1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/tso.h>
42 #include <linux/tcp.h>
43 #include <linux/udp.h>
44 #include <linux/icmp.h>
45 #include <linux/spinlock.h>
46 #include <linux/workqueue.h>
47 #include <linux/bitops.h>
48 #include <linux/io.h>
49 #include <linux/irq.h>
50 #include <linux/clk.h>
51 #include <linux/crc32.h>
52 #include <linux/platform_device.h>
53 #include <linux/mdio.h>
54 #include <linux/phy.h>
55 #include <linux/fec.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/of_gpio.h>
59 #include <linux/of_mdio.h>
60 #include <linux/of_net.h>
61 #include <linux/regulator/consumer.h>
62 #include <linux/if_vlan.h>
63 #include <linux/pinctrl/consumer.h>
64 #include <linux/prefetch.h>
65 #include <linux/mfd/syscon.h>
66 #include <linux/regmap.h>
67 #include <soc/imx/cpuidle.h>
68 
69 #include <asm/cacheflush.h>
70 
71 #include "fec.h"
72 
73 static void set_multicast_list(struct net_device *ndev);
74 static void fec_enet_itr_coal_init(struct net_device *ndev);
75 
76 #define DRIVER_NAME	"fec"
77 
78 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
79 
80 /* Pause frame feild and FIFO threshold */
81 #define FEC_ENET_FCE	(1 << 5)
82 #define FEC_ENET_RSEM_V	0x84
83 #define FEC_ENET_RSFL_V	16
84 #define FEC_ENET_RAEM_V	0x8
85 #define FEC_ENET_RAFL_V	0x8
86 #define FEC_ENET_OPD_V	0xFFF0
87 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
88 
89 struct fec_devinfo {
90 	u32 quirks;
91 };
92 
93 static const struct fec_devinfo fec_imx25_info = {
94 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
95 		  FEC_QUIRK_HAS_FRREG,
96 };
97 
98 static const struct fec_devinfo fec_imx27_info = {
99 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
100 };
101 
102 static const struct fec_devinfo fec_imx28_info = {
103 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
104 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
105 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII,
106 };
107 
108 static const struct fec_devinfo fec_imx6q_info = {
109 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
110 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
111 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
112 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII,
113 };
114 
115 static const struct fec_devinfo fec_mvf600_info = {
116 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
117 };
118 
119 static const struct fec_devinfo fec_imx6x_info = {
120 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
121 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
122 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
123 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
124 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
125 		  FEC_QUIRK_CLEAR_SETUP_MII,
126 };
127 
128 static const struct fec_devinfo fec_imx6ul_info = {
129 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
130 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
131 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
132 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
133 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII,
134 };
135 
136 static struct platform_device_id fec_devtype[] = {
137 	{
138 		/* keep it for coldfire */
139 		.name = DRIVER_NAME,
140 		.driver_data = 0,
141 	}, {
142 		.name = "imx25-fec",
143 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
144 	}, {
145 		.name = "imx27-fec",
146 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
147 	}, {
148 		.name = "imx28-fec",
149 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
150 	}, {
151 		.name = "imx6q-fec",
152 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
153 	}, {
154 		.name = "mvf600-fec",
155 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
156 	}, {
157 		.name = "imx6sx-fec",
158 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
159 	}, {
160 		.name = "imx6ul-fec",
161 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
162 	}, {
163 		/* sentinel */
164 	}
165 };
166 MODULE_DEVICE_TABLE(platform, fec_devtype);
167 
168 enum imx_fec_type {
169 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
170 	IMX27_FEC,	/* runs on i.mx27/35/51 */
171 	IMX28_FEC,
172 	IMX6Q_FEC,
173 	MVF600_FEC,
174 	IMX6SX_FEC,
175 	IMX6UL_FEC,
176 };
177 
178 static const struct of_device_id fec_dt_ids[] = {
179 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
180 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
181 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
182 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
183 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
184 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
185 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
186 	{ /* sentinel */ }
187 };
188 MODULE_DEVICE_TABLE(of, fec_dt_ids);
189 
190 static unsigned char macaddr[ETH_ALEN];
191 module_param_array(macaddr, byte, NULL, 0);
192 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
193 
194 #if defined(CONFIG_M5272)
195 /*
196  * Some hardware gets it MAC address out of local flash memory.
197  * if this is non-zero then assume it is the address to get MAC from.
198  */
199 #if defined(CONFIG_NETtel)
200 #define	FEC_FLASHMAC	0xf0006006
201 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
202 #define	FEC_FLASHMAC	0xf0006000
203 #elif defined(CONFIG_CANCam)
204 #define	FEC_FLASHMAC	0xf0020000
205 #elif defined (CONFIG_M5272C3)
206 #define	FEC_FLASHMAC	(0xffe04000 + 4)
207 #elif defined(CONFIG_MOD5272)
208 #define FEC_FLASHMAC	0xffc0406b
209 #else
210 #define	FEC_FLASHMAC	0
211 #endif
212 #endif /* CONFIG_M5272 */
213 
214 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
215  *
216  * 2048 byte skbufs are allocated. However, alignment requirements
217  * varies between FEC variants. Worst case is 64, so round down by 64.
218  */
219 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
220 #define PKT_MINBUF_SIZE		64
221 
222 /* FEC receive acceleration */
223 #define FEC_RACC_IPDIS		(1 << 1)
224 #define FEC_RACC_PRODIS		(1 << 2)
225 #define FEC_RACC_SHIFT16	BIT(7)
226 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
227 
228 /* MIB Control Register */
229 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
230 
231 /*
232  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
233  * size bits. Other FEC hardware does not, so we need to take that into
234  * account when setting it.
235  */
236 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
237     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
238     defined(CONFIG_ARM64)
239 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
240 #else
241 #define	OPT_FRAME_SIZE	0
242 #endif
243 
244 /* FEC MII MMFR bits definition */
245 #define FEC_MMFR_ST		(1 << 30)
246 #define FEC_MMFR_ST_C45		(0)
247 #define FEC_MMFR_OP_READ	(2 << 28)
248 #define FEC_MMFR_OP_READ_C45	(3 << 28)
249 #define FEC_MMFR_OP_WRITE	(1 << 28)
250 #define FEC_MMFR_OP_ADDR_WRITE	(0)
251 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
252 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
253 #define FEC_MMFR_TA		(2 << 16)
254 #define FEC_MMFR_DATA(v)	(v & 0xffff)
255 /* FEC ECR bits definition */
256 #define FEC_ECR_MAGICEN		(1 << 2)
257 #define FEC_ECR_SLEEP		(1 << 3)
258 
259 #define FEC_MII_TIMEOUT		30000 /* us */
260 
261 /* Transmitter timeout */
262 #define TX_TIMEOUT (2 * HZ)
263 
264 #define FEC_PAUSE_FLAG_AUTONEG	0x1
265 #define FEC_PAUSE_FLAG_ENABLE	0x2
266 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
267 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
268 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
269 
270 #define COPYBREAK_DEFAULT	256
271 
272 /* Max number of allowed TCP segments for software TSO */
273 #define FEC_MAX_TSO_SEGS	100
274 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
275 
276 #define IS_TSO_HEADER(txq, addr) \
277 	((addr >= txq->tso_hdrs_dma) && \
278 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
279 
280 static int mii_cnt;
281 
fec_enet_get_nextdesc(struct bufdesc *bdp, struct bufdesc_prop *bd)282 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
283 					     struct bufdesc_prop *bd)
284 {
285 	return (bdp >= bd->last) ? bd->base
286 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
287 }
288 
fec_enet_get_prevdesc(struct bufdesc *bdp, struct bufdesc_prop *bd)289 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
290 					     struct bufdesc_prop *bd)
291 {
292 	return (bdp <= bd->base) ? bd->last
293 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
294 }
295 
fec_enet_get_bd_index(struct bufdesc *bdp, struct bufdesc_prop *bd)296 static int fec_enet_get_bd_index(struct bufdesc *bdp,
297 				 struct bufdesc_prop *bd)
298 {
299 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
300 }
301 
fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)302 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
303 {
304 	int entries;
305 
306 	entries = (((const char *)txq->dirty_tx -
307 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
308 
309 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
310 }
311 
swap_buffer(void *bufaddr, int len)312 static void swap_buffer(void *bufaddr, int len)
313 {
314 	int i;
315 	unsigned int *buf = bufaddr;
316 
317 	for (i = 0; i < len; i += 4, buf++)
318 		swab32s(buf);
319 }
320 
swap_buffer2(void *dst_buf, void *src_buf, int len)321 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
322 {
323 	int i;
324 	unsigned int *src = src_buf;
325 	unsigned int *dst = dst_buf;
326 
327 	for (i = 0; i < len; i += 4, src++, dst++)
328 		*dst = swab32p(src);
329 }
330 
fec_dump(struct net_device *ndev)331 static void fec_dump(struct net_device *ndev)
332 {
333 	struct fec_enet_private *fep = netdev_priv(ndev);
334 	struct bufdesc *bdp;
335 	struct fec_enet_priv_tx_q *txq;
336 	int index = 0;
337 
338 	netdev_info(ndev, "TX ring dump\n");
339 	pr_info("Nr     SC     addr       len  SKB\n");
340 
341 	txq = fep->tx_queue[0];
342 	bdp = txq->bd.base;
343 
344 	do {
345 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
346 			index,
347 			bdp == txq->bd.cur ? 'S' : ' ',
348 			bdp == txq->dirty_tx ? 'H' : ' ',
349 			fec16_to_cpu(bdp->cbd_sc),
350 			fec32_to_cpu(bdp->cbd_bufaddr),
351 			fec16_to_cpu(bdp->cbd_datlen),
352 			txq->tx_skbuff[index]);
353 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
354 		index++;
355 	} while (bdp != txq->bd.base);
356 }
357 
is_ipv4_pkt(struct sk_buff *skb)358 static inline bool is_ipv4_pkt(struct sk_buff *skb)
359 {
360 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
361 }
362 
363 static int
fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)364 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
365 {
366 	/* Only run for packets requiring a checksum. */
367 	if (skb->ip_summed != CHECKSUM_PARTIAL)
368 		return 0;
369 
370 	if (unlikely(skb_cow_head(skb, 0)))
371 		return -1;
372 
373 	if (is_ipv4_pkt(skb))
374 		ip_hdr(skb)->check = 0;
375 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
376 
377 	return 0;
378 }
379 
380 static struct bufdesc *
fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, struct net_device *ndev)381 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
382 			     struct sk_buff *skb,
383 			     struct net_device *ndev)
384 {
385 	struct fec_enet_private *fep = netdev_priv(ndev);
386 	struct bufdesc *bdp = txq->bd.cur;
387 	struct bufdesc_ex *ebdp;
388 	int nr_frags = skb_shinfo(skb)->nr_frags;
389 	int frag, frag_len;
390 	unsigned short status;
391 	unsigned int estatus = 0;
392 	skb_frag_t *this_frag;
393 	unsigned int index;
394 	void *bufaddr;
395 	dma_addr_t addr;
396 	int i;
397 
398 	for (frag = 0; frag < nr_frags; frag++) {
399 		this_frag = &skb_shinfo(skb)->frags[frag];
400 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
401 		ebdp = (struct bufdesc_ex *)bdp;
402 
403 		status = fec16_to_cpu(bdp->cbd_sc);
404 		status &= ~BD_ENET_TX_STATS;
405 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
406 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
407 
408 		/* Handle the last BD specially */
409 		if (frag == nr_frags - 1) {
410 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
411 			if (fep->bufdesc_ex) {
412 				estatus |= BD_ENET_TX_INT;
413 				if (unlikely(skb_shinfo(skb)->tx_flags &
414 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
415 					estatus |= BD_ENET_TX_TS;
416 			}
417 		}
418 
419 		if (fep->bufdesc_ex) {
420 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
421 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
422 			if (skb->ip_summed == CHECKSUM_PARTIAL)
423 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
424 			ebdp->cbd_bdu = 0;
425 			ebdp->cbd_esc = cpu_to_fec32(estatus);
426 		}
427 
428 		bufaddr = skb_frag_address(this_frag);
429 
430 		index = fec_enet_get_bd_index(bdp, &txq->bd);
431 		if (((unsigned long) bufaddr) & fep->tx_align ||
432 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
433 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
434 			bufaddr = txq->tx_bounce[index];
435 
436 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
437 				swap_buffer(bufaddr, frag_len);
438 		}
439 
440 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
441 				      DMA_TO_DEVICE);
442 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
443 			if (net_ratelimit())
444 				netdev_err(ndev, "Tx DMA memory map failed\n");
445 			goto dma_mapping_error;
446 		}
447 
448 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
449 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
450 		/* Make sure the updates to rest of the descriptor are
451 		 * performed before transferring ownership.
452 		 */
453 		wmb();
454 		bdp->cbd_sc = cpu_to_fec16(status);
455 	}
456 
457 	return bdp;
458 dma_mapping_error:
459 	bdp = txq->bd.cur;
460 	for (i = 0; i < frag; i++) {
461 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
462 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
463 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
464 	}
465 	return ERR_PTR(-ENOMEM);
466 }
467 
fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, struct net_device *ndev)468 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
469 				   struct sk_buff *skb, struct net_device *ndev)
470 {
471 	struct fec_enet_private *fep = netdev_priv(ndev);
472 	int nr_frags = skb_shinfo(skb)->nr_frags;
473 	struct bufdesc *bdp, *last_bdp;
474 	void *bufaddr;
475 	dma_addr_t addr;
476 	unsigned short status;
477 	unsigned short buflen;
478 	unsigned int estatus = 0;
479 	unsigned int index;
480 	int entries_free;
481 
482 	entries_free = fec_enet_get_free_txdesc_num(txq);
483 	if (entries_free < MAX_SKB_FRAGS + 1) {
484 		dev_kfree_skb_any(skb);
485 		if (net_ratelimit())
486 			netdev_err(ndev, "NOT enough BD for SG!\n");
487 		return NETDEV_TX_OK;
488 	}
489 
490 	/* Protocol checksum off-load for TCP and UDP. */
491 	if (fec_enet_clear_csum(skb, ndev)) {
492 		dev_kfree_skb_any(skb);
493 		return NETDEV_TX_OK;
494 	}
495 
496 	/* Fill in a Tx ring entry */
497 	bdp = txq->bd.cur;
498 	last_bdp = bdp;
499 	status = fec16_to_cpu(bdp->cbd_sc);
500 	status &= ~BD_ENET_TX_STATS;
501 
502 	/* Set buffer length and buffer pointer */
503 	bufaddr = skb->data;
504 	buflen = skb_headlen(skb);
505 
506 	index = fec_enet_get_bd_index(bdp, &txq->bd);
507 	if (((unsigned long) bufaddr) & fep->tx_align ||
508 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
509 		memcpy(txq->tx_bounce[index], skb->data, buflen);
510 		bufaddr = txq->tx_bounce[index];
511 
512 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
513 			swap_buffer(bufaddr, buflen);
514 	}
515 
516 	/* Push the data cache so the CPM does not get stale memory data. */
517 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
518 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
519 		dev_kfree_skb_any(skb);
520 		if (net_ratelimit())
521 			netdev_err(ndev, "Tx DMA memory map failed\n");
522 		return NETDEV_TX_OK;
523 	}
524 
525 	if (nr_frags) {
526 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
527 		if (IS_ERR(last_bdp)) {
528 			dma_unmap_single(&fep->pdev->dev, addr,
529 					 buflen, DMA_TO_DEVICE);
530 			dev_kfree_skb_any(skb);
531 			return NETDEV_TX_OK;
532 		}
533 	} else {
534 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
535 		if (fep->bufdesc_ex) {
536 			estatus = BD_ENET_TX_INT;
537 			if (unlikely(skb_shinfo(skb)->tx_flags &
538 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
539 				estatus |= BD_ENET_TX_TS;
540 		}
541 	}
542 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
543 	bdp->cbd_datlen = cpu_to_fec16(buflen);
544 
545 	if (fep->bufdesc_ex) {
546 
547 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
548 
549 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
550 			fep->hwts_tx_en))
551 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
552 
553 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
554 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
555 
556 		if (skb->ip_summed == CHECKSUM_PARTIAL)
557 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
558 
559 		ebdp->cbd_bdu = 0;
560 		ebdp->cbd_esc = cpu_to_fec32(estatus);
561 	}
562 
563 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
564 	/* Save skb pointer */
565 	txq->tx_skbuff[index] = skb;
566 
567 	/* Make sure the updates to rest of the descriptor are performed before
568 	 * transferring ownership.
569 	 */
570 	wmb();
571 
572 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
573 	 * it's the last BD of the frame, and to put the CRC on the end.
574 	 */
575 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
576 	bdp->cbd_sc = cpu_to_fec16(status);
577 
578 	/* If this was the last BD in the ring, start at the beginning again. */
579 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
580 
581 	skb_tx_timestamp(skb);
582 
583 	/* Make sure the update to bdp and tx_skbuff are performed before
584 	 * txq->bd.cur.
585 	 */
586 	wmb();
587 	txq->bd.cur = bdp;
588 
589 	/* Trigger transmission start */
590 	writel(0, txq->bd.reg_desc_active);
591 
592 	return 0;
593 }
594 
595 static int
fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, struct net_device *ndev, struct bufdesc *bdp, int index, char *data, int size, bool last_tcp, bool is_last)596 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
597 			  struct net_device *ndev,
598 			  struct bufdesc *bdp, int index, char *data,
599 			  int size, bool last_tcp, bool is_last)
600 {
601 	struct fec_enet_private *fep = netdev_priv(ndev);
602 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
603 	unsigned short status;
604 	unsigned int estatus = 0;
605 	dma_addr_t addr;
606 
607 	status = fec16_to_cpu(bdp->cbd_sc);
608 	status &= ~BD_ENET_TX_STATS;
609 
610 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
611 
612 	if (((unsigned long) data) & fep->tx_align ||
613 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
614 		memcpy(txq->tx_bounce[index], data, size);
615 		data = txq->tx_bounce[index];
616 
617 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
618 			swap_buffer(data, size);
619 	}
620 
621 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
622 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
623 		dev_kfree_skb_any(skb);
624 		if (net_ratelimit())
625 			netdev_err(ndev, "Tx DMA memory map failed\n");
626 		return NETDEV_TX_OK;
627 	}
628 
629 	bdp->cbd_datlen = cpu_to_fec16(size);
630 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
631 
632 	if (fep->bufdesc_ex) {
633 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
634 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
635 		if (skb->ip_summed == CHECKSUM_PARTIAL)
636 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
637 		ebdp->cbd_bdu = 0;
638 		ebdp->cbd_esc = cpu_to_fec32(estatus);
639 	}
640 
641 	/* Handle the last BD specially */
642 	if (last_tcp)
643 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
644 	if (is_last) {
645 		status |= BD_ENET_TX_INTR;
646 		if (fep->bufdesc_ex)
647 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
648 	}
649 
650 	bdp->cbd_sc = cpu_to_fec16(status);
651 
652 	return 0;
653 }
654 
655 static int
fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, struct net_device *ndev, struct bufdesc *bdp, int index)656 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
657 			 struct sk_buff *skb, struct net_device *ndev,
658 			 struct bufdesc *bdp, int index)
659 {
660 	struct fec_enet_private *fep = netdev_priv(ndev);
661 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
662 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
663 	void *bufaddr;
664 	unsigned long dmabuf;
665 	unsigned short status;
666 	unsigned int estatus = 0;
667 
668 	status = fec16_to_cpu(bdp->cbd_sc);
669 	status &= ~BD_ENET_TX_STATS;
670 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
671 
672 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
673 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
674 	if (((unsigned long)bufaddr) & fep->tx_align ||
675 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
676 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
677 		bufaddr = txq->tx_bounce[index];
678 
679 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
680 			swap_buffer(bufaddr, hdr_len);
681 
682 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
683 					hdr_len, DMA_TO_DEVICE);
684 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
685 			dev_kfree_skb_any(skb);
686 			if (net_ratelimit())
687 				netdev_err(ndev, "Tx DMA memory map failed\n");
688 			return NETDEV_TX_OK;
689 		}
690 	}
691 
692 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
693 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
694 
695 	if (fep->bufdesc_ex) {
696 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
697 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
698 		if (skb->ip_summed == CHECKSUM_PARTIAL)
699 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
700 		ebdp->cbd_bdu = 0;
701 		ebdp->cbd_esc = cpu_to_fec32(estatus);
702 	}
703 
704 	bdp->cbd_sc = cpu_to_fec16(status);
705 
706 	return 0;
707 }
708 
fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, struct net_device *ndev)709 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
710 				   struct sk_buff *skb,
711 				   struct net_device *ndev)
712 {
713 	struct fec_enet_private *fep = netdev_priv(ndev);
714 	int hdr_len, total_len, data_left;
715 	struct bufdesc *bdp = txq->bd.cur;
716 	struct tso_t tso;
717 	unsigned int index = 0;
718 	int ret;
719 
720 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
721 		dev_kfree_skb_any(skb);
722 		if (net_ratelimit())
723 			netdev_err(ndev, "NOT enough BD for TSO!\n");
724 		return NETDEV_TX_OK;
725 	}
726 
727 	/* Protocol checksum off-load for TCP and UDP. */
728 	if (fec_enet_clear_csum(skb, ndev)) {
729 		dev_kfree_skb_any(skb);
730 		return NETDEV_TX_OK;
731 	}
732 
733 	/* Initialize the TSO handler, and prepare the first payload */
734 	hdr_len = tso_start(skb, &tso);
735 
736 	total_len = skb->len - hdr_len;
737 	while (total_len > 0) {
738 		char *hdr;
739 
740 		index = fec_enet_get_bd_index(bdp, &txq->bd);
741 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
742 		total_len -= data_left;
743 
744 		/* prepare packet headers: MAC + IP + TCP */
745 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
746 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
747 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
748 		if (ret)
749 			goto err_release;
750 
751 		while (data_left > 0) {
752 			int size;
753 
754 			size = min_t(int, tso.size, data_left);
755 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
756 			index = fec_enet_get_bd_index(bdp, &txq->bd);
757 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
758 							bdp, index,
759 							tso.data, size,
760 							size == data_left,
761 							total_len == 0);
762 			if (ret)
763 				goto err_release;
764 
765 			data_left -= size;
766 			tso_build_data(skb, &tso, size);
767 		}
768 
769 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
770 	}
771 
772 	/* Save skb pointer */
773 	txq->tx_skbuff[index] = skb;
774 
775 	skb_tx_timestamp(skb);
776 	txq->bd.cur = bdp;
777 
778 	/* Trigger transmission start */
779 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
780 	    !readl(txq->bd.reg_desc_active) ||
781 	    !readl(txq->bd.reg_desc_active) ||
782 	    !readl(txq->bd.reg_desc_active) ||
783 	    !readl(txq->bd.reg_desc_active))
784 		writel(0, txq->bd.reg_desc_active);
785 
786 	return 0;
787 
788 err_release:
789 	/* TODO: Release all used data descriptors for TSO */
790 	return ret;
791 }
792 
793 static netdev_tx_t
fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)794 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
795 {
796 	struct fec_enet_private *fep = netdev_priv(ndev);
797 	int entries_free;
798 	unsigned short queue;
799 	struct fec_enet_priv_tx_q *txq;
800 	struct netdev_queue *nq;
801 	int ret;
802 
803 	queue = skb_get_queue_mapping(skb);
804 	txq = fep->tx_queue[queue];
805 	nq = netdev_get_tx_queue(ndev, queue);
806 
807 	if (skb_is_gso(skb))
808 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
809 	else
810 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
811 	if (ret)
812 		return ret;
813 
814 	entries_free = fec_enet_get_free_txdesc_num(txq);
815 	if (entries_free <= txq->tx_stop_threshold)
816 		netif_tx_stop_queue(nq);
817 
818 	return NETDEV_TX_OK;
819 }
820 
821 /* Init RX & TX buffer descriptors
822  */
fec_enet_bd_init(struct net_device *dev)823 static void fec_enet_bd_init(struct net_device *dev)
824 {
825 	struct fec_enet_private *fep = netdev_priv(dev);
826 	struct fec_enet_priv_tx_q *txq;
827 	struct fec_enet_priv_rx_q *rxq;
828 	struct bufdesc *bdp;
829 	unsigned int i;
830 	unsigned int q;
831 
832 	for (q = 0; q < fep->num_rx_queues; q++) {
833 		/* Initialize the receive buffer descriptors. */
834 		rxq = fep->rx_queue[q];
835 		bdp = rxq->bd.base;
836 
837 		for (i = 0; i < rxq->bd.ring_size; i++) {
838 
839 			/* Initialize the BD for every fragment in the page. */
840 			if (bdp->cbd_bufaddr)
841 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
842 			else
843 				bdp->cbd_sc = cpu_to_fec16(0);
844 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
845 		}
846 
847 		/* Set the last buffer to wrap */
848 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
849 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
850 
851 		rxq->bd.cur = rxq->bd.base;
852 	}
853 
854 	for (q = 0; q < fep->num_tx_queues; q++) {
855 		/* ...and the same for transmit */
856 		txq = fep->tx_queue[q];
857 		bdp = txq->bd.base;
858 		txq->bd.cur = bdp;
859 
860 		for (i = 0; i < txq->bd.ring_size; i++) {
861 			/* Initialize the BD for every fragment in the page. */
862 			bdp->cbd_sc = cpu_to_fec16(0);
863 			if (bdp->cbd_bufaddr &&
864 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
865 				dma_unmap_single(&fep->pdev->dev,
866 						 fec32_to_cpu(bdp->cbd_bufaddr),
867 						 fec16_to_cpu(bdp->cbd_datlen),
868 						 DMA_TO_DEVICE);
869 			if (txq->tx_skbuff[i]) {
870 				dev_kfree_skb_any(txq->tx_skbuff[i]);
871 				txq->tx_skbuff[i] = NULL;
872 			}
873 			bdp->cbd_bufaddr = cpu_to_fec32(0);
874 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
875 		}
876 
877 		/* Set the last buffer to wrap */
878 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
879 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
880 		txq->dirty_tx = bdp;
881 	}
882 }
883 
fec_enet_active_rxring(struct net_device *ndev)884 static void fec_enet_active_rxring(struct net_device *ndev)
885 {
886 	struct fec_enet_private *fep = netdev_priv(ndev);
887 	int i;
888 
889 	for (i = 0; i < fep->num_rx_queues; i++)
890 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
891 }
892 
fec_enet_enable_ring(struct net_device *ndev)893 static void fec_enet_enable_ring(struct net_device *ndev)
894 {
895 	struct fec_enet_private *fep = netdev_priv(ndev);
896 	struct fec_enet_priv_tx_q *txq;
897 	struct fec_enet_priv_rx_q *rxq;
898 	int i;
899 
900 	for (i = 0; i < fep->num_rx_queues; i++) {
901 		rxq = fep->rx_queue[i];
902 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
903 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
904 
905 		/* enable DMA1/2 */
906 		if (i)
907 			writel(RCMR_MATCHEN | RCMR_CMP(i),
908 			       fep->hwp + FEC_RCMR(i));
909 	}
910 
911 	for (i = 0; i < fep->num_tx_queues; i++) {
912 		txq = fep->tx_queue[i];
913 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
914 
915 		/* enable DMA1/2 */
916 		if (i)
917 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
918 			       fep->hwp + FEC_DMA_CFG(i));
919 	}
920 }
921 
fec_enet_reset_skb(struct net_device *ndev)922 static void fec_enet_reset_skb(struct net_device *ndev)
923 {
924 	struct fec_enet_private *fep = netdev_priv(ndev);
925 	struct fec_enet_priv_tx_q *txq;
926 	int i, j;
927 
928 	for (i = 0; i < fep->num_tx_queues; i++) {
929 		txq = fep->tx_queue[i];
930 
931 		for (j = 0; j < txq->bd.ring_size; j++) {
932 			if (txq->tx_skbuff[j]) {
933 				dev_kfree_skb_any(txq->tx_skbuff[j]);
934 				txq->tx_skbuff[j] = NULL;
935 			}
936 		}
937 	}
938 }
939 
940 /*
941  * This function is called to start or restart the FEC during a link
942  * change, transmit timeout, or to reconfigure the FEC.  The network
943  * packet processing for this device must be stopped before this call.
944  */
945 static void
fec_restart(struct net_device *ndev)946 fec_restart(struct net_device *ndev)
947 {
948 	struct fec_enet_private *fep = netdev_priv(ndev);
949 	u32 val;
950 	u32 temp_mac[2];
951 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
952 	u32 ecntl = 0x2; /* ETHEREN */
953 
954 	/* Whack a reset.  We should wait for this.
955 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
956 	 * instead of reset MAC itself.
957 	 */
958 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
959 		writel(0, fep->hwp + FEC_ECNTRL);
960 	} else {
961 		writel(1, fep->hwp + FEC_ECNTRL);
962 		udelay(10);
963 	}
964 
965 	/*
966 	 * enet-mac reset will reset mac address registers too,
967 	 * so need to reconfigure it.
968 	 */
969 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
970 	writel((__force u32)cpu_to_be32(temp_mac[0]),
971 	       fep->hwp + FEC_ADDR_LOW);
972 	writel((__force u32)cpu_to_be32(temp_mac[1]),
973 	       fep->hwp + FEC_ADDR_HIGH);
974 
975 	/* Clear any outstanding interrupt, except MDIO. */
976 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
977 
978 	fec_enet_bd_init(ndev);
979 
980 	fec_enet_enable_ring(ndev);
981 
982 	/* Reset tx SKB buffers. */
983 	fec_enet_reset_skb(ndev);
984 
985 	/* Enable MII mode */
986 	if (fep->full_duplex == DUPLEX_FULL) {
987 		/* FD enable */
988 		writel(0x04, fep->hwp + FEC_X_CNTRL);
989 	} else {
990 		/* No Rcv on Xmit */
991 		rcntl |= 0x02;
992 		writel(0x0, fep->hwp + FEC_X_CNTRL);
993 	}
994 
995 	/* Set MII speed */
996 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
997 
998 #if !defined(CONFIG_M5272)
999 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1000 		val = readl(fep->hwp + FEC_RACC);
1001 		/* align IP header */
1002 		val |= FEC_RACC_SHIFT16;
1003 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1004 			/* set RX checksum */
1005 			val |= FEC_RACC_OPTIONS;
1006 		else
1007 			val &= ~FEC_RACC_OPTIONS;
1008 		writel(val, fep->hwp + FEC_RACC);
1009 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1010 	}
1011 #endif
1012 
1013 	/*
1014 	 * The phy interface and speed need to get configured
1015 	 * differently on enet-mac.
1016 	 */
1017 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1018 		/* Enable flow control and length check */
1019 		rcntl |= 0x40000000 | 0x00000020;
1020 
1021 		/* RGMII, RMII or MII */
1022 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1023 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1024 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1025 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1026 			rcntl |= (1 << 6);
1027 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1028 			rcntl |= (1 << 8);
1029 		else
1030 			rcntl &= ~(1 << 8);
1031 
1032 		/* 1G, 100M or 10M */
1033 		if (ndev->phydev) {
1034 			if (ndev->phydev->speed == SPEED_1000)
1035 				ecntl |= (1 << 5);
1036 			else if (ndev->phydev->speed == SPEED_100)
1037 				rcntl &= ~(1 << 9);
1038 			else
1039 				rcntl |= (1 << 9);
1040 		}
1041 	} else {
1042 #ifdef FEC_MIIGSK_ENR
1043 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1044 			u32 cfgr;
1045 			/* disable the gasket and wait */
1046 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1047 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1048 				udelay(1);
1049 
1050 			/*
1051 			 * configure the gasket:
1052 			 *   RMII, 50 MHz, no loopback, no echo
1053 			 *   MII, 25 MHz, no loopback, no echo
1054 			 */
1055 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1056 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1057 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1058 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1059 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1060 
1061 			/* re-enable the gasket */
1062 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1063 		}
1064 #endif
1065 	}
1066 
1067 #if !defined(CONFIG_M5272)
1068 	/* enable pause frame*/
1069 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1070 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1071 	     ndev->phydev && ndev->phydev->pause)) {
1072 		rcntl |= FEC_ENET_FCE;
1073 
1074 		/* set FIFO threshold parameter to reduce overrun */
1075 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1076 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1077 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1078 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1079 
1080 		/* OPD */
1081 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1082 	} else {
1083 		rcntl &= ~FEC_ENET_FCE;
1084 	}
1085 #endif /* !defined(CONFIG_M5272) */
1086 
1087 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1088 
1089 	/* Setup multicast filter. */
1090 	set_multicast_list(ndev);
1091 #ifndef CONFIG_M5272
1092 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1093 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1094 #endif
1095 
1096 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1097 		/* enable ENET endian swap */
1098 		ecntl |= (1 << 8);
1099 		/* enable ENET store and forward mode */
1100 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1101 	}
1102 
1103 	if (fep->bufdesc_ex)
1104 		ecntl |= (1 << 4);
1105 
1106 #ifndef CONFIG_M5272
1107 	/* Enable the MIB statistic event counters */
1108 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1109 #endif
1110 
1111 	/* And last, enable the transmit and receive processing */
1112 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1113 	fec_enet_active_rxring(ndev);
1114 
1115 	if (fep->bufdesc_ex)
1116 		fec_ptp_start_cyclecounter(ndev);
1117 
1118 	/* Enable interrupts we wish to service */
1119 	if (fep->link)
1120 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1121 	else
1122 		writel(0, fep->hwp + FEC_IMASK);
1123 
1124 	/* Init the interrupt coalescing */
1125 	fec_enet_itr_coal_init(ndev);
1126 
1127 }
1128 
fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)1129 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1130 {
1131 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1132 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1133 
1134 	if (stop_gpr->gpr) {
1135 		if (enabled)
1136 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1137 					   BIT(stop_gpr->bit),
1138 					   BIT(stop_gpr->bit));
1139 		else
1140 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1141 					   BIT(stop_gpr->bit), 0);
1142 	} else if (pdata && pdata->sleep_mode_enable) {
1143 		pdata->sleep_mode_enable(enabled);
1144 	}
1145 }
1146 
1147 static void
fec_stop(struct net_device *ndev)1148 fec_stop(struct net_device *ndev)
1149 {
1150 	struct fec_enet_private *fep = netdev_priv(ndev);
1151 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1152 	u32 val;
1153 
1154 	/* We cannot expect a graceful transmit stop without link !!! */
1155 	if (fep->link) {
1156 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1157 		udelay(10);
1158 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1159 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1160 	}
1161 
1162 	/* Whack a reset.  We should wait for this.
1163 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1164 	 * instead of reset MAC itself.
1165 	 */
1166 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1167 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1168 			writel(0, fep->hwp + FEC_ECNTRL);
1169 		} else {
1170 			writel(1, fep->hwp + FEC_ECNTRL);
1171 			udelay(10);
1172 		}
1173 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1174 	} else {
1175 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1176 		val = readl(fep->hwp + FEC_ECNTRL);
1177 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1178 		writel(val, fep->hwp + FEC_ECNTRL);
1179 		fec_enet_stop_mode(fep, true);
1180 	}
1181 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1182 
1183 	/* We have to keep ENET enabled to have MII interrupt stay working */
1184 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1185 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1186 		writel(2, fep->hwp + FEC_ECNTRL);
1187 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1188 	}
1189 }
1190 
1191 
1192 static void
fec_timeout(struct net_device *ndev, unsigned int txqueue)1193 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1194 {
1195 	struct fec_enet_private *fep = netdev_priv(ndev);
1196 
1197 	fec_dump(ndev);
1198 
1199 	ndev->stats.tx_errors++;
1200 
1201 	schedule_work(&fep->tx_timeout_work);
1202 }
1203 
fec_enet_timeout_work(struct work_struct *work)1204 static void fec_enet_timeout_work(struct work_struct *work)
1205 {
1206 	struct fec_enet_private *fep =
1207 		container_of(work, struct fec_enet_private, tx_timeout_work);
1208 	struct net_device *ndev = fep->netdev;
1209 
1210 	rtnl_lock();
1211 	if (netif_device_present(ndev) || netif_running(ndev)) {
1212 		napi_disable(&fep->napi);
1213 		netif_tx_lock_bh(ndev);
1214 		fec_restart(ndev);
1215 		netif_tx_wake_all_queues(ndev);
1216 		netif_tx_unlock_bh(ndev);
1217 		napi_enable(&fep->napi);
1218 	}
1219 	rtnl_unlock();
1220 }
1221 
1222 static void
fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, struct skb_shared_hwtstamps *hwtstamps)1223 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1224 	struct skb_shared_hwtstamps *hwtstamps)
1225 {
1226 	unsigned long flags;
1227 	u64 ns;
1228 
1229 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1230 	ns = timecounter_cyc2time(&fep->tc, ts);
1231 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1232 
1233 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1234 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1235 }
1236 
1237 static void
fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)1238 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1239 {
1240 	struct	fec_enet_private *fep;
1241 	struct bufdesc *bdp;
1242 	unsigned short status;
1243 	struct	sk_buff	*skb;
1244 	struct fec_enet_priv_tx_q *txq;
1245 	struct netdev_queue *nq;
1246 	int	index = 0;
1247 	int	entries_free;
1248 
1249 	fep = netdev_priv(ndev);
1250 
1251 	txq = fep->tx_queue[queue_id];
1252 	/* get next bdp of dirty_tx */
1253 	nq = netdev_get_tx_queue(ndev, queue_id);
1254 	bdp = txq->dirty_tx;
1255 
1256 	/* get next bdp of dirty_tx */
1257 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1258 
1259 	while (bdp != READ_ONCE(txq->bd.cur)) {
1260 		/* Order the load of bd.cur and cbd_sc */
1261 		rmb();
1262 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1263 		if (status & BD_ENET_TX_READY)
1264 			break;
1265 
1266 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1267 
1268 		skb = txq->tx_skbuff[index];
1269 		txq->tx_skbuff[index] = NULL;
1270 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1271 			dma_unmap_single(&fep->pdev->dev,
1272 					 fec32_to_cpu(bdp->cbd_bufaddr),
1273 					 fec16_to_cpu(bdp->cbd_datlen),
1274 					 DMA_TO_DEVICE);
1275 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1276 		if (!skb)
1277 			goto skb_done;
1278 
1279 		/* Check for errors. */
1280 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1281 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1282 				   BD_ENET_TX_CSL)) {
1283 			ndev->stats.tx_errors++;
1284 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1285 				ndev->stats.tx_heartbeat_errors++;
1286 			if (status & BD_ENET_TX_LC)  /* Late collision */
1287 				ndev->stats.tx_window_errors++;
1288 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1289 				ndev->stats.tx_aborted_errors++;
1290 			if (status & BD_ENET_TX_UN)  /* Underrun */
1291 				ndev->stats.tx_fifo_errors++;
1292 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1293 				ndev->stats.tx_carrier_errors++;
1294 		} else {
1295 			ndev->stats.tx_packets++;
1296 			ndev->stats.tx_bytes += skb->len;
1297 		}
1298 
1299 		/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1300 		 * are to time stamp the packet, so we still need to check time
1301 		 * stamping enabled flag.
1302 		 */
1303 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1304 			     fep->hwts_tx_en) &&
1305 		    fep->bufdesc_ex) {
1306 			struct skb_shared_hwtstamps shhwtstamps;
1307 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1308 
1309 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1310 			skb_tstamp_tx(skb, &shhwtstamps);
1311 		}
1312 
1313 		/* Deferred means some collisions occurred during transmit,
1314 		 * but we eventually sent the packet OK.
1315 		 */
1316 		if (status & BD_ENET_TX_DEF)
1317 			ndev->stats.collisions++;
1318 
1319 		/* Free the sk buffer associated with this last transmit */
1320 		dev_kfree_skb_any(skb);
1321 skb_done:
1322 		/* Make sure the update to bdp and tx_skbuff are performed
1323 		 * before dirty_tx
1324 		 */
1325 		wmb();
1326 		txq->dirty_tx = bdp;
1327 
1328 		/* Update pointer to next buffer descriptor to be transmitted */
1329 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1330 
1331 		/* Since we have freed up a buffer, the ring is no longer full
1332 		 */
1333 		if (netif_tx_queue_stopped(nq)) {
1334 			entries_free = fec_enet_get_free_txdesc_num(txq);
1335 			if (entries_free >= txq->tx_wake_threshold)
1336 				netif_tx_wake_queue(nq);
1337 		}
1338 	}
1339 
1340 	/* ERR006358: Keep the transmitter going */
1341 	if (bdp != txq->bd.cur &&
1342 	    readl(txq->bd.reg_desc_active) == 0)
1343 		writel(0, txq->bd.reg_desc_active);
1344 }
1345 
fec_enet_tx(struct net_device *ndev)1346 static void fec_enet_tx(struct net_device *ndev)
1347 {
1348 	struct fec_enet_private *fep = netdev_priv(ndev);
1349 	int i;
1350 
1351 	/* Make sure that AVB queues are processed first. */
1352 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1353 		fec_enet_tx_queue(ndev, i);
1354 }
1355 
1356 static int
fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)1357 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1358 {
1359 	struct  fec_enet_private *fep = netdev_priv(ndev);
1360 	int off;
1361 
1362 	off = ((unsigned long)skb->data) & fep->rx_align;
1363 	if (off)
1364 		skb_reserve(skb, fep->rx_align + 1 - off);
1365 
1366 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1367 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1368 		if (net_ratelimit())
1369 			netdev_err(ndev, "Rx DMA memory map failed\n");
1370 		return -ENOMEM;
1371 	}
1372 
1373 	return 0;
1374 }
1375 
fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb, struct bufdesc *bdp, u32 length, bool swap)1376 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1377 			       struct bufdesc *bdp, u32 length, bool swap)
1378 {
1379 	struct  fec_enet_private *fep = netdev_priv(ndev);
1380 	struct sk_buff *new_skb;
1381 
1382 	if (length > fep->rx_copybreak)
1383 		return false;
1384 
1385 	new_skb = netdev_alloc_skb(ndev, length);
1386 	if (!new_skb)
1387 		return false;
1388 
1389 	dma_sync_single_for_cpu(&fep->pdev->dev,
1390 				fec32_to_cpu(bdp->cbd_bufaddr),
1391 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1392 				DMA_FROM_DEVICE);
1393 	if (!swap)
1394 		memcpy(new_skb->data, (*skb)->data, length);
1395 	else
1396 		swap_buffer2(new_skb->data, (*skb)->data, length);
1397 	*skb = new_skb;
1398 
1399 	return true;
1400 }
1401 
1402 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1403  * When we update through the ring, if the next incoming buffer has
1404  * not been given to the system, we just set the empty indicator,
1405  * effectively tossing the packet.
1406  */
1407 static int
fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)1408 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1409 {
1410 	struct fec_enet_private *fep = netdev_priv(ndev);
1411 	struct fec_enet_priv_rx_q *rxq;
1412 	struct bufdesc *bdp;
1413 	unsigned short status;
1414 	struct  sk_buff *skb_new = NULL;
1415 	struct  sk_buff *skb;
1416 	ushort	pkt_len;
1417 	__u8 *data;
1418 	int	pkt_received = 0;
1419 	struct	bufdesc_ex *ebdp = NULL;
1420 	bool	vlan_packet_rcvd = false;
1421 	u16	vlan_tag;
1422 	int	index = 0;
1423 	bool	is_copybreak;
1424 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1425 
1426 #ifdef CONFIG_M532x
1427 	flush_cache_all();
1428 #endif
1429 	rxq = fep->rx_queue[queue_id];
1430 
1431 	/* First, grab all of the stats for the incoming packet.
1432 	 * These get messed up if we get called due to a busy condition.
1433 	 */
1434 	bdp = rxq->bd.cur;
1435 
1436 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1437 
1438 		if (pkt_received >= budget)
1439 			break;
1440 		pkt_received++;
1441 
1442 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1443 
1444 		/* Check for errors. */
1445 		status ^= BD_ENET_RX_LAST;
1446 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1447 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1448 			   BD_ENET_RX_CL)) {
1449 			ndev->stats.rx_errors++;
1450 			if (status & BD_ENET_RX_OV) {
1451 				/* FIFO overrun */
1452 				ndev->stats.rx_fifo_errors++;
1453 				goto rx_processing_done;
1454 			}
1455 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1456 						| BD_ENET_RX_LAST)) {
1457 				/* Frame too long or too short. */
1458 				ndev->stats.rx_length_errors++;
1459 				if (status & BD_ENET_RX_LAST)
1460 					netdev_err(ndev, "rcv is not +last\n");
1461 			}
1462 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1463 				ndev->stats.rx_crc_errors++;
1464 			/* Report late collisions as a frame error. */
1465 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1466 				ndev->stats.rx_frame_errors++;
1467 			goto rx_processing_done;
1468 		}
1469 
1470 		/* Process the incoming frame. */
1471 		ndev->stats.rx_packets++;
1472 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1473 		ndev->stats.rx_bytes += pkt_len;
1474 
1475 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1476 		skb = rxq->rx_skbuff[index];
1477 
1478 		/* The packet length includes FCS, but we don't want to
1479 		 * include that when passing upstream as it messes up
1480 		 * bridging applications.
1481 		 */
1482 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1483 						  need_swap);
1484 		if (!is_copybreak) {
1485 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1486 			if (unlikely(!skb_new)) {
1487 				ndev->stats.rx_dropped++;
1488 				goto rx_processing_done;
1489 			}
1490 			dma_unmap_single(&fep->pdev->dev,
1491 					 fec32_to_cpu(bdp->cbd_bufaddr),
1492 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1493 					 DMA_FROM_DEVICE);
1494 		}
1495 
1496 		prefetch(skb->data - NET_IP_ALIGN);
1497 		skb_put(skb, pkt_len - 4);
1498 		data = skb->data;
1499 
1500 		if (!is_copybreak && need_swap)
1501 			swap_buffer(data, pkt_len);
1502 
1503 #if !defined(CONFIG_M5272)
1504 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1505 			data = skb_pull_inline(skb, 2);
1506 #endif
1507 
1508 		/* Extract the enhanced buffer descriptor */
1509 		ebdp = NULL;
1510 		if (fep->bufdesc_ex)
1511 			ebdp = (struct bufdesc_ex *)bdp;
1512 
1513 		/* If this is a VLAN packet remove the VLAN Tag */
1514 		vlan_packet_rcvd = false;
1515 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1516 		    fep->bufdesc_ex &&
1517 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1518 			/* Push and remove the vlan tag */
1519 			struct vlan_hdr *vlan_header =
1520 					(struct vlan_hdr *) (data + ETH_HLEN);
1521 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1522 
1523 			vlan_packet_rcvd = true;
1524 
1525 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1526 			skb_pull(skb, VLAN_HLEN);
1527 		}
1528 
1529 		skb->protocol = eth_type_trans(skb, ndev);
1530 
1531 		/* Get receive timestamp from the skb */
1532 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1533 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1534 					  skb_hwtstamps(skb));
1535 
1536 		if (fep->bufdesc_ex &&
1537 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1538 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1539 				/* don't check it */
1540 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1541 			} else {
1542 				skb_checksum_none_assert(skb);
1543 			}
1544 		}
1545 
1546 		/* Handle received VLAN packets */
1547 		if (vlan_packet_rcvd)
1548 			__vlan_hwaccel_put_tag(skb,
1549 					       htons(ETH_P_8021Q),
1550 					       vlan_tag);
1551 
1552 		skb_record_rx_queue(skb, queue_id);
1553 		napi_gro_receive(&fep->napi, skb);
1554 
1555 		if (is_copybreak) {
1556 			dma_sync_single_for_device(&fep->pdev->dev,
1557 						   fec32_to_cpu(bdp->cbd_bufaddr),
1558 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1559 						   DMA_FROM_DEVICE);
1560 		} else {
1561 			rxq->rx_skbuff[index] = skb_new;
1562 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1563 		}
1564 
1565 rx_processing_done:
1566 		/* Clear the status flags for this buffer */
1567 		status &= ~BD_ENET_RX_STATS;
1568 
1569 		/* Mark the buffer empty */
1570 		status |= BD_ENET_RX_EMPTY;
1571 
1572 		if (fep->bufdesc_ex) {
1573 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1574 
1575 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1576 			ebdp->cbd_prot = 0;
1577 			ebdp->cbd_bdu = 0;
1578 		}
1579 		/* Make sure the updates to rest of the descriptor are
1580 		 * performed before transferring ownership.
1581 		 */
1582 		wmb();
1583 		bdp->cbd_sc = cpu_to_fec16(status);
1584 
1585 		/* Update BD pointer to next entry */
1586 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1587 
1588 		/* Doing this here will keep the FEC running while we process
1589 		 * incoming frames.  On a heavily loaded network, we should be
1590 		 * able to keep up at the expense of system resources.
1591 		 */
1592 		writel(0, rxq->bd.reg_desc_active);
1593 	}
1594 	rxq->bd.cur = bdp;
1595 	return pkt_received;
1596 }
1597 
fec_enet_rx(struct net_device *ndev, int budget)1598 static int fec_enet_rx(struct net_device *ndev, int budget)
1599 {
1600 	struct fec_enet_private *fep = netdev_priv(ndev);
1601 	int i, done = 0;
1602 
1603 	/* Make sure that AVB queues are processed first. */
1604 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1605 		done += fec_enet_rx_queue(ndev, budget - done, i);
1606 
1607 	return done;
1608 }
1609 
fec_enet_collect_events(struct fec_enet_private *fep)1610 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1611 {
1612 	uint int_events;
1613 
1614 	int_events = readl(fep->hwp + FEC_IEVENT);
1615 
1616 	/* Don't clear MDIO events, we poll for those */
1617 	int_events &= ~FEC_ENET_MII;
1618 
1619 	writel(int_events, fep->hwp + FEC_IEVENT);
1620 
1621 	return int_events != 0;
1622 }
1623 
1624 static irqreturn_t
fec_enet_interrupt(int irq, void *dev_id)1625 fec_enet_interrupt(int irq, void *dev_id)
1626 {
1627 	struct net_device *ndev = dev_id;
1628 	struct fec_enet_private *fep = netdev_priv(ndev);
1629 	irqreturn_t ret = IRQ_NONE;
1630 
1631 	if (fec_enet_collect_events(fep) && fep->link) {
1632 		ret = IRQ_HANDLED;
1633 
1634 		if (napi_schedule_prep(&fep->napi)) {
1635 			/* Disable interrupts */
1636 			writel(0, fep->hwp + FEC_IMASK);
1637 			__napi_schedule(&fep->napi);
1638 		}
1639 	}
1640 
1641 	return ret;
1642 }
1643 
fec_enet_rx_napi(struct napi_struct *napi, int budget)1644 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1645 {
1646 	struct net_device *ndev = napi->dev;
1647 	struct fec_enet_private *fep = netdev_priv(ndev);
1648 	int done = 0;
1649 
1650 	do {
1651 		done += fec_enet_rx(ndev, budget - done);
1652 		fec_enet_tx(ndev);
1653 	} while ((done < budget) && fec_enet_collect_events(fep));
1654 
1655 	if (done < budget) {
1656 		napi_complete_done(napi, done);
1657 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1658 	}
1659 
1660 	return done;
1661 }
1662 
1663 /* ------------------------------------------------------------------------- */
fec_get_mac(struct net_device *ndev)1664 static void fec_get_mac(struct net_device *ndev)
1665 {
1666 	struct fec_enet_private *fep = netdev_priv(ndev);
1667 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1668 	unsigned char *iap, tmpaddr[ETH_ALEN];
1669 
1670 	/*
1671 	 * try to get mac address in following order:
1672 	 *
1673 	 * 1) module parameter via kernel command line in form
1674 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1675 	 */
1676 	iap = macaddr;
1677 
1678 	/*
1679 	 * 2) from device tree data
1680 	 */
1681 	if (!is_valid_ether_addr(iap)) {
1682 		struct device_node *np = fep->pdev->dev.of_node;
1683 		if (np) {
1684 			const char *mac = of_get_mac_address(np);
1685 			if (!IS_ERR(mac))
1686 				iap = (unsigned char *) mac;
1687 		}
1688 	}
1689 
1690 	/*
1691 	 * 3) from flash or fuse (via platform data)
1692 	 */
1693 	if (!is_valid_ether_addr(iap)) {
1694 #ifdef CONFIG_M5272
1695 		if (FEC_FLASHMAC)
1696 			iap = (unsigned char *)FEC_FLASHMAC;
1697 #else
1698 		if (pdata)
1699 			iap = (unsigned char *)&pdata->mac;
1700 #endif
1701 	}
1702 
1703 	/*
1704 	 * 4) FEC mac registers set by bootloader
1705 	 */
1706 	if (!is_valid_ether_addr(iap)) {
1707 		*((__be32 *) &tmpaddr[0]) =
1708 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1709 		*((__be16 *) &tmpaddr[4]) =
1710 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1711 		iap = &tmpaddr[0];
1712 	}
1713 
1714 	/*
1715 	 * 5) random mac address
1716 	 */
1717 	if (!is_valid_ether_addr(iap)) {
1718 		/* Report it and use a random ethernet address instead */
1719 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1720 		eth_hw_addr_random(ndev);
1721 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1722 			 ndev->dev_addr);
1723 		return;
1724 	}
1725 
1726 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1727 
1728 	/* Adjust MAC if using macaddr */
1729 	if (iap == macaddr)
1730 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1731 }
1732 
1733 /* ------------------------------------------------------------------------- */
1734 
1735 /*
1736  * Phy section
1737  */
fec_enet_adjust_link(struct net_device *ndev)1738 static void fec_enet_adjust_link(struct net_device *ndev)
1739 {
1740 	struct fec_enet_private *fep = netdev_priv(ndev);
1741 	struct phy_device *phy_dev = ndev->phydev;
1742 	int status_change = 0;
1743 
1744 	/*
1745 	 * If the netdev is down, or is going down, we're not interested
1746 	 * in link state events, so just mark our idea of the link as down
1747 	 * and ignore the event.
1748 	 */
1749 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1750 		fep->link = 0;
1751 	} else if (phy_dev->link) {
1752 		if (!fep->link) {
1753 			fep->link = phy_dev->link;
1754 			status_change = 1;
1755 		}
1756 
1757 		if (fep->full_duplex != phy_dev->duplex) {
1758 			fep->full_duplex = phy_dev->duplex;
1759 			status_change = 1;
1760 		}
1761 
1762 		if (phy_dev->speed != fep->speed) {
1763 			fep->speed = phy_dev->speed;
1764 			status_change = 1;
1765 		}
1766 
1767 		/* if any of the above changed restart the FEC */
1768 		if (status_change) {
1769 			netif_stop_queue(ndev);
1770 			napi_disable(&fep->napi);
1771 			netif_tx_lock_bh(ndev);
1772 			fec_restart(ndev);
1773 			netif_tx_wake_all_queues(ndev);
1774 			netif_tx_unlock_bh(ndev);
1775 			napi_enable(&fep->napi);
1776 		}
1777 	} else {
1778 		if (fep->link) {
1779 			netif_stop_queue(ndev);
1780 			napi_disable(&fep->napi);
1781 			netif_tx_lock_bh(ndev);
1782 			fec_stop(ndev);
1783 			netif_tx_unlock_bh(ndev);
1784 			napi_enable(&fep->napi);
1785 			fep->link = phy_dev->link;
1786 			status_change = 1;
1787 		}
1788 	}
1789 
1790 	if (status_change)
1791 		phy_print_status(phy_dev);
1792 }
1793 
fec_enet_mdio_wait(struct fec_enet_private *fep)1794 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1795 {
1796 	uint ievent;
1797 	int ret;
1798 
1799 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1800 					ievent & FEC_ENET_MII, 2, 30000);
1801 
1802 	if (!ret)
1803 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1804 
1805 	return ret;
1806 }
1807 
fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)1808 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1809 {
1810 	struct fec_enet_private *fep = bus->priv;
1811 	struct device *dev = &fep->pdev->dev;
1812 	int ret = 0, frame_start, frame_addr, frame_op;
1813 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1814 
1815 	ret = pm_runtime_resume_and_get(dev);
1816 	if (ret < 0)
1817 		return ret;
1818 
1819 	if (is_c45) {
1820 		frame_start = FEC_MMFR_ST_C45;
1821 
1822 		/* write address */
1823 		frame_addr = (regnum >> 16);
1824 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1825 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1826 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1827 		       fep->hwp + FEC_MII_DATA);
1828 
1829 		/* wait for end of transfer */
1830 		ret = fec_enet_mdio_wait(fep);
1831 		if (ret) {
1832 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1833 			goto out;
1834 		}
1835 
1836 		frame_op = FEC_MMFR_OP_READ_C45;
1837 
1838 	} else {
1839 		/* C22 read */
1840 		frame_op = FEC_MMFR_OP_READ;
1841 		frame_start = FEC_MMFR_ST;
1842 		frame_addr = regnum;
1843 	}
1844 
1845 	/* start a read op */
1846 	writel(frame_start | frame_op |
1847 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1848 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1849 
1850 	/* wait for end of transfer */
1851 	ret = fec_enet_mdio_wait(fep);
1852 	if (ret) {
1853 		netdev_err(fep->netdev, "MDIO read timeout\n");
1854 		goto out;
1855 	}
1856 
1857 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1858 
1859 out:
1860 	pm_runtime_mark_last_busy(dev);
1861 	pm_runtime_put_autosuspend(dev);
1862 
1863 	return ret;
1864 }
1865 
fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 value)1866 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1867 			   u16 value)
1868 {
1869 	struct fec_enet_private *fep = bus->priv;
1870 	struct device *dev = &fep->pdev->dev;
1871 	int ret, frame_start, frame_addr;
1872 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1873 
1874 	ret = pm_runtime_resume_and_get(dev);
1875 	if (ret < 0)
1876 		return ret;
1877 
1878 	if (is_c45) {
1879 		frame_start = FEC_MMFR_ST_C45;
1880 
1881 		/* write address */
1882 		frame_addr = (regnum >> 16);
1883 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1884 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1885 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1886 		       fep->hwp + FEC_MII_DATA);
1887 
1888 		/* wait for end of transfer */
1889 		ret = fec_enet_mdio_wait(fep);
1890 		if (ret) {
1891 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1892 			goto out;
1893 		}
1894 	} else {
1895 		/* C22 write */
1896 		frame_start = FEC_MMFR_ST;
1897 		frame_addr = regnum;
1898 	}
1899 
1900 	/* start a write op */
1901 	writel(frame_start | FEC_MMFR_OP_WRITE |
1902 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1903 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1904 		fep->hwp + FEC_MII_DATA);
1905 
1906 	/* wait for end of transfer */
1907 	ret = fec_enet_mdio_wait(fep);
1908 	if (ret)
1909 		netdev_err(fep->netdev, "MDIO write timeout\n");
1910 
1911 out:
1912 	pm_runtime_mark_last_busy(dev);
1913 	pm_runtime_put_autosuspend(dev);
1914 
1915 	return ret;
1916 }
1917 
fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)1918 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
1919 {
1920 	struct fec_enet_private *fep = netdev_priv(ndev);
1921 	struct phy_device *phy_dev = ndev->phydev;
1922 
1923 	if (phy_dev) {
1924 		phy_reset_after_clk_enable(phy_dev);
1925 	} else if (fep->phy_node) {
1926 		/*
1927 		 * If the PHY still is not bound to the MAC, but there is
1928 		 * OF PHY node and a matching PHY device instance already,
1929 		 * use the OF PHY node to obtain the PHY device instance,
1930 		 * and then use that PHY device instance when triggering
1931 		 * the PHY reset.
1932 		 */
1933 		phy_dev = of_phy_find_device(fep->phy_node);
1934 		phy_reset_after_clk_enable(phy_dev);
1935 		put_device(&phy_dev->mdio.dev);
1936 	}
1937 }
1938 
fec_enet_clk_enable(struct net_device *ndev, bool enable)1939 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1940 {
1941 	struct fec_enet_private *fep = netdev_priv(ndev);
1942 	int ret;
1943 
1944 	if (enable) {
1945 		ret = clk_prepare_enable(fep->clk_enet_out);
1946 		if (ret)
1947 			return ret;
1948 
1949 		if (fep->clk_ptp) {
1950 			mutex_lock(&fep->ptp_clk_mutex);
1951 			ret = clk_prepare_enable(fep->clk_ptp);
1952 			if (ret) {
1953 				mutex_unlock(&fep->ptp_clk_mutex);
1954 				goto failed_clk_ptp;
1955 			} else {
1956 				fep->ptp_clk_on = true;
1957 			}
1958 			mutex_unlock(&fep->ptp_clk_mutex);
1959 		}
1960 
1961 		ret = clk_prepare_enable(fep->clk_ref);
1962 		if (ret)
1963 			goto failed_clk_ref;
1964 
1965 		fec_enet_phy_reset_after_clk_enable(ndev);
1966 	} else {
1967 		clk_disable_unprepare(fep->clk_enet_out);
1968 		if (fep->clk_ptp) {
1969 			mutex_lock(&fep->ptp_clk_mutex);
1970 			clk_disable_unprepare(fep->clk_ptp);
1971 			fep->ptp_clk_on = false;
1972 			mutex_unlock(&fep->ptp_clk_mutex);
1973 		}
1974 		clk_disable_unprepare(fep->clk_ref);
1975 	}
1976 
1977 	return 0;
1978 
1979 failed_clk_ref:
1980 	if (fep->clk_ptp) {
1981 		mutex_lock(&fep->ptp_clk_mutex);
1982 		clk_disable_unprepare(fep->clk_ptp);
1983 		fep->ptp_clk_on = false;
1984 		mutex_unlock(&fep->ptp_clk_mutex);
1985 	}
1986 failed_clk_ptp:
1987 	clk_disable_unprepare(fep->clk_enet_out);
1988 
1989 	return ret;
1990 }
1991 
fec_enet_mii_probe(struct net_device *ndev)1992 static int fec_enet_mii_probe(struct net_device *ndev)
1993 {
1994 	struct fec_enet_private *fep = netdev_priv(ndev);
1995 	struct phy_device *phy_dev = NULL;
1996 	char mdio_bus_id[MII_BUS_ID_SIZE];
1997 	char phy_name[MII_BUS_ID_SIZE + 3];
1998 	int phy_id;
1999 	int dev_id = fep->dev_id;
2000 
2001 	if (fep->phy_node) {
2002 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2003 					 &fec_enet_adjust_link, 0,
2004 					 fep->phy_interface);
2005 		if (!phy_dev) {
2006 			netdev_err(ndev, "Unable to connect to phy\n");
2007 			return -ENODEV;
2008 		}
2009 	} else {
2010 		/* check for attached phy */
2011 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2012 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2013 				continue;
2014 			if (dev_id--)
2015 				continue;
2016 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2017 			break;
2018 		}
2019 
2020 		if (phy_id >= PHY_MAX_ADDR) {
2021 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2022 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2023 			phy_id = 0;
2024 		}
2025 
2026 		snprintf(phy_name, sizeof(phy_name),
2027 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2028 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2029 				      fep->phy_interface);
2030 	}
2031 
2032 	if (IS_ERR(phy_dev)) {
2033 		netdev_err(ndev, "could not attach to PHY\n");
2034 		return PTR_ERR(phy_dev);
2035 	}
2036 
2037 	/* mask with MAC supported features */
2038 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2039 		phy_set_max_speed(phy_dev, 1000);
2040 		phy_remove_link_mode(phy_dev,
2041 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2042 #if !defined(CONFIG_M5272)
2043 		phy_support_sym_pause(phy_dev);
2044 #endif
2045 	}
2046 	else
2047 		phy_set_max_speed(phy_dev, 100);
2048 
2049 	fep->link = 0;
2050 	fep->full_duplex = 0;
2051 
2052 	phy_attached_info(phy_dev);
2053 
2054 	return 0;
2055 }
2056 
fec_enet_mii_init(struct platform_device *pdev)2057 static int fec_enet_mii_init(struct platform_device *pdev)
2058 {
2059 	static struct mii_bus *fec0_mii_bus;
2060 	struct net_device *ndev = platform_get_drvdata(pdev);
2061 	struct fec_enet_private *fep = netdev_priv(ndev);
2062 	bool suppress_preamble = false;
2063 	struct device_node *node;
2064 	int err = -ENXIO;
2065 	u32 mii_speed, holdtime;
2066 	u32 bus_freq;
2067 
2068 	/*
2069 	 * The i.MX28 dual fec interfaces are not equal.
2070 	 * Here are the differences:
2071 	 *
2072 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2073 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2074 	 *  - external phys can only be configured by fec0
2075 	 *
2076 	 * That is to say fec1 can not work independently. It only works
2077 	 * when fec0 is working. The reason behind this design is that the
2078 	 * second interface is added primarily for Switch mode.
2079 	 *
2080 	 * Because of the last point above, both phys are attached on fec0
2081 	 * mdio interface in board design, and need to be configured by
2082 	 * fec0 mii_bus.
2083 	 */
2084 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2085 		/* fec1 uses fec0 mii_bus */
2086 		if (mii_cnt && fec0_mii_bus) {
2087 			fep->mii_bus = fec0_mii_bus;
2088 			mii_cnt++;
2089 			return 0;
2090 		}
2091 		return -ENOENT;
2092 	}
2093 
2094 	bus_freq = 2500000; /* 2.5MHz by default */
2095 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2096 	if (node) {
2097 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2098 		suppress_preamble = of_property_read_bool(node,
2099 							  "suppress-preamble");
2100 	}
2101 
2102 	/*
2103 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2104 	 *
2105 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2106 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2107 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2108 	 * document.
2109 	 */
2110 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2111 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2112 		mii_speed--;
2113 	if (mii_speed > 63) {
2114 		dev_err(&pdev->dev,
2115 			"fec clock (%lu) too fast to get right mii speed\n",
2116 			clk_get_rate(fep->clk_ipg));
2117 		err = -EINVAL;
2118 		goto err_out;
2119 	}
2120 
2121 	/*
2122 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2123 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2124 	 * versions are RAZ there, so just ignore the difference and write the
2125 	 * register always.
2126 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2127 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2128 	 * output.
2129 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2130 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2131 	 * holdtime cannot result in a value greater than 3.
2132 	 */
2133 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2134 
2135 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2136 
2137 	if (suppress_preamble)
2138 		fep->phy_speed |= BIT(7);
2139 
2140 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2141 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2142 		 * MII event generation condition:
2143 		 * - writing MSCR:
2144 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2145 		 *	  mscr_reg_data_in[7:0] != 0
2146 		 * - writing MMFR:
2147 		 *	- mscr[7:0]_not_zero
2148 		 */
2149 		writel(0, fep->hwp + FEC_MII_DATA);
2150 	}
2151 
2152 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2153 
2154 	/* Clear any pending transaction complete indication */
2155 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2156 
2157 	fep->mii_bus = mdiobus_alloc();
2158 	if (fep->mii_bus == NULL) {
2159 		err = -ENOMEM;
2160 		goto err_out;
2161 	}
2162 
2163 	fep->mii_bus->name = "fec_enet_mii_bus";
2164 	fep->mii_bus->read = fec_enet_mdio_read;
2165 	fep->mii_bus->write = fec_enet_mdio_write;
2166 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2167 		pdev->name, fep->dev_id + 1);
2168 	fep->mii_bus->priv = fep;
2169 	fep->mii_bus->parent = &pdev->dev;
2170 
2171 	err = of_mdiobus_register(fep->mii_bus, node);
2172 	if (err)
2173 		goto err_out_free_mdiobus;
2174 	of_node_put(node);
2175 
2176 	mii_cnt++;
2177 
2178 	/* save fec0 mii_bus */
2179 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2180 		fec0_mii_bus = fep->mii_bus;
2181 
2182 	return 0;
2183 
2184 err_out_free_mdiobus:
2185 	mdiobus_free(fep->mii_bus);
2186 err_out:
2187 	of_node_put(node);
2188 	return err;
2189 }
2190 
fec_enet_mii_remove(struct fec_enet_private *fep)2191 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2192 {
2193 	if (--mii_cnt == 0) {
2194 		mdiobus_unregister(fep->mii_bus);
2195 		mdiobus_free(fep->mii_bus);
2196 	}
2197 }
2198 
fec_enet_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)2199 static void fec_enet_get_drvinfo(struct net_device *ndev,
2200 				 struct ethtool_drvinfo *info)
2201 {
2202 	struct fec_enet_private *fep = netdev_priv(ndev);
2203 
2204 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2205 		sizeof(info->driver));
2206 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2207 }
2208 
fec_enet_get_regs_len(struct net_device *ndev)2209 static int fec_enet_get_regs_len(struct net_device *ndev)
2210 {
2211 	struct fec_enet_private *fep = netdev_priv(ndev);
2212 	struct resource *r;
2213 	int s = 0;
2214 
2215 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2216 	if (r)
2217 		s = resource_size(r);
2218 
2219 	return s;
2220 }
2221 
2222 /* List of registers that can be safety be read to dump them with ethtool */
2223 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2224 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2225 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2226 static __u32 fec_enet_register_version = 2;
2227 static u32 fec_enet_register_offset[] = {
2228 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2229 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2230 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2231 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2232 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2233 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2234 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2235 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2236 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2237 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2238 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2239 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2240 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2241 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2242 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2243 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2244 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2245 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2246 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2247 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2248 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2249 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2250 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2251 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2252 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2253 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2254 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2255 };
2256 /* for i.MX6ul */
2257 static u32 fec_enet_register_offset_6ul[] = {
2258 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2259 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2260 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2261 	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2262 	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2263 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2264 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2265 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2266 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2267 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2268 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2269 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2270 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2271 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2272 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2273 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2274 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2275 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2276 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2277 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2278 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2279 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2280 };
2281 #else
2282 static __u32 fec_enet_register_version = 1;
2283 static u32 fec_enet_register_offset[] = {
2284 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2285 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2286 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2287 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2288 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2289 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2290 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2291 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2292 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2293 };
2294 #endif
2295 
fec_enet_get_regs(struct net_device *ndev, struct ethtool_regs *regs, void *regbuf)2296 static void fec_enet_get_regs(struct net_device *ndev,
2297 			      struct ethtool_regs *regs, void *regbuf)
2298 {
2299 	struct fec_enet_private *fep = netdev_priv(ndev);
2300 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2301 	struct device *dev = &fep->pdev->dev;
2302 	u32 *buf = (u32 *)regbuf;
2303 	u32 i, off;
2304 	int ret;
2305 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2306 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2307 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2308 	u32 *reg_list;
2309 	u32 reg_cnt;
2310 
2311 	if (!of_machine_is_compatible("fsl,imx6ul")) {
2312 		reg_list = fec_enet_register_offset;
2313 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2314 	} else {
2315 		reg_list = fec_enet_register_offset_6ul;
2316 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2317 	}
2318 #else
2319 	/* coldfire */
2320 	static u32 *reg_list = fec_enet_register_offset;
2321 	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2322 #endif
2323 	ret = pm_runtime_resume_and_get(dev);
2324 	if (ret < 0)
2325 		return;
2326 
2327 	regs->version = fec_enet_register_version;
2328 
2329 	memset(buf, 0, regs->len);
2330 
2331 	for (i = 0; i < reg_cnt; i++) {
2332 		off = reg_list[i];
2333 
2334 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2335 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2336 			continue;
2337 
2338 		off >>= 2;
2339 		buf[off] = readl(&theregs[off]);
2340 	}
2341 
2342 	pm_runtime_mark_last_busy(dev);
2343 	pm_runtime_put_autosuspend(dev);
2344 }
2345 
fec_enet_get_ts_info(struct net_device *ndev, struct ethtool_ts_info *info)2346 static int fec_enet_get_ts_info(struct net_device *ndev,
2347 				struct ethtool_ts_info *info)
2348 {
2349 	struct fec_enet_private *fep = netdev_priv(ndev);
2350 
2351 	if (fep->bufdesc_ex) {
2352 
2353 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2354 					SOF_TIMESTAMPING_RX_SOFTWARE |
2355 					SOF_TIMESTAMPING_SOFTWARE |
2356 					SOF_TIMESTAMPING_TX_HARDWARE |
2357 					SOF_TIMESTAMPING_RX_HARDWARE |
2358 					SOF_TIMESTAMPING_RAW_HARDWARE;
2359 		if (fep->ptp_clock)
2360 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2361 		else
2362 			info->phc_index = -1;
2363 
2364 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2365 				 (1 << HWTSTAMP_TX_ON);
2366 
2367 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2368 				   (1 << HWTSTAMP_FILTER_ALL);
2369 		return 0;
2370 	} else {
2371 		return ethtool_op_get_ts_info(ndev, info);
2372 	}
2373 }
2374 
2375 #if !defined(CONFIG_M5272)
2376 
fec_enet_get_pauseparam(struct net_device *ndev, struct ethtool_pauseparam *pause)2377 static void fec_enet_get_pauseparam(struct net_device *ndev,
2378 				    struct ethtool_pauseparam *pause)
2379 {
2380 	struct fec_enet_private *fep = netdev_priv(ndev);
2381 
2382 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2383 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2384 	pause->rx_pause = pause->tx_pause;
2385 }
2386 
fec_enet_set_pauseparam(struct net_device *ndev, struct ethtool_pauseparam *pause)2387 static int fec_enet_set_pauseparam(struct net_device *ndev,
2388 				   struct ethtool_pauseparam *pause)
2389 {
2390 	struct fec_enet_private *fep = netdev_priv(ndev);
2391 
2392 	if (!ndev->phydev)
2393 		return -ENODEV;
2394 
2395 	if (pause->tx_pause != pause->rx_pause) {
2396 		netdev_info(ndev,
2397 			"hardware only support enable/disable both tx and rx");
2398 		return -EINVAL;
2399 	}
2400 
2401 	fep->pause_flag = 0;
2402 
2403 	/* tx pause must be same as rx pause */
2404 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2405 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2406 
2407 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2408 			  pause->autoneg);
2409 
2410 	if (pause->autoneg) {
2411 		if (netif_running(ndev))
2412 			fec_stop(ndev);
2413 		phy_start_aneg(ndev->phydev);
2414 	}
2415 	if (netif_running(ndev)) {
2416 		napi_disable(&fep->napi);
2417 		netif_tx_lock_bh(ndev);
2418 		fec_restart(ndev);
2419 		netif_tx_wake_all_queues(ndev);
2420 		netif_tx_unlock_bh(ndev);
2421 		napi_enable(&fep->napi);
2422 	}
2423 
2424 	return 0;
2425 }
2426 
2427 static const struct fec_stat {
2428 	char name[ETH_GSTRING_LEN];
2429 	u16 offset;
2430 } fec_stats[] = {
2431 	/* RMON TX */
2432 	{ "tx_dropped", RMON_T_DROP },
2433 	{ "tx_packets", RMON_T_PACKETS },
2434 	{ "tx_broadcast", RMON_T_BC_PKT },
2435 	{ "tx_multicast", RMON_T_MC_PKT },
2436 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2437 	{ "tx_undersize", RMON_T_UNDERSIZE },
2438 	{ "tx_oversize", RMON_T_OVERSIZE },
2439 	{ "tx_fragment", RMON_T_FRAG },
2440 	{ "tx_jabber", RMON_T_JAB },
2441 	{ "tx_collision", RMON_T_COL },
2442 	{ "tx_64byte", RMON_T_P64 },
2443 	{ "tx_65to127byte", RMON_T_P65TO127 },
2444 	{ "tx_128to255byte", RMON_T_P128TO255 },
2445 	{ "tx_256to511byte", RMON_T_P256TO511 },
2446 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2447 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2448 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2449 	{ "tx_octets", RMON_T_OCTETS },
2450 
2451 	/* IEEE TX */
2452 	{ "IEEE_tx_drop", IEEE_T_DROP },
2453 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2454 	{ "IEEE_tx_1col", IEEE_T_1COL },
2455 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2456 	{ "IEEE_tx_def", IEEE_T_DEF },
2457 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2458 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2459 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2460 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2461 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2462 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2463 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2464 
2465 	/* RMON RX */
2466 	{ "rx_packets", RMON_R_PACKETS },
2467 	{ "rx_broadcast", RMON_R_BC_PKT },
2468 	{ "rx_multicast", RMON_R_MC_PKT },
2469 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2470 	{ "rx_undersize", RMON_R_UNDERSIZE },
2471 	{ "rx_oversize", RMON_R_OVERSIZE },
2472 	{ "rx_fragment", RMON_R_FRAG },
2473 	{ "rx_jabber", RMON_R_JAB },
2474 	{ "rx_64byte", RMON_R_P64 },
2475 	{ "rx_65to127byte", RMON_R_P65TO127 },
2476 	{ "rx_128to255byte", RMON_R_P128TO255 },
2477 	{ "rx_256to511byte", RMON_R_P256TO511 },
2478 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2479 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2480 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2481 	{ "rx_octets", RMON_R_OCTETS },
2482 
2483 	/* IEEE RX */
2484 	{ "IEEE_rx_drop", IEEE_R_DROP },
2485 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2486 	{ "IEEE_rx_crc", IEEE_R_CRC },
2487 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2488 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2489 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2490 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2491 };
2492 
2493 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2494 
fec_enet_update_ethtool_stats(struct net_device *dev)2495 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2496 {
2497 	struct fec_enet_private *fep = netdev_priv(dev);
2498 	int i;
2499 
2500 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2501 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2502 }
2503 
fec_enet_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)2504 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2505 				       struct ethtool_stats *stats, u64 *data)
2506 {
2507 	struct fec_enet_private *fep = netdev_priv(dev);
2508 
2509 	if (netif_running(dev))
2510 		fec_enet_update_ethtool_stats(dev);
2511 
2512 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2513 }
2514 
fec_enet_get_strings(struct net_device *netdev, u32 stringset, u8 *data)2515 static void fec_enet_get_strings(struct net_device *netdev,
2516 	u32 stringset, u8 *data)
2517 {
2518 	int i;
2519 	switch (stringset) {
2520 	case ETH_SS_STATS:
2521 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2522 			memcpy(data + i * ETH_GSTRING_LEN,
2523 				fec_stats[i].name, ETH_GSTRING_LEN);
2524 		break;
2525 	}
2526 }
2527 
fec_enet_get_sset_count(struct net_device *dev, int sset)2528 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2529 {
2530 	switch (sset) {
2531 	case ETH_SS_STATS:
2532 		return ARRAY_SIZE(fec_stats);
2533 	default:
2534 		return -EOPNOTSUPP;
2535 	}
2536 }
2537 
fec_enet_clear_ethtool_stats(struct net_device *dev)2538 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2539 {
2540 	struct fec_enet_private *fep = netdev_priv(dev);
2541 	int i;
2542 
2543 	/* Disable MIB statistics counters */
2544 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2545 
2546 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2547 		writel(0, fep->hwp + fec_stats[i].offset);
2548 
2549 	/* Don't disable MIB statistics counters */
2550 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2551 }
2552 
2553 #else	/* !defined(CONFIG_M5272) */
2554 #define FEC_STATS_SIZE	0
fec_enet_update_ethtool_stats(struct net_device *dev)2555 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2556 {
2557 }
2558 
fec_enet_clear_ethtool_stats(struct net_device *dev)2559 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2560 {
2561 }
2562 #endif /* !defined(CONFIG_M5272) */
2563 
2564 /* ITR clock source is enet system clock (clk_ahb).
2565  * TCTT unit is cycle_ns * 64 cycle
2566  * So, the ICTT value = X us / (cycle_ns * 64)
2567  */
fec_enet_us_to_itr_clock(struct net_device *ndev, int us)2568 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2569 {
2570 	struct fec_enet_private *fep = netdev_priv(ndev);
2571 
2572 	return us * (fep->itr_clk_rate / 64000) / 1000;
2573 }
2574 
2575 /* Set threshold for interrupt coalescing */
fec_enet_itr_coal_set(struct net_device *ndev)2576 static void fec_enet_itr_coal_set(struct net_device *ndev)
2577 {
2578 	struct fec_enet_private *fep = netdev_priv(ndev);
2579 	int rx_itr, tx_itr;
2580 
2581 	/* Must be greater than zero to avoid unpredictable behavior */
2582 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2583 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2584 		return;
2585 
2586 	/* Select enet system clock as Interrupt Coalescing
2587 	 * timer Clock Source
2588 	 */
2589 	rx_itr = FEC_ITR_CLK_SEL;
2590 	tx_itr = FEC_ITR_CLK_SEL;
2591 
2592 	/* set ICFT and ICTT */
2593 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2594 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2595 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2596 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2597 
2598 	rx_itr |= FEC_ITR_EN;
2599 	tx_itr |= FEC_ITR_EN;
2600 
2601 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2602 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2603 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2604 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2605 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2606 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2607 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2608 	}
2609 }
2610 
2611 static int
fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)2612 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2613 {
2614 	struct fec_enet_private *fep = netdev_priv(ndev);
2615 
2616 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2617 		return -EOPNOTSUPP;
2618 
2619 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2620 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2621 
2622 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2623 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2624 
2625 	return 0;
2626 }
2627 
2628 static int
fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)2629 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2630 {
2631 	struct fec_enet_private *fep = netdev_priv(ndev);
2632 	struct device *dev = &fep->pdev->dev;
2633 	unsigned int cycle;
2634 
2635 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2636 		return -EOPNOTSUPP;
2637 
2638 	if (ec->rx_max_coalesced_frames > 255) {
2639 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2640 		return -EINVAL;
2641 	}
2642 
2643 	if (ec->tx_max_coalesced_frames > 255) {
2644 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2645 		return -EINVAL;
2646 	}
2647 
2648 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2649 	if (cycle > 0xFFFF) {
2650 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2651 		return -EINVAL;
2652 	}
2653 
2654 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2655 	if (cycle > 0xFFFF) {
2656 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2657 		return -EINVAL;
2658 	}
2659 
2660 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2661 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2662 
2663 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2664 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2665 
2666 	fec_enet_itr_coal_set(ndev);
2667 
2668 	return 0;
2669 }
2670 
fec_enet_itr_coal_init(struct net_device *ndev)2671 static void fec_enet_itr_coal_init(struct net_device *ndev)
2672 {
2673 	struct ethtool_coalesce ec;
2674 
2675 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2676 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2677 
2678 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2679 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2680 
2681 	fec_enet_set_coalesce(ndev, &ec);
2682 }
2683 
fec_enet_get_tunable(struct net_device *netdev, const struct ethtool_tunable *tuna, void *data)2684 static int fec_enet_get_tunable(struct net_device *netdev,
2685 				const struct ethtool_tunable *tuna,
2686 				void *data)
2687 {
2688 	struct fec_enet_private *fep = netdev_priv(netdev);
2689 	int ret = 0;
2690 
2691 	switch (tuna->id) {
2692 	case ETHTOOL_RX_COPYBREAK:
2693 		*(u32 *)data = fep->rx_copybreak;
2694 		break;
2695 	default:
2696 		ret = -EINVAL;
2697 		break;
2698 	}
2699 
2700 	return ret;
2701 }
2702 
fec_enet_set_tunable(struct net_device *netdev, const struct ethtool_tunable *tuna, const void *data)2703 static int fec_enet_set_tunable(struct net_device *netdev,
2704 				const struct ethtool_tunable *tuna,
2705 				const void *data)
2706 {
2707 	struct fec_enet_private *fep = netdev_priv(netdev);
2708 	int ret = 0;
2709 
2710 	switch (tuna->id) {
2711 	case ETHTOOL_RX_COPYBREAK:
2712 		fep->rx_copybreak = *(u32 *)data;
2713 		break;
2714 	default:
2715 		ret = -EINVAL;
2716 		break;
2717 	}
2718 
2719 	return ret;
2720 }
2721 
2722 static void
fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)2723 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2724 {
2725 	struct fec_enet_private *fep = netdev_priv(ndev);
2726 
2727 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2728 		wol->supported = WAKE_MAGIC;
2729 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2730 	} else {
2731 		wol->supported = wol->wolopts = 0;
2732 	}
2733 }
2734 
2735 static int
fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)2736 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2737 {
2738 	struct fec_enet_private *fep = netdev_priv(ndev);
2739 
2740 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2741 		return -EINVAL;
2742 
2743 	if (wol->wolopts & ~WAKE_MAGIC)
2744 		return -EINVAL;
2745 
2746 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2747 	if (device_may_wakeup(&ndev->dev)) {
2748 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2749 		if (fep->irq[0] > 0)
2750 			enable_irq_wake(fep->irq[0]);
2751 	} else {
2752 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2753 		if (fep->irq[0] > 0)
2754 			disable_irq_wake(fep->irq[0]);
2755 	}
2756 
2757 	return 0;
2758 }
2759 
2760 static const struct ethtool_ops fec_enet_ethtool_ops = {
2761 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2762 				     ETHTOOL_COALESCE_MAX_FRAMES,
2763 	.get_drvinfo		= fec_enet_get_drvinfo,
2764 	.get_regs_len		= fec_enet_get_regs_len,
2765 	.get_regs		= fec_enet_get_regs,
2766 	.nway_reset		= phy_ethtool_nway_reset,
2767 	.get_link		= ethtool_op_get_link,
2768 	.get_coalesce		= fec_enet_get_coalesce,
2769 	.set_coalesce		= fec_enet_set_coalesce,
2770 #ifndef CONFIG_M5272
2771 	.get_pauseparam		= fec_enet_get_pauseparam,
2772 	.set_pauseparam		= fec_enet_set_pauseparam,
2773 	.get_strings		= fec_enet_get_strings,
2774 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2775 	.get_sset_count		= fec_enet_get_sset_count,
2776 #endif
2777 	.get_ts_info		= fec_enet_get_ts_info,
2778 	.get_tunable		= fec_enet_get_tunable,
2779 	.set_tunable		= fec_enet_set_tunable,
2780 	.get_wol		= fec_enet_get_wol,
2781 	.set_wol		= fec_enet_set_wol,
2782 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2783 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2784 };
2785 
fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)2786 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2787 {
2788 	struct fec_enet_private *fep = netdev_priv(ndev);
2789 	struct phy_device *phydev = ndev->phydev;
2790 
2791 	if (!netif_running(ndev))
2792 		return -EINVAL;
2793 
2794 	if (!phydev)
2795 		return -ENODEV;
2796 
2797 	if (fep->bufdesc_ex) {
2798 		bool use_fec_hwts = !phy_has_hwtstamp(phydev);
2799 
2800 		if (cmd == SIOCSHWTSTAMP) {
2801 			if (use_fec_hwts)
2802 				return fec_ptp_set(ndev, rq);
2803 			fec_ptp_disable_hwts(ndev);
2804 		} else if (cmd == SIOCGHWTSTAMP) {
2805 			if (use_fec_hwts)
2806 				return fec_ptp_get(ndev, rq);
2807 		}
2808 	}
2809 
2810 	return phy_mii_ioctl(phydev, rq, cmd);
2811 }
2812 
fec_enet_free_buffers(struct net_device *ndev)2813 static void fec_enet_free_buffers(struct net_device *ndev)
2814 {
2815 	struct fec_enet_private *fep = netdev_priv(ndev);
2816 	unsigned int i;
2817 	struct sk_buff *skb;
2818 	struct bufdesc	*bdp;
2819 	struct fec_enet_priv_tx_q *txq;
2820 	struct fec_enet_priv_rx_q *rxq;
2821 	unsigned int q;
2822 
2823 	for (q = 0; q < fep->num_rx_queues; q++) {
2824 		rxq = fep->rx_queue[q];
2825 		bdp = rxq->bd.base;
2826 		for (i = 0; i < rxq->bd.ring_size; i++) {
2827 			skb = rxq->rx_skbuff[i];
2828 			rxq->rx_skbuff[i] = NULL;
2829 			if (skb) {
2830 				dma_unmap_single(&fep->pdev->dev,
2831 						 fec32_to_cpu(bdp->cbd_bufaddr),
2832 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2833 						 DMA_FROM_DEVICE);
2834 				dev_kfree_skb(skb);
2835 			}
2836 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2837 		}
2838 	}
2839 
2840 	for (q = 0; q < fep->num_tx_queues; q++) {
2841 		txq = fep->tx_queue[q];
2842 		for (i = 0; i < txq->bd.ring_size; i++) {
2843 			kfree(txq->tx_bounce[i]);
2844 			txq->tx_bounce[i] = NULL;
2845 			skb = txq->tx_skbuff[i];
2846 			txq->tx_skbuff[i] = NULL;
2847 			dev_kfree_skb(skb);
2848 		}
2849 	}
2850 }
2851 
fec_enet_free_queue(struct net_device *ndev)2852 static void fec_enet_free_queue(struct net_device *ndev)
2853 {
2854 	struct fec_enet_private *fep = netdev_priv(ndev);
2855 	int i;
2856 	struct fec_enet_priv_tx_q *txq;
2857 
2858 	for (i = 0; i < fep->num_tx_queues; i++)
2859 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2860 			txq = fep->tx_queue[i];
2861 			dma_free_coherent(&fep->pdev->dev,
2862 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2863 					  txq->tso_hdrs,
2864 					  txq->tso_hdrs_dma);
2865 		}
2866 
2867 	for (i = 0; i < fep->num_rx_queues; i++)
2868 		kfree(fep->rx_queue[i]);
2869 	for (i = 0; i < fep->num_tx_queues; i++)
2870 		kfree(fep->tx_queue[i]);
2871 }
2872 
fec_enet_alloc_queue(struct net_device *ndev)2873 static int fec_enet_alloc_queue(struct net_device *ndev)
2874 {
2875 	struct fec_enet_private *fep = netdev_priv(ndev);
2876 	int i;
2877 	int ret = 0;
2878 	struct fec_enet_priv_tx_q *txq;
2879 
2880 	for (i = 0; i < fep->num_tx_queues; i++) {
2881 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2882 		if (!txq) {
2883 			ret = -ENOMEM;
2884 			goto alloc_failed;
2885 		}
2886 
2887 		fep->tx_queue[i] = txq;
2888 		txq->bd.ring_size = TX_RING_SIZE;
2889 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2890 
2891 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2892 		txq->tx_wake_threshold =
2893 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2894 
2895 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2896 					txq->bd.ring_size * TSO_HEADER_SIZE,
2897 					&txq->tso_hdrs_dma,
2898 					GFP_KERNEL);
2899 		if (!txq->tso_hdrs) {
2900 			ret = -ENOMEM;
2901 			goto alloc_failed;
2902 		}
2903 	}
2904 
2905 	for (i = 0; i < fep->num_rx_queues; i++) {
2906 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2907 					   GFP_KERNEL);
2908 		if (!fep->rx_queue[i]) {
2909 			ret = -ENOMEM;
2910 			goto alloc_failed;
2911 		}
2912 
2913 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2914 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2915 	}
2916 	return ret;
2917 
2918 alloc_failed:
2919 	fec_enet_free_queue(ndev);
2920 	return ret;
2921 }
2922 
2923 static int
fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)2924 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2925 {
2926 	struct fec_enet_private *fep = netdev_priv(ndev);
2927 	unsigned int i;
2928 	struct sk_buff *skb;
2929 	struct bufdesc	*bdp;
2930 	struct fec_enet_priv_rx_q *rxq;
2931 
2932 	rxq = fep->rx_queue[queue];
2933 	bdp = rxq->bd.base;
2934 	for (i = 0; i < rxq->bd.ring_size; i++) {
2935 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2936 		if (!skb)
2937 			goto err_alloc;
2938 
2939 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2940 			dev_kfree_skb(skb);
2941 			goto err_alloc;
2942 		}
2943 
2944 		rxq->rx_skbuff[i] = skb;
2945 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2946 
2947 		if (fep->bufdesc_ex) {
2948 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2949 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2950 		}
2951 
2952 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2953 	}
2954 
2955 	/* Set the last buffer to wrap. */
2956 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2957 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2958 	return 0;
2959 
2960  err_alloc:
2961 	fec_enet_free_buffers(ndev);
2962 	return -ENOMEM;
2963 }
2964 
2965 static int
fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)2966 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2967 {
2968 	struct fec_enet_private *fep = netdev_priv(ndev);
2969 	unsigned int i;
2970 	struct bufdesc  *bdp;
2971 	struct fec_enet_priv_tx_q *txq;
2972 
2973 	txq = fep->tx_queue[queue];
2974 	bdp = txq->bd.base;
2975 	for (i = 0; i < txq->bd.ring_size; i++) {
2976 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2977 		if (!txq->tx_bounce[i])
2978 			goto err_alloc;
2979 
2980 		bdp->cbd_sc = cpu_to_fec16(0);
2981 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2982 
2983 		if (fep->bufdesc_ex) {
2984 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2985 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2986 		}
2987 
2988 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2989 	}
2990 
2991 	/* Set the last buffer to wrap. */
2992 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2993 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2994 
2995 	return 0;
2996 
2997  err_alloc:
2998 	fec_enet_free_buffers(ndev);
2999 	return -ENOMEM;
3000 }
3001 
fec_enet_alloc_buffers(struct net_device *ndev)3002 static int fec_enet_alloc_buffers(struct net_device *ndev)
3003 {
3004 	struct fec_enet_private *fep = netdev_priv(ndev);
3005 	unsigned int i;
3006 
3007 	for (i = 0; i < fep->num_rx_queues; i++)
3008 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3009 			return -ENOMEM;
3010 
3011 	for (i = 0; i < fep->num_tx_queues; i++)
3012 		if (fec_enet_alloc_txq_buffers(ndev, i))
3013 			return -ENOMEM;
3014 	return 0;
3015 }
3016 
3017 static int
fec_enet_open(struct net_device *ndev)3018 fec_enet_open(struct net_device *ndev)
3019 {
3020 	struct fec_enet_private *fep = netdev_priv(ndev);
3021 	int ret;
3022 	bool reset_again;
3023 
3024 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3025 	if (ret < 0)
3026 		return ret;
3027 
3028 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3029 	ret = fec_enet_clk_enable(ndev, true);
3030 	if (ret)
3031 		goto clk_enable;
3032 
3033 	/* During the first fec_enet_open call the PHY isn't probed at this
3034 	 * point. Therefore the phy_reset_after_clk_enable() call within
3035 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3036 	 * sure the PHY is working correctly we check if we need to reset again
3037 	 * later when the PHY is probed
3038 	 */
3039 	if (ndev->phydev && ndev->phydev->drv)
3040 		reset_again = false;
3041 	else
3042 		reset_again = true;
3043 
3044 	/* I should reset the ring buffers here, but I don't yet know
3045 	 * a simple way to do that.
3046 	 */
3047 
3048 	ret = fec_enet_alloc_buffers(ndev);
3049 	if (ret)
3050 		goto err_enet_alloc;
3051 
3052 	/* Init MAC prior to mii bus probe */
3053 	fec_restart(ndev);
3054 
3055 	/* Call phy_reset_after_clk_enable() again if it failed during
3056 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3057 	 */
3058 	if (reset_again)
3059 		fec_enet_phy_reset_after_clk_enable(ndev);
3060 
3061 	/* Probe and connect to PHY when open the interface */
3062 	ret = fec_enet_mii_probe(ndev);
3063 	if (ret)
3064 		goto err_enet_mii_probe;
3065 
3066 	if (fep->quirks & FEC_QUIRK_ERR006687)
3067 		imx6q_cpuidle_fec_irqs_used();
3068 
3069 	napi_enable(&fep->napi);
3070 	phy_start(ndev->phydev);
3071 	netif_tx_start_all_queues(ndev);
3072 
3073 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3074 				 FEC_WOL_FLAG_ENABLE);
3075 
3076 	return 0;
3077 
3078 err_enet_mii_probe:
3079 	fec_enet_free_buffers(ndev);
3080 err_enet_alloc:
3081 	fec_enet_clk_enable(ndev, false);
3082 clk_enable:
3083 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3084 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3085 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3086 	return ret;
3087 }
3088 
3089 static int
fec_enet_close(struct net_device *ndev)3090 fec_enet_close(struct net_device *ndev)
3091 {
3092 	struct fec_enet_private *fep = netdev_priv(ndev);
3093 
3094 	phy_stop(ndev->phydev);
3095 
3096 	if (netif_device_present(ndev)) {
3097 		napi_disable(&fep->napi);
3098 		netif_tx_disable(ndev);
3099 		fec_stop(ndev);
3100 	}
3101 
3102 	phy_disconnect(ndev->phydev);
3103 
3104 	if (fep->quirks & FEC_QUIRK_ERR006687)
3105 		imx6q_cpuidle_fec_irqs_unused();
3106 
3107 	fec_enet_update_ethtool_stats(ndev);
3108 
3109 	fec_enet_clk_enable(ndev, false);
3110 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3111 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3112 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3113 
3114 	fec_enet_free_buffers(ndev);
3115 
3116 	return 0;
3117 }
3118 
3119 /* Set or clear the multicast filter for this adaptor.
3120  * Skeleton taken from sunlance driver.
3121  * The CPM Ethernet implementation allows Multicast as well as individual
3122  * MAC address filtering.  Some of the drivers check to make sure it is
3123  * a group multicast address, and discard those that are not.  I guess I
3124  * will do the same for now, but just remove the test if you want
3125  * individual filtering as well (do the upper net layers want or support
3126  * this kind of feature?).
3127  */
3128 
3129 #define FEC_HASH_BITS	6		/* #bits in hash */
3130 
set_multicast_list(struct net_device *ndev)3131 static void set_multicast_list(struct net_device *ndev)
3132 {
3133 	struct fec_enet_private *fep = netdev_priv(ndev);
3134 	struct netdev_hw_addr *ha;
3135 	unsigned int crc, tmp;
3136 	unsigned char hash;
3137 	unsigned int hash_high = 0, hash_low = 0;
3138 
3139 	if (ndev->flags & IFF_PROMISC) {
3140 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3141 		tmp |= 0x8;
3142 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3143 		return;
3144 	}
3145 
3146 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3147 	tmp &= ~0x8;
3148 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3149 
3150 	if (ndev->flags & IFF_ALLMULTI) {
3151 		/* Catch all multicast addresses, so set the
3152 		 * filter to all 1's
3153 		 */
3154 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3155 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3156 
3157 		return;
3158 	}
3159 
3160 	/* Add the addresses in hash register */
3161 	netdev_for_each_mc_addr(ha, ndev) {
3162 		/* calculate crc32 value of mac address */
3163 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3164 
3165 		/* only upper 6 bits (FEC_HASH_BITS) are used
3166 		 * which point to specific bit in the hash registers
3167 		 */
3168 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3169 
3170 		if (hash > 31)
3171 			hash_high |= 1 << (hash - 32);
3172 		else
3173 			hash_low |= 1 << hash;
3174 	}
3175 
3176 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3177 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3178 }
3179 
3180 /* Set a MAC change in hardware. */
3181 static int
fec_set_mac_address(struct net_device *ndev, void *p)3182 fec_set_mac_address(struct net_device *ndev, void *p)
3183 {
3184 	struct fec_enet_private *fep = netdev_priv(ndev);
3185 	struct sockaddr *addr = p;
3186 
3187 	if (addr) {
3188 		if (!is_valid_ether_addr(addr->sa_data))
3189 			return -EADDRNOTAVAIL;
3190 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3191 	}
3192 
3193 	/* Add netif status check here to avoid system hang in below case:
3194 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3195 	 * After ethx down, fec all clocks are gated off and then register
3196 	 * access causes system hang.
3197 	 */
3198 	if (!netif_running(ndev))
3199 		return 0;
3200 
3201 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3202 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3203 		fep->hwp + FEC_ADDR_LOW);
3204 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3205 		fep->hwp + FEC_ADDR_HIGH);
3206 	return 0;
3207 }
3208 
3209 #ifdef CONFIG_NET_POLL_CONTROLLER
3210 /**
3211  * fec_poll_controller - FEC Poll controller function
3212  * @dev: The FEC network adapter
3213  *
3214  * Polled functionality used by netconsole and others in non interrupt mode
3215  *
3216  */
fec_poll_controller(struct net_device *dev)3217 static void fec_poll_controller(struct net_device *dev)
3218 {
3219 	int i;
3220 	struct fec_enet_private *fep = netdev_priv(dev);
3221 
3222 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3223 		if (fep->irq[i] > 0) {
3224 			disable_irq(fep->irq[i]);
3225 			fec_enet_interrupt(fep->irq[i], dev);
3226 			enable_irq(fep->irq[i]);
3227 		}
3228 	}
3229 }
3230 #endif
3231 
fec_enet_set_netdev_features(struct net_device *netdev, netdev_features_t features)3232 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3233 	netdev_features_t features)
3234 {
3235 	struct fec_enet_private *fep = netdev_priv(netdev);
3236 	netdev_features_t changed = features ^ netdev->features;
3237 
3238 	netdev->features = features;
3239 
3240 	/* Receive checksum has been changed */
3241 	if (changed & NETIF_F_RXCSUM) {
3242 		if (features & NETIF_F_RXCSUM)
3243 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3244 		else
3245 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3246 	}
3247 }
3248 
fec_set_features(struct net_device *netdev, netdev_features_t features)3249 static int fec_set_features(struct net_device *netdev,
3250 	netdev_features_t features)
3251 {
3252 	struct fec_enet_private *fep = netdev_priv(netdev);
3253 	netdev_features_t changed = features ^ netdev->features;
3254 
3255 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3256 		napi_disable(&fep->napi);
3257 		netif_tx_lock_bh(netdev);
3258 		fec_stop(netdev);
3259 		fec_enet_set_netdev_features(netdev, features);
3260 		fec_restart(netdev);
3261 		netif_tx_wake_all_queues(netdev);
3262 		netif_tx_unlock_bh(netdev);
3263 		napi_enable(&fep->napi);
3264 	} else {
3265 		fec_enet_set_netdev_features(netdev, features);
3266 	}
3267 
3268 	return 0;
3269 }
3270 
fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb, struct net_device *sb_dev)3271 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3272 				 struct net_device *sb_dev)
3273 {
3274 	struct fec_enet_private *fep = netdev_priv(ndev);
3275 	u16 vlan_tag = 0;
3276 
3277 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3278 		return netdev_pick_tx(ndev, skb, NULL);
3279 
3280 	/* VLAN is present in the payload.*/
3281 	if (eth_type_vlan(skb->protocol)) {
3282 		struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3283 
3284 		vlan_tag = ntohs(vhdr->h_vlan_TCI);
3285 	/*  VLAN is present in the skb but not yet pushed in the payload.*/
3286 	} else if (skb_vlan_tag_present(skb)) {
3287 		vlan_tag = skb->vlan_tci;
3288 	} else {
3289 		return vlan_tag;
3290 	}
3291 
3292 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3293 }
3294 
3295 static const struct net_device_ops fec_netdev_ops = {
3296 	.ndo_open		= fec_enet_open,
3297 	.ndo_stop		= fec_enet_close,
3298 	.ndo_start_xmit		= fec_enet_start_xmit,
3299 	.ndo_select_queue       = fec_enet_select_queue,
3300 	.ndo_set_rx_mode	= set_multicast_list,
3301 	.ndo_validate_addr	= eth_validate_addr,
3302 	.ndo_tx_timeout		= fec_timeout,
3303 	.ndo_set_mac_address	= fec_set_mac_address,
3304 	.ndo_do_ioctl		= fec_enet_ioctl,
3305 #ifdef CONFIG_NET_POLL_CONTROLLER
3306 	.ndo_poll_controller	= fec_poll_controller,
3307 #endif
3308 	.ndo_set_features	= fec_set_features,
3309 };
3310 
3311 static const unsigned short offset_des_active_rxq[] = {
3312 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3313 };
3314 
3315 static const unsigned short offset_des_active_txq[] = {
3316 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3317 };
3318 
3319  /*
3320   * XXX:  We need to clean up on failure exits here.
3321   *
3322   */
fec_enet_init(struct net_device *ndev)3323 static int fec_enet_init(struct net_device *ndev)
3324 {
3325 	struct fec_enet_private *fep = netdev_priv(ndev);
3326 	struct bufdesc *cbd_base;
3327 	dma_addr_t bd_dma;
3328 	int bd_size;
3329 	unsigned int i;
3330 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3331 			sizeof(struct bufdesc);
3332 	unsigned dsize_log2 = __fls(dsize);
3333 	int ret;
3334 
3335 	WARN_ON(dsize != (1 << dsize_log2));
3336 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3337 	fep->rx_align = 0xf;
3338 	fep->tx_align = 0xf;
3339 #else
3340 	fep->rx_align = 0x3;
3341 	fep->tx_align = 0x3;
3342 #endif
3343 
3344 	/* Check mask of the streaming and coherent API */
3345 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3346 	if (ret < 0) {
3347 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3348 		return ret;
3349 	}
3350 
3351 	ret = fec_enet_alloc_queue(ndev);
3352 	if (ret)
3353 		return ret;
3354 
3355 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3356 
3357 	/* Allocate memory for buffer descriptors. */
3358 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3359 				       GFP_KERNEL);
3360 	if (!cbd_base) {
3361 		ret = -ENOMEM;
3362 		goto free_queue_mem;
3363 	}
3364 
3365 	/* Get the Ethernet address */
3366 	fec_get_mac(ndev);
3367 	/* make sure MAC we just acquired is programmed into the hw */
3368 	fec_set_mac_address(ndev, NULL);
3369 
3370 	/* Set receive and transmit descriptor base. */
3371 	for (i = 0; i < fep->num_rx_queues; i++) {
3372 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3373 		unsigned size = dsize * rxq->bd.ring_size;
3374 
3375 		rxq->bd.qid = i;
3376 		rxq->bd.base = cbd_base;
3377 		rxq->bd.cur = cbd_base;
3378 		rxq->bd.dma = bd_dma;
3379 		rxq->bd.dsize = dsize;
3380 		rxq->bd.dsize_log2 = dsize_log2;
3381 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3382 		bd_dma += size;
3383 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3384 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3385 	}
3386 
3387 	for (i = 0; i < fep->num_tx_queues; i++) {
3388 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3389 		unsigned size = dsize * txq->bd.ring_size;
3390 
3391 		txq->bd.qid = i;
3392 		txq->bd.base = cbd_base;
3393 		txq->bd.cur = cbd_base;
3394 		txq->bd.dma = bd_dma;
3395 		txq->bd.dsize = dsize;
3396 		txq->bd.dsize_log2 = dsize_log2;
3397 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3398 		bd_dma += size;
3399 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3400 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3401 	}
3402 
3403 
3404 	/* The FEC Ethernet specific entries in the device structure */
3405 	ndev->watchdog_timeo = TX_TIMEOUT;
3406 	ndev->netdev_ops = &fec_netdev_ops;
3407 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3408 
3409 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3410 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3411 
3412 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3413 		/* enable hw VLAN support */
3414 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3415 
3416 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3417 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3418 
3419 		/* enable hw accelerator */
3420 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3421 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3422 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3423 	}
3424 
3425 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3426 		fep->tx_align = 0;
3427 		fep->rx_align = 0x3f;
3428 	}
3429 
3430 	ndev->hw_features = ndev->features;
3431 
3432 	fec_restart(ndev);
3433 
3434 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3435 		fec_enet_clear_ethtool_stats(ndev);
3436 	else
3437 		fec_enet_update_ethtool_stats(ndev);
3438 
3439 	return 0;
3440 
3441 free_queue_mem:
3442 	fec_enet_free_queue(ndev);
3443 	return ret;
3444 }
3445 
3446 #ifdef CONFIG_OF
fec_reset_phy(struct platform_device *pdev)3447 static int fec_reset_phy(struct platform_device *pdev)
3448 {
3449 	int err, phy_reset;
3450 	bool active_high = false;
3451 	int msec = 1, phy_post_delay = 0;
3452 	struct device_node *np = pdev->dev.of_node;
3453 
3454 	if (!np)
3455 		return 0;
3456 
3457 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3458 	/* A sane reset duration should not be longer than 1s */
3459 	if (!err && msec > 1000)
3460 		msec = 1;
3461 
3462 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3463 	if (phy_reset == -EPROBE_DEFER)
3464 		return phy_reset;
3465 	else if (!gpio_is_valid(phy_reset))
3466 		return 0;
3467 
3468 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3469 	/* valid reset duration should be less than 1s */
3470 	if (!err && phy_post_delay > 1000)
3471 		return -EINVAL;
3472 
3473 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3474 
3475 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3476 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3477 			"phy-reset");
3478 	if (err) {
3479 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3480 		return err;
3481 	}
3482 
3483 	if (msec > 20)
3484 		msleep(msec);
3485 	else
3486 		usleep_range(msec * 1000, msec * 1000 + 1000);
3487 
3488 	gpio_set_value_cansleep(phy_reset, !active_high);
3489 
3490 	if (!phy_post_delay)
3491 		return 0;
3492 
3493 	if (phy_post_delay > 20)
3494 		msleep(phy_post_delay);
3495 	else
3496 		usleep_range(phy_post_delay * 1000,
3497 			     phy_post_delay * 1000 + 1000);
3498 
3499 	return 0;
3500 }
3501 #else /* CONFIG_OF */
fec_reset_phy(struct platform_device *pdev)3502 static int fec_reset_phy(struct platform_device *pdev)
3503 {
3504 	/*
3505 	 * In case of platform probe, the reset has been done
3506 	 * by machine code.
3507 	 */
3508 	return 0;
3509 }
3510 #endif /* CONFIG_OF */
3511 
3512 static void
fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)3513 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3514 {
3515 	struct device_node *np = pdev->dev.of_node;
3516 
3517 	*num_tx = *num_rx = 1;
3518 
3519 	if (!np || !of_device_is_available(np))
3520 		return;
3521 
3522 	/* parse the num of tx and rx queues */
3523 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3524 
3525 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3526 
3527 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3528 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3529 			 *num_tx);
3530 		*num_tx = 1;
3531 		return;
3532 	}
3533 
3534 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3535 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3536 			 *num_rx);
3537 		*num_rx = 1;
3538 		return;
3539 	}
3540 
3541 }
3542 
fec_enet_get_irq_cnt(struct platform_device *pdev)3543 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3544 {
3545 	int irq_cnt = platform_irq_count(pdev);
3546 
3547 	if (irq_cnt > FEC_IRQ_NUM)
3548 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3549 	else if (irq_cnt == 2)
3550 		irq_cnt = 1;	/* last for pps */
3551 	else if (irq_cnt <= 0)
3552 		irq_cnt = 1;	/* At least 1 irq is needed */
3553 	return irq_cnt;
3554 }
3555 
fec_enet_init_stop_mode(struct fec_enet_private *fep, struct device_node *np)3556 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3557 				   struct device_node *np)
3558 {
3559 	struct device_node *gpr_np;
3560 	u32 out_val[3];
3561 	int ret = 0;
3562 
3563 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
3564 	if (!gpr_np)
3565 		return 0;
3566 
3567 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
3568 					 ARRAY_SIZE(out_val));
3569 	if (ret) {
3570 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
3571 		goto out;
3572 	}
3573 
3574 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3575 	if (IS_ERR(fep->stop_gpr.gpr)) {
3576 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3577 		ret = PTR_ERR(fep->stop_gpr.gpr);
3578 		fep->stop_gpr.gpr = NULL;
3579 		goto out;
3580 	}
3581 
3582 	fep->stop_gpr.reg = out_val[1];
3583 	fep->stop_gpr.bit = out_val[2];
3584 
3585 out:
3586 	of_node_put(gpr_np);
3587 
3588 	return ret;
3589 }
3590 
3591 static int
fec_probe(struct platform_device *pdev)3592 fec_probe(struct platform_device *pdev)
3593 {
3594 	struct fec_enet_private *fep;
3595 	struct fec_platform_data *pdata;
3596 	phy_interface_t interface;
3597 	struct net_device *ndev;
3598 	int i, irq, ret = 0;
3599 	const struct of_device_id *of_id;
3600 	static int dev_id;
3601 	struct device_node *np = pdev->dev.of_node, *phy_node;
3602 	int num_tx_qs;
3603 	int num_rx_qs;
3604 	char irq_name[8];
3605 	int irq_cnt;
3606 	struct fec_devinfo *dev_info;
3607 
3608 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3609 
3610 	/* Init network device */
3611 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3612 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3613 	if (!ndev)
3614 		return -ENOMEM;
3615 
3616 	SET_NETDEV_DEV(ndev, &pdev->dev);
3617 
3618 	/* setup board info structure */
3619 	fep = netdev_priv(ndev);
3620 
3621 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3622 	if (of_id)
3623 		pdev->id_entry = of_id->data;
3624 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3625 	if (dev_info)
3626 		fep->quirks = dev_info->quirks;
3627 
3628 	fep->netdev = ndev;
3629 	fep->num_rx_queues = num_rx_qs;
3630 	fep->num_tx_queues = num_tx_qs;
3631 
3632 #if !defined(CONFIG_M5272)
3633 	/* default enable pause frame auto negotiation */
3634 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3635 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3636 #endif
3637 
3638 	/* Select default pin state */
3639 	pinctrl_pm_select_default_state(&pdev->dev);
3640 
3641 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3642 	if (IS_ERR(fep->hwp)) {
3643 		ret = PTR_ERR(fep->hwp);
3644 		goto failed_ioremap;
3645 	}
3646 
3647 	fep->pdev = pdev;
3648 	fep->dev_id = dev_id++;
3649 
3650 	platform_set_drvdata(pdev, ndev);
3651 
3652 	if ((of_machine_is_compatible("fsl,imx6q") ||
3653 	     of_machine_is_compatible("fsl,imx6dl")) &&
3654 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3655 		fep->quirks |= FEC_QUIRK_ERR006687;
3656 
3657 	if (of_get_property(np, "fsl,magic-packet", NULL))
3658 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3659 
3660 	ret = fec_enet_init_stop_mode(fep, np);
3661 	if (ret)
3662 		goto failed_stop_mode;
3663 
3664 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3665 	if (!phy_node && of_phy_is_fixed_link(np)) {
3666 		ret = of_phy_register_fixed_link(np);
3667 		if (ret < 0) {
3668 			dev_err(&pdev->dev,
3669 				"broken fixed-link specification\n");
3670 			goto failed_phy;
3671 		}
3672 		phy_node = of_node_get(np);
3673 	}
3674 	fep->phy_node = phy_node;
3675 
3676 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3677 	if (ret) {
3678 		pdata = dev_get_platdata(&pdev->dev);
3679 		if (pdata)
3680 			fep->phy_interface = pdata->phy;
3681 		else
3682 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3683 	} else {
3684 		fep->phy_interface = interface;
3685 	}
3686 
3687 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3688 	if (IS_ERR(fep->clk_ipg)) {
3689 		ret = PTR_ERR(fep->clk_ipg);
3690 		goto failed_clk;
3691 	}
3692 
3693 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3694 	if (IS_ERR(fep->clk_ahb)) {
3695 		ret = PTR_ERR(fep->clk_ahb);
3696 		goto failed_clk;
3697 	}
3698 
3699 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3700 
3701 	/* enet_out is optional, depends on board */
3702 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3703 	if (IS_ERR(fep->clk_enet_out))
3704 		fep->clk_enet_out = NULL;
3705 
3706 	fep->ptp_clk_on = false;
3707 	mutex_init(&fep->ptp_clk_mutex);
3708 
3709 	/* clk_ref is optional, depends on board */
3710 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3711 	if (IS_ERR(fep->clk_ref))
3712 		fep->clk_ref = NULL;
3713 
3714 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3715 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3716 	if (IS_ERR(fep->clk_ptp)) {
3717 		fep->clk_ptp = NULL;
3718 		fep->bufdesc_ex = false;
3719 	}
3720 
3721 	ret = fec_enet_clk_enable(ndev, true);
3722 	if (ret)
3723 		goto failed_clk;
3724 
3725 	ret = clk_prepare_enable(fep->clk_ipg);
3726 	if (ret)
3727 		goto failed_clk_ipg;
3728 	ret = clk_prepare_enable(fep->clk_ahb);
3729 	if (ret)
3730 		goto failed_clk_ahb;
3731 
3732 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3733 	if (!IS_ERR(fep->reg_phy)) {
3734 		ret = regulator_enable(fep->reg_phy);
3735 		if (ret) {
3736 			dev_err(&pdev->dev,
3737 				"Failed to enable phy regulator: %d\n", ret);
3738 			goto failed_regulator;
3739 		}
3740 	} else {
3741 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3742 			ret = -EPROBE_DEFER;
3743 			goto failed_regulator;
3744 		}
3745 		fep->reg_phy = NULL;
3746 	}
3747 
3748 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3749 	pm_runtime_use_autosuspend(&pdev->dev);
3750 	pm_runtime_get_noresume(&pdev->dev);
3751 	pm_runtime_set_active(&pdev->dev);
3752 	pm_runtime_enable(&pdev->dev);
3753 
3754 	ret = fec_reset_phy(pdev);
3755 	if (ret)
3756 		goto failed_reset;
3757 
3758 	irq_cnt = fec_enet_get_irq_cnt(pdev);
3759 	if (fep->bufdesc_ex)
3760 		fec_ptp_init(pdev, irq_cnt);
3761 
3762 	ret = fec_enet_init(ndev);
3763 	if (ret)
3764 		goto failed_init;
3765 
3766 	for (i = 0; i < irq_cnt; i++) {
3767 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
3768 		irq = platform_get_irq_byname_optional(pdev, irq_name);
3769 		if (irq < 0)
3770 			irq = platform_get_irq(pdev, i);
3771 		if (irq < 0) {
3772 			ret = irq;
3773 			goto failed_irq;
3774 		}
3775 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3776 				       0, pdev->name, ndev);
3777 		if (ret)
3778 			goto failed_irq;
3779 
3780 		fep->irq[i] = irq;
3781 	}
3782 
3783 	ret = fec_enet_mii_init(pdev);
3784 	if (ret)
3785 		goto failed_mii_init;
3786 
3787 	/* Carrier starts down, phylib will bring it up */
3788 	netif_carrier_off(ndev);
3789 	fec_enet_clk_enable(ndev, false);
3790 	pinctrl_pm_select_sleep_state(&pdev->dev);
3791 
3792 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
3793 
3794 	ret = register_netdev(ndev);
3795 	if (ret)
3796 		goto failed_register;
3797 
3798 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3799 			   FEC_WOL_HAS_MAGIC_PACKET);
3800 
3801 	if (fep->bufdesc_ex && fep->ptp_clock)
3802 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3803 
3804 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3805 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3806 
3807 	pm_runtime_mark_last_busy(&pdev->dev);
3808 	pm_runtime_put_autosuspend(&pdev->dev);
3809 
3810 	return 0;
3811 
3812 failed_register:
3813 	fec_enet_mii_remove(fep);
3814 failed_mii_init:
3815 failed_irq:
3816 failed_init:
3817 	fec_ptp_stop(pdev);
3818 failed_reset:
3819 	pm_runtime_put_noidle(&pdev->dev);
3820 	pm_runtime_disable(&pdev->dev);
3821 	if (fep->reg_phy)
3822 		regulator_disable(fep->reg_phy);
3823 failed_regulator:
3824 	clk_disable_unprepare(fep->clk_ahb);
3825 failed_clk_ahb:
3826 	clk_disable_unprepare(fep->clk_ipg);
3827 failed_clk_ipg:
3828 	fec_enet_clk_enable(ndev, false);
3829 failed_clk:
3830 	if (of_phy_is_fixed_link(np))
3831 		of_phy_deregister_fixed_link(np);
3832 	of_node_put(phy_node);
3833 failed_stop_mode:
3834 failed_phy:
3835 	dev_id--;
3836 failed_ioremap:
3837 	free_netdev(ndev);
3838 
3839 	return ret;
3840 }
3841 
3842 static int
fec_drv_remove(struct platform_device *pdev)3843 fec_drv_remove(struct platform_device *pdev)
3844 {
3845 	struct net_device *ndev = platform_get_drvdata(pdev);
3846 	struct fec_enet_private *fep = netdev_priv(ndev);
3847 	struct device_node *np = pdev->dev.of_node;
3848 	int ret;
3849 
3850 	ret = pm_runtime_get_sync(&pdev->dev);
3851 	if (ret < 0)
3852 		dev_err(&pdev->dev,
3853 			"Failed to resume device in remove callback (%pe)\n",
3854 			ERR_PTR(ret));
3855 
3856 	cancel_work_sync(&fep->tx_timeout_work);
3857 	fec_ptp_stop(pdev);
3858 	unregister_netdev(ndev);
3859 	fec_enet_mii_remove(fep);
3860 	if (fep->reg_phy)
3861 		regulator_disable(fep->reg_phy);
3862 
3863 	if (of_phy_is_fixed_link(np))
3864 		of_phy_deregister_fixed_link(np);
3865 	of_node_put(fep->phy_node);
3866 
3867 	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
3868 	 * disabling them again.
3869 	 */
3870 	if (ret >= 0) {
3871 		clk_disable_unprepare(fep->clk_ahb);
3872 		clk_disable_unprepare(fep->clk_ipg);
3873 	}
3874 	pm_runtime_put_noidle(&pdev->dev);
3875 	pm_runtime_disable(&pdev->dev);
3876 
3877 	free_netdev(ndev);
3878 	return 0;
3879 }
3880 
fec_suspend(struct device *dev)3881 static int __maybe_unused fec_suspend(struct device *dev)
3882 {
3883 	struct net_device *ndev = dev_get_drvdata(dev);
3884 	struct fec_enet_private *fep = netdev_priv(ndev);
3885 
3886 	rtnl_lock();
3887 	if (netif_running(ndev)) {
3888 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3889 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3890 		phy_stop(ndev->phydev);
3891 		napi_disable(&fep->napi);
3892 		netif_tx_lock_bh(ndev);
3893 		netif_device_detach(ndev);
3894 		netif_tx_unlock_bh(ndev);
3895 		fec_stop(ndev);
3896 		fec_enet_clk_enable(ndev, false);
3897 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3898 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3899 	}
3900 	rtnl_unlock();
3901 
3902 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3903 		regulator_disable(fep->reg_phy);
3904 
3905 	/* SOC supply clock to phy, when clock is disabled, phy link down
3906 	 * SOC control phy regulator, when regulator is disabled, phy link down
3907 	 */
3908 	if (fep->clk_enet_out || fep->reg_phy)
3909 		fep->link = 0;
3910 
3911 	return 0;
3912 }
3913 
fec_resume(struct device *dev)3914 static int __maybe_unused fec_resume(struct device *dev)
3915 {
3916 	struct net_device *ndev = dev_get_drvdata(dev);
3917 	struct fec_enet_private *fep = netdev_priv(ndev);
3918 	int ret;
3919 	int val;
3920 
3921 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3922 		ret = regulator_enable(fep->reg_phy);
3923 		if (ret)
3924 			return ret;
3925 	}
3926 
3927 	rtnl_lock();
3928 	if (netif_running(ndev)) {
3929 		ret = fec_enet_clk_enable(ndev, true);
3930 		if (ret) {
3931 			rtnl_unlock();
3932 			goto failed_clk;
3933 		}
3934 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3935 			fec_enet_stop_mode(fep, false);
3936 
3937 			val = readl(fep->hwp + FEC_ECNTRL);
3938 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3939 			writel(val, fep->hwp + FEC_ECNTRL);
3940 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3941 		} else {
3942 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3943 		}
3944 		fec_restart(ndev);
3945 		netif_tx_lock_bh(ndev);
3946 		netif_device_attach(ndev);
3947 		netif_tx_unlock_bh(ndev);
3948 		napi_enable(&fep->napi);
3949 		phy_start(ndev->phydev);
3950 	}
3951 	rtnl_unlock();
3952 
3953 	return 0;
3954 
3955 failed_clk:
3956 	if (fep->reg_phy)
3957 		regulator_disable(fep->reg_phy);
3958 	return ret;
3959 }
3960 
fec_runtime_suspend(struct device *dev)3961 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3962 {
3963 	struct net_device *ndev = dev_get_drvdata(dev);
3964 	struct fec_enet_private *fep = netdev_priv(ndev);
3965 
3966 	clk_disable_unprepare(fep->clk_ahb);
3967 	clk_disable_unprepare(fep->clk_ipg);
3968 
3969 	return 0;
3970 }
3971 
fec_runtime_resume(struct device *dev)3972 static int __maybe_unused fec_runtime_resume(struct device *dev)
3973 {
3974 	struct net_device *ndev = dev_get_drvdata(dev);
3975 	struct fec_enet_private *fep = netdev_priv(ndev);
3976 	int ret;
3977 
3978 	ret = clk_prepare_enable(fep->clk_ahb);
3979 	if (ret)
3980 		return ret;
3981 	ret = clk_prepare_enable(fep->clk_ipg);
3982 	if (ret)
3983 		goto failed_clk_ipg;
3984 
3985 	return 0;
3986 
3987 failed_clk_ipg:
3988 	clk_disable_unprepare(fep->clk_ahb);
3989 	return ret;
3990 }
3991 
3992 static const struct dev_pm_ops fec_pm_ops = {
3993 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3994 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3995 };
3996 
3997 static struct platform_driver fec_driver = {
3998 	.driver	= {
3999 		.name	= DRIVER_NAME,
4000 		.pm	= &fec_pm_ops,
4001 		.of_match_table = fec_dt_ids,
4002 		.suppress_bind_attrs = true,
4003 	},
4004 	.id_table = fec_devtype,
4005 	.probe	= fec_probe,
4006 	.remove	= fec_drv_remove,
4007 };
4008 
4009 module_platform_driver(fec_driver);
4010 
4011 MODULE_ALIAS("platform:"DRIVER_NAME);
4012 MODULE_LICENSE("GPL");
4013