1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /*
3  * Copyright 2015-2020 Amazon.com, Inc. or its affiliates. All rights reserved.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #ifdef CONFIG_RFS_ACCEL
9 #include <linux/cpu_rmap.h>
10 #endif /* CONFIG_RFS_ACCEL */
11 #include <linux/ethtool.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/numa.h>
15 #include <linux/pci.h>
16 #include <linux/utsname.h>
17 #include <linux/version.h>
18 #include <linux/vmalloc.h>
19 #include <net/ip.h>
20 
21 #include "ena_netdev.h"
22 #include <linux/bpf_trace.h>
23 #include "ena_pci_id_tbl.h"
24 
25 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates");
26 MODULE_DESCRIPTION(DEVICE_NAME);
27 MODULE_LICENSE("GPL");
28 
29 /* Time in jiffies before concluding the transmitter is hung. */
30 #define TX_TIMEOUT  (5 * HZ)
31 
32 #define ENA_NAPI_BUDGET 64
33 
34 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \
35 		NETIF_MSG_TX_DONE | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR)
36 static int debug = -1;
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39 
40 static struct ena_aenq_handlers aenq_handlers;
41 
42 static struct workqueue_struct *ena_wq;
43 
44 MODULE_DEVICE_TABLE(pci, ena_pci_tbl);
45 
46 static int ena_rss_init_default(struct ena_adapter *adapter);
47 static void check_for_admin_com_state(struct ena_adapter *adapter);
48 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful);
49 static int ena_restore_device(struct ena_adapter *adapter);
50 
51 static void ena_init_io_rings(struct ena_adapter *adapter,
52 			      int first_index, int count);
53 static void ena_init_napi_in_range(struct ena_adapter *adapter, int first_index,
54 				   int count);
55 static void ena_del_napi_in_range(struct ena_adapter *adapter, int first_index,
56 				  int count);
57 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid);
58 static int ena_setup_tx_resources_in_range(struct ena_adapter *adapter,
59 					   int first_index,
60 					   int count);
61 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid);
62 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid);
63 static int ena_clean_xdp_irq(struct ena_ring *xdp_ring, u32 budget);
64 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter);
65 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter);
66 static void ena_napi_disable_in_range(struct ena_adapter *adapter,
67 				      int first_index, int count);
68 static void ena_napi_enable_in_range(struct ena_adapter *adapter,
69 				     int first_index, int count);
70 static int ena_up(struct ena_adapter *adapter);
71 static void ena_down(struct ena_adapter *adapter);
72 static void ena_unmask_interrupt(struct ena_ring *tx_ring,
73 				 struct ena_ring *rx_ring);
74 static void ena_update_ring_numa_node(struct ena_ring *tx_ring,
75 				      struct ena_ring *rx_ring);
76 static void ena_unmap_tx_buff(struct ena_ring *tx_ring,
77 			      struct ena_tx_buffer *tx_info);
78 static int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter,
79 					    int first_index, int count);
80 static void ena_free_all_io_tx_resources_in_range(struct ena_adapter *adapter,
81 						  int first_index, int count);
82 
ena_tx_timeout(struct net_device *dev, unsigned int txqueue)83 static void ena_tx_timeout(struct net_device *dev, unsigned int txqueue)
84 {
85 	struct ena_adapter *adapter = netdev_priv(dev);
86 
87 	/* Change the state of the device to trigger reset
88 	 * Check that we are not in the middle or a trigger already
89 	 */
90 
91 	if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
92 		return;
93 
94 	adapter->reset_reason = ENA_REGS_RESET_OS_NETDEV_WD;
95 	u64_stats_update_begin(&adapter->syncp);
96 	adapter->dev_stats.tx_timeout++;
97 	u64_stats_update_end(&adapter->syncp);
98 
99 	netif_err(adapter, tx_err, dev, "Transmit time out\n");
100 }
101 
update_rx_ring_mtu(struct ena_adapter *adapter, int mtu)102 static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu)
103 {
104 	int i;
105 
106 	for (i = 0; i < adapter->num_io_queues; i++)
107 		adapter->rx_ring[i].mtu = mtu;
108 }
109 
ena_change_mtu(struct net_device *dev, int new_mtu)110 static int ena_change_mtu(struct net_device *dev, int new_mtu)
111 {
112 	struct ena_adapter *adapter = netdev_priv(dev);
113 	int ret;
114 
115 	ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
116 	if (!ret) {
117 		netif_dbg(adapter, drv, dev, "Set MTU to %d\n", new_mtu);
118 		update_rx_ring_mtu(adapter, new_mtu);
119 		dev->mtu = new_mtu;
120 	} else {
121 		netif_err(adapter, drv, dev, "Failed to set MTU to %d\n",
122 			  new_mtu);
123 	}
124 
125 	return ret;
126 }
127 
ena_xmit_common(struct net_device *dev, struct ena_ring *ring, struct ena_tx_buffer *tx_info, struct ena_com_tx_ctx *ena_tx_ctx, u16 next_to_use, u32 bytes)128 static int ena_xmit_common(struct net_device *dev,
129 			   struct ena_ring *ring,
130 			   struct ena_tx_buffer *tx_info,
131 			   struct ena_com_tx_ctx *ena_tx_ctx,
132 			   u16 next_to_use,
133 			   u32 bytes)
134 {
135 	struct ena_adapter *adapter = netdev_priv(dev);
136 	int rc, nb_hw_desc;
137 
138 	if (unlikely(ena_com_is_doorbell_needed(ring->ena_com_io_sq,
139 						ena_tx_ctx))) {
140 		netif_dbg(adapter, tx_queued, dev,
141 			  "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
142 			  ring->qid);
143 		ena_com_write_sq_doorbell(ring->ena_com_io_sq);
144 	}
145 
146 	/* prepare the packet's descriptors to dma engine */
147 	rc = ena_com_prepare_tx(ring->ena_com_io_sq, ena_tx_ctx,
148 				&nb_hw_desc);
149 
150 	/* In case there isn't enough space in the queue for the packet,
151 	 * we simply drop it. All other failure reasons of
152 	 * ena_com_prepare_tx() are fatal and therefore require a device reset.
153 	 */
154 	if (unlikely(rc)) {
155 		netif_err(adapter, tx_queued, dev,
156 			  "Failed to prepare tx bufs\n");
157 		u64_stats_update_begin(&ring->syncp);
158 		ring->tx_stats.prepare_ctx_err++;
159 		u64_stats_update_end(&ring->syncp);
160 		if (rc != -ENOMEM) {
161 			adapter->reset_reason =
162 				ENA_REGS_RESET_DRIVER_INVALID_STATE;
163 			set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
164 		}
165 		return rc;
166 	}
167 
168 	u64_stats_update_begin(&ring->syncp);
169 	ring->tx_stats.cnt++;
170 	ring->tx_stats.bytes += bytes;
171 	u64_stats_update_end(&ring->syncp);
172 
173 	tx_info->tx_descs = nb_hw_desc;
174 	tx_info->last_jiffies = jiffies;
175 	tx_info->print_once = 0;
176 
177 	ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
178 						 ring->ring_size);
179 	return 0;
180 }
181 
182 /* This is the XDP napi callback. XDP queues use a separate napi callback
183  * than Rx/Tx queues.
184  */
ena_xdp_io_poll(struct napi_struct *napi, int budget)185 static int ena_xdp_io_poll(struct napi_struct *napi, int budget)
186 {
187 	struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi);
188 	u32 xdp_work_done, xdp_budget;
189 	struct ena_ring *xdp_ring;
190 	int napi_comp_call = 0;
191 	int ret;
192 
193 	xdp_ring = ena_napi->xdp_ring;
194 	xdp_ring->first_interrupt = ena_napi->first_interrupt;
195 
196 	xdp_budget = budget;
197 
198 	if (!test_bit(ENA_FLAG_DEV_UP, &xdp_ring->adapter->flags) ||
199 	    test_bit(ENA_FLAG_TRIGGER_RESET, &xdp_ring->adapter->flags)) {
200 		napi_complete_done(napi, 0);
201 		return 0;
202 	}
203 
204 	xdp_work_done = ena_clean_xdp_irq(xdp_ring, xdp_budget);
205 
206 	/* If the device is about to reset or down, avoid unmask
207 	 * the interrupt and return 0 so NAPI won't reschedule
208 	 */
209 	if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &xdp_ring->adapter->flags))) {
210 		napi_complete_done(napi, 0);
211 		ret = 0;
212 	} else if (xdp_budget > xdp_work_done) {
213 		napi_comp_call = 1;
214 		if (napi_complete_done(napi, xdp_work_done))
215 			ena_unmask_interrupt(xdp_ring, NULL);
216 		ena_update_ring_numa_node(xdp_ring, NULL);
217 		ret = xdp_work_done;
218 	} else {
219 		ret = xdp_budget;
220 	}
221 
222 	u64_stats_update_begin(&xdp_ring->syncp);
223 	xdp_ring->tx_stats.napi_comp += napi_comp_call;
224 	xdp_ring->tx_stats.tx_poll++;
225 	u64_stats_update_end(&xdp_ring->syncp);
226 
227 	return ret;
228 }
229 
ena_xdp_tx_map_buff(struct ena_ring *xdp_ring, struct ena_tx_buffer *tx_info, struct xdp_buff *xdp, void **push_hdr, u32 *push_len)230 static int ena_xdp_tx_map_buff(struct ena_ring *xdp_ring,
231 			       struct ena_tx_buffer *tx_info,
232 			       struct xdp_buff *xdp,
233 			       void **push_hdr,
234 			       u32 *push_len)
235 {
236 	struct ena_adapter *adapter = xdp_ring->adapter;
237 	struct ena_com_buf *ena_buf;
238 	dma_addr_t dma = 0;
239 	u32 size;
240 
241 	tx_info->xdpf = xdp_convert_buff_to_frame(xdp);
242 	size = tx_info->xdpf->len;
243 	ena_buf = tx_info->bufs;
244 
245 	/* llq push buffer */
246 	*push_len = min_t(u32, size, xdp_ring->tx_max_header_size);
247 	*push_hdr = tx_info->xdpf->data;
248 
249 	if (size - *push_len > 0) {
250 		dma = dma_map_single(xdp_ring->dev,
251 				     *push_hdr + *push_len,
252 				     size - *push_len,
253 				     DMA_TO_DEVICE);
254 		if (unlikely(dma_mapping_error(xdp_ring->dev, dma)))
255 			goto error_report_dma_error;
256 
257 		tx_info->map_linear_data = 1;
258 		tx_info->num_of_bufs = 1;
259 	}
260 
261 	ena_buf->paddr = dma;
262 	ena_buf->len = size;
263 
264 	return 0;
265 
266 error_report_dma_error:
267 	u64_stats_update_begin(&xdp_ring->syncp);
268 	xdp_ring->tx_stats.dma_mapping_err++;
269 	u64_stats_update_end(&xdp_ring->syncp);
270 	netif_warn(adapter, tx_queued, adapter->netdev, "Failed to map xdp buff\n");
271 
272 	xdp_return_frame_rx_napi(tx_info->xdpf);
273 	tx_info->xdpf = NULL;
274 	tx_info->num_of_bufs = 0;
275 
276 	return -EINVAL;
277 }
278 
ena_xdp_xmit_buff(struct net_device *dev, struct xdp_buff *xdp, int qid, struct ena_rx_buffer *rx_info)279 static int ena_xdp_xmit_buff(struct net_device *dev,
280 			     struct xdp_buff *xdp,
281 			     int qid,
282 			     struct ena_rx_buffer *rx_info)
283 {
284 	struct ena_adapter *adapter = netdev_priv(dev);
285 	struct ena_com_tx_ctx ena_tx_ctx = {};
286 	struct ena_tx_buffer *tx_info;
287 	struct ena_ring *xdp_ring;
288 	u16 next_to_use, req_id;
289 	int rc;
290 	void *push_hdr;
291 	u32 push_len;
292 
293 	xdp_ring = &adapter->tx_ring[qid];
294 	next_to_use = xdp_ring->next_to_use;
295 	req_id = xdp_ring->free_ids[next_to_use];
296 	tx_info = &xdp_ring->tx_buffer_info[req_id];
297 	tx_info->num_of_bufs = 0;
298 	page_ref_inc(rx_info->page);
299 	tx_info->xdp_rx_page = rx_info->page;
300 
301 	rc = ena_xdp_tx_map_buff(xdp_ring, tx_info, xdp, &push_hdr, &push_len);
302 	if (unlikely(rc))
303 		goto error_drop_packet;
304 
305 	ena_tx_ctx.ena_bufs = tx_info->bufs;
306 	ena_tx_ctx.push_header = push_hdr;
307 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
308 	ena_tx_ctx.req_id = req_id;
309 	ena_tx_ctx.header_len = push_len;
310 
311 	rc = ena_xmit_common(dev,
312 			     xdp_ring,
313 			     tx_info,
314 			     &ena_tx_ctx,
315 			     next_to_use,
316 			     xdp->data_end - xdp->data);
317 	if (rc)
318 		goto error_unmap_dma;
319 	/* trigger the dma engine. ena_com_write_sq_doorbell()
320 	 * has a mb
321 	 */
322 	ena_com_write_sq_doorbell(xdp_ring->ena_com_io_sq);
323 	u64_stats_update_begin(&xdp_ring->syncp);
324 	xdp_ring->tx_stats.doorbells++;
325 	u64_stats_update_end(&xdp_ring->syncp);
326 
327 	return NETDEV_TX_OK;
328 
329 error_unmap_dma:
330 	ena_unmap_tx_buff(xdp_ring, tx_info);
331 	tx_info->xdpf = NULL;
332 error_drop_packet:
333 	__free_page(tx_info->xdp_rx_page);
334 	return NETDEV_TX_OK;
335 }
336 
ena_xdp_execute(struct ena_ring *rx_ring, struct xdp_buff *xdp, struct ena_rx_buffer *rx_info)337 static int ena_xdp_execute(struct ena_ring *rx_ring,
338 			   struct xdp_buff *xdp,
339 			   struct ena_rx_buffer *rx_info)
340 {
341 	struct bpf_prog *xdp_prog;
342 	u32 verdict = XDP_PASS;
343 	u64 *xdp_stat;
344 
345 	rcu_read_lock();
346 	xdp_prog = READ_ONCE(rx_ring->xdp_bpf_prog);
347 
348 	if (!xdp_prog)
349 		goto out;
350 
351 	verdict = bpf_prog_run_xdp(xdp_prog, xdp);
352 
353 	if (verdict == XDP_TX) {
354 		ena_xdp_xmit_buff(rx_ring->netdev,
355 				  xdp,
356 				  rx_ring->qid + rx_ring->adapter->num_io_queues,
357 				  rx_info);
358 
359 		xdp_stat = &rx_ring->rx_stats.xdp_tx;
360 	} else if (unlikely(verdict == XDP_ABORTED)) {
361 		trace_xdp_exception(rx_ring->netdev, xdp_prog, verdict);
362 		xdp_stat = &rx_ring->rx_stats.xdp_aborted;
363 	} else if (unlikely(verdict == XDP_DROP)) {
364 		xdp_stat = &rx_ring->rx_stats.xdp_drop;
365 	} else if (unlikely(verdict == XDP_PASS)) {
366 		xdp_stat = &rx_ring->rx_stats.xdp_pass;
367 	} else {
368 		bpf_warn_invalid_xdp_action(verdict);
369 		xdp_stat = &rx_ring->rx_stats.xdp_invalid;
370 	}
371 
372 	u64_stats_update_begin(&rx_ring->syncp);
373 	(*xdp_stat)++;
374 	u64_stats_update_end(&rx_ring->syncp);
375 out:
376 	rcu_read_unlock();
377 
378 	return verdict;
379 }
380 
ena_init_all_xdp_queues(struct ena_adapter *adapter)381 static void ena_init_all_xdp_queues(struct ena_adapter *adapter)
382 {
383 	adapter->xdp_first_ring = adapter->num_io_queues;
384 	adapter->xdp_num_queues = adapter->num_io_queues;
385 
386 	ena_init_io_rings(adapter,
387 			  adapter->xdp_first_ring,
388 			  adapter->xdp_num_queues);
389 }
390 
ena_setup_and_create_all_xdp_queues(struct ena_adapter *adapter)391 static int ena_setup_and_create_all_xdp_queues(struct ena_adapter *adapter)
392 {
393 	u32 xdp_first_ring = adapter->xdp_first_ring;
394 	u32 xdp_num_queues = adapter->xdp_num_queues;
395 	int rc = 0;
396 
397 	rc = ena_setup_tx_resources_in_range(adapter, xdp_first_ring, xdp_num_queues);
398 	if (rc)
399 		goto setup_err;
400 
401 	rc = ena_create_io_tx_queues_in_range(adapter, xdp_first_ring, xdp_num_queues);
402 	if (rc)
403 		goto create_err;
404 
405 	return 0;
406 
407 create_err:
408 	ena_free_all_io_tx_resources_in_range(adapter, xdp_first_ring, xdp_num_queues);
409 setup_err:
410 	return rc;
411 }
412 
413 /* Provides a way for both kernel and bpf-prog to know
414  * more about the RX-queue a given XDP frame arrived on.
415  */
ena_xdp_register_rxq_info(struct ena_ring *rx_ring)416 static int ena_xdp_register_rxq_info(struct ena_ring *rx_ring)
417 {
418 	int rc;
419 
420 	rc = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, rx_ring->qid);
421 
422 	if (rc) {
423 		netif_err(rx_ring->adapter, ifup, rx_ring->netdev,
424 			  "Failed to register xdp rx queue info. RX queue num %d rc: %d\n",
425 			  rx_ring->qid, rc);
426 		goto err;
427 	}
428 
429 	rc = xdp_rxq_info_reg_mem_model(&rx_ring->xdp_rxq, MEM_TYPE_PAGE_SHARED,
430 					NULL);
431 
432 	if (rc) {
433 		netif_err(rx_ring->adapter, ifup, rx_ring->netdev,
434 			  "Failed to register xdp rx queue info memory model. RX queue num %d rc: %d\n",
435 			  rx_ring->qid, rc);
436 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
437 	}
438 
439 err:
440 	return rc;
441 }
442 
ena_xdp_unregister_rxq_info(struct ena_ring *rx_ring)443 static void ena_xdp_unregister_rxq_info(struct ena_ring *rx_ring)
444 {
445 	xdp_rxq_info_unreg_mem_model(&rx_ring->xdp_rxq);
446 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
447 }
448 
ena_xdp_exchange_program_rx_in_range(struct ena_adapter *adapter, struct bpf_prog *prog, int first, int count)449 static void ena_xdp_exchange_program_rx_in_range(struct ena_adapter *adapter,
450 						 struct bpf_prog *prog,
451 						 int first, int count)
452 {
453 	struct ena_ring *rx_ring;
454 	int i = 0;
455 
456 	for (i = first; i < count; i++) {
457 		rx_ring = &adapter->rx_ring[i];
458 		xchg(&rx_ring->xdp_bpf_prog, prog);
459 		if (prog) {
460 			ena_xdp_register_rxq_info(rx_ring);
461 			rx_ring->rx_headroom = XDP_PACKET_HEADROOM;
462 		} else {
463 			ena_xdp_unregister_rxq_info(rx_ring);
464 			rx_ring->rx_headroom = 0;
465 		}
466 	}
467 }
468 
ena_xdp_exchange_program(struct ena_adapter *adapter, struct bpf_prog *prog)469 static void ena_xdp_exchange_program(struct ena_adapter *adapter,
470 				     struct bpf_prog *prog)
471 {
472 	struct bpf_prog *old_bpf_prog = xchg(&adapter->xdp_bpf_prog, prog);
473 
474 	ena_xdp_exchange_program_rx_in_range(adapter,
475 					     prog,
476 					     0,
477 					     adapter->num_io_queues);
478 
479 	if (old_bpf_prog)
480 		bpf_prog_put(old_bpf_prog);
481 }
482 
ena_destroy_and_free_all_xdp_queues(struct ena_adapter *adapter)483 static int ena_destroy_and_free_all_xdp_queues(struct ena_adapter *adapter)
484 {
485 	bool was_up;
486 	int rc;
487 
488 	was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
489 
490 	if (was_up)
491 		ena_down(adapter);
492 
493 	adapter->xdp_first_ring = 0;
494 	adapter->xdp_num_queues = 0;
495 	ena_xdp_exchange_program(adapter, NULL);
496 	if (was_up) {
497 		rc = ena_up(adapter);
498 		if (rc)
499 			return rc;
500 	}
501 	return 0;
502 }
503 
ena_xdp_set(struct net_device *netdev, struct netdev_bpf *bpf)504 static int ena_xdp_set(struct net_device *netdev, struct netdev_bpf *bpf)
505 {
506 	struct ena_adapter *adapter = netdev_priv(netdev);
507 	struct bpf_prog *prog = bpf->prog;
508 	struct bpf_prog *old_bpf_prog;
509 	int rc, prev_mtu;
510 	bool is_up;
511 
512 	is_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
513 	rc = ena_xdp_allowed(adapter);
514 	if (rc == ENA_XDP_ALLOWED) {
515 		old_bpf_prog = adapter->xdp_bpf_prog;
516 		if (prog) {
517 			if (!is_up) {
518 				ena_init_all_xdp_queues(adapter);
519 			} else if (!old_bpf_prog) {
520 				ena_down(adapter);
521 				ena_init_all_xdp_queues(adapter);
522 			}
523 			ena_xdp_exchange_program(adapter, prog);
524 
525 			if (is_up && !old_bpf_prog) {
526 				rc = ena_up(adapter);
527 				if (rc)
528 					return rc;
529 			}
530 		} else if (old_bpf_prog) {
531 			rc = ena_destroy_and_free_all_xdp_queues(adapter);
532 			if (rc)
533 				return rc;
534 		}
535 
536 		prev_mtu = netdev->max_mtu;
537 		netdev->max_mtu = prog ? ENA_XDP_MAX_MTU : adapter->max_mtu;
538 
539 		if (!old_bpf_prog)
540 			netif_info(adapter, drv, adapter->netdev,
541 				   "XDP program is set, changing the max_mtu from %d to %d",
542 				   prev_mtu, netdev->max_mtu);
543 
544 	} else if (rc == ENA_XDP_CURRENT_MTU_TOO_LARGE) {
545 		netif_err(adapter, drv, adapter->netdev,
546 			  "Failed to set xdp program, the current MTU (%d) is larger than the maximum allowed MTU (%lu) while xdp is on",
547 			  netdev->mtu, ENA_XDP_MAX_MTU);
548 		NL_SET_ERR_MSG_MOD(bpf->extack,
549 				   "Failed to set xdp program, the current MTU is larger than the maximum allowed MTU. Check the dmesg for more info");
550 		return -EINVAL;
551 	} else if (rc == ENA_XDP_NO_ENOUGH_QUEUES) {
552 		netif_err(adapter, drv, adapter->netdev,
553 			  "Failed to set xdp program, the Rx/Tx channel count should be at most half of the maximum allowed channel count. The current queue count (%d), the maximal queue count (%d)\n",
554 			  adapter->num_io_queues, adapter->max_num_io_queues);
555 		NL_SET_ERR_MSG_MOD(bpf->extack,
556 				   "Failed to set xdp program, there is no enough space for allocating XDP queues, Check the dmesg for more info");
557 		return -EINVAL;
558 	}
559 
560 	return 0;
561 }
562 
563 /* This is the main xdp callback, it's used by the kernel to set/unset the xdp
564  * program as well as to query the current xdp program id.
565  */
ena_xdp(struct net_device *netdev, struct netdev_bpf *bpf)566 static int ena_xdp(struct net_device *netdev, struct netdev_bpf *bpf)
567 {
568 	switch (bpf->command) {
569 	case XDP_SETUP_PROG:
570 		return ena_xdp_set(netdev, bpf);
571 	default:
572 		return -EINVAL;
573 	}
574 	return 0;
575 }
576 
ena_init_rx_cpu_rmap(struct ena_adapter *adapter)577 static int ena_init_rx_cpu_rmap(struct ena_adapter *adapter)
578 {
579 #ifdef CONFIG_RFS_ACCEL
580 	u32 i;
581 	int rc;
582 
583 	adapter->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(adapter->num_io_queues);
584 	if (!adapter->netdev->rx_cpu_rmap)
585 		return -ENOMEM;
586 	for (i = 0; i < adapter->num_io_queues; i++) {
587 		int irq_idx = ENA_IO_IRQ_IDX(i);
588 
589 		rc = irq_cpu_rmap_add(adapter->netdev->rx_cpu_rmap,
590 				      pci_irq_vector(adapter->pdev, irq_idx));
591 		if (rc) {
592 			free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
593 			adapter->netdev->rx_cpu_rmap = NULL;
594 			return rc;
595 		}
596 	}
597 #endif /* CONFIG_RFS_ACCEL */
598 	return 0;
599 }
600 
ena_init_io_rings_common(struct ena_adapter *adapter, struct ena_ring *ring, u16 qid)601 static void ena_init_io_rings_common(struct ena_adapter *adapter,
602 				     struct ena_ring *ring, u16 qid)
603 {
604 	ring->qid = qid;
605 	ring->pdev = adapter->pdev;
606 	ring->dev = &adapter->pdev->dev;
607 	ring->netdev = adapter->netdev;
608 	ring->napi = &adapter->ena_napi[qid].napi;
609 	ring->adapter = adapter;
610 	ring->ena_dev = adapter->ena_dev;
611 	ring->per_napi_packets = 0;
612 	ring->cpu = 0;
613 	ring->first_interrupt = false;
614 	ring->no_interrupt_event_cnt = 0;
615 	u64_stats_init(&ring->syncp);
616 }
617 
ena_init_io_rings(struct ena_adapter *adapter, int first_index, int count)618 static void ena_init_io_rings(struct ena_adapter *adapter,
619 			      int first_index, int count)
620 {
621 	struct ena_com_dev *ena_dev;
622 	struct ena_ring *txr, *rxr;
623 	int i;
624 
625 	ena_dev = adapter->ena_dev;
626 
627 	for (i = first_index; i < first_index + count; i++) {
628 		txr = &adapter->tx_ring[i];
629 		rxr = &adapter->rx_ring[i];
630 
631 		/* TX common ring state */
632 		ena_init_io_rings_common(adapter, txr, i);
633 
634 		/* TX specific ring state */
635 		txr->ring_size = adapter->requested_tx_ring_size;
636 		txr->tx_max_header_size = ena_dev->tx_max_header_size;
637 		txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
638 		txr->sgl_size = adapter->max_tx_sgl_size;
639 		txr->smoothed_interval =
640 			ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
641 		txr->disable_meta_caching = adapter->disable_meta_caching;
642 
643 		/* Don't init RX queues for xdp queues */
644 		if (!ENA_IS_XDP_INDEX(adapter, i)) {
645 			/* RX common ring state */
646 			ena_init_io_rings_common(adapter, rxr, i);
647 
648 			/* RX specific ring state */
649 			rxr->ring_size = adapter->requested_rx_ring_size;
650 			rxr->rx_copybreak = adapter->rx_copybreak;
651 			rxr->sgl_size = adapter->max_rx_sgl_size;
652 			rxr->smoothed_interval =
653 				ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
654 			rxr->empty_rx_queue = 0;
655 			adapter->ena_napi[i].dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
656 		}
657 	}
658 }
659 
660 /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors)
661  * @adapter: network interface device structure
662  * @qid: queue index
663  *
664  * Return 0 on success, negative on failure
665  */
ena_setup_tx_resources(struct ena_adapter *adapter, int qid)666 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
667 {
668 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
669 	struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
670 	int size, i, node;
671 
672 	if (tx_ring->tx_buffer_info) {
673 		netif_err(adapter, ifup,
674 			  adapter->netdev, "tx_buffer_info info is not NULL");
675 		return -EEXIST;
676 	}
677 
678 	size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
679 	node = cpu_to_node(ena_irq->cpu);
680 
681 	tx_ring->tx_buffer_info = vzalloc_node(size, node);
682 	if (!tx_ring->tx_buffer_info) {
683 		tx_ring->tx_buffer_info = vzalloc(size);
684 		if (!tx_ring->tx_buffer_info)
685 			goto err_tx_buffer_info;
686 	}
687 
688 	size = sizeof(u16) * tx_ring->ring_size;
689 	tx_ring->free_ids = vzalloc_node(size, node);
690 	if (!tx_ring->free_ids) {
691 		tx_ring->free_ids = vzalloc(size);
692 		if (!tx_ring->free_ids)
693 			goto err_tx_free_ids;
694 	}
695 
696 	size = tx_ring->tx_max_header_size;
697 	tx_ring->push_buf_intermediate_buf = vzalloc_node(size, node);
698 	if (!tx_ring->push_buf_intermediate_buf) {
699 		tx_ring->push_buf_intermediate_buf = vzalloc(size);
700 		if (!tx_ring->push_buf_intermediate_buf)
701 			goto err_push_buf_intermediate_buf;
702 	}
703 
704 	/* Req id ring for TX out of order completions */
705 	for (i = 0; i < tx_ring->ring_size; i++)
706 		tx_ring->free_ids[i] = i;
707 
708 	/* Reset tx statistics */
709 	memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats));
710 
711 	tx_ring->next_to_use = 0;
712 	tx_ring->next_to_clean = 0;
713 	tx_ring->cpu = ena_irq->cpu;
714 	return 0;
715 
716 err_push_buf_intermediate_buf:
717 	vfree(tx_ring->free_ids);
718 	tx_ring->free_ids = NULL;
719 err_tx_free_ids:
720 	vfree(tx_ring->tx_buffer_info);
721 	tx_ring->tx_buffer_info = NULL;
722 err_tx_buffer_info:
723 	return -ENOMEM;
724 }
725 
726 /* ena_free_tx_resources - Free I/O Tx Resources per Queue
727  * @adapter: network interface device structure
728  * @qid: queue index
729  *
730  * Free all transmit software resources
731  */
ena_free_tx_resources(struct ena_adapter *adapter, int qid)732 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid)
733 {
734 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
735 
736 	vfree(tx_ring->tx_buffer_info);
737 	tx_ring->tx_buffer_info = NULL;
738 
739 	vfree(tx_ring->free_ids);
740 	tx_ring->free_ids = NULL;
741 
742 	vfree(tx_ring->push_buf_intermediate_buf);
743 	tx_ring->push_buf_intermediate_buf = NULL;
744 }
745 
ena_setup_tx_resources_in_range(struct ena_adapter *adapter, int first_index, int count)746 static int ena_setup_tx_resources_in_range(struct ena_adapter *adapter,
747 					   int first_index,
748 					   int count)
749 {
750 	int i, rc = 0;
751 
752 	for (i = first_index; i < first_index + count; i++) {
753 		rc = ena_setup_tx_resources(adapter, i);
754 		if (rc)
755 			goto err_setup_tx;
756 	}
757 
758 	return 0;
759 
760 err_setup_tx:
761 
762 	netif_err(adapter, ifup, adapter->netdev,
763 		  "Tx queue %d: allocation failed\n", i);
764 
765 	/* rewind the index freeing the rings as we go */
766 	while (first_index < i--)
767 		ena_free_tx_resources(adapter, i);
768 	return rc;
769 }
770 
ena_free_all_io_tx_resources_in_range(struct ena_adapter *adapter, int first_index, int count)771 static void ena_free_all_io_tx_resources_in_range(struct ena_adapter *adapter,
772 						  int first_index, int count)
773 {
774 	int i;
775 
776 	for (i = first_index; i < first_index + count; i++)
777 		ena_free_tx_resources(adapter, i);
778 }
779 
780 /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues
781  * @adapter: board private structure
782  *
783  * Free all transmit software resources
784  */
ena_free_all_io_tx_resources(struct ena_adapter *adapter)785 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter)
786 {
787 	ena_free_all_io_tx_resources_in_range(adapter,
788 					      0,
789 					      adapter->xdp_num_queues +
790 					      adapter->num_io_queues);
791 }
792 
793 /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors)
794  * @adapter: network interface device structure
795  * @qid: queue index
796  *
797  * Returns 0 on success, negative on failure
798  */
ena_setup_rx_resources(struct ena_adapter *adapter, u32 qid)799 static int ena_setup_rx_resources(struct ena_adapter *adapter,
800 				  u32 qid)
801 {
802 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
803 	struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
804 	int size, node, i;
805 
806 	if (rx_ring->rx_buffer_info) {
807 		netif_err(adapter, ifup, adapter->netdev,
808 			  "rx_buffer_info is not NULL");
809 		return -EEXIST;
810 	}
811 
812 	/* alloc extra element so in rx path
813 	 * we can always prefetch rx_info + 1
814 	 */
815 	size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1);
816 	node = cpu_to_node(ena_irq->cpu);
817 
818 	rx_ring->rx_buffer_info = vzalloc_node(size, node);
819 	if (!rx_ring->rx_buffer_info) {
820 		rx_ring->rx_buffer_info = vzalloc(size);
821 		if (!rx_ring->rx_buffer_info)
822 			return -ENOMEM;
823 	}
824 
825 	size = sizeof(u16) * rx_ring->ring_size;
826 	rx_ring->free_ids = vzalloc_node(size, node);
827 	if (!rx_ring->free_ids) {
828 		rx_ring->free_ids = vzalloc(size);
829 		if (!rx_ring->free_ids) {
830 			vfree(rx_ring->rx_buffer_info);
831 			rx_ring->rx_buffer_info = NULL;
832 			return -ENOMEM;
833 		}
834 	}
835 
836 	/* Req id ring for receiving RX pkts out of order */
837 	for (i = 0; i < rx_ring->ring_size; i++)
838 		rx_ring->free_ids[i] = i;
839 
840 	/* Reset rx statistics */
841 	memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats));
842 
843 	rx_ring->next_to_clean = 0;
844 	rx_ring->next_to_use = 0;
845 	rx_ring->cpu = ena_irq->cpu;
846 
847 	return 0;
848 }
849 
850 /* ena_free_rx_resources - Free I/O Rx Resources
851  * @adapter: network interface device structure
852  * @qid: queue index
853  *
854  * Free all receive software resources
855  */
ena_free_rx_resources(struct ena_adapter *adapter, u32 qid)856 static void ena_free_rx_resources(struct ena_adapter *adapter,
857 				  u32 qid)
858 {
859 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
860 
861 	vfree(rx_ring->rx_buffer_info);
862 	rx_ring->rx_buffer_info = NULL;
863 
864 	vfree(rx_ring->free_ids);
865 	rx_ring->free_ids = NULL;
866 }
867 
868 /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues
869  * @adapter: board private structure
870  *
871  * Return 0 on success, negative on failure
872  */
ena_setup_all_rx_resources(struct ena_adapter *adapter)873 static int ena_setup_all_rx_resources(struct ena_adapter *adapter)
874 {
875 	int i, rc = 0;
876 
877 	for (i = 0; i < adapter->num_io_queues; i++) {
878 		rc = ena_setup_rx_resources(adapter, i);
879 		if (rc)
880 			goto err_setup_rx;
881 	}
882 
883 	return 0;
884 
885 err_setup_rx:
886 
887 	netif_err(adapter, ifup, adapter->netdev,
888 		  "Rx queue %d: allocation failed\n", i);
889 
890 	/* rewind the index freeing the rings as we go */
891 	while (i--)
892 		ena_free_rx_resources(adapter, i);
893 	return rc;
894 }
895 
896 /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues
897  * @adapter: board private structure
898  *
899  * Free all receive software resources
900  */
ena_free_all_io_rx_resources(struct ena_adapter *adapter)901 static void ena_free_all_io_rx_resources(struct ena_adapter *adapter)
902 {
903 	int i;
904 
905 	for (i = 0; i < adapter->num_io_queues; i++)
906 		ena_free_rx_resources(adapter, i);
907 }
908 
ena_alloc_rx_page(struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info, gfp_t gfp)909 static int ena_alloc_rx_page(struct ena_ring *rx_ring,
910 				    struct ena_rx_buffer *rx_info, gfp_t gfp)
911 {
912 	int headroom = rx_ring->rx_headroom;
913 	struct ena_com_buf *ena_buf;
914 	struct page *page;
915 	dma_addr_t dma;
916 
917 	/* restore page offset value in case it has been changed by device */
918 	rx_info->page_offset = headroom;
919 
920 	/* if previous allocated page is not used */
921 	if (unlikely(rx_info->page))
922 		return 0;
923 
924 	page = alloc_page(gfp);
925 	if (unlikely(!page)) {
926 		u64_stats_update_begin(&rx_ring->syncp);
927 		rx_ring->rx_stats.page_alloc_fail++;
928 		u64_stats_update_end(&rx_ring->syncp);
929 		return -ENOMEM;
930 	}
931 
932 	/* To enable NIC-side port-mirroring, AKA SPAN port,
933 	 * we make the buffer readable from the nic as well
934 	 */
935 	dma = dma_map_page(rx_ring->dev, page, 0, ENA_PAGE_SIZE,
936 			   DMA_BIDIRECTIONAL);
937 	if (unlikely(dma_mapping_error(rx_ring->dev, dma))) {
938 		u64_stats_update_begin(&rx_ring->syncp);
939 		rx_ring->rx_stats.dma_mapping_err++;
940 		u64_stats_update_end(&rx_ring->syncp);
941 
942 		__free_page(page);
943 		return -EIO;
944 	}
945 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
946 		  "Allocate page %p, rx_info %p\n", page, rx_info);
947 
948 	rx_info->page = page;
949 	ena_buf = &rx_info->ena_buf;
950 	ena_buf->paddr = dma + headroom;
951 	ena_buf->len = ENA_PAGE_SIZE - headroom;
952 
953 	return 0;
954 }
955 
ena_free_rx_page(struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info)956 static void ena_free_rx_page(struct ena_ring *rx_ring,
957 			     struct ena_rx_buffer *rx_info)
958 {
959 	struct page *page = rx_info->page;
960 	struct ena_com_buf *ena_buf = &rx_info->ena_buf;
961 
962 	if (unlikely(!page)) {
963 		netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
964 			   "Trying to free unallocated buffer\n");
965 		return;
966 	}
967 
968 	dma_unmap_page(rx_ring->dev, ena_buf->paddr - rx_ring->rx_headroom,
969 		       ENA_PAGE_SIZE,
970 		       DMA_BIDIRECTIONAL);
971 
972 	__free_page(page);
973 	rx_info->page = NULL;
974 }
975 
ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num)976 static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num)
977 {
978 	u16 next_to_use, req_id;
979 	u32 i;
980 	int rc;
981 
982 	next_to_use = rx_ring->next_to_use;
983 
984 	for (i = 0; i < num; i++) {
985 		struct ena_rx_buffer *rx_info;
986 
987 		req_id = rx_ring->free_ids[next_to_use];
988 
989 		rx_info = &rx_ring->rx_buffer_info[req_id];
990 
991 		rc = ena_alloc_rx_page(rx_ring, rx_info,
992 				       GFP_ATOMIC | __GFP_COMP);
993 		if (unlikely(rc < 0)) {
994 			netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
995 				   "Failed to allocate buffer for rx queue %d\n",
996 				   rx_ring->qid);
997 			break;
998 		}
999 		rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
1000 						&rx_info->ena_buf,
1001 						req_id);
1002 		if (unlikely(rc)) {
1003 			netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
1004 				   "Failed to add buffer for rx queue %d\n",
1005 				   rx_ring->qid);
1006 			break;
1007 		}
1008 		next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
1009 						   rx_ring->ring_size);
1010 	}
1011 
1012 	if (unlikely(i < num)) {
1013 		u64_stats_update_begin(&rx_ring->syncp);
1014 		rx_ring->rx_stats.refil_partial++;
1015 		u64_stats_update_end(&rx_ring->syncp);
1016 		netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
1017 			   "Refilled rx qid %d with only %d buffers (from %d)\n",
1018 			   rx_ring->qid, i, num);
1019 	}
1020 
1021 	/* ena_com_write_sq_doorbell issues a wmb() */
1022 	if (likely(i))
1023 		ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
1024 
1025 	rx_ring->next_to_use = next_to_use;
1026 
1027 	return i;
1028 }
1029 
ena_free_rx_bufs(struct ena_adapter *adapter, u32 qid)1030 static void ena_free_rx_bufs(struct ena_adapter *adapter,
1031 			     u32 qid)
1032 {
1033 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
1034 	u32 i;
1035 
1036 	for (i = 0; i < rx_ring->ring_size; i++) {
1037 		struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
1038 
1039 		if (rx_info->page)
1040 			ena_free_rx_page(rx_ring, rx_info);
1041 	}
1042 }
1043 
1044 /* ena_refill_all_rx_bufs - allocate all queues Rx buffers
1045  * @adapter: board private structure
1046  */
ena_refill_all_rx_bufs(struct ena_adapter *adapter)1047 static void ena_refill_all_rx_bufs(struct ena_adapter *adapter)
1048 {
1049 	struct ena_ring *rx_ring;
1050 	int i, rc, bufs_num;
1051 
1052 	for (i = 0; i < adapter->num_io_queues; i++) {
1053 		rx_ring = &adapter->rx_ring[i];
1054 		bufs_num = rx_ring->ring_size - 1;
1055 		rc = ena_refill_rx_bufs(rx_ring, bufs_num);
1056 
1057 		if (unlikely(rc != bufs_num))
1058 			netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
1059 				   "Refilling Queue %d failed. allocated %d buffers from: %d\n",
1060 				   i, rc, bufs_num);
1061 	}
1062 }
1063 
ena_free_all_rx_bufs(struct ena_adapter *adapter)1064 static void ena_free_all_rx_bufs(struct ena_adapter *adapter)
1065 {
1066 	int i;
1067 
1068 	for (i = 0; i < adapter->num_io_queues; i++)
1069 		ena_free_rx_bufs(adapter, i);
1070 }
1071 
ena_unmap_tx_buff(struct ena_ring *tx_ring, struct ena_tx_buffer *tx_info)1072 static void ena_unmap_tx_buff(struct ena_ring *tx_ring,
1073 			      struct ena_tx_buffer *tx_info)
1074 {
1075 	struct ena_com_buf *ena_buf;
1076 	u32 cnt;
1077 	int i;
1078 
1079 	ena_buf = tx_info->bufs;
1080 	cnt = tx_info->num_of_bufs;
1081 
1082 	if (unlikely(!cnt))
1083 		return;
1084 
1085 	if (tx_info->map_linear_data) {
1086 		dma_unmap_single(tx_ring->dev,
1087 				 dma_unmap_addr(ena_buf, paddr),
1088 				 dma_unmap_len(ena_buf, len),
1089 				 DMA_TO_DEVICE);
1090 		ena_buf++;
1091 		cnt--;
1092 	}
1093 
1094 	/* unmap remaining mapped pages */
1095 	for (i = 0; i < cnt; i++) {
1096 		dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr),
1097 			       dma_unmap_len(ena_buf, len), DMA_TO_DEVICE);
1098 		ena_buf++;
1099 	}
1100 }
1101 
1102 /* ena_free_tx_bufs - Free Tx Buffers per Queue
1103  * @tx_ring: TX ring for which buffers be freed
1104  */
ena_free_tx_bufs(struct ena_ring *tx_ring)1105 static void ena_free_tx_bufs(struct ena_ring *tx_ring)
1106 {
1107 	bool print_once = true;
1108 	u32 i;
1109 
1110 	for (i = 0; i < tx_ring->ring_size; i++) {
1111 		struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
1112 
1113 		if (!tx_info->skb)
1114 			continue;
1115 
1116 		if (print_once) {
1117 			netif_notice(tx_ring->adapter, ifdown, tx_ring->netdev,
1118 				     "Free uncompleted tx skb qid %d idx 0x%x\n",
1119 				     tx_ring->qid, i);
1120 			print_once = false;
1121 		} else {
1122 			netif_dbg(tx_ring->adapter, ifdown, tx_ring->netdev,
1123 				  "Free uncompleted tx skb qid %d idx 0x%x\n",
1124 				  tx_ring->qid, i);
1125 		}
1126 
1127 		ena_unmap_tx_buff(tx_ring, tx_info);
1128 
1129 		dev_kfree_skb_any(tx_info->skb);
1130 	}
1131 	netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
1132 						  tx_ring->qid));
1133 }
1134 
ena_free_all_tx_bufs(struct ena_adapter *adapter)1135 static void ena_free_all_tx_bufs(struct ena_adapter *adapter)
1136 {
1137 	struct ena_ring *tx_ring;
1138 	int i;
1139 
1140 	for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) {
1141 		tx_ring = &adapter->tx_ring[i];
1142 		ena_free_tx_bufs(tx_ring);
1143 	}
1144 }
1145 
ena_destroy_all_tx_queues(struct ena_adapter *adapter)1146 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter)
1147 {
1148 	u16 ena_qid;
1149 	int i;
1150 
1151 	for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) {
1152 		ena_qid = ENA_IO_TXQ_IDX(i);
1153 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1154 	}
1155 }
1156 
ena_destroy_all_rx_queues(struct ena_adapter *adapter)1157 static void ena_destroy_all_rx_queues(struct ena_adapter *adapter)
1158 {
1159 	u16 ena_qid;
1160 	int i;
1161 
1162 	for (i = 0; i < adapter->num_io_queues; i++) {
1163 		ena_qid = ENA_IO_RXQ_IDX(i);
1164 		cancel_work_sync(&adapter->ena_napi[i].dim.work);
1165 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1166 	}
1167 }
1168 
ena_destroy_all_io_queues(struct ena_adapter *adapter)1169 static void ena_destroy_all_io_queues(struct ena_adapter *adapter)
1170 {
1171 	ena_destroy_all_tx_queues(adapter);
1172 	ena_destroy_all_rx_queues(adapter);
1173 }
1174 
handle_invalid_req_id(struct ena_ring *ring, u16 req_id, struct ena_tx_buffer *tx_info, bool is_xdp)1175 static int handle_invalid_req_id(struct ena_ring *ring, u16 req_id,
1176 				 struct ena_tx_buffer *tx_info, bool is_xdp)
1177 {
1178 	if (tx_info)
1179 		netif_err(ring->adapter,
1180 			  tx_done,
1181 			  ring->netdev,
1182 			  "tx_info doesn't have valid %s",
1183 			   is_xdp ? "xdp frame" : "skb");
1184 	else
1185 		netif_err(ring->adapter,
1186 			  tx_done,
1187 			  ring->netdev,
1188 			  "Invalid req_id: %hu\n",
1189 			  req_id);
1190 
1191 	u64_stats_update_begin(&ring->syncp);
1192 	ring->tx_stats.bad_req_id++;
1193 	u64_stats_update_end(&ring->syncp);
1194 
1195 	/* Trigger device reset */
1196 	ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
1197 	set_bit(ENA_FLAG_TRIGGER_RESET, &ring->adapter->flags);
1198 	return -EFAULT;
1199 }
1200 
validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)1201 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
1202 {
1203 	struct ena_tx_buffer *tx_info;
1204 
1205 	tx_info = &tx_ring->tx_buffer_info[req_id];
1206 	if (likely(tx_info->skb))
1207 		return 0;
1208 
1209 	return handle_invalid_req_id(tx_ring, req_id, tx_info, false);
1210 }
1211 
validate_xdp_req_id(struct ena_ring *xdp_ring, u16 req_id)1212 static int validate_xdp_req_id(struct ena_ring *xdp_ring, u16 req_id)
1213 {
1214 	struct ena_tx_buffer *tx_info;
1215 
1216 	tx_info = &xdp_ring->tx_buffer_info[req_id];
1217 	if (likely(tx_info->xdpf))
1218 		return 0;
1219 
1220 	return handle_invalid_req_id(xdp_ring, req_id, tx_info, true);
1221 }
1222 
ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget)1223 static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget)
1224 {
1225 	struct netdev_queue *txq;
1226 	bool above_thresh;
1227 	u32 tx_bytes = 0;
1228 	u32 total_done = 0;
1229 	u16 next_to_clean;
1230 	u16 req_id;
1231 	int tx_pkts = 0;
1232 	int rc;
1233 
1234 	next_to_clean = tx_ring->next_to_clean;
1235 	txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid);
1236 
1237 	while (tx_pkts < budget) {
1238 		struct ena_tx_buffer *tx_info;
1239 		struct sk_buff *skb;
1240 
1241 		rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq,
1242 						&req_id);
1243 		if (rc) {
1244 			if (unlikely(rc == -EINVAL))
1245 				handle_invalid_req_id(tx_ring, req_id, NULL,
1246 						      false);
1247 			break;
1248 		}
1249 
1250 		/* validate that the request id points to a valid skb */
1251 		rc = validate_tx_req_id(tx_ring, req_id);
1252 		if (rc)
1253 			break;
1254 
1255 		tx_info = &tx_ring->tx_buffer_info[req_id];
1256 		skb = tx_info->skb;
1257 
1258 		/* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
1259 		prefetch(&skb->end);
1260 
1261 		tx_info->skb = NULL;
1262 		tx_info->last_jiffies = 0;
1263 
1264 		ena_unmap_tx_buff(tx_ring, tx_info);
1265 
1266 		netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
1267 			  "tx_poll: q %d skb %p completed\n", tx_ring->qid,
1268 			  skb);
1269 
1270 		tx_bytes += skb->len;
1271 		dev_kfree_skb(skb);
1272 		tx_pkts++;
1273 		total_done += tx_info->tx_descs;
1274 
1275 		tx_ring->free_ids[next_to_clean] = req_id;
1276 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
1277 						     tx_ring->ring_size);
1278 	}
1279 
1280 	tx_ring->next_to_clean = next_to_clean;
1281 	ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done);
1282 	ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
1283 
1284 	netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
1285 
1286 	netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
1287 		  "tx_poll: q %d done. total pkts: %d\n",
1288 		  tx_ring->qid, tx_pkts);
1289 
1290 	/* need to make the rings circular update visible to
1291 	 * ena_start_xmit() before checking for netif_queue_stopped().
1292 	 */
1293 	smp_mb();
1294 
1295 	above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
1296 						    ENA_TX_WAKEUP_THRESH);
1297 	if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) {
1298 		__netif_tx_lock(txq, smp_processor_id());
1299 		above_thresh =
1300 			ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
1301 						     ENA_TX_WAKEUP_THRESH);
1302 		if (netif_tx_queue_stopped(txq) && above_thresh &&
1303 		    test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags)) {
1304 			netif_tx_wake_queue(txq);
1305 			u64_stats_update_begin(&tx_ring->syncp);
1306 			tx_ring->tx_stats.queue_wakeup++;
1307 			u64_stats_update_end(&tx_ring->syncp);
1308 		}
1309 		__netif_tx_unlock(txq);
1310 	}
1311 
1312 	return tx_pkts;
1313 }
1314 
ena_alloc_skb(struct ena_ring *rx_ring, bool frags)1315 static struct sk_buff *ena_alloc_skb(struct ena_ring *rx_ring, bool frags)
1316 {
1317 	struct sk_buff *skb;
1318 
1319 	if (frags)
1320 		skb = napi_get_frags(rx_ring->napi);
1321 	else
1322 		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1323 						rx_ring->rx_copybreak);
1324 
1325 	if (unlikely(!skb)) {
1326 		u64_stats_update_begin(&rx_ring->syncp);
1327 		rx_ring->rx_stats.skb_alloc_fail++;
1328 		u64_stats_update_end(&rx_ring->syncp);
1329 		netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1330 			  "Failed to allocate skb. frags: %d\n", frags);
1331 		return NULL;
1332 	}
1333 
1334 	return skb;
1335 }
1336 
ena_rx_skb(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs, u32 descs, u16 *next_to_clean)1337 static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring,
1338 				  struct ena_com_rx_buf_info *ena_bufs,
1339 				  u32 descs,
1340 				  u16 *next_to_clean)
1341 {
1342 	struct sk_buff *skb;
1343 	struct ena_rx_buffer *rx_info;
1344 	u16 len, req_id, buf = 0;
1345 	void *va;
1346 
1347 	len = ena_bufs[buf].len;
1348 	req_id = ena_bufs[buf].req_id;
1349 
1350 	rx_info = &rx_ring->rx_buffer_info[req_id];
1351 
1352 	if (unlikely(!rx_info->page)) {
1353 		netif_err(rx_ring->adapter, rx_err, rx_ring->netdev,
1354 			  "Page is NULL\n");
1355 		return NULL;
1356 	}
1357 
1358 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1359 		  "rx_info %p page %p\n",
1360 		  rx_info, rx_info->page);
1361 
1362 	/* save virt address of first buffer */
1363 	va = page_address(rx_info->page) + rx_info->page_offset;
1364 
1365 	prefetch(va);
1366 
1367 	if (len <= rx_ring->rx_copybreak) {
1368 		skb = ena_alloc_skb(rx_ring, false);
1369 		if (unlikely(!skb))
1370 			return NULL;
1371 
1372 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1373 			  "RX allocated small packet. len %d. data_len %d\n",
1374 			  skb->len, skb->data_len);
1375 
1376 		/* sync this buffer for CPU use */
1377 		dma_sync_single_for_cpu(rx_ring->dev,
1378 					dma_unmap_addr(&rx_info->ena_buf, paddr),
1379 					len,
1380 					DMA_FROM_DEVICE);
1381 		skb_copy_to_linear_data(skb, va, len);
1382 		dma_sync_single_for_device(rx_ring->dev,
1383 					   dma_unmap_addr(&rx_info->ena_buf, paddr),
1384 					   len,
1385 					   DMA_FROM_DEVICE);
1386 
1387 		skb_put(skb, len);
1388 		skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1389 		rx_ring->free_ids[*next_to_clean] = req_id;
1390 		*next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs,
1391 						     rx_ring->ring_size);
1392 		return skb;
1393 	}
1394 
1395 	skb = ena_alloc_skb(rx_ring, true);
1396 	if (unlikely(!skb))
1397 		return NULL;
1398 
1399 	do {
1400 		dma_unmap_page(rx_ring->dev,
1401 			       dma_unmap_addr(&rx_info->ena_buf, paddr),
1402 			       ENA_PAGE_SIZE, DMA_BIDIRECTIONAL);
1403 
1404 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page,
1405 				rx_info->page_offset, len, ENA_PAGE_SIZE);
1406 
1407 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1408 			  "RX skb updated. len %d. data_len %d\n",
1409 			  skb->len, skb->data_len);
1410 
1411 		rx_info->page = NULL;
1412 
1413 		rx_ring->free_ids[*next_to_clean] = req_id;
1414 		*next_to_clean =
1415 			ENA_RX_RING_IDX_NEXT(*next_to_clean,
1416 					     rx_ring->ring_size);
1417 		if (likely(--descs == 0))
1418 			break;
1419 
1420 		buf++;
1421 		len = ena_bufs[buf].len;
1422 		req_id = ena_bufs[buf].req_id;
1423 
1424 		rx_info = &rx_ring->rx_buffer_info[req_id];
1425 	} while (1);
1426 
1427 	return skb;
1428 }
1429 
1430 /* ena_rx_checksum - indicate in skb if hw indicated a good cksum
1431  * @adapter: structure containing adapter specific data
1432  * @ena_rx_ctx: received packet context/metadata
1433  * @skb: skb currently being received and modified
1434  */
ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx, struct sk_buff *skb)1435 static void ena_rx_checksum(struct ena_ring *rx_ring,
1436 				   struct ena_com_rx_ctx *ena_rx_ctx,
1437 				   struct sk_buff *skb)
1438 {
1439 	/* Rx csum disabled */
1440 	if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) {
1441 		skb->ip_summed = CHECKSUM_NONE;
1442 		return;
1443 	}
1444 
1445 	/* For fragmented packets the checksum isn't valid */
1446 	if (ena_rx_ctx->frag) {
1447 		skb->ip_summed = CHECKSUM_NONE;
1448 		return;
1449 	}
1450 
1451 	/* if IP and error */
1452 	if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
1453 		     (ena_rx_ctx->l3_csum_err))) {
1454 		/* ipv4 checksum error */
1455 		skb->ip_summed = CHECKSUM_NONE;
1456 		u64_stats_update_begin(&rx_ring->syncp);
1457 		rx_ring->rx_stats.bad_csum++;
1458 		u64_stats_update_end(&rx_ring->syncp);
1459 		netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1460 			  "RX IPv4 header checksum error\n");
1461 		return;
1462 	}
1463 
1464 	/* if TCP/UDP */
1465 	if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1466 		   (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) {
1467 		if (unlikely(ena_rx_ctx->l4_csum_err)) {
1468 			/* TCP/UDP checksum error */
1469 			u64_stats_update_begin(&rx_ring->syncp);
1470 			rx_ring->rx_stats.bad_csum++;
1471 			u64_stats_update_end(&rx_ring->syncp);
1472 			netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1473 				  "RX L4 checksum error\n");
1474 			skb->ip_summed = CHECKSUM_NONE;
1475 			return;
1476 		}
1477 
1478 		if (likely(ena_rx_ctx->l4_csum_checked)) {
1479 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1480 			u64_stats_update_begin(&rx_ring->syncp);
1481 			rx_ring->rx_stats.csum_good++;
1482 			u64_stats_update_end(&rx_ring->syncp);
1483 		} else {
1484 			u64_stats_update_begin(&rx_ring->syncp);
1485 			rx_ring->rx_stats.csum_unchecked++;
1486 			u64_stats_update_end(&rx_ring->syncp);
1487 			skb->ip_summed = CHECKSUM_NONE;
1488 		}
1489 	} else {
1490 		skb->ip_summed = CHECKSUM_NONE;
1491 		return;
1492 	}
1493 
1494 }
1495 
ena_set_rx_hash(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx, struct sk_buff *skb)1496 static void ena_set_rx_hash(struct ena_ring *rx_ring,
1497 			    struct ena_com_rx_ctx *ena_rx_ctx,
1498 			    struct sk_buff *skb)
1499 {
1500 	enum pkt_hash_types hash_type;
1501 
1502 	if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) {
1503 		if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1504 			   (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)))
1505 
1506 			hash_type = PKT_HASH_TYPE_L4;
1507 		else
1508 			hash_type = PKT_HASH_TYPE_NONE;
1509 
1510 		/* Override hash type if the packet is fragmented */
1511 		if (ena_rx_ctx->frag)
1512 			hash_type = PKT_HASH_TYPE_NONE;
1513 
1514 		skb_set_hash(skb, ena_rx_ctx->hash, hash_type);
1515 	}
1516 }
1517 
ena_xdp_handle_buff(struct ena_ring *rx_ring, struct xdp_buff *xdp)1518 static int ena_xdp_handle_buff(struct ena_ring *rx_ring, struct xdp_buff *xdp)
1519 {
1520 	struct ena_rx_buffer *rx_info;
1521 	int ret;
1522 
1523 	rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id];
1524 	xdp->data = page_address(rx_info->page) + rx_info->page_offset;
1525 	xdp_set_data_meta_invalid(xdp);
1526 	xdp->data_hard_start = page_address(rx_info->page);
1527 	xdp->data_end = xdp->data + rx_ring->ena_bufs[0].len;
1528 	/* If for some reason we received a bigger packet than
1529 	 * we expect, then we simply drop it
1530 	 */
1531 	if (unlikely(rx_ring->ena_bufs[0].len > ENA_XDP_MAX_MTU))
1532 		return XDP_DROP;
1533 
1534 	ret = ena_xdp_execute(rx_ring, xdp, rx_info);
1535 
1536 	/* The xdp program might expand the headers */
1537 	if (ret == XDP_PASS) {
1538 		rx_info->page_offset = xdp->data - xdp->data_hard_start;
1539 		rx_ring->ena_bufs[0].len = xdp->data_end - xdp->data;
1540 	}
1541 
1542 	return ret;
1543 }
1544 /* ena_clean_rx_irq - Cleanup RX irq
1545  * @rx_ring: RX ring to clean
1546  * @napi: napi handler
1547  * @budget: how many packets driver is allowed to clean
1548  *
1549  * Returns the number of cleaned buffers.
1550  */
ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi, u32 budget)1551 static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi,
1552 			    u32 budget)
1553 {
1554 	u16 next_to_clean = rx_ring->next_to_clean;
1555 	struct ena_com_rx_ctx ena_rx_ctx;
1556 	struct ena_rx_buffer *rx_info;
1557 	struct ena_adapter *adapter;
1558 	u32 res_budget, work_done;
1559 	int rx_copybreak_pkt = 0;
1560 	int refill_threshold;
1561 	struct sk_buff *skb;
1562 	int refill_required;
1563 	struct xdp_buff xdp;
1564 	int total_len = 0;
1565 	int xdp_verdict;
1566 	int rc = 0;
1567 	int i;
1568 
1569 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1570 		  "%s qid %d\n", __func__, rx_ring->qid);
1571 	res_budget = budget;
1572 	xdp.rxq = &rx_ring->xdp_rxq;
1573 	xdp.frame_sz = ENA_PAGE_SIZE;
1574 
1575 	do {
1576 		xdp_verdict = XDP_PASS;
1577 		skb = NULL;
1578 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
1579 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
1580 		ena_rx_ctx.descs = 0;
1581 		ena_rx_ctx.pkt_offset = 0;
1582 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
1583 				    rx_ring->ena_com_io_sq,
1584 				    &ena_rx_ctx);
1585 		if (unlikely(rc))
1586 			goto error;
1587 
1588 		if (unlikely(ena_rx_ctx.descs == 0))
1589 			break;
1590 
1591 		/* First descriptor might have an offset set by the device */
1592 		rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id];
1593 		rx_info->page_offset += ena_rx_ctx.pkt_offset;
1594 
1595 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1596 			  "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n",
1597 			  rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
1598 			  ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
1599 
1600 		if (ena_xdp_present_ring(rx_ring))
1601 			xdp_verdict = ena_xdp_handle_buff(rx_ring, &xdp);
1602 
1603 		/* allocate skb and fill it */
1604 		if (xdp_verdict == XDP_PASS)
1605 			skb = ena_rx_skb(rx_ring,
1606 					 rx_ring->ena_bufs,
1607 					 ena_rx_ctx.descs,
1608 					 &next_to_clean);
1609 
1610 		if (unlikely(!skb)) {
1611 			/* The page might not actually be freed here since the
1612 			 * page reference count is incremented in
1613 			 * ena_xdp_xmit_buff(), and it will be decreased only
1614 			 * when send completion was received from the device
1615 			 */
1616 			if (xdp_verdict == XDP_TX)
1617 				ena_free_rx_page(rx_ring,
1618 						 &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]);
1619 			for (i = 0; i < ena_rx_ctx.descs; i++) {
1620 				rx_ring->free_ids[next_to_clean] =
1621 					rx_ring->ena_bufs[i].req_id;
1622 				next_to_clean =
1623 					ENA_RX_RING_IDX_NEXT(next_to_clean,
1624 							     rx_ring->ring_size);
1625 			}
1626 			if (xdp_verdict != XDP_PASS) {
1627 				res_budget--;
1628 				continue;
1629 			}
1630 			break;
1631 		}
1632 
1633 		ena_rx_checksum(rx_ring, &ena_rx_ctx, skb);
1634 
1635 		ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb);
1636 
1637 		skb_record_rx_queue(skb, rx_ring->qid);
1638 
1639 		if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak) {
1640 			total_len += rx_ring->ena_bufs[0].len;
1641 			rx_copybreak_pkt++;
1642 			napi_gro_receive(napi, skb);
1643 		} else {
1644 			total_len += skb->len;
1645 			napi_gro_frags(napi);
1646 		}
1647 
1648 		res_budget--;
1649 	} while (likely(res_budget));
1650 
1651 	work_done = budget - res_budget;
1652 	rx_ring->per_napi_packets += work_done;
1653 	u64_stats_update_begin(&rx_ring->syncp);
1654 	rx_ring->rx_stats.bytes += total_len;
1655 	rx_ring->rx_stats.cnt += work_done;
1656 	rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt;
1657 	u64_stats_update_end(&rx_ring->syncp);
1658 
1659 	rx_ring->next_to_clean = next_to_clean;
1660 
1661 	refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
1662 	refill_threshold =
1663 		min_t(int, rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER,
1664 		      ENA_RX_REFILL_THRESH_PACKET);
1665 
1666 	/* Optimization, try to batch new rx buffers */
1667 	if (refill_required > refill_threshold) {
1668 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
1669 		ena_refill_rx_bufs(rx_ring, refill_required);
1670 	}
1671 
1672 	return work_done;
1673 
1674 error:
1675 	adapter = netdev_priv(rx_ring->netdev);
1676 
1677 	if (rc == -ENOSPC) {
1678 		u64_stats_update_begin(&rx_ring->syncp);
1679 		rx_ring->rx_stats.bad_desc_num++;
1680 		u64_stats_update_end(&rx_ring->syncp);
1681 		adapter->reset_reason = ENA_REGS_RESET_TOO_MANY_RX_DESCS;
1682 	} else {
1683 		u64_stats_update_begin(&rx_ring->syncp);
1684 		rx_ring->rx_stats.bad_req_id++;
1685 		u64_stats_update_end(&rx_ring->syncp);
1686 		adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
1687 	}
1688 
1689 	set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
1690 
1691 	return 0;
1692 }
1693 
ena_dim_work(struct work_struct *w)1694 static void ena_dim_work(struct work_struct *w)
1695 {
1696 	struct dim *dim = container_of(w, struct dim, work);
1697 	struct dim_cq_moder cur_moder =
1698 		net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1699 	struct ena_napi *ena_napi = container_of(dim, struct ena_napi, dim);
1700 
1701 	ena_napi->rx_ring->smoothed_interval = cur_moder.usec;
1702 	dim->state = DIM_START_MEASURE;
1703 }
1704 
ena_adjust_adaptive_rx_intr_moderation(struct ena_napi *ena_napi)1705 static void ena_adjust_adaptive_rx_intr_moderation(struct ena_napi *ena_napi)
1706 {
1707 	struct dim_sample dim_sample;
1708 	struct ena_ring *rx_ring = ena_napi->rx_ring;
1709 
1710 	if (!rx_ring->per_napi_packets)
1711 		return;
1712 
1713 	rx_ring->non_empty_napi_events++;
1714 
1715 	dim_update_sample(rx_ring->non_empty_napi_events,
1716 			  rx_ring->rx_stats.cnt,
1717 			  rx_ring->rx_stats.bytes,
1718 			  &dim_sample);
1719 
1720 	net_dim(&ena_napi->dim, dim_sample);
1721 
1722 	rx_ring->per_napi_packets = 0;
1723 }
1724 
ena_unmask_interrupt(struct ena_ring *tx_ring, struct ena_ring *rx_ring)1725 static void ena_unmask_interrupt(struct ena_ring *tx_ring,
1726 					struct ena_ring *rx_ring)
1727 {
1728 	struct ena_eth_io_intr_reg intr_reg;
1729 	u32 rx_interval = 0;
1730 	/* Rx ring can be NULL when for XDP tx queues which don't have an
1731 	 * accompanying rx_ring pair.
1732 	 */
1733 	if (rx_ring)
1734 		rx_interval = ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev) ?
1735 			rx_ring->smoothed_interval :
1736 			ena_com_get_nonadaptive_moderation_interval_rx(rx_ring->ena_dev);
1737 
1738 	/* Update intr register: rx intr delay,
1739 	 * tx intr delay and interrupt unmask
1740 	 */
1741 	ena_com_update_intr_reg(&intr_reg,
1742 				rx_interval,
1743 				tx_ring->smoothed_interval,
1744 				true);
1745 
1746 	u64_stats_update_begin(&tx_ring->syncp);
1747 	tx_ring->tx_stats.unmask_interrupt++;
1748 	u64_stats_update_end(&tx_ring->syncp);
1749 
1750 	/* It is a shared MSI-X.
1751 	 * Tx and Rx CQ have pointer to it.
1752 	 * So we use one of them to reach the intr reg
1753 	 * The Tx ring is used because the rx_ring is NULL for XDP queues
1754 	 */
1755 	ena_com_unmask_intr(tx_ring->ena_com_io_cq, &intr_reg);
1756 }
1757 
ena_update_ring_numa_node(struct ena_ring *tx_ring, struct ena_ring *rx_ring)1758 static void ena_update_ring_numa_node(struct ena_ring *tx_ring,
1759 					     struct ena_ring *rx_ring)
1760 {
1761 	int cpu = get_cpu();
1762 	int numa_node;
1763 
1764 	/* Check only one ring since the 2 rings are running on the same cpu */
1765 	if (likely(tx_ring->cpu == cpu))
1766 		goto out;
1767 
1768 	numa_node = cpu_to_node(cpu);
1769 	put_cpu();
1770 
1771 	if (numa_node != NUMA_NO_NODE) {
1772 		ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node);
1773 		if (rx_ring)
1774 			ena_com_update_numa_node(rx_ring->ena_com_io_cq,
1775 						 numa_node);
1776 	}
1777 
1778 	tx_ring->cpu = cpu;
1779 	if (rx_ring)
1780 		rx_ring->cpu = cpu;
1781 
1782 	return;
1783 out:
1784 	put_cpu();
1785 }
1786 
ena_clean_xdp_irq(struct ena_ring *xdp_ring, u32 budget)1787 static int ena_clean_xdp_irq(struct ena_ring *xdp_ring, u32 budget)
1788 {
1789 	u32 total_done = 0;
1790 	u16 next_to_clean;
1791 	u32 tx_bytes = 0;
1792 	int tx_pkts = 0;
1793 	u16 req_id;
1794 	int rc;
1795 
1796 	if (unlikely(!xdp_ring))
1797 		return 0;
1798 	next_to_clean = xdp_ring->next_to_clean;
1799 
1800 	while (tx_pkts < budget) {
1801 		struct ena_tx_buffer *tx_info;
1802 		struct xdp_frame *xdpf;
1803 
1804 		rc = ena_com_tx_comp_req_id_get(xdp_ring->ena_com_io_cq,
1805 						&req_id);
1806 		if (rc) {
1807 			if (unlikely(rc == -EINVAL))
1808 				handle_invalid_req_id(xdp_ring, req_id, NULL,
1809 						      true);
1810 			break;
1811 		}
1812 
1813 		/* validate that the request id points to a valid xdp_frame */
1814 		rc = validate_xdp_req_id(xdp_ring, req_id);
1815 		if (rc)
1816 			break;
1817 
1818 		tx_info = &xdp_ring->tx_buffer_info[req_id];
1819 		xdpf = tx_info->xdpf;
1820 
1821 		tx_info->xdpf = NULL;
1822 		tx_info->last_jiffies = 0;
1823 		ena_unmap_tx_buff(xdp_ring, tx_info);
1824 
1825 		netif_dbg(xdp_ring->adapter, tx_done, xdp_ring->netdev,
1826 			  "tx_poll: q %d skb %p completed\n", xdp_ring->qid,
1827 			  xdpf);
1828 
1829 		tx_bytes += xdpf->len;
1830 		tx_pkts++;
1831 		total_done += tx_info->tx_descs;
1832 
1833 		__free_page(tx_info->xdp_rx_page);
1834 		xdp_ring->free_ids[next_to_clean] = req_id;
1835 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
1836 						     xdp_ring->ring_size);
1837 	}
1838 
1839 	xdp_ring->next_to_clean = next_to_clean;
1840 	ena_com_comp_ack(xdp_ring->ena_com_io_sq, total_done);
1841 	ena_com_update_dev_comp_head(xdp_ring->ena_com_io_cq);
1842 
1843 	netif_dbg(xdp_ring->adapter, tx_done, xdp_ring->netdev,
1844 		  "tx_poll: q %d done. total pkts: %d\n",
1845 		  xdp_ring->qid, tx_pkts);
1846 
1847 	return tx_pkts;
1848 }
1849 
ena_io_poll(struct napi_struct *napi, int budget)1850 static int ena_io_poll(struct napi_struct *napi, int budget)
1851 {
1852 	struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi);
1853 	struct ena_ring *tx_ring, *rx_ring;
1854 	int tx_work_done;
1855 	int rx_work_done = 0;
1856 	int tx_budget;
1857 	int napi_comp_call = 0;
1858 	int ret;
1859 
1860 	tx_ring = ena_napi->tx_ring;
1861 	rx_ring = ena_napi->rx_ring;
1862 
1863 	tx_ring->first_interrupt = ena_napi->first_interrupt;
1864 	rx_ring->first_interrupt = ena_napi->first_interrupt;
1865 
1866 	tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER;
1867 
1868 	if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
1869 	    test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) {
1870 		napi_complete_done(napi, 0);
1871 		return 0;
1872 	}
1873 
1874 	tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget);
1875 	/* On netpoll the budget is zero and the handler should only clean the
1876 	 * tx completions.
1877 	 */
1878 	if (likely(budget))
1879 		rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget);
1880 
1881 	/* If the device is about to reset or down, avoid unmask
1882 	 * the interrupt and return 0 so NAPI won't reschedule
1883 	 */
1884 	if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
1885 		     test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) {
1886 		napi_complete_done(napi, 0);
1887 		ret = 0;
1888 
1889 	} else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) {
1890 		napi_comp_call = 1;
1891 
1892 		/* Update numa and unmask the interrupt only when schedule
1893 		 * from the interrupt context (vs from sk_busy_loop)
1894 		 */
1895 		if (napi_complete_done(napi, rx_work_done) &&
1896 		    READ_ONCE(ena_napi->interrupts_masked)) {
1897 			smp_rmb(); /* make sure interrupts_masked is read */
1898 			WRITE_ONCE(ena_napi->interrupts_masked, false);
1899 			/* We apply adaptive moderation on Rx path only.
1900 			 * Tx uses static interrupt moderation.
1901 			 */
1902 			if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev))
1903 				ena_adjust_adaptive_rx_intr_moderation(ena_napi);
1904 
1905 			ena_unmask_interrupt(tx_ring, rx_ring);
1906 		}
1907 
1908 		ena_update_ring_numa_node(tx_ring, rx_ring);
1909 
1910 		ret = rx_work_done;
1911 	} else {
1912 		ret = budget;
1913 	}
1914 
1915 	u64_stats_update_begin(&tx_ring->syncp);
1916 	tx_ring->tx_stats.napi_comp += napi_comp_call;
1917 	tx_ring->tx_stats.tx_poll++;
1918 	u64_stats_update_end(&tx_ring->syncp);
1919 
1920 	return ret;
1921 }
1922 
ena_intr_msix_mgmnt(int irq, void *data)1923 static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data)
1924 {
1925 	struct ena_adapter *adapter = (struct ena_adapter *)data;
1926 
1927 	ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
1928 
1929 	/* Don't call the aenq handler before probe is done */
1930 	if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)))
1931 		ena_com_aenq_intr_handler(adapter->ena_dev, data);
1932 
1933 	return IRQ_HANDLED;
1934 }
1935 
1936 /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx
1937  * @irq: interrupt number
1938  * @data: pointer to a network interface private napi device structure
1939  */
ena_intr_msix_io(int irq, void *data)1940 static irqreturn_t ena_intr_msix_io(int irq, void *data)
1941 {
1942 	struct ena_napi *ena_napi = data;
1943 
1944 	ena_napi->first_interrupt = true;
1945 
1946 	WRITE_ONCE(ena_napi->interrupts_masked, true);
1947 	smp_wmb(); /* write interrupts_masked before calling napi */
1948 
1949 	napi_schedule_irqoff(&ena_napi->napi);
1950 
1951 	return IRQ_HANDLED;
1952 }
1953 
1954 /* Reserve a single MSI-X vector for management (admin + aenq).
1955  * plus reserve one vector for each potential io queue.
1956  * the number of potential io queues is the minimum of what the device
1957  * supports and the number of vCPUs.
1958  */
ena_enable_msix(struct ena_adapter *adapter)1959 static int ena_enable_msix(struct ena_adapter *adapter)
1960 {
1961 	int msix_vecs, irq_cnt;
1962 
1963 	if (test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
1964 		netif_err(adapter, probe, adapter->netdev,
1965 			  "Error, MSI-X is already enabled\n");
1966 		return -EPERM;
1967 	}
1968 
1969 	/* Reserved the max msix vectors we might need */
1970 	msix_vecs = ENA_MAX_MSIX_VEC(adapter->max_num_io_queues);
1971 	netif_dbg(adapter, probe, adapter->netdev,
1972 		  "Trying to enable MSI-X, vectors %d\n", msix_vecs);
1973 
1974 	irq_cnt = pci_alloc_irq_vectors(adapter->pdev, ENA_MIN_MSIX_VEC,
1975 					msix_vecs, PCI_IRQ_MSIX);
1976 
1977 	if (irq_cnt < 0) {
1978 		netif_err(adapter, probe, adapter->netdev,
1979 			  "Failed to enable MSI-X. irq_cnt %d\n", irq_cnt);
1980 		return -ENOSPC;
1981 	}
1982 
1983 	if (irq_cnt != msix_vecs) {
1984 		netif_notice(adapter, probe, adapter->netdev,
1985 			     "Enable only %d MSI-X (out of %d), reduce the number of queues\n",
1986 			     irq_cnt, msix_vecs);
1987 		adapter->num_io_queues = irq_cnt - ENA_ADMIN_MSIX_VEC;
1988 	}
1989 
1990 	if (ena_init_rx_cpu_rmap(adapter))
1991 		netif_warn(adapter, probe, adapter->netdev,
1992 			   "Failed to map IRQs to CPUs\n");
1993 
1994 	adapter->msix_vecs = irq_cnt;
1995 	set_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags);
1996 
1997 	return 0;
1998 }
1999 
ena_setup_mgmnt_intr(struct ena_adapter *adapter)2000 static void ena_setup_mgmnt_intr(struct ena_adapter *adapter)
2001 {
2002 	u32 cpu;
2003 
2004 	snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name,
2005 		 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s",
2006 		 pci_name(adapter->pdev));
2007 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler =
2008 		ena_intr_msix_mgmnt;
2009 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter;
2010 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector =
2011 		pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX);
2012 	cpu = cpumask_first(cpu_online_mask);
2013 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu;
2014 	cpumask_set_cpu(cpu,
2015 			&adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask);
2016 }
2017 
ena_setup_io_intr(struct ena_adapter *adapter)2018 static void ena_setup_io_intr(struct ena_adapter *adapter)
2019 {
2020 	struct net_device *netdev;
2021 	int irq_idx, i, cpu;
2022 	int io_queue_count;
2023 
2024 	netdev = adapter->netdev;
2025 	io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2026 
2027 	for (i = 0; i < io_queue_count; i++) {
2028 		irq_idx = ENA_IO_IRQ_IDX(i);
2029 		cpu = i % num_online_cpus();
2030 
2031 		snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
2032 			 "%s-Tx-Rx-%d", netdev->name, i);
2033 		adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io;
2034 		adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i];
2035 		adapter->irq_tbl[irq_idx].vector =
2036 			pci_irq_vector(adapter->pdev, irq_idx);
2037 		adapter->irq_tbl[irq_idx].cpu = cpu;
2038 
2039 		cpumask_set_cpu(cpu,
2040 				&adapter->irq_tbl[irq_idx].affinity_hint_mask);
2041 	}
2042 }
2043 
ena_request_mgmnt_irq(struct ena_adapter *adapter)2044 static int ena_request_mgmnt_irq(struct ena_adapter *adapter)
2045 {
2046 	unsigned long flags = 0;
2047 	struct ena_irq *irq;
2048 	int rc;
2049 
2050 	irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
2051 	rc = request_irq(irq->vector, irq->handler, flags, irq->name,
2052 			 irq->data);
2053 	if (rc) {
2054 		netif_err(adapter, probe, adapter->netdev,
2055 			  "Failed to request admin irq\n");
2056 		return rc;
2057 	}
2058 
2059 	netif_dbg(adapter, probe, adapter->netdev,
2060 		  "Set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n",
2061 		  irq->affinity_hint_mask.bits[0], irq->vector);
2062 
2063 	irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
2064 
2065 	return rc;
2066 }
2067 
ena_request_io_irq(struct ena_adapter *adapter)2068 static int ena_request_io_irq(struct ena_adapter *adapter)
2069 {
2070 	u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2071 	unsigned long flags = 0;
2072 	struct ena_irq *irq;
2073 	int rc = 0, i, k;
2074 
2075 	if (!test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
2076 		netif_err(adapter, ifup, adapter->netdev,
2077 			  "Failed to request I/O IRQ: MSI-X is not enabled\n");
2078 		return -EINVAL;
2079 	}
2080 
2081 	for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) {
2082 		irq = &adapter->irq_tbl[i];
2083 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
2084 				 irq->data);
2085 		if (rc) {
2086 			netif_err(adapter, ifup, adapter->netdev,
2087 				  "Failed to request I/O IRQ. index %d rc %d\n",
2088 				   i, rc);
2089 			goto err;
2090 		}
2091 
2092 		netif_dbg(adapter, ifup, adapter->netdev,
2093 			  "Set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n",
2094 			  i, irq->affinity_hint_mask.bits[0], irq->vector);
2095 
2096 		irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
2097 	}
2098 
2099 	return rc;
2100 
2101 err:
2102 	for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) {
2103 		irq = &adapter->irq_tbl[k];
2104 		free_irq(irq->vector, irq->data);
2105 	}
2106 
2107 	return rc;
2108 }
2109 
ena_free_mgmnt_irq(struct ena_adapter *adapter)2110 static void ena_free_mgmnt_irq(struct ena_adapter *adapter)
2111 {
2112 	struct ena_irq *irq;
2113 
2114 	irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
2115 	synchronize_irq(irq->vector);
2116 	irq_set_affinity_hint(irq->vector, NULL);
2117 	free_irq(irq->vector, irq->data);
2118 }
2119 
ena_free_io_irq(struct ena_adapter *adapter)2120 static void ena_free_io_irq(struct ena_adapter *adapter)
2121 {
2122 	u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2123 	struct ena_irq *irq;
2124 	int i;
2125 
2126 #ifdef CONFIG_RFS_ACCEL
2127 	if (adapter->msix_vecs >= 1) {
2128 		free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
2129 		adapter->netdev->rx_cpu_rmap = NULL;
2130 	}
2131 #endif /* CONFIG_RFS_ACCEL */
2132 
2133 	for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) {
2134 		irq = &adapter->irq_tbl[i];
2135 		irq_set_affinity_hint(irq->vector, NULL);
2136 		free_irq(irq->vector, irq->data);
2137 	}
2138 }
2139 
ena_disable_msix(struct ena_adapter *adapter)2140 static void ena_disable_msix(struct ena_adapter *adapter)
2141 {
2142 	if (test_and_clear_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags))
2143 		pci_free_irq_vectors(adapter->pdev);
2144 }
2145 
ena_disable_io_intr_sync(struct ena_adapter *adapter)2146 static void ena_disable_io_intr_sync(struct ena_adapter *adapter)
2147 {
2148 	u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2149 	int i;
2150 
2151 	if (!netif_running(adapter->netdev))
2152 		return;
2153 
2154 	for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++)
2155 		synchronize_irq(adapter->irq_tbl[i].vector);
2156 }
2157 
ena_del_napi_in_range(struct ena_adapter *adapter, int first_index, int count)2158 static void ena_del_napi_in_range(struct ena_adapter *adapter,
2159 				  int first_index,
2160 				  int count)
2161 {
2162 	int i;
2163 
2164 	for (i = first_index; i < first_index + count; i++) {
2165 		netif_napi_del(&adapter->ena_napi[i].napi);
2166 
2167 		WARN_ON(!ENA_IS_XDP_INDEX(adapter, i) &&
2168 			adapter->ena_napi[i].xdp_ring);
2169 	}
2170 }
2171 
ena_init_napi_in_range(struct ena_adapter *adapter, int first_index, int count)2172 static void ena_init_napi_in_range(struct ena_adapter *adapter,
2173 				   int first_index, int count)
2174 {
2175 	int i;
2176 
2177 	for (i = first_index; i < first_index + count; i++) {
2178 		struct ena_napi *napi = &adapter->ena_napi[i];
2179 
2180 		netif_napi_add(adapter->netdev,
2181 			       &napi->napi,
2182 			       ENA_IS_XDP_INDEX(adapter, i) ? ena_xdp_io_poll : ena_io_poll,
2183 			       ENA_NAPI_BUDGET);
2184 
2185 		if (!ENA_IS_XDP_INDEX(adapter, i)) {
2186 			napi->rx_ring = &adapter->rx_ring[i];
2187 			napi->tx_ring = &adapter->tx_ring[i];
2188 		} else {
2189 			napi->xdp_ring = &adapter->tx_ring[i];
2190 		}
2191 		napi->qid = i;
2192 	}
2193 }
2194 
ena_napi_disable_in_range(struct ena_adapter *adapter, int first_index, int count)2195 static void ena_napi_disable_in_range(struct ena_adapter *adapter,
2196 				      int first_index,
2197 				      int count)
2198 {
2199 	int i;
2200 
2201 	for (i = first_index; i < first_index + count; i++)
2202 		napi_disable(&adapter->ena_napi[i].napi);
2203 }
2204 
ena_napi_enable_in_range(struct ena_adapter *adapter, int first_index, int count)2205 static void ena_napi_enable_in_range(struct ena_adapter *adapter,
2206 				     int first_index,
2207 				     int count)
2208 {
2209 	int i;
2210 
2211 	for (i = first_index; i < first_index + count; i++)
2212 		napi_enable(&adapter->ena_napi[i].napi);
2213 }
2214 
2215 /* Configure the Rx forwarding */
ena_rss_configure(struct ena_adapter *adapter)2216 static int ena_rss_configure(struct ena_adapter *adapter)
2217 {
2218 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2219 	int rc;
2220 
2221 	/* In case the RSS table wasn't initialized by probe */
2222 	if (!ena_dev->rss.tbl_log_size) {
2223 		rc = ena_rss_init_default(adapter);
2224 		if (rc && (rc != -EOPNOTSUPP)) {
2225 			netif_err(adapter, ifup, adapter->netdev,
2226 				  "Failed to init RSS rc: %d\n", rc);
2227 			return rc;
2228 		}
2229 	}
2230 
2231 	/* Set indirect table */
2232 	rc = ena_com_indirect_table_set(ena_dev);
2233 	if (unlikely(rc && rc != -EOPNOTSUPP))
2234 		return rc;
2235 
2236 	/* Configure hash function (if supported) */
2237 	rc = ena_com_set_hash_function(ena_dev);
2238 	if (unlikely(rc && (rc != -EOPNOTSUPP)))
2239 		return rc;
2240 
2241 	/* Configure hash inputs (if supported) */
2242 	rc = ena_com_set_hash_ctrl(ena_dev);
2243 	if (unlikely(rc && (rc != -EOPNOTSUPP)))
2244 		return rc;
2245 
2246 	return 0;
2247 }
2248 
ena_up_complete(struct ena_adapter *adapter)2249 static int ena_up_complete(struct ena_adapter *adapter)
2250 {
2251 	int rc;
2252 
2253 	rc = ena_rss_configure(adapter);
2254 	if (rc)
2255 		return rc;
2256 
2257 	ena_change_mtu(adapter->netdev, adapter->netdev->mtu);
2258 
2259 	ena_refill_all_rx_bufs(adapter);
2260 
2261 	/* enable transmits */
2262 	netif_tx_start_all_queues(adapter->netdev);
2263 
2264 	ena_napi_enable_in_range(adapter,
2265 				 0,
2266 				 adapter->xdp_num_queues + adapter->num_io_queues);
2267 
2268 	return 0;
2269 }
2270 
ena_create_io_tx_queue(struct ena_adapter *adapter, int qid)2271 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid)
2272 {
2273 	struct ena_com_create_io_ctx ctx;
2274 	struct ena_com_dev *ena_dev;
2275 	struct ena_ring *tx_ring;
2276 	u32 msix_vector;
2277 	u16 ena_qid;
2278 	int rc;
2279 
2280 	ena_dev = adapter->ena_dev;
2281 
2282 	tx_ring = &adapter->tx_ring[qid];
2283 	msix_vector = ENA_IO_IRQ_IDX(qid);
2284 	ena_qid = ENA_IO_TXQ_IDX(qid);
2285 
2286 	memset(&ctx, 0x0, sizeof(ctx));
2287 
2288 	ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
2289 	ctx.qid = ena_qid;
2290 	ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
2291 	ctx.msix_vector = msix_vector;
2292 	ctx.queue_size = tx_ring->ring_size;
2293 	ctx.numa_node = cpu_to_node(tx_ring->cpu);
2294 
2295 	rc = ena_com_create_io_queue(ena_dev, &ctx);
2296 	if (rc) {
2297 		netif_err(adapter, ifup, adapter->netdev,
2298 			  "Failed to create I/O TX queue num %d rc: %d\n",
2299 			  qid, rc);
2300 		return rc;
2301 	}
2302 
2303 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
2304 				     &tx_ring->ena_com_io_sq,
2305 				     &tx_ring->ena_com_io_cq);
2306 	if (rc) {
2307 		netif_err(adapter, ifup, adapter->netdev,
2308 			  "Failed to get TX queue handlers. TX queue num %d rc: %d\n",
2309 			  qid, rc);
2310 		ena_com_destroy_io_queue(ena_dev, ena_qid);
2311 		return rc;
2312 	}
2313 
2314 	ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node);
2315 	return rc;
2316 }
2317 
ena_create_io_tx_queues_in_range(struct ena_adapter *adapter, int first_index, int count)2318 static int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter,
2319 					    int first_index, int count)
2320 {
2321 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2322 	int rc, i;
2323 
2324 	for (i = first_index; i < first_index + count; i++) {
2325 		rc = ena_create_io_tx_queue(adapter, i);
2326 		if (rc)
2327 			goto create_err;
2328 	}
2329 
2330 	return 0;
2331 
2332 create_err:
2333 	while (i-- > first_index)
2334 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
2335 
2336 	return rc;
2337 }
2338 
ena_create_io_rx_queue(struct ena_adapter *adapter, int qid)2339 static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid)
2340 {
2341 	struct ena_com_dev *ena_dev;
2342 	struct ena_com_create_io_ctx ctx;
2343 	struct ena_ring *rx_ring;
2344 	u32 msix_vector;
2345 	u16 ena_qid;
2346 	int rc;
2347 
2348 	ena_dev = adapter->ena_dev;
2349 
2350 	rx_ring = &adapter->rx_ring[qid];
2351 	msix_vector = ENA_IO_IRQ_IDX(qid);
2352 	ena_qid = ENA_IO_RXQ_IDX(qid);
2353 
2354 	memset(&ctx, 0x0, sizeof(ctx));
2355 
2356 	ctx.qid = ena_qid;
2357 	ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
2358 	ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2359 	ctx.msix_vector = msix_vector;
2360 	ctx.queue_size = rx_ring->ring_size;
2361 	ctx.numa_node = cpu_to_node(rx_ring->cpu);
2362 
2363 	rc = ena_com_create_io_queue(ena_dev, &ctx);
2364 	if (rc) {
2365 		netif_err(adapter, ifup, adapter->netdev,
2366 			  "Failed to create I/O RX queue num %d rc: %d\n",
2367 			  qid, rc);
2368 		return rc;
2369 	}
2370 
2371 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
2372 				     &rx_ring->ena_com_io_sq,
2373 				     &rx_ring->ena_com_io_cq);
2374 	if (rc) {
2375 		netif_err(adapter, ifup, adapter->netdev,
2376 			  "Failed to get RX queue handlers. RX queue num %d rc: %d\n",
2377 			  qid, rc);
2378 		goto err;
2379 	}
2380 
2381 	ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node);
2382 
2383 	return rc;
2384 err:
2385 	ena_com_destroy_io_queue(ena_dev, ena_qid);
2386 	return rc;
2387 }
2388 
ena_create_all_io_rx_queues(struct ena_adapter *adapter)2389 static int ena_create_all_io_rx_queues(struct ena_adapter *adapter)
2390 {
2391 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2392 	int rc, i;
2393 
2394 	for (i = 0; i < adapter->num_io_queues; i++) {
2395 		rc = ena_create_io_rx_queue(adapter, i);
2396 		if (rc)
2397 			goto create_err;
2398 		INIT_WORK(&adapter->ena_napi[i].dim.work, ena_dim_work);
2399 	}
2400 
2401 	return 0;
2402 
2403 create_err:
2404 	while (i--) {
2405 		cancel_work_sync(&adapter->ena_napi[i].dim.work);
2406 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
2407 	}
2408 
2409 	return rc;
2410 }
2411 
set_io_rings_size(struct ena_adapter *adapter, int new_tx_size, int new_rx_size)2412 static void set_io_rings_size(struct ena_adapter *adapter,
2413 			      int new_tx_size,
2414 			      int new_rx_size)
2415 {
2416 	int i;
2417 
2418 	for (i = 0; i < adapter->num_io_queues; i++) {
2419 		adapter->tx_ring[i].ring_size = new_tx_size;
2420 		adapter->rx_ring[i].ring_size = new_rx_size;
2421 	}
2422 }
2423 
2424 /* This function allows queue allocation to backoff when the system is
2425  * low on memory. If there is not enough memory to allocate io queues
2426  * the driver will try to allocate smaller queues.
2427  *
2428  * The backoff algorithm is as follows:
2429  *  1. Try to allocate TX and RX and if successful.
2430  *  1.1. return success
2431  *
2432  *  2. Divide by 2 the size of the larger of RX and TX queues (or both if their size is the same).
2433  *
2434  *  3. If TX or RX is smaller than 256
2435  *  3.1. return failure.
2436  *  4. else
2437  *  4.1. go back to 1.
2438  */
create_queues_with_size_backoff(struct ena_adapter *adapter)2439 static int create_queues_with_size_backoff(struct ena_adapter *adapter)
2440 {
2441 	int rc, cur_rx_ring_size, cur_tx_ring_size;
2442 	int new_rx_ring_size, new_tx_ring_size;
2443 
2444 	/* current queue sizes might be set to smaller than the requested
2445 	 * ones due to past queue allocation failures.
2446 	 */
2447 	set_io_rings_size(adapter, adapter->requested_tx_ring_size,
2448 			  adapter->requested_rx_ring_size);
2449 
2450 	while (1) {
2451 		if (ena_xdp_present(adapter)) {
2452 			rc = ena_setup_and_create_all_xdp_queues(adapter);
2453 
2454 			if (rc)
2455 				goto err_setup_tx;
2456 		}
2457 		rc = ena_setup_tx_resources_in_range(adapter,
2458 						     0,
2459 						     adapter->num_io_queues);
2460 		if (rc)
2461 			goto err_setup_tx;
2462 
2463 		rc = ena_create_io_tx_queues_in_range(adapter,
2464 						      0,
2465 						      adapter->num_io_queues);
2466 		if (rc)
2467 			goto err_create_tx_queues;
2468 
2469 		rc = ena_setup_all_rx_resources(adapter);
2470 		if (rc)
2471 			goto err_setup_rx;
2472 
2473 		rc = ena_create_all_io_rx_queues(adapter);
2474 		if (rc)
2475 			goto err_create_rx_queues;
2476 
2477 		return 0;
2478 
2479 err_create_rx_queues:
2480 		ena_free_all_io_rx_resources(adapter);
2481 err_setup_rx:
2482 		ena_destroy_all_tx_queues(adapter);
2483 err_create_tx_queues:
2484 		ena_free_all_io_tx_resources(adapter);
2485 err_setup_tx:
2486 		if (rc != -ENOMEM) {
2487 			netif_err(adapter, ifup, adapter->netdev,
2488 				  "Queue creation failed with error code %d\n",
2489 				  rc);
2490 			return rc;
2491 		}
2492 
2493 		cur_tx_ring_size = adapter->tx_ring[0].ring_size;
2494 		cur_rx_ring_size = adapter->rx_ring[0].ring_size;
2495 
2496 		netif_err(adapter, ifup, adapter->netdev,
2497 			  "Not enough memory to create queues with sizes TX=%d, RX=%d\n",
2498 			  cur_tx_ring_size, cur_rx_ring_size);
2499 
2500 		new_tx_ring_size = cur_tx_ring_size;
2501 		new_rx_ring_size = cur_rx_ring_size;
2502 
2503 		/* Decrease the size of the larger queue, or
2504 		 * decrease both if they are the same size.
2505 		 */
2506 		if (cur_rx_ring_size <= cur_tx_ring_size)
2507 			new_tx_ring_size = cur_tx_ring_size / 2;
2508 		if (cur_rx_ring_size >= cur_tx_ring_size)
2509 			new_rx_ring_size = cur_rx_ring_size / 2;
2510 
2511 		if (new_tx_ring_size < ENA_MIN_RING_SIZE ||
2512 		    new_rx_ring_size < ENA_MIN_RING_SIZE) {
2513 			netif_err(adapter, ifup, adapter->netdev,
2514 				  "Queue creation failed with the smallest possible queue size of %d for both queues. Not retrying with smaller queues\n",
2515 				  ENA_MIN_RING_SIZE);
2516 			return rc;
2517 		}
2518 
2519 		netif_err(adapter, ifup, adapter->netdev,
2520 			  "Retrying queue creation with sizes TX=%d, RX=%d\n",
2521 			  new_tx_ring_size,
2522 			  new_rx_ring_size);
2523 
2524 		set_io_rings_size(adapter, new_tx_ring_size,
2525 				  new_rx_ring_size);
2526 	}
2527 }
2528 
ena_up(struct ena_adapter *adapter)2529 static int ena_up(struct ena_adapter *adapter)
2530 {
2531 	int io_queue_count, rc, i;
2532 
2533 	netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__);
2534 
2535 	io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2536 	ena_setup_io_intr(adapter);
2537 
2538 	/* napi poll functions should be initialized before running
2539 	 * request_irq(), to handle a rare condition where there is a pending
2540 	 * interrupt, causing the ISR to fire immediately while the poll
2541 	 * function wasn't set yet, causing a null dereference
2542 	 */
2543 	ena_init_napi_in_range(adapter, 0, io_queue_count);
2544 
2545 	rc = ena_request_io_irq(adapter);
2546 	if (rc)
2547 		goto err_req_irq;
2548 
2549 	rc = create_queues_with_size_backoff(adapter);
2550 	if (rc)
2551 		goto err_create_queues_with_backoff;
2552 
2553 	rc = ena_up_complete(adapter);
2554 	if (rc)
2555 		goto err_up;
2556 
2557 	if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
2558 		netif_carrier_on(adapter->netdev);
2559 
2560 	u64_stats_update_begin(&adapter->syncp);
2561 	adapter->dev_stats.interface_up++;
2562 	u64_stats_update_end(&adapter->syncp);
2563 
2564 	set_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2565 
2566 	/* Enable completion queues interrupt */
2567 	for (i = 0; i < adapter->num_io_queues; i++)
2568 		ena_unmask_interrupt(&adapter->tx_ring[i],
2569 				     &adapter->rx_ring[i]);
2570 
2571 	/* schedule napi in case we had pending packets
2572 	 * from the last time we disable napi
2573 	 */
2574 	for (i = 0; i < io_queue_count; i++)
2575 		napi_schedule(&adapter->ena_napi[i].napi);
2576 
2577 	return rc;
2578 
2579 err_up:
2580 	ena_destroy_all_tx_queues(adapter);
2581 	ena_free_all_io_tx_resources(adapter);
2582 	ena_destroy_all_rx_queues(adapter);
2583 	ena_free_all_io_rx_resources(adapter);
2584 err_create_queues_with_backoff:
2585 	ena_free_io_irq(adapter);
2586 err_req_irq:
2587 	ena_del_napi_in_range(adapter, 0, io_queue_count);
2588 
2589 	return rc;
2590 }
2591 
ena_down(struct ena_adapter *adapter)2592 static void ena_down(struct ena_adapter *adapter)
2593 {
2594 	int io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2595 
2596 	netif_info(adapter, ifdown, adapter->netdev, "%s\n", __func__);
2597 
2598 	clear_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2599 
2600 	u64_stats_update_begin(&adapter->syncp);
2601 	adapter->dev_stats.interface_down++;
2602 	u64_stats_update_end(&adapter->syncp);
2603 
2604 	netif_carrier_off(adapter->netdev);
2605 	netif_tx_disable(adapter->netdev);
2606 
2607 	/* After this point the napi handler won't enable the tx queue */
2608 	ena_napi_disable_in_range(adapter, 0, io_queue_count);
2609 
2610 	/* After destroy the queue there won't be any new interrupts */
2611 
2612 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) {
2613 		int rc;
2614 
2615 		rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
2616 		if (rc)
2617 			netif_err(adapter, ifdown, adapter->netdev,
2618 				  "Device reset failed\n");
2619 		/* stop submitting admin commands on a device that was reset */
2620 		ena_com_set_admin_running_state(adapter->ena_dev, false);
2621 	}
2622 
2623 	ena_destroy_all_io_queues(adapter);
2624 
2625 	ena_disable_io_intr_sync(adapter);
2626 	ena_free_io_irq(adapter);
2627 	ena_del_napi_in_range(adapter, 0, io_queue_count);
2628 
2629 	ena_free_all_tx_bufs(adapter);
2630 	ena_free_all_rx_bufs(adapter);
2631 	ena_free_all_io_tx_resources(adapter);
2632 	ena_free_all_io_rx_resources(adapter);
2633 }
2634 
2635 /* ena_open - Called when a network interface is made active
2636  * @netdev: network interface device structure
2637  *
2638  * Returns 0 on success, negative value on failure
2639  *
2640  * The open entry point is called when a network interface is made
2641  * active by the system (IFF_UP).  At this point all resources needed
2642  * for transmit and receive operations are allocated, the interrupt
2643  * handler is registered with the OS, the watchdog timer is started,
2644  * and the stack is notified that the interface is ready.
2645  */
ena_open(struct net_device *netdev)2646 static int ena_open(struct net_device *netdev)
2647 {
2648 	struct ena_adapter *adapter = netdev_priv(netdev);
2649 	int rc;
2650 
2651 	/* Notify the stack of the actual queue counts. */
2652 	rc = netif_set_real_num_tx_queues(netdev, adapter->num_io_queues);
2653 	if (rc) {
2654 		netif_err(adapter, ifup, netdev, "Can't set num tx queues\n");
2655 		return rc;
2656 	}
2657 
2658 	rc = netif_set_real_num_rx_queues(netdev, adapter->num_io_queues);
2659 	if (rc) {
2660 		netif_err(adapter, ifup, netdev, "Can't set num rx queues\n");
2661 		return rc;
2662 	}
2663 
2664 	rc = ena_up(adapter);
2665 	if (rc)
2666 		return rc;
2667 
2668 	return rc;
2669 }
2670 
2671 /* ena_close - Disables a network interface
2672  * @netdev: network interface device structure
2673  *
2674  * Returns 0, this is not allowed to fail
2675  *
2676  * The close entry point is called when an interface is de-activated
2677  * by the OS.  The hardware is still under the drivers control, but
2678  * needs to be disabled.  A global MAC reset is issued to stop the
2679  * hardware, and all transmit and receive resources are freed.
2680  */
ena_close(struct net_device *netdev)2681 static int ena_close(struct net_device *netdev)
2682 {
2683 	struct ena_adapter *adapter = netdev_priv(netdev);
2684 
2685 	netif_dbg(adapter, ifdown, netdev, "%s\n", __func__);
2686 
2687 	if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
2688 		return 0;
2689 
2690 	if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
2691 		ena_down(adapter);
2692 
2693 	/* Check for device status and issue reset if needed*/
2694 	check_for_admin_com_state(adapter);
2695 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
2696 		netif_err(adapter, ifdown, adapter->netdev,
2697 			  "Destroy failure, restarting device\n");
2698 		ena_dump_stats_to_dmesg(adapter);
2699 		/* rtnl lock already obtained in dev_ioctl() layer */
2700 		ena_destroy_device(adapter, false);
2701 		ena_restore_device(adapter);
2702 	}
2703 
2704 	return 0;
2705 }
2706 
ena_update_queue_sizes(struct ena_adapter *adapter, u32 new_tx_size, u32 new_rx_size)2707 int ena_update_queue_sizes(struct ena_adapter *adapter,
2708 			   u32 new_tx_size,
2709 			   u32 new_rx_size)
2710 {
2711 	bool dev_was_up;
2712 
2713 	dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2714 	ena_close(adapter->netdev);
2715 	adapter->requested_tx_ring_size = new_tx_size;
2716 	adapter->requested_rx_ring_size = new_rx_size;
2717 	ena_init_io_rings(adapter,
2718 			  0,
2719 			  adapter->xdp_num_queues +
2720 			  adapter->num_io_queues);
2721 	return dev_was_up ? ena_up(adapter) : 0;
2722 }
2723 
ena_update_queue_count(struct ena_adapter *adapter, u32 new_channel_count)2724 int ena_update_queue_count(struct ena_adapter *adapter, u32 new_channel_count)
2725 {
2726 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2727 	int prev_channel_count;
2728 	bool dev_was_up;
2729 
2730 	dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2731 	ena_close(adapter->netdev);
2732 	prev_channel_count = adapter->num_io_queues;
2733 	adapter->num_io_queues = new_channel_count;
2734 	if (ena_xdp_present(adapter) &&
2735 	    ena_xdp_allowed(adapter) == ENA_XDP_ALLOWED) {
2736 		adapter->xdp_first_ring = new_channel_count;
2737 		adapter->xdp_num_queues = new_channel_count;
2738 		if (prev_channel_count > new_channel_count)
2739 			ena_xdp_exchange_program_rx_in_range(adapter,
2740 							     NULL,
2741 							     new_channel_count,
2742 							     prev_channel_count);
2743 		else
2744 			ena_xdp_exchange_program_rx_in_range(adapter,
2745 							     adapter->xdp_bpf_prog,
2746 							     prev_channel_count,
2747 							     new_channel_count);
2748 	}
2749 
2750 	/* We need to destroy the rss table so that the indirection
2751 	 * table will be reinitialized by ena_up()
2752 	 */
2753 	ena_com_rss_destroy(ena_dev);
2754 	ena_init_io_rings(adapter,
2755 			  0,
2756 			  adapter->xdp_num_queues +
2757 			  adapter->num_io_queues);
2758 	return dev_was_up ? ena_open(adapter->netdev) : 0;
2759 }
2760 
ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct sk_buff *skb, bool disable_meta_caching)2761 static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx,
2762 			struct sk_buff *skb,
2763 			bool disable_meta_caching)
2764 {
2765 	u32 mss = skb_shinfo(skb)->gso_size;
2766 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
2767 	u8 l4_protocol = 0;
2768 
2769 	if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) {
2770 		ena_tx_ctx->l4_csum_enable = 1;
2771 		if (mss) {
2772 			ena_tx_ctx->tso_enable = 1;
2773 			ena_meta->l4_hdr_len = tcp_hdr(skb)->doff;
2774 			ena_tx_ctx->l4_csum_partial = 0;
2775 		} else {
2776 			ena_tx_ctx->tso_enable = 0;
2777 			ena_meta->l4_hdr_len = 0;
2778 			ena_tx_ctx->l4_csum_partial = 1;
2779 		}
2780 
2781 		switch (ip_hdr(skb)->version) {
2782 		case IPVERSION:
2783 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
2784 			if (ip_hdr(skb)->frag_off & htons(IP_DF))
2785 				ena_tx_ctx->df = 1;
2786 			if (mss)
2787 				ena_tx_ctx->l3_csum_enable = 1;
2788 			l4_protocol = ip_hdr(skb)->protocol;
2789 			break;
2790 		case 6:
2791 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
2792 			l4_protocol = ipv6_hdr(skb)->nexthdr;
2793 			break;
2794 		default:
2795 			break;
2796 		}
2797 
2798 		if (l4_protocol == IPPROTO_TCP)
2799 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
2800 		else
2801 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
2802 
2803 		ena_meta->mss = mss;
2804 		ena_meta->l3_hdr_len = skb_network_header_len(skb);
2805 		ena_meta->l3_hdr_offset = skb_network_offset(skb);
2806 		ena_tx_ctx->meta_valid = 1;
2807 	} else if (disable_meta_caching) {
2808 		memset(ena_meta, 0, sizeof(*ena_meta));
2809 		ena_tx_ctx->meta_valid = 1;
2810 	} else {
2811 		ena_tx_ctx->meta_valid = 0;
2812 	}
2813 }
2814 
ena_check_and_linearize_skb(struct ena_ring *tx_ring, struct sk_buff *skb)2815 static int ena_check_and_linearize_skb(struct ena_ring *tx_ring,
2816 				       struct sk_buff *skb)
2817 {
2818 	int num_frags, header_len, rc;
2819 
2820 	num_frags = skb_shinfo(skb)->nr_frags;
2821 	header_len = skb_headlen(skb);
2822 
2823 	if (num_frags < tx_ring->sgl_size)
2824 		return 0;
2825 
2826 	if ((num_frags == tx_ring->sgl_size) &&
2827 	    (header_len < tx_ring->tx_max_header_size))
2828 		return 0;
2829 
2830 	u64_stats_update_begin(&tx_ring->syncp);
2831 	tx_ring->tx_stats.linearize++;
2832 	u64_stats_update_end(&tx_ring->syncp);
2833 
2834 	rc = skb_linearize(skb);
2835 	if (unlikely(rc)) {
2836 		u64_stats_update_begin(&tx_ring->syncp);
2837 		tx_ring->tx_stats.linearize_failed++;
2838 		u64_stats_update_end(&tx_ring->syncp);
2839 	}
2840 
2841 	return rc;
2842 }
2843 
ena_tx_map_skb(struct ena_ring *tx_ring, struct ena_tx_buffer *tx_info, struct sk_buff *skb, void **push_hdr, u16 *header_len)2844 static int ena_tx_map_skb(struct ena_ring *tx_ring,
2845 			  struct ena_tx_buffer *tx_info,
2846 			  struct sk_buff *skb,
2847 			  void **push_hdr,
2848 			  u16 *header_len)
2849 {
2850 	struct ena_adapter *adapter = tx_ring->adapter;
2851 	struct ena_com_buf *ena_buf;
2852 	dma_addr_t dma;
2853 	u32 skb_head_len, frag_len, last_frag;
2854 	u16 push_len = 0;
2855 	u16 delta = 0;
2856 	int i = 0;
2857 
2858 	skb_head_len = skb_headlen(skb);
2859 	tx_info->skb = skb;
2860 	ena_buf = tx_info->bufs;
2861 
2862 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2863 		/* When the device is LLQ mode, the driver will copy
2864 		 * the header into the device memory space.
2865 		 * the ena_com layer assume the header is in a linear
2866 		 * memory space.
2867 		 * This assumption might be wrong since part of the header
2868 		 * can be in the fragmented buffers.
2869 		 * Use skb_header_pointer to make sure the header is in a
2870 		 * linear memory space.
2871 		 */
2872 
2873 		push_len = min_t(u32, skb->len, tx_ring->tx_max_header_size);
2874 		*push_hdr = skb_header_pointer(skb, 0, push_len,
2875 					       tx_ring->push_buf_intermediate_buf);
2876 		*header_len = push_len;
2877 		if (unlikely(skb->data != *push_hdr)) {
2878 			u64_stats_update_begin(&tx_ring->syncp);
2879 			tx_ring->tx_stats.llq_buffer_copy++;
2880 			u64_stats_update_end(&tx_ring->syncp);
2881 
2882 			delta = push_len - skb_head_len;
2883 		}
2884 	} else {
2885 		*push_hdr = NULL;
2886 		*header_len = min_t(u32, skb_head_len,
2887 				    tx_ring->tx_max_header_size);
2888 	}
2889 
2890 	netif_dbg(adapter, tx_queued, adapter->netdev,
2891 		  "skb: %p header_buf->vaddr: %p push_len: %d\n", skb,
2892 		  *push_hdr, push_len);
2893 
2894 	if (skb_head_len > push_len) {
2895 		dma = dma_map_single(tx_ring->dev, skb->data + push_len,
2896 				     skb_head_len - push_len, DMA_TO_DEVICE);
2897 		if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
2898 			goto error_report_dma_error;
2899 
2900 		ena_buf->paddr = dma;
2901 		ena_buf->len = skb_head_len - push_len;
2902 
2903 		ena_buf++;
2904 		tx_info->num_of_bufs++;
2905 		tx_info->map_linear_data = 1;
2906 	} else {
2907 		tx_info->map_linear_data = 0;
2908 	}
2909 
2910 	last_frag = skb_shinfo(skb)->nr_frags;
2911 
2912 	for (i = 0; i < last_frag; i++) {
2913 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2914 
2915 		frag_len = skb_frag_size(frag);
2916 
2917 		if (unlikely(delta >= frag_len)) {
2918 			delta -= frag_len;
2919 			continue;
2920 		}
2921 
2922 		dma = skb_frag_dma_map(tx_ring->dev, frag, delta,
2923 				       frag_len - delta, DMA_TO_DEVICE);
2924 		if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
2925 			goto error_report_dma_error;
2926 
2927 		ena_buf->paddr = dma;
2928 		ena_buf->len = frag_len - delta;
2929 		ena_buf++;
2930 		tx_info->num_of_bufs++;
2931 		delta = 0;
2932 	}
2933 
2934 	return 0;
2935 
2936 error_report_dma_error:
2937 	u64_stats_update_begin(&tx_ring->syncp);
2938 	tx_ring->tx_stats.dma_mapping_err++;
2939 	u64_stats_update_end(&tx_ring->syncp);
2940 	netif_warn(adapter, tx_queued, adapter->netdev, "Failed to map skb\n");
2941 
2942 	tx_info->skb = NULL;
2943 
2944 	tx_info->num_of_bufs += i;
2945 	ena_unmap_tx_buff(tx_ring, tx_info);
2946 
2947 	return -EINVAL;
2948 }
2949 
2950 /* Called with netif_tx_lock. */
ena_start_xmit(struct sk_buff *skb, struct net_device *dev)2951 static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev)
2952 {
2953 	struct ena_adapter *adapter = netdev_priv(dev);
2954 	struct ena_tx_buffer *tx_info;
2955 	struct ena_com_tx_ctx ena_tx_ctx;
2956 	struct ena_ring *tx_ring;
2957 	struct netdev_queue *txq;
2958 	void *push_hdr;
2959 	u16 next_to_use, req_id, header_len;
2960 	int qid, rc;
2961 
2962 	netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb);
2963 	/*  Determine which tx ring we will be placed on */
2964 	qid = skb_get_queue_mapping(skb);
2965 	tx_ring = &adapter->tx_ring[qid];
2966 	txq = netdev_get_tx_queue(dev, qid);
2967 
2968 	rc = ena_check_and_linearize_skb(tx_ring, skb);
2969 	if (unlikely(rc))
2970 		goto error_drop_packet;
2971 
2972 	skb_tx_timestamp(skb);
2973 
2974 	next_to_use = tx_ring->next_to_use;
2975 	req_id = tx_ring->free_ids[next_to_use];
2976 	tx_info = &tx_ring->tx_buffer_info[req_id];
2977 	tx_info->num_of_bufs = 0;
2978 
2979 	WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id);
2980 
2981 	rc = ena_tx_map_skb(tx_ring, tx_info, skb, &push_hdr, &header_len);
2982 	if (unlikely(rc))
2983 		goto error_drop_packet;
2984 
2985 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
2986 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2987 	ena_tx_ctx.push_header = push_hdr;
2988 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2989 	ena_tx_ctx.req_id = req_id;
2990 	ena_tx_ctx.header_len = header_len;
2991 
2992 	/* set flags and meta data */
2993 	ena_tx_csum(&ena_tx_ctx, skb, tx_ring->disable_meta_caching);
2994 
2995 	rc = ena_xmit_common(dev,
2996 			     tx_ring,
2997 			     tx_info,
2998 			     &ena_tx_ctx,
2999 			     next_to_use,
3000 			     skb->len);
3001 	if (rc)
3002 		goto error_unmap_dma;
3003 
3004 	netdev_tx_sent_queue(txq, skb->len);
3005 
3006 	/* stop the queue when no more space available, the packet can have up
3007 	 * to sgl_size + 2. one for the meta descriptor and one for header
3008 	 * (if the header is larger than tx_max_header_size).
3009 	 */
3010 	if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
3011 						   tx_ring->sgl_size + 2))) {
3012 		netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n",
3013 			  __func__, qid);
3014 
3015 		netif_tx_stop_queue(txq);
3016 		u64_stats_update_begin(&tx_ring->syncp);
3017 		tx_ring->tx_stats.queue_stop++;
3018 		u64_stats_update_end(&tx_ring->syncp);
3019 
3020 		/* There is a rare condition where this function decide to
3021 		 * stop the queue but meanwhile clean_tx_irq updates
3022 		 * next_to_completion and terminates.
3023 		 * The queue will remain stopped forever.
3024 		 * To solve this issue add a mb() to make sure that
3025 		 * netif_tx_stop_queue() write is vissible before checking if
3026 		 * there is additional space in the queue.
3027 		 */
3028 		smp_mb();
3029 
3030 		if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
3031 						 ENA_TX_WAKEUP_THRESH)) {
3032 			netif_tx_wake_queue(txq);
3033 			u64_stats_update_begin(&tx_ring->syncp);
3034 			tx_ring->tx_stats.queue_wakeup++;
3035 			u64_stats_update_end(&tx_ring->syncp);
3036 		}
3037 	}
3038 
3039 	if (netif_xmit_stopped(txq) || !netdev_xmit_more()) {
3040 		/* trigger the dma engine. ena_com_write_sq_doorbell()
3041 		 * has a mb
3042 		 */
3043 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3044 		u64_stats_update_begin(&tx_ring->syncp);
3045 		tx_ring->tx_stats.doorbells++;
3046 		u64_stats_update_end(&tx_ring->syncp);
3047 	}
3048 
3049 	return NETDEV_TX_OK;
3050 
3051 error_unmap_dma:
3052 	ena_unmap_tx_buff(tx_ring, tx_info);
3053 	tx_info->skb = NULL;
3054 
3055 error_drop_packet:
3056 	dev_kfree_skb(skb);
3057 	return NETDEV_TX_OK;
3058 }
3059 
ena_select_queue(struct net_device *dev, struct sk_buff *skb, struct net_device *sb_dev)3060 static u16 ena_select_queue(struct net_device *dev, struct sk_buff *skb,
3061 			    struct net_device *sb_dev)
3062 {
3063 	u16 qid;
3064 	/* we suspect that this is good for in--kernel network services that
3065 	 * want to loop incoming skb rx to tx in normal user generated traffic,
3066 	 * most probably we will not get to this
3067 	 */
3068 	if (skb_rx_queue_recorded(skb))
3069 		qid = skb_get_rx_queue(skb);
3070 	else
3071 		qid = netdev_pick_tx(dev, skb, NULL);
3072 
3073 	return qid;
3074 }
3075 
ena_config_host_info(struct ena_com_dev *ena_dev, struct pci_dev *pdev)3076 static void ena_config_host_info(struct ena_com_dev *ena_dev, struct pci_dev *pdev)
3077 {
3078 	struct device *dev = &pdev->dev;
3079 	struct ena_admin_host_info *host_info;
3080 	int rc;
3081 
3082 	/* Allocate only the host info */
3083 	rc = ena_com_allocate_host_info(ena_dev);
3084 	if (rc) {
3085 		dev_err(dev, "Cannot allocate host info\n");
3086 		return;
3087 	}
3088 
3089 	host_info = ena_dev->host_attr.host_info;
3090 
3091 	host_info->bdf = (pdev->bus->number << 8) | pdev->devfn;
3092 	host_info->os_type = ENA_ADMIN_OS_LINUX;
3093 	host_info->kernel_ver = LINUX_VERSION_CODE;
3094 	strlcpy(host_info->kernel_ver_str, utsname()->version,
3095 		sizeof(host_info->kernel_ver_str) - 1);
3096 	host_info->os_dist = 0;
3097 	strncpy(host_info->os_dist_str, utsname()->release,
3098 		sizeof(host_info->os_dist_str) - 1);
3099 	host_info->driver_version =
3100 		(DRV_MODULE_GEN_MAJOR) |
3101 		(DRV_MODULE_GEN_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
3102 		(DRV_MODULE_GEN_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT) |
3103 		("K"[0] << ENA_ADMIN_HOST_INFO_MODULE_TYPE_SHIFT);
3104 	host_info->num_cpus = num_online_cpus();
3105 
3106 	host_info->driver_supported_features =
3107 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
3108 		ENA_ADMIN_HOST_INFO_INTERRUPT_MODERATION_MASK |
3109 		ENA_ADMIN_HOST_INFO_RX_BUF_MIRRORING_MASK |
3110 		ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
3111 
3112 	rc = ena_com_set_host_attributes(ena_dev);
3113 	if (rc) {
3114 		if (rc == -EOPNOTSUPP)
3115 			dev_warn(dev, "Cannot set host attributes\n");
3116 		else
3117 			dev_err(dev, "Cannot set host attributes\n");
3118 
3119 		goto err;
3120 	}
3121 
3122 	return;
3123 
3124 err:
3125 	ena_com_delete_host_info(ena_dev);
3126 }
3127 
ena_config_debug_area(struct ena_adapter *adapter)3128 static void ena_config_debug_area(struct ena_adapter *adapter)
3129 {
3130 	u32 debug_area_size;
3131 	int rc, ss_count;
3132 
3133 	ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS);
3134 	if (ss_count <= 0) {
3135 		netif_err(adapter, drv, adapter->netdev,
3136 			  "SS count is negative\n");
3137 		return;
3138 	}
3139 
3140 	/* allocate 32 bytes for each string and 64bit for the value */
3141 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
3142 
3143 	rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size);
3144 	if (rc) {
3145 		netif_err(adapter, drv, adapter->netdev,
3146 			  "Cannot allocate debug area\n");
3147 		return;
3148 	}
3149 
3150 	rc = ena_com_set_host_attributes(adapter->ena_dev);
3151 	if (rc) {
3152 		if (rc == -EOPNOTSUPP)
3153 			netif_warn(adapter, drv, adapter->netdev,
3154 				   "Cannot set host attributes\n");
3155 		else
3156 			netif_err(adapter, drv, adapter->netdev,
3157 				  "Cannot set host attributes\n");
3158 		goto err;
3159 	}
3160 
3161 	return;
3162 err:
3163 	ena_com_delete_debug_area(adapter->ena_dev);
3164 }
3165 
ena_update_hw_stats(struct ena_adapter *adapter)3166 int ena_update_hw_stats(struct ena_adapter *adapter)
3167 {
3168 	int rc = 0;
3169 
3170 	rc = ena_com_get_eni_stats(adapter->ena_dev, &adapter->eni_stats);
3171 	if (rc) {
3172 		dev_info_once(&adapter->pdev->dev, "Failed to get ENI stats\n");
3173 		return rc;
3174 	}
3175 
3176 	return 0;
3177 }
3178 
ena_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)3179 static void ena_get_stats64(struct net_device *netdev,
3180 			    struct rtnl_link_stats64 *stats)
3181 {
3182 	struct ena_adapter *adapter = netdev_priv(netdev);
3183 	struct ena_ring *rx_ring, *tx_ring;
3184 	unsigned int start;
3185 	u64 rx_drops;
3186 	u64 tx_drops;
3187 	int i;
3188 
3189 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3190 		return;
3191 
3192 	for (i = 0; i < adapter->num_io_queues; i++) {
3193 		u64 bytes, packets;
3194 
3195 		tx_ring = &adapter->tx_ring[i];
3196 
3197 		do {
3198 			start = u64_stats_fetch_begin_irq(&tx_ring->syncp);
3199 			packets = tx_ring->tx_stats.cnt;
3200 			bytes = tx_ring->tx_stats.bytes;
3201 		} while (u64_stats_fetch_retry_irq(&tx_ring->syncp, start));
3202 
3203 		stats->tx_packets += packets;
3204 		stats->tx_bytes += bytes;
3205 
3206 		rx_ring = &adapter->rx_ring[i];
3207 
3208 		do {
3209 			start = u64_stats_fetch_begin_irq(&rx_ring->syncp);
3210 			packets = rx_ring->rx_stats.cnt;
3211 			bytes = rx_ring->rx_stats.bytes;
3212 		} while (u64_stats_fetch_retry_irq(&rx_ring->syncp, start));
3213 
3214 		stats->rx_packets += packets;
3215 		stats->rx_bytes += bytes;
3216 	}
3217 
3218 	do {
3219 		start = u64_stats_fetch_begin_irq(&adapter->syncp);
3220 		rx_drops = adapter->dev_stats.rx_drops;
3221 		tx_drops = adapter->dev_stats.tx_drops;
3222 	} while (u64_stats_fetch_retry_irq(&adapter->syncp, start));
3223 
3224 	stats->rx_dropped = rx_drops;
3225 	stats->tx_dropped = tx_drops;
3226 
3227 	stats->multicast = 0;
3228 	stats->collisions = 0;
3229 
3230 	stats->rx_length_errors = 0;
3231 	stats->rx_crc_errors = 0;
3232 	stats->rx_frame_errors = 0;
3233 	stats->rx_fifo_errors = 0;
3234 	stats->rx_missed_errors = 0;
3235 	stats->tx_window_errors = 0;
3236 
3237 	stats->rx_errors = 0;
3238 	stats->tx_errors = 0;
3239 }
3240 
3241 static const struct net_device_ops ena_netdev_ops = {
3242 	.ndo_open		= ena_open,
3243 	.ndo_stop		= ena_close,
3244 	.ndo_start_xmit		= ena_start_xmit,
3245 	.ndo_select_queue	= ena_select_queue,
3246 	.ndo_get_stats64	= ena_get_stats64,
3247 	.ndo_tx_timeout		= ena_tx_timeout,
3248 	.ndo_change_mtu		= ena_change_mtu,
3249 	.ndo_set_mac_address	= NULL,
3250 	.ndo_validate_addr	= eth_validate_addr,
3251 	.ndo_bpf		= ena_xdp,
3252 };
3253 
ena_device_validate_params(struct ena_adapter *adapter, struct ena_com_dev_get_features_ctx *get_feat_ctx)3254 static int ena_device_validate_params(struct ena_adapter *adapter,
3255 				      struct ena_com_dev_get_features_ctx *get_feat_ctx)
3256 {
3257 	struct net_device *netdev = adapter->netdev;
3258 	int rc;
3259 
3260 	rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr,
3261 			      adapter->mac_addr);
3262 	if (!rc) {
3263 		netif_err(adapter, drv, netdev,
3264 			  "Error, mac address are different\n");
3265 		return -EINVAL;
3266 	}
3267 
3268 	if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) {
3269 		netif_err(adapter, drv, netdev,
3270 			  "Error, device max mtu is smaller than netdev MTU\n");
3271 		return -EINVAL;
3272 	}
3273 
3274 	return 0;
3275 }
3276 
set_default_llq_configurations(struct ena_llq_configurations *llq_config)3277 static void set_default_llq_configurations(struct ena_llq_configurations *llq_config)
3278 {
3279 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
3280 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
3281 	llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
3282 	llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B;
3283 	llq_config->llq_ring_entry_size_value = 128;
3284 }
3285 
ena_set_queues_placement_policy(struct pci_dev *pdev, struct ena_com_dev *ena_dev, struct ena_admin_feature_llq_desc *llq, struct ena_llq_configurations *llq_default_configurations)3286 static int ena_set_queues_placement_policy(struct pci_dev *pdev,
3287 					   struct ena_com_dev *ena_dev,
3288 					   struct ena_admin_feature_llq_desc *llq,
3289 					   struct ena_llq_configurations *llq_default_configurations)
3290 {
3291 	int rc;
3292 	u32 llq_feature_mask;
3293 
3294 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
3295 	if (!(ena_dev->supported_features & llq_feature_mask)) {
3296 		dev_err(&pdev->dev,
3297 			"LLQ is not supported Fallback to host mode policy.\n");
3298 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3299 		return 0;
3300 	}
3301 
3302 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
3303 	if (unlikely(rc)) {
3304 		dev_err(&pdev->dev,
3305 			"Failed to configure the device mode.  Fallback to host mode policy.\n");
3306 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3307 	}
3308 
3309 	return 0;
3310 }
3311 
ena_map_llq_mem_bar(struct pci_dev *pdev, struct ena_com_dev *ena_dev, int bars)3312 static int ena_map_llq_mem_bar(struct pci_dev *pdev, struct ena_com_dev *ena_dev,
3313 			       int bars)
3314 {
3315 	bool has_mem_bar = !!(bars & BIT(ENA_MEM_BAR));
3316 
3317 	if (!has_mem_bar) {
3318 		if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
3319 			dev_err(&pdev->dev,
3320 				"ENA device does not expose LLQ bar. Fallback to host mode policy.\n");
3321 			ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3322 		}
3323 
3324 		return 0;
3325 	}
3326 
3327 	ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev,
3328 					   pci_resource_start(pdev, ENA_MEM_BAR),
3329 					   pci_resource_len(pdev, ENA_MEM_BAR));
3330 
3331 	if (!ena_dev->mem_bar)
3332 		return -EFAULT;
3333 
3334 	return 0;
3335 }
3336 
ena_device_init(struct ena_com_dev *ena_dev, struct pci_dev *pdev, struct ena_com_dev_get_features_ctx *get_feat_ctx, bool *wd_state)3337 static int ena_device_init(struct ena_com_dev *ena_dev, struct pci_dev *pdev,
3338 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
3339 			   bool *wd_state)
3340 {
3341 	struct ena_llq_configurations llq_config;
3342 	struct device *dev = &pdev->dev;
3343 	bool readless_supported;
3344 	u32 aenq_groups;
3345 	int dma_width;
3346 	int rc;
3347 
3348 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
3349 	if (rc) {
3350 		dev_err(dev, "Failed to init mmio read less\n");
3351 		return rc;
3352 	}
3353 
3354 	/* The PCIe configuration space revision id indicate if mmio reg
3355 	 * read is disabled
3356 	 */
3357 	readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ);
3358 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
3359 
3360 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
3361 	if (rc) {
3362 		dev_err(dev, "Can not reset device\n");
3363 		goto err_mmio_read_less;
3364 	}
3365 
3366 	rc = ena_com_validate_version(ena_dev);
3367 	if (rc) {
3368 		dev_err(dev, "Device version is too low\n");
3369 		goto err_mmio_read_less;
3370 	}
3371 
3372 	dma_width = ena_com_get_dma_width(ena_dev);
3373 	if (dma_width < 0) {
3374 		dev_err(dev, "Invalid dma width value %d", dma_width);
3375 		rc = dma_width;
3376 		goto err_mmio_read_less;
3377 	}
3378 
3379 	rc = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(dma_width));
3380 	if (rc) {
3381 		dev_err(dev, "dma_set_mask_and_coherent failed %d\n", rc);
3382 		goto err_mmio_read_less;
3383 	}
3384 
3385 	/* ENA admin level init */
3386 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
3387 	if (rc) {
3388 		dev_err(dev,
3389 			"Can not initialize ena admin queue with device\n");
3390 		goto err_mmio_read_less;
3391 	}
3392 
3393 	/* To enable the msix interrupts the driver needs to know the number
3394 	 * of queues. So the driver uses polling mode to retrieve this
3395 	 * information
3396 	 */
3397 	ena_com_set_admin_polling_mode(ena_dev, true);
3398 
3399 	ena_config_host_info(ena_dev, pdev);
3400 
3401 	/* Get Device Attributes*/
3402 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
3403 	if (rc) {
3404 		dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc);
3405 		goto err_admin_init;
3406 	}
3407 
3408 	/* Try to turn all the available aenq groups */
3409 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
3410 		BIT(ENA_ADMIN_FATAL_ERROR) |
3411 		BIT(ENA_ADMIN_WARNING) |
3412 		BIT(ENA_ADMIN_NOTIFICATION) |
3413 		BIT(ENA_ADMIN_KEEP_ALIVE);
3414 
3415 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
3416 
3417 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
3418 	if (rc) {
3419 		dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc);
3420 		goto err_admin_init;
3421 	}
3422 
3423 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
3424 
3425 	set_default_llq_configurations(&llq_config);
3426 
3427 	rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx->llq,
3428 					     &llq_config);
3429 	if (rc) {
3430 		dev_err(dev, "ENA device init failed\n");
3431 		goto err_admin_init;
3432 	}
3433 
3434 	return 0;
3435 
3436 err_admin_init:
3437 	ena_com_delete_host_info(ena_dev);
3438 	ena_com_admin_destroy(ena_dev);
3439 err_mmio_read_less:
3440 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3441 
3442 	return rc;
3443 }
3444 
ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter)3445 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter)
3446 {
3447 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3448 	struct device *dev = &adapter->pdev->dev;
3449 	int rc;
3450 
3451 	rc = ena_enable_msix(adapter);
3452 	if (rc) {
3453 		dev_err(dev, "Can not reserve msix vectors\n");
3454 		return rc;
3455 	}
3456 
3457 	ena_setup_mgmnt_intr(adapter);
3458 
3459 	rc = ena_request_mgmnt_irq(adapter);
3460 	if (rc) {
3461 		dev_err(dev, "Can not setup management interrupts\n");
3462 		goto err_disable_msix;
3463 	}
3464 
3465 	ena_com_set_admin_polling_mode(ena_dev, false);
3466 
3467 	ena_com_admin_aenq_enable(ena_dev);
3468 
3469 	return 0;
3470 
3471 err_disable_msix:
3472 	ena_disable_msix(adapter);
3473 
3474 	return rc;
3475 }
3476 
ena_destroy_device(struct ena_adapter *adapter, bool graceful)3477 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful)
3478 {
3479 	struct net_device *netdev = adapter->netdev;
3480 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3481 	bool dev_up;
3482 
3483 	if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
3484 		return;
3485 
3486 	netif_carrier_off(netdev);
3487 
3488 	del_timer_sync(&adapter->timer_service);
3489 
3490 	dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
3491 	adapter->dev_up_before_reset = dev_up;
3492 	if (!graceful)
3493 		ena_com_set_admin_running_state(ena_dev, false);
3494 
3495 	if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3496 		ena_down(adapter);
3497 
3498 	/* Stop the device from sending AENQ events (in case reset flag is set
3499 	 *  and device is up, ena_down() already reset the device.
3500 	 */
3501 	if (!(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags) && dev_up))
3502 		ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
3503 
3504 	ena_free_mgmnt_irq(adapter);
3505 
3506 	ena_disable_msix(adapter);
3507 
3508 	ena_com_abort_admin_commands(ena_dev);
3509 
3510 	ena_com_wait_for_abort_completion(ena_dev);
3511 
3512 	ena_com_admin_destroy(ena_dev);
3513 
3514 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3515 
3516 	/* return reset reason to default value */
3517 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3518 
3519 	clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3520 	clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3521 }
3522 
ena_restore_device(struct ena_adapter *adapter)3523 static int ena_restore_device(struct ena_adapter *adapter)
3524 {
3525 	struct ena_com_dev_get_features_ctx get_feat_ctx;
3526 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3527 	struct pci_dev *pdev = adapter->pdev;
3528 	bool wd_state;
3529 	int rc;
3530 
3531 	set_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3532 	rc = ena_device_init(ena_dev, adapter->pdev, &get_feat_ctx, &wd_state);
3533 	if (rc) {
3534 		dev_err(&pdev->dev, "Can not initialize device\n");
3535 		goto err;
3536 	}
3537 	adapter->wd_state = wd_state;
3538 
3539 	rc = ena_device_validate_params(adapter, &get_feat_ctx);
3540 	if (rc) {
3541 		dev_err(&pdev->dev, "Validation of device parameters failed\n");
3542 		goto err_device_destroy;
3543 	}
3544 
3545 	rc = ena_enable_msix_and_set_admin_interrupts(adapter);
3546 	if (rc) {
3547 		dev_err(&pdev->dev, "Enable MSI-X failed\n");
3548 		goto err_device_destroy;
3549 	}
3550 	/* If the interface was up before the reset bring it up */
3551 	if (adapter->dev_up_before_reset) {
3552 		rc = ena_up(adapter);
3553 		if (rc) {
3554 			dev_err(&pdev->dev, "Failed to create I/O queues\n");
3555 			goto err_disable_msix;
3556 		}
3557 	}
3558 
3559 	set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3560 
3561 	clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3562 	if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
3563 		netif_carrier_on(adapter->netdev);
3564 
3565 	mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
3566 	adapter->last_keep_alive_jiffies = jiffies;
3567 
3568 	dev_err(&pdev->dev, "Device reset completed successfully\n");
3569 
3570 	return rc;
3571 err_disable_msix:
3572 	ena_free_mgmnt_irq(adapter);
3573 	ena_disable_msix(adapter);
3574 err_device_destroy:
3575 	ena_com_abort_admin_commands(ena_dev);
3576 	ena_com_wait_for_abort_completion(ena_dev);
3577 	ena_com_admin_destroy(ena_dev);
3578 	ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE);
3579 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3580 err:
3581 	clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3582 	clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3583 	dev_err(&pdev->dev,
3584 		"Reset attempt failed. Can not reset the device\n");
3585 
3586 	return rc;
3587 }
3588 
ena_fw_reset_device(struct work_struct *work)3589 static void ena_fw_reset_device(struct work_struct *work)
3590 {
3591 	struct ena_adapter *adapter =
3592 		container_of(work, struct ena_adapter, reset_task);
3593 
3594 	rtnl_lock();
3595 
3596 	if (likely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
3597 		ena_destroy_device(adapter, false);
3598 		ena_restore_device(adapter);
3599 	}
3600 
3601 	rtnl_unlock();
3602 }
3603 
check_for_rx_interrupt_queue(struct ena_adapter *adapter, struct ena_ring *rx_ring)3604 static int check_for_rx_interrupt_queue(struct ena_adapter *adapter,
3605 					struct ena_ring *rx_ring)
3606 {
3607 	if (likely(rx_ring->first_interrupt))
3608 		return 0;
3609 
3610 	if (ena_com_cq_empty(rx_ring->ena_com_io_cq))
3611 		return 0;
3612 
3613 	rx_ring->no_interrupt_event_cnt++;
3614 
3615 	if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) {
3616 		netif_err(adapter, rx_err, adapter->netdev,
3617 			  "Potential MSIX issue on Rx side Queue = %d. Reset the device\n",
3618 			  rx_ring->qid);
3619 		adapter->reset_reason = ENA_REGS_RESET_MISS_INTERRUPT;
3620 		smp_mb__before_atomic();
3621 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3622 		return -EIO;
3623 	}
3624 
3625 	return 0;
3626 }
3627 
check_missing_comp_in_tx_queue(struct ena_adapter *adapter, struct ena_ring *tx_ring)3628 static int check_missing_comp_in_tx_queue(struct ena_adapter *adapter,
3629 					  struct ena_ring *tx_ring)
3630 {
3631 	struct ena_tx_buffer *tx_buf;
3632 	unsigned long last_jiffies;
3633 	u32 missed_tx = 0;
3634 	int i, rc = 0;
3635 
3636 	for (i = 0; i < tx_ring->ring_size; i++) {
3637 		tx_buf = &tx_ring->tx_buffer_info[i];
3638 		last_jiffies = tx_buf->last_jiffies;
3639 
3640 		if (last_jiffies == 0)
3641 			/* no pending Tx at this location */
3642 			continue;
3643 
3644 		if (unlikely(!tx_ring->first_interrupt && time_is_before_jiffies(last_jiffies +
3645 			     2 * adapter->missing_tx_completion_to))) {
3646 			/* If after graceful period interrupt is still not
3647 			 * received, we schedule a reset
3648 			 */
3649 			netif_err(adapter, tx_err, adapter->netdev,
3650 				  "Potential MSIX issue on Tx side Queue = %d. Reset the device\n",
3651 				  tx_ring->qid);
3652 			adapter->reset_reason = ENA_REGS_RESET_MISS_INTERRUPT;
3653 			smp_mb__before_atomic();
3654 			set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3655 			return -EIO;
3656 		}
3657 
3658 		if (unlikely(time_is_before_jiffies(last_jiffies +
3659 				adapter->missing_tx_completion_to))) {
3660 			if (!tx_buf->print_once)
3661 				netif_notice(adapter, tx_err, adapter->netdev,
3662 					     "Found a Tx that wasn't completed on time, qid %d, index %d.\n",
3663 					     tx_ring->qid, i);
3664 
3665 			tx_buf->print_once = 1;
3666 			missed_tx++;
3667 		}
3668 	}
3669 
3670 	if (unlikely(missed_tx > adapter->missing_tx_completion_threshold)) {
3671 		netif_err(adapter, tx_err, adapter->netdev,
3672 			  "The number of lost tx completions is above the threshold (%d > %d). Reset the device\n",
3673 			  missed_tx,
3674 			  adapter->missing_tx_completion_threshold);
3675 		adapter->reset_reason =
3676 			ENA_REGS_RESET_MISS_TX_CMPL;
3677 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3678 		rc = -EIO;
3679 	}
3680 
3681 	u64_stats_update_begin(&tx_ring->syncp);
3682 	tx_ring->tx_stats.missed_tx += missed_tx;
3683 	u64_stats_update_end(&tx_ring->syncp);
3684 
3685 	return rc;
3686 }
3687 
check_for_missing_completions(struct ena_adapter *adapter)3688 static void check_for_missing_completions(struct ena_adapter *adapter)
3689 {
3690 	struct ena_ring *tx_ring;
3691 	struct ena_ring *rx_ring;
3692 	int i, budget, rc;
3693 	int io_queue_count;
3694 
3695 	io_queue_count = adapter->xdp_num_queues + adapter->num_io_queues;
3696 	/* Make sure the driver doesn't turn the device in other process */
3697 	smp_rmb();
3698 
3699 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3700 		return;
3701 
3702 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
3703 		return;
3704 
3705 	if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
3706 		return;
3707 
3708 	budget = ENA_MONITORED_TX_QUEUES;
3709 
3710 	for (i = adapter->last_monitored_tx_qid; i < io_queue_count; i++) {
3711 		tx_ring = &adapter->tx_ring[i];
3712 		rx_ring = &adapter->rx_ring[i];
3713 
3714 		rc = check_missing_comp_in_tx_queue(adapter, tx_ring);
3715 		if (unlikely(rc))
3716 			return;
3717 
3718 		rc =  !ENA_IS_XDP_INDEX(adapter, i) ?
3719 			check_for_rx_interrupt_queue(adapter, rx_ring) : 0;
3720 		if (unlikely(rc))
3721 			return;
3722 
3723 		budget--;
3724 		if (!budget)
3725 			break;
3726 	}
3727 
3728 	adapter->last_monitored_tx_qid = i % io_queue_count;
3729 }
3730 
3731 /* trigger napi schedule after 2 consecutive detections */
3732 #define EMPTY_RX_REFILL 2
3733 /* For the rare case where the device runs out of Rx descriptors and the
3734  * napi handler failed to refill new Rx descriptors (due to a lack of memory
3735  * for example).
3736  * This case will lead to a deadlock:
3737  * The device won't send interrupts since all the new Rx packets will be dropped
3738  * The napi handler won't allocate new Rx descriptors so the device will be
3739  * able to send new packets.
3740  *
3741  * This scenario can happen when the kernel's vm.min_free_kbytes is too small.
3742  * It is recommended to have at least 512MB, with a minimum of 128MB for
3743  * constrained environment).
3744  *
3745  * When such a situation is detected - Reschedule napi
3746  */
check_for_empty_rx_ring(struct ena_adapter *adapter)3747 static void check_for_empty_rx_ring(struct ena_adapter *adapter)
3748 {
3749 	struct ena_ring *rx_ring;
3750 	int i, refill_required;
3751 
3752 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3753 		return;
3754 
3755 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
3756 		return;
3757 
3758 	for (i = 0; i < adapter->num_io_queues; i++) {
3759 		rx_ring = &adapter->rx_ring[i];
3760 
3761 		refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
3762 		if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
3763 			rx_ring->empty_rx_queue++;
3764 
3765 			if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) {
3766 				u64_stats_update_begin(&rx_ring->syncp);
3767 				rx_ring->rx_stats.empty_rx_ring++;
3768 				u64_stats_update_end(&rx_ring->syncp);
3769 
3770 				netif_err(adapter, drv, adapter->netdev,
3771 					  "Trigger refill for ring %d\n", i);
3772 
3773 				napi_schedule(rx_ring->napi);
3774 				rx_ring->empty_rx_queue = 0;
3775 			}
3776 		} else {
3777 			rx_ring->empty_rx_queue = 0;
3778 		}
3779 	}
3780 }
3781 
3782 /* Check for keep alive expiration */
check_for_missing_keep_alive(struct ena_adapter *adapter)3783 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
3784 {
3785 	unsigned long keep_alive_expired;
3786 
3787 	if (!adapter->wd_state)
3788 		return;
3789 
3790 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3791 		return;
3792 
3793 	keep_alive_expired = adapter->last_keep_alive_jiffies +
3794 			     adapter->keep_alive_timeout;
3795 	if (unlikely(time_is_before_jiffies(keep_alive_expired))) {
3796 		netif_err(adapter, drv, adapter->netdev,
3797 			  "Keep alive watchdog timeout.\n");
3798 		u64_stats_update_begin(&adapter->syncp);
3799 		adapter->dev_stats.wd_expired++;
3800 		u64_stats_update_end(&adapter->syncp);
3801 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
3802 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3803 	}
3804 }
3805 
check_for_admin_com_state(struct ena_adapter *adapter)3806 static void check_for_admin_com_state(struct ena_adapter *adapter)
3807 {
3808 	if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) {
3809 		netif_err(adapter, drv, adapter->netdev,
3810 			  "ENA admin queue is not in running state!\n");
3811 		u64_stats_update_begin(&adapter->syncp);
3812 		adapter->dev_stats.admin_q_pause++;
3813 		u64_stats_update_end(&adapter->syncp);
3814 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
3815 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3816 	}
3817 }
3818 
ena_update_hints(struct ena_adapter *adapter, struct ena_admin_ena_hw_hints *hints)3819 static void ena_update_hints(struct ena_adapter *adapter,
3820 			     struct ena_admin_ena_hw_hints *hints)
3821 {
3822 	struct net_device *netdev = adapter->netdev;
3823 
3824 	if (hints->admin_completion_tx_timeout)
3825 		adapter->ena_dev->admin_queue.completion_timeout =
3826 			hints->admin_completion_tx_timeout * 1000;
3827 
3828 	if (hints->mmio_read_timeout)
3829 		/* convert to usec */
3830 		adapter->ena_dev->mmio_read.reg_read_to =
3831 			hints->mmio_read_timeout * 1000;
3832 
3833 	if (hints->missed_tx_completion_count_threshold_to_reset)
3834 		adapter->missing_tx_completion_threshold =
3835 			hints->missed_tx_completion_count_threshold_to_reset;
3836 
3837 	if (hints->missing_tx_completion_timeout) {
3838 		if (hints->missing_tx_completion_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3839 			adapter->missing_tx_completion_to = ENA_HW_HINTS_NO_TIMEOUT;
3840 		else
3841 			adapter->missing_tx_completion_to =
3842 				msecs_to_jiffies(hints->missing_tx_completion_timeout);
3843 	}
3844 
3845 	if (hints->netdev_wd_timeout)
3846 		netdev->watchdog_timeo = msecs_to_jiffies(hints->netdev_wd_timeout);
3847 
3848 	if (hints->driver_watchdog_timeout) {
3849 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3850 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
3851 		else
3852 			adapter->keep_alive_timeout =
3853 				msecs_to_jiffies(hints->driver_watchdog_timeout);
3854 	}
3855 }
3856 
ena_update_host_info(struct ena_admin_host_info *host_info, struct net_device *netdev)3857 static void ena_update_host_info(struct ena_admin_host_info *host_info,
3858 				 struct net_device *netdev)
3859 {
3860 	host_info->supported_network_features[0] =
3861 		netdev->features & GENMASK_ULL(31, 0);
3862 	host_info->supported_network_features[1] =
3863 		(netdev->features & GENMASK_ULL(63, 32)) >> 32;
3864 }
3865 
ena_timer_service(struct timer_list *t)3866 static void ena_timer_service(struct timer_list *t)
3867 {
3868 	struct ena_adapter *adapter = from_timer(adapter, t, timer_service);
3869 	u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr;
3870 	struct ena_admin_host_info *host_info =
3871 		adapter->ena_dev->host_attr.host_info;
3872 
3873 	check_for_missing_keep_alive(adapter);
3874 
3875 	check_for_admin_com_state(adapter);
3876 
3877 	check_for_missing_completions(adapter);
3878 
3879 	check_for_empty_rx_ring(adapter);
3880 
3881 	if (debug_area)
3882 		ena_dump_stats_to_buf(adapter, debug_area);
3883 
3884 	if (host_info)
3885 		ena_update_host_info(host_info, adapter->netdev);
3886 
3887 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
3888 		netif_err(adapter, drv, adapter->netdev,
3889 			  "Trigger reset is on\n");
3890 		ena_dump_stats_to_dmesg(adapter);
3891 		queue_work(ena_wq, &adapter->reset_task);
3892 		return;
3893 	}
3894 
3895 	/* Reset the timer */
3896 	mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
3897 }
3898 
ena_calc_max_io_queue_num(struct pci_dev *pdev, struct ena_com_dev *ena_dev, struct ena_com_dev_get_features_ctx *get_feat_ctx)3899 static u32 ena_calc_max_io_queue_num(struct pci_dev *pdev,
3900 				     struct ena_com_dev *ena_dev,
3901 				     struct ena_com_dev_get_features_ctx *get_feat_ctx)
3902 {
3903 	u32 io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
3904 
3905 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
3906 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
3907 			&get_feat_ctx->max_queue_ext.max_queue_ext;
3908 		io_rx_num = min_t(u32, max_queue_ext->max_rx_sq_num,
3909 				  max_queue_ext->max_rx_cq_num);
3910 
3911 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
3912 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
3913 	} else {
3914 		struct ena_admin_queue_feature_desc *max_queues =
3915 			&get_feat_ctx->max_queues;
3916 		io_tx_sq_num = max_queues->max_sq_num;
3917 		io_tx_cq_num = max_queues->max_cq_num;
3918 		io_rx_num = min_t(u32, io_tx_sq_num, io_tx_cq_num);
3919 	}
3920 
3921 	/* In case of LLQ use the llq fields for the tx SQ/CQ */
3922 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
3923 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
3924 
3925 	max_num_io_queues = min_t(u32, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES);
3926 	max_num_io_queues = min_t(u32, max_num_io_queues, io_rx_num);
3927 	max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_sq_num);
3928 	max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_cq_num);
3929 	/* 1 IRQ for for mgmnt and 1 IRQs for each IO direction */
3930 	max_num_io_queues = min_t(u32, max_num_io_queues, pci_msix_vec_count(pdev) - 1);
3931 
3932 	return max_num_io_queues;
3933 }
3934 
ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat, struct net_device *netdev)3935 static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat,
3936 				 struct net_device *netdev)
3937 {
3938 	netdev_features_t dev_features = 0;
3939 
3940 	/* Set offload features */
3941 	if (feat->offload.tx &
3942 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
3943 		dev_features |= NETIF_F_IP_CSUM;
3944 
3945 	if (feat->offload.tx &
3946 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
3947 		dev_features |= NETIF_F_IPV6_CSUM;
3948 
3949 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
3950 		dev_features |= NETIF_F_TSO;
3951 
3952 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK)
3953 		dev_features |= NETIF_F_TSO6;
3954 
3955 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK)
3956 		dev_features |= NETIF_F_TSO_ECN;
3957 
3958 	if (feat->offload.rx_supported &
3959 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
3960 		dev_features |= NETIF_F_RXCSUM;
3961 
3962 	if (feat->offload.rx_supported &
3963 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
3964 		dev_features |= NETIF_F_RXCSUM;
3965 
3966 	netdev->features =
3967 		dev_features |
3968 		NETIF_F_SG |
3969 		NETIF_F_RXHASH |
3970 		NETIF_F_HIGHDMA;
3971 
3972 	netdev->hw_features |= netdev->features;
3973 	netdev->vlan_features |= netdev->features;
3974 }
3975 
ena_set_conf_feat_params(struct ena_adapter *adapter, struct ena_com_dev_get_features_ctx *feat)3976 static void ena_set_conf_feat_params(struct ena_adapter *adapter,
3977 				     struct ena_com_dev_get_features_ctx *feat)
3978 {
3979 	struct net_device *netdev = adapter->netdev;
3980 
3981 	/* Copy mac address */
3982 	if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) {
3983 		eth_hw_addr_random(netdev);
3984 		ether_addr_copy(adapter->mac_addr, netdev->dev_addr);
3985 	} else {
3986 		ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr);
3987 		ether_addr_copy(netdev->dev_addr, adapter->mac_addr);
3988 	}
3989 
3990 	/* Set offload features */
3991 	ena_set_dev_offloads(feat, netdev);
3992 
3993 	adapter->max_mtu = feat->dev_attr.max_mtu;
3994 	netdev->max_mtu = adapter->max_mtu;
3995 	netdev->min_mtu = ENA_MIN_MTU;
3996 }
3997 
ena_rss_init_default(struct ena_adapter *adapter)3998 static int ena_rss_init_default(struct ena_adapter *adapter)
3999 {
4000 	struct ena_com_dev *ena_dev = adapter->ena_dev;
4001 	struct device *dev = &adapter->pdev->dev;
4002 	int rc, i;
4003 	u32 val;
4004 
4005 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
4006 	if (unlikely(rc)) {
4007 		dev_err(dev, "Cannot init indirect table\n");
4008 		goto err_rss_init;
4009 	}
4010 
4011 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
4012 		val = ethtool_rxfh_indir_default(i, adapter->num_io_queues);
4013 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
4014 						       ENA_IO_RXQ_IDX(val));
4015 		if (unlikely(rc && (rc != -EOPNOTSUPP))) {
4016 			dev_err(dev, "Cannot fill indirect table\n");
4017 			goto err_fill_indir;
4018 		}
4019 	}
4020 
4021 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_TOEPLITZ, NULL,
4022 					ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
4023 	if (unlikely(rc && (rc != -EOPNOTSUPP))) {
4024 		dev_err(dev, "Cannot fill hash function\n");
4025 		goto err_fill_indir;
4026 	}
4027 
4028 	rc = ena_com_set_default_hash_ctrl(ena_dev);
4029 	if (unlikely(rc && (rc != -EOPNOTSUPP))) {
4030 		dev_err(dev, "Cannot fill hash control\n");
4031 		goto err_fill_indir;
4032 	}
4033 
4034 	return 0;
4035 
4036 err_fill_indir:
4037 	ena_com_rss_destroy(ena_dev);
4038 err_rss_init:
4039 
4040 	return rc;
4041 }
4042 
ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev)4043 static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev)
4044 {
4045 	int release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
4046 
4047 	pci_release_selected_regions(pdev, release_bars);
4048 }
4049 
4050 
ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx)4051 static int ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx)
4052 {
4053 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
4054 	struct ena_com_dev *ena_dev = ctx->ena_dev;
4055 	u32 tx_queue_size = ENA_DEFAULT_RING_SIZE;
4056 	u32 rx_queue_size = ENA_DEFAULT_RING_SIZE;
4057 	u32 max_tx_queue_size;
4058 	u32 max_rx_queue_size;
4059 
4060 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
4061 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
4062 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
4063 		max_rx_queue_size = min_t(u32, max_queue_ext->max_rx_cq_depth,
4064 					  max_queue_ext->max_rx_sq_depth);
4065 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
4066 
4067 		if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
4068 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
4069 						  llq->max_llq_depth);
4070 		else
4071 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
4072 						  max_queue_ext->max_tx_sq_depth);
4073 
4074 		ctx->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
4075 					     max_queue_ext->max_per_packet_tx_descs);
4076 		ctx->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
4077 					     max_queue_ext->max_per_packet_rx_descs);
4078 	} else {
4079 		struct ena_admin_queue_feature_desc *max_queues =
4080 			&ctx->get_feat_ctx->max_queues;
4081 		max_rx_queue_size = min_t(u32, max_queues->max_cq_depth,
4082 					  max_queues->max_sq_depth);
4083 		max_tx_queue_size = max_queues->max_cq_depth;
4084 
4085 		if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
4086 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
4087 						  llq->max_llq_depth);
4088 		else
4089 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
4090 						  max_queues->max_sq_depth);
4091 
4092 		ctx->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
4093 					     max_queues->max_packet_tx_descs);
4094 		ctx->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
4095 					     max_queues->max_packet_rx_descs);
4096 	}
4097 
4098 	max_tx_queue_size = rounddown_pow_of_two(max_tx_queue_size);
4099 	max_rx_queue_size = rounddown_pow_of_two(max_rx_queue_size);
4100 
4101 	tx_queue_size = clamp_val(tx_queue_size, ENA_MIN_RING_SIZE,
4102 				  max_tx_queue_size);
4103 	rx_queue_size = clamp_val(rx_queue_size, ENA_MIN_RING_SIZE,
4104 				  max_rx_queue_size);
4105 
4106 	tx_queue_size = rounddown_pow_of_two(tx_queue_size);
4107 	rx_queue_size = rounddown_pow_of_two(rx_queue_size);
4108 
4109 	ctx->max_tx_queue_size = max_tx_queue_size;
4110 	ctx->max_rx_queue_size = max_rx_queue_size;
4111 	ctx->tx_queue_size = tx_queue_size;
4112 	ctx->rx_queue_size = rx_queue_size;
4113 
4114 	return 0;
4115 }
4116 
4117 /* ena_probe - Device Initialization Routine
4118  * @pdev: PCI device information struct
4119  * @ent: entry in ena_pci_tbl
4120  *
4121  * Returns 0 on success, negative on failure
4122  *
4123  * ena_probe initializes an adapter identified by a pci_dev structure.
4124  * The OS initialization, configuring of the adapter private structure,
4125  * and a hardware reset occur.
4126  */
ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent)4127 static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4128 {
4129 	struct ena_calc_queue_size_ctx calc_queue_ctx = {};
4130 	struct ena_com_dev_get_features_ctx get_feat_ctx;
4131 	struct ena_com_dev *ena_dev = NULL;
4132 	struct ena_adapter *adapter;
4133 	struct net_device *netdev;
4134 	static int adapters_found;
4135 	u32 max_num_io_queues;
4136 	bool wd_state;
4137 	int bars, rc;
4138 
4139 	dev_dbg(&pdev->dev, "%s\n", __func__);
4140 
4141 	rc = pci_enable_device_mem(pdev);
4142 	if (rc) {
4143 		dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n");
4144 		return rc;
4145 	}
4146 
4147 	rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(ENA_MAX_PHYS_ADDR_SIZE_BITS));
4148 	if (rc) {
4149 		dev_err(&pdev->dev, "dma_set_mask_and_coherent failed %d\n", rc);
4150 		goto err_disable_device;
4151 	}
4152 
4153 	pci_set_master(pdev);
4154 
4155 	ena_dev = vzalloc(sizeof(*ena_dev));
4156 	if (!ena_dev) {
4157 		rc = -ENOMEM;
4158 		goto err_disable_device;
4159 	}
4160 
4161 	bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
4162 	rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME);
4163 	if (rc) {
4164 		dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n",
4165 			rc);
4166 		goto err_free_ena_dev;
4167 	}
4168 
4169 	ena_dev->reg_bar = devm_ioremap(&pdev->dev,
4170 					pci_resource_start(pdev, ENA_REG_BAR),
4171 					pci_resource_len(pdev, ENA_REG_BAR));
4172 	if (!ena_dev->reg_bar) {
4173 		dev_err(&pdev->dev, "Failed to remap regs bar\n");
4174 		rc = -EFAULT;
4175 		goto err_free_region;
4176 	}
4177 
4178 	ena_dev->ena_min_poll_delay_us = ENA_ADMIN_POLL_DELAY_US;
4179 
4180 	ena_dev->dmadev = &pdev->dev;
4181 
4182 	rc = ena_device_init(ena_dev, pdev, &get_feat_ctx, &wd_state);
4183 	if (rc) {
4184 		dev_err(&pdev->dev, "ENA device init failed\n");
4185 		if (rc == -ETIME)
4186 			rc = -EPROBE_DEFER;
4187 		goto err_free_region;
4188 	}
4189 
4190 	rc = ena_map_llq_mem_bar(pdev, ena_dev, bars);
4191 	if (rc) {
4192 		dev_err(&pdev->dev, "ENA llq bar mapping failed\n");
4193 		goto err_free_ena_dev;
4194 	}
4195 
4196 	calc_queue_ctx.ena_dev = ena_dev;
4197 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
4198 	calc_queue_ctx.pdev = pdev;
4199 
4200 	/* Initial TX and RX interrupt delay. Assumes 1 usec granularity.
4201 	 * Updated during device initialization with the real granularity
4202 	 */
4203 	ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS;
4204 	ena_dev->intr_moder_rx_interval = ENA_INTR_INITIAL_RX_INTERVAL_USECS;
4205 	ena_dev->intr_delay_resolution = ENA_DEFAULT_INTR_DELAY_RESOLUTION;
4206 	max_num_io_queues = ena_calc_max_io_queue_num(pdev, ena_dev, &get_feat_ctx);
4207 	rc = ena_calc_io_queue_size(&calc_queue_ctx);
4208 	if (rc || !max_num_io_queues) {
4209 		rc = -EFAULT;
4210 		goto err_device_destroy;
4211 	}
4212 
4213 	/* dev zeroed in init_etherdev */
4214 	netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), max_num_io_queues);
4215 	if (!netdev) {
4216 		dev_err(&pdev->dev, "alloc_etherdev_mq failed\n");
4217 		rc = -ENOMEM;
4218 		goto err_device_destroy;
4219 	}
4220 
4221 	SET_NETDEV_DEV(netdev, &pdev->dev);
4222 
4223 	adapter = netdev_priv(netdev);
4224 	pci_set_drvdata(pdev, adapter);
4225 
4226 	adapter->ena_dev = ena_dev;
4227 	adapter->netdev = netdev;
4228 	adapter->pdev = pdev;
4229 
4230 	ena_set_conf_feat_params(adapter, &get_feat_ctx);
4231 
4232 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4233 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
4234 
4235 	adapter->requested_tx_ring_size = calc_queue_ctx.tx_queue_size;
4236 	adapter->requested_rx_ring_size = calc_queue_ctx.rx_queue_size;
4237 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
4238 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
4239 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
4240 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
4241 
4242 	adapter->num_io_queues = max_num_io_queues;
4243 	adapter->max_num_io_queues = max_num_io_queues;
4244 	adapter->last_monitored_tx_qid = 0;
4245 
4246 	adapter->xdp_first_ring = 0;
4247 	adapter->xdp_num_queues = 0;
4248 
4249 	adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK;
4250 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
4251 		adapter->disable_meta_caching =
4252 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
4253 			   BIT(ENA_ADMIN_DISABLE_META_CACHING));
4254 
4255 	adapter->wd_state = wd_state;
4256 
4257 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found);
4258 
4259 	rc = ena_com_init_interrupt_moderation(adapter->ena_dev);
4260 	if (rc) {
4261 		dev_err(&pdev->dev,
4262 			"Failed to query interrupt moderation feature\n");
4263 		goto err_netdev_destroy;
4264 	}
4265 	ena_init_io_rings(adapter,
4266 			  0,
4267 			  adapter->xdp_num_queues +
4268 			  adapter->num_io_queues);
4269 
4270 	netdev->netdev_ops = &ena_netdev_ops;
4271 	netdev->watchdog_timeo = TX_TIMEOUT;
4272 	ena_set_ethtool_ops(netdev);
4273 
4274 	netdev->priv_flags |= IFF_UNICAST_FLT;
4275 
4276 	u64_stats_init(&adapter->syncp);
4277 
4278 	rc = ena_enable_msix_and_set_admin_interrupts(adapter);
4279 	if (rc) {
4280 		dev_err(&pdev->dev,
4281 			"Failed to enable and set the admin interrupts\n");
4282 		goto err_worker_destroy;
4283 	}
4284 	rc = ena_rss_init_default(adapter);
4285 	if (rc && (rc != -EOPNOTSUPP)) {
4286 		dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc);
4287 		goto err_free_msix;
4288 	}
4289 
4290 	ena_config_debug_area(adapter);
4291 
4292 	if (!ena_update_hw_stats(adapter))
4293 		adapter->eni_stats_supported = true;
4294 	else
4295 		adapter->eni_stats_supported = false;
4296 
4297 	memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len);
4298 
4299 	netif_carrier_off(netdev);
4300 
4301 	rc = register_netdev(netdev);
4302 	if (rc) {
4303 		dev_err(&pdev->dev, "Cannot register net device\n");
4304 		goto err_rss;
4305 	}
4306 
4307 	INIT_WORK(&adapter->reset_task, ena_fw_reset_device);
4308 
4309 	adapter->last_keep_alive_jiffies = jiffies;
4310 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
4311 	adapter->missing_tx_completion_to = TX_TIMEOUT;
4312 	adapter->missing_tx_completion_threshold = MAX_NUM_OF_TIMEOUTED_PACKETS;
4313 
4314 	ena_update_hints(adapter, &get_feat_ctx.hw_hints);
4315 
4316 	timer_setup(&adapter->timer_service, ena_timer_service, 0);
4317 	mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
4318 
4319 	dev_info(&pdev->dev,
4320 		 "%s found at mem %lx, mac addr %pM\n",
4321 		 DEVICE_NAME, (long)pci_resource_start(pdev, 0),
4322 		 netdev->dev_addr);
4323 
4324 	set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
4325 
4326 	adapters_found++;
4327 
4328 	return 0;
4329 
4330 err_rss:
4331 	ena_com_delete_debug_area(ena_dev);
4332 	ena_com_rss_destroy(ena_dev);
4333 err_free_msix:
4334 	ena_com_dev_reset(ena_dev, ENA_REGS_RESET_INIT_ERR);
4335 	/* stop submitting admin commands on a device that was reset */
4336 	ena_com_set_admin_running_state(ena_dev, false);
4337 	ena_free_mgmnt_irq(adapter);
4338 	ena_disable_msix(adapter);
4339 err_worker_destroy:
4340 	del_timer(&adapter->timer_service);
4341 err_netdev_destroy:
4342 	free_netdev(netdev);
4343 err_device_destroy:
4344 	ena_com_delete_host_info(ena_dev);
4345 	ena_com_admin_destroy(ena_dev);
4346 err_free_region:
4347 	ena_release_bars(ena_dev, pdev);
4348 err_free_ena_dev:
4349 	vfree(ena_dev);
4350 err_disable_device:
4351 	pci_disable_device(pdev);
4352 	return rc;
4353 }
4354 
4355 /*****************************************************************************/
4356 
4357 /* __ena_shutoff - Helper used in both PCI remove/shutdown routines
4358  * @pdev: PCI device information struct
4359  * @shutdown: Is it a shutdown operation? If false, means it is a removal
4360  *
4361  * __ena_shutoff is a helper routine that does the real work on shutdown and
4362  * removal paths; the difference between those paths is with regards to whether
4363  * dettach or unregister the netdevice.
4364  */
__ena_shutoff(struct pci_dev *pdev, bool shutdown)4365 static void __ena_shutoff(struct pci_dev *pdev, bool shutdown)
4366 {
4367 	struct ena_adapter *adapter = pci_get_drvdata(pdev);
4368 	struct ena_com_dev *ena_dev;
4369 	struct net_device *netdev;
4370 
4371 	ena_dev = adapter->ena_dev;
4372 	netdev = adapter->netdev;
4373 
4374 #ifdef CONFIG_RFS_ACCEL
4375 	if ((adapter->msix_vecs >= 1) && (netdev->rx_cpu_rmap)) {
4376 		free_irq_cpu_rmap(netdev->rx_cpu_rmap);
4377 		netdev->rx_cpu_rmap = NULL;
4378 	}
4379 #endif /* CONFIG_RFS_ACCEL */
4380 
4381 	/* Make sure timer and reset routine won't be called after
4382 	 * freeing device resources.
4383 	 */
4384 	del_timer_sync(&adapter->timer_service);
4385 	cancel_work_sync(&adapter->reset_task);
4386 
4387 	rtnl_lock(); /* lock released inside the below if-else block */
4388 	adapter->reset_reason = ENA_REGS_RESET_SHUTDOWN;
4389 	ena_destroy_device(adapter, true);
4390 	if (shutdown) {
4391 		netif_device_detach(netdev);
4392 		dev_close(netdev);
4393 		rtnl_unlock();
4394 	} else {
4395 		rtnl_unlock();
4396 		unregister_netdev(netdev);
4397 		free_netdev(netdev);
4398 	}
4399 
4400 	ena_com_rss_destroy(ena_dev);
4401 
4402 	ena_com_delete_debug_area(ena_dev);
4403 
4404 	ena_com_delete_host_info(ena_dev);
4405 
4406 	ena_release_bars(ena_dev, pdev);
4407 
4408 	pci_disable_device(pdev);
4409 
4410 	vfree(ena_dev);
4411 }
4412 
4413 /* ena_remove - Device Removal Routine
4414  * @pdev: PCI device information struct
4415  *
4416  * ena_remove is called by the PCI subsystem to alert the driver
4417  * that it should release a PCI device.
4418  */
4419 
ena_remove(struct pci_dev *pdev)4420 static void ena_remove(struct pci_dev *pdev)
4421 {
4422 	__ena_shutoff(pdev, false);
4423 }
4424 
4425 /* ena_shutdown - Device Shutdown Routine
4426  * @pdev: PCI device information struct
4427  *
4428  * ena_shutdown is called by the PCI subsystem to alert the driver that
4429  * a shutdown/reboot (or kexec) is happening and device must be disabled.
4430  */
4431 
ena_shutdown(struct pci_dev *pdev)4432 static void ena_shutdown(struct pci_dev *pdev)
4433 {
4434 	__ena_shutoff(pdev, true);
4435 }
4436 
4437 /* ena_suspend - PM suspend callback
4438  * @dev_d: Device information struct
4439  */
ena_suspend(struct device *dev_d)4440 static int __maybe_unused ena_suspend(struct device *dev_d)
4441 {
4442 	struct pci_dev *pdev = to_pci_dev(dev_d);
4443 	struct ena_adapter *adapter = pci_get_drvdata(pdev);
4444 
4445 	u64_stats_update_begin(&adapter->syncp);
4446 	adapter->dev_stats.suspend++;
4447 	u64_stats_update_end(&adapter->syncp);
4448 
4449 	rtnl_lock();
4450 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
4451 		dev_err(&pdev->dev,
4452 			"Ignoring device reset request as the device is being suspended\n");
4453 		clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
4454 	}
4455 	ena_destroy_device(adapter, true);
4456 	rtnl_unlock();
4457 	return 0;
4458 }
4459 
4460 /* ena_resume - PM resume callback
4461  * @dev_d: Device information struct
4462  */
ena_resume(struct device *dev_d)4463 static int __maybe_unused ena_resume(struct device *dev_d)
4464 {
4465 	struct ena_adapter *adapter = dev_get_drvdata(dev_d);
4466 	int rc;
4467 
4468 	u64_stats_update_begin(&adapter->syncp);
4469 	adapter->dev_stats.resume++;
4470 	u64_stats_update_end(&adapter->syncp);
4471 
4472 	rtnl_lock();
4473 	rc = ena_restore_device(adapter);
4474 	rtnl_unlock();
4475 	return rc;
4476 }
4477 
4478 static SIMPLE_DEV_PM_OPS(ena_pm_ops, ena_suspend, ena_resume);
4479 
4480 static struct pci_driver ena_pci_driver = {
4481 	.name		= DRV_MODULE_NAME,
4482 	.id_table	= ena_pci_tbl,
4483 	.probe		= ena_probe,
4484 	.remove		= ena_remove,
4485 	.shutdown	= ena_shutdown,
4486 	.driver.pm	= &ena_pm_ops,
4487 	.sriov_configure = pci_sriov_configure_simple,
4488 };
4489 
ena_init(void)4490 static int __init ena_init(void)
4491 {
4492 	int ret;
4493 
4494 	ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME);
4495 	if (!ena_wq) {
4496 		pr_err("Failed to create workqueue\n");
4497 		return -ENOMEM;
4498 	}
4499 
4500 	ret = pci_register_driver(&ena_pci_driver);
4501 	if (ret)
4502 		destroy_workqueue(ena_wq);
4503 
4504 	return ret;
4505 }
4506 
ena_cleanup(void)4507 static void __exit ena_cleanup(void)
4508 {
4509 	pci_unregister_driver(&ena_pci_driver);
4510 
4511 	if (ena_wq) {
4512 		destroy_workqueue(ena_wq);
4513 		ena_wq = NULL;
4514 	}
4515 }
4516 
4517 /******************************************************************************
4518  ******************************** AENQ Handlers *******************************
4519  *****************************************************************************/
4520 /* ena_update_on_link_change:
4521  * Notify the network interface about the change in link status
4522  */
ena_update_on_link_change(void *adapter_data, struct ena_admin_aenq_entry *aenq_e)4523 static void ena_update_on_link_change(void *adapter_data,
4524 				      struct ena_admin_aenq_entry *aenq_e)
4525 {
4526 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4527 	struct ena_admin_aenq_link_change_desc *aenq_desc =
4528 		(struct ena_admin_aenq_link_change_desc *)aenq_e;
4529 	int status = aenq_desc->flags &
4530 		ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
4531 
4532 	if (status) {
4533 		netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__);
4534 		set_bit(ENA_FLAG_LINK_UP, &adapter->flags);
4535 		if (!test_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags))
4536 			netif_carrier_on(adapter->netdev);
4537 	} else {
4538 		clear_bit(ENA_FLAG_LINK_UP, &adapter->flags);
4539 		netif_carrier_off(adapter->netdev);
4540 	}
4541 }
4542 
ena_keep_alive_wd(void *adapter_data, struct ena_admin_aenq_entry *aenq_e)4543 static void ena_keep_alive_wd(void *adapter_data,
4544 			      struct ena_admin_aenq_entry *aenq_e)
4545 {
4546 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4547 	struct ena_admin_aenq_keep_alive_desc *desc;
4548 	u64 rx_drops;
4549 	u64 tx_drops;
4550 
4551 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
4552 	adapter->last_keep_alive_jiffies = jiffies;
4553 
4554 	rx_drops = ((u64)desc->rx_drops_high << 32) | desc->rx_drops_low;
4555 	tx_drops = ((u64)desc->tx_drops_high << 32) | desc->tx_drops_low;
4556 
4557 	u64_stats_update_begin(&adapter->syncp);
4558 	/* These stats are accumulated by the device, so the counters indicate
4559 	 * all drops since last reset.
4560 	 */
4561 	adapter->dev_stats.rx_drops = rx_drops;
4562 	adapter->dev_stats.tx_drops = tx_drops;
4563 	u64_stats_update_end(&adapter->syncp);
4564 }
4565 
ena_notification(void *adapter_data, struct ena_admin_aenq_entry *aenq_e)4566 static void ena_notification(void *adapter_data,
4567 			     struct ena_admin_aenq_entry *aenq_e)
4568 {
4569 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4570 	struct ena_admin_ena_hw_hints *hints;
4571 
4572 	WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION,
4573 	     "Invalid group(%x) expected %x\n",
4574 	     aenq_e->aenq_common_desc.group,
4575 	     ENA_ADMIN_NOTIFICATION);
4576 
4577 	switch (aenq_e->aenq_common_desc.syndrome) {
4578 	case ENA_ADMIN_UPDATE_HINTS:
4579 		hints = (struct ena_admin_ena_hw_hints *)
4580 			(&aenq_e->inline_data_w4);
4581 		ena_update_hints(adapter, hints);
4582 		break;
4583 	default:
4584 		netif_err(adapter, drv, adapter->netdev,
4585 			  "Invalid aenq notification link state %d\n",
4586 			  aenq_e->aenq_common_desc.syndrome);
4587 	}
4588 }
4589 
4590 /* This handler will called for unknown event group or unimplemented handlers*/
unimplemented_aenq_handler(void *data, struct ena_admin_aenq_entry *aenq_e)4591 static void unimplemented_aenq_handler(void *data,
4592 				       struct ena_admin_aenq_entry *aenq_e)
4593 {
4594 	struct ena_adapter *adapter = (struct ena_adapter *)data;
4595 
4596 	netif_err(adapter, drv, adapter->netdev,
4597 		  "Unknown event was received or event with unimplemented handler\n");
4598 }
4599 
4600 static struct ena_aenq_handlers aenq_handlers = {
4601 	.handlers = {
4602 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
4603 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
4604 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
4605 	},
4606 	.unimplemented_handler = unimplemented_aenq_handler
4607 };
4608 
4609 module_init(ena_init);
4610 module_exit(ena_cleanup);
4611