1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Intel PCH/PCU SPI flash driver.
4 *
5 * Copyright (C) 2016, Intel Corporation
6 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7 */
8
9 #include <linux/err.h>
10 #include <linux/io.h>
11 #include <linux/iopoll.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/sizes.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/partitions.h>
17 #include <linux/mtd/spi-nor.h>
18 #include <linux/platform_data/intel-spi.h>
19
20 #include "intel-spi.h"
21
22 /* Offsets are from @ispi->base */
23 #define BFPREG 0x00
24
25 #define HSFSTS_CTL 0x04
26 #define HSFSTS_CTL_FSMIE BIT(31)
27 #define HSFSTS_CTL_FDBC_SHIFT 24
28 #define HSFSTS_CTL_FDBC_MASK (0x3f << HSFSTS_CTL_FDBC_SHIFT)
29
30 #define HSFSTS_CTL_FCYCLE_SHIFT 17
31 #define HSFSTS_CTL_FCYCLE_MASK (0x0f << HSFSTS_CTL_FCYCLE_SHIFT)
32 /* HW sequencer opcodes */
33 #define HSFSTS_CTL_FCYCLE_READ (0x00 << HSFSTS_CTL_FCYCLE_SHIFT)
34 #define HSFSTS_CTL_FCYCLE_WRITE (0x02 << HSFSTS_CTL_FCYCLE_SHIFT)
35 #define HSFSTS_CTL_FCYCLE_ERASE (0x03 << HSFSTS_CTL_FCYCLE_SHIFT)
36 #define HSFSTS_CTL_FCYCLE_ERASE_64K (0x04 << HSFSTS_CTL_FCYCLE_SHIFT)
37 #define HSFSTS_CTL_FCYCLE_RDID (0x06 << HSFSTS_CTL_FCYCLE_SHIFT)
38 #define HSFSTS_CTL_FCYCLE_WRSR (0x07 << HSFSTS_CTL_FCYCLE_SHIFT)
39 #define HSFSTS_CTL_FCYCLE_RDSR (0x08 << HSFSTS_CTL_FCYCLE_SHIFT)
40
41 #define HSFSTS_CTL_FGO BIT(16)
42 #define HSFSTS_CTL_FLOCKDN BIT(15)
43 #define HSFSTS_CTL_FDV BIT(14)
44 #define HSFSTS_CTL_SCIP BIT(5)
45 #define HSFSTS_CTL_AEL BIT(2)
46 #define HSFSTS_CTL_FCERR BIT(1)
47 #define HSFSTS_CTL_FDONE BIT(0)
48
49 #define FADDR 0x08
50 #define DLOCK 0x0c
51 #define FDATA(n) (0x10 + ((n) * 4))
52
53 #define FRACC 0x50
54
55 #define FREG(n) (0x54 + ((n) * 4))
56 #define FREG_BASE_MASK GENMASK(14, 0)
57 #define FREG_LIMIT_SHIFT 16
58 #define FREG_LIMIT_MASK GENMASK(30, 16)
59
60 /* Offset is from @ispi->pregs */
61 #define PR(n) ((n) * 4)
62 #define PR_WPE BIT(31)
63 #define PR_LIMIT_SHIFT 16
64 #define PR_LIMIT_MASK GENMASK(30, 16)
65 #define PR_RPE BIT(15)
66 #define PR_BASE_MASK GENMASK(14, 0)
67
68 /* Offsets are from @ispi->sregs */
69 #define SSFSTS_CTL 0x00
70 #define SSFSTS_CTL_FSMIE BIT(23)
71 #define SSFSTS_CTL_DS BIT(22)
72 #define SSFSTS_CTL_DBC_SHIFT 16
73 #define SSFSTS_CTL_SPOP BIT(11)
74 #define SSFSTS_CTL_ACS BIT(10)
75 #define SSFSTS_CTL_SCGO BIT(9)
76 #define SSFSTS_CTL_COP_SHIFT 12
77 #define SSFSTS_CTL_FRS BIT(7)
78 #define SSFSTS_CTL_DOFRS BIT(6)
79 #define SSFSTS_CTL_AEL BIT(4)
80 #define SSFSTS_CTL_FCERR BIT(3)
81 #define SSFSTS_CTL_FDONE BIT(2)
82 #define SSFSTS_CTL_SCIP BIT(0)
83
84 #define PREOP_OPTYPE 0x04
85 #define OPMENU0 0x08
86 #define OPMENU1 0x0c
87
88 #define OPTYPE_READ_NO_ADDR 0
89 #define OPTYPE_WRITE_NO_ADDR 1
90 #define OPTYPE_READ_WITH_ADDR 2
91 #define OPTYPE_WRITE_WITH_ADDR 3
92
93 /* CPU specifics */
94 #define BYT_PR 0x74
95 #define BYT_SSFSTS_CTL 0x90
96 #define BYT_BCR 0xfc
97 #define BYT_BCR_WPD BIT(0)
98 #define BYT_FREG_NUM 5
99 #define BYT_PR_NUM 5
100
101 #define LPT_PR 0x74
102 #define LPT_SSFSTS_CTL 0x90
103 #define LPT_FREG_NUM 5
104 #define LPT_PR_NUM 5
105
106 #define BXT_PR 0x84
107 #define BXT_SSFSTS_CTL 0xa0
108 #define BXT_FREG_NUM 12
109 #define BXT_PR_NUM 6
110
111 #define CNL_PR 0x84
112 #define CNL_FREG_NUM 6
113 #define CNL_PR_NUM 5
114
115 #define LVSCC 0xc4
116 #define UVSCC 0xc8
117 #define ERASE_OPCODE_SHIFT 8
118 #define ERASE_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT)
119 #define ERASE_64K_OPCODE_SHIFT 16
120 #define ERASE_64K_OPCODE_MASK (0xff << ERASE_64K_OPCODE_SHIFT)
121
122 #define INTEL_SPI_TIMEOUT 5000 /* ms */
123 #define INTEL_SPI_FIFO_SZ 64
124
125 /**
126 * struct intel_spi - Driver private data
127 * @dev: Device pointer
128 * @info: Pointer to board specific info
129 * @nor: SPI NOR layer structure
130 * @base: Beginning of MMIO space
131 * @pregs: Start of protection registers
132 * @sregs: Start of software sequencer registers
133 * @nregions: Maximum number of regions
134 * @pr_num: Maximum number of protected range registers
135 * @locked: Is SPI setting locked
136 * @swseq_reg: Use SW sequencer in register reads/writes
137 * @swseq_erase: Use SW sequencer in erase operation
138 * @erase_64k: 64k erase supported
139 * @atomic_preopcode: Holds preopcode when atomic sequence is requested
140 * @opcodes: Opcodes which are supported. This are programmed by BIOS
141 * before it locks down the controller.
142 */
143 struct intel_spi {
144 struct device *dev;
145 const struct intel_spi_boardinfo *info;
146 struct spi_nor nor;
147 void __iomem *base;
148 void __iomem *pregs;
149 void __iomem *sregs;
150 size_t nregions;
151 size_t pr_num;
152 bool locked;
153 bool swseq_reg;
154 bool swseq_erase;
155 bool erase_64k;
156 u8 atomic_preopcode;
157 u8 opcodes[8];
158 };
159
160 static bool writeable;
161 module_param(writeable, bool, 0);
162 MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)");
163
intel_spi_dump_regs(struct intel_spi *ispi)164 static void intel_spi_dump_regs(struct intel_spi *ispi)
165 {
166 u32 value;
167 int i;
168
169 dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG));
170
171 value = readl(ispi->base + HSFSTS_CTL);
172 dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value);
173 if (value & HSFSTS_CTL_FLOCKDN)
174 dev_dbg(ispi->dev, "-> Locked\n");
175
176 dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR));
177 dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK));
178
179 for (i = 0; i < 16; i++)
180 dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n",
181 i, readl(ispi->base + FDATA(i)));
182
183 dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC));
184
185 for (i = 0; i < ispi->nregions; i++)
186 dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i,
187 readl(ispi->base + FREG(i)));
188 for (i = 0; i < ispi->pr_num; i++)
189 dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i,
190 readl(ispi->pregs + PR(i)));
191
192 if (ispi->sregs) {
193 value = readl(ispi->sregs + SSFSTS_CTL);
194 dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
195 dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
196 readl(ispi->sregs + PREOP_OPTYPE));
197 dev_dbg(ispi->dev, "OPMENU0=0x%08x\n",
198 readl(ispi->sregs + OPMENU0));
199 dev_dbg(ispi->dev, "OPMENU1=0x%08x\n",
200 readl(ispi->sregs + OPMENU1));
201 }
202
203 if (ispi->info->type == INTEL_SPI_BYT)
204 dev_dbg(ispi->dev, "BCR=0x%08x\n", readl(ispi->base + BYT_BCR));
205
206 dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC));
207 dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC));
208
209 dev_dbg(ispi->dev, "Protected regions:\n");
210 for (i = 0; i < ispi->pr_num; i++) {
211 u32 base, limit;
212
213 value = readl(ispi->pregs + PR(i));
214 if (!(value & (PR_WPE | PR_RPE)))
215 continue;
216
217 limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
218 base = value & PR_BASE_MASK;
219
220 dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n",
221 i, base << 12, (limit << 12) | 0xfff,
222 value & PR_WPE ? 'W' : '.',
223 value & PR_RPE ? 'R' : '.');
224 }
225
226 dev_dbg(ispi->dev, "Flash regions:\n");
227 for (i = 0; i < ispi->nregions; i++) {
228 u32 region, base, limit;
229
230 region = readl(ispi->base + FREG(i));
231 base = region & FREG_BASE_MASK;
232 limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
233
234 if (base >= limit || (i > 0 && limit == 0))
235 dev_dbg(ispi->dev, " %02d disabled\n", i);
236 else
237 dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n",
238 i, base << 12, (limit << 12) | 0xfff);
239 }
240
241 dev_dbg(ispi->dev, "Using %cW sequencer for register access\n",
242 ispi->swseq_reg ? 'S' : 'H');
243 dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n",
244 ispi->swseq_erase ? 'S' : 'H');
245 }
246
247 /* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */
intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size)248 static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size)
249 {
250 size_t bytes;
251 int i = 0;
252
253 if (size > INTEL_SPI_FIFO_SZ)
254 return -EINVAL;
255
256 while (size > 0) {
257 bytes = min_t(size_t, size, 4);
258 memcpy_fromio(buf, ispi->base + FDATA(i), bytes);
259 size -= bytes;
260 buf += bytes;
261 i++;
262 }
263
264 return 0;
265 }
266
267 /* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */
intel_spi_write_block(struct intel_spi *ispi, const void *buf, size_t size)268 static int intel_spi_write_block(struct intel_spi *ispi, const void *buf,
269 size_t size)
270 {
271 size_t bytes;
272 int i = 0;
273
274 if (size > INTEL_SPI_FIFO_SZ)
275 return -EINVAL;
276
277 while (size > 0) {
278 bytes = min_t(size_t, size, 4);
279 memcpy_toio(ispi->base + FDATA(i), buf, bytes);
280 size -= bytes;
281 buf += bytes;
282 i++;
283 }
284
285 return 0;
286 }
287
intel_spi_wait_hw_busy(struct intel_spi *ispi)288 static int intel_spi_wait_hw_busy(struct intel_spi *ispi)
289 {
290 u32 val;
291
292 return readl_poll_timeout(ispi->base + HSFSTS_CTL, val,
293 !(val & HSFSTS_CTL_SCIP), 0,
294 INTEL_SPI_TIMEOUT * 1000);
295 }
296
intel_spi_wait_sw_busy(struct intel_spi *ispi)297 static int intel_spi_wait_sw_busy(struct intel_spi *ispi)
298 {
299 u32 val;
300
301 return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val,
302 !(val & SSFSTS_CTL_SCIP), 0,
303 INTEL_SPI_TIMEOUT * 1000);
304 }
305
intel_spi_set_writeable(struct intel_spi *ispi)306 static bool intel_spi_set_writeable(struct intel_spi *ispi)
307 {
308 if (!ispi->info->set_writeable)
309 return false;
310
311 return ispi->info->set_writeable(ispi->base, ispi->info->data);
312 }
313
intel_spi_init(struct intel_spi *ispi)314 static int intel_spi_init(struct intel_spi *ispi)
315 {
316 u32 opmenu0, opmenu1, lvscc, uvscc, val;
317 int i;
318
319 switch (ispi->info->type) {
320 case INTEL_SPI_BYT:
321 ispi->sregs = ispi->base + BYT_SSFSTS_CTL;
322 ispi->pregs = ispi->base + BYT_PR;
323 ispi->nregions = BYT_FREG_NUM;
324 ispi->pr_num = BYT_PR_NUM;
325 ispi->swseq_reg = true;
326 break;
327
328 case INTEL_SPI_LPT:
329 ispi->sregs = ispi->base + LPT_SSFSTS_CTL;
330 ispi->pregs = ispi->base + LPT_PR;
331 ispi->nregions = LPT_FREG_NUM;
332 ispi->pr_num = LPT_PR_NUM;
333 ispi->swseq_reg = true;
334 break;
335
336 case INTEL_SPI_BXT:
337 ispi->sregs = ispi->base + BXT_SSFSTS_CTL;
338 ispi->pregs = ispi->base + BXT_PR;
339 ispi->nregions = BXT_FREG_NUM;
340 ispi->pr_num = BXT_PR_NUM;
341 ispi->erase_64k = true;
342 break;
343
344 case INTEL_SPI_CNL:
345 ispi->sregs = NULL;
346 ispi->pregs = ispi->base + CNL_PR;
347 ispi->nregions = CNL_FREG_NUM;
348 ispi->pr_num = CNL_PR_NUM;
349 break;
350
351 default:
352 return -EINVAL;
353 }
354
355 /* Try to disable write protection if user asked to do so */
356 if (writeable && !intel_spi_set_writeable(ispi)) {
357 dev_warn(ispi->dev, "can't disable chip write protection\n");
358 writeable = false;
359 }
360
361 /* Disable #SMI generation from HW sequencer */
362 val = readl(ispi->base + HSFSTS_CTL);
363 val &= ~HSFSTS_CTL_FSMIE;
364 writel(val, ispi->base + HSFSTS_CTL);
365
366 /*
367 * Determine whether erase operation should use HW or SW sequencer.
368 *
369 * The HW sequencer has a predefined list of opcodes, with only the
370 * erase opcode being programmable in LVSCC and UVSCC registers.
371 * If these registers don't contain a valid erase opcode, erase
372 * cannot be done using HW sequencer.
373 */
374 lvscc = readl(ispi->base + LVSCC);
375 uvscc = readl(ispi->base + UVSCC);
376 if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK))
377 ispi->swseq_erase = true;
378 /* SPI controller on Intel BXT supports 64K erase opcode */
379 if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase)
380 if (!(lvscc & ERASE_64K_OPCODE_MASK) ||
381 !(uvscc & ERASE_64K_OPCODE_MASK))
382 ispi->erase_64k = false;
383
384 if (ispi->sregs == NULL && (ispi->swseq_reg || ispi->swseq_erase)) {
385 dev_err(ispi->dev, "software sequencer not supported, but required\n");
386 return -EINVAL;
387 }
388
389 /*
390 * Some controllers can only do basic operations using hardware
391 * sequencer. All other operations are supposed to be carried out
392 * using software sequencer.
393 */
394 if (ispi->swseq_reg) {
395 /* Disable #SMI generation from SW sequencer */
396 val = readl(ispi->sregs + SSFSTS_CTL);
397 val &= ~SSFSTS_CTL_FSMIE;
398 writel(val, ispi->sregs + SSFSTS_CTL);
399 }
400
401 /* Check controller's lock status */
402 val = readl(ispi->base + HSFSTS_CTL);
403 ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN);
404
405 if (ispi->locked && ispi->sregs) {
406 /*
407 * BIOS programs allowed opcodes and then locks down the
408 * register. So read back what opcodes it decided to support.
409 * That's the set we are going to support as well.
410 */
411 opmenu0 = readl(ispi->sregs + OPMENU0);
412 opmenu1 = readl(ispi->sregs + OPMENU1);
413
414 if (opmenu0 && opmenu1) {
415 for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) {
416 ispi->opcodes[i] = opmenu0 >> i * 8;
417 ispi->opcodes[i + 4] = opmenu1 >> i * 8;
418 }
419 }
420 }
421
422 intel_spi_dump_regs(ispi);
423
424 return 0;
425 }
426
intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype)427 static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype)
428 {
429 int i;
430 int preop;
431
432 if (ispi->locked) {
433 for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++)
434 if (ispi->opcodes[i] == opcode)
435 return i;
436
437 return -EINVAL;
438 }
439
440 /* The lock is off, so just use index 0 */
441 writel(opcode, ispi->sregs + OPMENU0);
442 preop = readw(ispi->sregs + PREOP_OPTYPE);
443 writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE);
444
445 return 0;
446 }
447
intel_spi_hw_cycle(struct intel_spi *ispi, u8 opcode, size_t len)448 static int intel_spi_hw_cycle(struct intel_spi *ispi, u8 opcode, size_t len)
449 {
450 u32 val, status;
451 int ret;
452
453 val = readl(ispi->base + HSFSTS_CTL);
454 val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK);
455
456 switch (opcode) {
457 case SPINOR_OP_RDID:
458 val |= HSFSTS_CTL_FCYCLE_RDID;
459 break;
460 case SPINOR_OP_WRSR:
461 val |= HSFSTS_CTL_FCYCLE_WRSR;
462 break;
463 case SPINOR_OP_RDSR:
464 val |= HSFSTS_CTL_FCYCLE_RDSR;
465 break;
466 default:
467 return -EINVAL;
468 }
469
470 if (len > INTEL_SPI_FIFO_SZ)
471 return -EINVAL;
472
473 val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT;
474 val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
475 val |= HSFSTS_CTL_FGO;
476 writel(val, ispi->base + HSFSTS_CTL);
477
478 ret = intel_spi_wait_hw_busy(ispi);
479 if (ret)
480 return ret;
481
482 status = readl(ispi->base + HSFSTS_CTL);
483 if (status & HSFSTS_CTL_FCERR)
484 return -EIO;
485 else if (status & HSFSTS_CTL_AEL)
486 return -EACCES;
487
488 return 0;
489 }
490
intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, size_t len, int optype)491 static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, size_t len,
492 int optype)
493 {
494 u32 val = 0, status;
495 u8 atomic_preopcode;
496 int ret;
497
498 ret = intel_spi_opcode_index(ispi, opcode, optype);
499 if (ret < 0)
500 return ret;
501
502 if (len > INTEL_SPI_FIFO_SZ)
503 return -EINVAL;
504
505 /*
506 * Always clear it after each SW sequencer operation regardless
507 * of whether it is successful or not.
508 */
509 atomic_preopcode = ispi->atomic_preopcode;
510 ispi->atomic_preopcode = 0;
511
512 /* Only mark 'Data Cycle' bit when there is data to be transferred */
513 if (len > 0)
514 val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS;
515 val |= ret << SSFSTS_CTL_COP_SHIFT;
516 val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE;
517 val |= SSFSTS_CTL_SCGO;
518 if (atomic_preopcode) {
519 u16 preop;
520
521 switch (optype) {
522 case OPTYPE_WRITE_NO_ADDR:
523 case OPTYPE_WRITE_WITH_ADDR:
524 /* Pick matching preopcode for the atomic sequence */
525 preop = readw(ispi->sregs + PREOP_OPTYPE);
526 if ((preop & 0xff) == atomic_preopcode)
527 ; /* Do nothing */
528 else if ((preop >> 8) == atomic_preopcode)
529 val |= SSFSTS_CTL_SPOP;
530 else
531 return -EINVAL;
532
533 /* Enable atomic sequence */
534 val |= SSFSTS_CTL_ACS;
535 break;
536
537 default:
538 return -EINVAL;
539 }
540
541 }
542 writel(val, ispi->sregs + SSFSTS_CTL);
543
544 ret = intel_spi_wait_sw_busy(ispi);
545 if (ret)
546 return ret;
547
548 status = readl(ispi->sregs + SSFSTS_CTL);
549 if (status & SSFSTS_CTL_FCERR)
550 return -EIO;
551 else if (status & SSFSTS_CTL_AEL)
552 return -EACCES;
553
554 return 0;
555 }
556
intel_spi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, size_t len)557 static int intel_spi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
558 size_t len)
559 {
560 struct intel_spi *ispi = nor->priv;
561 int ret;
562
563 /* Address of the first chip */
564 writel(0, ispi->base + FADDR);
565
566 if (ispi->swseq_reg)
567 ret = intel_spi_sw_cycle(ispi, opcode, len,
568 OPTYPE_READ_NO_ADDR);
569 else
570 ret = intel_spi_hw_cycle(ispi, opcode, len);
571
572 if (ret)
573 return ret;
574
575 return intel_spi_read_block(ispi, buf, len);
576 }
577
intel_spi_write_reg(struct spi_nor *nor, u8 opcode, const u8 *buf, size_t len)578 static int intel_spi_write_reg(struct spi_nor *nor, u8 opcode, const u8 *buf,
579 size_t len)
580 {
581 struct intel_spi *ispi = nor->priv;
582 int ret;
583
584 /*
585 * This is handled with atomic operation and preop code in Intel
586 * controller so we only verify that it is available. If the
587 * controller is not locked, program the opcode to the PREOP
588 * register for later use.
589 *
590 * When hardware sequencer is used there is no need to program
591 * any opcodes (it handles them automatically as part of a command).
592 */
593 if (opcode == SPINOR_OP_WREN) {
594 u16 preop;
595
596 if (!ispi->swseq_reg)
597 return 0;
598
599 preop = readw(ispi->sregs + PREOP_OPTYPE);
600 if ((preop & 0xff) != opcode && (preop >> 8) != opcode) {
601 if (ispi->locked)
602 return -EINVAL;
603 writel(opcode, ispi->sregs + PREOP_OPTYPE);
604 }
605
606 /*
607 * This enables atomic sequence on next SW sycle. Will
608 * be cleared after next operation.
609 */
610 ispi->atomic_preopcode = opcode;
611 return 0;
612 }
613
614 /*
615 * We hope that HW sequencer will do the right thing automatically and
616 * with the SW sequencer we cannot use preopcode anyway, so just ignore
617 * the Write Disable operation and pretend it was completed
618 * successfully.
619 */
620 if (opcode == SPINOR_OP_WRDI)
621 return 0;
622
623 writel(0, ispi->base + FADDR);
624
625 /* Write the value beforehand */
626 ret = intel_spi_write_block(ispi, buf, len);
627 if (ret)
628 return ret;
629
630 if (ispi->swseq_reg)
631 return intel_spi_sw_cycle(ispi, opcode, len,
632 OPTYPE_WRITE_NO_ADDR);
633 return intel_spi_hw_cycle(ispi, opcode, len);
634 }
635
intel_spi_read(struct spi_nor *nor, loff_t from, size_t len, u_char *read_buf)636 static ssize_t intel_spi_read(struct spi_nor *nor, loff_t from, size_t len,
637 u_char *read_buf)
638 {
639 struct intel_spi *ispi = nor->priv;
640 size_t block_size, retlen = 0;
641 u32 val, status;
642 ssize_t ret;
643
644 /*
645 * Atomic sequence is not expected with HW sequencer reads. Make
646 * sure it is cleared regardless.
647 */
648 if (WARN_ON_ONCE(ispi->atomic_preopcode))
649 ispi->atomic_preopcode = 0;
650
651 switch (nor->read_opcode) {
652 case SPINOR_OP_READ:
653 case SPINOR_OP_READ_FAST:
654 case SPINOR_OP_READ_4B:
655 case SPINOR_OP_READ_FAST_4B:
656 break;
657 default:
658 return -EINVAL;
659 }
660
661 while (len > 0) {
662 block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ);
663
664 /* Read cannot cross 4K boundary */
665 block_size = min_t(loff_t, from + block_size,
666 round_up(from + 1, SZ_4K)) - from;
667
668 writel(from, ispi->base + FADDR);
669
670 val = readl(ispi->base + HSFSTS_CTL);
671 val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
672 val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
673 val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
674 val |= HSFSTS_CTL_FCYCLE_READ;
675 val |= HSFSTS_CTL_FGO;
676 writel(val, ispi->base + HSFSTS_CTL);
677
678 ret = intel_spi_wait_hw_busy(ispi);
679 if (ret)
680 return ret;
681
682 status = readl(ispi->base + HSFSTS_CTL);
683 if (status & HSFSTS_CTL_FCERR)
684 ret = -EIO;
685 else if (status & HSFSTS_CTL_AEL)
686 ret = -EACCES;
687
688 if (ret < 0) {
689 dev_err(ispi->dev, "read error: %llx: %#x\n", from,
690 status);
691 return ret;
692 }
693
694 ret = intel_spi_read_block(ispi, read_buf, block_size);
695 if (ret)
696 return ret;
697
698 len -= block_size;
699 from += block_size;
700 retlen += block_size;
701 read_buf += block_size;
702 }
703
704 return retlen;
705 }
706
intel_spi_write(struct spi_nor *nor, loff_t to, size_t len, const u_char *write_buf)707 static ssize_t intel_spi_write(struct spi_nor *nor, loff_t to, size_t len,
708 const u_char *write_buf)
709 {
710 struct intel_spi *ispi = nor->priv;
711 size_t block_size, retlen = 0;
712 u32 val, status;
713 ssize_t ret;
714
715 /* Not needed with HW sequencer write, make sure it is cleared */
716 ispi->atomic_preopcode = 0;
717
718 while (len > 0) {
719 block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ);
720
721 /* Write cannot cross 4K boundary */
722 block_size = min_t(loff_t, to + block_size,
723 round_up(to + 1, SZ_4K)) - to;
724
725 writel(to, ispi->base + FADDR);
726
727 val = readl(ispi->base + HSFSTS_CTL);
728 val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
729 val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
730 val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
731 val |= HSFSTS_CTL_FCYCLE_WRITE;
732
733 ret = intel_spi_write_block(ispi, write_buf, block_size);
734 if (ret) {
735 dev_err(ispi->dev, "failed to write block\n");
736 return ret;
737 }
738
739 /* Start the write now */
740 val |= HSFSTS_CTL_FGO;
741 writel(val, ispi->base + HSFSTS_CTL);
742
743 ret = intel_spi_wait_hw_busy(ispi);
744 if (ret) {
745 dev_err(ispi->dev, "timeout\n");
746 return ret;
747 }
748
749 status = readl(ispi->base + HSFSTS_CTL);
750 if (status & HSFSTS_CTL_FCERR)
751 ret = -EIO;
752 else if (status & HSFSTS_CTL_AEL)
753 ret = -EACCES;
754
755 if (ret < 0) {
756 dev_err(ispi->dev, "write error: %llx: %#x\n", to,
757 status);
758 return ret;
759 }
760
761 len -= block_size;
762 to += block_size;
763 retlen += block_size;
764 write_buf += block_size;
765 }
766
767 return retlen;
768 }
769
intel_spi_erase(struct spi_nor *nor, loff_t offs)770 static int intel_spi_erase(struct spi_nor *nor, loff_t offs)
771 {
772 size_t erase_size, len = nor->mtd.erasesize;
773 struct intel_spi *ispi = nor->priv;
774 u32 val, status, cmd;
775 int ret;
776
777 /* If the hardware can do 64k erase use that when possible */
778 if (len >= SZ_64K && ispi->erase_64k) {
779 cmd = HSFSTS_CTL_FCYCLE_ERASE_64K;
780 erase_size = SZ_64K;
781 } else {
782 cmd = HSFSTS_CTL_FCYCLE_ERASE;
783 erase_size = SZ_4K;
784 }
785
786 if (ispi->swseq_erase) {
787 while (len > 0) {
788 writel(offs, ispi->base + FADDR);
789
790 ret = intel_spi_sw_cycle(ispi, nor->erase_opcode,
791 0, OPTYPE_WRITE_WITH_ADDR);
792 if (ret)
793 return ret;
794
795 offs += erase_size;
796 len -= erase_size;
797 }
798
799 return 0;
800 }
801
802 /* Not needed with HW sequencer erase, make sure it is cleared */
803 ispi->atomic_preopcode = 0;
804
805 while (len > 0) {
806 writel(offs, ispi->base + FADDR);
807
808 val = readl(ispi->base + HSFSTS_CTL);
809 val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
810 val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
811 val |= cmd;
812 val |= HSFSTS_CTL_FGO;
813 writel(val, ispi->base + HSFSTS_CTL);
814
815 ret = intel_spi_wait_hw_busy(ispi);
816 if (ret)
817 return ret;
818
819 status = readl(ispi->base + HSFSTS_CTL);
820 if (status & HSFSTS_CTL_FCERR)
821 return -EIO;
822 else if (status & HSFSTS_CTL_AEL)
823 return -EACCES;
824
825 offs += erase_size;
826 len -= erase_size;
827 }
828
829 return 0;
830 }
831
intel_spi_is_protected(const struct intel_spi *ispi, unsigned int base, unsigned int limit)832 static bool intel_spi_is_protected(const struct intel_spi *ispi,
833 unsigned int base, unsigned int limit)
834 {
835 int i;
836
837 for (i = 0; i < ispi->pr_num; i++) {
838 u32 pr_base, pr_limit, pr_value;
839
840 pr_value = readl(ispi->pregs + PR(i));
841 if (!(pr_value & (PR_WPE | PR_RPE)))
842 continue;
843
844 pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
845 pr_base = pr_value & PR_BASE_MASK;
846
847 if (pr_base >= base && pr_limit <= limit)
848 return true;
849 }
850
851 return false;
852 }
853
854 /*
855 * There will be a single partition holding all enabled flash regions. We
856 * call this "BIOS".
857 */
intel_spi_fill_partition(struct intel_spi *ispi, struct mtd_partition *part)858 static void intel_spi_fill_partition(struct intel_spi *ispi,
859 struct mtd_partition *part)
860 {
861 u64 end;
862 int i;
863
864 memset(part, 0, sizeof(*part));
865
866 /* Start from the mandatory descriptor region */
867 part->size = 4096;
868 part->name = "BIOS";
869
870 /*
871 * Now try to find where this partition ends based on the flash
872 * region registers.
873 */
874 for (i = 1; i < ispi->nregions; i++) {
875 u32 region, base, limit;
876
877 region = readl(ispi->base + FREG(i));
878 base = region & FREG_BASE_MASK;
879 limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
880
881 if (base >= limit || limit == 0)
882 continue;
883
884 /*
885 * If any of the regions have protection bits set, make the
886 * whole partition read-only to be on the safe side.
887 *
888 * Also if the user did not ask the chip to be writeable
889 * mask the bit too.
890 */
891 if (!writeable || intel_spi_is_protected(ispi, base, limit))
892 part->mask_flags |= MTD_WRITEABLE;
893
894 end = (limit << 12) + 4096;
895 if (end > part->size)
896 part->size = end;
897 }
898 }
899
900 static const struct spi_nor_controller_ops intel_spi_controller_ops = {
901 .read_reg = intel_spi_read_reg,
902 .write_reg = intel_spi_write_reg,
903 .read = intel_spi_read,
904 .write = intel_spi_write,
905 .erase = intel_spi_erase,
906 };
907
intel_spi_probe(struct device *dev, struct resource *mem, const struct intel_spi_boardinfo *info)908 struct intel_spi *intel_spi_probe(struct device *dev,
909 struct resource *mem, const struct intel_spi_boardinfo *info)
910 {
911 const struct spi_nor_hwcaps hwcaps = {
912 .mask = SNOR_HWCAPS_READ |
913 SNOR_HWCAPS_READ_FAST |
914 SNOR_HWCAPS_PP,
915 };
916 struct mtd_partition part;
917 struct intel_spi *ispi;
918 int ret;
919
920 if (!info || !mem)
921 return ERR_PTR(-EINVAL);
922
923 ispi = devm_kzalloc(dev, sizeof(*ispi), GFP_KERNEL);
924 if (!ispi)
925 return ERR_PTR(-ENOMEM);
926
927 ispi->base = devm_ioremap_resource(dev, mem);
928 if (IS_ERR(ispi->base))
929 return ERR_CAST(ispi->base);
930
931 ispi->dev = dev;
932 ispi->info = info;
933
934 ret = intel_spi_init(ispi);
935 if (ret)
936 return ERR_PTR(ret);
937
938 ispi->nor.dev = ispi->dev;
939 ispi->nor.priv = ispi;
940 ispi->nor.controller_ops = &intel_spi_controller_ops;
941
942 ret = spi_nor_scan(&ispi->nor, NULL, &hwcaps);
943 if (ret) {
944 dev_info(dev, "failed to locate the chip\n");
945 return ERR_PTR(ret);
946 }
947
948 intel_spi_fill_partition(ispi, &part);
949
950 ret = mtd_device_register(&ispi->nor.mtd, &part, 1);
951 if (ret)
952 return ERR_PTR(ret);
953
954 return ispi;
955 }
956 EXPORT_SYMBOL_GPL(intel_spi_probe);
957
intel_spi_remove(struct intel_spi *ispi)958 int intel_spi_remove(struct intel_spi *ispi)
959 {
960 return mtd_device_unregister(&ispi->nor.mtd);
961 }
962 EXPORT_SYMBOL_GPL(intel_spi_remove);
963
964 MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver");
965 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
966 MODULE_LICENSE("GPL v2");
967