1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 *
6 * Right now, I am very wasteful with the buffers. I allocate memory
7 * pages and then divide them into 2K frame buffers. This way I know I
8 * have buffers large enough to hold one frame within one buffer descriptor.
9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10 * will be much more memory efficient and will easily handle lots of
11 * small packets.
12 *
13 * Much better multiple PHY support by Magnus Damm.
14 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 *
16 * Support for FEC controller of ColdFire processors.
17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 *
19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20 * Copyright (c) 2004-2006 Macq Electronique SA.
21 *
22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23 */
24
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/tso.h>
42 #include <linux/tcp.h>
43 #include <linux/udp.h>
44 #include <linux/icmp.h>
45 #include <linux/spinlock.h>
46 #include <linux/workqueue.h>
47 #include <linux/bitops.h>
48 #include <linux/io.h>
49 #include <linux/irq.h>
50 #include <linux/clk.h>
51 #include <linux/crc32.h>
52 #include <linux/platform_device.h>
53 #include <linux/mdio.h>
54 #include <linux/phy.h>
55 #include <linux/fec.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/of_gpio.h>
59 #include <linux/of_mdio.h>
60 #include <linux/of_net.h>
61 #include <linux/regulator/consumer.h>
62 #include <linux/if_vlan.h>
63 #include <linux/pinctrl/consumer.h>
64 #include <linux/prefetch.h>
65 #include <linux/mfd/syscon.h>
66 #include <linux/regmap.h>
67 #include <soc/imx/cpuidle.h>
68
69 #include <asm/cacheflush.h>
70
71 #include "fec.h"
72
73 static void set_multicast_list(struct net_device *ndev);
74 static void fec_enet_itr_coal_init(struct net_device *ndev);
75
76 #define DRIVER_NAME "fec"
77
78 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
79
80 /* Pause frame feild and FIFO threshold */
81 #define FEC_ENET_FCE (1 << 5)
82 #define FEC_ENET_RSEM_V 0x84
83 #define FEC_ENET_RSFL_V 16
84 #define FEC_ENET_RAEM_V 0x8
85 #define FEC_ENET_RAFL_V 0x8
86 #define FEC_ENET_OPD_V 0xFFF0
87 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */
88
89 struct fec_devinfo {
90 u32 quirks;
91 };
92
93 static const struct fec_devinfo fec_imx25_info = {
94 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
95 FEC_QUIRK_HAS_FRREG,
96 };
97
98 static const struct fec_devinfo fec_imx27_info = {
99 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
100 };
101
102 static const struct fec_devinfo fec_imx28_info = {
103 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
104 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
105 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII,
106 };
107
108 static const struct fec_devinfo fec_imx6q_info = {
109 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
110 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
111 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
112 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII,
113 };
114
115 static const struct fec_devinfo fec_mvf600_info = {
116 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
117 };
118
119 static const struct fec_devinfo fec_imx6x_info = {
120 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
121 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
122 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
123 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
124 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
125 FEC_QUIRK_CLEAR_SETUP_MII,
126 };
127
128 static const struct fec_devinfo fec_imx6ul_info = {
129 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
130 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
131 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
132 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
133 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII,
134 };
135
136 static struct platform_device_id fec_devtype[] = {
137 {
138 /* keep it for coldfire */
139 .name = DRIVER_NAME,
140 .driver_data = 0,
141 }, {
142 .name = "imx25-fec",
143 .driver_data = (kernel_ulong_t)&fec_imx25_info,
144 }, {
145 .name = "imx27-fec",
146 .driver_data = (kernel_ulong_t)&fec_imx27_info,
147 }, {
148 .name = "imx28-fec",
149 .driver_data = (kernel_ulong_t)&fec_imx28_info,
150 }, {
151 .name = "imx6q-fec",
152 .driver_data = (kernel_ulong_t)&fec_imx6q_info,
153 }, {
154 .name = "mvf600-fec",
155 .driver_data = (kernel_ulong_t)&fec_mvf600_info,
156 }, {
157 .name = "imx6sx-fec",
158 .driver_data = (kernel_ulong_t)&fec_imx6x_info,
159 }, {
160 .name = "imx6ul-fec",
161 .driver_data = (kernel_ulong_t)&fec_imx6ul_info,
162 }, {
163 /* sentinel */
164 }
165 };
166 MODULE_DEVICE_TABLE(platform, fec_devtype);
167
168 enum imx_fec_type {
169 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
170 IMX27_FEC, /* runs on i.mx27/35/51 */
171 IMX28_FEC,
172 IMX6Q_FEC,
173 MVF600_FEC,
174 IMX6SX_FEC,
175 IMX6UL_FEC,
176 };
177
178 static const struct of_device_id fec_dt_ids[] = {
179 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
180 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
181 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
182 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
183 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
184 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
185 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
186 { /* sentinel */ }
187 };
188 MODULE_DEVICE_TABLE(of, fec_dt_ids);
189
190 static unsigned char macaddr[ETH_ALEN];
191 module_param_array(macaddr, byte, NULL, 0);
192 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
193
194 #if defined(CONFIG_M5272)
195 /*
196 * Some hardware gets it MAC address out of local flash memory.
197 * if this is non-zero then assume it is the address to get MAC from.
198 */
199 #if defined(CONFIG_NETtel)
200 #define FEC_FLASHMAC 0xf0006006
201 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
202 #define FEC_FLASHMAC 0xf0006000
203 #elif defined(CONFIG_CANCam)
204 #define FEC_FLASHMAC 0xf0020000
205 #elif defined (CONFIG_M5272C3)
206 #define FEC_FLASHMAC (0xffe04000 + 4)
207 #elif defined(CONFIG_MOD5272)
208 #define FEC_FLASHMAC 0xffc0406b
209 #else
210 #define FEC_FLASHMAC 0
211 #endif
212 #endif /* CONFIG_M5272 */
213
214 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
215 *
216 * 2048 byte skbufs are allocated. However, alignment requirements
217 * varies between FEC variants. Worst case is 64, so round down by 64.
218 */
219 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64))
220 #define PKT_MINBUF_SIZE 64
221
222 /* FEC receive acceleration */
223 #define FEC_RACC_IPDIS (1 << 1)
224 #define FEC_RACC_PRODIS (1 << 2)
225 #define FEC_RACC_SHIFT16 BIT(7)
226 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
227
228 /* MIB Control Register */
229 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31)
230
231 /*
232 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
233 * size bits. Other FEC hardware does not, so we need to take that into
234 * account when setting it.
235 */
236 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
237 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
238 defined(CONFIG_ARM64)
239 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
240 #else
241 #define OPT_FRAME_SIZE 0
242 #endif
243
244 /* FEC MII MMFR bits definition */
245 #define FEC_MMFR_ST (1 << 30)
246 #define FEC_MMFR_ST_C45 (0)
247 #define FEC_MMFR_OP_READ (2 << 28)
248 #define FEC_MMFR_OP_READ_C45 (3 << 28)
249 #define FEC_MMFR_OP_WRITE (1 << 28)
250 #define FEC_MMFR_OP_ADDR_WRITE (0)
251 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
252 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
253 #define FEC_MMFR_TA (2 << 16)
254 #define FEC_MMFR_DATA(v) (v & 0xffff)
255 /* FEC ECR bits definition */
256 #define FEC_ECR_MAGICEN (1 << 2)
257 #define FEC_ECR_SLEEP (1 << 3)
258
259 #define FEC_MII_TIMEOUT 30000 /* us */
260
261 /* Transmitter timeout */
262 #define TX_TIMEOUT (2 * HZ)
263
264 #define FEC_PAUSE_FLAG_AUTONEG 0x1
265 #define FEC_PAUSE_FLAG_ENABLE 0x2
266 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
267 #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
268 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
269
270 #define COPYBREAK_DEFAULT 256
271
272 /* Max number of allowed TCP segments for software TSO */
273 #define FEC_MAX_TSO_SEGS 100
274 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
275
276 #define IS_TSO_HEADER(txq, addr) \
277 ((addr >= txq->tso_hdrs_dma) && \
278 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
279
280 static int mii_cnt;
281
fec_enet_get_nextdesc(struct bufdesc *bdp, struct bufdesc_prop *bd)282 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
283 struct bufdesc_prop *bd)
284 {
285 return (bdp >= bd->last) ? bd->base
286 : (struct bufdesc *)(((void *)bdp) + bd->dsize);
287 }
288
fec_enet_get_prevdesc(struct bufdesc *bdp, struct bufdesc_prop *bd)289 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
290 struct bufdesc_prop *bd)
291 {
292 return (bdp <= bd->base) ? bd->last
293 : (struct bufdesc *)(((void *)bdp) - bd->dsize);
294 }
295
fec_enet_get_bd_index(struct bufdesc *bdp, struct bufdesc_prop *bd)296 static int fec_enet_get_bd_index(struct bufdesc *bdp,
297 struct bufdesc_prop *bd)
298 {
299 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
300 }
301
fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)302 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
303 {
304 int entries;
305
306 entries = (((const char *)txq->dirty_tx -
307 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
308
309 return entries >= 0 ? entries : entries + txq->bd.ring_size;
310 }
311
swap_buffer(void *bufaddr, int len)312 static void swap_buffer(void *bufaddr, int len)
313 {
314 int i;
315 unsigned int *buf = bufaddr;
316
317 for (i = 0; i < len; i += 4, buf++)
318 swab32s(buf);
319 }
320
swap_buffer2(void *dst_buf, void *src_buf, int len)321 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
322 {
323 int i;
324 unsigned int *src = src_buf;
325 unsigned int *dst = dst_buf;
326
327 for (i = 0; i < len; i += 4, src++, dst++)
328 *dst = swab32p(src);
329 }
330
fec_dump(struct net_device *ndev)331 static void fec_dump(struct net_device *ndev)
332 {
333 struct fec_enet_private *fep = netdev_priv(ndev);
334 struct bufdesc *bdp;
335 struct fec_enet_priv_tx_q *txq;
336 int index = 0;
337
338 netdev_info(ndev, "TX ring dump\n");
339 pr_info("Nr SC addr len SKB\n");
340
341 txq = fep->tx_queue[0];
342 bdp = txq->bd.base;
343
344 do {
345 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
346 index,
347 bdp == txq->bd.cur ? 'S' : ' ',
348 bdp == txq->dirty_tx ? 'H' : ' ',
349 fec16_to_cpu(bdp->cbd_sc),
350 fec32_to_cpu(bdp->cbd_bufaddr),
351 fec16_to_cpu(bdp->cbd_datlen),
352 txq->tx_skbuff[index]);
353 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
354 index++;
355 } while (bdp != txq->bd.base);
356 }
357
is_ipv4_pkt(struct sk_buff *skb)358 static inline bool is_ipv4_pkt(struct sk_buff *skb)
359 {
360 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
361 }
362
363 static int
fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)364 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
365 {
366 /* Only run for packets requiring a checksum. */
367 if (skb->ip_summed != CHECKSUM_PARTIAL)
368 return 0;
369
370 if (unlikely(skb_cow_head(skb, 0)))
371 return -1;
372
373 if (is_ipv4_pkt(skb))
374 ip_hdr(skb)->check = 0;
375 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
376
377 return 0;
378 }
379
380 static struct bufdesc *
fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, struct net_device *ndev)381 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
382 struct sk_buff *skb,
383 struct net_device *ndev)
384 {
385 struct fec_enet_private *fep = netdev_priv(ndev);
386 struct bufdesc *bdp = txq->bd.cur;
387 struct bufdesc_ex *ebdp;
388 int nr_frags = skb_shinfo(skb)->nr_frags;
389 int frag, frag_len;
390 unsigned short status;
391 unsigned int estatus = 0;
392 skb_frag_t *this_frag;
393 unsigned int index;
394 void *bufaddr;
395 dma_addr_t addr;
396 int i;
397
398 for (frag = 0; frag < nr_frags; frag++) {
399 this_frag = &skb_shinfo(skb)->frags[frag];
400 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
401 ebdp = (struct bufdesc_ex *)bdp;
402
403 status = fec16_to_cpu(bdp->cbd_sc);
404 status &= ~BD_ENET_TX_STATS;
405 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
406 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
407
408 /* Handle the last BD specially */
409 if (frag == nr_frags - 1) {
410 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
411 if (fep->bufdesc_ex) {
412 estatus |= BD_ENET_TX_INT;
413 if (unlikely(skb_shinfo(skb)->tx_flags &
414 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
415 estatus |= BD_ENET_TX_TS;
416 }
417 }
418
419 if (fep->bufdesc_ex) {
420 if (fep->quirks & FEC_QUIRK_HAS_AVB)
421 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
422 if (skb->ip_summed == CHECKSUM_PARTIAL)
423 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
424 ebdp->cbd_bdu = 0;
425 ebdp->cbd_esc = cpu_to_fec32(estatus);
426 }
427
428 bufaddr = skb_frag_address(this_frag);
429
430 index = fec_enet_get_bd_index(bdp, &txq->bd);
431 if (((unsigned long) bufaddr) & fep->tx_align ||
432 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
433 memcpy(txq->tx_bounce[index], bufaddr, frag_len);
434 bufaddr = txq->tx_bounce[index];
435
436 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
437 swap_buffer(bufaddr, frag_len);
438 }
439
440 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
441 DMA_TO_DEVICE);
442 if (dma_mapping_error(&fep->pdev->dev, addr)) {
443 if (net_ratelimit())
444 netdev_err(ndev, "Tx DMA memory map failed\n");
445 goto dma_mapping_error;
446 }
447
448 bdp->cbd_bufaddr = cpu_to_fec32(addr);
449 bdp->cbd_datlen = cpu_to_fec16(frag_len);
450 /* Make sure the updates to rest of the descriptor are
451 * performed before transferring ownership.
452 */
453 wmb();
454 bdp->cbd_sc = cpu_to_fec16(status);
455 }
456
457 return bdp;
458 dma_mapping_error:
459 bdp = txq->bd.cur;
460 for (i = 0; i < frag; i++) {
461 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
462 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
463 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
464 }
465 return ERR_PTR(-ENOMEM);
466 }
467
fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, struct net_device *ndev)468 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
469 struct sk_buff *skb, struct net_device *ndev)
470 {
471 struct fec_enet_private *fep = netdev_priv(ndev);
472 int nr_frags = skb_shinfo(skb)->nr_frags;
473 struct bufdesc *bdp, *last_bdp;
474 void *bufaddr;
475 dma_addr_t addr;
476 unsigned short status;
477 unsigned short buflen;
478 unsigned int estatus = 0;
479 unsigned int index;
480 int entries_free;
481
482 entries_free = fec_enet_get_free_txdesc_num(txq);
483 if (entries_free < MAX_SKB_FRAGS + 1) {
484 dev_kfree_skb_any(skb);
485 if (net_ratelimit())
486 netdev_err(ndev, "NOT enough BD for SG!\n");
487 return NETDEV_TX_OK;
488 }
489
490 /* Protocol checksum off-load for TCP and UDP. */
491 if (fec_enet_clear_csum(skb, ndev)) {
492 dev_kfree_skb_any(skb);
493 return NETDEV_TX_OK;
494 }
495
496 /* Fill in a Tx ring entry */
497 bdp = txq->bd.cur;
498 last_bdp = bdp;
499 status = fec16_to_cpu(bdp->cbd_sc);
500 status &= ~BD_ENET_TX_STATS;
501
502 /* Set buffer length and buffer pointer */
503 bufaddr = skb->data;
504 buflen = skb_headlen(skb);
505
506 index = fec_enet_get_bd_index(bdp, &txq->bd);
507 if (((unsigned long) bufaddr) & fep->tx_align ||
508 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
509 memcpy(txq->tx_bounce[index], skb->data, buflen);
510 bufaddr = txq->tx_bounce[index];
511
512 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
513 swap_buffer(bufaddr, buflen);
514 }
515
516 /* Push the data cache so the CPM does not get stale memory data. */
517 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
518 if (dma_mapping_error(&fep->pdev->dev, addr)) {
519 dev_kfree_skb_any(skb);
520 if (net_ratelimit())
521 netdev_err(ndev, "Tx DMA memory map failed\n");
522 return NETDEV_TX_OK;
523 }
524
525 if (nr_frags) {
526 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
527 if (IS_ERR(last_bdp)) {
528 dma_unmap_single(&fep->pdev->dev, addr,
529 buflen, DMA_TO_DEVICE);
530 dev_kfree_skb_any(skb);
531 return NETDEV_TX_OK;
532 }
533 } else {
534 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
535 if (fep->bufdesc_ex) {
536 estatus = BD_ENET_TX_INT;
537 if (unlikely(skb_shinfo(skb)->tx_flags &
538 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
539 estatus |= BD_ENET_TX_TS;
540 }
541 }
542 bdp->cbd_bufaddr = cpu_to_fec32(addr);
543 bdp->cbd_datlen = cpu_to_fec16(buflen);
544
545 if (fep->bufdesc_ex) {
546
547 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
548
549 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
550 fep->hwts_tx_en))
551 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
552
553 if (fep->quirks & FEC_QUIRK_HAS_AVB)
554 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
555
556 if (skb->ip_summed == CHECKSUM_PARTIAL)
557 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
558
559 ebdp->cbd_bdu = 0;
560 ebdp->cbd_esc = cpu_to_fec32(estatus);
561 }
562
563 index = fec_enet_get_bd_index(last_bdp, &txq->bd);
564 /* Save skb pointer */
565 txq->tx_skbuff[index] = skb;
566
567 /* Make sure the updates to rest of the descriptor are performed before
568 * transferring ownership.
569 */
570 wmb();
571
572 /* Send it on its way. Tell FEC it's ready, interrupt when done,
573 * it's the last BD of the frame, and to put the CRC on the end.
574 */
575 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
576 bdp->cbd_sc = cpu_to_fec16(status);
577
578 /* If this was the last BD in the ring, start at the beginning again. */
579 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
580
581 skb_tx_timestamp(skb);
582
583 /* Make sure the update to bdp and tx_skbuff are performed before
584 * txq->bd.cur.
585 */
586 wmb();
587 txq->bd.cur = bdp;
588
589 /* Trigger transmission start */
590 writel(0, txq->bd.reg_desc_active);
591
592 return 0;
593 }
594
595 static int
fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, struct net_device *ndev, struct bufdesc *bdp, int index, char *data, int size, bool last_tcp, bool is_last)596 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
597 struct net_device *ndev,
598 struct bufdesc *bdp, int index, char *data,
599 int size, bool last_tcp, bool is_last)
600 {
601 struct fec_enet_private *fep = netdev_priv(ndev);
602 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
603 unsigned short status;
604 unsigned int estatus = 0;
605 dma_addr_t addr;
606
607 status = fec16_to_cpu(bdp->cbd_sc);
608 status &= ~BD_ENET_TX_STATS;
609
610 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
611
612 if (((unsigned long) data) & fep->tx_align ||
613 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
614 memcpy(txq->tx_bounce[index], data, size);
615 data = txq->tx_bounce[index];
616
617 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
618 swap_buffer(data, size);
619 }
620
621 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
622 if (dma_mapping_error(&fep->pdev->dev, addr)) {
623 dev_kfree_skb_any(skb);
624 if (net_ratelimit())
625 netdev_err(ndev, "Tx DMA memory map failed\n");
626 return NETDEV_TX_OK;
627 }
628
629 bdp->cbd_datlen = cpu_to_fec16(size);
630 bdp->cbd_bufaddr = cpu_to_fec32(addr);
631
632 if (fep->bufdesc_ex) {
633 if (fep->quirks & FEC_QUIRK_HAS_AVB)
634 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
635 if (skb->ip_summed == CHECKSUM_PARTIAL)
636 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
637 ebdp->cbd_bdu = 0;
638 ebdp->cbd_esc = cpu_to_fec32(estatus);
639 }
640
641 /* Handle the last BD specially */
642 if (last_tcp)
643 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
644 if (is_last) {
645 status |= BD_ENET_TX_INTR;
646 if (fep->bufdesc_ex)
647 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
648 }
649
650 bdp->cbd_sc = cpu_to_fec16(status);
651
652 return 0;
653 }
654
655 static int
fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, struct net_device *ndev, struct bufdesc *bdp, int index)656 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
657 struct sk_buff *skb, struct net_device *ndev,
658 struct bufdesc *bdp, int index)
659 {
660 struct fec_enet_private *fep = netdev_priv(ndev);
661 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
662 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
663 void *bufaddr;
664 unsigned long dmabuf;
665 unsigned short status;
666 unsigned int estatus = 0;
667
668 status = fec16_to_cpu(bdp->cbd_sc);
669 status &= ~BD_ENET_TX_STATS;
670 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
671
672 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
673 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
674 if (((unsigned long)bufaddr) & fep->tx_align ||
675 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
676 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
677 bufaddr = txq->tx_bounce[index];
678
679 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
680 swap_buffer(bufaddr, hdr_len);
681
682 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
683 hdr_len, DMA_TO_DEVICE);
684 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
685 dev_kfree_skb_any(skb);
686 if (net_ratelimit())
687 netdev_err(ndev, "Tx DMA memory map failed\n");
688 return NETDEV_TX_OK;
689 }
690 }
691
692 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
693 bdp->cbd_datlen = cpu_to_fec16(hdr_len);
694
695 if (fep->bufdesc_ex) {
696 if (fep->quirks & FEC_QUIRK_HAS_AVB)
697 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
698 if (skb->ip_summed == CHECKSUM_PARTIAL)
699 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
700 ebdp->cbd_bdu = 0;
701 ebdp->cbd_esc = cpu_to_fec32(estatus);
702 }
703
704 bdp->cbd_sc = cpu_to_fec16(status);
705
706 return 0;
707 }
708
fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, struct net_device *ndev)709 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
710 struct sk_buff *skb,
711 struct net_device *ndev)
712 {
713 struct fec_enet_private *fep = netdev_priv(ndev);
714 int hdr_len, total_len, data_left;
715 struct bufdesc *bdp = txq->bd.cur;
716 struct tso_t tso;
717 unsigned int index = 0;
718 int ret;
719
720 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
721 dev_kfree_skb_any(skb);
722 if (net_ratelimit())
723 netdev_err(ndev, "NOT enough BD for TSO!\n");
724 return NETDEV_TX_OK;
725 }
726
727 /* Protocol checksum off-load for TCP and UDP. */
728 if (fec_enet_clear_csum(skb, ndev)) {
729 dev_kfree_skb_any(skb);
730 return NETDEV_TX_OK;
731 }
732
733 /* Initialize the TSO handler, and prepare the first payload */
734 hdr_len = tso_start(skb, &tso);
735
736 total_len = skb->len - hdr_len;
737 while (total_len > 0) {
738 char *hdr;
739
740 index = fec_enet_get_bd_index(bdp, &txq->bd);
741 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
742 total_len -= data_left;
743
744 /* prepare packet headers: MAC + IP + TCP */
745 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
746 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
747 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
748 if (ret)
749 goto err_release;
750
751 while (data_left > 0) {
752 int size;
753
754 size = min_t(int, tso.size, data_left);
755 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
756 index = fec_enet_get_bd_index(bdp, &txq->bd);
757 ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
758 bdp, index,
759 tso.data, size,
760 size == data_left,
761 total_len == 0);
762 if (ret)
763 goto err_release;
764
765 data_left -= size;
766 tso_build_data(skb, &tso, size);
767 }
768
769 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
770 }
771
772 /* Save skb pointer */
773 txq->tx_skbuff[index] = skb;
774
775 skb_tx_timestamp(skb);
776 txq->bd.cur = bdp;
777
778 /* Trigger transmission start */
779 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
780 !readl(txq->bd.reg_desc_active) ||
781 !readl(txq->bd.reg_desc_active) ||
782 !readl(txq->bd.reg_desc_active) ||
783 !readl(txq->bd.reg_desc_active))
784 writel(0, txq->bd.reg_desc_active);
785
786 return 0;
787
788 err_release:
789 /* TODO: Release all used data descriptors for TSO */
790 return ret;
791 }
792
793 static netdev_tx_t
fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)794 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
795 {
796 struct fec_enet_private *fep = netdev_priv(ndev);
797 int entries_free;
798 unsigned short queue;
799 struct fec_enet_priv_tx_q *txq;
800 struct netdev_queue *nq;
801 int ret;
802
803 queue = skb_get_queue_mapping(skb);
804 txq = fep->tx_queue[queue];
805 nq = netdev_get_tx_queue(ndev, queue);
806
807 if (skb_is_gso(skb))
808 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
809 else
810 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
811 if (ret)
812 return ret;
813
814 entries_free = fec_enet_get_free_txdesc_num(txq);
815 if (entries_free <= txq->tx_stop_threshold)
816 netif_tx_stop_queue(nq);
817
818 return NETDEV_TX_OK;
819 }
820
821 /* Init RX & TX buffer descriptors
822 */
fec_enet_bd_init(struct net_device *dev)823 static void fec_enet_bd_init(struct net_device *dev)
824 {
825 struct fec_enet_private *fep = netdev_priv(dev);
826 struct fec_enet_priv_tx_q *txq;
827 struct fec_enet_priv_rx_q *rxq;
828 struct bufdesc *bdp;
829 unsigned int i;
830 unsigned int q;
831
832 for (q = 0; q < fep->num_rx_queues; q++) {
833 /* Initialize the receive buffer descriptors. */
834 rxq = fep->rx_queue[q];
835 bdp = rxq->bd.base;
836
837 for (i = 0; i < rxq->bd.ring_size; i++) {
838
839 /* Initialize the BD for every fragment in the page. */
840 if (bdp->cbd_bufaddr)
841 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
842 else
843 bdp->cbd_sc = cpu_to_fec16(0);
844 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
845 }
846
847 /* Set the last buffer to wrap */
848 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
849 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
850
851 rxq->bd.cur = rxq->bd.base;
852 }
853
854 for (q = 0; q < fep->num_tx_queues; q++) {
855 /* ...and the same for transmit */
856 txq = fep->tx_queue[q];
857 bdp = txq->bd.base;
858 txq->bd.cur = bdp;
859
860 for (i = 0; i < txq->bd.ring_size; i++) {
861 /* Initialize the BD for every fragment in the page. */
862 bdp->cbd_sc = cpu_to_fec16(0);
863 if (bdp->cbd_bufaddr &&
864 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
865 dma_unmap_single(&fep->pdev->dev,
866 fec32_to_cpu(bdp->cbd_bufaddr),
867 fec16_to_cpu(bdp->cbd_datlen),
868 DMA_TO_DEVICE);
869 if (txq->tx_skbuff[i]) {
870 dev_kfree_skb_any(txq->tx_skbuff[i]);
871 txq->tx_skbuff[i] = NULL;
872 }
873 bdp->cbd_bufaddr = cpu_to_fec32(0);
874 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
875 }
876
877 /* Set the last buffer to wrap */
878 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
879 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
880 txq->dirty_tx = bdp;
881 }
882 }
883
fec_enet_active_rxring(struct net_device *ndev)884 static void fec_enet_active_rxring(struct net_device *ndev)
885 {
886 struct fec_enet_private *fep = netdev_priv(ndev);
887 int i;
888
889 for (i = 0; i < fep->num_rx_queues; i++)
890 writel(0, fep->rx_queue[i]->bd.reg_desc_active);
891 }
892
fec_enet_enable_ring(struct net_device *ndev)893 static void fec_enet_enable_ring(struct net_device *ndev)
894 {
895 struct fec_enet_private *fep = netdev_priv(ndev);
896 struct fec_enet_priv_tx_q *txq;
897 struct fec_enet_priv_rx_q *rxq;
898 int i;
899
900 for (i = 0; i < fep->num_rx_queues; i++) {
901 rxq = fep->rx_queue[i];
902 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
903 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
904
905 /* enable DMA1/2 */
906 if (i)
907 writel(RCMR_MATCHEN | RCMR_CMP(i),
908 fep->hwp + FEC_RCMR(i));
909 }
910
911 for (i = 0; i < fep->num_tx_queues; i++) {
912 txq = fep->tx_queue[i];
913 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
914
915 /* enable DMA1/2 */
916 if (i)
917 writel(DMA_CLASS_EN | IDLE_SLOPE(i),
918 fep->hwp + FEC_DMA_CFG(i));
919 }
920 }
921
fec_enet_reset_skb(struct net_device *ndev)922 static void fec_enet_reset_skb(struct net_device *ndev)
923 {
924 struct fec_enet_private *fep = netdev_priv(ndev);
925 struct fec_enet_priv_tx_q *txq;
926 int i, j;
927
928 for (i = 0; i < fep->num_tx_queues; i++) {
929 txq = fep->tx_queue[i];
930
931 for (j = 0; j < txq->bd.ring_size; j++) {
932 if (txq->tx_skbuff[j]) {
933 dev_kfree_skb_any(txq->tx_skbuff[j]);
934 txq->tx_skbuff[j] = NULL;
935 }
936 }
937 }
938 }
939
940 /*
941 * This function is called to start or restart the FEC during a link
942 * change, transmit timeout, or to reconfigure the FEC. The network
943 * packet processing for this device must be stopped before this call.
944 */
945 static void
fec_restart(struct net_device *ndev)946 fec_restart(struct net_device *ndev)
947 {
948 struct fec_enet_private *fep = netdev_priv(ndev);
949 u32 val;
950 u32 temp_mac[2];
951 u32 rcntl = OPT_FRAME_SIZE | 0x04;
952 u32 ecntl = 0x2; /* ETHEREN */
953
954 /* Whack a reset. We should wait for this.
955 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
956 * instead of reset MAC itself.
957 */
958 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
959 writel(0, fep->hwp + FEC_ECNTRL);
960 } else {
961 writel(1, fep->hwp + FEC_ECNTRL);
962 udelay(10);
963 }
964
965 /*
966 * enet-mac reset will reset mac address registers too,
967 * so need to reconfigure it.
968 */
969 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
970 writel((__force u32)cpu_to_be32(temp_mac[0]),
971 fep->hwp + FEC_ADDR_LOW);
972 writel((__force u32)cpu_to_be32(temp_mac[1]),
973 fep->hwp + FEC_ADDR_HIGH);
974
975 /* Clear any outstanding interrupt, except MDIO. */
976 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
977
978 fec_enet_bd_init(ndev);
979
980 fec_enet_enable_ring(ndev);
981
982 /* Reset tx SKB buffers. */
983 fec_enet_reset_skb(ndev);
984
985 /* Enable MII mode */
986 if (fep->full_duplex == DUPLEX_FULL) {
987 /* FD enable */
988 writel(0x04, fep->hwp + FEC_X_CNTRL);
989 } else {
990 /* No Rcv on Xmit */
991 rcntl |= 0x02;
992 writel(0x0, fep->hwp + FEC_X_CNTRL);
993 }
994
995 /* Set MII speed */
996 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
997
998 #if !defined(CONFIG_M5272)
999 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1000 val = readl(fep->hwp + FEC_RACC);
1001 /* align IP header */
1002 val |= FEC_RACC_SHIFT16;
1003 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1004 /* set RX checksum */
1005 val |= FEC_RACC_OPTIONS;
1006 else
1007 val &= ~FEC_RACC_OPTIONS;
1008 writel(val, fep->hwp + FEC_RACC);
1009 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1010 }
1011 #endif
1012
1013 /*
1014 * The phy interface and speed need to get configured
1015 * differently on enet-mac.
1016 */
1017 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1018 /* Enable flow control and length check */
1019 rcntl |= 0x40000000 | 0x00000020;
1020
1021 /* RGMII, RMII or MII */
1022 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1023 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1024 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1025 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1026 rcntl |= (1 << 6);
1027 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1028 rcntl |= (1 << 8);
1029 else
1030 rcntl &= ~(1 << 8);
1031
1032 /* 1G, 100M or 10M */
1033 if (ndev->phydev) {
1034 if (ndev->phydev->speed == SPEED_1000)
1035 ecntl |= (1 << 5);
1036 else if (ndev->phydev->speed == SPEED_100)
1037 rcntl &= ~(1 << 9);
1038 else
1039 rcntl |= (1 << 9);
1040 }
1041 } else {
1042 #ifdef FEC_MIIGSK_ENR
1043 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1044 u32 cfgr;
1045 /* disable the gasket and wait */
1046 writel(0, fep->hwp + FEC_MIIGSK_ENR);
1047 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1048 udelay(1);
1049
1050 /*
1051 * configure the gasket:
1052 * RMII, 50 MHz, no loopback, no echo
1053 * MII, 25 MHz, no loopback, no echo
1054 */
1055 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1056 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1057 if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1058 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1059 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1060
1061 /* re-enable the gasket */
1062 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1063 }
1064 #endif
1065 }
1066
1067 #if !defined(CONFIG_M5272)
1068 /* enable pause frame*/
1069 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1070 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1071 ndev->phydev && ndev->phydev->pause)) {
1072 rcntl |= FEC_ENET_FCE;
1073
1074 /* set FIFO threshold parameter to reduce overrun */
1075 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1076 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1077 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1078 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1079
1080 /* OPD */
1081 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1082 } else {
1083 rcntl &= ~FEC_ENET_FCE;
1084 }
1085 #endif /* !defined(CONFIG_M5272) */
1086
1087 writel(rcntl, fep->hwp + FEC_R_CNTRL);
1088
1089 /* Setup multicast filter. */
1090 set_multicast_list(ndev);
1091 #ifndef CONFIG_M5272
1092 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1093 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1094 #endif
1095
1096 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1097 /* enable ENET endian swap */
1098 ecntl |= (1 << 8);
1099 /* enable ENET store and forward mode */
1100 writel(1 << 8, fep->hwp + FEC_X_WMRK);
1101 }
1102
1103 if (fep->bufdesc_ex)
1104 ecntl |= (1 << 4);
1105
1106 #ifndef CONFIG_M5272
1107 /* Enable the MIB statistic event counters */
1108 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1109 #endif
1110
1111 /* And last, enable the transmit and receive processing */
1112 writel(ecntl, fep->hwp + FEC_ECNTRL);
1113 fec_enet_active_rxring(ndev);
1114
1115 if (fep->bufdesc_ex)
1116 fec_ptp_start_cyclecounter(ndev);
1117
1118 /* Enable interrupts we wish to service */
1119 if (fep->link)
1120 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1121 else
1122 writel(0, fep->hwp + FEC_IMASK);
1123
1124 /* Init the interrupt coalescing */
1125 fec_enet_itr_coal_init(ndev);
1126
1127 }
1128
fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)1129 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1130 {
1131 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1132 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1133
1134 if (stop_gpr->gpr) {
1135 if (enabled)
1136 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1137 BIT(stop_gpr->bit),
1138 BIT(stop_gpr->bit));
1139 else
1140 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1141 BIT(stop_gpr->bit), 0);
1142 } else if (pdata && pdata->sleep_mode_enable) {
1143 pdata->sleep_mode_enable(enabled);
1144 }
1145 }
1146
1147 static void
fec_stop(struct net_device *ndev)1148 fec_stop(struct net_device *ndev)
1149 {
1150 struct fec_enet_private *fep = netdev_priv(ndev);
1151 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1152 u32 val;
1153
1154 /* We cannot expect a graceful transmit stop without link !!! */
1155 if (fep->link) {
1156 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1157 udelay(10);
1158 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1159 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1160 }
1161
1162 /* Whack a reset. We should wait for this.
1163 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1164 * instead of reset MAC itself.
1165 */
1166 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1167 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1168 writel(0, fep->hwp + FEC_ECNTRL);
1169 } else {
1170 writel(1, fep->hwp + FEC_ECNTRL);
1171 udelay(10);
1172 }
1173 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1174 } else {
1175 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1176 val = readl(fep->hwp + FEC_ECNTRL);
1177 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1178 writel(val, fep->hwp + FEC_ECNTRL);
1179 fec_enet_stop_mode(fep, true);
1180 }
1181 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1182
1183 /* We have to keep ENET enabled to have MII interrupt stay working */
1184 if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1185 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1186 writel(2, fep->hwp + FEC_ECNTRL);
1187 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1188 }
1189 }
1190
1191
1192 static void
fec_timeout(struct net_device *ndev, unsigned int txqueue)1193 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1194 {
1195 struct fec_enet_private *fep = netdev_priv(ndev);
1196
1197 fec_dump(ndev);
1198
1199 ndev->stats.tx_errors++;
1200
1201 schedule_work(&fep->tx_timeout_work);
1202 }
1203
fec_enet_timeout_work(struct work_struct *work)1204 static void fec_enet_timeout_work(struct work_struct *work)
1205 {
1206 struct fec_enet_private *fep =
1207 container_of(work, struct fec_enet_private, tx_timeout_work);
1208 struct net_device *ndev = fep->netdev;
1209
1210 rtnl_lock();
1211 if (netif_device_present(ndev) || netif_running(ndev)) {
1212 napi_disable(&fep->napi);
1213 netif_tx_lock_bh(ndev);
1214 fec_restart(ndev);
1215 netif_tx_wake_all_queues(ndev);
1216 netif_tx_unlock_bh(ndev);
1217 napi_enable(&fep->napi);
1218 }
1219 rtnl_unlock();
1220 }
1221
1222 static void
fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, struct skb_shared_hwtstamps *hwtstamps)1223 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1224 struct skb_shared_hwtstamps *hwtstamps)
1225 {
1226 unsigned long flags;
1227 u64 ns;
1228
1229 spin_lock_irqsave(&fep->tmreg_lock, flags);
1230 ns = timecounter_cyc2time(&fep->tc, ts);
1231 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1232
1233 memset(hwtstamps, 0, sizeof(*hwtstamps));
1234 hwtstamps->hwtstamp = ns_to_ktime(ns);
1235 }
1236
1237 static void
fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)1238 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1239 {
1240 struct fec_enet_private *fep;
1241 struct bufdesc *bdp;
1242 unsigned short status;
1243 struct sk_buff *skb;
1244 struct fec_enet_priv_tx_q *txq;
1245 struct netdev_queue *nq;
1246 int index = 0;
1247 int entries_free;
1248
1249 fep = netdev_priv(ndev);
1250
1251 txq = fep->tx_queue[queue_id];
1252 /* get next bdp of dirty_tx */
1253 nq = netdev_get_tx_queue(ndev, queue_id);
1254 bdp = txq->dirty_tx;
1255
1256 /* get next bdp of dirty_tx */
1257 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1258
1259 while (bdp != READ_ONCE(txq->bd.cur)) {
1260 /* Order the load of bd.cur and cbd_sc */
1261 rmb();
1262 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1263 if (status & BD_ENET_TX_READY)
1264 break;
1265
1266 index = fec_enet_get_bd_index(bdp, &txq->bd);
1267
1268 skb = txq->tx_skbuff[index];
1269 txq->tx_skbuff[index] = NULL;
1270 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1271 dma_unmap_single(&fep->pdev->dev,
1272 fec32_to_cpu(bdp->cbd_bufaddr),
1273 fec16_to_cpu(bdp->cbd_datlen),
1274 DMA_TO_DEVICE);
1275 bdp->cbd_bufaddr = cpu_to_fec32(0);
1276 if (!skb)
1277 goto skb_done;
1278
1279 /* Check for errors. */
1280 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1281 BD_ENET_TX_RL | BD_ENET_TX_UN |
1282 BD_ENET_TX_CSL)) {
1283 ndev->stats.tx_errors++;
1284 if (status & BD_ENET_TX_HB) /* No heartbeat */
1285 ndev->stats.tx_heartbeat_errors++;
1286 if (status & BD_ENET_TX_LC) /* Late collision */
1287 ndev->stats.tx_window_errors++;
1288 if (status & BD_ENET_TX_RL) /* Retrans limit */
1289 ndev->stats.tx_aborted_errors++;
1290 if (status & BD_ENET_TX_UN) /* Underrun */
1291 ndev->stats.tx_fifo_errors++;
1292 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1293 ndev->stats.tx_carrier_errors++;
1294 } else {
1295 ndev->stats.tx_packets++;
1296 ndev->stats.tx_bytes += skb->len;
1297 }
1298
1299 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1300 * are to time stamp the packet, so we still need to check time
1301 * stamping enabled flag.
1302 */
1303 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1304 fep->hwts_tx_en) &&
1305 fep->bufdesc_ex) {
1306 struct skb_shared_hwtstamps shhwtstamps;
1307 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1308
1309 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1310 skb_tstamp_tx(skb, &shhwtstamps);
1311 }
1312
1313 /* Deferred means some collisions occurred during transmit,
1314 * but we eventually sent the packet OK.
1315 */
1316 if (status & BD_ENET_TX_DEF)
1317 ndev->stats.collisions++;
1318
1319 /* Free the sk buffer associated with this last transmit */
1320 dev_kfree_skb_any(skb);
1321 skb_done:
1322 /* Make sure the update to bdp and tx_skbuff are performed
1323 * before dirty_tx
1324 */
1325 wmb();
1326 txq->dirty_tx = bdp;
1327
1328 /* Update pointer to next buffer descriptor to be transmitted */
1329 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1330
1331 /* Since we have freed up a buffer, the ring is no longer full
1332 */
1333 if (netif_tx_queue_stopped(nq)) {
1334 entries_free = fec_enet_get_free_txdesc_num(txq);
1335 if (entries_free >= txq->tx_wake_threshold)
1336 netif_tx_wake_queue(nq);
1337 }
1338 }
1339
1340 /* ERR006358: Keep the transmitter going */
1341 if (bdp != txq->bd.cur &&
1342 readl(txq->bd.reg_desc_active) == 0)
1343 writel(0, txq->bd.reg_desc_active);
1344 }
1345
fec_enet_tx(struct net_device *ndev)1346 static void fec_enet_tx(struct net_device *ndev)
1347 {
1348 struct fec_enet_private *fep = netdev_priv(ndev);
1349 int i;
1350
1351 /* Make sure that AVB queues are processed first. */
1352 for (i = fep->num_tx_queues - 1; i >= 0; i--)
1353 fec_enet_tx_queue(ndev, i);
1354 }
1355
1356 static int
fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)1357 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1358 {
1359 struct fec_enet_private *fep = netdev_priv(ndev);
1360 int off;
1361
1362 off = ((unsigned long)skb->data) & fep->rx_align;
1363 if (off)
1364 skb_reserve(skb, fep->rx_align + 1 - off);
1365
1366 bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1367 if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1368 if (net_ratelimit())
1369 netdev_err(ndev, "Rx DMA memory map failed\n");
1370 return -ENOMEM;
1371 }
1372
1373 return 0;
1374 }
1375
fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb, struct bufdesc *bdp, u32 length, bool swap)1376 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1377 struct bufdesc *bdp, u32 length, bool swap)
1378 {
1379 struct fec_enet_private *fep = netdev_priv(ndev);
1380 struct sk_buff *new_skb;
1381
1382 if (length > fep->rx_copybreak)
1383 return false;
1384
1385 new_skb = netdev_alloc_skb(ndev, length);
1386 if (!new_skb)
1387 return false;
1388
1389 dma_sync_single_for_cpu(&fep->pdev->dev,
1390 fec32_to_cpu(bdp->cbd_bufaddr),
1391 FEC_ENET_RX_FRSIZE - fep->rx_align,
1392 DMA_FROM_DEVICE);
1393 if (!swap)
1394 memcpy(new_skb->data, (*skb)->data, length);
1395 else
1396 swap_buffer2(new_skb->data, (*skb)->data, length);
1397 *skb = new_skb;
1398
1399 return true;
1400 }
1401
1402 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1403 * When we update through the ring, if the next incoming buffer has
1404 * not been given to the system, we just set the empty indicator,
1405 * effectively tossing the packet.
1406 */
1407 static int
fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)1408 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1409 {
1410 struct fec_enet_private *fep = netdev_priv(ndev);
1411 struct fec_enet_priv_rx_q *rxq;
1412 struct bufdesc *bdp;
1413 unsigned short status;
1414 struct sk_buff *skb_new = NULL;
1415 struct sk_buff *skb;
1416 ushort pkt_len;
1417 __u8 *data;
1418 int pkt_received = 0;
1419 struct bufdesc_ex *ebdp = NULL;
1420 bool vlan_packet_rcvd = false;
1421 u16 vlan_tag;
1422 int index = 0;
1423 bool is_copybreak;
1424 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1425
1426 #ifdef CONFIG_M532x
1427 flush_cache_all();
1428 #endif
1429 rxq = fep->rx_queue[queue_id];
1430
1431 /* First, grab all of the stats for the incoming packet.
1432 * These get messed up if we get called due to a busy condition.
1433 */
1434 bdp = rxq->bd.cur;
1435
1436 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1437
1438 if (pkt_received >= budget)
1439 break;
1440 pkt_received++;
1441
1442 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1443
1444 /* Check for errors. */
1445 status ^= BD_ENET_RX_LAST;
1446 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1447 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1448 BD_ENET_RX_CL)) {
1449 ndev->stats.rx_errors++;
1450 if (status & BD_ENET_RX_OV) {
1451 /* FIFO overrun */
1452 ndev->stats.rx_fifo_errors++;
1453 goto rx_processing_done;
1454 }
1455 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1456 | BD_ENET_RX_LAST)) {
1457 /* Frame too long or too short. */
1458 ndev->stats.rx_length_errors++;
1459 if (status & BD_ENET_RX_LAST)
1460 netdev_err(ndev, "rcv is not +last\n");
1461 }
1462 if (status & BD_ENET_RX_CR) /* CRC Error */
1463 ndev->stats.rx_crc_errors++;
1464 /* Report late collisions as a frame error. */
1465 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1466 ndev->stats.rx_frame_errors++;
1467 goto rx_processing_done;
1468 }
1469
1470 /* Process the incoming frame. */
1471 ndev->stats.rx_packets++;
1472 pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1473 ndev->stats.rx_bytes += pkt_len;
1474
1475 index = fec_enet_get_bd_index(bdp, &rxq->bd);
1476 skb = rxq->rx_skbuff[index];
1477
1478 /* The packet length includes FCS, but we don't want to
1479 * include that when passing upstream as it messes up
1480 * bridging applications.
1481 */
1482 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1483 need_swap);
1484 if (!is_copybreak) {
1485 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1486 if (unlikely(!skb_new)) {
1487 ndev->stats.rx_dropped++;
1488 goto rx_processing_done;
1489 }
1490 dma_unmap_single(&fep->pdev->dev,
1491 fec32_to_cpu(bdp->cbd_bufaddr),
1492 FEC_ENET_RX_FRSIZE - fep->rx_align,
1493 DMA_FROM_DEVICE);
1494 }
1495
1496 prefetch(skb->data - NET_IP_ALIGN);
1497 skb_put(skb, pkt_len - 4);
1498 data = skb->data;
1499
1500 if (!is_copybreak && need_swap)
1501 swap_buffer(data, pkt_len);
1502
1503 #if !defined(CONFIG_M5272)
1504 if (fep->quirks & FEC_QUIRK_HAS_RACC)
1505 data = skb_pull_inline(skb, 2);
1506 #endif
1507
1508 /* Extract the enhanced buffer descriptor */
1509 ebdp = NULL;
1510 if (fep->bufdesc_ex)
1511 ebdp = (struct bufdesc_ex *)bdp;
1512
1513 /* If this is a VLAN packet remove the VLAN Tag */
1514 vlan_packet_rcvd = false;
1515 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1516 fep->bufdesc_ex &&
1517 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1518 /* Push and remove the vlan tag */
1519 struct vlan_hdr *vlan_header =
1520 (struct vlan_hdr *) (data + ETH_HLEN);
1521 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1522
1523 vlan_packet_rcvd = true;
1524
1525 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1526 skb_pull(skb, VLAN_HLEN);
1527 }
1528
1529 skb->protocol = eth_type_trans(skb, ndev);
1530
1531 /* Get receive timestamp from the skb */
1532 if (fep->hwts_rx_en && fep->bufdesc_ex)
1533 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1534 skb_hwtstamps(skb));
1535
1536 if (fep->bufdesc_ex &&
1537 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1538 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1539 /* don't check it */
1540 skb->ip_summed = CHECKSUM_UNNECESSARY;
1541 } else {
1542 skb_checksum_none_assert(skb);
1543 }
1544 }
1545
1546 /* Handle received VLAN packets */
1547 if (vlan_packet_rcvd)
1548 __vlan_hwaccel_put_tag(skb,
1549 htons(ETH_P_8021Q),
1550 vlan_tag);
1551
1552 skb_record_rx_queue(skb, queue_id);
1553 napi_gro_receive(&fep->napi, skb);
1554
1555 if (is_copybreak) {
1556 dma_sync_single_for_device(&fep->pdev->dev,
1557 fec32_to_cpu(bdp->cbd_bufaddr),
1558 FEC_ENET_RX_FRSIZE - fep->rx_align,
1559 DMA_FROM_DEVICE);
1560 } else {
1561 rxq->rx_skbuff[index] = skb_new;
1562 fec_enet_new_rxbdp(ndev, bdp, skb_new);
1563 }
1564
1565 rx_processing_done:
1566 /* Clear the status flags for this buffer */
1567 status &= ~BD_ENET_RX_STATS;
1568
1569 /* Mark the buffer empty */
1570 status |= BD_ENET_RX_EMPTY;
1571
1572 if (fep->bufdesc_ex) {
1573 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1574
1575 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1576 ebdp->cbd_prot = 0;
1577 ebdp->cbd_bdu = 0;
1578 }
1579 /* Make sure the updates to rest of the descriptor are
1580 * performed before transferring ownership.
1581 */
1582 wmb();
1583 bdp->cbd_sc = cpu_to_fec16(status);
1584
1585 /* Update BD pointer to next entry */
1586 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1587
1588 /* Doing this here will keep the FEC running while we process
1589 * incoming frames. On a heavily loaded network, we should be
1590 * able to keep up at the expense of system resources.
1591 */
1592 writel(0, rxq->bd.reg_desc_active);
1593 }
1594 rxq->bd.cur = bdp;
1595 return pkt_received;
1596 }
1597
fec_enet_rx(struct net_device *ndev, int budget)1598 static int fec_enet_rx(struct net_device *ndev, int budget)
1599 {
1600 struct fec_enet_private *fep = netdev_priv(ndev);
1601 int i, done = 0;
1602
1603 /* Make sure that AVB queues are processed first. */
1604 for (i = fep->num_rx_queues - 1; i >= 0; i--)
1605 done += fec_enet_rx_queue(ndev, budget - done, i);
1606
1607 return done;
1608 }
1609
fec_enet_collect_events(struct fec_enet_private *fep)1610 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1611 {
1612 uint int_events;
1613
1614 int_events = readl(fep->hwp + FEC_IEVENT);
1615
1616 /* Don't clear MDIO events, we poll for those */
1617 int_events &= ~FEC_ENET_MII;
1618
1619 writel(int_events, fep->hwp + FEC_IEVENT);
1620
1621 return int_events != 0;
1622 }
1623
1624 static irqreturn_t
fec_enet_interrupt(int irq, void *dev_id)1625 fec_enet_interrupt(int irq, void *dev_id)
1626 {
1627 struct net_device *ndev = dev_id;
1628 struct fec_enet_private *fep = netdev_priv(ndev);
1629 irqreturn_t ret = IRQ_NONE;
1630
1631 if (fec_enet_collect_events(fep) && fep->link) {
1632 ret = IRQ_HANDLED;
1633
1634 if (napi_schedule_prep(&fep->napi)) {
1635 /* Disable interrupts */
1636 writel(0, fep->hwp + FEC_IMASK);
1637 __napi_schedule(&fep->napi);
1638 }
1639 }
1640
1641 return ret;
1642 }
1643
fec_enet_rx_napi(struct napi_struct *napi, int budget)1644 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1645 {
1646 struct net_device *ndev = napi->dev;
1647 struct fec_enet_private *fep = netdev_priv(ndev);
1648 int done = 0;
1649
1650 do {
1651 done += fec_enet_rx(ndev, budget - done);
1652 fec_enet_tx(ndev);
1653 } while ((done < budget) && fec_enet_collect_events(fep));
1654
1655 if (done < budget) {
1656 napi_complete_done(napi, done);
1657 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1658 }
1659
1660 return done;
1661 }
1662
1663 /* ------------------------------------------------------------------------- */
fec_get_mac(struct net_device *ndev)1664 static void fec_get_mac(struct net_device *ndev)
1665 {
1666 struct fec_enet_private *fep = netdev_priv(ndev);
1667 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1668 unsigned char *iap, tmpaddr[ETH_ALEN];
1669
1670 /*
1671 * try to get mac address in following order:
1672 *
1673 * 1) module parameter via kernel command line in form
1674 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1675 */
1676 iap = macaddr;
1677
1678 /*
1679 * 2) from device tree data
1680 */
1681 if (!is_valid_ether_addr(iap)) {
1682 struct device_node *np = fep->pdev->dev.of_node;
1683 if (np) {
1684 const char *mac = of_get_mac_address(np);
1685 if (!IS_ERR(mac))
1686 iap = (unsigned char *) mac;
1687 }
1688 }
1689
1690 /*
1691 * 3) from flash or fuse (via platform data)
1692 */
1693 if (!is_valid_ether_addr(iap)) {
1694 #ifdef CONFIG_M5272
1695 if (FEC_FLASHMAC)
1696 iap = (unsigned char *)FEC_FLASHMAC;
1697 #else
1698 if (pdata)
1699 iap = (unsigned char *)&pdata->mac;
1700 #endif
1701 }
1702
1703 /*
1704 * 4) FEC mac registers set by bootloader
1705 */
1706 if (!is_valid_ether_addr(iap)) {
1707 *((__be32 *) &tmpaddr[0]) =
1708 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1709 *((__be16 *) &tmpaddr[4]) =
1710 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1711 iap = &tmpaddr[0];
1712 }
1713
1714 /*
1715 * 5) random mac address
1716 */
1717 if (!is_valid_ether_addr(iap)) {
1718 /* Report it and use a random ethernet address instead */
1719 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1720 eth_hw_addr_random(ndev);
1721 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1722 ndev->dev_addr);
1723 return;
1724 }
1725
1726 memcpy(ndev->dev_addr, iap, ETH_ALEN);
1727
1728 /* Adjust MAC if using macaddr */
1729 if (iap == macaddr)
1730 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1731 }
1732
1733 /* ------------------------------------------------------------------------- */
1734
1735 /*
1736 * Phy section
1737 */
fec_enet_adjust_link(struct net_device *ndev)1738 static void fec_enet_adjust_link(struct net_device *ndev)
1739 {
1740 struct fec_enet_private *fep = netdev_priv(ndev);
1741 struct phy_device *phy_dev = ndev->phydev;
1742 int status_change = 0;
1743
1744 /*
1745 * If the netdev is down, or is going down, we're not interested
1746 * in link state events, so just mark our idea of the link as down
1747 * and ignore the event.
1748 */
1749 if (!netif_running(ndev) || !netif_device_present(ndev)) {
1750 fep->link = 0;
1751 } else if (phy_dev->link) {
1752 if (!fep->link) {
1753 fep->link = phy_dev->link;
1754 status_change = 1;
1755 }
1756
1757 if (fep->full_duplex != phy_dev->duplex) {
1758 fep->full_duplex = phy_dev->duplex;
1759 status_change = 1;
1760 }
1761
1762 if (phy_dev->speed != fep->speed) {
1763 fep->speed = phy_dev->speed;
1764 status_change = 1;
1765 }
1766
1767 /* if any of the above changed restart the FEC */
1768 if (status_change) {
1769 netif_stop_queue(ndev);
1770 napi_disable(&fep->napi);
1771 netif_tx_lock_bh(ndev);
1772 fec_restart(ndev);
1773 netif_tx_wake_all_queues(ndev);
1774 netif_tx_unlock_bh(ndev);
1775 napi_enable(&fep->napi);
1776 }
1777 } else {
1778 if (fep->link) {
1779 netif_stop_queue(ndev);
1780 napi_disable(&fep->napi);
1781 netif_tx_lock_bh(ndev);
1782 fec_stop(ndev);
1783 netif_tx_unlock_bh(ndev);
1784 napi_enable(&fep->napi);
1785 fep->link = phy_dev->link;
1786 status_change = 1;
1787 }
1788 }
1789
1790 if (status_change)
1791 phy_print_status(phy_dev);
1792 }
1793
fec_enet_mdio_wait(struct fec_enet_private *fep)1794 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1795 {
1796 uint ievent;
1797 int ret;
1798
1799 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1800 ievent & FEC_ENET_MII, 2, 30000);
1801
1802 if (!ret)
1803 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1804
1805 return ret;
1806 }
1807
fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)1808 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1809 {
1810 struct fec_enet_private *fep = bus->priv;
1811 struct device *dev = &fep->pdev->dev;
1812 int ret = 0, frame_start, frame_addr, frame_op;
1813 bool is_c45 = !!(regnum & MII_ADDR_C45);
1814
1815 ret = pm_runtime_resume_and_get(dev);
1816 if (ret < 0)
1817 return ret;
1818
1819 if (is_c45) {
1820 frame_start = FEC_MMFR_ST_C45;
1821
1822 /* write address */
1823 frame_addr = (regnum >> 16);
1824 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1825 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1826 FEC_MMFR_TA | (regnum & 0xFFFF),
1827 fep->hwp + FEC_MII_DATA);
1828
1829 /* wait for end of transfer */
1830 ret = fec_enet_mdio_wait(fep);
1831 if (ret) {
1832 netdev_err(fep->netdev, "MDIO address write timeout\n");
1833 goto out;
1834 }
1835
1836 frame_op = FEC_MMFR_OP_READ_C45;
1837
1838 } else {
1839 /* C22 read */
1840 frame_op = FEC_MMFR_OP_READ;
1841 frame_start = FEC_MMFR_ST;
1842 frame_addr = regnum;
1843 }
1844
1845 /* start a read op */
1846 writel(frame_start | frame_op |
1847 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1848 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1849
1850 /* wait for end of transfer */
1851 ret = fec_enet_mdio_wait(fep);
1852 if (ret) {
1853 netdev_err(fep->netdev, "MDIO read timeout\n");
1854 goto out;
1855 }
1856
1857 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1858
1859 out:
1860 pm_runtime_mark_last_busy(dev);
1861 pm_runtime_put_autosuspend(dev);
1862
1863 return ret;
1864 }
1865
fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 value)1866 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1867 u16 value)
1868 {
1869 struct fec_enet_private *fep = bus->priv;
1870 struct device *dev = &fep->pdev->dev;
1871 int ret, frame_start, frame_addr;
1872 bool is_c45 = !!(regnum & MII_ADDR_C45);
1873
1874 ret = pm_runtime_resume_and_get(dev);
1875 if (ret < 0)
1876 return ret;
1877
1878 if (is_c45) {
1879 frame_start = FEC_MMFR_ST_C45;
1880
1881 /* write address */
1882 frame_addr = (regnum >> 16);
1883 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1884 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1885 FEC_MMFR_TA | (regnum & 0xFFFF),
1886 fep->hwp + FEC_MII_DATA);
1887
1888 /* wait for end of transfer */
1889 ret = fec_enet_mdio_wait(fep);
1890 if (ret) {
1891 netdev_err(fep->netdev, "MDIO address write timeout\n");
1892 goto out;
1893 }
1894 } else {
1895 /* C22 write */
1896 frame_start = FEC_MMFR_ST;
1897 frame_addr = regnum;
1898 }
1899
1900 /* start a write op */
1901 writel(frame_start | FEC_MMFR_OP_WRITE |
1902 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1903 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1904 fep->hwp + FEC_MII_DATA);
1905
1906 /* wait for end of transfer */
1907 ret = fec_enet_mdio_wait(fep);
1908 if (ret)
1909 netdev_err(fep->netdev, "MDIO write timeout\n");
1910
1911 out:
1912 pm_runtime_mark_last_busy(dev);
1913 pm_runtime_put_autosuspend(dev);
1914
1915 return ret;
1916 }
1917
fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)1918 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
1919 {
1920 struct fec_enet_private *fep = netdev_priv(ndev);
1921 struct phy_device *phy_dev = ndev->phydev;
1922
1923 if (phy_dev) {
1924 phy_reset_after_clk_enable(phy_dev);
1925 } else if (fep->phy_node) {
1926 /*
1927 * If the PHY still is not bound to the MAC, but there is
1928 * OF PHY node and a matching PHY device instance already,
1929 * use the OF PHY node to obtain the PHY device instance,
1930 * and then use that PHY device instance when triggering
1931 * the PHY reset.
1932 */
1933 phy_dev = of_phy_find_device(fep->phy_node);
1934 phy_reset_after_clk_enable(phy_dev);
1935 put_device(&phy_dev->mdio.dev);
1936 }
1937 }
1938
fec_enet_clk_enable(struct net_device *ndev, bool enable)1939 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1940 {
1941 struct fec_enet_private *fep = netdev_priv(ndev);
1942 int ret;
1943
1944 if (enable) {
1945 ret = clk_prepare_enable(fep->clk_enet_out);
1946 if (ret)
1947 return ret;
1948
1949 if (fep->clk_ptp) {
1950 mutex_lock(&fep->ptp_clk_mutex);
1951 ret = clk_prepare_enable(fep->clk_ptp);
1952 if (ret) {
1953 mutex_unlock(&fep->ptp_clk_mutex);
1954 goto failed_clk_ptp;
1955 } else {
1956 fep->ptp_clk_on = true;
1957 }
1958 mutex_unlock(&fep->ptp_clk_mutex);
1959 }
1960
1961 ret = clk_prepare_enable(fep->clk_ref);
1962 if (ret)
1963 goto failed_clk_ref;
1964
1965 fec_enet_phy_reset_after_clk_enable(ndev);
1966 } else {
1967 clk_disable_unprepare(fep->clk_enet_out);
1968 if (fep->clk_ptp) {
1969 mutex_lock(&fep->ptp_clk_mutex);
1970 clk_disable_unprepare(fep->clk_ptp);
1971 fep->ptp_clk_on = false;
1972 mutex_unlock(&fep->ptp_clk_mutex);
1973 }
1974 clk_disable_unprepare(fep->clk_ref);
1975 }
1976
1977 return 0;
1978
1979 failed_clk_ref:
1980 if (fep->clk_ptp) {
1981 mutex_lock(&fep->ptp_clk_mutex);
1982 clk_disable_unprepare(fep->clk_ptp);
1983 fep->ptp_clk_on = false;
1984 mutex_unlock(&fep->ptp_clk_mutex);
1985 }
1986 failed_clk_ptp:
1987 clk_disable_unprepare(fep->clk_enet_out);
1988
1989 return ret;
1990 }
1991
fec_enet_mii_probe(struct net_device *ndev)1992 static int fec_enet_mii_probe(struct net_device *ndev)
1993 {
1994 struct fec_enet_private *fep = netdev_priv(ndev);
1995 struct phy_device *phy_dev = NULL;
1996 char mdio_bus_id[MII_BUS_ID_SIZE];
1997 char phy_name[MII_BUS_ID_SIZE + 3];
1998 int phy_id;
1999 int dev_id = fep->dev_id;
2000
2001 if (fep->phy_node) {
2002 phy_dev = of_phy_connect(ndev, fep->phy_node,
2003 &fec_enet_adjust_link, 0,
2004 fep->phy_interface);
2005 if (!phy_dev) {
2006 netdev_err(ndev, "Unable to connect to phy\n");
2007 return -ENODEV;
2008 }
2009 } else {
2010 /* check for attached phy */
2011 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2012 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2013 continue;
2014 if (dev_id--)
2015 continue;
2016 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2017 break;
2018 }
2019
2020 if (phy_id >= PHY_MAX_ADDR) {
2021 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2022 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2023 phy_id = 0;
2024 }
2025
2026 snprintf(phy_name, sizeof(phy_name),
2027 PHY_ID_FMT, mdio_bus_id, phy_id);
2028 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2029 fep->phy_interface);
2030 }
2031
2032 if (IS_ERR(phy_dev)) {
2033 netdev_err(ndev, "could not attach to PHY\n");
2034 return PTR_ERR(phy_dev);
2035 }
2036
2037 /* mask with MAC supported features */
2038 if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2039 phy_set_max_speed(phy_dev, 1000);
2040 phy_remove_link_mode(phy_dev,
2041 ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2042 #if !defined(CONFIG_M5272)
2043 phy_support_sym_pause(phy_dev);
2044 #endif
2045 }
2046 else
2047 phy_set_max_speed(phy_dev, 100);
2048
2049 fep->link = 0;
2050 fep->full_duplex = 0;
2051
2052 phy_attached_info(phy_dev);
2053
2054 return 0;
2055 }
2056
fec_enet_mii_init(struct platform_device *pdev)2057 static int fec_enet_mii_init(struct platform_device *pdev)
2058 {
2059 static struct mii_bus *fec0_mii_bus;
2060 struct net_device *ndev = platform_get_drvdata(pdev);
2061 struct fec_enet_private *fep = netdev_priv(ndev);
2062 bool suppress_preamble = false;
2063 struct device_node *node;
2064 int err = -ENXIO;
2065 u32 mii_speed, holdtime;
2066 u32 bus_freq;
2067
2068 /*
2069 * The i.MX28 dual fec interfaces are not equal.
2070 * Here are the differences:
2071 *
2072 * - fec0 supports MII & RMII modes while fec1 only supports RMII
2073 * - fec0 acts as the 1588 time master while fec1 is slave
2074 * - external phys can only be configured by fec0
2075 *
2076 * That is to say fec1 can not work independently. It only works
2077 * when fec0 is working. The reason behind this design is that the
2078 * second interface is added primarily for Switch mode.
2079 *
2080 * Because of the last point above, both phys are attached on fec0
2081 * mdio interface in board design, and need to be configured by
2082 * fec0 mii_bus.
2083 */
2084 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2085 /* fec1 uses fec0 mii_bus */
2086 if (mii_cnt && fec0_mii_bus) {
2087 fep->mii_bus = fec0_mii_bus;
2088 mii_cnt++;
2089 return 0;
2090 }
2091 return -ENOENT;
2092 }
2093
2094 bus_freq = 2500000; /* 2.5MHz by default */
2095 node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2096 if (node) {
2097 of_property_read_u32(node, "clock-frequency", &bus_freq);
2098 suppress_preamble = of_property_read_bool(node,
2099 "suppress-preamble");
2100 }
2101
2102 /*
2103 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2104 *
2105 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2106 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
2107 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2108 * document.
2109 */
2110 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2111 if (fep->quirks & FEC_QUIRK_ENET_MAC)
2112 mii_speed--;
2113 if (mii_speed > 63) {
2114 dev_err(&pdev->dev,
2115 "fec clock (%lu) too fast to get right mii speed\n",
2116 clk_get_rate(fep->clk_ipg));
2117 err = -EINVAL;
2118 goto err_out;
2119 }
2120
2121 /*
2122 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2123 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2124 * versions are RAZ there, so just ignore the difference and write the
2125 * register always.
2126 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2127 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2128 * output.
2129 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2130 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2131 * holdtime cannot result in a value greater than 3.
2132 */
2133 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2134
2135 fep->phy_speed = mii_speed << 1 | holdtime << 8;
2136
2137 if (suppress_preamble)
2138 fep->phy_speed |= BIT(7);
2139
2140 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2141 /* Clear MMFR to avoid to generate MII event by writing MSCR.
2142 * MII event generation condition:
2143 * - writing MSCR:
2144 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2145 * mscr_reg_data_in[7:0] != 0
2146 * - writing MMFR:
2147 * - mscr[7:0]_not_zero
2148 */
2149 writel(0, fep->hwp + FEC_MII_DATA);
2150 }
2151
2152 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2153
2154 /* Clear any pending transaction complete indication */
2155 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2156
2157 fep->mii_bus = mdiobus_alloc();
2158 if (fep->mii_bus == NULL) {
2159 err = -ENOMEM;
2160 goto err_out;
2161 }
2162
2163 fep->mii_bus->name = "fec_enet_mii_bus";
2164 fep->mii_bus->read = fec_enet_mdio_read;
2165 fep->mii_bus->write = fec_enet_mdio_write;
2166 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2167 pdev->name, fep->dev_id + 1);
2168 fep->mii_bus->priv = fep;
2169 fep->mii_bus->parent = &pdev->dev;
2170
2171 err = of_mdiobus_register(fep->mii_bus, node);
2172 if (err)
2173 goto err_out_free_mdiobus;
2174 of_node_put(node);
2175
2176 mii_cnt++;
2177
2178 /* save fec0 mii_bus */
2179 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2180 fec0_mii_bus = fep->mii_bus;
2181
2182 return 0;
2183
2184 err_out_free_mdiobus:
2185 mdiobus_free(fep->mii_bus);
2186 err_out:
2187 of_node_put(node);
2188 return err;
2189 }
2190
fec_enet_mii_remove(struct fec_enet_private *fep)2191 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2192 {
2193 if (--mii_cnt == 0) {
2194 mdiobus_unregister(fep->mii_bus);
2195 mdiobus_free(fep->mii_bus);
2196 }
2197 }
2198
fec_enet_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)2199 static void fec_enet_get_drvinfo(struct net_device *ndev,
2200 struct ethtool_drvinfo *info)
2201 {
2202 struct fec_enet_private *fep = netdev_priv(ndev);
2203
2204 strlcpy(info->driver, fep->pdev->dev.driver->name,
2205 sizeof(info->driver));
2206 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2207 }
2208
fec_enet_get_regs_len(struct net_device *ndev)2209 static int fec_enet_get_regs_len(struct net_device *ndev)
2210 {
2211 struct fec_enet_private *fep = netdev_priv(ndev);
2212 struct resource *r;
2213 int s = 0;
2214
2215 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2216 if (r)
2217 s = resource_size(r);
2218
2219 return s;
2220 }
2221
2222 /* List of registers that can be safety be read to dump them with ethtool */
2223 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2224 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2225 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2226 static __u32 fec_enet_register_version = 2;
2227 static u32 fec_enet_register_offset[] = {
2228 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2229 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2230 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2231 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2232 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2233 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2234 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2235 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2236 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2237 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2238 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2239 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2240 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2241 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2242 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2243 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2244 RMON_T_P_GTE2048, RMON_T_OCTETS,
2245 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2246 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2247 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2248 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2249 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2250 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2251 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2252 RMON_R_P_GTE2048, RMON_R_OCTETS,
2253 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2254 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2255 };
2256 /* for i.MX6ul */
2257 static u32 fec_enet_register_offset_6ul[] = {
2258 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2259 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2260 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2261 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2262 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2263 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2264 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2265 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2266 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2267 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2268 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2269 RMON_T_P_GTE2048, RMON_T_OCTETS,
2270 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2271 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2272 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2273 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2274 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2275 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2276 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2277 RMON_R_P_GTE2048, RMON_R_OCTETS,
2278 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2279 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2280 };
2281 #else
2282 static __u32 fec_enet_register_version = 1;
2283 static u32 fec_enet_register_offset[] = {
2284 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2285 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2286 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2287 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2288 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2289 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2290 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2291 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2292 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2293 };
2294 #endif
2295
fec_enet_get_regs(struct net_device *ndev, struct ethtool_regs *regs, void *regbuf)2296 static void fec_enet_get_regs(struct net_device *ndev,
2297 struct ethtool_regs *regs, void *regbuf)
2298 {
2299 struct fec_enet_private *fep = netdev_priv(ndev);
2300 u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2301 struct device *dev = &fep->pdev->dev;
2302 u32 *buf = (u32 *)regbuf;
2303 u32 i, off;
2304 int ret;
2305 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2306 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2307 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2308 u32 *reg_list;
2309 u32 reg_cnt;
2310
2311 if (!of_machine_is_compatible("fsl,imx6ul")) {
2312 reg_list = fec_enet_register_offset;
2313 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2314 } else {
2315 reg_list = fec_enet_register_offset_6ul;
2316 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2317 }
2318 #else
2319 /* coldfire */
2320 static u32 *reg_list = fec_enet_register_offset;
2321 static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2322 #endif
2323 ret = pm_runtime_resume_and_get(dev);
2324 if (ret < 0)
2325 return;
2326
2327 regs->version = fec_enet_register_version;
2328
2329 memset(buf, 0, regs->len);
2330
2331 for (i = 0; i < reg_cnt; i++) {
2332 off = reg_list[i];
2333
2334 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2335 !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2336 continue;
2337
2338 off >>= 2;
2339 buf[off] = readl(&theregs[off]);
2340 }
2341
2342 pm_runtime_mark_last_busy(dev);
2343 pm_runtime_put_autosuspend(dev);
2344 }
2345
fec_enet_get_ts_info(struct net_device *ndev, struct ethtool_ts_info *info)2346 static int fec_enet_get_ts_info(struct net_device *ndev,
2347 struct ethtool_ts_info *info)
2348 {
2349 struct fec_enet_private *fep = netdev_priv(ndev);
2350
2351 if (fep->bufdesc_ex) {
2352
2353 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2354 SOF_TIMESTAMPING_RX_SOFTWARE |
2355 SOF_TIMESTAMPING_SOFTWARE |
2356 SOF_TIMESTAMPING_TX_HARDWARE |
2357 SOF_TIMESTAMPING_RX_HARDWARE |
2358 SOF_TIMESTAMPING_RAW_HARDWARE;
2359 if (fep->ptp_clock)
2360 info->phc_index = ptp_clock_index(fep->ptp_clock);
2361 else
2362 info->phc_index = -1;
2363
2364 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2365 (1 << HWTSTAMP_TX_ON);
2366
2367 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2368 (1 << HWTSTAMP_FILTER_ALL);
2369 return 0;
2370 } else {
2371 return ethtool_op_get_ts_info(ndev, info);
2372 }
2373 }
2374
2375 #if !defined(CONFIG_M5272)
2376
fec_enet_get_pauseparam(struct net_device *ndev, struct ethtool_pauseparam *pause)2377 static void fec_enet_get_pauseparam(struct net_device *ndev,
2378 struct ethtool_pauseparam *pause)
2379 {
2380 struct fec_enet_private *fep = netdev_priv(ndev);
2381
2382 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2383 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2384 pause->rx_pause = pause->tx_pause;
2385 }
2386
fec_enet_set_pauseparam(struct net_device *ndev, struct ethtool_pauseparam *pause)2387 static int fec_enet_set_pauseparam(struct net_device *ndev,
2388 struct ethtool_pauseparam *pause)
2389 {
2390 struct fec_enet_private *fep = netdev_priv(ndev);
2391
2392 if (!ndev->phydev)
2393 return -ENODEV;
2394
2395 if (pause->tx_pause != pause->rx_pause) {
2396 netdev_info(ndev,
2397 "hardware only support enable/disable both tx and rx");
2398 return -EINVAL;
2399 }
2400
2401 fep->pause_flag = 0;
2402
2403 /* tx pause must be same as rx pause */
2404 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2405 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2406
2407 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2408 pause->autoneg);
2409
2410 if (pause->autoneg) {
2411 if (netif_running(ndev))
2412 fec_stop(ndev);
2413 phy_start_aneg(ndev->phydev);
2414 }
2415 if (netif_running(ndev)) {
2416 napi_disable(&fep->napi);
2417 netif_tx_lock_bh(ndev);
2418 fec_restart(ndev);
2419 netif_tx_wake_all_queues(ndev);
2420 netif_tx_unlock_bh(ndev);
2421 napi_enable(&fep->napi);
2422 }
2423
2424 return 0;
2425 }
2426
2427 static const struct fec_stat {
2428 char name[ETH_GSTRING_LEN];
2429 u16 offset;
2430 } fec_stats[] = {
2431 /* RMON TX */
2432 { "tx_dropped", RMON_T_DROP },
2433 { "tx_packets", RMON_T_PACKETS },
2434 { "tx_broadcast", RMON_T_BC_PKT },
2435 { "tx_multicast", RMON_T_MC_PKT },
2436 { "tx_crc_errors", RMON_T_CRC_ALIGN },
2437 { "tx_undersize", RMON_T_UNDERSIZE },
2438 { "tx_oversize", RMON_T_OVERSIZE },
2439 { "tx_fragment", RMON_T_FRAG },
2440 { "tx_jabber", RMON_T_JAB },
2441 { "tx_collision", RMON_T_COL },
2442 { "tx_64byte", RMON_T_P64 },
2443 { "tx_65to127byte", RMON_T_P65TO127 },
2444 { "tx_128to255byte", RMON_T_P128TO255 },
2445 { "tx_256to511byte", RMON_T_P256TO511 },
2446 { "tx_512to1023byte", RMON_T_P512TO1023 },
2447 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2448 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2449 { "tx_octets", RMON_T_OCTETS },
2450
2451 /* IEEE TX */
2452 { "IEEE_tx_drop", IEEE_T_DROP },
2453 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2454 { "IEEE_tx_1col", IEEE_T_1COL },
2455 { "IEEE_tx_mcol", IEEE_T_MCOL },
2456 { "IEEE_tx_def", IEEE_T_DEF },
2457 { "IEEE_tx_lcol", IEEE_T_LCOL },
2458 { "IEEE_tx_excol", IEEE_T_EXCOL },
2459 { "IEEE_tx_macerr", IEEE_T_MACERR },
2460 { "IEEE_tx_cserr", IEEE_T_CSERR },
2461 { "IEEE_tx_sqe", IEEE_T_SQE },
2462 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2463 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2464
2465 /* RMON RX */
2466 { "rx_packets", RMON_R_PACKETS },
2467 { "rx_broadcast", RMON_R_BC_PKT },
2468 { "rx_multicast", RMON_R_MC_PKT },
2469 { "rx_crc_errors", RMON_R_CRC_ALIGN },
2470 { "rx_undersize", RMON_R_UNDERSIZE },
2471 { "rx_oversize", RMON_R_OVERSIZE },
2472 { "rx_fragment", RMON_R_FRAG },
2473 { "rx_jabber", RMON_R_JAB },
2474 { "rx_64byte", RMON_R_P64 },
2475 { "rx_65to127byte", RMON_R_P65TO127 },
2476 { "rx_128to255byte", RMON_R_P128TO255 },
2477 { "rx_256to511byte", RMON_R_P256TO511 },
2478 { "rx_512to1023byte", RMON_R_P512TO1023 },
2479 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2480 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2481 { "rx_octets", RMON_R_OCTETS },
2482
2483 /* IEEE RX */
2484 { "IEEE_rx_drop", IEEE_R_DROP },
2485 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2486 { "IEEE_rx_crc", IEEE_R_CRC },
2487 { "IEEE_rx_align", IEEE_R_ALIGN },
2488 { "IEEE_rx_macerr", IEEE_R_MACERR },
2489 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2490 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2491 };
2492
2493 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64))
2494
fec_enet_update_ethtool_stats(struct net_device *dev)2495 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2496 {
2497 struct fec_enet_private *fep = netdev_priv(dev);
2498 int i;
2499
2500 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2501 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2502 }
2503
fec_enet_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)2504 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2505 struct ethtool_stats *stats, u64 *data)
2506 {
2507 struct fec_enet_private *fep = netdev_priv(dev);
2508
2509 if (netif_running(dev))
2510 fec_enet_update_ethtool_stats(dev);
2511
2512 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2513 }
2514
fec_enet_get_strings(struct net_device *netdev, u32 stringset, u8 *data)2515 static void fec_enet_get_strings(struct net_device *netdev,
2516 u32 stringset, u8 *data)
2517 {
2518 int i;
2519 switch (stringset) {
2520 case ETH_SS_STATS:
2521 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2522 memcpy(data + i * ETH_GSTRING_LEN,
2523 fec_stats[i].name, ETH_GSTRING_LEN);
2524 break;
2525 }
2526 }
2527
fec_enet_get_sset_count(struct net_device *dev, int sset)2528 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2529 {
2530 switch (sset) {
2531 case ETH_SS_STATS:
2532 return ARRAY_SIZE(fec_stats);
2533 default:
2534 return -EOPNOTSUPP;
2535 }
2536 }
2537
fec_enet_clear_ethtool_stats(struct net_device *dev)2538 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2539 {
2540 struct fec_enet_private *fep = netdev_priv(dev);
2541 int i;
2542
2543 /* Disable MIB statistics counters */
2544 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2545
2546 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2547 writel(0, fep->hwp + fec_stats[i].offset);
2548
2549 /* Don't disable MIB statistics counters */
2550 writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2551 }
2552
2553 #else /* !defined(CONFIG_M5272) */
2554 #define FEC_STATS_SIZE 0
fec_enet_update_ethtool_stats(struct net_device *dev)2555 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2556 {
2557 }
2558
fec_enet_clear_ethtool_stats(struct net_device *dev)2559 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2560 {
2561 }
2562 #endif /* !defined(CONFIG_M5272) */
2563
2564 /* ITR clock source is enet system clock (clk_ahb).
2565 * TCTT unit is cycle_ns * 64 cycle
2566 * So, the ICTT value = X us / (cycle_ns * 64)
2567 */
fec_enet_us_to_itr_clock(struct net_device *ndev, int us)2568 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2569 {
2570 struct fec_enet_private *fep = netdev_priv(ndev);
2571
2572 return us * (fep->itr_clk_rate / 64000) / 1000;
2573 }
2574
2575 /* Set threshold for interrupt coalescing */
fec_enet_itr_coal_set(struct net_device *ndev)2576 static void fec_enet_itr_coal_set(struct net_device *ndev)
2577 {
2578 struct fec_enet_private *fep = netdev_priv(ndev);
2579 int rx_itr, tx_itr;
2580
2581 /* Must be greater than zero to avoid unpredictable behavior */
2582 if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2583 !fep->tx_time_itr || !fep->tx_pkts_itr)
2584 return;
2585
2586 /* Select enet system clock as Interrupt Coalescing
2587 * timer Clock Source
2588 */
2589 rx_itr = FEC_ITR_CLK_SEL;
2590 tx_itr = FEC_ITR_CLK_SEL;
2591
2592 /* set ICFT and ICTT */
2593 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2594 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2595 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2596 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2597
2598 rx_itr |= FEC_ITR_EN;
2599 tx_itr |= FEC_ITR_EN;
2600
2601 writel(tx_itr, fep->hwp + FEC_TXIC0);
2602 writel(rx_itr, fep->hwp + FEC_RXIC0);
2603 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2604 writel(tx_itr, fep->hwp + FEC_TXIC1);
2605 writel(rx_itr, fep->hwp + FEC_RXIC1);
2606 writel(tx_itr, fep->hwp + FEC_TXIC2);
2607 writel(rx_itr, fep->hwp + FEC_RXIC2);
2608 }
2609 }
2610
2611 static int
fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)2612 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2613 {
2614 struct fec_enet_private *fep = netdev_priv(ndev);
2615
2616 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2617 return -EOPNOTSUPP;
2618
2619 ec->rx_coalesce_usecs = fep->rx_time_itr;
2620 ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2621
2622 ec->tx_coalesce_usecs = fep->tx_time_itr;
2623 ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2624
2625 return 0;
2626 }
2627
2628 static int
fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)2629 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2630 {
2631 struct fec_enet_private *fep = netdev_priv(ndev);
2632 struct device *dev = &fep->pdev->dev;
2633 unsigned int cycle;
2634
2635 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2636 return -EOPNOTSUPP;
2637
2638 if (ec->rx_max_coalesced_frames > 255) {
2639 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2640 return -EINVAL;
2641 }
2642
2643 if (ec->tx_max_coalesced_frames > 255) {
2644 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2645 return -EINVAL;
2646 }
2647
2648 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2649 if (cycle > 0xFFFF) {
2650 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2651 return -EINVAL;
2652 }
2653
2654 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2655 if (cycle > 0xFFFF) {
2656 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2657 return -EINVAL;
2658 }
2659
2660 fep->rx_time_itr = ec->rx_coalesce_usecs;
2661 fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2662
2663 fep->tx_time_itr = ec->tx_coalesce_usecs;
2664 fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2665
2666 fec_enet_itr_coal_set(ndev);
2667
2668 return 0;
2669 }
2670
fec_enet_itr_coal_init(struct net_device *ndev)2671 static void fec_enet_itr_coal_init(struct net_device *ndev)
2672 {
2673 struct ethtool_coalesce ec;
2674
2675 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2676 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2677
2678 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2679 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2680
2681 fec_enet_set_coalesce(ndev, &ec);
2682 }
2683
fec_enet_get_tunable(struct net_device *netdev, const struct ethtool_tunable *tuna, void *data)2684 static int fec_enet_get_tunable(struct net_device *netdev,
2685 const struct ethtool_tunable *tuna,
2686 void *data)
2687 {
2688 struct fec_enet_private *fep = netdev_priv(netdev);
2689 int ret = 0;
2690
2691 switch (tuna->id) {
2692 case ETHTOOL_RX_COPYBREAK:
2693 *(u32 *)data = fep->rx_copybreak;
2694 break;
2695 default:
2696 ret = -EINVAL;
2697 break;
2698 }
2699
2700 return ret;
2701 }
2702
fec_enet_set_tunable(struct net_device *netdev, const struct ethtool_tunable *tuna, const void *data)2703 static int fec_enet_set_tunable(struct net_device *netdev,
2704 const struct ethtool_tunable *tuna,
2705 const void *data)
2706 {
2707 struct fec_enet_private *fep = netdev_priv(netdev);
2708 int ret = 0;
2709
2710 switch (tuna->id) {
2711 case ETHTOOL_RX_COPYBREAK:
2712 fep->rx_copybreak = *(u32 *)data;
2713 break;
2714 default:
2715 ret = -EINVAL;
2716 break;
2717 }
2718
2719 return ret;
2720 }
2721
2722 static void
fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)2723 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2724 {
2725 struct fec_enet_private *fep = netdev_priv(ndev);
2726
2727 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2728 wol->supported = WAKE_MAGIC;
2729 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2730 } else {
2731 wol->supported = wol->wolopts = 0;
2732 }
2733 }
2734
2735 static int
fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)2736 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2737 {
2738 struct fec_enet_private *fep = netdev_priv(ndev);
2739
2740 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2741 return -EINVAL;
2742
2743 if (wol->wolopts & ~WAKE_MAGIC)
2744 return -EINVAL;
2745
2746 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2747 if (device_may_wakeup(&ndev->dev)) {
2748 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2749 if (fep->irq[0] > 0)
2750 enable_irq_wake(fep->irq[0]);
2751 } else {
2752 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2753 if (fep->irq[0] > 0)
2754 disable_irq_wake(fep->irq[0]);
2755 }
2756
2757 return 0;
2758 }
2759
2760 static const struct ethtool_ops fec_enet_ethtool_ops = {
2761 .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2762 ETHTOOL_COALESCE_MAX_FRAMES,
2763 .get_drvinfo = fec_enet_get_drvinfo,
2764 .get_regs_len = fec_enet_get_regs_len,
2765 .get_regs = fec_enet_get_regs,
2766 .nway_reset = phy_ethtool_nway_reset,
2767 .get_link = ethtool_op_get_link,
2768 .get_coalesce = fec_enet_get_coalesce,
2769 .set_coalesce = fec_enet_set_coalesce,
2770 #ifndef CONFIG_M5272
2771 .get_pauseparam = fec_enet_get_pauseparam,
2772 .set_pauseparam = fec_enet_set_pauseparam,
2773 .get_strings = fec_enet_get_strings,
2774 .get_ethtool_stats = fec_enet_get_ethtool_stats,
2775 .get_sset_count = fec_enet_get_sset_count,
2776 #endif
2777 .get_ts_info = fec_enet_get_ts_info,
2778 .get_tunable = fec_enet_get_tunable,
2779 .set_tunable = fec_enet_set_tunable,
2780 .get_wol = fec_enet_get_wol,
2781 .set_wol = fec_enet_set_wol,
2782 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2783 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2784 };
2785
fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)2786 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2787 {
2788 struct fec_enet_private *fep = netdev_priv(ndev);
2789 struct phy_device *phydev = ndev->phydev;
2790
2791 if (!netif_running(ndev))
2792 return -EINVAL;
2793
2794 if (!phydev)
2795 return -ENODEV;
2796
2797 if (fep->bufdesc_ex) {
2798 bool use_fec_hwts = !phy_has_hwtstamp(phydev);
2799
2800 if (cmd == SIOCSHWTSTAMP) {
2801 if (use_fec_hwts)
2802 return fec_ptp_set(ndev, rq);
2803 fec_ptp_disable_hwts(ndev);
2804 } else if (cmd == SIOCGHWTSTAMP) {
2805 if (use_fec_hwts)
2806 return fec_ptp_get(ndev, rq);
2807 }
2808 }
2809
2810 return phy_mii_ioctl(phydev, rq, cmd);
2811 }
2812
fec_enet_free_buffers(struct net_device *ndev)2813 static void fec_enet_free_buffers(struct net_device *ndev)
2814 {
2815 struct fec_enet_private *fep = netdev_priv(ndev);
2816 unsigned int i;
2817 struct sk_buff *skb;
2818 struct bufdesc *bdp;
2819 struct fec_enet_priv_tx_q *txq;
2820 struct fec_enet_priv_rx_q *rxq;
2821 unsigned int q;
2822
2823 for (q = 0; q < fep->num_rx_queues; q++) {
2824 rxq = fep->rx_queue[q];
2825 bdp = rxq->bd.base;
2826 for (i = 0; i < rxq->bd.ring_size; i++) {
2827 skb = rxq->rx_skbuff[i];
2828 rxq->rx_skbuff[i] = NULL;
2829 if (skb) {
2830 dma_unmap_single(&fep->pdev->dev,
2831 fec32_to_cpu(bdp->cbd_bufaddr),
2832 FEC_ENET_RX_FRSIZE - fep->rx_align,
2833 DMA_FROM_DEVICE);
2834 dev_kfree_skb(skb);
2835 }
2836 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2837 }
2838 }
2839
2840 for (q = 0; q < fep->num_tx_queues; q++) {
2841 txq = fep->tx_queue[q];
2842 for (i = 0; i < txq->bd.ring_size; i++) {
2843 kfree(txq->tx_bounce[i]);
2844 txq->tx_bounce[i] = NULL;
2845 skb = txq->tx_skbuff[i];
2846 txq->tx_skbuff[i] = NULL;
2847 dev_kfree_skb(skb);
2848 }
2849 }
2850 }
2851
fec_enet_free_queue(struct net_device *ndev)2852 static void fec_enet_free_queue(struct net_device *ndev)
2853 {
2854 struct fec_enet_private *fep = netdev_priv(ndev);
2855 int i;
2856 struct fec_enet_priv_tx_q *txq;
2857
2858 for (i = 0; i < fep->num_tx_queues; i++)
2859 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2860 txq = fep->tx_queue[i];
2861 dma_free_coherent(&fep->pdev->dev,
2862 txq->bd.ring_size * TSO_HEADER_SIZE,
2863 txq->tso_hdrs,
2864 txq->tso_hdrs_dma);
2865 }
2866
2867 for (i = 0; i < fep->num_rx_queues; i++)
2868 kfree(fep->rx_queue[i]);
2869 for (i = 0; i < fep->num_tx_queues; i++)
2870 kfree(fep->tx_queue[i]);
2871 }
2872
fec_enet_alloc_queue(struct net_device *ndev)2873 static int fec_enet_alloc_queue(struct net_device *ndev)
2874 {
2875 struct fec_enet_private *fep = netdev_priv(ndev);
2876 int i;
2877 int ret = 0;
2878 struct fec_enet_priv_tx_q *txq;
2879
2880 for (i = 0; i < fep->num_tx_queues; i++) {
2881 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2882 if (!txq) {
2883 ret = -ENOMEM;
2884 goto alloc_failed;
2885 }
2886
2887 fep->tx_queue[i] = txq;
2888 txq->bd.ring_size = TX_RING_SIZE;
2889 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2890
2891 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2892 txq->tx_wake_threshold =
2893 (txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2894
2895 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2896 txq->bd.ring_size * TSO_HEADER_SIZE,
2897 &txq->tso_hdrs_dma,
2898 GFP_KERNEL);
2899 if (!txq->tso_hdrs) {
2900 ret = -ENOMEM;
2901 goto alloc_failed;
2902 }
2903 }
2904
2905 for (i = 0; i < fep->num_rx_queues; i++) {
2906 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2907 GFP_KERNEL);
2908 if (!fep->rx_queue[i]) {
2909 ret = -ENOMEM;
2910 goto alloc_failed;
2911 }
2912
2913 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2914 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2915 }
2916 return ret;
2917
2918 alloc_failed:
2919 fec_enet_free_queue(ndev);
2920 return ret;
2921 }
2922
2923 static int
fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)2924 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2925 {
2926 struct fec_enet_private *fep = netdev_priv(ndev);
2927 unsigned int i;
2928 struct sk_buff *skb;
2929 struct bufdesc *bdp;
2930 struct fec_enet_priv_rx_q *rxq;
2931
2932 rxq = fep->rx_queue[queue];
2933 bdp = rxq->bd.base;
2934 for (i = 0; i < rxq->bd.ring_size; i++) {
2935 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2936 if (!skb)
2937 goto err_alloc;
2938
2939 if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2940 dev_kfree_skb(skb);
2941 goto err_alloc;
2942 }
2943
2944 rxq->rx_skbuff[i] = skb;
2945 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2946
2947 if (fep->bufdesc_ex) {
2948 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2949 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2950 }
2951
2952 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2953 }
2954
2955 /* Set the last buffer to wrap. */
2956 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2957 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2958 return 0;
2959
2960 err_alloc:
2961 fec_enet_free_buffers(ndev);
2962 return -ENOMEM;
2963 }
2964
2965 static int
fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)2966 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2967 {
2968 struct fec_enet_private *fep = netdev_priv(ndev);
2969 unsigned int i;
2970 struct bufdesc *bdp;
2971 struct fec_enet_priv_tx_q *txq;
2972
2973 txq = fep->tx_queue[queue];
2974 bdp = txq->bd.base;
2975 for (i = 0; i < txq->bd.ring_size; i++) {
2976 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2977 if (!txq->tx_bounce[i])
2978 goto err_alloc;
2979
2980 bdp->cbd_sc = cpu_to_fec16(0);
2981 bdp->cbd_bufaddr = cpu_to_fec32(0);
2982
2983 if (fep->bufdesc_ex) {
2984 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2985 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2986 }
2987
2988 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2989 }
2990
2991 /* Set the last buffer to wrap. */
2992 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2993 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2994
2995 return 0;
2996
2997 err_alloc:
2998 fec_enet_free_buffers(ndev);
2999 return -ENOMEM;
3000 }
3001
fec_enet_alloc_buffers(struct net_device *ndev)3002 static int fec_enet_alloc_buffers(struct net_device *ndev)
3003 {
3004 struct fec_enet_private *fep = netdev_priv(ndev);
3005 unsigned int i;
3006
3007 for (i = 0; i < fep->num_rx_queues; i++)
3008 if (fec_enet_alloc_rxq_buffers(ndev, i))
3009 return -ENOMEM;
3010
3011 for (i = 0; i < fep->num_tx_queues; i++)
3012 if (fec_enet_alloc_txq_buffers(ndev, i))
3013 return -ENOMEM;
3014 return 0;
3015 }
3016
3017 static int
fec_enet_open(struct net_device *ndev)3018 fec_enet_open(struct net_device *ndev)
3019 {
3020 struct fec_enet_private *fep = netdev_priv(ndev);
3021 int ret;
3022 bool reset_again;
3023
3024 ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3025 if (ret < 0)
3026 return ret;
3027
3028 pinctrl_pm_select_default_state(&fep->pdev->dev);
3029 ret = fec_enet_clk_enable(ndev, true);
3030 if (ret)
3031 goto clk_enable;
3032
3033 /* During the first fec_enet_open call the PHY isn't probed at this
3034 * point. Therefore the phy_reset_after_clk_enable() call within
3035 * fec_enet_clk_enable() fails. As we need this reset in order to be
3036 * sure the PHY is working correctly we check if we need to reset again
3037 * later when the PHY is probed
3038 */
3039 if (ndev->phydev && ndev->phydev->drv)
3040 reset_again = false;
3041 else
3042 reset_again = true;
3043
3044 /* I should reset the ring buffers here, but I don't yet know
3045 * a simple way to do that.
3046 */
3047
3048 ret = fec_enet_alloc_buffers(ndev);
3049 if (ret)
3050 goto err_enet_alloc;
3051
3052 /* Init MAC prior to mii bus probe */
3053 fec_restart(ndev);
3054
3055 /* Call phy_reset_after_clk_enable() again if it failed during
3056 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3057 */
3058 if (reset_again)
3059 fec_enet_phy_reset_after_clk_enable(ndev);
3060
3061 /* Probe and connect to PHY when open the interface */
3062 ret = fec_enet_mii_probe(ndev);
3063 if (ret)
3064 goto err_enet_mii_probe;
3065
3066 if (fep->quirks & FEC_QUIRK_ERR006687)
3067 imx6q_cpuidle_fec_irqs_used();
3068
3069 napi_enable(&fep->napi);
3070 phy_start(ndev->phydev);
3071 netif_tx_start_all_queues(ndev);
3072
3073 device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3074 FEC_WOL_FLAG_ENABLE);
3075
3076 return 0;
3077
3078 err_enet_mii_probe:
3079 fec_enet_free_buffers(ndev);
3080 err_enet_alloc:
3081 fec_enet_clk_enable(ndev, false);
3082 clk_enable:
3083 pm_runtime_mark_last_busy(&fep->pdev->dev);
3084 pm_runtime_put_autosuspend(&fep->pdev->dev);
3085 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3086 return ret;
3087 }
3088
3089 static int
fec_enet_close(struct net_device *ndev)3090 fec_enet_close(struct net_device *ndev)
3091 {
3092 struct fec_enet_private *fep = netdev_priv(ndev);
3093
3094 phy_stop(ndev->phydev);
3095
3096 if (netif_device_present(ndev)) {
3097 napi_disable(&fep->napi);
3098 netif_tx_disable(ndev);
3099 fec_stop(ndev);
3100 }
3101
3102 phy_disconnect(ndev->phydev);
3103
3104 if (fep->quirks & FEC_QUIRK_ERR006687)
3105 imx6q_cpuidle_fec_irqs_unused();
3106
3107 fec_enet_update_ethtool_stats(ndev);
3108
3109 fec_enet_clk_enable(ndev, false);
3110 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3111 pm_runtime_mark_last_busy(&fep->pdev->dev);
3112 pm_runtime_put_autosuspend(&fep->pdev->dev);
3113
3114 fec_enet_free_buffers(ndev);
3115
3116 return 0;
3117 }
3118
3119 /* Set or clear the multicast filter for this adaptor.
3120 * Skeleton taken from sunlance driver.
3121 * The CPM Ethernet implementation allows Multicast as well as individual
3122 * MAC address filtering. Some of the drivers check to make sure it is
3123 * a group multicast address, and discard those that are not. I guess I
3124 * will do the same for now, but just remove the test if you want
3125 * individual filtering as well (do the upper net layers want or support
3126 * this kind of feature?).
3127 */
3128
3129 #define FEC_HASH_BITS 6 /* #bits in hash */
3130
set_multicast_list(struct net_device *ndev)3131 static void set_multicast_list(struct net_device *ndev)
3132 {
3133 struct fec_enet_private *fep = netdev_priv(ndev);
3134 struct netdev_hw_addr *ha;
3135 unsigned int crc, tmp;
3136 unsigned char hash;
3137 unsigned int hash_high = 0, hash_low = 0;
3138
3139 if (ndev->flags & IFF_PROMISC) {
3140 tmp = readl(fep->hwp + FEC_R_CNTRL);
3141 tmp |= 0x8;
3142 writel(tmp, fep->hwp + FEC_R_CNTRL);
3143 return;
3144 }
3145
3146 tmp = readl(fep->hwp + FEC_R_CNTRL);
3147 tmp &= ~0x8;
3148 writel(tmp, fep->hwp + FEC_R_CNTRL);
3149
3150 if (ndev->flags & IFF_ALLMULTI) {
3151 /* Catch all multicast addresses, so set the
3152 * filter to all 1's
3153 */
3154 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3155 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3156
3157 return;
3158 }
3159
3160 /* Add the addresses in hash register */
3161 netdev_for_each_mc_addr(ha, ndev) {
3162 /* calculate crc32 value of mac address */
3163 crc = ether_crc_le(ndev->addr_len, ha->addr);
3164
3165 /* only upper 6 bits (FEC_HASH_BITS) are used
3166 * which point to specific bit in the hash registers
3167 */
3168 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3169
3170 if (hash > 31)
3171 hash_high |= 1 << (hash - 32);
3172 else
3173 hash_low |= 1 << hash;
3174 }
3175
3176 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3177 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3178 }
3179
3180 /* Set a MAC change in hardware. */
3181 static int
fec_set_mac_address(struct net_device *ndev, void *p)3182 fec_set_mac_address(struct net_device *ndev, void *p)
3183 {
3184 struct fec_enet_private *fep = netdev_priv(ndev);
3185 struct sockaddr *addr = p;
3186
3187 if (addr) {
3188 if (!is_valid_ether_addr(addr->sa_data))
3189 return -EADDRNOTAVAIL;
3190 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3191 }
3192
3193 /* Add netif status check here to avoid system hang in below case:
3194 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3195 * After ethx down, fec all clocks are gated off and then register
3196 * access causes system hang.
3197 */
3198 if (!netif_running(ndev))
3199 return 0;
3200
3201 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3202 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3203 fep->hwp + FEC_ADDR_LOW);
3204 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3205 fep->hwp + FEC_ADDR_HIGH);
3206 return 0;
3207 }
3208
3209 #ifdef CONFIG_NET_POLL_CONTROLLER
3210 /**
3211 * fec_poll_controller - FEC Poll controller function
3212 * @dev: The FEC network adapter
3213 *
3214 * Polled functionality used by netconsole and others in non interrupt mode
3215 *
3216 */
fec_poll_controller(struct net_device *dev)3217 static void fec_poll_controller(struct net_device *dev)
3218 {
3219 int i;
3220 struct fec_enet_private *fep = netdev_priv(dev);
3221
3222 for (i = 0; i < FEC_IRQ_NUM; i++) {
3223 if (fep->irq[i] > 0) {
3224 disable_irq(fep->irq[i]);
3225 fec_enet_interrupt(fep->irq[i], dev);
3226 enable_irq(fep->irq[i]);
3227 }
3228 }
3229 }
3230 #endif
3231
fec_enet_set_netdev_features(struct net_device *netdev, netdev_features_t features)3232 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3233 netdev_features_t features)
3234 {
3235 struct fec_enet_private *fep = netdev_priv(netdev);
3236 netdev_features_t changed = features ^ netdev->features;
3237
3238 netdev->features = features;
3239
3240 /* Receive checksum has been changed */
3241 if (changed & NETIF_F_RXCSUM) {
3242 if (features & NETIF_F_RXCSUM)
3243 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3244 else
3245 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3246 }
3247 }
3248
fec_set_features(struct net_device *netdev, netdev_features_t features)3249 static int fec_set_features(struct net_device *netdev,
3250 netdev_features_t features)
3251 {
3252 struct fec_enet_private *fep = netdev_priv(netdev);
3253 netdev_features_t changed = features ^ netdev->features;
3254
3255 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3256 napi_disable(&fep->napi);
3257 netif_tx_lock_bh(netdev);
3258 fec_stop(netdev);
3259 fec_enet_set_netdev_features(netdev, features);
3260 fec_restart(netdev);
3261 netif_tx_wake_all_queues(netdev);
3262 netif_tx_unlock_bh(netdev);
3263 napi_enable(&fep->napi);
3264 } else {
3265 fec_enet_set_netdev_features(netdev, features);
3266 }
3267
3268 return 0;
3269 }
3270
fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb, struct net_device *sb_dev)3271 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3272 struct net_device *sb_dev)
3273 {
3274 struct fec_enet_private *fep = netdev_priv(ndev);
3275 u16 vlan_tag = 0;
3276
3277 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3278 return netdev_pick_tx(ndev, skb, NULL);
3279
3280 /* VLAN is present in the payload.*/
3281 if (eth_type_vlan(skb->protocol)) {
3282 struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3283
3284 vlan_tag = ntohs(vhdr->h_vlan_TCI);
3285 /* VLAN is present in the skb but not yet pushed in the payload.*/
3286 } else if (skb_vlan_tag_present(skb)) {
3287 vlan_tag = skb->vlan_tci;
3288 } else {
3289 return vlan_tag;
3290 }
3291
3292 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3293 }
3294
3295 static const struct net_device_ops fec_netdev_ops = {
3296 .ndo_open = fec_enet_open,
3297 .ndo_stop = fec_enet_close,
3298 .ndo_start_xmit = fec_enet_start_xmit,
3299 .ndo_select_queue = fec_enet_select_queue,
3300 .ndo_set_rx_mode = set_multicast_list,
3301 .ndo_validate_addr = eth_validate_addr,
3302 .ndo_tx_timeout = fec_timeout,
3303 .ndo_set_mac_address = fec_set_mac_address,
3304 .ndo_do_ioctl = fec_enet_ioctl,
3305 #ifdef CONFIG_NET_POLL_CONTROLLER
3306 .ndo_poll_controller = fec_poll_controller,
3307 #endif
3308 .ndo_set_features = fec_set_features,
3309 };
3310
3311 static const unsigned short offset_des_active_rxq[] = {
3312 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3313 };
3314
3315 static const unsigned short offset_des_active_txq[] = {
3316 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3317 };
3318
3319 /*
3320 * XXX: We need to clean up on failure exits here.
3321 *
3322 */
fec_enet_init(struct net_device *ndev)3323 static int fec_enet_init(struct net_device *ndev)
3324 {
3325 struct fec_enet_private *fep = netdev_priv(ndev);
3326 struct bufdesc *cbd_base;
3327 dma_addr_t bd_dma;
3328 int bd_size;
3329 unsigned int i;
3330 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3331 sizeof(struct bufdesc);
3332 unsigned dsize_log2 = __fls(dsize);
3333 int ret;
3334
3335 WARN_ON(dsize != (1 << dsize_log2));
3336 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3337 fep->rx_align = 0xf;
3338 fep->tx_align = 0xf;
3339 #else
3340 fep->rx_align = 0x3;
3341 fep->tx_align = 0x3;
3342 #endif
3343
3344 /* Check mask of the streaming and coherent API */
3345 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3346 if (ret < 0) {
3347 dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3348 return ret;
3349 }
3350
3351 ret = fec_enet_alloc_queue(ndev);
3352 if (ret)
3353 return ret;
3354
3355 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3356
3357 /* Allocate memory for buffer descriptors. */
3358 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3359 GFP_KERNEL);
3360 if (!cbd_base) {
3361 ret = -ENOMEM;
3362 goto free_queue_mem;
3363 }
3364
3365 /* Get the Ethernet address */
3366 fec_get_mac(ndev);
3367 /* make sure MAC we just acquired is programmed into the hw */
3368 fec_set_mac_address(ndev, NULL);
3369
3370 /* Set receive and transmit descriptor base. */
3371 for (i = 0; i < fep->num_rx_queues; i++) {
3372 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3373 unsigned size = dsize * rxq->bd.ring_size;
3374
3375 rxq->bd.qid = i;
3376 rxq->bd.base = cbd_base;
3377 rxq->bd.cur = cbd_base;
3378 rxq->bd.dma = bd_dma;
3379 rxq->bd.dsize = dsize;
3380 rxq->bd.dsize_log2 = dsize_log2;
3381 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3382 bd_dma += size;
3383 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3384 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3385 }
3386
3387 for (i = 0; i < fep->num_tx_queues; i++) {
3388 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3389 unsigned size = dsize * txq->bd.ring_size;
3390
3391 txq->bd.qid = i;
3392 txq->bd.base = cbd_base;
3393 txq->bd.cur = cbd_base;
3394 txq->bd.dma = bd_dma;
3395 txq->bd.dsize = dsize;
3396 txq->bd.dsize_log2 = dsize_log2;
3397 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3398 bd_dma += size;
3399 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3400 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3401 }
3402
3403
3404 /* The FEC Ethernet specific entries in the device structure */
3405 ndev->watchdog_timeo = TX_TIMEOUT;
3406 ndev->netdev_ops = &fec_netdev_ops;
3407 ndev->ethtool_ops = &fec_enet_ethtool_ops;
3408
3409 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3410 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3411
3412 if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3413 /* enable hw VLAN support */
3414 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3415
3416 if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3417 ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3418
3419 /* enable hw accelerator */
3420 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3421 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3422 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3423 }
3424
3425 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3426 fep->tx_align = 0;
3427 fep->rx_align = 0x3f;
3428 }
3429
3430 ndev->hw_features = ndev->features;
3431
3432 fec_restart(ndev);
3433
3434 if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3435 fec_enet_clear_ethtool_stats(ndev);
3436 else
3437 fec_enet_update_ethtool_stats(ndev);
3438
3439 return 0;
3440
3441 free_queue_mem:
3442 fec_enet_free_queue(ndev);
3443 return ret;
3444 }
3445
3446 #ifdef CONFIG_OF
fec_reset_phy(struct platform_device *pdev)3447 static int fec_reset_phy(struct platform_device *pdev)
3448 {
3449 int err, phy_reset;
3450 bool active_high = false;
3451 int msec = 1, phy_post_delay = 0;
3452 struct device_node *np = pdev->dev.of_node;
3453
3454 if (!np)
3455 return 0;
3456
3457 err = of_property_read_u32(np, "phy-reset-duration", &msec);
3458 /* A sane reset duration should not be longer than 1s */
3459 if (!err && msec > 1000)
3460 msec = 1;
3461
3462 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3463 if (phy_reset == -EPROBE_DEFER)
3464 return phy_reset;
3465 else if (!gpio_is_valid(phy_reset))
3466 return 0;
3467
3468 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3469 /* valid reset duration should be less than 1s */
3470 if (!err && phy_post_delay > 1000)
3471 return -EINVAL;
3472
3473 active_high = of_property_read_bool(np, "phy-reset-active-high");
3474
3475 err = devm_gpio_request_one(&pdev->dev, phy_reset,
3476 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3477 "phy-reset");
3478 if (err) {
3479 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3480 return err;
3481 }
3482
3483 if (msec > 20)
3484 msleep(msec);
3485 else
3486 usleep_range(msec * 1000, msec * 1000 + 1000);
3487
3488 gpio_set_value_cansleep(phy_reset, !active_high);
3489
3490 if (!phy_post_delay)
3491 return 0;
3492
3493 if (phy_post_delay > 20)
3494 msleep(phy_post_delay);
3495 else
3496 usleep_range(phy_post_delay * 1000,
3497 phy_post_delay * 1000 + 1000);
3498
3499 return 0;
3500 }
3501 #else /* CONFIG_OF */
fec_reset_phy(struct platform_device *pdev)3502 static int fec_reset_phy(struct platform_device *pdev)
3503 {
3504 /*
3505 * In case of platform probe, the reset has been done
3506 * by machine code.
3507 */
3508 return 0;
3509 }
3510 #endif /* CONFIG_OF */
3511
3512 static void
fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)3513 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3514 {
3515 struct device_node *np = pdev->dev.of_node;
3516
3517 *num_tx = *num_rx = 1;
3518
3519 if (!np || !of_device_is_available(np))
3520 return;
3521
3522 /* parse the num of tx and rx queues */
3523 of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3524
3525 of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3526
3527 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3528 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3529 *num_tx);
3530 *num_tx = 1;
3531 return;
3532 }
3533
3534 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3535 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3536 *num_rx);
3537 *num_rx = 1;
3538 return;
3539 }
3540
3541 }
3542
fec_enet_get_irq_cnt(struct platform_device *pdev)3543 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3544 {
3545 int irq_cnt = platform_irq_count(pdev);
3546
3547 if (irq_cnt > FEC_IRQ_NUM)
3548 irq_cnt = FEC_IRQ_NUM; /* last for pps */
3549 else if (irq_cnt == 2)
3550 irq_cnt = 1; /* last for pps */
3551 else if (irq_cnt <= 0)
3552 irq_cnt = 1; /* At least 1 irq is needed */
3553 return irq_cnt;
3554 }
3555
fec_enet_init_stop_mode(struct fec_enet_private *fep, struct device_node *np)3556 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3557 struct device_node *np)
3558 {
3559 struct device_node *gpr_np;
3560 u32 out_val[3];
3561 int ret = 0;
3562
3563 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
3564 if (!gpr_np)
3565 return 0;
3566
3567 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
3568 ARRAY_SIZE(out_val));
3569 if (ret) {
3570 dev_dbg(&fep->pdev->dev, "no stop mode property\n");
3571 goto out;
3572 }
3573
3574 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3575 if (IS_ERR(fep->stop_gpr.gpr)) {
3576 dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3577 ret = PTR_ERR(fep->stop_gpr.gpr);
3578 fep->stop_gpr.gpr = NULL;
3579 goto out;
3580 }
3581
3582 fep->stop_gpr.reg = out_val[1];
3583 fep->stop_gpr.bit = out_val[2];
3584
3585 out:
3586 of_node_put(gpr_np);
3587
3588 return ret;
3589 }
3590
3591 static int
fec_probe(struct platform_device *pdev)3592 fec_probe(struct platform_device *pdev)
3593 {
3594 struct fec_enet_private *fep;
3595 struct fec_platform_data *pdata;
3596 phy_interface_t interface;
3597 struct net_device *ndev;
3598 int i, irq, ret = 0;
3599 const struct of_device_id *of_id;
3600 static int dev_id;
3601 struct device_node *np = pdev->dev.of_node, *phy_node;
3602 int num_tx_qs;
3603 int num_rx_qs;
3604 char irq_name[8];
3605 int irq_cnt;
3606 struct fec_devinfo *dev_info;
3607
3608 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3609
3610 /* Init network device */
3611 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3612 FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3613 if (!ndev)
3614 return -ENOMEM;
3615
3616 SET_NETDEV_DEV(ndev, &pdev->dev);
3617
3618 /* setup board info structure */
3619 fep = netdev_priv(ndev);
3620
3621 of_id = of_match_device(fec_dt_ids, &pdev->dev);
3622 if (of_id)
3623 pdev->id_entry = of_id->data;
3624 dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3625 if (dev_info)
3626 fep->quirks = dev_info->quirks;
3627
3628 fep->netdev = ndev;
3629 fep->num_rx_queues = num_rx_qs;
3630 fep->num_tx_queues = num_tx_qs;
3631
3632 #if !defined(CONFIG_M5272)
3633 /* default enable pause frame auto negotiation */
3634 if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3635 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3636 #endif
3637
3638 /* Select default pin state */
3639 pinctrl_pm_select_default_state(&pdev->dev);
3640
3641 fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3642 if (IS_ERR(fep->hwp)) {
3643 ret = PTR_ERR(fep->hwp);
3644 goto failed_ioremap;
3645 }
3646
3647 fep->pdev = pdev;
3648 fep->dev_id = dev_id++;
3649
3650 platform_set_drvdata(pdev, ndev);
3651
3652 if ((of_machine_is_compatible("fsl,imx6q") ||
3653 of_machine_is_compatible("fsl,imx6dl")) &&
3654 !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3655 fep->quirks |= FEC_QUIRK_ERR006687;
3656
3657 if (of_get_property(np, "fsl,magic-packet", NULL))
3658 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3659
3660 ret = fec_enet_init_stop_mode(fep, np);
3661 if (ret)
3662 goto failed_stop_mode;
3663
3664 phy_node = of_parse_phandle(np, "phy-handle", 0);
3665 if (!phy_node && of_phy_is_fixed_link(np)) {
3666 ret = of_phy_register_fixed_link(np);
3667 if (ret < 0) {
3668 dev_err(&pdev->dev,
3669 "broken fixed-link specification\n");
3670 goto failed_phy;
3671 }
3672 phy_node = of_node_get(np);
3673 }
3674 fep->phy_node = phy_node;
3675
3676 ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3677 if (ret) {
3678 pdata = dev_get_platdata(&pdev->dev);
3679 if (pdata)
3680 fep->phy_interface = pdata->phy;
3681 else
3682 fep->phy_interface = PHY_INTERFACE_MODE_MII;
3683 } else {
3684 fep->phy_interface = interface;
3685 }
3686
3687 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3688 if (IS_ERR(fep->clk_ipg)) {
3689 ret = PTR_ERR(fep->clk_ipg);
3690 goto failed_clk;
3691 }
3692
3693 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3694 if (IS_ERR(fep->clk_ahb)) {
3695 ret = PTR_ERR(fep->clk_ahb);
3696 goto failed_clk;
3697 }
3698
3699 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3700
3701 /* enet_out is optional, depends on board */
3702 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3703 if (IS_ERR(fep->clk_enet_out))
3704 fep->clk_enet_out = NULL;
3705
3706 fep->ptp_clk_on = false;
3707 mutex_init(&fep->ptp_clk_mutex);
3708
3709 /* clk_ref is optional, depends on board */
3710 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3711 if (IS_ERR(fep->clk_ref))
3712 fep->clk_ref = NULL;
3713
3714 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3715 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3716 if (IS_ERR(fep->clk_ptp)) {
3717 fep->clk_ptp = NULL;
3718 fep->bufdesc_ex = false;
3719 }
3720
3721 ret = fec_enet_clk_enable(ndev, true);
3722 if (ret)
3723 goto failed_clk;
3724
3725 ret = clk_prepare_enable(fep->clk_ipg);
3726 if (ret)
3727 goto failed_clk_ipg;
3728 ret = clk_prepare_enable(fep->clk_ahb);
3729 if (ret)
3730 goto failed_clk_ahb;
3731
3732 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3733 if (!IS_ERR(fep->reg_phy)) {
3734 ret = regulator_enable(fep->reg_phy);
3735 if (ret) {
3736 dev_err(&pdev->dev,
3737 "Failed to enable phy regulator: %d\n", ret);
3738 goto failed_regulator;
3739 }
3740 } else {
3741 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3742 ret = -EPROBE_DEFER;
3743 goto failed_regulator;
3744 }
3745 fep->reg_phy = NULL;
3746 }
3747
3748 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3749 pm_runtime_use_autosuspend(&pdev->dev);
3750 pm_runtime_get_noresume(&pdev->dev);
3751 pm_runtime_set_active(&pdev->dev);
3752 pm_runtime_enable(&pdev->dev);
3753
3754 ret = fec_reset_phy(pdev);
3755 if (ret)
3756 goto failed_reset;
3757
3758 irq_cnt = fec_enet_get_irq_cnt(pdev);
3759 if (fep->bufdesc_ex)
3760 fec_ptp_init(pdev, irq_cnt);
3761
3762 ret = fec_enet_init(ndev);
3763 if (ret)
3764 goto failed_init;
3765
3766 for (i = 0; i < irq_cnt; i++) {
3767 snprintf(irq_name, sizeof(irq_name), "int%d", i);
3768 irq = platform_get_irq_byname_optional(pdev, irq_name);
3769 if (irq < 0)
3770 irq = platform_get_irq(pdev, i);
3771 if (irq < 0) {
3772 ret = irq;
3773 goto failed_irq;
3774 }
3775 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3776 0, pdev->name, ndev);
3777 if (ret)
3778 goto failed_irq;
3779
3780 fep->irq[i] = irq;
3781 }
3782
3783 ret = fec_enet_mii_init(pdev);
3784 if (ret)
3785 goto failed_mii_init;
3786
3787 /* Carrier starts down, phylib will bring it up */
3788 netif_carrier_off(ndev);
3789 fec_enet_clk_enable(ndev, false);
3790 pinctrl_pm_select_sleep_state(&pdev->dev);
3791
3792 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
3793
3794 ret = register_netdev(ndev);
3795 if (ret)
3796 goto failed_register;
3797
3798 device_init_wakeup(&ndev->dev, fep->wol_flag &
3799 FEC_WOL_HAS_MAGIC_PACKET);
3800
3801 if (fep->bufdesc_ex && fep->ptp_clock)
3802 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3803
3804 fep->rx_copybreak = COPYBREAK_DEFAULT;
3805 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3806
3807 pm_runtime_mark_last_busy(&pdev->dev);
3808 pm_runtime_put_autosuspend(&pdev->dev);
3809
3810 return 0;
3811
3812 failed_register:
3813 fec_enet_mii_remove(fep);
3814 failed_mii_init:
3815 failed_irq:
3816 failed_init:
3817 fec_ptp_stop(pdev);
3818 failed_reset:
3819 pm_runtime_put_noidle(&pdev->dev);
3820 pm_runtime_disable(&pdev->dev);
3821 if (fep->reg_phy)
3822 regulator_disable(fep->reg_phy);
3823 failed_regulator:
3824 clk_disable_unprepare(fep->clk_ahb);
3825 failed_clk_ahb:
3826 clk_disable_unprepare(fep->clk_ipg);
3827 failed_clk_ipg:
3828 fec_enet_clk_enable(ndev, false);
3829 failed_clk:
3830 if (of_phy_is_fixed_link(np))
3831 of_phy_deregister_fixed_link(np);
3832 of_node_put(phy_node);
3833 failed_stop_mode:
3834 failed_phy:
3835 dev_id--;
3836 failed_ioremap:
3837 free_netdev(ndev);
3838
3839 return ret;
3840 }
3841
3842 static int
fec_drv_remove(struct platform_device *pdev)3843 fec_drv_remove(struct platform_device *pdev)
3844 {
3845 struct net_device *ndev = platform_get_drvdata(pdev);
3846 struct fec_enet_private *fep = netdev_priv(ndev);
3847 struct device_node *np = pdev->dev.of_node;
3848 int ret;
3849
3850 ret = pm_runtime_get_sync(&pdev->dev);
3851 if (ret < 0)
3852 dev_err(&pdev->dev,
3853 "Failed to resume device in remove callback (%pe)\n",
3854 ERR_PTR(ret));
3855
3856 cancel_work_sync(&fep->tx_timeout_work);
3857 fec_ptp_stop(pdev);
3858 unregister_netdev(ndev);
3859 fec_enet_mii_remove(fep);
3860 if (fep->reg_phy)
3861 regulator_disable(fep->reg_phy);
3862
3863 if (of_phy_is_fixed_link(np))
3864 of_phy_deregister_fixed_link(np);
3865 of_node_put(fep->phy_node);
3866
3867 /* After pm_runtime_get_sync() failed, the clks are still off, so skip
3868 * disabling them again.
3869 */
3870 if (ret >= 0) {
3871 clk_disable_unprepare(fep->clk_ahb);
3872 clk_disable_unprepare(fep->clk_ipg);
3873 }
3874 pm_runtime_put_noidle(&pdev->dev);
3875 pm_runtime_disable(&pdev->dev);
3876
3877 free_netdev(ndev);
3878 return 0;
3879 }
3880
fec_suspend(struct device *dev)3881 static int __maybe_unused fec_suspend(struct device *dev)
3882 {
3883 struct net_device *ndev = dev_get_drvdata(dev);
3884 struct fec_enet_private *fep = netdev_priv(ndev);
3885
3886 rtnl_lock();
3887 if (netif_running(ndev)) {
3888 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3889 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3890 phy_stop(ndev->phydev);
3891 napi_disable(&fep->napi);
3892 netif_tx_lock_bh(ndev);
3893 netif_device_detach(ndev);
3894 netif_tx_unlock_bh(ndev);
3895 fec_stop(ndev);
3896 fec_enet_clk_enable(ndev, false);
3897 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3898 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3899 }
3900 rtnl_unlock();
3901
3902 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3903 regulator_disable(fep->reg_phy);
3904
3905 /* SOC supply clock to phy, when clock is disabled, phy link down
3906 * SOC control phy regulator, when regulator is disabled, phy link down
3907 */
3908 if (fep->clk_enet_out || fep->reg_phy)
3909 fep->link = 0;
3910
3911 return 0;
3912 }
3913
fec_resume(struct device *dev)3914 static int __maybe_unused fec_resume(struct device *dev)
3915 {
3916 struct net_device *ndev = dev_get_drvdata(dev);
3917 struct fec_enet_private *fep = netdev_priv(ndev);
3918 int ret;
3919 int val;
3920
3921 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3922 ret = regulator_enable(fep->reg_phy);
3923 if (ret)
3924 return ret;
3925 }
3926
3927 rtnl_lock();
3928 if (netif_running(ndev)) {
3929 ret = fec_enet_clk_enable(ndev, true);
3930 if (ret) {
3931 rtnl_unlock();
3932 goto failed_clk;
3933 }
3934 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3935 fec_enet_stop_mode(fep, false);
3936
3937 val = readl(fep->hwp + FEC_ECNTRL);
3938 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3939 writel(val, fep->hwp + FEC_ECNTRL);
3940 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3941 } else {
3942 pinctrl_pm_select_default_state(&fep->pdev->dev);
3943 }
3944 fec_restart(ndev);
3945 netif_tx_lock_bh(ndev);
3946 netif_device_attach(ndev);
3947 netif_tx_unlock_bh(ndev);
3948 napi_enable(&fep->napi);
3949 phy_start(ndev->phydev);
3950 }
3951 rtnl_unlock();
3952
3953 return 0;
3954
3955 failed_clk:
3956 if (fep->reg_phy)
3957 regulator_disable(fep->reg_phy);
3958 return ret;
3959 }
3960
fec_runtime_suspend(struct device *dev)3961 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3962 {
3963 struct net_device *ndev = dev_get_drvdata(dev);
3964 struct fec_enet_private *fep = netdev_priv(ndev);
3965
3966 clk_disable_unprepare(fep->clk_ahb);
3967 clk_disable_unprepare(fep->clk_ipg);
3968
3969 return 0;
3970 }
3971
fec_runtime_resume(struct device *dev)3972 static int __maybe_unused fec_runtime_resume(struct device *dev)
3973 {
3974 struct net_device *ndev = dev_get_drvdata(dev);
3975 struct fec_enet_private *fep = netdev_priv(ndev);
3976 int ret;
3977
3978 ret = clk_prepare_enable(fep->clk_ahb);
3979 if (ret)
3980 return ret;
3981 ret = clk_prepare_enable(fep->clk_ipg);
3982 if (ret)
3983 goto failed_clk_ipg;
3984
3985 return 0;
3986
3987 failed_clk_ipg:
3988 clk_disable_unprepare(fep->clk_ahb);
3989 return ret;
3990 }
3991
3992 static const struct dev_pm_ops fec_pm_ops = {
3993 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3994 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3995 };
3996
3997 static struct platform_driver fec_driver = {
3998 .driver = {
3999 .name = DRIVER_NAME,
4000 .pm = &fec_pm_ops,
4001 .of_match_table = fec_dt_ids,
4002 .suppress_bind_attrs = true,
4003 },
4004 .id_table = fec_devtype,
4005 .probe = fec_probe,
4006 .remove = fec_drv_remove,
4007 };
4008
4009 module_platform_driver(fec_driver);
4010
4011 MODULE_ALIAS("platform:"DRIVER_NAME);
4012 MODULE_LICENSE("GPL");
4013