_tcp)
643		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
644	if (is_last) {
645		status |= BD_ENET_TX_INTR;
646		if (fep->bufdesc_ex)
647			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
648	}
649
650	bdp->cbd_sc = cpu_to_fec16(status);
651
652	return 0;
653}
654
655static int
656fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
657			 struct sk_buff *skb, struct net_device *ndev,
658			 struct bufdesc *bdp, int index)
659{
660	struct fec_enet_private *fep = netdev_priv(ndev);
661	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
662	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
663	void *bufaddr;
664	unsigned long dmabuf;
665	unsigned short status;
666	unsigned int estatus = 0;
667
668	status = fec16_to_cpu(bdp->cbd_sc);
669	status &= ~BD_ENET_TX_STATS;
670	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
671
672	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
673	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
674	if (((unsigned long)bufaddr) & fep->tx_align ||
675		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
676		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
677		bufaddr = txq->tx_bounce[index];
678
679		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
680			swap_buffer(bufaddr, hdr_len);
681
682		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
683					hdr_len, DMA_TO_DEVICE);
684		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
685			dev_kfree_skb_any(skb);
686			if (net_ratelimit())
687				netdev_err(ndev, "Tx DMA memory map failed\n");
688			return NETDEV_TX_OK;
689		}
690	}
691
692	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
693	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
694
695	if (fep->bufdesc_ex) {
696		if (fep->quirks & FEC_QUIRK_HAS_AVB)
697			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
698		if (skb->ip_summed == CHECKSUM_PARTIAL)
699			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
700		ebdp->cbd_bdu = 0;
701		ebdp->cbd_esc = cpu_to_fec32(estatus);
702	}
703
704	bdp->cbd_sc = cpu_to_fec16(status);
705
706	return 0;
707}
708
709static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
710				   struct sk_buff *skb,
711				   struct net_device *ndev)
712{
713	struct fec_enet_private *fep = netdev_priv(ndev);
714	int hdr_len, total_len, data_left;
715	struct bufdesc *bdp = txq->bd.cur;
716	struct tso_t tso;
717	unsigned int index = 0;
718	int ret;
719
720	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
721		dev_kfree_skb_any(skb);
722		if (net_ratelimit())
723			netdev_err(ndev, "NOT enough BD for TSO!\n");
724		return NETDEV_TX_OK;
725	}
726
727	/* Protocol checksum off-load for TCP and UDP. */
728	if (fec_enet_clear_csum(skb, ndev)) {
729		dev_kfree_skb_any(skb);
730		return NETDEV_TX_OK;
731	}
732
733	/* Initialize the TSO handler, and prepare the first payload */
734	hdr_len = tso_start(skb, &tso);
735
736	total_len = skb->len - hdr_len;
737	while (total_len > 0) {
738		char *hdr;
739
740		index = fec_enet_get_bd_index(bdp, &txq->bd);
741		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
742		total_len -= data_left;
743
744		/* prepare packet headers: MAC + IP + TCP */
745		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
746		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
747		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
748		if (ret)
749			goto err_release;
750
751		while (data_left > 0) {
752			int size;
753
754			size = min_t(int, tso.size, data_left);
755			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
756			index = fec_enet_get_bd_index(bdp, &txq->bd);
757			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
758							bdp, index,
759							tso.data, size,
760							size == data_left,
761							total_len == 0);
762			if (ret)
763				goto err_release;
764
765			data_left -= size;
766			tso_build_data(skb, &tso, size);
767		}
768
769		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
770	}
771
772	/* Save skb pointer */
773	txq->tx_skbuff[index] = skb;
774
775	skb_tx_timestamp(skb);
776	txq->bd.cur = bdp;
777
778	/* Trigger transmission start */
779	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
780	    !readl(txq->bd.reg_desc_active) ||
781	    !readl(txq->bd.reg_desc_active) ||
782	    !readl(txq->bd.reg_desc_active) ||
783	    !readl(txq->bd.reg_desc_active))
784		writel(0, txq->bd.reg_desc_active);
785
786	return 0;
787
788err_release:
789	/* TODO: Release all used data descriptors for TSO */
790	return ret;
791}
792
793static netdev_tx_t
794fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
795{
796	struct fec_enet_private *fep = netdev_priv(ndev);
797	int entries_free;
798	unsigned short queue;
799	struct fec_enet_priv_tx_q *txq;
800	struct netdev_queue *nq;
801	int ret;
802
803	queue = skb_get_queue_mapping(skb);
804	txq = fep->tx_queue[queue];
805	nq = netdev_get_tx_queue(ndev, queue);
806
807	if (skb_is_gso(skb))
808		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
809	else
810		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
811	if (ret)
812		return ret;
813
814	entries_free = fec_enet_get_free_txdesc_num(txq);
815	if (entries_free <= txq->tx_stop_threshold)
816		netif_tx_stop_queue(nq);
817
818	return NETDEV_TX_OK;
819}
820
821/* Init RX & TX buffer descriptors
822 */
823static void fec_enet_bd_init(struct net_device *dev)
824{
825	struct fec_enet_private *fep = netdev_priv(dev);
826	struct fec_enet_priv_tx_q *txq;
827	struct fec_enet_priv_rx_q *rxq;
828	struct bufdesc *bdp;
829	unsigned int i;
830	unsigned int q;
831
832	for (q = 0; q < fep->num_rx_queues; q++) {
833		/* Initialize the receive buffer descriptors. */
834		rxq = fep->rx_queue[q];
835		bdp = rxq->bd.base;
836
837		for (i = 0; i < rxq->bd.ring_size; i++) {
838
839			/* Initialize the BD for every fragment in the page. */
840			if (bdp->cbd_bufaddr)
841				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
842			else
843				bdp->cbd_sc = cpu_to_fec16(0);
844			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
845		}
846
847		/* Set the last buffer to wrap */
848		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
849		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
850
851		rxq->bd.cur = rxq->bd.base;
852	}
853
854	for (q = 0; q < fep->num_tx_queues; q++) {
855		/* ...and the same for transmit */
856		txq = fep->tx_queue[q];
857		bdp = txq->bd.base;
858		txq->bd.cur = bdp;
859
860		for (i = 0; i < txq->bd.ring_size; i++) {
861			/* Initialize the BD for every fragment in the page. */
862			bdp->cbd_sc = cpu_to_fec16(0);
863			if (bdp->cbd_bufaddr &&
864			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
865				dma_unmap_single(&fep->pdev->dev,
866						 fec32_to_cpu(bdp->cbd_bufaddr),
867						 fec16_to_cpu(bdp->cbd_datlen),
868						 DMA_TO_DEVICE);
869			if (txq->tx_skbuff[i]) {
870				dev_kfree_skb_any(txq->tx_skbuff[i]);
871				txq->tx_skbuff[i] = NULL;
872			}
873			bdp->cbd_bufaddr = cpu_to_fec32(0);
874			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
875		}
876
877		/* Set the last buffer to wrap */
878		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
879		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
880		txq->dirty_tx = bdp;
881	}
882}
883
884static void fec_enet_active_rxring(struct net_device *ndev)
885{
886	struct fec_enet_private *fep = netdev_priv(ndev);
887	int i;
888
889	for (i = 0; i < fep->num_rx_queues; i++)
890		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
891}
892
893static void fec_enet_enable_ring(struct net_device *ndev)
894{
895	struct fec_enet_private *fep = netdev_priv(ndev);
896	struct fec_enet_priv_tx_q *txq;
897	struct fec_enet_priv_rx_q *rxq;
898	int i;
899
900	for (i = 0; i < fep->num_rx_queues; i++) {
901		rxq = fep->rx_queue[i];
902		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
903		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
904
905		/* enable DMA1/2 */
906		if (i)
907			writel(RCMR_MATCHEN | RCMR_CMP(i),
908			       fep->hwp + FEC_RCMR(i));
909	}
910
911	for (i = 0; i < fep->num_tx_queues; i++) {
912		txq = fep->tx_queue[i];
913		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
914
915		/* enable DMA1/2 */
916		if (i)
917			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
918			       fep->hwp + FEC_DMA_CFG(i));
919	}
920}
921
922static void fec_enet_reset_skb(struct net_device *ndev)
923{
924	struct fec_enet_private *fep = netdev_priv(ndev);
925	struct fec_enet_priv_tx_q *txq;
926	int i, j;
927
928	for (i = 0; i < fep->num_tx_queues; i++) {
929		txq = fep->tx_queue[i];
930
931		for (j = 0; j < txq->bd.ring_size; j++) {
932			if (txq->tx_skbuff[j]) {
933				dev_kfree_skb_any(txq->tx_skbuff[j]);
934				txq->tx_skbuff[j] = NULL;
935			}
936		}
937	}
938}
939
940/*
941 * This function is called to start or restart the FEC during a link
942 * change, transmit timeout, or to reconfigure the FEC.  The network
943 * packet processing for this device must be stopped before this call.
944 */
945static void
946fec_restart(struct net_device *ndev)
947{
948	struct fec_enet_private *fep = netdev_priv(ndev);
949	u32 val;
950	u32 temp_mac[2];
951	u32 rcntl = OPT_FRAME_SIZE | 0x04;
952	u32 ecntl = 0x2; /* ETHEREN */
953
954	/* Whack a reset.  We should wait for this.
955	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
956	 * instead of reset MAC itself.
957	 */
958	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
959		writel(0, fep->hwp + FEC_ECNTRL);
960	} else {
961		writel(1, fep->hwp + FEC_ECNTRL);
962		udelay(10);
963	}
964
965	/*
966	 * enet-mac reset will reset mac address registers too,
967	 * so need to reconfigure it.
968	 */
969	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
970	writel((__force u32)cpu_to_be32(temp_mac[0]),
971	       fep->hwp + FEC_ADDR_LOW);
972	writel((__force u32)cpu_to_be32(temp_mac[1]),
973	       fep->hwp + FEC_ADDR_HIGH);
974
975	/* Clear any outstanding interrupt, except MDIO. */
976	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
977
978	fec_enet_bd_init(ndev);
979
980	fec_enet_enable_ring(ndev);
981
982	/* Reset tx SKB buffers. */
983	fec_enet_reset_skb(ndev);
984
985	/* Enable MII mode */
986	if (fep->full_duplex == DUPLEX_FULL) {
987		/* FD enable */
988		writel(0x04, fep->hwp + FEC_X_CNTRL);
989	} else {
990		/* No Rcv on Xmit */
991		rcntl |= 0x02;
992		writel(0x0, fep->hwp + FEC_X_CNTRL);
993	}
994
995	/* Set MII speed */
996	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
997
998#if !defined(CONFIG_M5272)
999	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1000		val = readl(fep->hwp + FEC_RACC);
1001		/* align IP header */
1002		val |= FEC_RACC_SHIFT16;
1003		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1004			/* set RX checksum */
1005			val |= FEC_RACC_OPTIONS;
1006		else
1007			val &= ~FEC_RACC_OPTIONS;
1008		writel(val, fep->hwp + FEC_RACC);
1009		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1010	}
1011#endif
1012
1013	/*
1014	 * The phy interface and speed need to get configured
1015	 * differently on enet-mac.
1016	 */
1017	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1018		/* Enable flow control and length check */
1019		rcntl |= 0x40000000 | 0x00000020;
1020
1021		/* RGMII, RMII or MII */
1022		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1023		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1024		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1025		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1026			rcntl |= (1 << 6);
1027		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1028			rcntl |= (1 << 8);
1029		else
1030			rcntl &= ~(1 << 8);
1031
1032		/* 1G, 100M or 10M */
1033		if (ndev->phydev) {
1034			if (ndev->phydev->speed == SPEED_1000)
1035				ecntl |= (1 << 5);
1036			else if (ndev->phydev->speed == SPEED_100)
1037				rcntl &= ~(1 << 9);
1038			else
1039				rcntl |= (1 << 9);
1040		}
1041	} else {
1042#ifdef FEC_MIIGSK_ENR
1043		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1044			u32 cfgr;
1045			/* disable the gasket and wait */
1046			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1047			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1048				udelay(1);
1049
1050			/*
1051			 * configure the gasket:
1052			 *   RMII, 50 MHz, no loopback, no echo
1053			 *   MII, 25 MHz, no loopback, no echo
1054			 */
1055			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1056				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1057			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1058				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1059			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1060
1061			/* re-enable the gasket */
1062			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1063		}
1064#endif
1065	}
1066
1067#if !defined(CONFIG_M5272)
1068	/* enable pause frame*/
1069	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1070	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1071	     ndev->phydev && ndev->phydev->pause)) {
1072		rcntl |= FEC_ENET_FCE;
1073
1074		/* set FIFO threshold parameter to reduce overrun */
1075		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1076		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1077		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1078		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1079
1080		/* OPD */
1081		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1082	} else {
1083		rcntl &= ~FEC_ENET_FCE;
1084	}
1085#endif /* !defined(CONFIG_M5272) */
1086
1087	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1088
1089	/* Setup multicast filter. */
1090	set_multicast_list(ndev);
1091#ifndef CONFIG_M5272
1092	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1093	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1094#endif
1095
1096	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1097		/* enable ENET endian swap */
1098		ecntl |= (1 << 8);
1099		/* enable ENET store and forward mode */
1100		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1101	}
1102
1103	if (fep->bufdesc_ex)
1104		ecntl |= (1 << 4);
1105
1106#ifndef CONFIG_M5272
1107	/* Enable the MIB statistic event counters */
1108	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1109#endif
1110
1111	/* And last, enable the transmit and receive processing */
1112	writel(ecntl, fep->hwp + FEC_ECNTRL);
1113	fec_enet_active_rxring(ndev);
1114
1115	if (fep->bufdesc_ex)
1116		fec_ptp_start_cyclecounter(ndev);
1117
1118	/* Enable interrupts we wish to service */
1119	if (fep->link)
1120		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1121	else
1122		writel(0, fep->hwp + FEC_IMASK);
1123
1124	/* Init the interrupt coalescing */
1125	fec_enet_itr_coal_init(ndev);
1126
1127}
1128
1129static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1130{
1131	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1132	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1133
1134	if (stop_gpr->gpr) {
1135		if (enabled)
1136			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1137					   BIT(stop_gpr->bit),
1138					   BIT(stop_gpr->bit));
1139		else
1140			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1141					   BIT(stop_gpr->bit), 0);
1142	} else if (pdata && pdata->sleep_mode_enable) {
1143		pdata->sleep_mode_enable(enabled);
1144	}
1145}
1146
1147static void
1148fec_stop(struct net_device *ndev)
1149{
1150	struct fec_enet_private *fep = netdev_priv(ndev);
1151	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1152	u32 val;
1153
1154	/* We cannot expect a graceful transmit stop without link !!! */
1155	if (fep->link) {
1156		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1157		udelay(10);
1158		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1159			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1160	}
1161
1162	/* Whack a reset.  We should wait for this.
1163	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1164	 * instead of reset MAC itself.
1165	 */
1166	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1167		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1168			writel(0, fep->hwp + FEC_ECNTRL);
1169		} else {
1170			writel(1, fep->hwp + FEC_ECNTRL);
1171			udelay(10);
1172		}
1173		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1174	} else {
1175		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1176		val = readl(fep->hwp + FEC_ECNTRL);
1177		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1178		writel(val, fep->hwp + FEC_ECNTRL);
1179		fec_enet_stop_mode(fep, true);
1180	}
1181	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1182
1183	/* We have to keep ENET enabled to have MII interrupt stay working */
1184	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1185		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1186		writel(2, fep->hwp + FEC_ECNTRL);
1187		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1188	}
1189}
1190
1191
1192static void
1193fec_timeout(struct net_device *ndev, unsigned int txqueue)
1194{
1195	struct fec_enet_private *fep = netdev_priv(ndev);
1196
1197	fec_dump(ndev);
1198
1199	ndev->stats.tx_errors++;
1200
1201	schedule_work(&fep->tx_timeout_work);
1202}
1203
1204static void fec_enet_timeout_work(struct work_struct *work)
1205{
1206	struct fec_enet_private *fep =
1207		container_of(work, struct fec_enet_private, tx_timeout_work);
1208	struct net_device *ndev = fep->netdev;
1209
1210	rtnl_lock();
1211	if (netif_device_present(ndev) || netif_running(ndev)) {
1212		napi_disable(&fep->napi);
1213		netif_tx_lock_bh(ndev);
1214		fec_restart(ndev);
1215		netif_tx_wake_all_queues(ndev);
1216		netif_tx_unlock_bh(ndev);
1217		napi_enable(&fep->napi);
1218	}
1219	rtnl_unlock();
1220}
1221
1222static void
1223fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1224	struct skb_shared_hwtstamps *hwtstamps)
1225{
1226	unsigned long flags;
1227	u64 ns;
1228
1229	spin_lock_irqsave(&fep->tmreg_lock, flags);
1230	ns = timecounter_cyc2time(&fep->tc, ts);
1231	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1232
1233	memset(hwtstamps, 0, sizeof(*hwtstamps));
1234	hwtstamps->hwtstamp = ns_to_ktime(ns);
1235}
1236
1237static void
1238fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1239{
1240	struct	fec_enet_private *fep;
1241	struct bufdesc *bdp;
1242	unsigned short status;
1243	struct	sk_buff	*skb;
1244	struct fec_enet_priv_tx_q *txq;
1245	struct netdev_queue *nq;
1246	int	index = 0;
1247	int	entries_free;
1248
1249	fep = netdev_priv(ndev);
1250
1251	txq = fep->tx_queue[queue_id];
1252	/* get next bdp of dirty_tx */
1253	nq = netdev_get_tx_queue(ndev, queue_id);
1254	bdp = txq->dirty_tx;
1255
1256	/* get next bdp of dirty_tx */
1257	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1258
1259	while (bdp != READ_ONCE(txq->bd.cur)) {
1260		/* Order the load of bd.cur and cbd_sc */
1261		rmb();
1262		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1263		if (status & BD_ENET_TX_READY)
1264			break;
1265
1266		index = fec_enet_get_bd_index(bdp, &txq->bd);
1267
1268		skb = txq->tx_skbuff[index];
1269		txq->tx_skbuff[index] = NULL;
1270		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1271			dma_unmap_single(&fep->pdev->dev,
1272					 fec32_to_cpu(bdp->cbd_bufaddr),
1273					 fec16_to_cpu(bdp->cbd_datlen),
1274					 DMA_TO_DEVICE);
1275		bdp->cbd_bufaddr = cpu_to_fec32(0);
1276		if (!skb)
1277			goto skb_done;
1278
1279		/* Check for errors. */
1280		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1281				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1282				   BD_ENET_TX_CSL)) {
1283			ndev->stats.tx_errors++;
1284			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1285				ndev->stats.tx_heartbeat_errors++;
1286			if (status & BD_ENET_TX_LC)  /* Late collision */
1287				ndev->stats.tx_window_errors++;
1288			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1289				ndev->stats.tx_aborted_errors++;
1290			if (status & BD_ENET_TX_UN)  /* Underrun */
1291				ndev->stats.tx_fifo_errors++;
1292			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1293				ndev->stats.tx_carrier_errors++;
1294		} else {
1295			ndev->stats.tx_packets++;
1296			ndev->stats.tx_bytes += skb->len;
1297		}
1298
1299		/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1300		 * are to time stamp the packet, so we still need to check time
1301		 * stamping enabled flag.
1302		 */
1303		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1304			     fep->hwts_tx_en) &&
1305		    fep->bufdesc_ex) {
1306			struct skb_shared_hwtstamps shhwtstamps;
1307			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1308
1309			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1310			skb_tstamp_tx(skb, &shhwtstamps);
1311		}
1312
1313		/* Deferred means some collisions occurred during transmit,
1314		 * but we eventually sent the packet OK.
1315		 */
1316		if (status & BD_ENET_TX_DEF)
1317			ndev->stats.collisions++;
1318
1319		/* Free the sk buffer associated with this last transmit */
1320		dev_kfree_skb_any(skb);
1321skb_done:
1322		/* Make sure the update to bdp and tx_skbuff are performed
1323		 * before dirty_tx
1324		 */
1325		wmb();
1326		txq->dirty_tx = bdp;
1327
1328		/* Update pointer to next buffer descriptor to be transmitted */
1329		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1330
1331		/* Since we have freed up a buffer, the ring is no longer full
1332		 */
1333		if (netif_tx_queue_stopped(nq)) {
1334			entries_free = fec_enet_get_free_txdesc_num(txq);
1335			if (entries_free >= txq->tx_wake_threshold)
1336				netif_tx_wake_queue(nq);
1337		}
1338	}
1339
1340	/* ERR006358: Keep the transmitter going */
1341	if (bdp != txq->bd.cur &&
1342	    readl(txq->bd.reg_desc_active) == 0)
1343		writel(0, txq->bd.reg_desc_active);
1344}
1345
1346static void fec_enet_tx(struct net_device *ndev)
1347{
1348	struct fec_enet_private *fep = netdev_priv(ndev);
1349	int i;
1350
1351	/* Make sure that AVB queues are processed first. */
1352	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1353		fec_enet_tx_queue(ndev, i);
1354}
1355
1356static int
1357fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1358{
1359	struct  fec_enet_private *fep = netdev_priv(ndev);
1360	int off;
1361
1362	off = ((unsigned long)skb->data) & fep->rx_align;
1363	if (off)
1364		skb_reserve(skb, fep->rx_align + 1 - off);
1365
1366	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1367	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1368		if (net_ratelimit())
1369			netdev_err(ndev, "Rx DMA memory map failed\n");
1370		return -ENOMEM;
1371	}
1372
1373	return 0;
1374}
1375
1376static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1377			       struct bufdesc *bdp, u32 length, bool swap)
1378{
1379	struct  fec_enet_private *fep = netdev_priv(ndev);
1380	struct sk_buff *new_skb;
1381
1382	if (length > fep->rx_copybreak)
1383		return false;
1384
1385	new_skb = netdev_alloc_skb(ndev, length);
1386	if (!new_skb)
1387		return false;
1388
1389	dma_sync_single_for_cpu(&fep->pdev->dev,
1390				fec32_to_cpu(bdp->cbd_bufaddr),
1391				FEC_ENET_RX_FRSIZE - fep->rx_align,
1392				DMA_FROM_DEVICE);
1393	if (!swap)
1394		memcpy(new_skb->data, (*skb)->data, length);
1395	else
1396		swap_buffer2(new_skb->data, (*skb)->data, length);
1397	*skb = new_skb;
1398
1399	return true;
1400}
1401
1402/* During a receive, the bd_rx.cur points to the current incoming buffer.
1403 * When we update through the ring, if the next incoming buffer has
1404 * not been given to the system, we just set the empty indicator,
1405 * effectively tossing the packet.
1406 */
1407static int
1408fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1409{
1410	struct fec_enet_private *fep = netdev_priv(ndev);
1411	struct fec_enet_priv_rx_q *rxq;
1412	struct bufdesc *bdp;
1413	unsigned short status;
1414	struct  sk_buff *skb_new = NULL;
1415	struct  sk_buff *skb;
1416	ushort	pkt_len;
1417	__u8 *data;
1418	int	pkt_received = 0;
1419	struct	bufdesc_ex *ebdp = NULL;
1420	bool	vlan_packet_rcvd = false;
1421	u16	vlan_tag;
1422	int	index = 0;
1423	bool	is_copybreak;
1424	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1425
1426#ifdef CONFIG_M532x
1427	flush_cache_all();
1428#endif
1429	rxq = fep->rx_queue[queue_id];
1430
1431	/* First, grab all of the stats for the incoming packet.
1432	 * These get messed up if we get called due to a busy condition.
1433	 */
1434	bdp = rxq->bd.cur;
1435
1436	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1437
1438		if (pkt_received >= budget)
1439			break;
1440		pkt_received++;
1441
1442		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1443
1444		/* Check for errors. */
1445		status ^= BD_ENET_RX_LAST;
1446		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1447			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1448			   BD_ENET_RX_CL)) {
1449			ndev->stats.rx_errors++;
1450			if (status & BD_ENET_RX_OV) {
1451				/* FIFO overrun */
1452				ndev->stats.rx_fifo_errors++;
1453				goto rx_processing_done;
1454			}
1455			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1456						| BD_ENET_RX_LAST)) {
1457				/* Frame too long or too short. */
1458				ndev->stats.rx_length_errors++;
1459				if (status & BD_ENET_RX_LAST)
1460					netdev_err(ndev, "rcv is not +last\n");
1461			}
1462			if (status & BD_ENET_RX_CR)	/* CRC Error */
1463				ndev->stats.rx_crc_errors++;
1464			/* Report late collisions as a frame error. */
1465			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1466				ndev->stats.rx_frame_errors++;
1467			goto rx_processing_done;
1468		}
1469
1470		/* Process the incoming frame. */
1471		ndev->stats.rx_packets++;
1472		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1473		ndev->stats.rx_bytes += pkt_len;
1474
1475		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1476		skb = rxq->rx_skbuff[index];
1477
1478		/* The packet length includes FCS, but we don't want to
1479		 * include that when passing upstream as it messes up
1480		 * bridging applications.
1481		 */
1482		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1483						  need_swap);
1484		if (!is_copybreak) {
1485			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1486			if (unlikely(!skb_new)) {
1487				ndev->stats.rx_dropped++;
1488				goto rx_processing_done;
1489			}
1490			dma_unmap_single(&fep->pdev->dev,
1491					 fec32_to_cpu(bdp->cbd_bufaddr),
1492					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1493					 DMA_FROM_DEVICE);
1494		}
1495
1496		prefetch(skb->data - NET_IP_ALIGN);
1497		skb_put(skb, pkt_len - 4);
1498		data = skb->data;
1499
1500		if (!is_copybreak && need_swap)
1501			swap_buffer(data, pkt_len);
1502
1503#if !defined(CONFIG_M5272)
1504		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1505			data = skb_pull_inline(skb, 2);
1506#endif
1507
1508		/* Extract the enhanced buffer descriptor */
1509		ebdp = NULL;
1510		if (fep->bufdesc_ex)
1511			ebdp = (struct bufdesc_ex *)bdp;
1512
1513		/* If this is a VLAN packet remove the VLAN Tag */
1514		vlan_packet_rcvd = false;
1515		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1516		    fep->bufdesc_ex &&
1517		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1518			/* Push and remove the vlan tag */
1519			struct vlan_hdr *vlan_header =
1520					(struct vlan_hdr *) (data + ETH_HLEN);
1521			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1522
1523			vlan_packet_rcvd = true;
1524
1525			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1526			skb_pull(skb, VLAN_HLEN);
1527		}
1528
1529		skb->protocol = eth_type_trans(skb, ndev);
1530
1531		/* Get receive timestamp from the skb */
1532		if (fep->hwts_rx_en && fep->bufdesc_ex)
1533			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1534					  skb_hwtstamps(skb));
1535
1536		if (fep->bufdesc_ex &&
1537		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1538			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1539				/* don't check it */
1540				skb->ip_summed = CHECKSUM_UNNECESSARY;
1541			} else {
1542				skb_checksum_none_assert(skb);
1543			}
1544		}
1545
1546		/* Handle received VLAN packets */
1547		if (vlan_packet_rcvd)
1548			__vlan_hwaccel_put_tag(skb,
1549					       htons(ETH_P_8021Q),
1550					       vlan_tag);
1551
1552		skb_record_rx_queue(skb, queue_id);
1553		napi_gro_receive(&fep->napi, skb);
1554
1555		if (is_copybreak) {
1556			dma_sync_single_for_device(&fep->pdev->dev,
1557						   fec32_to_cpu(bdp->cbd_bufaddr),
1558						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1559						   DMA_FROM_DEVICE);
1560		} else {
1561			rxq->rx_skbuff[index] = skb_new;
1562			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1563		}
1564
1565rx_processing_done:
1566		/* Clear the status flags for this buffer */
1567		status &= ~BD_ENET_RX_STATS;
1568
1569		/* Mark the buffer empty */
1570		status |= BD_ENET_RX_EMPTY;
1571
1572		if (fep->bufdesc_ex) {
1573			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1574
1575			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1576			ebdp->cbd_prot = 0;
1577			ebdp->cbd_bdu = 0;
1578		}
1579		/* Make sure the updates to rest of the descriptor are
1580		 * performed before transferring ownership.
1581		 */
1582		wmb();
1583		bdp->cbd_sc = cpu_to_fec16(status);
1584
1585		/* Update BD pointer to next entry */
1586		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1587
1588		/* Doing this here will keep the FEC running while we process
1589		 * incoming frames.  On a heavily loaded network, we should be
1590		 * able to keep up at the expense of system resources.
1591		 */
1592		writel(0, rxq->bd.reg_desc_active);
1593	}
1594	rxq->bd.cur = bdp;
1595	return pkt_received;
1596}
1597
1598static int fec_enet_rx(struct net_device *ndev, int budget)
1599{
1600	struct fec_enet_private *fep = netdev_priv(ndev);
1601	int i, done = 0;
1602
1603	/* Make sure that AVB queues are processed first. */
1604	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1605		done += fec_enet_rx_queue(ndev, budget - done, i);
1606
1607	return done;
1608}
1609
1610static bool fec_enet_collect_events(struct fec_enet_private *fep)
1611{
1612	uint int_events;
1613
1614	int_events = readl(fep->hwp + FEC_IEVENT);
1615
1616	/* Don't clear MDIO events, we poll for those */
1617	int_events &= ~FEC_ENET_MII;
1618
1619	writel(int_events, fep->hwp + FEC_IEVENT);
1620
1621	return int_events != 0;
1622}
1623
1624static irqreturn_t
1625fec_enet_interrupt(int irq, void *dev_id)
1626{
1627	struct net_device *ndev = dev_id;
1628	struct fec_enet_private *fep = netdev_priv(ndev);
1629	irqreturn_t ret = IRQ_NONE;
1630
1631	if (fec_enet_collect_events(fep) && fep->link) {
1632		ret = IRQ_HANDLED;
1633
1634		if (napi_schedule_prep(&fep->napi)) {
1635			/* Disable interrupts */
1636			writel(0, fep->hwp + FEC_IMASK);
1637			__napi_schedule(&fep->napi);
1638		}
1639	}
1640
1641	return ret;
1642}
1643
1644static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1645{
1646	struct net_device *ndev = napi->dev;
1647	struct fec_enet_private *fep = netdev_priv(ndev);
1648	int done = 0;
1649
1650	do {
1651		done += fec_enet_rx(ndev, budget - done);
1652		fec_enet_tx(ndev);
1653	} while ((done < budget) && fec_enet_collect_events(fep));
1654
1655	if (done < budget) {
1656		napi_complete_done(napi, done);
1657		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1658	}
1659
1660	return done;
1661}
1662
1663/* ------------------------------------------------------------------------- */
1664static void fec_get_mac(struct net_device *ndev)
1665{
1666	struct fec_enet_private *fep = netdev_priv(ndev);
1667	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1668	unsigned char *iap, tmpaddr[ETH_ALEN];
1669
1670	/*
1671	 * try to get mac address in following order:
1672	 *
1673	 * 1) module parameter via kernel command line in form
1674	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1675	 */
1676	iap = macaddr;
1677
1678	/*
1679	 * 2) from device tree data
1680	 */
1681	if (!is_valid_ether_addr(iap)) {
1682		struct device_node *np = fep->pdev->dev.of_node;
1683		if (np) {
1684			const char *mac = of_get_mac_address(np);
1685			if (!IS_ERR(mac))
1686				iap = (unsigned char *) mac;
1687		}
1688	}
1689
1690	/*
1691	 * 3) from flash or fuse (via platform data)
1692	 */
1693	if (!is_valid_ether_addr(iap)) {
1694#ifdef CONFIG_M5272
1695		if (FEC_FLASHMAC)
1696			iap = (unsigned char *)FEC_FLASHMAC;
1697#else
1698		if (pdata)
1699			iap = (unsigned char *)&pdata->mac;
1700#endif
1701	}
1702
1703	/*
1704	 * 4) FEC mac registers set by bootloader
1705	 */
1706	if (!is_valid_ether_addr(iap)) {
1707		*((__be32 *) &tmpaddr[0]) =
1708			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1709		*((__be16 *) &tmpaddr[4]) =
1710			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1711		iap = &tmpaddr[0];
1712	}
1713
1714	/*
1715	 * 5) random mac address
1716	 */
1717	if (!is_valid_ether_addr(iap)) {
1718		/* Report it and use a random ethernet address instead */
1719		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1720		eth_hw_addr_random(ndev);
1721		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1722			 ndev->dev_addr);
1723		return;
1724	}
1725
1726	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1727
1728	/* Adjust MAC if using macaddr */
1729	if (iap == macaddr)
1730		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1731}
1732
1733/* ------------------------------------------------------------------------- */
1734
1735/*
1736 * Phy section
1737 */
1738static void fec_enet_adjust_link(struct net_device *ndev)
1739{
1740	struct fec_enet_private *fep = netdev_priv(ndev);
1741	struct phy_device *phy_dev = ndev->phydev;
1742	int status_change = 0;
1743
1744	/*
1745	 * If the netdev is down, or is going down, we're not interested
1746	 * in link state events, so just mark our idea of the link as down
1747	 * and ignore the event.
1748	 */
1749	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1750		fep->link = 0;
1751	} else if (phy_dev->link) {
1752		if (!fep->link) {
1753			fep->link = phy_dev->link;
1754			status_change = 1;
1755		}
1756
1757		if (fep->full_duplex != phy_dev->duplex) {
1758			fep->full_duplex = phy_dev->duplex;
1759			status_change = 1;
1760		}
1761
1762		if (phy_dev->speed != fep->speed) {
1763			fep->speed = phy_dev->speed;
1764			status_change = 1;
1765		}
1766
1767		/* if any of the above changed restart the FEC */
1768		if (status_change) {
1769			netif_stop_queue(ndev);
1770			napi_disable(&fep->napi);
1771			netif_tx_lock_bh(ndev);
1772			fec_restart(ndev);
1773			netif_tx_wake_all_queues(ndev);
1774			netif_tx_unlock_bh(ndev);
1775			napi_enable(&fep->napi);
1776		}
1777	} else {
1778		if (fep->link) {
1779			netif_stop_queue(ndev);
1780			napi_disable(&fep->napi);
1781			netif_tx_lock_bh(ndev);
1782			fec_stop(ndev);
1783			netif_tx_unlock_bh(ndev);
1784			napi_enable(&fep->napi);
1785			fep->link = phy_dev->link;
1786			status_change = 1;
1787		}
1788	}
1789
1790	if (status_change)
1791		phy_print_status(phy_dev);
1792}
1793
1794static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1795{
1796	uint ievent;
1797	int ret;
1798
1799	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1800					ievent & FEC_ENET_MII, 2, 30000);
1801
1802	if (!ret)
1803		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1804
1805	return ret;
1806}
1807
1808static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1809{
1810	struct fec_enet_private *fep = bus->priv;
1811	struct device *dev = &fep->pdev->dev;
1812	int ret = 0, frame_start, frame_addr, frame_op;
1813	bool is_c45 = !!(regnum & MII_ADDR_C45);
1814
1815	ret = pm_runtime_resume_and_get(dev);
1816	if (ret < 0)
1817		return ret;
1818
1819	if (is_c45) {
1820		frame_start = FEC_MMFR_ST_C45;
1821
1822		/* write address */
1823		frame_addr = (regnum >> 16);
1824		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1825		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1826		       FEC_MMFR_TA | (regnum & 0xFFFF),
1827		       fep->hwp + FEC_MII_DATA);
1828
1829		/* wait for end of transfer */
1830		ret = fec_enet_mdio_wait(fep);
1831		if (ret) {
1832			netdev_err(fep->netdev, "MDIO address write timeout\n");
1833			goto out;
1834		}
1835
1836		frame_op = FEC_MMFR_OP_READ_C45;
1837
1838	} else {
1839		/* C22 read */
1840		frame_op = FEC_MMFR_OP_READ;
1841		frame_start = FEC_MMFR_ST;
1842		frame_addr = regnum;
1843	}
1844
1845	/* start a read op */
1846	writel(frame_start | frame_op |
1847		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1848		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1849
1850	/* wait for end of transfer */
1851	ret = fec_enet_mdio_wait(fep);
1852	if (ret) {
1853		netdev_err(fep->netdev, "MDIO read timeout\n");
1854		goto out;
1855	}
1856
1857	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1858
1859out:
1860	pm_runtime_mark_last_busy(dev);
1861	pm_runtime_put_autosuspend(dev);
1862
1863	return ret;
1864}
1865
1866static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1867			   u16 value)
1868{
1869	struct fec_enet_private *fep = bus->priv;
1870	struct device *dev = &fep->pdev->dev;
1871	int ret, frame_start, frame_addr;
1872	bool is_c45 = !!(regnum & MII_ADDR_C45);
1873
1874	ret = pm_runtime_resume_and_get(dev);
1875	if (ret < 0)
1876		return ret;
1877
1878	if (is_c45) {
1879		frame_start = FEC_MMFR_ST_C45;
1880
1881		/* write address */
1882		frame_addr = (regnum >> 16);
1883		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1884		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1885		       FEC_MMFR_TA | (regnum & 0xFFFF),
1886		       fep->hwp + FEC_MII_DATA);
1887
1888		/* wait for end of transfer */
1889		ret = fec_enet_mdio_wait(fep);
1890		if (ret) {
1891			netdev_err(fep->netdev, "MDIO address write timeout\n");
1892			goto out;
1893		}
1894	} else {
1895		/* C22 write */
1896		frame_start = FEC_MMFR_ST;
1897		frame_addr = regnum;
1898	}
1899
1900	/* start a write op */
1901	writel(frame_start | FEC_MMFR_OP_WRITE |
1902		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1903		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1904		fep->hwp + FEC_MII_DATA);
1905
1906	/* wait for end of transfer */
1907	ret = fec_enet_mdio_wait(fep);
1908	if (ret)
1909		netdev_err(fep->netdev, "MDIO write timeout\n");
1910
1911out:
1912	pm_runtime_mark_last_busy(dev);
1913	pm_runtime_put_autosuspend(dev);
1914
1915	return ret;
1916}
1917
1918static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
1919{
1920	struct fec_enet_private *fep = netdev_priv(ndev);
1921	struct phy_device *phy_dev = ndev->phydev;
1922
1923	if (phy_dev) {
1924		phy_reset_after_clk_enable(phy_dev);
1925	} else if (fep->phy_node) {
1926		/*
1927		 * If the PHY still is not bound to the MAC, but there is
1928		 * OF PHY node and a matching PHY device instance already,
1929		 * use the OF PHY node to obtain the PHY device instance,
1930		 * and then use that PHY device instance when triggering
1931		 * the PHY reset.
1932		 */
1933		phy_dev = of_phy_find_device(fep->phy_node);
1934		phy_reset_after_clk_enable(phy_dev);
1935		put_device(&phy_dev->mdio.dev);
1936	}
1937}
1938
1939static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1940{
1941	struct fec_enet_private *fep = netdev_priv(ndev);
1942	int ret;
1943
1944	if (enable) {
1945		ret = clk_prepare_enable(fep->clk_enet_out);
1946		if (ret)
1947			return ret;
1948
1949		if (fep->clk_ptp) {
1950			mutex_lock(&fep->ptp_clk_mutex);
1951			ret = clk_prepare_enable(fep->clk_ptp);
1952			if (ret) {
1953				mutex_unlock(&fep->ptp_clk_mutex);
1954				goto failed_clk_ptp;
1955			} else {
1956				fep->ptp_clk_on = true;
1957			}
1958			mutex_unlock(&fep->ptp_clk_mutex);
1959		}
1960
1961		ret = clk_prepare_enable(fep->clk_ref);
1962		if (ret)
1963			goto failed_clk_ref;
1964
1965		fec_enet_phy_reset_after_clk_enable(ndev);
1966	} else {
1967		clk_disable_unprepare(fep->clk_enet_out);
1968		if (fep->clk_ptp) {
1969			mutex_lock(&fep->ptp_clk_mutex);
1970			clk_disable_unprepare(fep->clk_ptp);
1971			fep->ptp_clk_on = false;
1972			mutex_unlock(&fep->ptp_clk_mutex);
1973		}
1974		clk_disable_unprepare(fep->clk_ref);
1975	}
1976
1977	return 0;
1978
1979failed_clk_ref:
1980	if (fep->clk_ptp) {
1981		mutex_lock(&fep->ptp_clk_mutex);
1982		clk_disable_unprepare(fep->clk_ptp);
1983		fep->ptp_clk_on = false;
1984		mutex_unlock(&fep->ptp_clk_mutex);
1985	}
1986failed_clk_ptp:
1987	clk_disable_unprepare(fep->clk_enet_out);
1988
1989	return ret;
1990}
1991
1992static int fec_enet_mii_probe(struct net_device *ndev)
1993{
1994	struct fec_enet_private *fep = netdev_priv(ndev);
1995	struct phy_device *phy_dev = NULL;
1996	char mdio_bus_id[MII_BUS_ID_SIZE];
1997	char phy_name[MII_BUS_ID_SIZE + 3];
1998	int phy_id;
1999	int dev_id = fep->dev_id;
2000
2001	if (fep->phy_node) {
2002		phy_dev = of_phy_connect(ndev, fep->phy_node,
2003					 &fec_enet_adjust_link, 0,
2004					 fep->phy_interface);
2005		if (!phy_dev) {
2006			netdev_err(ndev, "Unable to connect to phy\n");
2007			return -ENODEV;
2008		}
2009	} else {
2010		/* check for attached phy */
2011		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2012			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2013				continue;
2014			if (dev_id--)
2015				continue;
2016			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2017			break;
2018		}
2019
2020		if (phy_id >= PHY_MAX_ADDR) {
2021			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2022			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2023			phy_id = 0;
2024		}
2025
2026		snprintf(phy_name, sizeof(phy_name),
2027			 PHY_ID_FMT, mdio_bus_id, phy_id);
2028		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2029				      fep->phy_interface);
2030	}
2031
2032	if (IS_ERR(phy_dev)) {
2033		netdev_err(ndev, "could not attach to PHY\n");
2034		return PTR_ERR(phy_dev);
2035	}
2036
2037	/* mask with MAC supported features */
2038	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2039		phy_set_max_speed(phy_dev, 1000);
2040		phy_remove_link_mode(phy_dev,
2041				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2042#if !defined(CONFIG_M5272)
2043		phy_support_sym_pause(phy_dev);
2044#endif
2045	}
2046	else
2047		phy_set_max_speed(phy_dev, 100);
2048
2049	fep->link = 0;
2050	fep->full_duplex = 0;
2051
2052	phy_attached_info(phy_dev);
2053
2054	return 0;
2055}
2056
2057static int fec_enet_mii_init(struct platform_device *pdev)
2058{
2059	static struct mii_bus *fec0_mii_bus;
2060	struct net_device *ndev = platform_get_drvdata(pdev);
2061	struct fec_enet_private *fep = netdev_priv(ndev);
2062	bool suppress_preamble = false;
2063	struct device_node *node;
2064	int err = -ENXIO;
2065	u32 mii_speed, holdtime;
2066	u32 bus_freq;
2067
2068	/*
2069	 * The i.MX28 dual fec interfaces are not equal.
2070	 * Here are the differences:
2071	 *
2072	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2073	 *  - fec0 acts as the 1588 time master while fec1 is slave
2074	 *  - external phys can only be configured by fec0
2075	 *
2076	 * That is to say fec1 can not work independently. It only works
2077	 * when fec0 is working. The reason behind this design is that the
2078	 * second interface is added primarily for Switch mode.
2079	 *
2080	 * Because of the last point above, both phys are attached on fec0
2081	 * mdio interface in board design, and need to be configured by
2082	 * fec0 mii_bus.
2083	 */
2084	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2085		/* fec1 uses fec0 mii_bus */
2086		if (mii_cnt && fec0_mii_bus) {
2087			fep->mii_bus = fec0_mii_bus;
2088			mii_cnt++;
2089			return 0;
2090		}
2091		return -ENOENT;
2092	}
2093
2094	bus_freq = 2500000; /* 2.5MHz by default */
2095	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2096	if (node) {
2097		of_property_read_u32(node, "clock-frequency", &bus_freq);
2098		suppress_preamble = of_property_read_bool(node,
2099							  "suppress-preamble");
2100	}
2101
2102	/*
2103	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2104	 *
2105	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2106	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2107	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2108	 * document.
2109	 */
2110	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2111	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2112		mii_speed--;
2113	if (mii_speed > 63) {
2114		dev_err(&pdev->dev,
2115			"fec clock (%lu) too fast to get right mii speed\n",
2116			clk_get_rate(fep->clk_ipg));
2117		err = -EINVAL;
2118		goto err_out;
2119	}
2120
2121	/*
2122	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2123	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2124	 * versions are RAZ there, so just ignore the difference and write the
2125	 * register always.
2126	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2127	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2128	 * output.
2129	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2130	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2131	 * holdtime cannot result in a value greater than 3.
2132	 */
2133	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2134
2135	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2136
2137	if (suppress_preamble)
2138		fep->phy_speed |= BIT(7);
2139
2140	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2141		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2142		 * MII event generation condition:
2143		 * - writing MSCR:
2144		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2145		 *	  mscr_reg_data_in[7:0] != 0
2146		 * - writing MMFR:
2147		 *	- mscr[7:0]_not_zero
2148		 */
2149		writel(0, fep->hwp + FEC_MII_DATA);
2150	}
2151
2152	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2153
2154	/* Clear any pending transaction complete indication */
2155	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2156
2157	fep->mii_bus = mdiobus_alloc();
2158	if (fep->mii_bus == NULL) {
2159		err = -ENOMEM;
2160		goto err_out;
2161	}
2162
2163	fep->mii_bus->name = "fec_enet_mii_bus";
2164	fep->mii_bus->read = fec_enet_mdio_read;
2165	fep->mii_bus->write = fec_enet_mdio_write;
2166	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2167		pdev->name, fep->dev_id + 1);
2168	fep->mii_bus->priv = fep;
2169	fep->mii_bus->parent = &pdev->dev;
2170
2171	err = of_mdiobus_register(fep->mii_bus, node);
2172	if (err)
2173		goto err_out_free_mdiobus;
2174	of_node_put(node);
2175
2176	mii_cnt++;
2177
2178	/* save fec0 mii_bus */
2179	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2180		fec0_mii_bus = fep->mii_bus;
2181
2182	return 0;
2183
2184err_out_free_mdiobus:
2185	mdiobus_free(fep->mii_bus);
2186err_out:
2187	of_node_put(node);
2188	return err;
2189}
2190
2191static void fec_enet_mii_remove(struct fec_enet_private *fep)
2192{
2193	if (--mii_cnt == 0) {
2194		mdiobus_unregister(fep->mii_bus);
2195		mdiobus_free(fep->mii_bus);
2196	}
2197}
2198
2199static void fec_enet_get_drvinfo(struct net_device *ndev,
2200				 struct ethtool_drvinfo *info)
2201{
2202	struct fec_enet_private *fep = netdev_priv(ndev);
2203
2204	strlcpy(info->driver, fep->pdev->dev.driver->name,
2205		sizeof(info->driver));
2206	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2207}
2208
2209static int fec_enet_get_regs_len(struct net_device *ndev)
2210{
2211	struct fec_enet_private *fep = netdev_priv(ndev);
2212	struct resource *r;
2213	int s = 0;
2214
2215	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2216	if (r)
2217		s = resource_size(r);
2218
2219	return s;
2220}
2221
2222/* List of registers that can be safety be read to dump them with ethtool */
2223#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2224	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2225	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2226static __u32 fec_enet_register_version = 2;
2227static u32 fec_enet_register_offset[] = {
2228	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2229	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2230	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2231	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2232	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2233	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2234	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2235	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2236	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2237	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2238	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2239	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2240	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2241	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2242	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2243	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2244	RMON_T_P_GTE2048, RMON_T_OCTETS,
2245	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2246	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2247	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2248	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2249	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2250	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2251	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2252	RMON_R_P_GTE2048, RMON_R_OCTETS,
2253	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2254	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2255};
2256/* for i.MX6ul */
2257static u32 fec_enet_register_offset_6ul[] = {
2258	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2259	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2260	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2261	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2262	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2263	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2264	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2265	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2266	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2267	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2268	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2269	RMON_T_P_GTE2048, RMON_T_OCTETS,
2270	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2271	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2272	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2273	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2274	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2275	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2276	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2277	RMON_R_P_GTE2048, RMON_R_OCTETS,
2278	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2279	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2280};
2281#else
2282static __u32 fec_enet_register_version = 1;
2283static u32 fec_enet_register_offset[] = {
2284	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2285	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2286	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2287	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2288	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2289	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2290	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2291	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2292	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2293};
2294#endif
2295
2296static void fec_enet_get_regs(struct net_device *ndev,
2297			      struct ethtool_regs *regs, void *regbuf)
2298{
2299	struct fec_enet_private *fep = netdev_priv(ndev);
2300	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2301	struct device *dev = &fep->pdev->dev;
2302	u32 *buf = (u32 *)regbuf;
2303	u32 i, off;
2304	int ret;
2305#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2306	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2307	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2308	u32 *reg_list;
2309	u32 reg_cnt;
2310
2311	if (!of_machine_is_compatible("fsl,imx6ul")) {
2312		reg_list = fec_enet_register_offset;
2313		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2314	} else {
2315		reg_list = fec_enet_register_offset_6ul;
2316		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2317	}
2318#else
2319	/* coldfire */
2320	static u32 *reg_list = fec_enet_register_offset;
2321	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2322#endif
2323	ret = pm_runtime_resume_and_get(dev);
2324	if (ret < 0)
2325		return;
2326
2327	regs->version = fec_enet_register_version;
2328
2329	memset(buf, 0, regs->len);
2330
2331	for (i = 0; i < reg_cnt; i++) {
2332		off = reg_list[i];
2333
2334		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2335		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2336			continue;
2337
2338		off >>= 2;
2339		buf[off] = readl(&theregs[off]);
2340	}
2341
2342	pm_runtime_mark_last_busy(dev);
2343	pm_runtime_put_autosuspend(dev);
2344}
2345
2346static int fec_enet_get_ts_info(struct net_device *ndev,
2347				struct ethtool_ts_info *info)
2348{
2349	struct fec_enet_private *fep = netdev_priv(ndev);
2350
2351	if (fep->bufdesc_ex) {
2352
2353		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2354					SOF_TIMESTAMPING_RX_SOFTWARE |
2355					SOF_TIMESTAMPING_SOFTWARE |
2356					SOF_TIMESTAMPING_TX_HARDWARE |
2357					SOF_TIMESTAMPING_RX_HARDWARE |
2358					SOF_TIMESTAMPING_RAW_HARDWARE;
2359		if (fep->ptp_clock)
2360			info->phc_index = ptp_clock_index(fep->ptp_clock);
2361		else
2362			info->phc_index = -1;
2363
2364		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2365				 (1 << HWTSTAMP_TX_ON);
2366
2367		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2368				   (1 << HWTSTAMP_FILTER_ALL);
2369		return 0;
2370	} else {
2371		return ethtool_op_get_ts_info(ndev, info);
2372	}
2373}
2374
2375#if !defined(CONFIG_M5272)
2376
2377static void fec_enet_get_pauseparam(struct net_device *ndev,
2378				    struct ethtool_pauseparam *pause)
2379{
2380	struct fec_enet_private *fep = netdev_priv(ndev);
2381
2382	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2383	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2384	pause->rx_pause = pause->tx_pause;
2385}
2386
2387static int fec_enet_set_pauseparam(struct net_device *ndev,
2388				   struct ethtool_pauseparam *pause)
2389{
2390	struct fec_enet_private *fep = netdev_priv(ndev);
2391
2392	if (!ndev->phydev)
2393		return -ENODEV;
2394
2395	if (pause->tx_pause != pause->rx_pause) {
2396		netdev_info(ndev,
2397			"hardware only support enable/disable both tx and rx");
2398		return -EINVAL;
2399	}
2400
2401	fep->pause_flag = 0;
2402
2403	/* tx pause must be same as rx pause */
2404	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2405	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2406
2407	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2408			  pause->autoneg);
2409
2410	if (pause->autoneg) {
2411		if (netif_running(ndev))
2412			fec_stop(ndev);
2413		phy_start_aneg(ndev->phydev);
2414	}
2415	if (netif_running(ndev)) {
2416		napi_disable(&fep->napi);
2417		netif_tx_lock_bh(ndev);
2418		fec_restart(ndev);
2419		netif_tx_wake_all_queues(ndev);
2420		netif_tx_unlock_bh(ndev);
2421		napi_enable(&fep->napi);
2422	}
2423
2424	return 0;
2425}
2426
2427static const struct fec_stat {
2428	char name[ETH_GSTRING_LEN];
2429	u16 offset;
2430} fec_stats[] = {
2431	/* RMON TX */
2432	{ "tx_dropped", RMON_T_DROP },
2433	{ "tx_packets", RMON_T_PACKETS },
2434	{ "tx_broadcast", RMON_T_BC_PKT },
2435	{ "tx_multicast", RMON_T_MC_PKT },
2436	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2437	{ "tx_undersize", RMON_T_UNDERSIZE },
2438	{ "tx_oversize", RMON_T_OVERSIZE },
2439	{ "tx_fragment", RMON_T_FRAG },
2440	{ "tx_jabber", RMON_T_JAB },
2441	{ "tx_collision", RMON_T_COL },
2442	{ "tx_64byte", RMON_T_P64 },
2443	{ "tx_65to127byte", RMON_T_P65TO127 },
2444	{ "tx_128to255byte", RMON_T_P128TO255 },
2445	{ "tx_256to511byte", RMON_T_P256TO511 },
2446	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2447	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2448	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2449	{ "tx_octets", RMON_T_OCTETS },
2450
2451	/* IEEE TX */
2452	{ "IEEE_tx_drop", IEEE_T_DROP },
2453	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2454	{ "IEEE_tx_1col", IEEE_T_1COL },
2455	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2456	{ "IEEE_tx_def", IEEE_T_DEF },
2457	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2458	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2459	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2460	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2461	{ "IEEE_tx_sqe", IEEE_T_SQE },
2462	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2463	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2464
2465	/* RMON RX */
2466	{ "rx_packets", RMON_R_PACKETS },
2467	{ "rx_broadcast", RMON_R_BC_PKT },
2468	{ "rx_multicast", RMON_R_MC_PKT },
2469	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2470	{ "rx_undersize", RMON_R_UNDERSIZE },
2471	{ "rx_oversize", RMON_R_OVERSIZE },
2472	{ "rx_fragment", RMON_R_FRAG },
2473	{ "rx_jabber", RMON_R_JAB },
2474	{ "rx_64byte", RMON_R_P64 },
2475	{ "rx_65to127byte", RMON_R_P65TO127 },
2476	{ "rx_128to255byte", RMON_R_P128TO255 },
2477	{ "rx_256to511byte", RMON_R_P256TO511 },
2478	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2479	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2480	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2481	{ "rx_octets", RMON_R_OCTETS },
2482
2483	/* IEEE RX */
2484	{ "IEEE_rx_drop", IEEE_R_DROP },
2485	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2486	{ "IEEE_rx_crc", IEEE_R_CRC },
2487	{ "IEEE_rx_align", IEEE_R_ALIGN },
2488	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2489	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2490	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2491};
2492
2493#define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2494
2495static void fec_enet_update_ethtool_stats(struct net_device *dev)
2496{
2497	struct fec_enet_private *fep = netdev_priv(dev);
2498	int i;
2499
2500	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2501		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2502}
2503
2504static void fec_enet_get_ethtool_stats(struct net_device *dev,
2505				       struct ethtool_stats *stats, u64 *data)
2506{
2507	struct fec_enet_private *fep = netdev_priv(dev);
2508
2509	if (netif_running(dev))
2510		fec_enet_update_ethtool_stats(dev);
2511
2512	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2513}
2514
2515static void fec_enet_get_strings(struct net_device *netdev,
2516	u32 stringset, u8 *data)
2517{
2518	int i;
2519	switch (stringset) {
2520	case ETH_SS_STATS:
2521		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2522			memcpy(data + i * ETH_GSTRING_LEN,
2523				fec_stats[i].name, ETH_GSTRING_LEN);
2524		break;
2525	}
2526}
2527
2528static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2529{
2530	switch (sset) {
2531	case ETH_SS_STATS:
2532		return ARRAY_SIZE(fec_stats);
2533	default:
2534		return -EOPNOTSUPP;
2535	}
2536}
2537
2538static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2539{
2540	struct fec_enet_private *fep = netdev_priv(dev);
2541	int i;
2542
2543	/* Disable MIB statistics counters */
2544	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2545
2546	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2547		writel(0, fep->hwp + fec_stats[i].offset);
2548
2549	/* Don't disable MIB statistics counters */
2550	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2551}
2552
2553#else	/* !defined(CONFIG_M5272) */
2554#define FEC_STATS_SIZE	0
2555static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2556{
2557}
2558
2559static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2560{
2561}
2562#endif /* !defined(CONFIG_M5272) */
2563
2564/* ITR clock source is enet system clock (clk_ahb).
2565 * TCTT unit is cycle_ns * 64 cycle
2566 * So, the ICTT value = X us / (cycle_ns * 64)
2567 */
2568static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2569{
2570	struct fec_enet_private *fep = netdev_priv(ndev);
2571
2572	return us * (fep->itr_clk_rate / 64000) / 1000;
2573}
2574
2575/* Set threshold for interrupt coalescing */
2576static void fec_enet_itr_coal_set(struct net_device *ndev)
2577{
2578	struct fec_enet_private *fep = netdev_priv(ndev);
2579	int rx_itr, tx_itr;
2580
2581	/* Must be greater than zero to avoid unpredictable behavior */
2582	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2583	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2584		return;
2585
2586	/* Select enet system clock as Interrupt Coalescing
2587	 * timer Clock Source
2588	 */
2589	rx_itr = FEC_ITR_CLK_SEL;
2590	tx_itr = FEC_ITR_CLK_SEL;
2591
2592	/* set ICFT and ICTT */
2593	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2594	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2595	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2596	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2597
2598	rx_itr |= FEC_ITR_EN;
2599	tx_itr |= FEC_ITR_EN;
2600
2601	writel(tx_itr, fep->hwp + FEC_TXIC0);
2602	writel(rx_itr, fep->hwp + FEC_RXIC0);
2603	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2604		writel(tx_itr, fep->hwp + FEC_TXIC1);
2605		writel(rx_itr, fep->hwp + FEC_RXIC1);
2606		writel(tx_itr, fep->hwp + FEC_TXIC2);
2607		writel(rx_itr, fep->hwp + FEC_RXIC2);
2608	}
2609}
2610
2611static int
2612fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2613{
2614	struct fec_enet_private *fep = netdev_priv(ndev);
2615
2616	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2617		return -EOPNOTSUPP;
2618
2619	ec->rx_coalesce_usecs = fep->rx_time_itr;
2620	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2621
2622	ec->tx_coalesce_usecs = fep->tx_time_itr;
2623	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2624
2625	return 0;
2626}
2627
2628static int
2629fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2630{
2631	struct fec_enet_private *fep = netdev_priv(ndev);
2632	struct device *dev = &fep->pdev->dev;
2633	unsigned int cycle;
2634
2635	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2636		return -EOPNOTSUPP;
2637
2638	if (ec->rx_max_coalesced_frames > 255) {
2639		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2640		return -EINVAL;
2641	}
2642
2643	if (ec->tx_max_coalesced_frames > 255) {
2644		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2645		return -EINVAL;
2646	}
2647
2648	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2649	if (cycle > 0xFFFF) {
2650		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2651		return -EINVAL;
2652	}
2653
2654	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2655	if (cycle > 0xFFFF) {
2656		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2657		return -EINVAL;
2658	}
2659
2660	fep->rx_time_itr = ec->rx_coalesce_usecs;
2661	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2662
2663	fep->tx_time_itr = ec->tx_coalesce_usecs;
2664	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2665
2666	fec_enet_itr_coal_set(ndev);
2667
2668	return 0;
2669}
2670
2671static void fec_enet_itr_coal_init(struct net_device *ndev)
2672{
2673	struct ethtool_coalesce ec;
2674
2675	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2676	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2677
2678	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2679	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2680
2681	fec_enet_set_coalesce(ndev, &ec);
2682}
2683
2684static int fec_enet_get_tunable(struct net_device *netdev,
2685				const struct ethtool_tunable *tuna,
2686				void *data)
2687{
2688	struct fec_enet_private *fep = netdev_priv(netdev);
2689	int ret = 0;
2690
2691	switch (tuna->id) {
2692	case ETHTOOL_RX_COPYBREAK:
2693		*(u32 *)data = fep->rx_copybreak;
2694		break;
2695	default:
2696		ret = -EINVAL;
2697		break;
2698	}
2699
2700	return ret;
2701}
2702
2703static int fec_enet_set_tunable(struct net_device *netdev,
2704				const struct ethtool_tunable *tuna,
2705				const void *data)
2706{
2707	struct fec_enet_private *fep = netdev_priv(netdev);
2708	int ret = 0;
2709
2710	switch (tuna->id) {
2711	case ETHTOOL_RX_COPYBREAK:
2712		fep->rx_copybreak = *(u32 *)data;
2713		break;
2714	default:
2715		ret = -EINVAL;
2716		break;
2717	}
2718
2719	return ret;
2720}
2721
2722static void
2723fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2724{
2725	struct fec_enet_private *fep = netdev_priv(ndev);
2726
2727	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2728		wol->supported = WAKE_MAGIC;
2729		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2730	} else {
2731		wol->supported = wol->wolopts = 0;
2732	}
2733}
2734
2735static int
2736fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2737{
2738	struct fec_enet_private *fep = netdev_priv(ndev);
2739
2740	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2741		return -EINVAL;
2742
2743	if (wol->wolopts & ~WAKE_MAGIC)
2744		return -EINVAL;
2745
2746	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2747	if (device_may_wakeup(&ndev->dev)) {
2748		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2749		if (fep->irq[0] > 0)
2750			enable_irq_wake(fep->irq[0]);
2751	} else {
2752		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2753		if (fep->irq[0] > 0)
2754			disable_irq_wake(fep->irq[0]);
2755	}
2756
2757	return 0;
2758}
2759
2760static const struct ethtool_ops fec_enet_ethtool_ops = {
2761	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2762				     ETHTOOL_COALESCE_MAX_FRAMES,
2763	.get_drvinfo		= fec_enet_get_drvinfo,
2764	.get_regs_len		= fec_enet_get_regs_len,
2765	.get_regs		= fec_enet_get_regs,
2766	.nway_reset		= phy_ethtool_nway_reset,
2767	.get_link		= ethtool_op_get_link,
2768	.get_coalesce		= fec_enet_get_coalesce,
2769	.set_coalesce		= fec_enet_set_coalesce,
2770#ifndef CONFIG_M5272
2771	.get_pauseparam		= fec_enet_get_pauseparam,
2772	.set_pauseparam		= fec_enet_set_pauseparam,
2773	.get_strings		= fec_enet_get_strings,
2774	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2775	.get_sset_count		= fec_enet_get_sset_count,
2776#endif
2777	.get_ts_info		= fec_enet_get_ts_info,
2778	.get_tunable		= fec_enet_get_tunable,
2779	.set_tunable		= fec_enet_set_tunable,
2780	.get_wol		= fec_enet_get_wol,
2781	.set_wol		= fec_enet_set_wol,
2782	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2783	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2784};
2785
2786static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2787{
2788	struct fec_enet_private *fep = netdev_priv(ndev);
2789	struct phy_device *phydev = ndev->phydev;
2790
2791	if (!netif_running(ndev))
2792		return -EINVAL;
2793
2794	if (!phydev)
2795		return -ENODEV;
2796
2797	if (fep->bufdesc_ex) {
2798		bool use_fec_hwts = !phy_has_hwtstamp(phydev);
2799
2800		if (cmd == SIOCSHWTSTAMP) {
2801			if (use_fec_hwts)
2802				return fec_ptp_set(ndev, rq);
2803			fec_ptp_disable_hwts(ndev);
2804		} else if (cmd == SIOCGHWTSTAMP) {
2805			if (use_fec_hwts)
2806				return fec_ptp_get(ndev, rq);
2807		}
2808	}
2809
2810	return phy_mii_ioctl(phydev, rq, cmd);
2811}
2812
2813static void fec_enet_free_buffers(struct net_device *ndev)
2814{
2815	struct fec_enet_private *fep = netdev_priv(ndev);
2816	unsigned int i;
2817	struct sk_buff *skb;
2818	struct bufdesc	*bdp;
2819	struct fec_enet_priv_tx_q *txq;
2820	struct fec_enet_priv_rx_q *rxq;
2821	unsigned int q;
2822
2823	for (q = 0; q < fep->num_rx_queues; q++) {
2824		rxq = fep->rx_queue[q];
2825		bdp = rxq->bd.base;
2826		for (i = 0; i < rxq->bd.ring_size; i++) {
2827			skb = rxq->rx_skbuff[i];
2828			rxq->rx_skbuff[i] = NULL;
2829			if (skb) {
2830				dma_unmap_single(&fep->pdev->dev,
2831						 fec32_to_cpu(bdp->cbd_bufaddr),
2832						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2833						 DMA_FROM_DEVICE);
2834				dev_kfree_skb(skb);
2835			}
2836			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2837		}
2838	}
2839
2840	for (q = 0; q < fep->num_tx_queues; q++) {
2841		txq = fep->tx_queue[q];
2842		for (i = 0; i < txq->bd.ring_size; i++) {
2843			kfree(txq->tx_bounce[i]);
2844			txq->tx_bounce[i] = NULL;
2845			skb = txq->tx_skbuff[i];
2846			txq->tx_skbuff[i] = NULL;
2847			dev_kfree_skb(skb);
2848		}
2849	}
2850}
2851
2852static void fec_enet_free_queue(struct net_device *ndev)
2853{
2854	struct fec_enet_private *fep = netdev_priv(ndev);
2855	int i;
2856	struct fec_enet_priv_tx_q *txq;
2857
2858	for (i = 0; i < fep->num_tx_queues; i++)
2859		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2860			txq = fep->tx_queue[i];
2861			dma_free_coherent(&fep->pdev->dev,
2862					  txq->bd.ring_size * TSO_HEADER_SIZE,
2863					  txq->tso_hdrs,
2864					  txq->tso_hdrs_dma);
2865		}
2866
2867	for (i = 0; i < fep->num_rx_queues; i++)
2868		kfree(fep->rx_queue[i]);
2869	for (i = 0; i < fep->num_tx_queues; i++)
2870		kfree(fep->tx_queue[i]);
2871}
2872
2873static int fec_enet_alloc_queue(struct net_device *ndev)
2874{
2875	struct fec_enet_private *fep = netdev_priv(ndev);
2876	int i;
2877	int ret = 0;
2878	struct fec_enet_priv_tx_q *txq;
2879
2880	for (i = 0; i < fep->num_tx_queues; i++) {
2881		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2882		if (!txq) {
2883			ret = -ENOMEM;
2884			goto alloc_failed;
2885		}
2886
2887		fep->tx_queue[i] = txq;
2888		txq->bd.ring_size = TX_RING_SIZE;
2889		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2890
2891		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2892		txq->tx_wake_threshold =
2893			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2894
2895		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2896					txq->bd.ring_size * TSO_HEADER_SIZE,
2897					&txq->tso_hdrs_dma,
2898					GFP_KERNEL);
2899		if (!txq->tso_hdrs) {
2900			ret = -ENOMEM;
2901			goto alloc_failed;
2902		}
2903	}
2904
2905	for (i = 0; i < fep->num_rx_queues; i++) {
2906		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2907					   GFP_KERNEL);
2908		if (!fep->rx_queue[i]) {
2909			ret = -ENOMEM;
2910			goto alloc_failed;
2911		}
2912
2913		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2914		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2915	}
2916	return ret;
2917
2918alloc_failed:
2919	fec_enet_free_queue(ndev);
2920	return ret;
2921}
2922
2923static int
2924fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2925{
2926	struct fec_enet_private *fep = netdev_priv(ndev);
2927	unsigned int i;
2928	struct sk_buff *skb;
2929	struct bufdesc	*bdp;
2930	struct fec_enet_priv_rx_q *rxq;
2931
2932	rxq = fep->rx_queue[queue];
2933	bdp = rxq->bd.base;
2934	for (i = 0; i < rxq->bd.ring_size; i++) {
2935		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2936		if (!skb)
2937			goto err_alloc;
2938
2939		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2940			dev_kfree_skb(skb);
2941			goto err_alloc;
2942		}
2943
2944		rxq->rx_skbuff[i] = skb;
2945		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2946
2947		if (fep->bufdesc_ex) {
2948			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2949			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2950		}
2951
2952		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2953	}
2954
2955	/* Set the last buffer to wrap. */
2956	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2957	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2958	return 0;
2959
2960 err_alloc:
2961	fec_enet_free_buffers(ndev);
2962	return -ENOMEM;
2963}
2964
2965static int
2966fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2967{
2968	struct fec_enet_private *fep = netdev_priv(ndev);
2969	unsigned int i;
2970	struct bufdesc  *bdp;
2971	struct fec_enet_priv_tx_q *txq;
2972
2973	txq = fep->tx_queue[queue];
2974	bdp = txq->bd.base;
2975	for (i = 0; i < txq->bd.ring_size; i++) {
2976		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2977		if (!txq->tx_bounce[i])
2978			goto err_alloc;
2979
2980		bdp->cbd_sc = cpu_to_fec16(0);
2981		bdp->cbd_bufaddr = cpu_to_fec32(0);
2982
2983		if (fep->bufdesc_ex) {
2984			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2985			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2986		}
2987
2988		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2989	}
2990
2991	/* Set the last buffer to wrap. */
2992	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2993	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2994
2995	return 0;
2996
2997 err_alloc:
2998	fec_enet_free_buffers(ndev);
2999	return -ENOMEM;
3000}
3001
3002static int fec_enet_alloc_buffers(struct net_device *ndev)
3003{
3004	struct fec_enet_private *fep = netdev_priv(ndev);
3005	unsigned int i;
3006
3007	for (i = 0; i < fep->num_rx_queues; i++)
3008		if (fec_enet_alloc_rxq_buffers(ndev, i))
3009			return -ENOMEM;
3010
3011	for (i = 0; i < fep->num_tx_queues; i++)
3012		if (fec_enet_alloc_txq_buffers(ndev, i))
3013			return -ENOMEM;
3014	return 0;
3015}
3016
3017static int
3018fec_enet_open(struct net_device *ndev)
3019{
3020	struct fec_enet_private *fep = netdev_priv(ndev);
3021	int ret;
3022	bool reset_again;
3023
3024	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3025	if (ret < 0)
3026		return ret;
3027
3028	pinctrl_pm_select_default_state(&fep->pdev->dev);
3029	ret = fec_enet_clk_enable(ndev, true);
3030	if (ret)
3031		goto clk_enable;
3032
3033	/* During the first fec_enet_open call the PHY isn't probed at this
3034	 * point. Therefore the phy_reset_after_clk_enable() call within
3035	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3036	 * sure the PHY is working correctly we check if we need to reset again
3037	 * later when the PHY is probed
3038	 */
3039	if (ndev->phydev && ndev->phydev->drv)
3040		reset_again = false;
3041	else
3042		reset_again = true;
3043
3044	/* I should reset the ring buffers here, but I don't yet know
3045	 * a simple way to do that.
3046	 */
3047
3048	ret = fec_enet_alloc_buffers(ndev);
3049	if (ret)
3050		goto err_enet_alloc;
3051
3052	/* Init MAC prior to mii bus probe */
3053	fec_restart(ndev);
3054
3055	/* Call phy_reset_after_clk_enable() again if it failed during
3056	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3057	 */
3058	if (reset_again)
3059		fec_enet_phy_reset_after_clk_enable(ndev);
3060
3061	/* Probe and connect to PHY when open the interface */
3062	ret = fec_enet_mii_probe(ndev);
3063	if (ret)
3064		goto err_enet_mii_probe;
3065
3066	if (fep->quirks & FEC_QUIRK_ERR006687)
3067		imx6q_cpuidle_fec_irqs_used();
3068
3069	napi_enable(&fep->napi);
3070	phy_start(ndev->phydev);
3071	netif_tx_start_all_queues(ndev);
3072
3073	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3074				 FEC_WOL_FLAG_ENABLE);
3075
3076	return 0;
3077
3078err_enet_mii_probe:
3079	fec_enet_free_buffers(ndev);
3080err_enet_alloc:
3081	fec_enet_clk_enable(ndev, false);
3082clk_enable:
3083	pm_runtime_mark_last_busy(&fep->pdev->dev);
3084	pm_runtime_put_autosuspend(&fep->pdev->dev);
3085	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3086	return ret;
3087}
3088
3089static int
3090fec_enet_close(struct net_device *ndev)
3091{
3092	struct fec_enet_private *fep = netdev_priv(ndev);
3093
3094	phy_stop(ndev->phydev);
3095
3096	if (netif_device_present(ndev)) {
3097		napi_disable(&fep->napi);
3098		netif_tx_disable(ndev);
3099		fec_stop(ndev);
3100	}
3101
3102	phy_disconnect(ndev->phydev);
3103
3104	if (fep->quirks & FEC_QUIRK_ERR006687)
3105		imx6q_cpuidle_fec_irqs_unused();
3106
3107	fec_enet_update_ethtool_stats(ndev);
3108
3109	fec_enet_clk_enable(ndev, false);
3110	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3111	pm_runtime_mark_last_busy(&fep->pdev->dev);
3112	pm_runtime_put_autosuspend(&fep->pdev->dev);
3113
3114	fec_enet_free_buffers(ndev);
3115
3116	return 0;
3117}
3118
3119/* Set or clear the multicast filter for this adaptor.
3120 * Skeleton taken from sunlance driver.
3121 * The CPM Ethernet implementation allows Multicast as well as individual
3122 * MAC address filtering.  Some of the drivers check to make sure it is
3123 * a group multicast address, and discard those that are not.  I guess I
3124 * will do the same for now, but just remove the test if you want
3125 * individual filtering as well (do the upper net layers want or support
3126 * this kind of feature?).
3127 */
3128
3129#define FEC_HASH_BITS	6		/* #bits in hash */
3130
3131static void set_multicast_list(struct net_device *ndev)
3132{
3133	struct fec_enet_private *fep = netdev_priv(ndev);
3134	struct netdev_hw_addr *ha;
3135	unsigned int crc, tmp;
3136	unsigned char hash;
3137	unsigned int hash_high = 0, hash_low = 0;
3138
3139	if (ndev->flags & IFF_PROMISC) {
3140		tmp = readl(fep->hwp + FEC_R_CNTRL);
3141		tmp |= 0x8;
3142		writel(tmp, fep->hwp + FEC_R_CNTRL);
3143		return;
3144	}
3145
3146	tmp = readl(fep->hwp + FEC_R_CNTRL);
3147	tmp &= ~0x8;
3148	writel(tmp, fep->hwp + FEC_R_CNTRL);
3149
3150	if (ndev->flags & IFF_ALLMULTI) {
3151		/* Catch all multicast addresses, so set the
3152		 * filter to all 1's
3153		 */
3154		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3155		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3156
3157		return;
3158	}
3159
3160	/* Add the addresses in hash register */
3161	netdev_for_each_mc_addr(ha, ndev) {
3162		/* calculate crc32 value of mac address */
3163		crc = ether_crc_le(ndev->addr_len, ha->addr);
3164
3165		/* only upper 6 bits (FEC_HASH_BITS) are used
3166		 * which point to specific bit in the hash registers
3167		 */
3168		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3169
3170		if (hash > 31)
3171			hash_high |= 1 << (hash - 32);
3172		else
3173			hash_low |= 1 << hash;
3174	}
3175
3176	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3177	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3178}
3179
3180/* Set a MAC change in hardware. */
3181static int
3182fec_set_mac_address(struct net_device *ndev, void *p)
3183{
3184	struct fec_enet_private *fep = netdev_priv(ndev);
3185	struct sockaddr *addr = p;
3186
3187	if (addr) {
3188		if (!is_valid_ether_addr(addr->sa_data))
3189			return -EADDRNOTAVAIL;
3190		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3191	}
3192
3193	/* Add netif status check here to avoid system hang in below case:
3194	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3195	 * After ethx down, fec all clocks are gated off and then register
3196	 * access causes system hang.
3197	 */
3198	if (!netif_running(ndev))
3199		return 0;
3200
3201	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3202		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3203		fep->hwp + FEC_ADDR_LOW);
3204	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3205		fep->hwp + FEC_ADDR_HIGH);
3206	return 0;
3207}
3208
3209#ifdef CONFIG_NET_POLL_CONTROLLER
3210/**
3211 * fec_poll_controller - FEC Poll controller function
3212 * @dev: The FEC network adapter
3213 *
3214 * Polled functionality used by netconsole and others in non interrupt mode
3215 *
3216 */
3217static void fec_poll_controller(struct net_device *dev)
3218{
3219	int i;
3220	struct fec_enet_private *fep = netdev_priv(dev);
3221
3222	for (i = 0; i < FEC_IRQ_NUM; i++) {
3223		if (fep->irq[i] > 0) {
3224			disable_irq(fep->irq[i]);
3225			fec_enet_interrupt(fep->irq[i], dev);
3226			enable_irq(fep->irq[i]);
3227		}
3228	}
3229}
3230#endif
3231
3232static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3233	netdev_features_t features)
3234{
3235	struct fec_enet_private *fep = netdev_priv(netdev);
3236	netdev_features_t changed = features ^ netdev->features;
3237
3238	netdev->features = features;
3239
3240	/* Receive checksum has been changed */
3241	if (changed & NETIF_F_RXCSUM) {
3242		if (features & NETIF_F_RXCSUM)
3243			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3244		else
3245			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3246	}
3247}
3248
3249static int fec_set_features(struct net_device *netdev,
3250	netdev_features_t features)
3251{
3252	struct fec_enet_private *fep = netdev_priv(netdev);
3253	netdev_features_t changed = features ^ netdev->features;
3254
3255	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3256		napi_disable(&fep->napi);
3257		netif_tx_lock_bh(netdev);
3258		fec_stop(netdev);
3259		fec_enet_set_netdev_features(netdev, features);
3260		fec_restart(netdev);
3261		netif_tx_wake_all_queues(netdev);
3262		netif_tx_unlock_bh(netdev);
3263		napi_enable(&fep->napi);
3264	} else {
3265		fec_enet_set_netdev_features(netdev, features);
3266	}
3267
3268	return 0;
3269}
3270
3271static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3272				 struct net_device *sb_dev)
3273{
3274	struct fec_enet_private *fep = netdev_priv(ndev);
3275	u16 vlan_tag = 0;
3276
3277	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3278		return netdev_pick_tx(ndev, skb, NULL);
3279
3280	/* VLAN is present in the payload.*/
3281	if (eth_type_vlan(skb->protocol)) {
3282		struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3283
3284		vlan_tag = ntohs(vhdr->h_vlan_TCI);
3285	/*  VLAN is present in the skb but not yet pushed in the payload.*/
3286	} else if (skb_vlan_tag_present(skb)) {
3287		vlan_tag = skb->vlan_tci;
3288	} else {
3289		return vlan_tag;
3290	}
3291
3292	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3293}
3294
3295static const struct net_device_ops fec_netdev_ops = {
3296	.ndo_open		= fec_enet_open,
3297	.ndo_stop		= fec_enet_close,
3298	.ndo_start_xmit		= fec_enet_start_xmit,
3299	.ndo_select_queue       = fec_enet_select_queue,
3300	.ndo_set_rx_mode	= set_multicast_list,
3301	.ndo_validate_addr	= eth_validate_addr,
3302	.ndo_tx_timeout		= fec_timeout,
3303	.ndo_set_mac_address	= fec_set_mac_address,
3304	.ndo_do_ioctl		= fec_enet_ioctl,
3305#ifdef CONFIG_NET_POLL_CONTROLLER
3306	.ndo_poll_controller	= fec_poll_controller,
3307#endif
3308	.ndo_set_features	= fec_set_features,
3309};
3310
3311static const unsigned short offset_des_active_rxq[] = {
3312	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3313};
3314
3315static const unsigned short offset_des_active_txq[] = {
3316	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3317};
3318
3319 /*
3320  * XXX:  We need to clean up on failure exits here.
3321  *
3322  */
3323static int fec_enet_init(struct net_device *ndev)
3324{
3325	struct fec_enet_private *fep = netdev_priv(ndev);
3326	struct bufdesc *cbd_base;
3327	dma_addr_t bd_dma;
3328	int bd_size;
3329	unsigned int i;
3330	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3331			sizeof(struct bufdesc);
3332	unsigned dsize_log2 = __fls(dsize);
3333	int ret;
3334
3335	WARN_ON(dsize != (1 << dsize_log2));
3336#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3337	fep->rx_align = 0xf;
3338	fep->tx_align = 0xf;
3339#else
3340	fep->rx_align = 0x3;
3341	fep->tx_align = 0x3;
3342#endif
3343
3344	/* Check mask of the streaming and coherent API */
3345	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3346	if (ret < 0) {
3347		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3348		return ret;
3349	}
3350
3351	ret = fec_enet_alloc_queue(ndev);
3352	if (ret)
3353		return ret;
3354
3355	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3356
3357	/* Allocate memory for buffer descriptors. */
3358	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3359				       GFP_KERNEL);
3360	if (!cbd_base) {
3361		ret = -ENOMEM;
3362		goto free_queue_mem;
3363	}
3364
3365	/* Get the Ethernet address */
3366	fec_get_mac(ndev);
3367	/* make sure MAC we just acquired is programmed into the hw */
3368	fec_set_mac_address(ndev, NULL);
3369
3370	/* Set receive and transmit descriptor base. */
3371	for (i = 0; i < fep->num_rx_queues; i++) {
3372		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3373		unsigned size = dsize * rxq->bd.ring_size;
3374
3375		rxq->bd.qid = i;
3376		rxq->bd.base = cbd_base;
3377		rxq->bd.cur = cbd_base;
3378		rxq->bd.dma = bd_dma;
3379		rxq->bd.dsize = dsize;
3380		rxq->bd.dsize_log2 = dsize_log2;
3381		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3382		bd_dma += size;
3383		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3384		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3385	}
3386
3387	for (i = 0; i < fep->num_tx_queues; i++) {
3388		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3389		unsigned size = dsize * txq->bd.ring_size;
3390
3391		txq->bd.qid = i;
3392		txq->bd.base = cbd_base;
3393		txq->bd.cur = cbd_base;
3394		txq->bd.dma = bd_dma;
3395		txq->bd.dsize = dsize;
3396		txq->bd.dsize_log2 = dsize_log2;
3397		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3398		bd_dma += size;
3399		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3400		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3401	}
3402
3403
3404	/* The FEC Ethernet specific entries in the device structure */
3405	ndev->watchdog_timeo = TX_TIMEOUT;
3406	ndev->netdev_ops = &fec_netdev_ops;
3407	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3408
3409	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3410	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3411
3412	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3413		/* enable hw VLAN support */
3414		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3415
3416	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3417		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3418
3419		/* enable hw accelerator */
3420		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3421				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3422		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3423	}
3424
3425	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3426		fep->tx_align = 0;
3427		fep->rx_align = 0x3f;
3428	}
3429
3430	ndev->hw_features = ndev->features;
3431
3432	fec_restart(ndev);
3433
3434	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3435		fec_enet_clear_ethtool_stats(ndev);
3436	else
3437		fec_enet_update_ethtool_stats(ndev);
3438
3439	return 0;
3440
3441free_queue_mem:
3442	fec_enet_free_queue(ndev);
3443	return ret;
3444}
3445
3446#ifdef CONFIG_OF
3447static int fec_reset_phy(struct platform_device *pdev)
3448{
3449	int err, phy_reset;
3450	bool active_high = false;
3451	int msec = 1, phy_post_delay = 0;
3452	struct device_node *np = pdev->dev.of_node;
3453
3454	if (!np)
3455		return 0;
3456
3457	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3458	/* A sane reset duration should not be longer than 1s */
3459	if (!err && msec > 1000)
3460		msec = 1;
3461
3462	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3463	if (phy_reset == -EPROBE_DEFER)
3464		return phy_reset;
3465	else if (!gpio_is_valid(phy_reset))
3466		return 0;
3467
3468	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3469	/* valid reset duration should be less than 1s */
3470	if (!err && phy_post_delay > 1000)
3471		return -EINVAL;
3472
3473	active_high = of_property_read_bool(np, "phy-reset-active-high");
3474
3475	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3476			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3477			"phy-reset");
3478	if (err) {
3479		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3480		return err;
3481	}
3482
3483	if (msec > 20)
3484		msleep(msec);
3485	else
3486		usleep_range(msec * 1000, msec * 1000 + 1000);
3487
3488	gpio_set_value_cansleep(phy_reset, !active_high);
3489
3490	if (!phy_post_delay)
3491		return 0;
3492
3493	if (phy_post_delay > 20)
3494		msleep(phy_post_delay);
3495	else
3496		usleep_range(phy_post_delay * 1000,
3497			     phy_post_delay * 1000 + 1000);
3498
3499	return 0;
3500}
3501#else /* CONFIG_OF */
3502static int fec_reset_phy(struct platform_device *pdev)
3503{
3504	/*
3505	 * In case of platform probe, the reset has been done
3506	 * by machine code.
3507	 */
3508	return 0;
3509}
3510#endif /* CONFIG_OF */
3511
3512static void
3513fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3514{
3515	struct device_node *np = pdev->dev.of_node;
3516
3517	*num_tx = *num_rx = 1;
3518
3519	if (!np || !of_device_is_available(np))
3520		return;
3521
3522	/* parse the num of tx and rx queues */
3523	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3524
3525	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3526
3527	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3528		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3529			 *num_tx);
3530		*num_tx = 1;
3531		return;
3532	}
3533
3534	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3535		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3536			 *num_rx);
3537		*num_rx = 1;
3538		return;
3539	}
3540
3541}
3542
3543static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3544{
3545	int irq_cnt = platform_irq_count(pdev);
3546
3547	if (irq_cnt > FEC_IRQ_NUM)
3548		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3549	else if (irq_cnt == 2)
3550		irq_cnt = 1;	/* last for pps */
3551	else if (irq_cnt <= 0)
3552		irq_cnt = 1;	/* At least 1 irq is needed */
3553	return irq_cnt;
3554}
3555
3556static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3557				   struct device_node *np)
3558{
3559	struct device_node *gpr_np;
3560	u32 out_val[3];
3561	int ret = 0;
3562
3563	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
3564	if (!gpr_np)
3565		return 0;
3566
3567	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
3568					 ARRAY_SIZE(out_val));
3569	if (ret) {
3570		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
3571		goto out;
3572	}
3573
3574	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3575	if (IS_ERR(fep->stop_gpr.gpr)) {
3576		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3577		ret = PTR_ERR(fep->stop_gpr.gpr);
3578		fep->stop_gpr.gpr = NULL;
3579		goto out;
3580	}
3581
3582	fep->stop_gpr.reg = out_val[1];
3583	fep->stop_gpr.bit = out_val[2];
3584
3585out:
3586	of_node_put(gpr_np);
3587
3588	return ret;
3589}
3590
3591static int
3592fec_probe(struct platform_device *pdev)
3593{
3594	struct fec_enet_private *fep;
3595	struct fec_platform_data *pdata;
3596	phy_interface_t interface;
3597	struct net_device *ndev;
3598	int i, irq, ret = 0;
3599	const struct of_device_id *of_id;
3600	static int dev_id;
3601	struct device_node *np = pdev->dev.of_node, *phy_node;
3602	int num_tx_qs;
3603	int num_rx_qs;
3604	char irq_name[8];
3605	int irq_cnt;
3606	struct fec_devinfo *dev_info;
3607
3608	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3609
3610	/* Init network device */
3611	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3612				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3613	if (!ndev)
3614		return -ENOMEM;
3615
3616	SET_NETDEV_DEV(ndev, &pdev->dev);
3617
3618	/* setup board info structure */
3619	fep = netdev_priv(ndev);
3620
3621	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3622	if (of_id)
3623		pdev->id_entry = of_id->data;
3624	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3625	if (dev_info)
3626		fep->quirks = dev_info->quirks;
3627
3628	fep->netdev = ndev;
3629	fep->num_rx_queues = num_rx_qs;
3630	fep->num_tx_queues = num_tx_qs;
3631
3632#if !defined(CONFIG_M5272)
3633	/* default enable pause frame auto negotiation */
3634	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3635		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3636#endif
3637
3638	/* Select default pin state */
3639	pinctrl_pm_select_default_state(&pdev->dev);
3640
3641	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3642	if (IS_ERR(fep->hwp)) {
3643		ret = PTR_ERR(fep->hwp);
3644		goto failed_ioremap;
3645	}
3646
3647	fep->pdev = pdev;
3648	fep->dev_id = dev_id++;
3649
3650	platform_set_drvdata(pdev, ndev);
3651
3652	if ((of_machine_is_compatible("fsl,imx6q") ||
3653	     of_machine_is_compatible("fsl,imx6dl")) &&
3654	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3655		fep->quirks |= FEC_QUIRK_ERR006687;
3656
3657	if (of_get_property(np, "fsl,magic-packet", NULL))
3658		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3659
3660	ret = fec_enet_init_stop_mode(fep, np);
3661	if (ret)
3662		goto failed_stop_mode;
3663
3664	phy_node = of_parse_phandle(np, "phy-handle", 0);
3665	if (!phy_node && of_phy_is_fixed_link(np)) {
3666		ret = of_phy_register_fixed_link(np);
3667		if (ret < 0) {
3668			dev_err(&pdev->dev,
3669				"broken fixed-link specification\n");
3670			goto failed_phy;
3671		}
3672		phy_node = of_node_get(np);
3673	}
3674	fep->phy_node = phy_node;
3675
3676	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3677	if (ret) {
3678		pdata = dev_get_platdata(&pdev->dev);
3679		if (pdata)
3680			fep->phy_interface = pdata->phy;
3681		else
3682			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3683	} else {
3684		fep->phy_interface = interface;
3685	}
3686
3687	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3688	if (IS_ERR(fep->clk_ipg)) {
3689		ret = PTR_ERR(fep->clk_ipg);
3690		goto failed_clk;
3691	}
3692
3693	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3694	if (IS_ERR(fep->clk_ahb)) {
3695		ret = PTR_ERR(fep->clk_ahb);
3696		goto failed_clk;
3697	}
3698
3699	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3700
3701	/* enet_out is optional, depends on board */
3702	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3703	if (IS_ERR(fep->clk_enet_out))
3704		fep->clk_enet_out = NULL;
3705
3706	fep->ptp_clk_on = false;
3707	mutex_init(&fep->ptp_clk_mutex);
3708
3709	/* clk_ref is optional, depends on board */
3710	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3711	if (IS_ERR(fep->clk_ref))
3712		fep->clk_ref = NULL;
3713
3714	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3715	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3716	if (IS_ERR(fep->clk_ptp)) {
3717		fep->clk_ptp = NULL;
3718		fep->bufdesc_ex = false;
3719	}
3720
3721	ret = fec_enet_clk_enable(ndev, true);
3722	if (ret)
3723		goto failed_clk;
3724
3725	ret = clk_prepare_enable(fep->clk_ipg);
3726	if (ret)
3727		goto failed_clk_ipg;
3728	ret = clk_prepare_enable(fep->clk_ahb);
3729	if (ret)
3730		goto failed_clk_ahb;
3731
3732	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3733	if (!IS_ERR(fep->reg_phy)) {
3734		ret = regulator_enable(fep->reg_phy);
3735		if (ret) {
3736			dev_err(&pdev->dev,
3737				"Failed to enable phy regulator: %d\n", ret);
3738			goto failed_regulator;
3739		}
3740	} else {
3741		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3742			ret = -EPROBE_DEFER;
3743			goto failed_regulator;
3744		}
3745		fep->reg_phy = NULL;
3746	}
3747
3748	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3749	pm_runtime_use_autosuspend(&pdev->dev);
3750	pm_runtime_get_noresume(&pdev->dev);
3751	pm_runtime_set_active(&pdev->dev);
3752	pm_runtime_enable(&pdev->dev);
3753
3754	ret = fec_reset_phy(pdev);
3755	if (ret)
3756		goto failed_reset;
3757
3758	irq_cnt = fec_enet_get_irq_cnt(pdev);
3759	if (fep->bufdesc_ex)
3760		fec_ptp_init(pdev, irq_cnt);
3761
3762	ret = fec_enet_init(ndev);
3763	if (ret)
3764		goto failed_init;
3765
3766	for (i = 0; i < irq_cnt; i++) {
3767		snprintf(irq_name, sizeof(irq_name), "int%d", i);
3768		irq = platform_get_irq_byname_optional(pdev, irq_name);
3769		if (irq < 0)
3770			irq = platform_get_irq(pdev, i);
3771		if (irq < 0) {
3772			ret = irq;
3773			goto failed_irq;
3774		}
3775		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3776				       0, pdev->name, ndev);
3777		if (ret)
3778			goto failed_irq;
3779
3780		fep->irq[i] = irq;
3781	}
3782
3783	ret = fec_enet_mii_init(pdev);
3784	if (ret)
3785		goto failed_mii_init;
3786
3787	/* Carrier starts down, phylib will bring it up */
3788	netif_carrier_off(ndev);
3789	fec_enet_clk_enable(ndev, false);
3790	pinctrl_pm_select_sleep_state(&pdev->dev);
3791
3792	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
3793
3794	ret = register_netdev(ndev);
3795	if (ret)
3796		goto failed_register;
3797
3798	device_init_wakeup(&ndev->dev, fep->wol_flag &
3799			   FEC_WOL_HAS_MAGIC_PACKET);
3800
3801	if (fep->bufdesc_ex && fep->ptp_clock)
3802		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3803
3804	fep->rx_copybreak = COPYBREAK_DEFAULT;
3805	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3806
3807	pm_runtime_mark_last_busy(&pdev->dev);
3808	pm_runtime_put_autosuspend(&pdev->dev);
3809
3810	return 0;
3811
3812failed_register:
3813	fec_enet_mii_remove(fep);
3814failed_mii_init:
3815failed_irq:
3816failed_init:
3817	fec_ptp_stop(pdev);
3818failed_reset:
3819	pm_runtime_put_noidle(&pdev->dev);
3820	pm_runtime_disable(&pdev->dev);
3821	if (fep->reg_phy)
3822		regulator_disable(fep->reg_phy);
3823failed_regulator:
3824	clk_disable_unprepare(fep->clk_ahb);
3825failed_clk_ahb:
3826	clk_disable_unprepare(fep->clk_ipg);
3827failed_clk_ipg:
3828	fec_enet_clk_enable(ndev, false);
3829failed_clk:
3830	if (of_phy_is_fixed_link(np))
3831		of_phy_deregister_fixed_link(np);
3832	of_node_put(phy_node);
3833failed_stop_mode:
3834failed_phy:
3835	dev_id--;
3836failed_ioremap:
3837	free_netdev(ndev);
3838
3839	return ret;
3840}
3841
3842static int
3843fec_drv_remove(struct platform_device *pdev)
3844{
3845	struct net_device *ndev = platform_get_drvdata(pdev);
3846	struct fec_enet_private *fep = netdev_priv(ndev);
3847	struct device_node *np = pdev->dev.of_node;
3848	int ret;
3849
3850	ret = pm_runtime_get_sync(&pdev->dev);
3851	if (ret < 0)
3852		dev_err(&pdev->dev,
3853			"Failed to resume device in remove callback (%pe)\n",
3854			ERR_PTR(ret));
3855
3856	cancel_work_sync(&fep->tx_timeout_work);
3857	fec_ptp_stop(pdev);
3858	unregister_netdev(ndev);
3859	fec_enet_mii_remove(fep);
3860	if (fep->reg_phy)
3861		regulator_disable(fep->reg_phy);
3862
3863	if (of_phy_is_fixed_link(np))
3864		of_phy_deregister_fixed_link(np);
3865	of_node_put(fep->phy_node);
3866
3867	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
3868	 * disabling them again.
3869	 */
3870	if (ret >= 0) {
3871		clk_disable_unprepare(fep->clk_ahb);
3872		clk_disable_unprepare(fep->clk_ipg);
3873	}
3874	pm_runtime_put_noidle(&pdev->dev);
3875	pm_runtime_disable(&pdev->dev);
3876
3877	free_netdev(ndev);
3878	return 0;
3879}
3880
3881static int __maybe_unused fec_suspend(struct device *dev)
3882{
3883	struct net_device *ndev = dev_get_drvdata(dev);
3884	struct fec_enet_private *fep = netdev_priv(ndev);
3885
3886	rtnl_lock();
3887	if (netif_running(ndev)) {
3888		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3889			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3890		phy_stop(ndev->phydev);
3891		napi_disable(&fep->napi);
3892		netif_tx_lock_bh(ndev);
3893		netif_device_detach(ndev);
3894		netif_tx_unlock_bh(ndev);
3895		fec_stop(ndev);
3896		fec_enet_clk_enable(ndev, false);
3897		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3898			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3899	}
3900	rtnl_unlock();
3901
3902	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3903		regulator_disable(fep->reg_phy);
3904
3905	/* SOC supply clock to phy, when clock is disabled, phy link down
3906	 * SOC control phy regulator, when regulator is disabled, phy link down
3907	 */
3908	if (fep->clk_enet_out || fep->reg_phy)
3909		fep->link = 0;
3910
3911	return 0;
3912}
3913
3914static int __maybe_unused fec_resume(struct device *dev)
3915{
3916	struct net_device *ndev = dev_get_drvdata(dev);
3917	struct fec_enet_private *fep = netdev_priv(ndev);
3918	int ret;
3919	int val;
3920
3921	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3922		ret = regulator_enable(fep->reg_phy);
3923		if (ret)
3924			return ret;
3925	}
3926
3927	rtnl_lock();
3928	if (netif_running(ndev)) {
3929		ret = fec_enet_clk_enable(ndev, true);
3930		if (ret) {
3931			rtnl_unlock();
3932			goto failed_clk;
3933		}
3934		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3935			fec_enet_stop_mode(fep, false);
3936
3937			val = readl(fep->hwp + FEC_ECNTRL);
3938			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3939			writel(val, fep->hwp + FEC_ECNTRL);
3940			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3941		} else {
3942			pinctrl_pm_select_default_state(&fep->pdev->dev);
3943		}
3944		fec_restart(ndev);
3945		netif_tx_lock_bh(ndev);
3946		netif_device_attach(ndev);
3947		netif_tx_unlock_bh(ndev);
3948		napi_enable(&fep->napi);
3949		phy_start(ndev->phydev);
3950	}
3951	rtnl_unlock();
3952
3953	return 0;
3954
3955failed_clk:
3956	if (fep->reg_phy)
3957		regulator_disable(fep->reg_phy);
3958	return ret;
3959}
3960
3961static int __maybe_unused fec_runtime_suspend(struct device *dev)
3962{
3963	struct net_device *ndev = dev_get_drvdata(dev);
3964	struct fec_enet_private *fep = netdev_priv(ndev);
3965
3966	clk_disable_unprepare(fep->clk_ahb);
3967	clk_disable_unprepare(fep->clk_ipg);
3968
3969	return 0;
3970}
3971
3972static int __maybe_unused fec_runtime_resume(struct device *dev)
3973{
3974	struct net_device *ndev = dev_get_drvdata(dev);
3975	struct fec_enet_private *fep = netdev_priv(ndev);
3976	int ret;
3977
3978	ret = clk_prepare_enable(fep->clk_ahb);
3979	if (ret)
3980		return ret;
3981	ret = clk_prepare_enable(fep->clk_ipg);
3982	if (ret)
3983		goto failed_clk_ipg;
3984
3985	return 0;
3986
3987failed_clk_ipg:
3988	clk_disable_unprepare(fep->clk_ahb);
3989	return ret;
3990}
3991
3992static const struct dev_pm_ops fec_pm_ops = {
3993	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3994	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3995};
3996
3997static struct platform_driver fec_driver = {
3998	.driver	= {
3999		.name	= DRIVER_NAME,
4000		.pm	= &fec_pm_ops,
4001		.of_match_table = fec_dt_ids,
4002		.suppress_bind_attrs = true,
4003	},
4004	.id_table = fec_devtype,
4005	.probe	= fec_probe,
4006	.remove	= fec_drv_remove,
4007};
4008
4009module_platform_driver(fec_driver);
4010
4011MODULE_ALIAS("platform:"DRIVER_NAME);
4012MODULE_LICENSE("GPL");
4013