1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (c) International Business Machines Corp., 2006
4 * Copyright (c) Nokia Corporation, 2007
5 *
6 * Author: Artem Bityutskiy (Битюцкий Артём),
7 * Frank Haverkamp
8 */
9
10 /*
11 * This file includes UBI initialization and building of UBI devices.
12 *
13 * When UBI is initialized, it attaches all the MTD devices specified as the
14 * module load parameters or the kernel boot parameters. If MTD devices were
15 * specified, UBI does not attach any MTD device, but it is possible to do
16 * later using the "UBI control device".
17 */
18
19 #include <linux/err.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/stringify.h>
23 #include <linux/namei.h>
24 #include <linux/stat.h>
25 #include <linux/miscdevice.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/log2.h>
28 #include <linux/kthread.h>
29 #include <linux/kernel.h>
30 #include <linux/slab.h>
31 #include <linux/major.h>
32 #include "ubi.h"
33
34 /* Maximum length of the 'mtd=' parameter */
35 #define MTD_PARAM_LEN_MAX 64
36
37 /* Maximum number of comma-separated items in the 'mtd=' parameter */
38 #define MTD_PARAM_MAX_COUNT 4
39
40 /* Maximum value for the number of bad PEBs per 1024 PEBs */
41 #define MAX_MTD_UBI_BEB_LIMIT 768
42
43 #ifdef CONFIG_MTD_UBI_MODULE
44 #define ubi_is_module() 1
45 #else
46 #define ubi_is_module() 0
47 #endif
48
49 /**
50 * struct mtd_dev_param - MTD device parameter description data structure.
51 * @name: MTD character device node path, MTD device name, or MTD device number
52 * string
53 * @vid_hdr_offs: VID header offset
54 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
55 */
56 struct mtd_dev_param {
57 char name[MTD_PARAM_LEN_MAX];
58 int ubi_num;
59 int vid_hdr_offs;
60 int max_beb_per1024;
61 };
62
63 /* Numbers of elements set in the @mtd_dev_param array */
64 static int mtd_devs;
65
66 /* MTD devices specification parameters */
67 static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES];
68 #ifdef CONFIG_MTD_UBI_FASTMAP
69 /* UBI module parameter to enable fastmap automatically on non-fastmap images */
70 static bool fm_autoconvert;
71 static bool fm_debug;
72 #endif
73
74 /* Slab cache for wear-leveling entries */
75 struct kmem_cache *ubi_wl_entry_slab;
76
77 /* UBI control character device */
78 static struct miscdevice ubi_ctrl_cdev = {
79 .minor = MISC_DYNAMIC_MINOR,
80 .name = "ubi_ctrl",
81 .fops = &ubi_ctrl_cdev_operations,
82 };
83
84 /* All UBI devices in system */
85 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
86
87 /* Serializes UBI devices creations and removals */
88 DEFINE_MUTEX(ubi_devices_mutex);
89
90 /* Protects @ubi_devices and @ubi->ref_count */
91 static DEFINE_SPINLOCK(ubi_devices_lock);
92
93 /* "Show" method for files in '/<sysfs>/class/ubi/' */
94 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
version_show(struct class *class, struct class_attribute *attr, char *buf)95 static ssize_t version_show(struct class *class, struct class_attribute *attr,
96 char *buf)
97 {
98 return sprintf(buf, "%d\n", UBI_VERSION);
99 }
100 static CLASS_ATTR_RO(version);
101
102 static struct attribute *ubi_class_attrs[] = {
103 &class_attr_version.attr,
104 NULL,
105 };
106 ATTRIBUTE_GROUPS(ubi_class);
107
108 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
109 struct class ubi_class = {
110 .name = UBI_NAME_STR,
111 .owner = THIS_MODULE,
112 .class_groups = ubi_class_groups,
113 };
114
115 static ssize_t dev_attribute_show(struct device *dev,
116 struct device_attribute *attr, char *buf);
117
118 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
119 static struct device_attribute dev_eraseblock_size =
120 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
121 static struct device_attribute dev_avail_eraseblocks =
122 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
123 static struct device_attribute dev_total_eraseblocks =
124 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
125 static struct device_attribute dev_volumes_count =
126 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
127 static struct device_attribute dev_max_ec =
128 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
129 static struct device_attribute dev_reserved_for_bad =
130 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
131 static struct device_attribute dev_bad_peb_count =
132 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
133 static struct device_attribute dev_max_vol_count =
134 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
135 static struct device_attribute dev_min_io_size =
136 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
137 static struct device_attribute dev_bgt_enabled =
138 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
139 static struct device_attribute dev_mtd_num =
140 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
141 static struct device_attribute dev_ro_mode =
142 __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL);
143
144 /**
145 * ubi_volume_notify - send a volume change notification.
146 * @ubi: UBI device description object
147 * @vol: volume description object of the changed volume
148 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
149 *
150 * This is a helper function which notifies all subscribers about a volume
151 * change event (creation, removal, re-sizing, re-naming, updating). Returns
152 * zero in case of success and a negative error code in case of failure.
153 */
ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)154 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
155 {
156 int ret;
157 struct ubi_notification nt;
158
159 ubi_do_get_device_info(ubi, &nt.di);
160 ubi_do_get_volume_info(ubi, vol, &nt.vi);
161
162 switch (ntype) {
163 case UBI_VOLUME_ADDED:
164 case UBI_VOLUME_REMOVED:
165 case UBI_VOLUME_RESIZED:
166 case UBI_VOLUME_RENAMED:
167 ret = ubi_update_fastmap(ubi);
168 if (ret)
169 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
170 }
171
172 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
173 }
174
175 /**
176 * ubi_notify_all - send a notification to all volumes.
177 * @ubi: UBI device description object
178 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
179 * @nb: the notifier to call
180 *
181 * This function walks all volumes of UBI device @ubi and sends the @ntype
182 * notification for each volume. If @nb is %NULL, then all registered notifiers
183 * are called, otherwise only the @nb notifier is called. Returns the number of
184 * sent notifications.
185 */
ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)186 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
187 {
188 struct ubi_notification nt;
189 int i, count = 0;
190
191 ubi_do_get_device_info(ubi, &nt.di);
192
193 mutex_lock(&ubi->device_mutex);
194 for (i = 0; i < ubi->vtbl_slots; i++) {
195 /*
196 * Since the @ubi->device is locked, and we are not going to
197 * change @ubi->volumes, we do not have to lock
198 * @ubi->volumes_lock.
199 */
200 if (!ubi->volumes[i])
201 continue;
202
203 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
204 if (nb)
205 nb->notifier_call(nb, ntype, &nt);
206 else
207 blocking_notifier_call_chain(&ubi_notifiers, ntype,
208 &nt);
209 count += 1;
210 }
211 mutex_unlock(&ubi->device_mutex);
212
213 return count;
214 }
215
216 /**
217 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
218 * @nb: the notifier to call
219 *
220 * This function walks all UBI devices and volumes and sends the
221 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
222 * registered notifiers are called, otherwise only the @nb notifier is called.
223 * Returns the number of sent notifications.
224 */
ubi_enumerate_volumes(struct notifier_block *nb)225 int ubi_enumerate_volumes(struct notifier_block *nb)
226 {
227 int i, count = 0;
228
229 /*
230 * Since the @ubi_devices_mutex is locked, and we are not going to
231 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
232 */
233 for (i = 0; i < UBI_MAX_DEVICES; i++) {
234 struct ubi_device *ubi = ubi_devices[i];
235
236 if (!ubi)
237 continue;
238 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
239 }
240
241 return count;
242 }
243
244 /**
245 * ubi_get_device - get UBI device.
246 * @ubi_num: UBI device number
247 *
248 * This function returns UBI device description object for UBI device number
249 * @ubi_num, or %NULL if the device does not exist. This function increases the
250 * device reference count to prevent removal of the device. In other words, the
251 * device cannot be removed if its reference count is not zero.
252 */
ubi_get_device(int ubi_num)253 struct ubi_device *ubi_get_device(int ubi_num)
254 {
255 struct ubi_device *ubi;
256
257 spin_lock(&ubi_devices_lock);
258 ubi = ubi_devices[ubi_num];
259 if (ubi) {
260 ubi_assert(ubi->ref_count >= 0);
261 ubi->ref_count += 1;
262 get_device(&ubi->dev);
263 }
264 spin_unlock(&ubi_devices_lock);
265
266 return ubi;
267 }
268
269 /**
270 * ubi_put_device - drop an UBI device reference.
271 * @ubi: UBI device description object
272 */
ubi_put_device(struct ubi_device *ubi)273 void ubi_put_device(struct ubi_device *ubi)
274 {
275 spin_lock(&ubi_devices_lock);
276 ubi->ref_count -= 1;
277 put_device(&ubi->dev);
278 spin_unlock(&ubi_devices_lock);
279 }
280
281 /**
282 * ubi_get_by_major - get UBI device by character device major number.
283 * @major: major number
284 *
285 * This function is similar to 'ubi_get_device()', but it searches the device
286 * by its major number.
287 */
ubi_get_by_major(int major)288 struct ubi_device *ubi_get_by_major(int major)
289 {
290 int i;
291 struct ubi_device *ubi;
292
293 spin_lock(&ubi_devices_lock);
294 for (i = 0; i < UBI_MAX_DEVICES; i++) {
295 ubi = ubi_devices[i];
296 if (ubi && MAJOR(ubi->cdev.dev) == major) {
297 ubi_assert(ubi->ref_count >= 0);
298 ubi->ref_count += 1;
299 get_device(&ubi->dev);
300 spin_unlock(&ubi_devices_lock);
301 return ubi;
302 }
303 }
304 spin_unlock(&ubi_devices_lock);
305
306 return NULL;
307 }
308
309 /**
310 * ubi_major2num - get UBI device number by character device major number.
311 * @major: major number
312 *
313 * This function searches UBI device number object by its major number. If UBI
314 * device was not found, this function returns -ENODEV, otherwise the UBI device
315 * number is returned.
316 */
ubi_major2num(int major)317 int ubi_major2num(int major)
318 {
319 int i, ubi_num = -ENODEV;
320
321 spin_lock(&ubi_devices_lock);
322 for (i = 0; i < UBI_MAX_DEVICES; i++) {
323 struct ubi_device *ubi = ubi_devices[i];
324
325 if (ubi && MAJOR(ubi->cdev.dev) == major) {
326 ubi_num = ubi->ubi_num;
327 break;
328 }
329 }
330 spin_unlock(&ubi_devices_lock);
331
332 return ubi_num;
333 }
334
335 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
dev_attribute_show(struct device *dev, struct device_attribute *attr, char *buf)336 static ssize_t dev_attribute_show(struct device *dev,
337 struct device_attribute *attr, char *buf)
338 {
339 ssize_t ret;
340 struct ubi_device *ubi;
341
342 /*
343 * The below code looks weird, but it actually makes sense. We get the
344 * UBI device reference from the contained 'struct ubi_device'. But it
345 * is unclear if the device was removed or not yet. Indeed, if the
346 * device was removed before we increased its reference count,
347 * 'ubi_get_device()' will return -ENODEV and we fail.
348 *
349 * Remember, 'struct ubi_device' is freed in the release function, so
350 * we still can use 'ubi->ubi_num'.
351 */
352 ubi = container_of(dev, struct ubi_device, dev);
353
354 if (attr == &dev_eraseblock_size)
355 ret = sprintf(buf, "%d\n", ubi->leb_size);
356 else if (attr == &dev_avail_eraseblocks)
357 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
358 else if (attr == &dev_total_eraseblocks)
359 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
360 else if (attr == &dev_volumes_count)
361 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
362 else if (attr == &dev_max_ec)
363 ret = sprintf(buf, "%d\n", ubi->max_ec);
364 else if (attr == &dev_reserved_for_bad)
365 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
366 else if (attr == &dev_bad_peb_count)
367 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
368 else if (attr == &dev_max_vol_count)
369 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
370 else if (attr == &dev_min_io_size)
371 ret = sprintf(buf, "%d\n", ubi->min_io_size);
372 else if (attr == &dev_bgt_enabled)
373 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
374 else if (attr == &dev_mtd_num)
375 ret = sprintf(buf, "%d\n", ubi->mtd->index);
376 else if (attr == &dev_ro_mode)
377 ret = sprintf(buf, "%d\n", ubi->ro_mode);
378 else
379 ret = -EINVAL;
380
381 return ret;
382 }
383
384 static struct attribute *ubi_dev_attrs[] = {
385 &dev_eraseblock_size.attr,
386 &dev_avail_eraseblocks.attr,
387 &dev_total_eraseblocks.attr,
388 &dev_volumes_count.attr,
389 &dev_max_ec.attr,
390 &dev_reserved_for_bad.attr,
391 &dev_bad_peb_count.attr,
392 &dev_max_vol_count.attr,
393 &dev_min_io_size.attr,
394 &dev_bgt_enabled.attr,
395 &dev_mtd_num.attr,
396 &dev_ro_mode.attr,
397 NULL
398 };
399 ATTRIBUTE_GROUPS(ubi_dev);
400
dev_release(struct device *dev)401 static void dev_release(struct device *dev)
402 {
403 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
404
405 kfree(ubi);
406 }
407
408 /**
409 * kill_volumes - destroy all user volumes.
410 * @ubi: UBI device description object
411 */
kill_volumes(struct ubi_device *ubi)412 static void kill_volumes(struct ubi_device *ubi)
413 {
414 int i;
415
416 for (i = 0; i < ubi->vtbl_slots; i++)
417 if (ubi->volumes[i])
418 ubi_free_volume(ubi, ubi->volumes[i]);
419 }
420
421 /**
422 * uif_init - initialize user interfaces for an UBI device.
423 * @ubi: UBI device description object
424 *
425 * This function initializes various user interfaces for an UBI device. If the
426 * initialization fails at an early stage, this function frees all the
427 * resources it allocated, returns an error.
428 *
429 * This function returns zero in case of success and a negative error code in
430 * case of failure.
431 */
uif_init(struct ubi_device *ubi)432 static int uif_init(struct ubi_device *ubi)
433 {
434 int i, err;
435 dev_t dev;
436
437 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
438
439 /*
440 * Major numbers for the UBI character devices are allocated
441 * dynamically. Major numbers of volume character devices are
442 * equivalent to ones of the corresponding UBI character device. Minor
443 * numbers of UBI character devices are 0, while minor numbers of
444 * volume character devices start from 1. Thus, we allocate one major
445 * number and ubi->vtbl_slots + 1 minor numbers.
446 */
447 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
448 if (err) {
449 ubi_err(ubi, "cannot register UBI character devices");
450 return err;
451 }
452
453 ubi->dev.devt = dev;
454
455 ubi_assert(MINOR(dev) == 0);
456 cdev_init(&ubi->cdev, &ubi_cdev_operations);
457 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
458 ubi->cdev.owner = THIS_MODULE;
459
460 dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num);
461 err = cdev_device_add(&ubi->cdev, &ubi->dev);
462 if (err)
463 goto out_unreg;
464
465 for (i = 0; i < ubi->vtbl_slots; i++)
466 if (ubi->volumes[i]) {
467 err = ubi_add_volume(ubi, ubi->volumes[i]);
468 if (err) {
469 ubi_err(ubi, "cannot add volume %d", i);
470 ubi->volumes[i] = NULL;
471 goto out_volumes;
472 }
473 }
474
475 return 0;
476
477 out_volumes:
478 kill_volumes(ubi);
479 cdev_device_del(&ubi->cdev, &ubi->dev);
480 out_unreg:
481 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
482 ubi_err(ubi, "cannot initialize UBI %s, error %d",
483 ubi->ubi_name, err);
484 return err;
485 }
486
487 /**
488 * uif_close - close user interfaces for an UBI device.
489 * @ubi: UBI device description object
490 *
491 * Note, since this function un-registers UBI volume device objects (@vol->dev),
492 * the memory allocated voe the volumes is freed as well (in the release
493 * function).
494 */
uif_close(struct ubi_device *ubi)495 static void uif_close(struct ubi_device *ubi)
496 {
497 kill_volumes(ubi);
498 cdev_device_del(&ubi->cdev, &ubi->dev);
499 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
500 }
501
502 /**
503 * ubi_free_volumes_from - free volumes from specific index.
504 * @ubi: UBI device description object
505 * @from: the start index used for volume free.
506 */
ubi_free_volumes_from(struct ubi_device *ubi, int from)507 static void ubi_free_volumes_from(struct ubi_device *ubi, int from)
508 {
509 int i;
510
511 for (i = from; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
512 if (!ubi->volumes[i])
513 continue;
514 ubi_eba_replace_table(ubi->volumes[i], NULL);
515 ubi_fastmap_destroy_checkmap(ubi->volumes[i]);
516 kfree(ubi->volumes[i]);
517 ubi->volumes[i] = NULL;
518 }
519 }
520
521 /**
522 * ubi_free_all_volumes - free all volumes.
523 * @ubi: UBI device description object
524 */
ubi_free_all_volumes(struct ubi_device *ubi)525 void ubi_free_all_volumes(struct ubi_device *ubi)
526 {
527 ubi_free_volumes_from(ubi, 0);
528 }
529
530 /**
531 * ubi_free_internal_volumes - free internal volumes.
532 * @ubi: UBI device description object
533 */
ubi_free_internal_volumes(struct ubi_device *ubi)534 void ubi_free_internal_volumes(struct ubi_device *ubi)
535 {
536 ubi_free_volumes_from(ubi, ubi->vtbl_slots);
537 }
538
get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)539 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
540 {
541 int limit, device_pebs;
542 uint64_t device_size;
543
544 if (!max_beb_per1024) {
545 /*
546 * Since max_beb_per1024 has not been set by the user in either
547 * the cmdline or Kconfig, use mtd_max_bad_blocks to set the
548 * limit if it is supported by the device.
549 */
550 limit = mtd_max_bad_blocks(ubi->mtd, 0, ubi->mtd->size);
551 if (limit < 0)
552 return 0;
553 return limit;
554 }
555
556 /*
557 * Here we are using size of the entire flash chip and
558 * not just the MTD partition size because the maximum
559 * number of bad eraseblocks is a percentage of the
560 * whole device and bad eraseblocks are not fairly
561 * distributed over the flash chip. So the worst case
562 * is that all the bad eraseblocks of the chip are in
563 * the MTD partition we are attaching (ubi->mtd).
564 */
565 device_size = mtd_get_device_size(ubi->mtd);
566 device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
567 limit = mult_frac(device_pebs, max_beb_per1024, 1024);
568
569 /* Round it up */
570 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
571 limit += 1;
572
573 return limit;
574 }
575
576 /**
577 * io_init - initialize I/O sub-system for a given UBI device.
578 * @ubi: UBI device description object
579 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
580 *
581 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
582 * assumed:
583 * o EC header is always at offset zero - this cannot be changed;
584 * o VID header starts just after the EC header at the closest address
585 * aligned to @io->hdrs_min_io_size;
586 * o data starts just after the VID header at the closest address aligned to
587 * @io->min_io_size
588 *
589 * This function returns zero in case of success and a negative error code in
590 * case of failure.
591 */
io_init(struct ubi_device *ubi, int max_beb_per1024)592 static int io_init(struct ubi_device *ubi, int max_beb_per1024)
593 {
594 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
595 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
596
597 if (ubi->mtd->numeraseregions != 0) {
598 /*
599 * Some flashes have several erase regions. Different regions
600 * may have different eraseblock size and other
601 * characteristics. It looks like mostly multi-region flashes
602 * have one "main" region and one or more small regions to
603 * store boot loader code or boot parameters or whatever. I
604 * guess we should just pick the largest region. But this is
605 * not implemented.
606 */
607 ubi_err(ubi, "multiple regions, not implemented");
608 return -EINVAL;
609 }
610
611 if (ubi->vid_hdr_offset < 0)
612 return -EINVAL;
613
614 /*
615 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
616 * physical eraseblocks maximum.
617 */
618
619 ubi->peb_size = ubi->mtd->erasesize;
620 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
621 ubi->flash_size = ubi->mtd->size;
622
623 if (mtd_can_have_bb(ubi->mtd)) {
624 ubi->bad_allowed = 1;
625 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
626 }
627
628 if (ubi->mtd->type == MTD_NORFLASH) {
629 ubi_assert(ubi->mtd->writesize == 1);
630 ubi->nor_flash = 1;
631 }
632
633 ubi->min_io_size = ubi->mtd->writesize;
634 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
635
636 /*
637 * Make sure minimal I/O unit is power of 2. Note, there is no
638 * fundamental reason for this assumption. It is just an optimization
639 * which allows us to avoid costly division operations.
640 */
641 if (!is_power_of_2(ubi->min_io_size)) {
642 ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
643 ubi->min_io_size);
644 return -EINVAL;
645 }
646
647 ubi_assert(ubi->hdrs_min_io_size > 0);
648 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
649 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
650
651 ubi->max_write_size = ubi->mtd->writebufsize;
652 /*
653 * Maximum write size has to be greater or equivalent to min. I/O
654 * size, and be multiple of min. I/O size.
655 */
656 if (ubi->max_write_size < ubi->min_io_size ||
657 ubi->max_write_size % ubi->min_io_size ||
658 !is_power_of_2(ubi->max_write_size)) {
659 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
660 ubi->max_write_size, ubi->min_io_size);
661 return -EINVAL;
662 }
663
664 /* Calculate default aligned sizes of EC and VID headers */
665 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
666 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
667
668 dbg_gen("min_io_size %d", ubi->min_io_size);
669 dbg_gen("max_write_size %d", ubi->max_write_size);
670 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
671 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
672 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
673
674 if (ubi->vid_hdr_offset == 0)
675 /* Default offset */
676 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
677 ubi->ec_hdr_alsize;
678 else {
679 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
680 ~(ubi->hdrs_min_io_size - 1);
681 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
682 ubi->vid_hdr_aloffset;
683 }
684
685 /*
686 * Memory allocation for VID header is ubi->vid_hdr_alsize
687 * which is described in comments in io.c.
688 * Make sure VID header shift + UBI_VID_HDR_SIZE not exceeds
689 * ubi->vid_hdr_alsize, so that all vid header operations
690 * won't access memory out of bounds.
691 */
692 if ((ubi->vid_hdr_shift + UBI_VID_HDR_SIZE) > ubi->vid_hdr_alsize) {
693 ubi_err(ubi, "Invalid VID header offset %d, VID header shift(%d)"
694 " + VID header size(%zu) > VID header aligned size(%d).",
695 ubi->vid_hdr_offset, ubi->vid_hdr_shift,
696 UBI_VID_HDR_SIZE, ubi->vid_hdr_alsize);
697 return -EINVAL;
698 }
699
700 /* Similar for the data offset */
701 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
702 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
703
704 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset);
705 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
706 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift);
707 dbg_gen("leb_start %d", ubi->leb_start);
708
709 /* The shift must be aligned to 32-bit boundary */
710 if (ubi->vid_hdr_shift % 4) {
711 ubi_err(ubi, "unaligned VID header shift %d",
712 ubi->vid_hdr_shift);
713 return -EINVAL;
714 }
715
716 /* Check sanity */
717 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
718 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
719 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
720 ubi->leb_start & (ubi->min_io_size - 1)) {
721 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
722 ubi->vid_hdr_offset, ubi->leb_start);
723 return -EINVAL;
724 }
725
726 /*
727 * Set maximum amount of physical erroneous eraseblocks to be 10%.
728 * Erroneous PEB are those which have read errors.
729 */
730 ubi->max_erroneous = ubi->peb_count / 10;
731 if (ubi->max_erroneous < 16)
732 ubi->max_erroneous = 16;
733 dbg_gen("max_erroneous %d", ubi->max_erroneous);
734
735 /*
736 * It may happen that EC and VID headers are situated in one minimal
737 * I/O unit. In this case we can only accept this UBI image in
738 * read-only mode.
739 */
740 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
741 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
742 ubi->ro_mode = 1;
743 }
744
745 ubi->leb_size = ubi->peb_size - ubi->leb_start;
746
747 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
748 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
749 ubi->mtd->index);
750 ubi->ro_mode = 1;
751 }
752
753 /*
754 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
755 * unfortunately, MTD does not provide this information. We should loop
756 * over all physical eraseblocks and invoke mtd->block_is_bad() for
757 * each physical eraseblock. So, we leave @ubi->bad_peb_count
758 * uninitialized so far.
759 */
760
761 return 0;
762 }
763
764 /**
765 * autoresize - re-size the volume which has the "auto-resize" flag set.
766 * @ubi: UBI device description object
767 * @vol_id: ID of the volume to re-size
768 *
769 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
770 * the volume table to the largest possible size. See comments in ubi-header.h
771 * for more description of the flag. Returns zero in case of success and a
772 * negative error code in case of failure.
773 */
autoresize(struct ubi_device *ubi, int vol_id)774 static int autoresize(struct ubi_device *ubi, int vol_id)
775 {
776 struct ubi_volume_desc desc;
777 struct ubi_volume *vol = ubi->volumes[vol_id];
778 int err, old_reserved_pebs = vol->reserved_pebs;
779
780 if (ubi->ro_mode) {
781 ubi_warn(ubi, "skip auto-resize because of R/O mode");
782 return 0;
783 }
784
785 /*
786 * Clear the auto-resize flag in the volume in-memory copy of the
787 * volume table, and 'ubi_resize_volume()' will propagate this change
788 * to the flash.
789 */
790 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
791
792 if (ubi->avail_pebs == 0) {
793 struct ubi_vtbl_record vtbl_rec;
794
795 /*
796 * No available PEBs to re-size the volume, clear the flag on
797 * flash and exit.
798 */
799 vtbl_rec = ubi->vtbl[vol_id];
800 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
801 if (err)
802 ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
803 vol_id);
804 } else {
805 desc.vol = vol;
806 err = ubi_resize_volume(&desc,
807 old_reserved_pebs + ubi->avail_pebs);
808 if (err)
809 ubi_err(ubi, "cannot auto-resize volume %d",
810 vol_id);
811 }
812
813 if (err)
814 return err;
815
816 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
817 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
818 return 0;
819 }
820
821 /**
822 * ubi_attach_mtd_dev - attach an MTD device.
823 * @mtd: MTD device description object
824 * @ubi_num: number to assign to the new UBI device
825 * @vid_hdr_offset: VID header offset
826 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
827 *
828 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
829 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
830 * which case this function finds a vacant device number and assigns it
831 * automatically. Returns the new UBI device number in case of success and a
832 * negative error code in case of failure.
833 *
834 * Note, the invocations of this function has to be serialized by the
835 * @ubi_devices_mutex.
836 */
ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset, int max_beb_per1024)837 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
838 int vid_hdr_offset, int max_beb_per1024)
839 {
840 struct ubi_device *ubi;
841 int i, err;
842
843 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
844 return -EINVAL;
845
846 if (!max_beb_per1024)
847 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
848
849 /*
850 * Check if we already have the same MTD device attached.
851 *
852 * Note, this function assumes that UBI devices creations and deletions
853 * are serialized, so it does not take the &ubi_devices_lock.
854 */
855 for (i = 0; i < UBI_MAX_DEVICES; i++) {
856 ubi = ubi_devices[i];
857 if (ubi && mtd->index == ubi->mtd->index) {
858 pr_err("ubi: mtd%d is already attached to ubi%d\n",
859 mtd->index, i);
860 return -EEXIST;
861 }
862 }
863
864 /*
865 * Make sure this MTD device is not emulated on top of an UBI volume
866 * already. Well, generally this recursion works fine, but there are
867 * different problems like the UBI module takes a reference to itself
868 * by attaching (and thus, opening) the emulated MTD device. This
869 * results in inability to unload the module. And in general it makes
870 * no sense to attach emulated MTD devices, so we prohibit this.
871 */
872 if (mtd->type == MTD_UBIVOLUME) {
873 pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI\n",
874 mtd->index);
875 return -EINVAL;
876 }
877
878 /*
879 * Both UBI and UBIFS have been designed for SLC NAND and NOR flashes.
880 * MLC NAND is different and needs special care, otherwise UBI or UBIFS
881 * will die soon and you will lose all your data.
882 * Relax this rule if the partition we're attaching to operates in SLC
883 * mode.
884 */
885 if (mtd->type == MTD_MLCNANDFLASH &&
886 !(mtd->flags & MTD_SLC_ON_MLC_EMULATION)) {
887 pr_err("ubi: refuse attaching mtd%d - MLC NAND is not supported\n",
888 mtd->index);
889 return -EINVAL;
890 }
891
892 /* UBI cannot work on flashes with zero erasesize. */
893 if (!mtd->erasesize) {
894 pr_err("ubi: refuse attaching mtd%d - zero erasesize flash is not supported\n",
895 mtd->index);
896 return -EINVAL;
897 }
898
899 if (ubi_num == UBI_DEV_NUM_AUTO) {
900 /* Search for an empty slot in the @ubi_devices array */
901 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
902 if (!ubi_devices[ubi_num])
903 break;
904 if (ubi_num == UBI_MAX_DEVICES) {
905 pr_err("ubi: only %d UBI devices may be created\n",
906 UBI_MAX_DEVICES);
907 return -ENFILE;
908 }
909 } else {
910 if (ubi_num >= UBI_MAX_DEVICES)
911 return -EINVAL;
912
913 /* Make sure ubi_num is not busy */
914 if (ubi_devices[ubi_num]) {
915 pr_err("ubi: ubi%i already exists\n", ubi_num);
916 return -EEXIST;
917 }
918 }
919
920 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
921 if (!ubi)
922 return -ENOMEM;
923
924 device_initialize(&ubi->dev);
925 ubi->dev.release = dev_release;
926 ubi->dev.class = &ubi_class;
927 ubi->dev.groups = ubi_dev_groups;
928
929 ubi->mtd = mtd;
930 ubi->ubi_num = ubi_num;
931 ubi->vid_hdr_offset = vid_hdr_offset;
932 ubi->autoresize_vol_id = -1;
933
934 #ifdef CONFIG_MTD_UBI_FASTMAP
935 ubi->fm_pool.used = ubi->fm_pool.size = 0;
936 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
937
938 /*
939 * fm_pool.max_size is 5% of the total number of PEBs but it's also
940 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
941 */
942 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
943 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
944 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size,
945 UBI_FM_MIN_POOL_SIZE);
946
947 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
948 ubi->fm_disabled = !fm_autoconvert;
949 if (fm_debug)
950 ubi_enable_dbg_chk_fastmap(ubi);
951
952 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
953 <= UBI_FM_MAX_START) {
954 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
955 UBI_FM_MAX_START);
956 ubi->fm_disabled = 1;
957 }
958
959 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
960 ubi_msg(ubi, "default fastmap WL pool size: %d",
961 ubi->fm_wl_pool.max_size);
962 #else
963 ubi->fm_disabled = 1;
964 #endif
965 mutex_init(&ubi->buf_mutex);
966 mutex_init(&ubi->ckvol_mutex);
967 mutex_init(&ubi->device_mutex);
968 spin_lock_init(&ubi->volumes_lock);
969 init_rwsem(&ubi->fm_protect);
970 init_rwsem(&ubi->fm_eba_sem);
971
972 ubi_msg(ubi, "attaching mtd%d", mtd->index);
973
974 err = io_init(ubi, max_beb_per1024);
975 if (err)
976 goto out_free;
977
978 err = -ENOMEM;
979 ubi->peb_buf = vmalloc(ubi->peb_size);
980 if (!ubi->peb_buf)
981 goto out_free;
982
983 #ifdef CONFIG_MTD_UBI_FASTMAP
984 ubi->fm_size = ubi_calc_fm_size(ubi);
985 ubi->fm_buf = vzalloc(ubi->fm_size);
986 if (!ubi->fm_buf)
987 goto out_free;
988 #endif
989 err = ubi_attach(ubi, 0);
990 if (err) {
991 ubi_err(ubi, "failed to attach mtd%d, error %d",
992 mtd->index, err);
993 goto out_free;
994 }
995
996 if (ubi->autoresize_vol_id != -1) {
997 err = autoresize(ubi, ubi->autoresize_vol_id);
998 if (err)
999 goto out_detach;
1000 }
1001
1002 err = uif_init(ubi);
1003 if (err)
1004 goto out_detach;
1005
1006 err = ubi_debugfs_init_dev(ubi);
1007 if (err)
1008 goto out_uif;
1009
1010 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
1011 if (IS_ERR(ubi->bgt_thread)) {
1012 err = PTR_ERR(ubi->bgt_thread);
1013 ubi_err(ubi, "cannot spawn \"%s\", error %d",
1014 ubi->bgt_name, err);
1015 goto out_debugfs;
1016 }
1017
1018 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
1019 mtd->index, mtd->name, ubi->flash_size >> 20);
1020 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1021 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1022 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
1023 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1024 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
1025 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1026 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1027 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1028 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
1029 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1030 ubi->vtbl_slots);
1031 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1032 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1033 ubi->image_seq);
1034 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1035 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1036
1037 /*
1038 * The below lock makes sure we do not race with 'ubi_thread()' which
1039 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1040 */
1041 spin_lock(&ubi->wl_lock);
1042 ubi->thread_enabled = 1;
1043 wake_up_process(ubi->bgt_thread);
1044 spin_unlock(&ubi->wl_lock);
1045
1046 ubi_devices[ubi_num] = ubi;
1047 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1048 return ubi_num;
1049
1050 out_debugfs:
1051 ubi_debugfs_exit_dev(ubi);
1052 out_uif:
1053 uif_close(ubi);
1054 out_detach:
1055 ubi_wl_close(ubi);
1056 ubi_free_all_volumes(ubi);
1057 vfree(ubi->vtbl);
1058 out_free:
1059 vfree(ubi->peb_buf);
1060 vfree(ubi->fm_buf);
1061 put_device(&ubi->dev);
1062 return err;
1063 }
1064
1065 /**
1066 * ubi_detach_mtd_dev - detach an MTD device.
1067 * @ubi_num: UBI device number to detach from
1068 * @anyway: detach MTD even if device reference count is not zero
1069 *
1070 * This function destroys an UBI device number @ubi_num and detaches the
1071 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1072 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1073 * exist.
1074 *
1075 * Note, the invocations of this function has to be serialized by the
1076 * @ubi_devices_mutex.
1077 */
ubi_detach_mtd_dev(int ubi_num, int anyway)1078 int ubi_detach_mtd_dev(int ubi_num, int anyway)
1079 {
1080 struct ubi_device *ubi;
1081
1082 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1083 return -EINVAL;
1084
1085 ubi = ubi_get_device(ubi_num);
1086 if (!ubi)
1087 return -EINVAL;
1088
1089 spin_lock(&ubi_devices_lock);
1090 put_device(&ubi->dev);
1091 ubi->ref_count -= 1;
1092 if (ubi->ref_count) {
1093 if (!anyway) {
1094 spin_unlock(&ubi_devices_lock);
1095 return -EBUSY;
1096 }
1097 /* This may only happen if there is a bug */
1098 ubi_err(ubi, "%s reference count %d, destroy anyway",
1099 ubi->ubi_name, ubi->ref_count);
1100 }
1101 ubi_devices[ubi_num] = NULL;
1102 spin_unlock(&ubi_devices_lock);
1103
1104 ubi_assert(ubi_num == ubi->ubi_num);
1105 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1106 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1107 #ifdef CONFIG_MTD_UBI_FASTMAP
1108 /* If we don't write a new fastmap at detach time we lose all
1109 * EC updates that have been made since the last written fastmap.
1110 * In case of fastmap debugging we omit the update to simulate an
1111 * unclean shutdown. */
1112 if (!ubi_dbg_chk_fastmap(ubi))
1113 ubi_update_fastmap(ubi);
1114 #endif
1115 /*
1116 * Before freeing anything, we have to stop the background thread to
1117 * prevent it from doing anything on this device while we are freeing.
1118 */
1119 if (ubi->bgt_thread)
1120 kthread_stop(ubi->bgt_thread);
1121
1122 #ifdef CONFIG_MTD_UBI_FASTMAP
1123 cancel_work_sync(&ubi->fm_work);
1124 #endif
1125 ubi_debugfs_exit_dev(ubi);
1126 uif_close(ubi);
1127
1128 ubi_wl_close(ubi);
1129 ubi_free_internal_volumes(ubi);
1130 vfree(ubi->vtbl);
1131 vfree(ubi->peb_buf);
1132 vfree(ubi->fm_buf);
1133 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1134 put_mtd_device(ubi->mtd);
1135 put_device(&ubi->dev);
1136 return 0;
1137 }
1138
1139 /**
1140 * open_mtd_by_chdev - open an MTD device by its character device node path.
1141 * @mtd_dev: MTD character device node path
1142 *
1143 * This helper function opens an MTD device by its character node device path.
1144 * Returns MTD device description object in case of success and a negative
1145 * error code in case of failure.
1146 */
open_mtd_by_chdev(const char *mtd_dev)1147 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1148 {
1149 int err, minor;
1150 struct path path;
1151 struct kstat stat;
1152
1153 /* Probably this is an MTD character device node path */
1154 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1155 if (err)
1156 return ERR_PTR(err);
1157
1158 err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT);
1159 path_put(&path);
1160 if (err)
1161 return ERR_PTR(err);
1162
1163 /* MTD device number is defined by the major / minor numbers */
1164 if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode))
1165 return ERR_PTR(-EINVAL);
1166
1167 minor = MINOR(stat.rdev);
1168
1169 if (minor & 1)
1170 /*
1171 * Just do not think the "/dev/mtdrX" devices support is need,
1172 * so do not support them to avoid doing extra work.
1173 */
1174 return ERR_PTR(-EINVAL);
1175
1176 return get_mtd_device(NULL, minor / 2);
1177 }
1178
1179 /**
1180 * open_mtd_device - open MTD device by name, character device path, or number.
1181 * @mtd_dev: name, character device node path, or MTD device device number
1182 *
1183 * This function tries to open and MTD device described by @mtd_dev string,
1184 * which is first treated as ASCII MTD device number, and if it is not true, it
1185 * is treated as MTD device name, and if that is also not true, it is treated
1186 * as MTD character device node path. Returns MTD device description object in
1187 * case of success and a negative error code in case of failure.
1188 */
open_mtd_device(const char *mtd_dev)1189 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1190 {
1191 struct mtd_info *mtd;
1192 int mtd_num;
1193 char *endp;
1194
1195 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1196 if (*endp != '\0' || mtd_dev == endp) {
1197 /*
1198 * This does not look like an ASCII integer, probably this is
1199 * MTD device name.
1200 */
1201 mtd = get_mtd_device_nm(mtd_dev);
1202 if (PTR_ERR(mtd) == -ENODEV)
1203 /* Probably this is an MTD character device node path */
1204 mtd = open_mtd_by_chdev(mtd_dev);
1205 } else
1206 mtd = get_mtd_device(NULL, mtd_num);
1207
1208 return mtd;
1209 }
1210
ubi_init(void)1211 static int __init ubi_init(void)
1212 {
1213 int err, i, k;
1214
1215 /* Ensure that EC and VID headers have correct size */
1216 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1217 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1218
1219 if (mtd_devs > UBI_MAX_DEVICES) {
1220 pr_err("UBI error: too many MTD devices, maximum is %d\n",
1221 UBI_MAX_DEVICES);
1222 return -EINVAL;
1223 }
1224
1225 /* Create base sysfs directory and sysfs files */
1226 err = class_register(&ubi_class);
1227 if (err < 0)
1228 return err;
1229
1230 err = misc_register(&ubi_ctrl_cdev);
1231 if (err) {
1232 pr_err("UBI error: cannot register device\n");
1233 goto out;
1234 }
1235
1236 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1237 sizeof(struct ubi_wl_entry),
1238 0, 0, NULL);
1239 if (!ubi_wl_entry_slab) {
1240 err = -ENOMEM;
1241 goto out_dev_unreg;
1242 }
1243
1244 err = ubi_debugfs_init();
1245 if (err)
1246 goto out_slab;
1247
1248
1249 /* Attach MTD devices */
1250 for (i = 0; i < mtd_devs; i++) {
1251 struct mtd_dev_param *p = &mtd_dev_param[i];
1252 struct mtd_info *mtd;
1253
1254 cond_resched();
1255
1256 mtd = open_mtd_device(p->name);
1257 if (IS_ERR(mtd)) {
1258 err = PTR_ERR(mtd);
1259 pr_err("UBI error: cannot open mtd %s, error %d\n",
1260 p->name, err);
1261 /* See comment below re-ubi_is_module(). */
1262 if (ubi_is_module())
1263 goto out_detach;
1264 continue;
1265 }
1266
1267 mutex_lock(&ubi_devices_mutex);
1268 err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1269 p->vid_hdr_offs, p->max_beb_per1024);
1270 mutex_unlock(&ubi_devices_mutex);
1271 if (err < 0) {
1272 pr_err("UBI error: cannot attach mtd%d\n",
1273 mtd->index);
1274 put_mtd_device(mtd);
1275
1276 /*
1277 * Originally UBI stopped initializing on any error.
1278 * However, later on it was found out that this
1279 * behavior is not very good when UBI is compiled into
1280 * the kernel and the MTD devices to attach are passed
1281 * through the command line. Indeed, UBI failure
1282 * stopped whole boot sequence.
1283 *
1284 * To fix this, we changed the behavior for the
1285 * non-module case, but preserved the old behavior for
1286 * the module case, just for compatibility. This is a
1287 * little inconsistent, though.
1288 */
1289 if (ubi_is_module())
1290 goto out_detach;
1291 }
1292 }
1293
1294 err = ubiblock_init();
1295 if (err) {
1296 pr_err("UBI error: block: cannot initialize, error %d\n", err);
1297
1298 /* See comment above re-ubi_is_module(). */
1299 if (ubi_is_module())
1300 goto out_detach;
1301 }
1302
1303 return 0;
1304
1305 out_detach:
1306 for (k = 0; k < i; k++)
1307 if (ubi_devices[k]) {
1308 mutex_lock(&ubi_devices_mutex);
1309 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1310 mutex_unlock(&ubi_devices_mutex);
1311 }
1312 ubi_debugfs_exit();
1313 out_slab:
1314 kmem_cache_destroy(ubi_wl_entry_slab);
1315 out_dev_unreg:
1316 misc_deregister(&ubi_ctrl_cdev);
1317 out:
1318 class_unregister(&ubi_class);
1319 pr_err("UBI error: cannot initialize UBI, error %d\n", err);
1320 return err;
1321 }
1322 late_initcall(ubi_init);
1323
ubi_exit(void)1324 static void __exit ubi_exit(void)
1325 {
1326 int i;
1327
1328 ubiblock_exit();
1329
1330 for (i = 0; i < UBI_MAX_DEVICES; i++)
1331 if (ubi_devices[i]) {
1332 mutex_lock(&ubi_devices_mutex);
1333 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1334 mutex_unlock(&ubi_devices_mutex);
1335 }
1336 ubi_debugfs_exit();
1337 kmem_cache_destroy(ubi_wl_entry_slab);
1338 misc_deregister(&ubi_ctrl_cdev);
1339 class_unregister(&ubi_class);
1340 }
1341 module_exit(ubi_exit);
1342
1343 /**
1344 * bytes_str_to_int - convert a number of bytes string into an integer.
1345 * @str: the string to convert
1346 *
1347 * This function returns positive resulting integer in case of success and a
1348 * negative error code in case of failure.
1349 */
bytes_str_to_int(const char *str)1350 static int bytes_str_to_int(const char *str)
1351 {
1352 char *endp;
1353 unsigned long result;
1354
1355 result = simple_strtoul(str, &endp, 0);
1356 if (str == endp || result >= INT_MAX) {
1357 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1358 return -EINVAL;
1359 }
1360
1361 switch (*endp) {
1362 case 'G':
1363 result *= 1024;
1364 fallthrough;
1365 case 'M':
1366 result *= 1024;
1367 fallthrough;
1368 case 'K':
1369 result *= 1024;
1370 if (endp[1] == 'i' && endp[2] == 'B')
1371 endp += 2;
1372 case '\0':
1373 break;
1374 default:
1375 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1376 return -EINVAL;
1377 }
1378
1379 return result;
1380 }
1381
1382 /**
1383 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1384 * @val: the parameter value to parse
1385 * @kp: not used
1386 *
1387 * This function returns zero in case of success and a negative error code in
1388 * case of error.
1389 */
ubi_mtd_param_parse(const char *val, const struct kernel_param *kp)1390 static int ubi_mtd_param_parse(const char *val, const struct kernel_param *kp)
1391 {
1392 int i, len;
1393 struct mtd_dev_param *p;
1394 char buf[MTD_PARAM_LEN_MAX];
1395 char *pbuf = &buf[0];
1396 char *tokens[MTD_PARAM_MAX_COUNT], *token;
1397
1398 if (!val)
1399 return -EINVAL;
1400
1401 if (mtd_devs == UBI_MAX_DEVICES) {
1402 pr_err("UBI error: too many parameters, max. is %d\n",
1403 UBI_MAX_DEVICES);
1404 return -EINVAL;
1405 }
1406
1407 len = strnlen(val, MTD_PARAM_LEN_MAX);
1408 if (len == MTD_PARAM_LEN_MAX) {
1409 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1410 val, MTD_PARAM_LEN_MAX);
1411 return -EINVAL;
1412 }
1413
1414 if (len == 0) {
1415 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1416 return 0;
1417 }
1418
1419 strcpy(buf, val);
1420
1421 /* Get rid of the final newline */
1422 if (buf[len - 1] == '\n')
1423 buf[len - 1] = '\0';
1424
1425 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1426 tokens[i] = strsep(&pbuf, ",");
1427
1428 if (pbuf) {
1429 pr_err("UBI error: too many arguments at \"%s\"\n", val);
1430 return -EINVAL;
1431 }
1432
1433 p = &mtd_dev_param[mtd_devs];
1434 strcpy(&p->name[0], tokens[0]);
1435
1436 token = tokens[1];
1437 if (token) {
1438 p->vid_hdr_offs = bytes_str_to_int(token);
1439
1440 if (p->vid_hdr_offs < 0)
1441 return p->vid_hdr_offs;
1442 }
1443
1444 token = tokens[2];
1445 if (token) {
1446 int err = kstrtoint(token, 10, &p->max_beb_per1024);
1447
1448 if (err) {
1449 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s",
1450 token);
1451 return -EINVAL;
1452 }
1453 }
1454
1455 token = tokens[3];
1456 if (token) {
1457 int err = kstrtoint(token, 10, &p->ubi_num);
1458
1459 if (err) {
1460 pr_err("UBI error: bad value for ubi_num parameter: %s",
1461 token);
1462 return -EINVAL;
1463 }
1464 } else
1465 p->ubi_num = UBI_DEV_NUM_AUTO;
1466
1467 mtd_devs += 1;
1468 return 0;
1469 }
1470
1471 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400);
1472 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1473 "Multiple \"mtd\" parameters may be specified.\n"
1474 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1475 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1476 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1477 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1478 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1479 "\n"
1480 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1481 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1482 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1483 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1484 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1485 #ifdef CONFIG_MTD_UBI_FASTMAP
1486 module_param(fm_autoconvert, bool, 0644);
1487 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1488 module_param(fm_debug, bool, 0);
1489 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
1490 #endif
1491 MODULE_VERSION(__stringify(UBI_VERSION));
1492 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1493 MODULE_AUTHOR("Artem Bityutskiy");
1494 MODULE_LICENSE("GPL");
1495