1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Copyright (c) International Business Machines Corp., 2006 4 * Copyright (c) Nokia Corporation, 2007 5 * 6 * Author: Artem Bityutskiy (Битюцкий Артём), 7 * Frank Haverkamp 8 */ 9 10/* 11 * This file includes UBI initialization and building of UBI devices. 12 * 13 * When UBI is initialized, it attaches all the MTD devices specified as the 14 * module load parameters or the kernel boot parameters. If MTD devices were 15 * specified, UBI does not attach any MTD device, but it is possible to do 16 * later using the "UBI control device". 17 */ 18 19#include <linux/err.h> 20#include <linux/module.h> 21#include <linux/moduleparam.h> 22#include <linux/stringify.h> 23#include <linux/namei.h> 24#include <linux/stat.h> 25#include <linux/miscdevice.h> 26#include <linux/mtd/partitions.h> 27#include <linux/log2.h> 28#include <linux/kthread.h> 29#include <linux/kernel.h> 30#include <linux/slab.h> 31#include <linux/major.h> 32#include "ubi.h" 33 34/* Maximum length of the 'mtd=' parameter */ 35#define MTD_PARAM_LEN_MAX 64 36 37/* Maximum number of comma-separated items in the 'mtd=' parameter */ 38#define MTD_PARAM_MAX_COUNT 4 39 40/* Maximum value for the number of bad PEBs per 1024 PEBs */ 41#define MAX_MTD_UBI_BEB_LIMIT 768 42 43#ifdef CONFIG_MTD_UBI_MODULE 44#define ubi_is_module() 1 45#else 46#define ubi_is_module() 0 47#endif 48 49/** 50 * struct mtd_dev_param - MTD device parameter description data structure. 51 * @name: MTD character device node path, MTD device name, or MTD device number 52 * string 53 * @vid_hdr_offs: VID header offset 54 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs 55 */ 56struct mtd_dev_param { 57 char name[MTD_PARAM_LEN_MAX]; 58 int ubi_num; 59 int vid_hdr_offs; 60 int max_beb_per1024; 61}; 62 63/* Numbers of elements set in the @mtd_dev_param array */ 64static int mtd_devs; 65 66/* MTD devices specification parameters */ 67static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES]; 68#ifdef CONFIG_MTD_UBI_FASTMAP 69/* UBI module parameter to enable fastmap automatically on non-fastmap images */ 70static bool fm_autoconvert; 71static bool fm_debug; 72#endif 73 74/* Slab cache for wear-leveling entries */ 75struct kmem_cache *ubi_wl_entry_slab; 76 77/* UBI control character device */ 78static struct miscdevice ubi_ctrl_cdev = { 79 .minor = MISC_DYNAMIC_MINOR, 80 .name = "ubi_ctrl", 81 .fops = &ubi_ctrl_cdev_operations, 82}; 83 84/* All UBI devices in system */ 85static struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; 86 87/* Serializes UBI devices creations and removals */ 88DEFINE_MUTEX(ubi_devices_mutex); 89 90/* Protects @ubi_devices and @ubi->ref_count */ 91static DEFINE_SPINLOCK(ubi_devices_lock); 92 93/* "Show" method for files in '/<sysfs>/class/ubi/' */ 94/* UBI version attribute ('/<sysfs>/class/ubi/version') */ 95static ssize_t version_show(struct class *class, struct class_attribute *attr, 96 char *buf) 97{ 98 return sprintf(buf, "%d\n", UBI_VERSION); 99} 100static CLASS_ATTR_RO(version); 101 102static struct attribute *ubi_class_attrs[] = { 103 &class_attr_version.attr, 104 NULL, 105}; 106ATTRIBUTE_GROUPS(ubi_class); 107 108/* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */ 109struct class ubi_class = { 110 .name = UBI_NAME_STR, 111 .owner = THIS_MODULE, 112 .class_groups = ubi_class_groups, 113}; 114 115static ssize_t dev_attribute_show(struct device *dev, 116 struct device_attribute *attr, char *buf); 117 118/* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */ 119static struct device_attribute dev_eraseblock_size = 120 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL); 121static struct device_attribute dev_avail_eraseblocks = 122 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 123static struct device_attribute dev_total_eraseblocks = 124 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 125static struct device_attribute dev_volumes_count = 126 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL); 127static struct device_attribute dev_max_ec = 128 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL); 129static struct device_attribute dev_reserved_for_bad = 130 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL); 131static struct device_attribute dev_bad_peb_count = 132 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL); 133static struct device_attribute dev_max_vol_count = 134 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL); 135static struct device_attribute dev_min_io_size = 136 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL); 137static struct device_attribute dev_bgt_enabled = 138 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL); 139static struct device_attribute dev_mtd_num = 140 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL); 141static struct device_attribute dev_ro_mode = 142 __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL); 143 144/** 145 * ubi_volume_notify - send a volume change notification. 146 * @ubi: UBI device description object 147 * @vol: volume description object of the changed volume 148 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 149 * 150 * This is a helper function which notifies all subscribers about a volume 151 * change event (creation, removal, re-sizing, re-naming, updating). Returns 152 * zero in case of success and a negative error code in case of failure. 153 */ 154int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype) 155{ 156 int ret; 157 struct ubi_notification nt; 158 159 ubi_do_get_device_info(ubi, &nt.di); 160 ubi_do_get_volume_info(ubi, vol, &nt.vi); 161 162 switch (ntype) { 163 case UBI_VOLUME_ADDED: 164 case UBI_VOLUME_REMOVED: 165 case UBI_VOLUME_RESIZED: 166 case UBI_VOLUME_RENAMED: 167 ret = ubi_update_fastmap(ubi); 168 if (ret) 169 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret); 170 } 171 172 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt); 173} 174 175/** 176 * ubi_notify_all - send a notification to all volumes. 177 * @ubi: UBI device description object 178 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 179 * @nb: the notifier to call 180 * 181 * This function walks all volumes of UBI device @ubi and sends the @ntype 182 * notification for each volume. If @nb is %NULL, then all registered notifiers 183 * are called, otherwise only the @nb notifier is called. Returns the number of 184 * sent notifications. 185 */ 186int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb) 187{ 188 struct ubi_notification nt; 189 int i, count = 0; 190 191 ubi_do_get_device_info(ubi, &nt.di); 192 193 mutex_lock(&ubi->device_mutex); 194 for (i = 0; i < ubi->vtbl_slots; i++) { 195 /* 196 * Since the @ubi->device is locked, and we are not going to 197 * change @ubi->volumes, we do not have to lock 198 * @ubi->volumes_lock. 199 */ 200 if (!ubi->volumes[i]) 201 continue; 202 203 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi); 204 if (nb) 205 nb->notifier_call(nb, ntype, &nt); 206 else 207 blocking_notifier_call_chain(&ubi_notifiers, ntype, 208 &nt); 209 count += 1; 210 } 211 mutex_unlock(&ubi->device_mutex); 212 213 return count; 214} 215 216/** 217 * ubi_enumerate_volumes - send "add" notification for all existing volumes. 218 * @nb: the notifier to call 219 * 220 * This function walks all UBI devices and volumes and sends the 221 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all 222 * registered notifiers are called, otherwise only the @nb notifier is called. 223 * Returns the number of sent notifications. 224 */ 225int ubi_enumerate_volumes(struct notifier_block *nb) 226{ 227 int i, count = 0; 228 229 /* 230 * Since the @ubi_devices_mutex is locked, and we are not going to 231 * change @ubi_devices, we do not have to lock @ubi_devices_lock. 232 */ 233 for (i = 0; i < UBI_MAX_DEVICES; i++) { 234 struct ubi_device *ubi = ubi_devices[i]; 235 236 if (!ubi) 237 continue; 238 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb); 239 } 240 241 return count; 242} 243 244/** 245 * ubi_get_device - get UBI device. 246 * @ubi_num: UBI device number 247 * 248 * This function returns UBI device description object for UBI device number 249 * @ubi_num, or %NULL if the device does not exist. This function increases the 250 * device reference count to prevent removal of the device. In other words, the 251 * device cannot be removed if its reference count is not zero. 252 */ 253struct ubi_device *ubi_get_device(int ubi_num) 254{ 255 struct ubi_device *ubi; 256 257 spin_lock(&ubi_devices_lock); 258 ubi = ubi_devices[ubi_num]; 259 if (ubi) { 260 ubi_assert(ubi->ref_count >= 0); 261 ubi->ref_count += 1; 262 get_device(&ubi->dev); 263 } 264 spin_unlock(&ubi_devices_lock); 265 266 return ubi; 267} 268 269/** 270 * ubi_put_device - drop an UBI device reference. 271 * @ubi: UBI device description object 272 */ 273void ubi_put_device(struct ubi_device *ubi) 274{ 275 spin_lock(&ubi_devices_lock); 276 ubi->ref_count -= 1; 277 put_device(&ubi->dev); 278 spin_unlock(&ubi_devices_lock); 279} 280 281/** 282 * ubi_get_by_major - get UBI device by character device major number. 283 * @major: major number 284 * 285 * This function is similar to 'ubi_get_device()', but it searches the device 286 * by its major number. 287 */ 288struct ubi_device *ubi_get_by_major(int major) 289{ 290 int i; 291 struct ubi_device *ubi; 292 293 spin_lock(&ubi_devices_lock); 294 for (i = 0; i < UBI_MAX_DEVICES; i++) { 295 ubi = ubi_devices[i]; 296 if (ubi && MAJOR(ubi->cdev.dev) == major) { 297 ubi_assert(ubi->ref_count >= 0); 298 ubi->ref_count += 1; 299 get_device(&ubi->dev); 300 spin_unlock(&ubi_devices_lock); 301 return ubi; 302 } 303 } 304 spin_unlock(&ubi_devices_lock); 305 306 return NULL; 307} 308 309/** 310 * ubi_major2num - get UBI device number by character device major number. 311 * @major: major number 312 * 313 * This function searches UBI device number object by its major number. If UBI 314 * device was not found, this function returns -ENODEV, otherwise the UBI device 315 * number is returned. 316 */ 317int ubi_major2num(int major) 318{ 319 int i, ubi_num = -ENODEV; 320 321 spin_lock(&ubi_devices_lock); 322 for (i = 0; i < UBI_MAX_DEVICES; i++) { 323 struct ubi_device *ubi = ubi_devices[i]; 324 325 if (ubi && MAJOR(ubi->cdev.dev) == major) { 326 ubi_num = ubi->ubi_num; 327 break; 328 } 329 } 330 spin_unlock(&ubi_devices_lock); 331 332 return ubi_num; 333} 334 335/* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */ 336static ssize_t dev_attribute_show(struct device *dev, 337 struct device_attribute *attr, char *buf) 338{ 339 ssize_t ret; 340 struct ubi_device *ubi; 341 342 /* 343 * The below code looks weird, but it actually makes sense. We get the 344 * UBI device reference from the contained 'struct ubi_device'. But it 345 * is unclear if the device was removed or not yet. Indeed, if the 346 * device was removed before we increased its reference count, 347 * 'ubi_get_device()' will return -ENODEV and we fail. 348 * 349 * Remember, 'struct ubi_device' is freed in the release function, so 350 * we still can use 'ubi->ubi_num'. 351 */ 352 ubi = container_of(dev, struct ubi_device, dev); 353 354 if (attr == &dev_eraseblock_size) 355 ret = sprintf(buf, "%d\n", ubi->leb_size); 356 else if (attr == &dev_avail_eraseblocks) 357 ret = sprintf(buf, "%d\n", ubi->avail_pebs); 358 else if (attr == &dev_total_eraseblocks) 359 ret = sprintf(buf, "%d\n", ubi->good_peb_count); 360 else if (attr == &dev_volumes_count) 361 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT); 362 else if (attr == &dev_max_ec) 363 ret = sprintf(buf, "%d\n", ubi->max_ec); 364 else if (attr == &dev_reserved_for_bad) 365 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs); 366 else if (attr == &dev_bad_peb_count) 367 ret = sprintf(buf, "%d\n", ubi->bad_peb_count); 368 else if (attr == &dev_max_vol_count) 369 ret = sprintf(buf, "%d\n", ubi->vtbl_slots); 370 else if (attr == &dev_min_io_size) 371 ret = sprintf(buf, "%d\n", ubi->min_io_size); 372 else if (attr == &dev_bgt_enabled) 373 ret = sprintf(buf, "%d\n", ubi->thread_enabled); 374 else if (attr == &dev_mtd_num) 375 ret = sprintf(buf, "%d\n", ubi->mtd->index); 376 else if (attr == &dev_ro_mode) 377 ret = sprintf(buf, "%d\n", ubi->ro_mode); 378 else 379 ret = -EINVAL; 380 381 return ret; 382} 383 384static struct attribute *ubi_dev_attrs[] = { 385 &dev_eraseblock_size.attr, 386 &dev_avail_eraseblocks.attr, 387 &dev_total_eraseblocks.attr, 388 &dev_volumes_count.attr, 389 &dev_max_ec.attr, 390 &dev_reserved_for_bad.attr, 391 &dev_bad_peb_count.attr, 392 &dev_max_vol_count.attr, 393 &dev_min_io_size.attr, 394 &dev_bgt_enabled.attr, 395 &dev_mtd_num.attr, 396 &dev_ro_mode.attr, 397 NULL 398}; 399ATTRIBUTE_GROUPS(ubi_dev); 400 401static void dev_release(struct device *dev) 402{ 403 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev); 404 405 kfree(ubi); 406} 407 408/** 409 * kill_volumes - destroy all user volumes. 410 * @ubi: UBI device description object 411 */ 412static void kill_volumes(struct ubi_device *ubi) 413{ 414 int i; 415 416 for (i = 0; i < ubi->vtbl_slots; i++) 417 if (ubi->volumes[i]) 418 ubi_free_volume(ubi, ubi->volumes[i]); 419} 420 421/** 422 * uif_init - initialize user interfaces for an UBI device. 423 * @ubi: UBI device description object 424 * 425 * This function initializes various user interfaces for an UBI device. If the 426 * initialization fails at an early stage, this function frees all the 427 * resources it allocated, returns an error. 428 * 429 * This function returns zero in case of success and a negative error code in 430 * case of failure. 431 */ 432static int uif_init(struct ubi_device *ubi) 433{ 434 int i, err; 435 dev_t dev; 436 437 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num); 438 439 /* 440 * Major numbers for the UBI character devices are allocated 441 * dynamically. Major numbers of volume character devices are 442 * equivalent to ones of the corresponding UBI character device. Minor 443 * numbers of UBI character devices are 0, while minor numbers of 444 * volume character devices start from 1. Thus, we allocate one major 445 * number and ubi->vtbl_slots + 1 minor numbers. 446 */ 447 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name); 448 if (err) { 449 ubi_err(ubi, "cannot register UBI character devices"); 450 return err; 451 } 452 453 ubi->dev.devt = dev; 454 455 ubi_assert(MINOR(dev) == 0); 456 cdev_init(&ubi->cdev, &ubi_cdev_operations); 457 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev)); 458 ubi->cdev.owner = THIS_MODULE; 459 460 dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num); 461 err = cdev_device_add(&ubi->cdev, &ubi->dev); 462 if (err) 463 goto out_unreg; 464 465 for (i = 0; i < ubi->vtbl_slots; i++) 466 if (ubi->volumes[i]) { 467 err = ubi_add_volume(ubi, ubi->volumes[i]); 468 if (err) { 469 ubi_err(ubi, "cannot add volume %d", i); 470 ubi->volumes[i] = NULL; 471 goto out_volumes; 472 } 473 } 474 475 return 0; 476 477out_volumes: 478 kill_volumes(ubi); 479 cdev_device_del(&ubi->cdev, &ubi->dev); 480out_unreg: 481 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 482 ubi_err(ubi, "cannot initialize UBI %s, error %d", 483 ubi->ubi_name, err); 484 return err; 485} 486 487/** 488 * uif_close - close user interfaces for an UBI device. 489 * @ubi: UBI device description object 490 * 491 * Note, since this function un-registers UBI volume device objects (@vol->dev), 492 * the memory allocated voe the volumes is freed as well (in the release 493 * function). 494 */ 495static void uif_close(struct ubi_device *ubi) 496{ 497 kill_volumes(ubi); 498 cdev_device_del(&ubi->cdev, &ubi->dev); 499 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 500} 501 502/** 503 * ubi_free_volumes_from - free volumes from specific index. 504 * @ubi: UBI device description object 505 * @from: the start index used for volume free. 506 */ 507static void ubi_free_volumes_from(struct ubi_device *ubi, int from) 508{ 509 int i; 510 511 for (i = from; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 512 if (!ubi->volumes[i]) 513 continue; 514 ubi_eba_replace_table(ubi->volumes[i], NULL); 515 ubi_fastmap_destroy_checkmap(ubi->volumes[i]); 516 kfree(ubi->volumes[i]); 517 ubi->volumes[i] = NULL; 518 } 519} 520 521/** 522 * ubi_free_all_volumes - free all volumes. 523 * @ubi: UBI device description object 524 */ 525void ubi_free_all_volumes(struct ubi_device *ubi) 526{ 527 ubi_free_volumes_from(ubi, 0); 528} 529 530/** 531 * ubi_free_internal_volumes - free internal volumes. 532 * @ubi: UBI device description object 533 */ 534void ubi_free_internal_volumes(struct ubi_device *ubi) 535{ 536 ubi_free_volumes_from(ubi, ubi->vtbl_slots); 537} 538 539static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024) 540{ 541 int limit, device_pebs; 542 uint64_t device_size; 543 544 if (!max_beb_per1024) { 545 /* 546 * Since max_beb_per1024 has not been set by the user in either 547 * the cmdline or Kconfig, use mtd_max_bad_blocks to set the 548 * limit if it is supported by the device. 549 */ 550 limit = mtd_max_bad_blocks(ubi->mtd, 0, ubi->mtd->size); 551 if (limit < 0) 552 return 0; 553 return limit; 554 } 555 556 /* 557 * Here we are using size of the entire flash chip and 558 * not just the MTD partition size because the maximum 559 * number of bad eraseblocks is a percentage of the 560 * whole device and bad eraseblocks are not fairly 561 * distributed over the flash chip. So the worst case 562 * is that all the bad eraseblocks of the chip are in 563 * the MTD partition we are attaching (ubi->mtd). 564 */ 565 device_size = mtd_get_device_size(ubi->mtd); 566 device_pebs = mtd_div_by_eb(device_size, ubi->mtd); 567 limit = mult_frac(device_pebs, max_beb_per1024, 1024); 568 569 /* Round it up */ 570 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs) 571 limit += 1; 572 573 return limit; 574} 575 576/** 577 * io_init - initialize I/O sub-system for a given UBI device. 578 * @ubi: UBI device description object 579 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 580 * 581 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are 582 * assumed: 583 * o EC header is always at offset zero - this cannot be changed; 584 * o VID header starts just after the EC header at the closest address 585 * aligned to @io->hdrs_min_io_size; 586 * o data starts just after the VID header at the closest address aligned to 587 * @io->min_io_size 588 * 589 * This function returns zero in case of success and a negative error code in 590 * case of failure. 591 */ 592static int io_init(struct ubi_device *ubi, int max_beb_per1024) 593{ 594 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb)); 595 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry)); 596 597 if (ubi->mtd->numeraseregions != 0) { 598 /* 599 * Some flashes have several erase regions. Different regions 600 * may have different eraseblock size and other 601 * characteristics. It looks like mostly multi-region flashes 602 * have one "main" region and one or more small regions to 603 * store boot loader code or boot parameters or whatever. I 604 * guess we should just pick the largest region. But this is 605 * not implemented. 606 */ 607 ubi_err(ubi, "multiple regions, not implemented"); 608 return -EINVAL; 609 } 610 611 if (ubi->vid_hdr_offset < 0) 612 return -EINVAL; 613 614 /* 615 * Note, in this implementation we support MTD devices with 0x7FFFFFFF 616 * physical eraseblocks maximum. 617 */ 618 619 ubi->peb_size = ubi->mtd->erasesize; 620 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd); 621 ubi->flash_size = ubi->mtd->size; 622 623 if (mtd_can_have_bb(ubi->mtd)) { 624 ubi->bad_allowed = 1; 625 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024); 626 } 627 628 if (ubi->mtd->type == MTD_NORFLASH) { 629 ubi_assert(ubi->mtd->writesize == 1); 630 ubi->nor_flash = 1; 631 } 632 633 ubi->min_io_size = ubi->mtd->writesize; 634 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft; 635 636 /* 637 * Make sure minimal I/O unit is power of 2. Note, there is no 638 * fundamental reason for this assumption. It is just an optimization 639 * which allows us to avoid costly division operations. 640 */ 641 if (!is_power_of_2(ubi->min_io_size)) { 642 ubi_err(ubi, "min. I/O unit (%d) is not power of 2", 643 ubi->min_io_size); 644 return -EINVAL; 645 } 646 647 ubi_assert(ubi->hdrs_min_io_size > 0); 648 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size); 649 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0); 650 651 ubi->max_write_size = ubi->mtd->writebufsize; 652 /* 653 * Maximum write size has to be greater or equivalent to min. I/O 654 * size, and be multiple of min. I/O size. 655 */ 656 if (ubi->max_write_size < ubi->min_io_size || 657 ubi->max_write_size % ubi->min_io_size || 658 !is_power_of_2(ubi->max_write_size)) { 659 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit", 660 ubi->max_write_size, ubi->min_io_size); 661 return -EINVAL; 662 } 663 664 /* Calculate default aligned sizes of EC and VID headers */ 665 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size); 666 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size); 667 668 dbg_gen("min_io_size %d", ubi->min_io_size); 669 dbg_gen("max_write_size %d", ubi->max_write_size); 670 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size); 671 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize); 672 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize); 673 674 if (ubi->vid_hdr_offset == 0) 675 /* Default offset */ 676 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset = 677 ubi->ec_hdr_alsize; 678 else { 679 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset & 680 ~(ubi->hdrs_min_io_size - 1); 681 ubi->vid_hdr_shift = ubi->vid_hdr_offset - 682 ubi->vid_hdr_aloffset; 683 } 684 685 /* 686 * Memory allocation for VID header is ubi->vid_hdr_alsize 687 * which is described in comments in io.c. 688 * Make sure VID header shift + UBI_VID_HDR_SIZE not exceeds 689 * ubi->vid_hdr_alsize, so that all vid header operations 690 * won't access memory out of bounds. 691 */ 692 if ((ubi->vid_hdr_shift + UBI_VID_HDR_SIZE) > ubi->vid_hdr_alsize) { 693 ubi_err(ubi, "Invalid VID header offset %d, VID header shift(%d)" 694 " + VID header size(%zu) > VID header aligned size(%d).", 695 ubi->vid_hdr_offset, ubi->vid_hdr_shift, 696 UBI_VID_HDR_SIZE, ubi->vid_hdr_alsize); 697 return -EINVAL; 698 } 699 700 /* Similar for the data offset */ 701 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE; 702 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size); 703 704 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset); 705 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); 706 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift); 707 dbg_gen("leb_start %d", ubi->leb_start); 708 709 /* The shift must be aligned to 32-bit boundary */ 710 if (ubi->vid_hdr_shift % 4) { 711 ubi_err(ubi, "unaligned VID header shift %d", 712 ubi->vid_hdr_shift); 713 return -EINVAL; 714 } 715 716 /* Check sanity */ 717 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE || 718 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE || 719 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE || 720 ubi->leb_start & (ubi->min_io_size - 1)) { 721 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)", 722 ubi->vid_hdr_offset, ubi->leb_start); 723 return -EINVAL; 724 } 725 726 /* 727 * Set maximum amount of physical erroneous eraseblocks to be 10%. 728 * Erroneous PEB are those which have read errors. 729 */ 730 ubi->max_erroneous = ubi->peb_count / 10; 731 if (ubi->max_erroneous < 16) 732 ubi->max_erroneous = 16; 733 dbg_gen("max_erroneous %d", ubi->max_erroneous); 734 735 /* 736 * It may happen that EC and VID headers are situated in one minimal 737 * I/O unit. In this case we can only accept this UBI image in 738 * read-only mode. 739 */ 740 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) { 741 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode"); 742 ubi->ro_mode = 1; 743 } 744 745 ubi->leb_size = ubi->peb_size - ubi->leb_start; 746 747 if (!(ubi->mtd->flags & MTD_WRITEABLE)) { 748 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode", 749 ubi->mtd->index); 750 ubi->ro_mode = 1; 751 } 752 753 /* 754 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But 755 * unfortunately, MTD does not provide this information. We should loop 756 * over all physical eraseblocks and invoke mtd->block_is_bad() for 757 * each physical eraseblock. So, we leave @ubi->bad_peb_count 758 * uninitialized so far. 759 */ 760 761 return 0; 762} 763 764/** 765 * autoresize - re-size the volume which has the "auto-resize" flag set. 766 * @ubi: UBI device description object 767 * @vol_id: ID of the volume to re-size 768 * 769 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in 770 * the volume table to the largest possible size. See comments in ubi-header.h 771 * for more description of the flag. Returns zero in case of success and a 772 * negative error code in case of failure. 773 */ 774static int autoresize(struct ubi_device *ubi, int vol_id) 775{ 776 struct ubi_volume_desc desc; 777 struct ubi_volume *vol = ubi->volumes[vol_id]; 778 int err, old_reserved_pebs = vol->reserved_pebs; 779 780 if (ubi->ro_mode) { 781 ubi_warn(ubi, "skip auto-resize because of R/O mode"); 782 return 0; 783 } 784 785 /* 786 * Clear the auto-resize flag in the volume in-memory copy of the 787 * volume table, and 'ubi_resize_volume()' will propagate this change 788 * to the flash. 789 */ 790 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG; 791 792 if (ubi->avail_pebs == 0) { 793 struct ubi_vtbl_record vtbl_rec; 794 795 /* 796 * No available PEBs to re-size the volume, clear the flag on 797 * flash and exit. 798 */ 799 vtbl_rec = ubi->vtbl[vol_id]; 800 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); 801 if (err) 802 ubi_err(ubi, "cannot clean auto-resize flag for volume %d", 803 vol_id); 804 } else { 805 desc.vol = vol; 806 err = ubi_resize_volume(&desc, 807 old_reserved_pebs + ubi->avail_pebs); 808 if (err) 809 ubi_err(ubi, "cannot auto-resize volume %d", 810 vol_id); 811 } 812 813 if (err) 814 return err; 815 816 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs", 817 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs); 818 return 0; 819} 820 821/** 822 * ubi_attach_mtd_dev - attach an MTD device. 823 * @mtd: MTD device description object 824 * @ubi_num: number to assign to the new UBI device 825 * @vid_hdr_offset: VID header offset 826 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 827 * 828 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number 829 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in 830 * which case this function finds a vacant device number and assigns it 831 * automatically. Returns the new UBI device number in case of success and a 832 * negative error code in case of failure. 833 * 834 * Note, the invocations of this function has to be serialized by the 835 * @ubi_devices_mutex. 836 */ 837int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, 838 int vid_hdr_offset, int max_beb_per1024) 839{ 840 struct ubi_device *ubi; 841 int i, err; 842 843 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT) 844 return -EINVAL; 845 846 if (!max_beb_per1024) 847 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT; 848 849 /* 850 * Check if we already have the same MTD device attached. 851 * 852 * Note, this function assumes that UBI devices creations and deletions 853 * are serialized, so it does not take the &ubi_devices_lock. 854 */ 855 for (i = 0; i < UBI_MAX_DEVICES; i++) { 856 ubi = ubi_devices[i]; 857 if (ubi && mtd->index == ubi->mtd->index) { 858 pr_err("ubi: mtd%d is already attached to ubi%d\n", 859 mtd->index, i); 860 return -EEXIST; 861 } 862 } 863 864 /* 865 * Make sure this MTD device is not emulated on top of an UBI volume 866 * already. Well, generally this recursion works fine, but there are 867 * different problems like the UBI module takes a reference to itself 868 * by attaching (and thus, opening) the emulated MTD device. This 869 * results in inability to unload the module. And in general it makes 870 * no sense to attach emulated MTD devices, so we prohibit this. 871 */ 872 if (mtd->type == MTD_UBIVOLUME) { 873 pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI\n", 874 mtd->index); 875 return -EINVAL; 876 } 877 878 /* 879 * Both UBI and UBIFS have been designed for SLC NAND and NOR flashes. 880 * MLC NAND is different and needs special care, otherwise UBI or UBIFS 881 * will die soon and you will lose all your data. 882 * Relax this rule if the partition we're attaching to operates in SLC 883 * mode. 884 */ 885 if (mtd->type == MTD_MLCNANDFLASH && 886 !(mtd->flags & MTD_SLC_ON_MLC_EMULATION)) { 887 pr_err("ubi: refuse attaching mtd%d - MLC NAND is not supported\n", 888 mtd->index); 889 return -EINVAL; 890 } 891 892 /* UBI cannot work on flashes with zero erasesize. */ 893 if (!mtd->erasesize) { 894 pr_err("ubi: refuse attaching mtd%d - zero erasesize flash is not supported\n", 895 mtd->index); 896 return -EINVAL; 897 } 898 899 if (ubi_num == UBI_DEV_NUM_AUTO) { 900 /* Search for an empty slot in the @ubi_devices array */ 901 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++) 902 if (!ubi_devices[ubi_num]) 903 break; 904 if (ubi_num == UBI_MAX_DEVICES) { 905 pr_err("ubi: only %d UBI devices may be created\n", 906 UBI_MAX_DEVICES); 907 return -ENFILE; 908 } 909 } else { 910 if (ubi_num >= UBI_MAX_DEVICES) 911 return -EINVAL; 912 913 /* Make sure ubi_num is not busy */ 914 if (ubi_devices[ubi_num]) { 915 pr_err("ubi: ubi%i already exists\n", ubi_num); 916 return -EEXIST; 917 } 918 } 919 920 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL); 921 if (!ubi) 922 return -ENOMEM; 923 924 device_initialize(&ubi->dev); 925 ubi->dev.release = dev_release; 926 ubi->dev.class = &ubi_class; 927 ubi->dev.groups = ubi_dev_groups; 928 929 ubi->mtd = mtd; 930 ubi->ubi_num = ubi_num; 931 ubi->vid_hdr_offset = vid_hdr_offset; 932 ubi->autoresize_vol_id = -1; 933 934#ifdef CONFIG_MTD_UBI_FASTMAP 935 ubi->fm_pool.used = ubi->fm_pool.size = 0; 936 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0; 937 938 /* 939 * fm_pool.max_size is 5% of the total number of PEBs but it's also 940 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE. 941 */ 942 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size, 943 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE); 944 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size, 945 UBI_FM_MIN_POOL_SIZE); 946 947 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2; 948 ubi->fm_disabled = !fm_autoconvert; 949 if (fm_debug) 950 ubi_enable_dbg_chk_fastmap(ubi); 951 952 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) 953 <= UBI_FM_MAX_START) { 954 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.", 955 UBI_FM_MAX_START); 956 ubi->fm_disabled = 1; 957 } 958 959 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size); 960 ubi_msg(ubi, "default fastmap WL pool size: %d", 961 ubi->fm_wl_pool.max_size); 962#else 963 ubi->fm_disabled = 1; 964#endif 965 mutex_init(&ubi->buf_mutex); 966 mutex_init(&ubi->ckvol_mutex); 967 mutex_init(&ubi->device_mutex); 968 spin_lock_init(&ubi->volumes_lock); 969 init_rwsem(&ubi->fm_protect); 970 init_rwsem(&ubi->fm_eba_sem); 971 972 ubi_msg(ubi, "attaching mtd%d", mtd->index); 973 974 err = io_init(ubi, max_beb_per1024); 975 if (err) 976 goto out_free; 977 978 err = -ENOMEM; 979 ubi->peb_buf = vmalloc(ubi->peb_size); 980 if (!ubi->peb_buf) 981 goto out_free; 982 983#ifdef CONFIG_MTD_UBI_FASTMAP 984 ubi->fm_size = ubi_calc_fm_size(ubi); 985 ubi->fm_buf = vzalloc(ubi->fm_size); 986 if (!ubi->fm_buf) 987 goto out_free; 988#endif 989 err = ubi_attach(ubi, 0); 990 if (err) { 991 ubi_err(ubi, "failed to attach mtd%d, error %d", 992 mtd->index, err); 993 goto out_free; 994 } 995 996 if (ubi->autoresize_vol_id != -1) { 997 err = autoresize(ubi, ubi->autoresize_vol_id); 998 if (err) 999 goto out_detach; 1000 } 1001 1002 err = uif_init(ubi); 1003 if (err) 1004 goto out_detach; 1005 1006 err = ubi_debugfs_init_dev(ubi); 1007 if (err) 1008 goto out_uif; 1009 1010 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name); 1011 if (IS_ERR(ubi->bgt_thread)) { 1012 err = PTR_ERR(ubi->bgt_thread); 1013 ubi_err(ubi, "cannot spawn \"%s\", error %d", 1014 ubi->bgt_name, err); 1015 goto out_debugfs; 1016 } 1017 1018 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)", 1019 mtd->index, mtd->name, ubi->flash_size >> 20); 1020 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes", 1021 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size); 1022 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d", 1023 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size); 1024 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d", 1025 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start); 1026 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d", 1027 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count); 1028 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d", 1029 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT, 1030 ubi->vtbl_slots); 1031 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u", 1032 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD, 1033 ubi->image_seq); 1034 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d", 1035 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs); 1036 1037 /* 1038 * The below lock makes sure we do not race with 'ubi_thread()' which 1039 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up. 1040 */ 1041 spin_lock(&ubi->wl_lock); 1042 ubi->thread_enabled = 1; 1043 wake_up_process(ubi->bgt_thread); 1044 spin_unlock(&ubi->wl_lock); 1045 1046 ubi_devices[ubi_num] = ubi; 1047 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL); 1048 return ubi_num; 1049 1050out_debugfs: 1051 ubi_debugfs_exit_dev(ubi); 1052out_uif: 1053 uif_close(ubi); 1054out_detach: 1055 ubi_wl_close(ubi); 1056 ubi_free_all_volumes(ubi); 1057 vfree(ubi->vtbl); 1058out_free: 1059 vfree(ubi->peb_buf); 1060 vfree(ubi->fm_buf); 1061 put_device(&ubi->dev); 1062 return err; 1063} 1064 1065/** 1066 * ubi_detach_mtd_dev - detach an MTD device. 1067 * @ubi_num: UBI device number to detach from 1068 * @anyway: detach MTD even if device reference count is not zero 1069 * 1070 * This function destroys an UBI device number @ubi_num and detaches the 1071 * underlying MTD device. Returns zero in case of success and %-EBUSY if the 1072 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not 1073 * exist. 1074 * 1075 * Note, the invocations of this function has to be serialized by the 1076 * @ubi_devices_mutex. 1077 */ 1078int ubi_detach_mtd_dev(int ubi_num, int anyway) 1079{ 1080 struct ubi_device *ubi; 1081 1082 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) 1083 return -EINVAL; 1084 1085 ubi = ubi_get_device(ubi_num); 1086 if (!ubi) 1087 return -EINVAL; 1088 1089 spin_lock(&ubi_devices_lock); 1090 put_device(&ubi->dev); 1091 ubi->ref_count -= 1; 1092 if (ubi->ref_count) { 1093 if (!anyway) { 1094 spin_unlock(&ubi_devices_lock); 1095 return -EBUSY; 1096 } 1097 /* This may only happen if there is a bug */ 1098 ubi_err(ubi, "%s reference count %d, destroy anyway", 1099 ubi->ubi_name, ubi->ref_count); 1100 } 1101 ubi_devices[ubi_num] = NULL; 1102 spin_unlock(&ubi_devices_lock); 1103 1104 ubi_assert(ubi_num == ubi->ubi_num); 1105 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL); 1106 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index); 1107#ifdef CONFIG_MTD_UBI_FASTMAP 1108 /* If we don't write a new fastmap at detach time we lose all 1109 * EC updates that have been made since the last written fastmap. 1110 * In case of fastmap debugging we omit the update to simulate an 1111 * unclean shutdown. */ 1112 if (!ubi_dbg_chk_fastmap(ubi)) 1113 ubi_update_fastmap(ubi); 1114#endif 1115 /* 1116 * Before freeing anything, we have to stop the background thread to 1117 * prevent it from doing anything on this device while we are freeing. 1118 */ 1119 if (ubi->bgt_thread) 1120 kthread_stop(ubi->bgt_thread); 1121 1122#ifdef CONFIG_MTD_UBI_FASTMAP 1123 cancel_work_sync(&ubi->fm_work); 1124#endif 1125 ubi_debugfs_exit_dev(ubi); 1126 uif_close(ubi); 1127 1128 ubi_wl_close(ubi); 1129 ubi_free_internal_volumes(ubi); 1130 vfree(ubi->vtbl); 1131 vfree(ubi->peb_buf); 1132 vfree(ubi->fm_buf); 1133 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index); 1134 put_mtd_device(ubi->mtd); 1135 put_device(&ubi->dev); 1136 return 0; 1137} 1138 1139/** 1140 * open_mtd_by_chdev - open an MTD device by its character device node path. 1141 * @mtd_dev: MTD character device node path 1142 * 1143 * This helper function opens an MTD device by its character node device path. 1144 * Returns MTD device description object in case of success and a negative 1145 * error code in case of failure. 1146 */ 1147static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev) 1148{ 1149 int err, minor; 1150 struct path path; 1151 struct kstat stat; 1152 1153 /* Probably this is an MTD character device node path */ 1154 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path); 1155 if (err) 1156 return ERR_PTR(err); 1157 1158 err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT); 1159 path_put(&path); 1160 if (err) 1161 return ERR_PTR(err); 1162 1163 /* MTD device number is defined by the major / minor numbers */ 1164 if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode)) 1165 return ERR_PTR(-EINVAL); 1166 1167 minor = MINOR(stat.rdev); 1168 1169 if (minor & 1) 1170 /* 1171 * Just do not think the "/dev/mtdrX" devices support is need, 1172 * so do not support them to avoid doing extra work. 1173 */ 1174 return ERR_PTR(-EINVAL); 1175 1176 return get_mtd_device(NULL, minor / 2); 1177} 1178 1179/** 1180 * open_mtd_device - open MTD device by name, character device path, or number. 1181 * @mtd_dev: name, character device node path, or MTD device device number 1182 * 1183 * This function tries to open and MTD device described by @mtd_dev string, 1184 * which is first treated as ASCII MTD device number, and if it is not true, it 1185 * is treated as MTD device name, and if that is also not true, it is treated 1186 * as MTD character device node path. Returns MTD device description object in 1187 * case of success and a negative error code in case of failure. 1188 */ 1189static struct mtd_info * __init open_mtd_device(const char *mtd_dev) 1190{ 1191 struct mtd_info *mtd; 1192 int mtd_num; 1193 char *endp; 1194 1195 mtd_num = simple_strtoul(mtd_dev, &endp, 0); 1196 if (*endp != '\0' || mtd_dev == endp) { 1197 /* 1198 * This does not look like an ASCII integer, probably this is 1199 * MTD device name. 1200 */ 1201 mtd = get_mtd_device_nm(mtd_dev); 1202 if (PTR_ERR(mtd) == -ENODEV) 1203 /* Probably this is an MTD character device node path */ 1204 mtd = open_mtd_by_chdev(mtd_dev); 1205 } else 1206 mtd = get_mtd_device(NULL, mtd_num); 1207 1208 return mtd; 1209} 1210 1211static int __init ubi_init(void) 1212{ 1213 int err, i, k; 1214 1215 /* Ensure that EC and VID headers have correct size */ 1216 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64); 1217 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64); 1218 1219 if (mtd_devs > UBI_MAX_DEVICES) { 1220 pr_err("UBI error: too many MTD devices, maximum is %d\n", 1221 UBI_MAX_DEVICES); 1222 return -EINVAL; 1223 } 1224 1225 /* Create base sysfs directory and sysfs files */ 1226 err = class_register(&ubi_class); 1227 if (err < 0) 1228 return err; 1229 1230 err = misc_register(&ubi_ctrl_cdev); 1231 if (err) { 1232 pr_err("UBI error: cannot register device\n"); 1233 goto out; 1234 } 1235 1236 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab", 1237 sizeof(struct ubi_wl_entry), 1238 0, 0, NULL); 1239 if (!ubi_wl_entry_slab) { 1240 err = -ENOMEM; 1241 goto out_dev_unreg; 1242 } 1243 1244 err = ubi_debugfs_init(); 1245 if (err) 1246 goto out_slab; 1247 1248 1249 /* Attach MTD devices */ 1250 for (i = 0; i < mtd_devs; i++) { 1251 struct mtd_dev_param *p = &mtd_dev_param[i]; 1252 struct mtd_info *mtd; 1253 1254 cond_resched(); 1255 1256 mtd = open_mtd_device(p->name); 1257 if (IS_ERR(mtd)) { 1258 err = PTR_ERR(mtd); 1259 pr_err("UBI error: cannot open mtd %s, error %d\n", 1260 p->name, err); 1261 /* See comment below re-ubi_is_module(). */ 1262 if (ubi_is_module()) 1263 goto out_detach; 1264 continue; 1265 } 1266 1267 mutex_lock(&ubi_devices_mutex); 1268 err = ubi_attach_mtd_dev(mtd, p->ubi_num, 1269 p->vid_hdr_offs, p->max_beb_per1024); 1270 mutex_unlock(&ubi_devices_mutex); 1271 if (err < 0) { 1272 pr_err("UBI error: cannot attach mtd%d\n", 1273 mtd->index); 1274 put_mtd_device(mtd); 1275 1276 /* 1277 * Originally UBI stopped initializing on any error. 1278 * However, later on it was found out that this 1279 * behavior is not very good when UBI is compiled into 1280 * the kernel and the MTD devices to attach are passed 1281 * through the command line. Indeed, UBI failure 1282 * stopped whole boot sequence. 1283 * 1284 * To fix this, we changed the behavior for the 1285 * non-module case, but preserved the old behavior for 1286 * the module case, just for compatibility. This is a 1287 * little inconsistent, though. 1288 */ 1289 if (ubi_is_module()) 1290 goto out_detach; 1291 } 1292 } 1293 1294 err = ubiblock_init(); 1295 if (err) { 1296 pr_err("UBI error: block: cannot initialize, error %d\n", err); 1297 1298 /* See comment above re-ubi_is_module(). */ 1299 if (ubi_is_module()) 1300 goto out_detach; 1301 } 1302 1303 return 0; 1304 1305out_detach: 1306 for (k = 0; k < i; k++) 1307 if (ubi_devices[k]) { 1308 mutex_lock(&ubi_devices_mutex); 1309 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1); 1310 mutex_unlock(&ubi_devices_mutex); 1311 } 1312 ubi_debugfs_exit(); 1313out_slab: 1314 kmem_cache_destroy(ubi_wl_entry_slab); 1315out_dev_unreg: 1316 misc_deregister(&ubi_ctrl_cdev); 1317out: 1318 class_unregister(&ubi_class); 1319 pr_err("UBI error: cannot initialize UBI, error %d\n", err); 1320 return err; 1321} 1322late_initcall(ubi_init); 1323 1324static void __exit ubi_exit(void) 1325{ 1326 int i; 1327 1328 ubiblock_exit(); 1329 1330 for (i = 0; i < UBI_MAX_DEVICES; i++) 1331 if (ubi_devices[i]) { 1332 mutex_lock(&ubi_devices_mutex); 1333 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1); 1334 mutex_unlock(&ubi_devices_mutex); 1335 } 1336 ubi_debugfs_exit(); 1337 kmem_cache_destroy(ubi_wl_entry_slab); 1338 misc_deregister(&ubi_ctrl_cdev); 1339 class_unregister(&ubi_class); 1340} 1341module_exit(ubi_exit); 1342 1343/** 1344 * bytes_str_to_int - convert a number of bytes string into an integer. 1345 * @str: the string to convert 1346 * 1347 * This function returns positive resulting integer in case of success and a 1348 * negative error code in case of failure. 1349 */ 1350static int bytes_str_to_int(const char *str) 1351{ 1352 char *endp; 1353 unsigned long result; 1354 1355 result = simple_strtoul(str, &endp, 0); 1356 if (str == endp || result >= INT_MAX) { 1357 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1358 return -EINVAL; 1359 } 1360 1361 switch (*endp) { 1362 case 'G': 1363 result *= 1024; 1364 fallthrough; 1365 case 'M': 1366 result *= 1024; 1367 fallthrough; 1368 case 'K': 1369 result *= 1024; 1370 if (endp[1] == 'i' && endp[2] == 'B') 1371 endp += 2; 1372 case '\0': 1373 break; 1374 default: 1375 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1376 return -EINVAL; 1377 } 1378 1379 return result; 1380} 1381 1382/** 1383 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter. 1384 * @val: the parameter value to parse 1385 * @kp: not used 1386 * 1387 * This function returns zero in case of success and a negative error code in 1388 * case of error. 1389 */ 1390static int ubi_mtd_param_parse(const char *val, const struct kernel_param *kp) 1391{ 1392 int i, len; 1393 struct mtd_dev_param *p; 1394 char buf[MTD_PARAM_LEN_MAX]; 1395 char *pbuf = &buf[0]; 1396 char *tokens[MTD_PARAM_MAX_COUNT], *token; 1397 1398 if (!val) 1399 return -EINVAL; 1400 1401 if (mtd_devs == UBI_MAX_DEVICES) { 1402 pr_err("UBI error: too many parameters, max. is %d\n", 1403 UBI_MAX_DEVICES); 1404 return -EINVAL; 1405 } 1406 1407 len = strnlen(val, MTD_PARAM_LEN_MAX); 1408 if (len == MTD_PARAM_LEN_MAX) { 1409 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n", 1410 val, MTD_PARAM_LEN_MAX); 1411 return -EINVAL; 1412 } 1413 1414 if (len == 0) { 1415 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n"); 1416 return 0; 1417 } 1418 1419 strcpy(buf, val); 1420 1421 /* Get rid of the final newline */ 1422 if (buf[len - 1] == '\n') 1423 buf[len - 1] = '\0'; 1424 1425 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++) 1426 tokens[i] = strsep(&pbuf, ","); 1427 1428 if (pbuf) { 1429 pr_err("UBI error: too many arguments at \"%s\"\n", val); 1430 return -EINVAL; 1431 } 1432 1433 p = &mtd_dev_param[mtd_devs]; 1434 strcpy(&p->name[0], tokens[0]); 1435 1436 token = tokens[1]; 1437 if (token) { 1438 p->vid_hdr_offs = bytes_str_to_int(token); 1439 1440 if (p->vid_hdr_offs < 0) 1441 return p->vid_hdr_offs; 1442 } 1443 1444 token = tokens[2]; 1445 if (token) { 1446 int err = kstrtoint(token, 10, &p->max_beb_per1024); 1447 1448 if (err) { 1449 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s", 1450 token); 1451 return -EINVAL; 1452 } 1453 } 1454 1455 token = tokens[3]; 1456 if (token) { 1457 int err = kstrtoint(token, 10, &p->ubi_num); 1458 1459 if (err) { 1460 pr_err("UBI error: bad value for ubi_num parameter: %s", 1461 token); 1462 return -EINVAL; 1463 } 1464 } else 1465 p->ubi_num = UBI_DEV_NUM_AUTO; 1466 1467 mtd_devs += 1; 1468 return 0; 1469} 1470 1471module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400); 1472MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n" 1473 "Multiple \"mtd\" parameters may be specified.\n" 1474 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n" 1475 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n" 1476 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value (" 1477 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n" 1478 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n" 1479 "\n" 1480 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n" 1481 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n" 1482 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n" 1483 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n" 1484 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device)."); 1485#ifdef CONFIG_MTD_UBI_FASTMAP 1486module_param(fm_autoconvert, bool, 0644); 1487MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap."); 1488module_param(fm_debug, bool, 0); 1489MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!"); 1490#endif 1491MODULE_VERSION(__stringify(UBI_VERSION)); 1492MODULE_DESCRIPTION("UBI - Unsorted Block Images"); 1493MODULE_AUTHOR("Artem Bityutskiy"); 1494MODULE_LICENSE("GPL"); 1495