1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Marvell NAND flash controller driver 4 * 5 * Copyright (C) 2017 Marvell 6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com> 7 * 8 * 9 * This NAND controller driver handles two versions of the hardware, 10 * one is called NFCv1 and is available on PXA SoCs and the other is 11 * called NFCv2 and is available on Armada SoCs. 12 * 13 * The main visible difference is that NFCv1 only has Hamming ECC 14 * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA 15 * is not used with NFCv2. 16 * 17 * The ECC layouts are depicted in details in Marvell AN-379, but here 18 * is a brief description. 19 * 20 * When using Hamming, the data is split in 512B chunks (either 1, 2 21 * or 4) and each chunk will have its own ECC "digest" of 6B at the 22 * beginning of the OOB area and eventually the remaining free OOB 23 * bytes (also called "spare" bytes in the driver). This engine 24 * corrects up to 1 bit per chunk and detects reliably an error if 25 * there are at most 2 bitflips. Here is the page layout used by the 26 * controller when Hamming is chosen: 27 * 28 * +-------------------------------------------------------------+ 29 * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes | 30 * +-------------------------------------------------------------+ 31 * 32 * When using the BCH engine, there are N identical (data + free OOB + 33 * ECC) sections and potentially an extra one to deal with 34 * configurations where the chosen (data + free OOB + ECC) sizes do 35 * not align with the page (data + OOB) size. ECC bytes are always 36 * 30B per ECC chunk. Here is the page layout used by the controller 37 * when BCH is chosen: 38 * 39 * +----------------------------------------- 40 * | Data 1 | Free OOB bytes 1 | ECC 1 | ... 41 * +----------------------------------------- 42 * 43 * ------------------------------------------- 44 * ... | Data N | Free OOB bytes N | ECC N | 45 * ------------------------------------------- 46 * 47 * --------------------------------------------+ 48 * Last Data | Last Free OOB bytes | Last ECC | 49 * --------------------------------------------+ 50 * 51 * In both cases, the layout seen by the user is always: all data 52 * first, then all free OOB bytes and finally all ECC bytes. With BCH, 53 * ECC bytes are 30B long and are padded with 0xFF to align on 32 54 * bytes. 55 * 56 * The controller has certain limitations that are handled by the 57 * driver: 58 * - It can only read 2k at a time. To overcome this limitation, the 59 * driver issues data cycles on the bus, without issuing new 60 * CMD + ADDR cycles. The Marvell term is "naked" operations. 61 * - The ECC strength in BCH mode cannot be tuned. It is fixed 16 62 * bits. What can be tuned is the ECC block size as long as it 63 * stays between 512B and 2kiB. It's usually chosen based on the 64 * chip ECC requirements. For instance, using 2kiB ECC chunks 65 * provides 4b/512B correctability. 66 * - The controller will always treat data bytes, free OOB bytes 67 * and ECC bytes in that order, no matter what the real layout is 68 * (which is usually all data then all OOB bytes). The 69 * marvell_nfc_layouts array below contains the currently 70 * supported layouts. 71 * - Because of these weird layouts, the Bad Block Markers can be 72 * located in data section. In this case, the NAND_BBT_NO_OOB_BBM 73 * option must be set to prevent scanning/writing bad block 74 * markers. 75 */ 76 77#include <linux/module.h> 78#include <linux/clk.h> 79#include <linux/mtd/rawnand.h> 80#include <linux/of_platform.h> 81#include <linux/iopoll.h> 82#include <linux/interrupt.h> 83#include <linux/slab.h> 84#include <linux/mfd/syscon.h> 85#include <linux/regmap.h> 86#include <asm/unaligned.h> 87 88#include <linux/dmaengine.h> 89#include <linux/dma-mapping.h> 90#include <linux/dma/pxa-dma.h> 91#include <linux/platform_data/mtd-nand-pxa3xx.h> 92 93/* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */ 94#define FIFO_DEPTH 8 95#define FIFO_REP(x) (x / sizeof(u32)) 96#define BCH_SEQ_READS (32 / FIFO_DEPTH) 97/* NFC does not support transfers of larger chunks at a time */ 98#define MAX_CHUNK_SIZE 2112 99/* NFCv1 cannot read more that 7 bytes of ID */ 100#define NFCV1_READID_LEN 7 101/* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */ 102#define POLL_PERIOD 0 103#define POLL_TIMEOUT 100000 104/* Interrupt maximum wait period in ms */ 105#define IRQ_TIMEOUT 1000 106/* Latency in clock cycles between SoC pins and NFC logic */ 107#define MIN_RD_DEL_CNT 3 108/* Maximum number of contiguous address cycles */ 109#define MAX_ADDRESS_CYC_NFCV1 5 110#define MAX_ADDRESS_CYC_NFCV2 7 111/* System control registers/bits to enable the NAND controller on some SoCs */ 112#define GENCONF_SOC_DEVICE_MUX 0x208 113#define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0) 114#define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20) 115#define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21) 116#define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25) 117#define GENCONF_CLK_GATING_CTRL 0x220 118#define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2) 119#define GENCONF_ND_CLK_CTRL 0x700 120#define GENCONF_ND_CLK_CTRL_EN BIT(0) 121 122/* NAND controller data flash control register */ 123#define NDCR 0x00 124#define NDCR_ALL_INT GENMASK(11, 0) 125#define NDCR_CS1_CMDDM BIT(7) 126#define NDCR_CS0_CMDDM BIT(8) 127#define NDCR_RDYM BIT(11) 128#define NDCR_ND_ARB_EN BIT(12) 129#define NDCR_RA_START BIT(15) 130#define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16) 131#define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0) 132#define NDCR_DWIDTH_M BIT(26) 133#define NDCR_DWIDTH_C BIT(27) 134#define NDCR_ND_RUN BIT(28) 135#define NDCR_DMA_EN BIT(29) 136#define NDCR_ECC_EN BIT(30) 137#define NDCR_SPARE_EN BIT(31) 138#define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \ 139 NDCR_DWIDTH_M | NDCR_DWIDTH_C)) 140 141/* NAND interface timing parameter 0 register */ 142#define NDTR0 0x04 143#define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0) 144#define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3) 145#define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3) 146#define NDTR0_SEL_NRE_EDGE BIT(7) 147#define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8) 148#define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11) 149#define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16) 150#define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19) 151#define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22) 152#define NDTR0_SELCNTR BIT(26) 153#define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27) 154 155/* NAND interface timing parameter 1 register */ 156#define NDTR1 0x0C 157#define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0) 158#define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4) 159#define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8) 160#define NDTR1_PRESCALE BIT(14) 161#define NDTR1_WAIT_MODE BIT(15) 162#define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16) 163 164/* NAND controller status register */ 165#define NDSR 0x14 166#define NDSR_WRCMDREQ BIT(0) 167#define NDSR_RDDREQ BIT(1) 168#define NDSR_WRDREQ BIT(2) 169#define NDSR_CORERR BIT(3) 170#define NDSR_UNCERR BIT(4) 171#define NDSR_CMDD(cs) BIT(8 - cs) 172#define NDSR_RDY(rb) BIT(11 + rb) 173#define NDSR_ERRCNT(x) ((x >> 16) & 0x1F) 174 175/* NAND ECC control register */ 176#define NDECCCTRL 0x28 177#define NDECCCTRL_BCH_EN BIT(0) 178 179/* NAND controller data buffer register */ 180#define NDDB 0x40 181 182/* NAND controller command buffer 0 register */ 183#define NDCB0 0x48 184#define NDCB0_CMD1(x) ((x & 0xFF) << 0) 185#define NDCB0_CMD2(x) ((x & 0xFF) << 8) 186#define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16) 187#define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7) 188#define NDCB0_DBC BIT(19) 189#define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21) 190#define NDCB0_CSEL BIT(24) 191#define NDCB0_RDY_BYP BIT(27) 192#define NDCB0_LEN_OVRD BIT(28) 193#define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29) 194 195/* NAND controller command buffer 1 register */ 196#define NDCB1 0x4C 197#define NDCB1_COLS(x) ((x & 0xFFFF) << 0) 198#define NDCB1_ADDRS_PAGE(x) (x << 16) 199 200/* NAND controller command buffer 2 register */ 201#define NDCB2 0x50 202#define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0) 203#define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0) 204 205/* NAND controller command buffer 3 register */ 206#define NDCB3 0x54 207#define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16) 208#define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24) 209 210/* NAND controller command buffer 0 register 'type' and 'xtype' fields */ 211#define TYPE_READ 0 212#define TYPE_WRITE 1 213#define TYPE_ERASE 2 214#define TYPE_READ_ID 3 215#define TYPE_STATUS 4 216#define TYPE_RESET 5 217#define TYPE_NAKED_CMD 6 218#define TYPE_NAKED_ADDR 7 219#define TYPE_MASK 7 220#define XTYPE_MONOLITHIC_RW 0 221#define XTYPE_LAST_NAKED_RW 1 222#define XTYPE_FINAL_COMMAND 3 223#define XTYPE_READ 4 224#define XTYPE_WRITE_DISPATCH 4 225#define XTYPE_NAKED_RW 5 226#define XTYPE_COMMAND_DISPATCH 6 227#define XTYPE_MASK 7 228 229/** 230 * struct marvell_hw_ecc_layout - layout of Marvell ECC 231 * 232 * Marvell ECC engine works differently than the others, in order to limit the 233 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits 234 * per subpage, and depending on a the desired strength needed by the NAND chip, 235 * a particular layout mixing data/spare/ecc is defined, with a possible last 236 * chunk smaller that the others. 237 * 238 * @writesize: Full page size on which the layout applies 239 * @chunk: Desired ECC chunk size on which the layout applies 240 * @strength: Desired ECC strength (per chunk size bytes) on which the 241 * layout applies 242 * @nchunks: Total number of chunks 243 * @full_chunk_cnt: Number of full-sized chunks, which is the number of 244 * repetitions of the pattern: 245 * (data_bytes + spare_bytes + ecc_bytes). 246 * @data_bytes: Number of data bytes per chunk 247 * @spare_bytes: Number of spare bytes per chunk 248 * @ecc_bytes: Number of ecc bytes per chunk 249 * @last_data_bytes: Number of data bytes in the last chunk 250 * @last_spare_bytes: Number of spare bytes in the last chunk 251 * @last_ecc_bytes: Number of ecc bytes in the last chunk 252 */ 253struct marvell_hw_ecc_layout { 254 /* Constraints */ 255 int writesize; 256 int chunk; 257 int strength; 258 /* Corresponding layout */ 259 int nchunks; 260 int full_chunk_cnt; 261 int data_bytes; 262 int spare_bytes; 263 int ecc_bytes; 264 int last_data_bytes; 265 int last_spare_bytes; 266 int last_ecc_bytes; 267}; 268 269#define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \ 270 { \ 271 .writesize = ws, \ 272 .chunk = dc, \ 273 .strength = ds, \ 274 .nchunks = nc, \ 275 .full_chunk_cnt = fcc, \ 276 .data_bytes = db, \ 277 .spare_bytes = sb, \ 278 .ecc_bytes = eb, \ 279 .last_data_bytes = ldb, \ 280 .last_spare_bytes = lsb, \ 281 .last_ecc_bytes = leb, \ 282 } 283 284/* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */ 285static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = { 286 MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0), 287 MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0), 288 MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0), 289 MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,32, 30), 290 MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0), 291 MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30), 292 MARVELL_LAYOUT( 8192, 512, 4, 4, 4, 2048, 0, 30, 0, 0, 0), 293 MARVELL_LAYOUT( 8192, 512, 8, 9, 8, 1024, 0, 30, 0, 160, 30), 294}; 295 296/** 297 * struct marvell_nand_chip_sel - CS line description 298 * 299 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection 300 * is made by a field in NDCB0 register, and in another field in NDCB2 register. 301 * The datasheet describes the logic with an error: ADDR5 field is once 302 * declared at the beginning of NDCB2, and another time at its end. Because the 303 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical 304 * to use the last bit of this field instead of the first ones. 305 * 306 * @cs: Wanted CE lane. 307 * @ndcb0_csel: Value of the NDCB0 register with or without the flag 308 * selecting the wanted CE lane. This is set once when 309 * the Device Tree is probed. 310 * @rb: Ready/Busy pin for the flash chip 311 */ 312struct marvell_nand_chip_sel { 313 unsigned int cs; 314 u32 ndcb0_csel; 315 unsigned int rb; 316}; 317 318/** 319 * struct marvell_nand_chip - stores NAND chip device related information 320 * 321 * @chip: Base NAND chip structure 322 * @node: Used to store NAND chips into a list 323 * @layout: NAND layout when using hardware ECC 324 * @ndcr: Controller register value for this NAND chip 325 * @ndtr0: Timing registers 0 value for this NAND chip 326 * @ndtr1: Timing registers 1 value for this NAND chip 327 * @addr_cyc: Amount of cycles needed to pass column address 328 * @selected_die: Current active CS 329 * @nsels: Number of CS lines required by the NAND chip 330 * @sels: Array of CS lines descriptions 331 */ 332struct marvell_nand_chip { 333 struct nand_chip chip; 334 struct list_head node; 335 const struct marvell_hw_ecc_layout *layout; 336 u32 ndcr; 337 u32 ndtr0; 338 u32 ndtr1; 339 int addr_cyc; 340 int selected_die; 341 unsigned int nsels; 342 struct marvell_nand_chip_sel sels[]; 343}; 344 345static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip) 346{ 347 return container_of(chip, struct marvell_nand_chip, chip); 348} 349 350static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip 351 *nand) 352{ 353 return &nand->sels[nand->selected_die]; 354} 355 356/** 357 * struct marvell_nfc_caps - NAND controller capabilities for distinction 358 * between compatible strings 359 * 360 * @max_cs_nb: Number of Chip Select lines available 361 * @max_rb_nb: Number of Ready/Busy lines available 362 * @need_system_controller: Indicates if the SoC needs to have access to the 363 * system controller (ie. to enable the NAND controller) 364 * @legacy_of_bindings: Indicates if DT parsing must be done using the old 365 * fashion way 366 * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie. 367 * BCH error detection and correction algorithm, 368 * NDCB3 register has been added 369 * @use_dma: Use dma for data transfers 370 */ 371struct marvell_nfc_caps { 372 unsigned int max_cs_nb; 373 unsigned int max_rb_nb; 374 bool need_system_controller; 375 bool legacy_of_bindings; 376 bool is_nfcv2; 377 bool use_dma; 378}; 379 380/** 381 * struct marvell_nfc - stores Marvell NAND controller information 382 * 383 * @controller: Base controller structure 384 * @dev: Parent device (used to print error messages) 385 * @regs: NAND controller registers 386 * @core_clk: Core clock 387 * @reg_clk: Registers clock 388 * @complete: Completion object to wait for NAND controller events 389 * @assigned_cs: Bitmask describing already assigned CS lines 390 * @chips: List containing all the NAND chips attached to 391 * this NAND controller 392 * @selected_chip: Currently selected target chip 393 * @caps: NAND controller capabilities for each compatible string 394 * @use_dma: Whetner DMA is used 395 * @dma_chan: DMA channel (NFCv1 only) 396 * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only) 397 */ 398struct marvell_nfc { 399 struct nand_controller controller; 400 struct device *dev; 401 void __iomem *regs; 402 struct clk *core_clk; 403 struct clk *reg_clk; 404 struct completion complete; 405 unsigned long assigned_cs; 406 struct list_head chips; 407 struct nand_chip *selected_chip; 408 const struct marvell_nfc_caps *caps; 409 410 /* DMA (NFCv1 only) */ 411 bool use_dma; 412 struct dma_chan *dma_chan; 413 u8 *dma_buf; 414}; 415 416static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl) 417{ 418 return container_of(ctrl, struct marvell_nfc, controller); 419} 420 421/** 422 * struct marvell_nfc_timings - NAND controller timings expressed in NAND 423 * Controller clock cycles 424 * 425 * @tRP: ND_nRE pulse width 426 * @tRH: ND_nRE high duration 427 * @tWP: ND_nWE pulse time 428 * @tWH: ND_nWE high duration 429 * @tCS: Enable signal setup time 430 * @tCH: Enable signal hold time 431 * @tADL: Address to write data delay 432 * @tAR: ND_ALE low to ND_nRE low delay 433 * @tWHR: ND_nWE high to ND_nRE low for status read 434 * @tRHW: ND_nRE high duration, read to write delay 435 * @tR: ND_nWE high to ND_nRE low for read 436 */ 437struct marvell_nfc_timings { 438 /* NDTR0 fields */ 439 unsigned int tRP; 440 unsigned int tRH; 441 unsigned int tWP; 442 unsigned int tWH; 443 unsigned int tCS; 444 unsigned int tCH; 445 unsigned int tADL; 446 /* NDTR1 fields */ 447 unsigned int tAR; 448 unsigned int tWHR; 449 unsigned int tRHW; 450 unsigned int tR; 451}; 452 453/** 454 * Derives a duration in numbers of clock cycles. 455 * 456 * @ps: Duration in pico-seconds 457 * @period_ns: Clock period in nano-seconds 458 * 459 * Convert the duration in nano-seconds, then divide by the period and 460 * return the number of clock periods. 461 */ 462#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns)) 463#define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ 464 period_ns)) 465 466/** 467 * struct marvell_nfc_op - filled during the parsing of the ->exec_op() 468 * subop subset of instructions. 469 * 470 * @ndcb: Array of values written to NDCBx registers 471 * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle 472 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin 473 * @rdy_delay_ns: Optional delay after waiting for the RB pin 474 * @data_delay_ns: Optional delay after the data xfer 475 * @data_instr_idx: Index of the data instruction in the subop 476 * @data_instr: Pointer to the data instruction in the subop 477 */ 478struct marvell_nfc_op { 479 u32 ndcb[4]; 480 unsigned int cle_ale_delay_ns; 481 unsigned int rdy_timeout_ms; 482 unsigned int rdy_delay_ns; 483 unsigned int data_delay_ns; 484 unsigned int data_instr_idx; 485 const struct nand_op_instr *data_instr; 486}; 487 488/* 489 * Internal helper to conditionnally apply a delay (from the above structure, 490 * most of the time). 491 */ 492static void cond_delay(unsigned int ns) 493{ 494 if (!ns) 495 return; 496 497 if (ns < 10000) 498 ndelay(ns); 499 else 500 udelay(DIV_ROUND_UP(ns, 1000)); 501} 502 503/* 504 * The controller has many flags that could generate interrupts, most of them 505 * are disabled and polling is used. For the very slow signals, using interrupts 506 * may relax the CPU charge. 507 */ 508static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask) 509{ 510 u32 reg; 511 512 /* Writing 1 disables the interrupt */ 513 reg = readl_relaxed(nfc->regs + NDCR); 514 writel_relaxed(reg | int_mask, nfc->regs + NDCR); 515} 516 517static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask) 518{ 519 u32 reg; 520 521 /* Writing 0 enables the interrupt */ 522 reg = readl_relaxed(nfc->regs + NDCR); 523 writel_relaxed(reg & ~int_mask, nfc->regs + NDCR); 524} 525 526static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask) 527{ 528 u32 reg; 529 530 reg = readl_relaxed(nfc->regs + NDSR); 531 writel_relaxed(int_mask, nfc->regs + NDSR); 532 533 return reg & int_mask; 534} 535 536static void marvell_nfc_force_byte_access(struct nand_chip *chip, 537 bool force_8bit) 538{ 539 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 540 u32 ndcr; 541 542 /* 543 * Callers of this function do not verify if the NAND is using a 16-bit 544 * an 8-bit bus for normal operations, so we need to take care of that 545 * here by leaving the configuration unchanged if the NAND does not have 546 * the NAND_BUSWIDTH_16 flag set. 547 */ 548 if (!(chip->options & NAND_BUSWIDTH_16)) 549 return; 550 551 ndcr = readl_relaxed(nfc->regs + NDCR); 552 553 if (force_8bit) 554 ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C); 555 else 556 ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; 557 558 writel_relaxed(ndcr, nfc->regs + NDCR); 559} 560 561static int marvell_nfc_wait_ndrun(struct nand_chip *chip) 562{ 563 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 564 u32 val; 565 int ret; 566 567 /* 568 * The command is being processed, wait for the ND_RUN bit to be 569 * cleared by the NFC. If not, we must clear it by hand. 570 */ 571 ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val, 572 (val & NDCR_ND_RUN) == 0, 573 POLL_PERIOD, POLL_TIMEOUT); 574 if (ret) { 575 dev_err(nfc->dev, "Timeout on NAND controller run mode\n"); 576 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 577 nfc->regs + NDCR); 578 return ret; 579 } 580 581 return 0; 582} 583 584/* 585 * Any time a command has to be sent to the controller, the following sequence 586 * has to be followed: 587 * - call marvell_nfc_prepare_cmd() 588 * -> activate the ND_RUN bit that will kind of 'start a job' 589 * -> wait the signal indicating the NFC is waiting for a command 590 * - send the command (cmd and address cycles) 591 * - enventually send or receive the data 592 * - call marvell_nfc_end_cmd() with the corresponding flag 593 * -> wait the flag to be triggered or cancel the job with a timeout 594 * 595 * The following helpers are here to factorize the code a bit so that 596 * specialized functions responsible for executing the actual NAND 597 * operations do not have to replicate the same code blocks. 598 */ 599static int marvell_nfc_prepare_cmd(struct nand_chip *chip) 600{ 601 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 602 u32 ndcr, val; 603 int ret; 604 605 /* Poll ND_RUN and clear NDSR before issuing any command */ 606 ret = marvell_nfc_wait_ndrun(chip); 607 if (ret) { 608 dev_err(nfc->dev, "Last operation did not succeed\n"); 609 return ret; 610 } 611 612 ndcr = readl_relaxed(nfc->regs + NDCR); 613 writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR); 614 615 /* Assert ND_RUN bit and wait the NFC to be ready */ 616 writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR); 617 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, 618 val & NDSR_WRCMDREQ, 619 POLL_PERIOD, POLL_TIMEOUT); 620 if (ret) { 621 dev_err(nfc->dev, "Timeout on WRCMDRE\n"); 622 return -ETIMEDOUT; 623 } 624 625 /* Command may be written, clear WRCMDREQ status bit */ 626 writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR); 627 628 return 0; 629} 630 631static void marvell_nfc_send_cmd(struct nand_chip *chip, 632 struct marvell_nfc_op *nfc_op) 633{ 634 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 635 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 636 637 dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n" 638 "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n", 639 (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0], 640 nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]); 641 642 writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0], 643 nfc->regs + NDCB0); 644 writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0); 645 writel(nfc_op->ndcb[2], nfc->regs + NDCB0); 646 647 /* 648 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7 649 * fields are used (only available on NFCv2). 650 */ 651 if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD || 652 NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) { 653 if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2)) 654 writel(nfc_op->ndcb[3], nfc->regs + NDCB0); 655 } 656} 657 658static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag, 659 const char *label) 660{ 661 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 662 u32 val; 663 int ret; 664 665 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, 666 val & flag, 667 POLL_PERIOD, POLL_TIMEOUT); 668 669 if (ret) { 670 dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n", 671 label, val); 672 if (nfc->dma_chan) 673 dmaengine_terminate_all(nfc->dma_chan); 674 return ret; 675 } 676 677 /* 678 * DMA function uses this helper to poll on CMDD bits without wanting 679 * them to be cleared. 680 */ 681 if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN)) 682 return 0; 683 684 writel_relaxed(flag, nfc->regs + NDSR); 685 686 return 0; 687} 688 689static int marvell_nfc_wait_cmdd(struct nand_chip *chip) 690{ 691 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 692 int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel); 693 694 return marvell_nfc_end_cmd(chip, cs_flag, "CMDD"); 695} 696 697static int marvell_nfc_poll_status(struct marvell_nfc *nfc, u32 mask, 698 u32 expected_val, unsigned long timeout_ms) 699{ 700 unsigned long limit; 701 u32 st; 702 703 limit = jiffies + msecs_to_jiffies(timeout_ms); 704 do { 705 st = readl_relaxed(nfc->regs + NDSR); 706 if (st & NDSR_RDY(1)) 707 st |= NDSR_RDY(0); 708 709 if ((st & mask) == expected_val) 710 return 0; 711 712 cpu_relax(); 713 } while (time_after(limit, jiffies)); 714 715 return -ETIMEDOUT; 716} 717 718static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms) 719{ 720 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 721 struct mtd_info *mtd = nand_to_mtd(chip); 722 u32 pending; 723 int ret; 724 725 /* Timeout is expressed in ms */ 726 if (!timeout_ms) 727 timeout_ms = IRQ_TIMEOUT; 728 729 if (mtd->oops_panic_write) { 730 ret = marvell_nfc_poll_status(nfc, NDSR_RDY(0), 731 NDSR_RDY(0), 732 timeout_ms); 733 } else { 734 init_completion(&nfc->complete); 735 736 marvell_nfc_enable_int(nfc, NDCR_RDYM); 737 ret = wait_for_completion_timeout(&nfc->complete, 738 msecs_to_jiffies(timeout_ms)); 739 marvell_nfc_disable_int(nfc, NDCR_RDYM); 740 } 741 pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1)); 742 743 /* 744 * In case the interrupt was not served in the required time frame, 745 * check if the ISR was not served or if something went actually wrong. 746 */ 747 if (!ret && !pending) { 748 dev_err(nfc->dev, "Timeout waiting for RB signal\n"); 749 return -ETIMEDOUT; 750 } 751 752 return 0; 753} 754 755static void marvell_nfc_select_target(struct nand_chip *chip, 756 unsigned int die_nr) 757{ 758 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 759 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 760 u32 ndcr_generic; 761 762 /* 763 * Reset the NDCR register to a clean state for this particular chip, 764 * also clear ND_RUN bit. 765 */ 766 ndcr_generic = readl_relaxed(nfc->regs + NDCR) & 767 NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN; 768 writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR); 769 770 /* Also reset the interrupt status register */ 771 marvell_nfc_clear_int(nfc, NDCR_ALL_INT); 772 773 if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die) 774 return; 775 776 writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0); 777 writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1); 778 779 nfc->selected_chip = chip; 780 marvell_nand->selected_die = die_nr; 781} 782 783static irqreturn_t marvell_nfc_isr(int irq, void *dev_id) 784{ 785 struct marvell_nfc *nfc = dev_id; 786 u32 st = readl_relaxed(nfc->regs + NDSR); 787 u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT; 788 789 /* 790 * RDY interrupt mask is one bit in NDCR while there are two status 791 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]). 792 */ 793 if (st & NDSR_RDY(1)) 794 st |= NDSR_RDY(0); 795 796 if (!(st & ien)) 797 return IRQ_NONE; 798 799 marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT); 800 801 if (st & (NDSR_RDY(0) | NDSR_RDY(1))) 802 complete(&nfc->complete); 803 804 return IRQ_HANDLED; 805} 806 807/* HW ECC related functions */ 808static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip) 809{ 810 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 811 u32 ndcr = readl_relaxed(nfc->regs + NDCR); 812 813 if (!(ndcr & NDCR_ECC_EN)) { 814 writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR); 815 816 /* 817 * When enabling BCH, set threshold to 0 to always know the 818 * number of corrected bitflips. 819 */ 820 if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 821 writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL); 822 } 823} 824 825static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip) 826{ 827 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 828 u32 ndcr = readl_relaxed(nfc->regs + NDCR); 829 830 if (ndcr & NDCR_ECC_EN) { 831 writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR); 832 if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 833 writel_relaxed(0, nfc->regs + NDECCCTRL); 834 } 835} 836 837/* DMA related helpers */ 838static void marvell_nfc_enable_dma(struct marvell_nfc *nfc) 839{ 840 u32 reg; 841 842 reg = readl_relaxed(nfc->regs + NDCR); 843 writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR); 844} 845 846static void marvell_nfc_disable_dma(struct marvell_nfc *nfc) 847{ 848 u32 reg; 849 850 reg = readl_relaxed(nfc->regs + NDCR); 851 writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR); 852} 853 854/* Read/write PIO/DMA accessors */ 855static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc, 856 enum dma_data_direction direction, 857 unsigned int len) 858{ 859 unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE); 860 struct dma_async_tx_descriptor *tx; 861 struct scatterlist sg; 862 dma_cookie_t cookie; 863 int ret; 864 865 marvell_nfc_enable_dma(nfc); 866 /* Prepare the DMA transfer */ 867 sg_init_one(&sg, nfc->dma_buf, dma_len); 868 dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 869 tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1, 870 direction == DMA_FROM_DEVICE ? 871 DMA_DEV_TO_MEM : DMA_MEM_TO_DEV, 872 DMA_PREP_INTERRUPT); 873 if (!tx) { 874 dev_err(nfc->dev, "Could not prepare DMA S/G list\n"); 875 return -ENXIO; 876 } 877 878 /* Do the task and wait for it to finish */ 879 cookie = dmaengine_submit(tx); 880 ret = dma_submit_error(cookie); 881 if (ret) 882 return -EIO; 883 884 dma_async_issue_pending(nfc->dma_chan); 885 ret = marvell_nfc_wait_cmdd(nfc->selected_chip); 886 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 887 marvell_nfc_disable_dma(nfc); 888 if (ret) { 889 dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n", 890 dmaengine_tx_status(nfc->dma_chan, cookie, NULL)); 891 dmaengine_terminate_all(nfc->dma_chan); 892 return -ETIMEDOUT; 893 } 894 895 return 0; 896} 897 898static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in, 899 unsigned int len) 900{ 901 unsigned int last_len = len % FIFO_DEPTH; 902 unsigned int last_full_offset = round_down(len, FIFO_DEPTH); 903 int i; 904 905 for (i = 0; i < last_full_offset; i += FIFO_DEPTH) 906 ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH)); 907 908 if (last_len) { 909 u8 tmp_buf[FIFO_DEPTH]; 910 911 ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); 912 memcpy(in + last_full_offset, tmp_buf, last_len); 913 } 914 915 return 0; 916} 917 918static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out, 919 unsigned int len) 920{ 921 unsigned int last_len = len % FIFO_DEPTH; 922 unsigned int last_full_offset = round_down(len, FIFO_DEPTH); 923 int i; 924 925 for (i = 0; i < last_full_offset; i += FIFO_DEPTH) 926 iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH)); 927 928 if (last_len) { 929 u8 tmp_buf[FIFO_DEPTH]; 930 931 memcpy(tmp_buf, out + last_full_offset, last_len); 932 iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); 933 } 934 935 return 0; 936} 937 938static void marvell_nfc_check_empty_chunk(struct nand_chip *chip, 939 u8 *data, int data_len, 940 u8 *spare, int spare_len, 941 u8 *ecc, int ecc_len, 942 unsigned int *max_bitflips) 943{ 944 struct mtd_info *mtd = nand_to_mtd(chip); 945 int bf; 946 947 /* 948 * Blank pages (all 0xFF) that have not been written may be recognized 949 * as bad if bitflips occur, so whenever an uncorrectable error occurs, 950 * check if the entire page (with ECC bytes) is actually blank or not. 951 */ 952 if (!data) 953 data_len = 0; 954 if (!spare) 955 spare_len = 0; 956 if (!ecc) 957 ecc_len = 0; 958 959 bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len, 960 spare, spare_len, chip->ecc.strength); 961 if (bf < 0) { 962 mtd->ecc_stats.failed++; 963 return; 964 } 965 966 /* Update the stats and max_bitflips */ 967 mtd->ecc_stats.corrected += bf; 968 *max_bitflips = max_t(unsigned int, *max_bitflips, bf); 969} 970 971/* 972 * Check if a chunk is correct or not according to the hardware ECC engine. 973 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however 974 * mtd->ecc_stats.failure is not, the function will instead return a non-zero 975 * value indicating that a check on the emptyness of the subpage must be 976 * performed before actually declaring the subpage as "corrupted". 977 */ 978static int marvell_nfc_hw_ecc_check_bitflips(struct nand_chip *chip, 979 unsigned int *max_bitflips) 980{ 981 struct mtd_info *mtd = nand_to_mtd(chip); 982 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 983 int bf = 0; 984 u32 ndsr; 985 986 ndsr = readl_relaxed(nfc->regs + NDSR); 987 988 /* Check uncorrectable error flag */ 989 if (ndsr & NDSR_UNCERR) { 990 writel_relaxed(ndsr, nfc->regs + NDSR); 991 992 /* 993 * Do not increment ->ecc_stats.failed now, instead, return a 994 * non-zero value to indicate that this chunk was apparently 995 * bad, and it should be check to see if it empty or not. If 996 * the chunk (with ECC bytes) is not declared empty, the calling 997 * function must increment the failure count. 998 */ 999 return -EBADMSG; 1000 } 1001 1002 /* Check correctable error flag */ 1003 if (ndsr & NDSR_CORERR) { 1004 writel_relaxed(ndsr, nfc->regs + NDSR); 1005 1006 if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 1007 bf = NDSR_ERRCNT(ndsr); 1008 else 1009 bf = 1; 1010 } 1011 1012 /* Update the stats and max_bitflips */ 1013 mtd->ecc_stats.corrected += bf; 1014 *max_bitflips = max_t(unsigned int, *max_bitflips, bf); 1015 1016 return 0; 1017} 1018 1019/* Hamming read helpers */ 1020static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip, 1021 u8 *data_buf, u8 *oob_buf, 1022 bool raw, int page) 1023{ 1024 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1025 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1026 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1027 struct marvell_nfc_op nfc_op = { 1028 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | 1029 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1030 NDCB0_DBC | 1031 NDCB0_CMD1(NAND_CMD_READ0) | 1032 NDCB0_CMD2(NAND_CMD_READSTART), 1033 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1034 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1035 }; 1036 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); 1037 int ret; 1038 1039 /* NFCv2 needs more information about the operation being executed */ 1040 if (nfc->caps->is_nfcv2) 1041 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1042 1043 ret = marvell_nfc_prepare_cmd(chip); 1044 if (ret) 1045 return ret; 1046 1047 marvell_nfc_send_cmd(chip, &nfc_op); 1048 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1049 "RDDREQ while draining FIFO (data/oob)"); 1050 if (ret) 1051 return ret; 1052 1053 /* 1054 * Read the page then the OOB area. Unlike what is shown in current 1055 * documentation, spare bytes are protected by the ECC engine, and must 1056 * be at the beginning of the OOB area or running this driver on legacy 1057 * systems will prevent the discovery of the BBM/BBT. 1058 */ 1059 if (nfc->use_dma) { 1060 marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE, 1061 lt->data_bytes + oob_bytes); 1062 memcpy(data_buf, nfc->dma_buf, lt->data_bytes); 1063 memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes); 1064 } else { 1065 marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes); 1066 marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes); 1067 } 1068 1069 ret = marvell_nfc_wait_cmdd(chip); 1070 return ret; 1071} 1072 1073static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf, 1074 int oob_required, int page) 1075{ 1076 marvell_nfc_select_target(chip, chip->cur_cs); 1077 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, 1078 true, page); 1079} 1080 1081static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf, 1082 int oob_required, int page) 1083{ 1084 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1085 unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1086 int max_bitflips = 0, ret; 1087 u8 *raw_buf; 1088 1089 marvell_nfc_select_target(chip, chip->cur_cs); 1090 marvell_nfc_enable_hw_ecc(chip); 1091 marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false, 1092 page); 1093 ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips); 1094 marvell_nfc_disable_hw_ecc(chip); 1095 1096 if (!ret) 1097 return max_bitflips; 1098 1099 /* 1100 * When ECC failures are detected, check if the full page has been 1101 * written or not. Ignore the failure if it is actually empty. 1102 */ 1103 raw_buf = kmalloc(full_sz, GFP_KERNEL); 1104 if (!raw_buf) 1105 return -ENOMEM; 1106 1107 marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf + 1108 lt->data_bytes, true, page); 1109 marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0, 1110 &max_bitflips); 1111 kfree(raw_buf); 1112 1113 return max_bitflips; 1114} 1115 1116/* 1117 * Spare area in Hamming layouts is not protected by the ECC engine (even if 1118 * it appears before the ECC bytes when reading), the ->read_oob_raw() function 1119 * also stands for ->read_oob(). 1120 */ 1121static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page) 1122{ 1123 u8 *buf = nand_get_data_buf(chip); 1124 1125 marvell_nfc_select_target(chip, chip->cur_cs); 1126 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, 1127 true, page); 1128} 1129 1130/* Hamming write helpers */ 1131static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip, 1132 const u8 *data_buf, 1133 const u8 *oob_buf, bool raw, 1134 int page) 1135{ 1136 const struct nand_sdr_timings *sdr = 1137 nand_get_sdr_timings(nand_get_interface_config(chip)); 1138 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1139 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1140 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1141 struct marvell_nfc_op nfc_op = { 1142 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | 1143 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1144 NDCB0_CMD1(NAND_CMD_SEQIN) | 1145 NDCB0_CMD2(NAND_CMD_PAGEPROG) | 1146 NDCB0_DBC, 1147 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1148 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1149 }; 1150 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); 1151 u8 status; 1152 int ret; 1153 1154 /* NFCv2 needs more information about the operation being executed */ 1155 if (nfc->caps->is_nfcv2) 1156 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1157 1158 ret = marvell_nfc_prepare_cmd(chip); 1159 if (ret) 1160 return ret; 1161 1162 marvell_nfc_send_cmd(chip, &nfc_op); 1163 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, 1164 "WRDREQ while loading FIFO (data)"); 1165 if (ret) 1166 return ret; 1167 1168 /* Write the page then the OOB area */ 1169 if (nfc->use_dma) { 1170 memcpy(nfc->dma_buf, data_buf, lt->data_bytes); 1171 memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes); 1172 marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes + 1173 lt->ecc_bytes + lt->spare_bytes); 1174 } else { 1175 marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes); 1176 marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes); 1177 } 1178 1179 ret = marvell_nfc_wait_cmdd(chip); 1180 if (ret) 1181 return ret; 1182 1183 ret = marvell_nfc_wait_op(chip, 1184 PSEC_TO_MSEC(sdr->tPROG_max)); 1185 if (ret) 1186 return ret; 1187 1188 /* Check write status on the chip side */ 1189 ret = nand_status_op(chip, &status); 1190 if (ret) 1191 return ret; 1192 1193 if (status & NAND_STATUS_FAIL) 1194 return -EIO; 1195 1196 return 0; 1197} 1198 1199static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip, 1200 const u8 *buf, 1201 int oob_required, int page) 1202{ 1203 marvell_nfc_select_target(chip, chip->cur_cs); 1204 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1205 true, page); 1206} 1207 1208static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip, 1209 const u8 *buf, 1210 int oob_required, int page) 1211{ 1212 int ret; 1213 1214 marvell_nfc_select_target(chip, chip->cur_cs); 1215 marvell_nfc_enable_hw_ecc(chip); 1216 ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1217 false, page); 1218 marvell_nfc_disable_hw_ecc(chip); 1219 1220 return ret; 1221} 1222 1223/* 1224 * Spare area in Hamming layouts is not protected by the ECC engine (even if 1225 * it appears before the ECC bytes when reading), the ->write_oob_raw() function 1226 * also stands for ->write_oob(). 1227 */ 1228static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip, 1229 int page) 1230{ 1231 struct mtd_info *mtd = nand_to_mtd(chip); 1232 u8 *buf = nand_get_data_buf(chip); 1233 1234 memset(buf, 0xFF, mtd->writesize); 1235 1236 marvell_nfc_select_target(chip, chip->cur_cs); 1237 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1238 true, page); 1239} 1240 1241/* BCH read helpers */ 1242static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf, 1243 int oob_required, int page) 1244{ 1245 struct mtd_info *mtd = nand_to_mtd(chip); 1246 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1247 u8 *oob = chip->oob_poi; 1248 int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1249 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + 1250 lt->last_spare_bytes; 1251 int data_len = lt->data_bytes; 1252 int spare_len = lt->spare_bytes; 1253 int ecc_len = lt->ecc_bytes; 1254 int chunk; 1255 1256 marvell_nfc_select_target(chip, chip->cur_cs); 1257 1258 if (oob_required) 1259 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1260 1261 nand_read_page_op(chip, page, 0, NULL, 0); 1262 1263 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1264 /* Update last chunk length */ 1265 if (chunk >= lt->full_chunk_cnt) { 1266 data_len = lt->last_data_bytes; 1267 spare_len = lt->last_spare_bytes; 1268 ecc_len = lt->last_ecc_bytes; 1269 } 1270 1271 /* Read data bytes*/ 1272 nand_change_read_column_op(chip, chunk * chunk_size, 1273 buf + (lt->data_bytes * chunk), 1274 data_len, false); 1275 1276 /* Read spare bytes */ 1277 nand_read_data_op(chip, oob + (lt->spare_bytes * chunk), 1278 spare_len, false, false); 1279 1280 /* Read ECC bytes */ 1281 nand_read_data_op(chip, oob + ecc_offset + 1282 (ALIGN(lt->ecc_bytes, 32) * chunk), 1283 ecc_len, false, false); 1284 } 1285 1286 return 0; 1287} 1288 1289static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk, 1290 u8 *data, unsigned int data_len, 1291 u8 *spare, unsigned int spare_len, 1292 int page) 1293{ 1294 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1295 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1296 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1297 int i, ret; 1298 struct marvell_nfc_op nfc_op = { 1299 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | 1300 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1301 NDCB0_LEN_OVRD, 1302 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1303 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1304 .ndcb[3] = data_len + spare_len, 1305 }; 1306 1307 ret = marvell_nfc_prepare_cmd(chip); 1308 if (ret) 1309 return; 1310 1311 if (chunk == 0) 1312 nfc_op.ndcb[0] |= NDCB0_DBC | 1313 NDCB0_CMD1(NAND_CMD_READ0) | 1314 NDCB0_CMD2(NAND_CMD_READSTART); 1315 1316 /* 1317 * Trigger the monolithic read on the first chunk, then naked read on 1318 * intermediate chunks and finally a last naked read on the last chunk. 1319 */ 1320 if (chunk == 0) 1321 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1322 else if (chunk < lt->nchunks - 1) 1323 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); 1324 else 1325 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1326 1327 marvell_nfc_send_cmd(chip, &nfc_op); 1328 1329 /* 1330 * According to the datasheet, when reading from NDDB 1331 * with BCH enabled, after each 32 bytes reads, we 1332 * have to make sure that the NDSR.RDDREQ bit is set. 1333 * 1334 * Drain the FIFO, 8 32-bit reads at a time, and skip 1335 * the polling on the last read. 1336 * 1337 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too. 1338 */ 1339 for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) { 1340 marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1341 "RDDREQ while draining FIFO (data)"); 1342 marvell_nfc_xfer_data_in_pio(nfc, data, 1343 FIFO_DEPTH * BCH_SEQ_READS); 1344 data += FIFO_DEPTH * BCH_SEQ_READS; 1345 } 1346 1347 for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) { 1348 marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1349 "RDDREQ while draining FIFO (OOB)"); 1350 marvell_nfc_xfer_data_in_pio(nfc, spare, 1351 FIFO_DEPTH * BCH_SEQ_READS); 1352 spare += FIFO_DEPTH * BCH_SEQ_READS; 1353 } 1354} 1355 1356static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip, 1357 u8 *buf, int oob_required, 1358 int page) 1359{ 1360 struct mtd_info *mtd = nand_to_mtd(chip); 1361 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1362 int data_len = lt->data_bytes, spare_len = lt->spare_bytes; 1363 u8 *data = buf, *spare = chip->oob_poi; 1364 int max_bitflips = 0; 1365 u32 failure_mask = 0; 1366 int chunk, ret; 1367 1368 marvell_nfc_select_target(chip, chip->cur_cs); 1369 1370 /* 1371 * With BCH, OOB is not fully used (and thus not read entirely), not 1372 * expected bytes could show up at the end of the OOB buffer if not 1373 * explicitly erased. 1374 */ 1375 if (oob_required) 1376 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1377 1378 marvell_nfc_enable_hw_ecc(chip); 1379 1380 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1381 /* Update length for the last chunk */ 1382 if (chunk >= lt->full_chunk_cnt) { 1383 data_len = lt->last_data_bytes; 1384 spare_len = lt->last_spare_bytes; 1385 } 1386 1387 /* Read the chunk and detect number of bitflips */ 1388 marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len, 1389 spare, spare_len, page); 1390 ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips); 1391 if (ret) 1392 failure_mask |= BIT(chunk); 1393 1394 data += data_len; 1395 spare += spare_len; 1396 } 1397 1398 marvell_nfc_disable_hw_ecc(chip); 1399 1400 if (!failure_mask) 1401 return max_bitflips; 1402 1403 /* 1404 * Please note that dumping the ECC bytes during a normal read with OOB 1405 * area would add a significant overhead as ECC bytes are "consumed" by 1406 * the controller in normal mode and must be re-read in raw mode. To 1407 * avoid dropping the performances, we prefer not to include them. The 1408 * user should re-read the page in raw mode if ECC bytes are required. 1409 */ 1410 1411 /* 1412 * In case there is any subpage read error, we usually re-read only ECC 1413 * bytes in raw mode and check if the whole page is empty. In this case, 1414 * it is normal that the ECC check failed and we just ignore the error. 1415 * 1416 * However, it has been empirically observed that for some layouts (e.g 1417 * 2k page, 8b strength per 512B chunk), the controller tries to correct 1418 * bits and may create itself bitflips in the erased area. To overcome 1419 * this strange behavior, the whole page is re-read in raw mode, not 1420 * only the ECC bytes. 1421 */ 1422 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1423 int data_off_in_page, spare_off_in_page, ecc_off_in_page; 1424 int data_off, spare_off, ecc_off; 1425 int data_len, spare_len, ecc_len; 1426 1427 /* No failure reported for this chunk, move to the next one */ 1428 if (!(failure_mask & BIT(chunk))) 1429 continue; 1430 1431 data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes + 1432 lt->ecc_bytes); 1433 spare_off_in_page = data_off_in_page + 1434 (chunk < lt->full_chunk_cnt ? lt->data_bytes : 1435 lt->last_data_bytes); 1436 ecc_off_in_page = spare_off_in_page + 1437 (chunk < lt->full_chunk_cnt ? lt->spare_bytes : 1438 lt->last_spare_bytes); 1439 1440 data_off = chunk * lt->data_bytes; 1441 spare_off = chunk * lt->spare_bytes; 1442 ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) + 1443 lt->last_spare_bytes + 1444 (chunk * (lt->ecc_bytes + 2)); 1445 1446 data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes : 1447 lt->last_data_bytes; 1448 spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes : 1449 lt->last_spare_bytes; 1450 ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes : 1451 lt->last_ecc_bytes; 1452 1453 /* 1454 * Only re-read the ECC bytes, unless we are using the 2k/8b 1455 * layout which is buggy in the sense that the ECC engine will 1456 * try to correct data bytes anyway, creating bitflips. In this 1457 * case, re-read the entire page. 1458 */ 1459 if (lt->writesize == 2048 && lt->strength == 8) { 1460 nand_change_read_column_op(chip, data_off_in_page, 1461 buf + data_off, data_len, 1462 false); 1463 nand_change_read_column_op(chip, spare_off_in_page, 1464 chip->oob_poi + spare_off, spare_len, 1465 false); 1466 } 1467 1468 nand_change_read_column_op(chip, ecc_off_in_page, 1469 chip->oob_poi + ecc_off, ecc_len, 1470 false); 1471 1472 /* Check the entire chunk (data + spare + ecc) for emptyness */ 1473 marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len, 1474 chip->oob_poi + spare_off, spare_len, 1475 chip->oob_poi + ecc_off, ecc_len, 1476 &max_bitflips); 1477 } 1478 1479 return max_bitflips; 1480} 1481 1482static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page) 1483{ 1484 u8 *buf = nand_get_data_buf(chip); 1485 1486 return chip->ecc.read_page_raw(chip, buf, true, page); 1487} 1488 1489static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page) 1490{ 1491 u8 *buf = nand_get_data_buf(chip); 1492 1493 return chip->ecc.read_page(chip, buf, true, page); 1494} 1495 1496/* BCH write helpers */ 1497static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip, 1498 const u8 *buf, 1499 int oob_required, int page) 1500{ 1501 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1502 int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1503 int data_len = lt->data_bytes; 1504 int spare_len = lt->spare_bytes; 1505 int ecc_len = lt->ecc_bytes; 1506 int spare_offset = 0; 1507 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + 1508 lt->last_spare_bytes; 1509 int chunk; 1510 1511 marvell_nfc_select_target(chip, chip->cur_cs); 1512 1513 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 1514 1515 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1516 if (chunk >= lt->full_chunk_cnt) { 1517 data_len = lt->last_data_bytes; 1518 spare_len = lt->last_spare_bytes; 1519 ecc_len = lt->last_ecc_bytes; 1520 } 1521 1522 /* Point to the column of the next chunk */ 1523 nand_change_write_column_op(chip, chunk * full_chunk_size, 1524 NULL, 0, false); 1525 1526 /* Write the data */ 1527 nand_write_data_op(chip, buf + (chunk * lt->data_bytes), 1528 data_len, false); 1529 1530 if (!oob_required) 1531 continue; 1532 1533 /* Write the spare bytes */ 1534 if (spare_len) 1535 nand_write_data_op(chip, chip->oob_poi + spare_offset, 1536 spare_len, false); 1537 1538 /* Write the ECC bytes */ 1539 if (ecc_len) 1540 nand_write_data_op(chip, chip->oob_poi + ecc_offset, 1541 ecc_len, false); 1542 1543 spare_offset += spare_len; 1544 ecc_offset += ALIGN(ecc_len, 32); 1545 } 1546 1547 return nand_prog_page_end_op(chip); 1548} 1549 1550static int 1551marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk, 1552 const u8 *data, unsigned int data_len, 1553 const u8 *spare, unsigned int spare_len, 1554 int page) 1555{ 1556 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1557 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1558 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1559 u32 xtype; 1560 int ret; 1561 struct marvell_nfc_op nfc_op = { 1562 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD, 1563 .ndcb[3] = data_len + spare_len, 1564 }; 1565 1566 /* 1567 * First operation dispatches the CMD_SEQIN command, issue the address 1568 * cycles and asks for the first chunk of data. 1569 * All operations in the middle (if any) will issue a naked write and 1570 * also ask for data. 1571 * Last operation (if any) asks for the last chunk of data through a 1572 * last naked write. 1573 */ 1574 if (chunk == 0) { 1575 if (lt->nchunks == 1) 1576 xtype = XTYPE_MONOLITHIC_RW; 1577 else 1578 xtype = XTYPE_WRITE_DISPATCH; 1579 1580 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) | 1581 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1582 NDCB0_CMD1(NAND_CMD_SEQIN); 1583 nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page); 1584 nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page); 1585 } else if (chunk < lt->nchunks - 1) { 1586 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); 1587 } else { 1588 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1589 } 1590 1591 /* Always dispatch the PAGEPROG command on the last chunk */ 1592 if (chunk == lt->nchunks - 1) 1593 nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC; 1594 1595 ret = marvell_nfc_prepare_cmd(chip); 1596 if (ret) 1597 return ret; 1598 1599 marvell_nfc_send_cmd(chip, &nfc_op); 1600 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, 1601 "WRDREQ while loading FIFO (data)"); 1602 if (ret) 1603 return ret; 1604 1605 /* Transfer the contents */ 1606 iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len)); 1607 iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len)); 1608 1609 return 0; 1610} 1611 1612static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip, 1613 const u8 *buf, 1614 int oob_required, int page) 1615{ 1616 const struct nand_sdr_timings *sdr = 1617 nand_get_sdr_timings(nand_get_interface_config(chip)); 1618 struct mtd_info *mtd = nand_to_mtd(chip); 1619 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1620 const u8 *data = buf; 1621 const u8 *spare = chip->oob_poi; 1622 int data_len = lt->data_bytes; 1623 int spare_len = lt->spare_bytes; 1624 int chunk, ret; 1625 u8 status; 1626 1627 marvell_nfc_select_target(chip, chip->cur_cs); 1628 1629 /* Spare data will be written anyway, so clear it to avoid garbage */ 1630 if (!oob_required) 1631 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1632 1633 marvell_nfc_enable_hw_ecc(chip); 1634 1635 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1636 if (chunk >= lt->full_chunk_cnt) { 1637 data_len = lt->last_data_bytes; 1638 spare_len = lt->last_spare_bytes; 1639 } 1640 1641 marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len, 1642 spare, spare_len, page); 1643 data += data_len; 1644 spare += spare_len; 1645 1646 /* 1647 * Waiting only for CMDD or PAGED is not enough, ECC are 1648 * partially written. No flag is set once the operation is 1649 * really finished but the ND_RUN bit is cleared, so wait for it 1650 * before stepping into the next command. 1651 */ 1652 marvell_nfc_wait_ndrun(chip); 1653 } 1654 1655 ret = marvell_nfc_wait_op(chip, PSEC_TO_MSEC(sdr->tPROG_max)); 1656 1657 marvell_nfc_disable_hw_ecc(chip); 1658 1659 if (ret) 1660 return ret; 1661 1662 /* Check write status on the chip side */ 1663 ret = nand_status_op(chip, &status); 1664 if (ret) 1665 return ret; 1666 1667 if (status & NAND_STATUS_FAIL) 1668 return -EIO; 1669 1670 return 0; 1671} 1672 1673static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip, 1674 int page) 1675{ 1676 struct mtd_info *mtd = nand_to_mtd(chip); 1677 u8 *buf = nand_get_data_buf(chip); 1678 1679 memset(buf, 0xFF, mtd->writesize); 1680 1681 return chip->ecc.write_page_raw(chip, buf, true, page); 1682} 1683 1684static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page) 1685{ 1686 struct mtd_info *mtd = nand_to_mtd(chip); 1687 u8 *buf = nand_get_data_buf(chip); 1688 1689 memset(buf, 0xFF, mtd->writesize); 1690 1691 return chip->ecc.write_page(chip, buf, true, page); 1692} 1693 1694/* NAND framework ->exec_op() hooks and related helpers */ 1695static void marvell_nfc_parse_instructions(struct nand_chip *chip, 1696 const struct nand_subop *subop, 1697 struct marvell_nfc_op *nfc_op) 1698{ 1699 const struct nand_op_instr *instr = NULL; 1700 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1701 bool first_cmd = true; 1702 unsigned int op_id; 1703 int i; 1704 1705 /* Reset the input structure as most of its fields will be OR'ed */ 1706 memset(nfc_op, 0, sizeof(struct marvell_nfc_op)); 1707 1708 for (op_id = 0; op_id < subop->ninstrs; op_id++) { 1709 unsigned int offset, naddrs; 1710 const u8 *addrs; 1711 int len; 1712 1713 instr = &subop->instrs[op_id]; 1714 1715 switch (instr->type) { 1716 case NAND_OP_CMD_INSTR: 1717 if (first_cmd) 1718 nfc_op->ndcb[0] |= 1719 NDCB0_CMD1(instr->ctx.cmd.opcode); 1720 else 1721 nfc_op->ndcb[0] |= 1722 NDCB0_CMD2(instr->ctx.cmd.opcode) | 1723 NDCB0_DBC; 1724 1725 nfc_op->cle_ale_delay_ns = instr->delay_ns; 1726 first_cmd = false; 1727 break; 1728 1729 case NAND_OP_ADDR_INSTR: 1730 offset = nand_subop_get_addr_start_off(subop, op_id); 1731 naddrs = nand_subop_get_num_addr_cyc(subop, op_id); 1732 addrs = &instr->ctx.addr.addrs[offset]; 1733 1734 nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs); 1735 1736 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) 1737 nfc_op->ndcb[1] |= addrs[i] << (8 * i); 1738 1739 if (naddrs >= 5) 1740 nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]); 1741 if (naddrs >= 6) 1742 nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]); 1743 if (naddrs == 7) 1744 nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]); 1745 1746 nfc_op->cle_ale_delay_ns = instr->delay_ns; 1747 break; 1748 1749 case NAND_OP_DATA_IN_INSTR: 1750 nfc_op->data_instr = instr; 1751 nfc_op->data_instr_idx = op_id; 1752 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ); 1753 if (nfc->caps->is_nfcv2) { 1754 nfc_op->ndcb[0] |= 1755 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | 1756 NDCB0_LEN_OVRD; 1757 len = nand_subop_get_data_len(subop, op_id); 1758 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); 1759 } 1760 nfc_op->data_delay_ns = instr->delay_ns; 1761 break; 1762 1763 case NAND_OP_DATA_OUT_INSTR: 1764 nfc_op->data_instr = instr; 1765 nfc_op->data_instr_idx = op_id; 1766 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE); 1767 if (nfc->caps->is_nfcv2) { 1768 nfc_op->ndcb[0] |= 1769 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | 1770 NDCB0_LEN_OVRD; 1771 len = nand_subop_get_data_len(subop, op_id); 1772 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); 1773 } 1774 nfc_op->data_delay_ns = instr->delay_ns; 1775 break; 1776 1777 case NAND_OP_WAITRDY_INSTR: 1778 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; 1779 nfc_op->rdy_delay_ns = instr->delay_ns; 1780 break; 1781 } 1782 } 1783} 1784 1785static int marvell_nfc_xfer_data_pio(struct nand_chip *chip, 1786 const struct nand_subop *subop, 1787 struct marvell_nfc_op *nfc_op) 1788{ 1789 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1790 const struct nand_op_instr *instr = nfc_op->data_instr; 1791 unsigned int op_id = nfc_op->data_instr_idx; 1792 unsigned int len = nand_subop_get_data_len(subop, op_id); 1793 unsigned int offset = nand_subop_get_data_start_off(subop, op_id); 1794 bool reading = (instr->type == NAND_OP_DATA_IN_INSTR); 1795 int ret; 1796 1797 if (instr->ctx.data.force_8bit) 1798 marvell_nfc_force_byte_access(chip, true); 1799 1800 if (reading) { 1801 u8 *in = instr->ctx.data.buf.in + offset; 1802 1803 ret = marvell_nfc_xfer_data_in_pio(nfc, in, len); 1804 } else { 1805 const u8 *out = instr->ctx.data.buf.out + offset; 1806 1807 ret = marvell_nfc_xfer_data_out_pio(nfc, out, len); 1808 } 1809 1810 if (instr->ctx.data.force_8bit) 1811 marvell_nfc_force_byte_access(chip, false); 1812 1813 return ret; 1814} 1815 1816static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip, 1817 const struct nand_subop *subop) 1818{ 1819 struct marvell_nfc_op nfc_op; 1820 bool reading; 1821 int ret; 1822 1823 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1824 reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); 1825 1826 ret = marvell_nfc_prepare_cmd(chip); 1827 if (ret) 1828 return ret; 1829 1830 marvell_nfc_send_cmd(chip, &nfc_op); 1831 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, 1832 "RDDREQ/WRDREQ while draining raw data"); 1833 if (ret) 1834 return ret; 1835 1836 cond_delay(nfc_op.cle_ale_delay_ns); 1837 1838 if (reading) { 1839 if (nfc_op.rdy_timeout_ms) { 1840 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1841 if (ret) 1842 return ret; 1843 } 1844 1845 cond_delay(nfc_op.rdy_delay_ns); 1846 } 1847 1848 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1849 ret = marvell_nfc_wait_cmdd(chip); 1850 if (ret) 1851 return ret; 1852 1853 cond_delay(nfc_op.data_delay_ns); 1854 1855 if (!reading) { 1856 if (nfc_op.rdy_timeout_ms) { 1857 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1858 if (ret) 1859 return ret; 1860 } 1861 1862 cond_delay(nfc_op.rdy_delay_ns); 1863 } 1864 1865 /* 1866 * NDCR ND_RUN bit should be cleared automatically at the end of each 1867 * operation but experience shows that the behavior is buggy when it 1868 * comes to writes (with LEN_OVRD). Clear it by hand in this case. 1869 */ 1870 if (!reading) { 1871 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1872 1873 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 1874 nfc->regs + NDCR); 1875 } 1876 1877 return 0; 1878} 1879 1880static int marvell_nfc_naked_access_exec(struct nand_chip *chip, 1881 const struct nand_subop *subop) 1882{ 1883 struct marvell_nfc_op nfc_op; 1884 int ret; 1885 1886 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1887 1888 /* 1889 * Naked access are different in that they need to be flagged as naked 1890 * by the controller. Reset the controller registers fields that inform 1891 * on the type and refill them according to the ongoing operation. 1892 */ 1893 nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) | 1894 NDCB0_CMD_XTYPE(XTYPE_MASK)); 1895 switch (subop->instrs[0].type) { 1896 case NAND_OP_CMD_INSTR: 1897 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD); 1898 break; 1899 case NAND_OP_ADDR_INSTR: 1900 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR); 1901 break; 1902 case NAND_OP_DATA_IN_INSTR: 1903 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) | 1904 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1905 break; 1906 case NAND_OP_DATA_OUT_INSTR: 1907 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) | 1908 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1909 break; 1910 default: 1911 /* This should never happen */ 1912 break; 1913 } 1914 1915 ret = marvell_nfc_prepare_cmd(chip); 1916 if (ret) 1917 return ret; 1918 1919 marvell_nfc_send_cmd(chip, &nfc_op); 1920 1921 if (!nfc_op.data_instr) { 1922 ret = marvell_nfc_wait_cmdd(chip); 1923 cond_delay(nfc_op.cle_ale_delay_ns); 1924 return ret; 1925 } 1926 1927 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, 1928 "RDDREQ/WRDREQ while draining raw data"); 1929 if (ret) 1930 return ret; 1931 1932 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1933 ret = marvell_nfc_wait_cmdd(chip); 1934 if (ret) 1935 return ret; 1936 1937 /* 1938 * NDCR ND_RUN bit should be cleared automatically at the end of each 1939 * operation but experience shows that the behavior is buggy when it 1940 * comes to writes (with LEN_OVRD). Clear it by hand in this case. 1941 */ 1942 if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) { 1943 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1944 1945 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 1946 nfc->regs + NDCR); 1947 } 1948 1949 return 0; 1950} 1951 1952static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip, 1953 const struct nand_subop *subop) 1954{ 1955 struct marvell_nfc_op nfc_op; 1956 int ret; 1957 1958 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1959 1960 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1961 cond_delay(nfc_op.rdy_delay_ns); 1962 1963 return ret; 1964} 1965 1966static int marvell_nfc_read_id_type_exec(struct nand_chip *chip, 1967 const struct nand_subop *subop) 1968{ 1969 struct marvell_nfc_op nfc_op; 1970 int ret; 1971 1972 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1973 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); 1974 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID); 1975 1976 ret = marvell_nfc_prepare_cmd(chip); 1977 if (ret) 1978 return ret; 1979 1980 marvell_nfc_send_cmd(chip, &nfc_op); 1981 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1982 "RDDREQ while reading ID"); 1983 if (ret) 1984 return ret; 1985 1986 cond_delay(nfc_op.cle_ale_delay_ns); 1987 1988 if (nfc_op.rdy_timeout_ms) { 1989 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1990 if (ret) 1991 return ret; 1992 } 1993 1994 cond_delay(nfc_op.rdy_delay_ns); 1995 1996 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1997 ret = marvell_nfc_wait_cmdd(chip); 1998 if (ret) 1999 return ret; 2000 2001 cond_delay(nfc_op.data_delay_ns); 2002 2003 return 0; 2004} 2005 2006static int marvell_nfc_read_status_exec(struct nand_chip *chip, 2007 const struct nand_subop *subop) 2008{ 2009 struct marvell_nfc_op nfc_op; 2010 int ret; 2011 2012 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 2013 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); 2014 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS); 2015 2016 ret = marvell_nfc_prepare_cmd(chip); 2017 if (ret) 2018 return ret; 2019 2020 marvell_nfc_send_cmd(chip, &nfc_op); 2021 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 2022 "RDDREQ while reading status"); 2023 if (ret) 2024 return ret; 2025 2026 cond_delay(nfc_op.cle_ale_delay_ns); 2027 2028 if (nfc_op.rdy_timeout_ms) { 2029 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2030 if (ret) 2031 return ret; 2032 } 2033 2034 cond_delay(nfc_op.rdy_delay_ns); 2035 2036 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 2037 ret = marvell_nfc_wait_cmdd(chip); 2038 if (ret) 2039 return ret; 2040 2041 cond_delay(nfc_op.data_delay_ns); 2042 2043 return 0; 2044} 2045 2046static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip, 2047 const struct nand_subop *subop) 2048{ 2049 struct marvell_nfc_op nfc_op; 2050 int ret; 2051 2052 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 2053 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET); 2054 2055 ret = marvell_nfc_prepare_cmd(chip); 2056 if (ret) 2057 return ret; 2058 2059 marvell_nfc_send_cmd(chip, &nfc_op); 2060 ret = marvell_nfc_wait_cmdd(chip); 2061 if (ret) 2062 return ret; 2063 2064 cond_delay(nfc_op.cle_ale_delay_ns); 2065 2066 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2067 if (ret) 2068 return ret; 2069 2070 cond_delay(nfc_op.rdy_delay_ns); 2071 2072 return 0; 2073} 2074 2075static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip, 2076 const struct nand_subop *subop) 2077{ 2078 struct marvell_nfc_op nfc_op; 2079 int ret; 2080 2081 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 2082 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE); 2083 2084 ret = marvell_nfc_prepare_cmd(chip); 2085 if (ret) 2086 return ret; 2087 2088 marvell_nfc_send_cmd(chip, &nfc_op); 2089 ret = marvell_nfc_wait_cmdd(chip); 2090 if (ret) 2091 return ret; 2092 2093 cond_delay(nfc_op.cle_ale_delay_ns); 2094 2095 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2096 if (ret) 2097 return ret; 2098 2099 cond_delay(nfc_op.rdy_delay_ns); 2100 2101 return 0; 2102} 2103 2104static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER( 2105 /* Monolithic reads/writes */ 2106 NAND_OP_PARSER_PATTERN( 2107 marvell_nfc_monolithic_access_exec, 2108 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2109 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2), 2110 NAND_OP_PARSER_PAT_CMD_ELEM(true), 2111 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), 2112 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), 2113 NAND_OP_PARSER_PATTERN( 2114 marvell_nfc_monolithic_access_exec, 2115 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2116 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2), 2117 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE), 2118 NAND_OP_PARSER_PAT_CMD_ELEM(true), 2119 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), 2120 /* Naked commands */ 2121 NAND_OP_PARSER_PATTERN( 2122 marvell_nfc_naked_access_exec, 2123 NAND_OP_PARSER_PAT_CMD_ELEM(false)), 2124 NAND_OP_PARSER_PATTERN( 2125 marvell_nfc_naked_access_exec, 2126 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)), 2127 NAND_OP_PARSER_PATTERN( 2128 marvell_nfc_naked_access_exec, 2129 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), 2130 NAND_OP_PARSER_PATTERN( 2131 marvell_nfc_naked_access_exec, 2132 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)), 2133 NAND_OP_PARSER_PATTERN( 2134 marvell_nfc_naked_waitrdy_exec, 2135 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2136 ); 2137 2138static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER( 2139 /* Naked commands not supported, use a function for each pattern */ 2140 NAND_OP_PARSER_PATTERN( 2141 marvell_nfc_read_id_type_exec, 2142 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2143 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), 2144 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), 2145 NAND_OP_PARSER_PATTERN( 2146 marvell_nfc_erase_cmd_type_exec, 2147 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2148 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), 2149 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2150 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2151 NAND_OP_PARSER_PATTERN( 2152 marvell_nfc_read_status_exec, 2153 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2154 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), 2155 NAND_OP_PARSER_PATTERN( 2156 marvell_nfc_reset_cmd_type_exec, 2157 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2158 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2159 NAND_OP_PARSER_PATTERN( 2160 marvell_nfc_naked_waitrdy_exec, 2161 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2162 ); 2163 2164static int marvell_nfc_exec_op(struct nand_chip *chip, 2165 const struct nand_operation *op, 2166 bool check_only) 2167{ 2168 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2169 2170 if (!check_only) 2171 marvell_nfc_select_target(chip, op->cs); 2172 2173 if (nfc->caps->is_nfcv2) 2174 return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser, 2175 op, check_only); 2176 else 2177 return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser, 2178 op, check_only); 2179} 2180 2181/* 2182 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be 2183 * usable. 2184 */ 2185static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section, 2186 struct mtd_oob_region *oobregion) 2187{ 2188 struct nand_chip *chip = mtd_to_nand(mtd); 2189 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 2190 2191 if (section) 2192 return -ERANGE; 2193 2194 oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) + 2195 lt->last_ecc_bytes; 2196 oobregion->offset = mtd->oobsize - oobregion->length; 2197 2198 return 0; 2199} 2200 2201static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section, 2202 struct mtd_oob_region *oobregion) 2203{ 2204 struct nand_chip *chip = mtd_to_nand(mtd); 2205 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 2206 2207 if (section) 2208 return -ERANGE; 2209 2210 /* 2211 * Bootrom looks in bytes 0 & 5 for bad blocks for the 2212 * 4KB page / 4bit BCH combination. 2213 */ 2214 if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K) 2215 oobregion->offset = 6; 2216 else 2217 oobregion->offset = 2; 2218 2219 oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) + 2220 lt->last_spare_bytes - oobregion->offset; 2221 2222 return 0; 2223} 2224 2225static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = { 2226 .ecc = marvell_nand_ooblayout_ecc, 2227 .free = marvell_nand_ooblayout_free, 2228}; 2229 2230static int marvell_nand_hw_ecc_controller_init(struct mtd_info *mtd, 2231 struct nand_ecc_ctrl *ecc) 2232{ 2233 struct nand_chip *chip = mtd_to_nand(mtd); 2234 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2235 const struct marvell_hw_ecc_layout *l; 2236 int i; 2237 2238 if (!nfc->caps->is_nfcv2 && 2239 (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) { 2240 dev_err(nfc->dev, 2241 "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n", 2242 mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize); 2243 return -ENOTSUPP; 2244 } 2245 2246 to_marvell_nand(chip)->layout = NULL; 2247 for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) { 2248 l = &marvell_nfc_layouts[i]; 2249 if (mtd->writesize == l->writesize && 2250 ecc->size == l->chunk && ecc->strength == l->strength) { 2251 to_marvell_nand(chip)->layout = l; 2252 break; 2253 } 2254 } 2255 2256 if (!to_marvell_nand(chip)->layout || 2257 (!nfc->caps->is_nfcv2 && ecc->strength > 1)) { 2258 dev_err(nfc->dev, 2259 "ECC strength %d at page size %d is not supported\n", 2260 ecc->strength, mtd->writesize); 2261 return -ENOTSUPP; 2262 } 2263 2264 /* Special care for the layout 2k/8-bit/512B */ 2265 if (l->writesize == 2048 && l->strength == 8) { 2266 if (mtd->oobsize < 128) { 2267 dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n"); 2268 return -ENOTSUPP; 2269 } else { 2270 chip->bbt_options |= NAND_BBT_NO_OOB_BBM; 2271 } 2272 } 2273 2274 mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops); 2275 ecc->steps = l->nchunks; 2276 ecc->size = l->data_bytes; 2277 2278 if (ecc->strength == 1) { 2279 chip->ecc.algo = NAND_ECC_ALGO_HAMMING; 2280 ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw; 2281 ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page; 2282 ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw; 2283 ecc->read_oob = ecc->read_oob_raw; 2284 ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw; 2285 ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page; 2286 ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw; 2287 ecc->write_oob = ecc->write_oob_raw; 2288 } else { 2289 chip->ecc.algo = NAND_ECC_ALGO_BCH; 2290 ecc->strength = 16; 2291 ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw; 2292 ecc->read_page = marvell_nfc_hw_ecc_bch_read_page; 2293 ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw; 2294 ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob; 2295 ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw; 2296 ecc->write_page = marvell_nfc_hw_ecc_bch_write_page; 2297 ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw; 2298 ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob; 2299 } 2300 2301 return 0; 2302} 2303 2304static int marvell_nand_ecc_init(struct mtd_info *mtd, 2305 struct nand_ecc_ctrl *ecc) 2306{ 2307 struct nand_chip *chip = mtd_to_nand(mtd); 2308 const struct nand_ecc_props *requirements = 2309 nanddev_get_ecc_requirements(&chip->base); 2310 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2311 int ret; 2312 2313 if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE && 2314 (!ecc->size || !ecc->strength)) { 2315 if (requirements->step_size && requirements->strength) { 2316 ecc->size = requirements->step_size; 2317 ecc->strength = requirements->strength; 2318 } else { 2319 dev_info(nfc->dev, 2320 "No minimum ECC strength, using 1b/512B\n"); 2321 ecc->size = 512; 2322 ecc->strength = 1; 2323 } 2324 } 2325 2326 switch (ecc->engine_type) { 2327 case NAND_ECC_ENGINE_TYPE_ON_HOST: 2328 ret = marvell_nand_hw_ecc_controller_init(mtd, ecc); 2329 if (ret) 2330 return ret; 2331 break; 2332 case NAND_ECC_ENGINE_TYPE_NONE: 2333 case NAND_ECC_ENGINE_TYPE_SOFT: 2334 case NAND_ECC_ENGINE_TYPE_ON_DIE: 2335 if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 && 2336 mtd->writesize != SZ_2K) { 2337 dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n", 2338 mtd->writesize); 2339 return -EINVAL; 2340 } 2341 break; 2342 default: 2343 return -EINVAL; 2344 } 2345 2346 return 0; 2347} 2348 2349static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; 2350static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; 2351 2352static struct nand_bbt_descr bbt_main_descr = { 2353 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 2354 NAND_BBT_2BIT | NAND_BBT_VERSION, 2355 .offs = 8, 2356 .len = 6, 2357 .veroffs = 14, 2358 .maxblocks = 8, /* Last 8 blocks in each chip */ 2359 .pattern = bbt_pattern 2360}; 2361 2362static struct nand_bbt_descr bbt_mirror_descr = { 2363 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 2364 NAND_BBT_2BIT | NAND_BBT_VERSION, 2365 .offs = 8, 2366 .len = 6, 2367 .veroffs = 14, 2368 .maxblocks = 8, /* Last 8 blocks in each chip */ 2369 .pattern = bbt_mirror_pattern 2370}; 2371 2372static int marvell_nfc_setup_interface(struct nand_chip *chip, int chipnr, 2373 const struct nand_interface_config *conf) 2374{ 2375 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 2376 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2377 unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2; 2378 const struct nand_sdr_timings *sdr; 2379 struct marvell_nfc_timings nfc_tmg; 2380 int read_delay; 2381 2382 sdr = nand_get_sdr_timings(conf); 2383 if (IS_ERR(sdr)) 2384 return PTR_ERR(sdr); 2385 2386 /* 2387 * SDR timings are given in pico-seconds while NFC timings must be 2388 * expressed in NAND controller clock cycles, which is half of the 2389 * frequency of the accessible ECC clock retrieved by clk_get_rate(). 2390 * This is not written anywhere in the datasheet but was observed 2391 * with an oscilloscope. 2392 * 2393 * NFC datasheet gives equations from which thoses calculations 2394 * are derived, they tend to be slightly more restrictives than the 2395 * given core timings and may improve the overall speed. 2396 */ 2397 nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1; 2398 nfc_tmg.tRH = nfc_tmg.tRP; 2399 nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1; 2400 nfc_tmg.tWH = nfc_tmg.tWP; 2401 nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns); 2402 nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1; 2403 nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns); 2404 /* 2405 * Read delay is the time of propagation from SoC pins to NFC internal 2406 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In 2407 * EDO mode, an additional delay of tRH must be taken into account so 2408 * the data is sampled on the falling edge instead of the rising edge. 2409 */ 2410 read_delay = sdr->tRC_min >= 30000 ? 2411 MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH; 2412 2413 nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns); 2414 /* 2415 * tWHR and tRHW are supposed to be read to write delays (and vice 2416 * versa) but in some cases, ie. when doing a change column, they must 2417 * be greater than that to be sure tCCS delay is respected. 2418 */ 2419 nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min), 2420 period_ns) - 2, 2421 nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min), 2422 period_ns); 2423 2424 /* 2425 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays. 2426 * NFCv1: No WAIT_MODE, tR must be maximal. 2427 */ 2428 if (nfc->caps->is_nfcv2) { 2429 nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns); 2430 } else { 2431 nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max, 2432 period_ns); 2433 if (nfc_tmg.tR + 3 > nfc_tmg.tCH) 2434 nfc_tmg.tR = nfc_tmg.tCH - 3; 2435 else 2436 nfc_tmg.tR = 0; 2437 } 2438 2439 if (chipnr < 0) 2440 return 0; 2441 2442 marvell_nand->ndtr0 = 2443 NDTR0_TRP(nfc_tmg.tRP) | 2444 NDTR0_TRH(nfc_tmg.tRH) | 2445 NDTR0_ETRP(nfc_tmg.tRP) | 2446 NDTR0_TWP(nfc_tmg.tWP) | 2447 NDTR0_TWH(nfc_tmg.tWH) | 2448 NDTR0_TCS(nfc_tmg.tCS) | 2449 NDTR0_TCH(nfc_tmg.tCH); 2450 2451 marvell_nand->ndtr1 = 2452 NDTR1_TAR(nfc_tmg.tAR) | 2453 NDTR1_TWHR(nfc_tmg.tWHR) | 2454 NDTR1_TR(nfc_tmg.tR); 2455 2456 if (nfc->caps->is_nfcv2) { 2457 marvell_nand->ndtr0 |= 2458 NDTR0_RD_CNT_DEL(read_delay) | 2459 NDTR0_SELCNTR | 2460 NDTR0_TADL(nfc_tmg.tADL); 2461 2462 marvell_nand->ndtr1 |= 2463 NDTR1_TRHW(nfc_tmg.tRHW) | 2464 NDTR1_WAIT_MODE; 2465 } 2466 2467 /* 2468 * Reset nfc->selected_chip so the next command will cause the timing 2469 * registers to be updated in marvell_nfc_select_target(). 2470 */ 2471 nfc->selected_chip = NULL; 2472 2473 return 0; 2474} 2475 2476static int marvell_nand_attach_chip(struct nand_chip *chip) 2477{ 2478 struct mtd_info *mtd = nand_to_mtd(chip); 2479 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 2480 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2481 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev); 2482 int ret; 2483 2484 if (pdata && pdata->flash_bbt) 2485 chip->bbt_options |= NAND_BBT_USE_FLASH; 2486 2487 if (chip->bbt_options & NAND_BBT_USE_FLASH) { 2488 /* 2489 * We'll use a bad block table stored in-flash and don't 2490 * allow writing the bad block marker to the flash. 2491 */ 2492 chip->bbt_options |= NAND_BBT_NO_OOB_BBM; 2493 chip->bbt_td = &bbt_main_descr; 2494 chip->bbt_md = &bbt_mirror_descr; 2495 } 2496 2497 /* Save the chip-specific fields of NDCR */ 2498 marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize); 2499 if (chip->options & NAND_BUSWIDTH_16) 2500 marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; 2501 2502 /* 2503 * On small page NANDs, only one cycle is needed to pass the 2504 * column address. 2505 */ 2506 if (mtd->writesize <= 512) { 2507 marvell_nand->addr_cyc = 1; 2508 } else { 2509 marvell_nand->addr_cyc = 2; 2510 marvell_nand->ndcr |= NDCR_RA_START; 2511 } 2512 2513 /* 2514 * Now add the number of cycles needed to pass the row 2515 * address. 2516 * 2517 * Addressing a chip using CS 2 or 3 should also need the third row 2518 * cycle but due to inconsistance in the documentation and lack of 2519 * hardware to test this situation, this case is not supported. 2520 */ 2521 if (chip->options & NAND_ROW_ADDR_3) 2522 marvell_nand->addr_cyc += 3; 2523 else 2524 marvell_nand->addr_cyc += 2; 2525 2526 if (pdata) { 2527 chip->ecc.size = pdata->ecc_step_size; 2528 chip->ecc.strength = pdata->ecc_strength; 2529 } 2530 2531 ret = marvell_nand_ecc_init(mtd, &chip->ecc); 2532 if (ret) { 2533 dev_err(nfc->dev, "ECC init failed: %d\n", ret); 2534 return ret; 2535 } 2536 2537 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { 2538 /* 2539 * Subpage write not available with hardware ECC, prohibit also 2540 * subpage read as in userspace subpage access would still be 2541 * allowed and subpage write, if used, would lead to numerous 2542 * uncorrectable ECC errors. 2543 */ 2544 chip->options |= NAND_NO_SUBPAGE_WRITE; 2545 } 2546 2547 if (pdata || nfc->caps->legacy_of_bindings) { 2548 /* 2549 * We keep the MTD name unchanged to avoid breaking platforms 2550 * where the MTD cmdline parser is used and the bootloader 2551 * has not been updated to use the new naming scheme. 2552 */ 2553 mtd->name = "pxa3xx_nand-0"; 2554 } else if (!mtd->name) { 2555 /* 2556 * If the new bindings are used and the bootloader has not been 2557 * updated to pass a new mtdparts parameter on the cmdline, you 2558 * should define the following property in your NAND node, ie: 2559 * 2560 * label = "main-storage"; 2561 * 2562 * This way, mtd->name will be set by the core when 2563 * nand_set_flash_node() is called. 2564 */ 2565 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, 2566 "%s:nand.%d", dev_name(nfc->dev), 2567 marvell_nand->sels[0].cs); 2568 if (!mtd->name) { 2569 dev_err(nfc->dev, "Failed to allocate mtd->name\n"); 2570 return -ENOMEM; 2571 } 2572 } 2573 2574 return 0; 2575} 2576 2577static const struct nand_controller_ops marvell_nand_controller_ops = { 2578 .attach_chip = marvell_nand_attach_chip, 2579 .exec_op = marvell_nfc_exec_op, 2580 .setup_interface = marvell_nfc_setup_interface, 2581}; 2582 2583static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc, 2584 struct device_node *np) 2585{ 2586 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev); 2587 struct marvell_nand_chip *marvell_nand; 2588 struct mtd_info *mtd; 2589 struct nand_chip *chip; 2590 int nsels, ret, i; 2591 u32 cs, rb; 2592 2593 /* 2594 * The legacy "num-cs" property indicates the number of CS on the only 2595 * chip connected to the controller (legacy bindings does not support 2596 * more than one chip). The CS and RB pins are always the #0. 2597 * 2598 * When not using legacy bindings, a couple of "reg" and "nand-rb" 2599 * properties must be filled. For each chip, expressed as a subnode, 2600 * "reg" points to the CS lines and "nand-rb" to the RB line. 2601 */ 2602 if (pdata || nfc->caps->legacy_of_bindings) { 2603 nsels = 1; 2604 } else { 2605 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); 2606 if (nsels <= 0) { 2607 dev_err(dev, "missing/invalid reg property\n"); 2608 return -EINVAL; 2609 } 2610 } 2611 2612 /* Alloc the nand chip structure */ 2613 marvell_nand = devm_kzalloc(dev, 2614 struct_size(marvell_nand, sels, nsels), 2615 GFP_KERNEL); 2616 if (!marvell_nand) { 2617 dev_err(dev, "could not allocate chip structure\n"); 2618 return -ENOMEM; 2619 } 2620 2621 marvell_nand->nsels = nsels; 2622 marvell_nand->selected_die = -1; 2623 2624 for (i = 0; i < nsels; i++) { 2625 if (pdata || nfc->caps->legacy_of_bindings) { 2626 /* 2627 * Legacy bindings use the CS lines in natural 2628 * order (0, 1, ...) 2629 */ 2630 cs = i; 2631 } else { 2632 /* Retrieve CS id */ 2633 ret = of_property_read_u32_index(np, "reg", i, &cs); 2634 if (ret) { 2635 dev_err(dev, "could not retrieve reg property: %d\n", 2636 ret); 2637 return ret; 2638 } 2639 } 2640 2641 if (cs >= nfc->caps->max_cs_nb) { 2642 dev_err(dev, "invalid reg value: %u (max CS = %d)\n", 2643 cs, nfc->caps->max_cs_nb); 2644 return -EINVAL; 2645 } 2646 2647 if (test_and_set_bit(cs, &nfc->assigned_cs)) { 2648 dev_err(dev, "CS %d already assigned\n", cs); 2649 return -EINVAL; 2650 } 2651 2652 /* 2653 * The cs variable represents the chip select id, which must be 2654 * converted in bit fields for NDCB0 and NDCB2 to select the 2655 * right chip. Unfortunately, due to a lack of information on 2656 * the subject and incoherent documentation, the user should not 2657 * use CS1 and CS3 at all as asserting them is not supported in 2658 * a reliable way (due to multiplexing inside ADDR5 field). 2659 */ 2660 marvell_nand->sels[i].cs = cs; 2661 switch (cs) { 2662 case 0: 2663 case 2: 2664 marvell_nand->sels[i].ndcb0_csel = 0; 2665 break; 2666 case 1: 2667 case 3: 2668 marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL; 2669 break; 2670 default: 2671 return -EINVAL; 2672 } 2673 2674 /* Retrieve RB id */ 2675 if (pdata || nfc->caps->legacy_of_bindings) { 2676 /* Legacy bindings always use RB #0 */ 2677 rb = 0; 2678 } else { 2679 ret = of_property_read_u32_index(np, "nand-rb", i, 2680 &rb); 2681 if (ret) { 2682 dev_err(dev, 2683 "could not retrieve RB property: %d\n", 2684 ret); 2685 return ret; 2686 } 2687 } 2688 2689 if (rb >= nfc->caps->max_rb_nb) { 2690 dev_err(dev, "invalid reg value: %u (max RB = %d)\n", 2691 rb, nfc->caps->max_rb_nb); 2692 return -EINVAL; 2693 } 2694 2695 marvell_nand->sels[i].rb = rb; 2696 } 2697 2698 chip = &marvell_nand->chip; 2699 chip->controller = &nfc->controller; 2700 nand_set_flash_node(chip, np); 2701 2702 if (of_property_read_bool(np, "marvell,nand-keep-config")) 2703 chip->options |= NAND_KEEP_TIMINGS; 2704 2705 mtd = nand_to_mtd(chip); 2706 mtd->dev.parent = dev; 2707 2708 /* 2709 * Default to HW ECC engine mode. If the nand-ecc-mode property is given 2710 * in the DT node, this entry will be overwritten in nand_scan_ident(). 2711 */ 2712 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 2713 2714 /* 2715 * Save a reference value for timing registers before 2716 * ->setup_interface() is called. 2717 */ 2718 marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0); 2719 marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1); 2720 2721 chip->options |= NAND_BUSWIDTH_AUTO; 2722 2723 ret = nand_scan(chip, marvell_nand->nsels); 2724 if (ret) { 2725 dev_err(dev, "could not scan the nand chip\n"); 2726 return ret; 2727 } 2728 2729 if (pdata) 2730 /* Legacy bindings support only one chip */ 2731 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); 2732 else 2733 ret = mtd_device_register(mtd, NULL, 0); 2734 if (ret) { 2735 dev_err(dev, "failed to register mtd device: %d\n", ret); 2736 nand_cleanup(chip); 2737 return ret; 2738 } 2739 2740 list_add_tail(&marvell_nand->node, &nfc->chips); 2741 2742 return 0; 2743} 2744 2745static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc) 2746{ 2747 struct marvell_nand_chip *entry, *temp; 2748 struct nand_chip *chip; 2749 int ret; 2750 2751 list_for_each_entry_safe(entry, temp, &nfc->chips, node) { 2752 chip = &entry->chip; 2753 ret = mtd_device_unregister(nand_to_mtd(chip)); 2754 WARN_ON(ret); 2755 nand_cleanup(chip); 2756 list_del(&entry->node); 2757 } 2758} 2759 2760static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc) 2761{ 2762 struct device_node *np = dev->of_node; 2763 struct device_node *nand_np; 2764 int max_cs = nfc->caps->max_cs_nb; 2765 int nchips; 2766 int ret; 2767 2768 if (!np) 2769 nchips = 1; 2770 else 2771 nchips = of_get_child_count(np); 2772 2773 if (nchips > max_cs) { 2774 dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips, 2775 max_cs); 2776 return -EINVAL; 2777 } 2778 2779 /* 2780 * Legacy bindings do not use child nodes to exhibit NAND chip 2781 * properties and layout. Instead, NAND properties are mixed with the 2782 * controller ones, and partitions are defined as direct subnodes of the 2783 * NAND controller node. 2784 */ 2785 if (nfc->caps->legacy_of_bindings) { 2786 ret = marvell_nand_chip_init(dev, nfc, np); 2787 return ret; 2788 } 2789 2790 for_each_child_of_node(np, nand_np) { 2791 ret = marvell_nand_chip_init(dev, nfc, nand_np); 2792 if (ret) { 2793 of_node_put(nand_np); 2794 goto cleanup_chips; 2795 } 2796 } 2797 2798 return 0; 2799 2800cleanup_chips: 2801 marvell_nand_chips_cleanup(nfc); 2802 2803 return ret; 2804} 2805 2806static int marvell_nfc_init_dma(struct marvell_nfc *nfc) 2807{ 2808 struct platform_device *pdev = container_of(nfc->dev, 2809 struct platform_device, 2810 dev); 2811 struct dma_slave_config config = {}; 2812 struct resource *r; 2813 int ret; 2814 2815 if (!IS_ENABLED(CONFIG_PXA_DMA)) { 2816 dev_warn(nfc->dev, 2817 "DMA not enabled in configuration\n"); 2818 return -ENOTSUPP; 2819 } 2820 2821 ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32)); 2822 if (ret) 2823 return ret; 2824 2825 nfc->dma_chan = dma_request_chan(nfc->dev, "data"); 2826 if (IS_ERR(nfc->dma_chan)) { 2827 ret = PTR_ERR(nfc->dma_chan); 2828 nfc->dma_chan = NULL; 2829 return dev_err_probe(nfc->dev, ret, "DMA channel request failed\n"); 2830 } 2831 2832 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2833 if (!r) { 2834 ret = -ENXIO; 2835 goto release_channel; 2836 } 2837 2838 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2839 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2840 config.src_addr = r->start + NDDB; 2841 config.dst_addr = r->start + NDDB; 2842 config.src_maxburst = 32; 2843 config.dst_maxburst = 32; 2844 ret = dmaengine_slave_config(nfc->dma_chan, &config); 2845 if (ret < 0) { 2846 dev_err(nfc->dev, "Failed to configure DMA channel\n"); 2847 goto release_channel; 2848 } 2849 2850 /* 2851 * DMA must act on length multiple of 32 and this length may be 2852 * bigger than the destination buffer. Use this buffer instead 2853 * for DMA transfers and then copy the desired amount of data to 2854 * the provided buffer. 2855 */ 2856 nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA); 2857 if (!nfc->dma_buf) { 2858 ret = -ENOMEM; 2859 goto release_channel; 2860 } 2861 2862 nfc->use_dma = true; 2863 2864 return 0; 2865 2866release_channel: 2867 dma_release_channel(nfc->dma_chan); 2868 nfc->dma_chan = NULL; 2869 2870 return ret; 2871} 2872 2873static void marvell_nfc_reset(struct marvell_nfc *nfc) 2874{ 2875 /* 2876 * ECC operations and interruptions are only enabled when specifically 2877 * needed. ECC shall not be activated in the early stages (fails probe). 2878 * Arbiter flag, even if marked as "reserved", must be set (empirical). 2879 * SPARE_EN bit must always be set or ECC bytes will not be at the same 2880 * offset in the read page and this will fail the protection. 2881 */ 2882 writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN | 2883 NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR); 2884 writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR); 2885 writel_relaxed(0, nfc->regs + NDECCCTRL); 2886} 2887 2888static int marvell_nfc_init(struct marvell_nfc *nfc) 2889{ 2890 struct device_node *np = nfc->dev->of_node; 2891 2892 /* 2893 * Some SoCs like A7k/A8k need to enable manually the NAND 2894 * controller, gated clocks and reset bits to avoid being bootloader 2895 * dependent. This is done through the use of the System Functions 2896 * registers. 2897 */ 2898 if (nfc->caps->need_system_controller) { 2899 struct regmap *sysctrl_base = 2900 syscon_regmap_lookup_by_phandle(np, 2901 "marvell,system-controller"); 2902 2903 if (IS_ERR(sysctrl_base)) 2904 return PTR_ERR(sysctrl_base); 2905 2906 regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, 2907 GENCONF_SOC_DEVICE_MUX_NFC_EN | 2908 GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST | 2909 GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST | 2910 GENCONF_SOC_DEVICE_MUX_NFC_INT_EN); 2911 2912 regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL, 2913 GENCONF_CLK_GATING_CTRL_ND_GATE, 2914 GENCONF_CLK_GATING_CTRL_ND_GATE); 2915 } 2916 2917 /* Configure the DMA if appropriate */ 2918 if (!nfc->caps->is_nfcv2) 2919 marvell_nfc_init_dma(nfc); 2920 2921 marvell_nfc_reset(nfc); 2922 2923 return 0; 2924} 2925 2926static int marvell_nfc_probe(struct platform_device *pdev) 2927{ 2928 struct device *dev = &pdev->dev; 2929 struct marvell_nfc *nfc; 2930 int ret; 2931 int irq; 2932 2933 nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc), 2934 GFP_KERNEL); 2935 if (!nfc) 2936 return -ENOMEM; 2937 2938 nfc->dev = dev; 2939 nand_controller_init(&nfc->controller); 2940 nfc->controller.ops = &marvell_nand_controller_ops; 2941 INIT_LIST_HEAD(&nfc->chips); 2942 2943 nfc->regs = devm_platform_ioremap_resource(pdev, 0); 2944 if (IS_ERR(nfc->regs)) 2945 return PTR_ERR(nfc->regs); 2946 2947 irq = platform_get_irq(pdev, 0); 2948 if (irq < 0) 2949 return irq; 2950 2951 nfc->core_clk = devm_clk_get(&pdev->dev, "core"); 2952 2953 /* Managed the legacy case (when the first clock was not named) */ 2954 if (nfc->core_clk == ERR_PTR(-ENOENT)) 2955 nfc->core_clk = devm_clk_get(&pdev->dev, NULL); 2956 2957 if (IS_ERR(nfc->core_clk)) 2958 return PTR_ERR(nfc->core_clk); 2959 2960 ret = clk_prepare_enable(nfc->core_clk); 2961 if (ret) 2962 return ret; 2963 2964 nfc->reg_clk = devm_clk_get(&pdev->dev, "reg"); 2965 if (IS_ERR(nfc->reg_clk)) { 2966 if (PTR_ERR(nfc->reg_clk) != -ENOENT) { 2967 ret = PTR_ERR(nfc->reg_clk); 2968 goto unprepare_core_clk; 2969 } 2970 2971 nfc->reg_clk = NULL; 2972 } 2973 2974 ret = clk_prepare_enable(nfc->reg_clk); 2975 if (ret) 2976 goto unprepare_core_clk; 2977 2978 marvell_nfc_disable_int(nfc, NDCR_ALL_INT); 2979 marvell_nfc_clear_int(nfc, NDCR_ALL_INT); 2980 ret = devm_request_irq(dev, irq, marvell_nfc_isr, 2981 0, "marvell-nfc", nfc); 2982 if (ret) 2983 goto unprepare_reg_clk; 2984 2985 /* Get NAND controller capabilities */ 2986 if (pdev->id_entry) 2987 nfc->caps = (void *)pdev->id_entry->driver_data; 2988 else 2989 nfc->caps = of_device_get_match_data(&pdev->dev); 2990 2991 if (!nfc->caps) { 2992 dev_err(dev, "Could not retrieve NFC caps\n"); 2993 ret = -EINVAL; 2994 goto unprepare_reg_clk; 2995 } 2996 2997 /* Init the controller and then probe the chips */ 2998 ret = marvell_nfc_init(nfc); 2999 if (ret) 3000 goto unprepare_reg_clk; 3001 3002 platform_set_drvdata(pdev, nfc); 3003 3004 ret = marvell_nand_chips_init(dev, nfc); 3005 if (ret) 3006 goto release_dma; 3007 3008 return 0; 3009 3010release_dma: 3011 if (nfc->use_dma) 3012 dma_release_channel(nfc->dma_chan); 3013unprepare_reg_clk: 3014 clk_disable_unprepare(nfc->reg_clk); 3015unprepare_core_clk: 3016 clk_disable_unprepare(nfc->core_clk); 3017 3018 return ret; 3019} 3020 3021static int marvell_nfc_remove(struct platform_device *pdev) 3022{ 3023 struct marvell_nfc *nfc = platform_get_drvdata(pdev); 3024 3025 marvell_nand_chips_cleanup(nfc); 3026 3027 if (nfc->use_dma) { 3028 dmaengine_terminate_all(nfc->dma_chan); 3029 dma_release_channel(nfc->dma_chan); 3030 } 3031 3032 clk_disable_unprepare(nfc->reg_clk); 3033 clk_disable_unprepare(nfc->core_clk); 3034 3035 return 0; 3036} 3037 3038static int __maybe_unused marvell_nfc_suspend(struct device *dev) 3039{ 3040 struct marvell_nfc *nfc = dev_get_drvdata(dev); 3041 struct marvell_nand_chip *chip; 3042 3043 list_for_each_entry(chip, &nfc->chips, node) 3044 marvell_nfc_wait_ndrun(&chip->chip); 3045 3046 clk_disable_unprepare(nfc->reg_clk); 3047 clk_disable_unprepare(nfc->core_clk); 3048 3049 return 0; 3050} 3051 3052static int __maybe_unused marvell_nfc_resume(struct device *dev) 3053{ 3054 struct marvell_nfc *nfc = dev_get_drvdata(dev); 3055 int ret; 3056 3057 ret = clk_prepare_enable(nfc->core_clk); 3058 if (ret < 0) 3059 return ret; 3060 3061 ret = clk_prepare_enable(nfc->reg_clk); 3062 if (ret < 0) { 3063 clk_disable_unprepare(nfc->core_clk); 3064 return ret; 3065 } 3066 3067 /* 3068 * Reset nfc->selected_chip so the next command will cause the timing 3069 * registers to be restored in marvell_nfc_select_target(). 3070 */ 3071 nfc->selected_chip = NULL; 3072 3073 /* Reset registers that have lost their contents */ 3074 marvell_nfc_reset(nfc); 3075 3076 return 0; 3077} 3078 3079static const struct dev_pm_ops marvell_nfc_pm_ops = { 3080 SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume) 3081}; 3082 3083static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = { 3084 .max_cs_nb = 4, 3085 .max_rb_nb = 2, 3086 .need_system_controller = true, 3087 .is_nfcv2 = true, 3088}; 3089 3090static const struct marvell_nfc_caps marvell_armada370_nfc_caps = { 3091 .max_cs_nb = 4, 3092 .max_rb_nb = 2, 3093 .is_nfcv2 = true, 3094}; 3095 3096static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = { 3097 .max_cs_nb = 2, 3098 .max_rb_nb = 1, 3099 .use_dma = true, 3100}; 3101 3102static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = { 3103 .max_cs_nb = 4, 3104 .max_rb_nb = 2, 3105 .need_system_controller = true, 3106 .legacy_of_bindings = true, 3107 .is_nfcv2 = true, 3108}; 3109 3110static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = { 3111 .max_cs_nb = 4, 3112 .max_rb_nb = 2, 3113 .legacy_of_bindings = true, 3114 .is_nfcv2 = true, 3115}; 3116 3117static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = { 3118 .max_cs_nb = 2, 3119 .max_rb_nb = 1, 3120 .legacy_of_bindings = true, 3121 .use_dma = true, 3122}; 3123 3124static const struct platform_device_id marvell_nfc_platform_ids[] = { 3125 { 3126 .name = "pxa3xx-nand", 3127 .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps, 3128 }, 3129 { /* sentinel */ }, 3130}; 3131MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids); 3132 3133static const struct of_device_id marvell_nfc_of_ids[] = { 3134 { 3135 .compatible = "marvell,armada-8k-nand-controller", 3136 .data = &marvell_armada_8k_nfc_caps, 3137 }, 3138 { 3139 .compatible = "marvell,armada370-nand-controller", 3140 .data = &marvell_armada370_nfc_caps, 3141 }, 3142 { 3143 .compatible = "marvell,pxa3xx-nand-controller", 3144 .data = &marvell_pxa3xx_nfc_caps, 3145 }, 3146 /* Support for old/deprecated bindings: */ 3147 { 3148 .compatible = "marvell,armada-8k-nand", 3149 .data = &marvell_armada_8k_nfc_legacy_caps, 3150 }, 3151 { 3152 .compatible = "marvell,armada370-nand", 3153 .data = &marvell_armada370_nfc_legacy_caps, 3154 }, 3155 { 3156 .compatible = "marvell,pxa3xx-nand", 3157 .data = &marvell_pxa3xx_nfc_legacy_caps, 3158 }, 3159 { /* sentinel */ }, 3160}; 3161MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids); 3162 3163static struct platform_driver marvell_nfc_driver = { 3164 .driver = { 3165 .name = "marvell-nfc", 3166 .of_match_table = marvell_nfc_of_ids, 3167 .pm = &marvell_nfc_pm_ops, 3168 }, 3169 .id_table = marvell_nfc_platform_ids, 3170 .probe = marvell_nfc_probe, 3171 .remove = marvell_nfc_remove, 3172}; 3173module_platform_driver(marvell_nfc_driver); 3174 3175MODULE_LICENSE("GPL"); 3176MODULE_DESCRIPTION("Marvell NAND controller driver"); 3177