1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Marvell NAND flash controller driver
4  *
5  * Copyright (C) 2017 Marvell
6  * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
7  *
8  *
9  * This NAND controller driver handles two versions of the hardware,
10  * one is called NFCv1 and is available on PXA SoCs and the other is
11  * called NFCv2 and is available on Armada SoCs.
12  *
13  * The main visible difference is that NFCv1 only has Hamming ECC
14  * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA
15  * is not used with NFCv2.
16  *
17  * The ECC layouts are depicted in details in Marvell AN-379, but here
18  * is a brief description.
19  *
20  * When using Hamming, the data is split in 512B chunks (either 1, 2
21  * or 4) and each chunk will have its own ECC "digest" of 6B at the
22  * beginning of the OOB area and eventually the remaining free OOB
23  * bytes (also called "spare" bytes in the driver). This engine
24  * corrects up to 1 bit per chunk and detects reliably an error if
25  * there are at most 2 bitflips. Here is the page layout used by the
26  * controller when Hamming is chosen:
27  *
28  * +-------------------------------------------------------------+
29  * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes |
30  * +-------------------------------------------------------------+
31  *
32  * When using the BCH engine, there are N identical (data + free OOB +
33  * ECC) sections and potentially an extra one to deal with
34  * configurations where the chosen (data + free OOB + ECC) sizes do
35  * not align with the page (data + OOB) size. ECC bytes are always
36  * 30B per ECC chunk. Here is the page layout used by the controller
37  * when BCH is chosen:
38  *
39  * +-----------------------------------------
40  * | Data 1 | Free OOB bytes 1 | ECC 1 | ...
41  * +-----------------------------------------
42  *
43  *      -------------------------------------------
44  *       ... | Data N | Free OOB bytes N | ECC N |
45  *      -------------------------------------------
46  *
47  *           --------------------------------------------+
48  *            Last Data | Last Free OOB bytes | Last ECC |
49  *           --------------------------------------------+
50  *
51  * In both cases, the layout seen by the user is always: all data
52  * first, then all free OOB bytes and finally all ECC bytes. With BCH,
53  * ECC bytes are 30B long and are padded with 0xFF to align on 32
54  * bytes.
55  *
56  * The controller has certain limitations that are handled by the
57  * driver:
58  *   - It can only read 2k at a time. To overcome this limitation, the
59  *     driver issues data cycles on the bus, without issuing new
60  *     CMD + ADDR cycles. The Marvell term is "naked" operations.
61  *   - The ECC strength in BCH mode cannot be tuned. It is fixed 16
62  *     bits. What can be tuned is the ECC block size as long as it
63  *     stays between 512B and 2kiB. It's usually chosen based on the
64  *     chip ECC requirements. For instance, using 2kiB ECC chunks
65  *     provides 4b/512B correctability.
66  *   - The controller will always treat data bytes, free OOB bytes
67  *     and ECC bytes in that order, no matter what the real layout is
68  *     (which is usually all data then all OOB bytes). The
69  *     marvell_nfc_layouts array below contains the currently
70  *     supported layouts.
71  *   - Because of these weird layouts, the Bad Block Markers can be
72  *     located in data section. In this case, the NAND_BBT_NO_OOB_BBM
73  *     option must be set to prevent scanning/writing bad block
74  *     markers.
75  */
76 
77 #include <linux/module.h>
78 #include <linux/clk.h>
79 #include <linux/mtd/rawnand.h>
80 #include <linux/of_platform.h>
81 #include <linux/iopoll.h>
82 #include <linux/interrupt.h>
83 #include <linux/slab.h>
84 #include <linux/mfd/syscon.h>
85 #include <linux/regmap.h>
86 #include <asm/unaligned.h>
87 
88 #include <linux/dmaengine.h>
89 #include <linux/dma-mapping.h>
90 #include <linux/dma/pxa-dma.h>
91 #include <linux/platform_data/mtd-nand-pxa3xx.h>
92 
93 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
94 #define FIFO_DEPTH		8
95 #define FIFO_REP(x)		(x / sizeof(u32))
96 #define BCH_SEQ_READS		(32 / FIFO_DEPTH)
97 /* NFC does not support transfers of larger chunks at a time */
98 #define MAX_CHUNK_SIZE		2112
99 /* NFCv1 cannot read more that 7 bytes of ID */
100 #define NFCV1_READID_LEN	7
101 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
102 #define POLL_PERIOD		0
103 #define POLL_TIMEOUT		100000
104 /* Interrupt maximum wait period in ms */
105 #define IRQ_TIMEOUT		1000
106 /* Latency in clock cycles between SoC pins and NFC logic */
107 #define MIN_RD_DEL_CNT		3
108 /* Maximum number of contiguous address cycles */
109 #define MAX_ADDRESS_CYC_NFCV1	5
110 #define MAX_ADDRESS_CYC_NFCV2	7
111 /* System control registers/bits to enable the NAND controller on some SoCs */
112 #define GENCONF_SOC_DEVICE_MUX	0x208
113 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
114 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
115 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
116 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
117 #define GENCONF_CLK_GATING_CTRL	0x220
118 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
119 #define GENCONF_ND_CLK_CTRL	0x700
120 #define GENCONF_ND_CLK_CTRL_EN	BIT(0)
121 
122 /* NAND controller data flash control register */
123 #define NDCR			0x00
124 #define NDCR_ALL_INT		GENMASK(11, 0)
125 #define NDCR_CS1_CMDDM		BIT(7)
126 #define NDCR_CS0_CMDDM		BIT(8)
127 #define NDCR_RDYM		BIT(11)
128 #define NDCR_ND_ARB_EN		BIT(12)
129 #define NDCR_RA_START		BIT(15)
130 #define NDCR_RD_ID_CNT(x)	(min_t(unsigned int, x, 0x7) << 16)
131 #define NDCR_PAGE_SZ(x)		(x >= 2048 ? BIT(24) : 0)
132 #define NDCR_DWIDTH_M		BIT(26)
133 #define NDCR_DWIDTH_C		BIT(27)
134 #define NDCR_ND_RUN		BIT(28)
135 #define NDCR_DMA_EN		BIT(29)
136 #define NDCR_ECC_EN		BIT(30)
137 #define NDCR_SPARE_EN		BIT(31)
138 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
139 				    NDCR_DWIDTH_M | NDCR_DWIDTH_C))
140 
141 /* NAND interface timing parameter 0 register */
142 #define NDTR0			0x04
143 #define NDTR0_TRP(x)		((min_t(unsigned int, x, 0xF) & 0x7) << 0)
144 #define NDTR0_TRH(x)		(min_t(unsigned int, x, 0x7) << 3)
145 #define NDTR0_ETRP(x)		((min_t(unsigned int, x, 0xF) & 0x8) << 3)
146 #define NDTR0_SEL_NRE_EDGE	BIT(7)
147 #define NDTR0_TWP(x)		(min_t(unsigned int, x, 0x7) << 8)
148 #define NDTR0_TWH(x)		(min_t(unsigned int, x, 0x7) << 11)
149 #define NDTR0_TCS(x)		(min_t(unsigned int, x, 0x7) << 16)
150 #define NDTR0_TCH(x)		(min_t(unsigned int, x, 0x7) << 19)
151 #define NDTR0_RD_CNT_DEL(x)	(min_t(unsigned int, x, 0xF) << 22)
152 #define NDTR0_SELCNTR		BIT(26)
153 #define NDTR0_TADL(x)		(min_t(unsigned int, x, 0x1F) << 27)
154 
155 /* NAND interface timing parameter 1 register */
156 #define NDTR1			0x0C
157 #define NDTR1_TAR(x)		(min_t(unsigned int, x, 0xF) << 0)
158 #define NDTR1_TWHR(x)		(min_t(unsigned int, x, 0xF) << 4)
159 #define NDTR1_TRHW(x)		(min_t(unsigned int, x / 16, 0x3) << 8)
160 #define NDTR1_PRESCALE		BIT(14)
161 #define NDTR1_WAIT_MODE		BIT(15)
162 #define NDTR1_TR(x)		(min_t(unsigned int, x, 0xFFFF) << 16)
163 
164 /* NAND controller status register */
165 #define NDSR			0x14
166 #define NDSR_WRCMDREQ		BIT(0)
167 #define NDSR_RDDREQ		BIT(1)
168 #define NDSR_WRDREQ		BIT(2)
169 #define NDSR_CORERR		BIT(3)
170 #define NDSR_UNCERR		BIT(4)
171 #define NDSR_CMDD(cs)		BIT(8 - cs)
172 #define NDSR_RDY(rb)		BIT(11 + rb)
173 #define NDSR_ERRCNT(x)		((x >> 16) & 0x1F)
174 
175 /* NAND ECC control register */
176 #define NDECCCTRL		0x28
177 #define NDECCCTRL_BCH_EN	BIT(0)
178 
179 /* NAND controller data buffer register */
180 #define NDDB			0x40
181 
182 /* NAND controller command buffer 0 register */
183 #define NDCB0			0x48
184 #define NDCB0_CMD1(x)		((x & 0xFF) << 0)
185 #define NDCB0_CMD2(x)		((x & 0xFF) << 8)
186 #define NDCB0_ADDR_CYC(x)	((x & 0x7) << 16)
187 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
188 #define NDCB0_DBC		BIT(19)
189 #define NDCB0_CMD_TYPE(x)	((x & 0x7) << 21)
190 #define NDCB0_CSEL		BIT(24)
191 #define NDCB0_RDY_BYP		BIT(27)
192 #define NDCB0_LEN_OVRD		BIT(28)
193 #define NDCB0_CMD_XTYPE(x)	((x & 0x7) << 29)
194 
195 /* NAND controller command buffer 1 register */
196 #define NDCB1			0x4C
197 #define NDCB1_COLS(x)		((x & 0xFFFF) << 0)
198 #define NDCB1_ADDRS_PAGE(x)	(x << 16)
199 
200 /* NAND controller command buffer 2 register */
201 #define NDCB2			0x50
202 #define NDCB2_ADDR5_PAGE(x)	(((x >> 16) & 0xFF) << 0)
203 #define NDCB2_ADDR5_CYC(x)	((x & 0xFF) << 0)
204 
205 /* NAND controller command buffer 3 register */
206 #define NDCB3			0x54
207 #define NDCB3_ADDR6_CYC(x)	((x & 0xFF) << 16)
208 #define NDCB3_ADDR7_CYC(x)	((x & 0xFF) << 24)
209 
210 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */
211 #define TYPE_READ		0
212 #define TYPE_WRITE		1
213 #define TYPE_ERASE		2
214 #define TYPE_READ_ID		3
215 #define TYPE_STATUS		4
216 #define TYPE_RESET		5
217 #define TYPE_NAKED_CMD		6
218 #define TYPE_NAKED_ADDR		7
219 #define TYPE_MASK		7
220 #define XTYPE_MONOLITHIC_RW	0
221 #define XTYPE_LAST_NAKED_RW	1
222 #define XTYPE_FINAL_COMMAND	3
223 #define XTYPE_READ		4
224 #define XTYPE_WRITE_DISPATCH	4
225 #define XTYPE_NAKED_RW		5
226 #define XTYPE_COMMAND_DISPATCH	6
227 #define XTYPE_MASK		7
228 
229 /**
230  * struct marvell_hw_ecc_layout - layout of Marvell ECC
231  *
232  * Marvell ECC engine works differently than the others, in order to limit the
233  * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
234  * per subpage, and depending on a the desired strength needed by the NAND chip,
235  * a particular layout mixing data/spare/ecc is defined, with a possible last
236  * chunk smaller that the others.
237  *
238  * @writesize:		Full page size on which the layout applies
239  * @chunk:		Desired ECC chunk size on which the layout applies
240  * @strength:		Desired ECC strength (per chunk size bytes) on which the
241  *			layout applies
242  * @nchunks:		Total number of chunks
243  * @full_chunk_cnt:	Number of full-sized chunks, which is the number of
244  *			repetitions of the pattern:
245  *			(data_bytes + spare_bytes + ecc_bytes).
246  * @data_bytes:		Number of data bytes per chunk
247  * @spare_bytes:	Number of spare bytes per chunk
248  * @ecc_bytes:		Number of ecc bytes per chunk
249  * @last_data_bytes:	Number of data bytes in the last chunk
250  * @last_spare_bytes:	Number of spare bytes in the last chunk
251  * @last_ecc_bytes:	Number of ecc bytes in the last chunk
252  */
253 struct marvell_hw_ecc_layout {
254 	/* Constraints */
255 	int writesize;
256 	int chunk;
257 	int strength;
258 	/* Corresponding layout */
259 	int nchunks;
260 	int full_chunk_cnt;
261 	int data_bytes;
262 	int spare_bytes;
263 	int ecc_bytes;
264 	int last_data_bytes;
265 	int last_spare_bytes;
266 	int last_ecc_bytes;
267 };
268 
269 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb)	\
270 	{								\
271 		.writesize = ws,					\
272 		.chunk = dc,						\
273 		.strength = ds,						\
274 		.nchunks = nc,						\
275 		.full_chunk_cnt = fcc,					\
276 		.data_bytes = db,					\
277 		.spare_bytes = sb,					\
278 		.ecc_bytes = eb,					\
279 		.last_data_bytes = ldb,					\
280 		.last_spare_bytes = lsb,				\
281 		.last_ecc_bytes = leb,					\
282 	}
283 
284 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
285 static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
286 	MARVELL_LAYOUT(  512,   512,  1,  1,  1,  512,  8,  8,  0,  0,  0),
287 	MARVELL_LAYOUT( 2048,   512,  1,  1,  1, 2048, 40, 24,  0,  0,  0),
288 	MARVELL_LAYOUT( 2048,   512,  4,  1,  1, 2048, 32, 30,  0,  0,  0),
289 	MARVELL_LAYOUT( 2048,   512,  8,  2,  1, 1024,  0, 30,1024,32, 30),
290 	MARVELL_LAYOUT( 4096,   512,  4,  2,  2, 2048, 32, 30,  0,  0,  0),
291 	MARVELL_LAYOUT( 4096,   512,  8,  5,  4, 1024,  0, 30,  0, 64, 30),
292 	MARVELL_LAYOUT( 8192,   512,  4,  4,  4, 2048,  0, 30,  0,  0,  0),
293 	MARVELL_LAYOUT( 8192,   512,  8,  9,  8, 1024,  0, 30,  0, 160, 30),
294 };
295 
296 /**
297  * struct marvell_nand_chip_sel - CS line description
298  *
299  * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
300  * is made by a field in NDCB0 register, and in another field in NDCB2 register.
301  * The datasheet describes the logic with an error: ADDR5 field is once
302  * declared at the beginning of NDCB2, and another time at its end. Because the
303  * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
304  * to use the last bit of this field instead of the first ones.
305  *
306  * @cs:			Wanted CE lane.
307  * @ndcb0_csel:		Value of the NDCB0 register with or without the flag
308  *			selecting the wanted CE lane. This is set once when
309  *			the Device Tree is probed.
310  * @rb:			Ready/Busy pin for the flash chip
311  */
312 struct marvell_nand_chip_sel {
313 	unsigned int cs;
314 	u32 ndcb0_csel;
315 	unsigned int rb;
316 };
317 
318 /**
319  * struct marvell_nand_chip - stores NAND chip device related information
320  *
321  * @chip:		Base NAND chip structure
322  * @node:		Used to store NAND chips into a list
323  * @layout:		NAND layout when using hardware ECC
324  * @ndcr:		Controller register value for this NAND chip
325  * @ndtr0:		Timing registers 0 value for this NAND chip
326  * @ndtr1:		Timing registers 1 value for this NAND chip
327  * @addr_cyc:		Amount of cycles needed to pass column address
328  * @selected_die:	Current active CS
329  * @nsels:		Number of CS lines required by the NAND chip
330  * @sels:		Array of CS lines descriptions
331  */
332 struct marvell_nand_chip {
333 	struct nand_chip chip;
334 	struct list_head node;
335 	const struct marvell_hw_ecc_layout *layout;
336 	u32 ndcr;
337 	u32 ndtr0;
338 	u32 ndtr1;
339 	int addr_cyc;
340 	int selected_die;
341 	unsigned int nsels;
342 	struct marvell_nand_chip_sel sels[];
343 };
344 
to_marvell_nand(struct nand_chip *chip)345 static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
346 {
347 	return container_of(chip, struct marvell_nand_chip, chip);
348 }
349 
to_nand_sel(struct marvell_nand_chip *nand)350 static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
351 							*nand)
352 {
353 	return &nand->sels[nand->selected_die];
354 }
355 
356 /**
357  * struct marvell_nfc_caps - NAND controller capabilities for distinction
358  *                           between compatible strings
359  *
360  * @max_cs_nb:		Number of Chip Select lines available
361  * @max_rb_nb:		Number of Ready/Busy lines available
362  * @need_system_controller: Indicates if the SoC needs to have access to the
363  *                      system controller (ie. to enable the NAND controller)
364  * @legacy_of_bindings:	Indicates if DT parsing must be done using the old
365  *			fashion way
366  * @is_nfcv2:		NFCv2 has numerous enhancements compared to NFCv1, ie.
367  *			BCH error detection and correction algorithm,
368  *			NDCB3 register has been added
369  * @use_dma:		Use dma for data transfers
370  */
371 struct marvell_nfc_caps {
372 	unsigned int max_cs_nb;
373 	unsigned int max_rb_nb;
374 	bool need_system_controller;
375 	bool legacy_of_bindings;
376 	bool is_nfcv2;
377 	bool use_dma;
378 };
379 
380 /**
381  * struct marvell_nfc - stores Marvell NAND controller information
382  *
383  * @controller:		Base controller structure
384  * @dev:		Parent device (used to print error messages)
385  * @regs:		NAND controller registers
386  * @core_clk:		Core clock
387  * @reg_clk:		Registers clock
388  * @complete:		Completion object to wait for NAND controller events
389  * @assigned_cs:	Bitmask describing already assigned CS lines
390  * @chips:		List containing all the NAND chips attached to
391  *			this NAND controller
392  * @selected_chip:	Currently selected target chip
393  * @caps:		NAND controller capabilities for each compatible string
394  * @use_dma:		Whetner DMA is used
395  * @dma_chan:		DMA channel (NFCv1 only)
396  * @dma_buf:		32-bit aligned buffer for DMA transfers (NFCv1 only)
397  */
398 struct marvell_nfc {
399 	struct nand_controller controller;
400 	struct device *dev;
401 	void __iomem *regs;
402 	struct clk *core_clk;
403 	struct clk *reg_clk;
404 	struct completion complete;
405 	unsigned long assigned_cs;
406 	struct list_head chips;
407 	struct nand_chip *selected_chip;
408 	const struct marvell_nfc_caps *caps;
409 
410 	/* DMA (NFCv1 only) */
411 	bool use_dma;
412 	struct dma_chan *dma_chan;
413 	u8 *dma_buf;
414 };
415 
to_marvell_nfc(struct nand_controller *ctrl)416 static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl)
417 {
418 	return container_of(ctrl, struct marvell_nfc, controller);
419 }
420 
421 /**
422  * struct marvell_nfc_timings - NAND controller timings expressed in NAND
423  *                              Controller clock cycles
424  *
425  * @tRP:		ND_nRE pulse width
426  * @tRH:		ND_nRE high duration
427  * @tWP:		ND_nWE pulse time
428  * @tWH:		ND_nWE high duration
429  * @tCS:		Enable signal setup time
430  * @tCH:		Enable signal hold time
431  * @tADL:		Address to write data delay
432  * @tAR:		ND_ALE low to ND_nRE low delay
433  * @tWHR:		ND_nWE high to ND_nRE low for status read
434  * @tRHW:		ND_nRE high duration, read to write delay
435  * @tR:			ND_nWE high to ND_nRE low for read
436  */
437 struct marvell_nfc_timings {
438 	/* NDTR0 fields */
439 	unsigned int tRP;
440 	unsigned int tRH;
441 	unsigned int tWP;
442 	unsigned int tWH;
443 	unsigned int tCS;
444 	unsigned int tCH;
445 	unsigned int tADL;
446 	/* NDTR1 fields */
447 	unsigned int tAR;
448 	unsigned int tWHR;
449 	unsigned int tRHW;
450 	unsigned int tR;
451 };
452 
453 /**
454  * Derives a duration in numbers of clock cycles.
455  *
456  * @ps: Duration in pico-seconds
457  * @period_ns:  Clock period in nano-seconds
458  *
459  * Convert the duration in nano-seconds, then divide by the period and
460  * return the number of clock periods.
461  */
462 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
463 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
464 						     period_ns))
465 
466 /**
467  * struct marvell_nfc_op - filled during the parsing of the ->exec_op()
468  *                         subop subset of instructions.
469  *
470  * @ndcb:		Array of values written to NDCBx registers
471  * @cle_ale_delay_ns:	Optional delay after the last CMD or ADDR cycle
472  * @rdy_timeout_ms:	Timeout for waits on Ready/Busy pin
473  * @rdy_delay_ns:	Optional delay after waiting for the RB pin
474  * @data_delay_ns:	Optional delay after the data xfer
475  * @data_instr_idx:	Index of the data instruction in the subop
476  * @data_instr:		Pointer to the data instruction in the subop
477  */
478 struct marvell_nfc_op {
479 	u32 ndcb[4];
480 	unsigned int cle_ale_delay_ns;
481 	unsigned int rdy_timeout_ms;
482 	unsigned int rdy_delay_ns;
483 	unsigned int data_delay_ns;
484 	unsigned int data_instr_idx;
485 	const struct nand_op_instr *data_instr;
486 };
487 
488 /*
489  * Internal helper to conditionnally apply a delay (from the above structure,
490  * most of the time).
491  */
cond_delay(unsigned int ns)492 static void cond_delay(unsigned int ns)
493 {
494 	if (!ns)
495 		return;
496 
497 	if (ns < 10000)
498 		ndelay(ns);
499 	else
500 		udelay(DIV_ROUND_UP(ns, 1000));
501 }
502 
503 /*
504  * The controller has many flags that could generate interrupts, most of them
505  * are disabled and polling is used. For the very slow signals, using interrupts
506  * may relax the CPU charge.
507  */
marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)508 static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
509 {
510 	u32 reg;
511 
512 	/* Writing 1 disables the interrupt */
513 	reg = readl_relaxed(nfc->regs + NDCR);
514 	writel_relaxed(reg | int_mask, nfc->regs + NDCR);
515 }
516 
marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)517 static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
518 {
519 	u32 reg;
520 
521 	/* Writing 0 enables the interrupt */
522 	reg = readl_relaxed(nfc->regs + NDCR);
523 	writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
524 }
525 
marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)526 static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
527 {
528 	u32 reg;
529 
530 	reg = readl_relaxed(nfc->regs + NDSR);
531 	writel_relaxed(int_mask, nfc->regs + NDSR);
532 
533 	return reg & int_mask;
534 }
535 
marvell_nfc_force_byte_access(struct nand_chip *chip, bool force_8bit)536 static void marvell_nfc_force_byte_access(struct nand_chip *chip,
537 					  bool force_8bit)
538 {
539 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
540 	u32 ndcr;
541 
542 	/*
543 	 * Callers of this function do not verify if the NAND is using a 16-bit
544 	 * an 8-bit bus for normal operations, so we need to take care of that
545 	 * here by leaving the configuration unchanged if the NAND does not have
546 	 * the NAND_BUSWIDTH_16 flag set.
547 	 */
548 	if (!(chip->options & NAND_BUSWIDTH_16))
549 		return;
550 
551 	ndcr = readl_relaxed(nfc->regs + NDCR);
552 
553 	if (force_8bit)
554 		ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
555 	else
556 		ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
557 
558 	writel_relaxed(ndcr, nfc->regs + NDCR);
559 }
560 
marvell_nfc_wait_ndrun(struct nand_chip *chip)561 static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
562 {
563 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
564 	u32 val;
565 	int ret;
566 
567 	/*
568 	 * The command is being processed, wait for the ND_RUN bit to be
569 	 * cleared by the NFC. If not, we must clear it by hand.
570 	 */
571 	ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
572 					 (val & NDCR_ND_RUN) == 0,
573 					 POLL_PERIOD, POLL_TIMEOUT);
574 	if (ret) {
575 		dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
576 		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
577 			       nfc->regs + NDCR);
578 		return ret;
579 	}
580 
581 	return 0;
582 }
583 
584 /*
585  * Any time a command has to be sent to the controller, the following sequence
586  * has to be followed:
587  * - call marvell_nfc_prepare_cmd()
588  *      -> activate the ND_RUN bit that will kind of 'start a job'
589  *      -> wait the signal indicating the NFC is waiting for a command
590  * - send the command (cmd and address cycles)
591  * - enventually send or receive the data
592  * - call marvell_nfc_end_cmd() with the corresponding flag
593  *      -> wait the flag to be triggered or cancel the job with a timeout
594  *
595  * The following helpers are here to factorize the code a bit so that
596  * specialized functions responsible for executing the actual NAND
597  * operations do not have to replicate the same code blocks.
598  */
marvell_nfc_prepare_cmd(struct nand_chip *chip)599 static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
600 {
601 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
602 	u32 ndcr, val;
603 	int ret;
604 
605 	/* Poll ND_RUN and clear NDSR before issuing any command */
606 	ret = marvell_nfc_wait_ndrun(chip);
607 	if (ret) {
608 		dev_err(nfc->dev, "Last operation did not succeed\n");
609 		return ret;
610 	}
611 
612 	ndcr = readl_relaxed(nfc->regs + NDCR);
613 	writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);
614 
615 	/* Assert ND_RUN bit and wait the NFC to be ready */
616 	writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
617 	ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
618 					 val & NDSR_WRCMDREQ,
619 					 POLL_PERIOD, POLL_TIMEOUT);
620 	if (ret) {
621 		dev_err(nfc->dev, "Timeout on WRCMDRE\n");
622 		return -ETIMEDOUT;
623 	}
624 
625 	/* Command may be written, clear WRCMDREQ status bit */
626 	writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
627 
628 	return 0;
629 }
630 
marvell_nfc_send_cmd(struct nand_chip *chip, struct marvell_nfc_op *nfc_op)631 static void marvell_nfc_send_cmd(struct nand_chip *chip,
632 				 struct marvell_nfc_op *nfc_op)
633 {
634 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
635 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
636 
637 	dev_dbg(nfc->dev, "\nNDCR:  0x%08x\n"
638 		"NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
639 		(u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
640 		nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);
641 
642 	writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
643 		       nfc->regs + NDCB0);
644 	writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
645 	writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
646 
647 	/*
648 	 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
649 	 * fields are used (only available on NFCv2).
650 	 */
651 	if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
652 	    NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
653 		if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
654 			writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
655 	}
656 }
657 
marvell_nfc_end_cmd(struct nand_chip *chip, int flag, const char *label)658 static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
659 			       const char *label)
660 {
661 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
662 	u32 val;
663 	int ret;
664 
665 	ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
666 					 val & flag,
667 					 POLL_PERIOD, POLL_TIMEOUT);
668 
669 	if (ret) {
670 		dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
671 			label, val);
672 		if (nfc->dma_chan)
673 			dmaengine_terminate_all(nfc->dma_chan);
674 		return ret;
675 	}
676 
677 	/*
678 	 * DMA function uses this helper to poll on CMDD bits without wanting
679 	 * them to be cleared.
680 	 */
681 	if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
682 		return 0;
683 
684 	writel_relaxed(flag, nfc->regs + NDSR);
685 
686 	return 0;
687 }
688 
marvell_nfc_wait_cmdd(struct nand_chip *chip)689 static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
690 {
691 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
692 	int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
693 
694 	return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
695 }
696 
marvell_nfc_poll_status(struct marvell_nfc *nfc, u32 mask, u32 expected_val, unsigned long timeout_ms)697 static int marvell_nfc_poll_status(struct marvell_nfc *nfc, u32 mask,
698 				   u32 expected_val, unsigned long timeout_ms)
699 {
700 	unsigned long limit;
701 	u32 st;
702 
703 	limit = jiffies + msecs_to_jiffies(timeout_ms);
704 	do {
705 		st = readl_relaxed(nfc->regs + NDSR);
706 		if (st & NDSR_RDY(1))
707 			st |= NDSR_RDY(0);
708 
709 		if ((st & mask) == expected_val)
710 			return 0;
711 
712 		cpu_relax();
713 	} while (time_after(limit, jiffies));
714 
715 	return -ETIMEDOUT;
716 }
717 
marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)718 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
719 {
720 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
721 	struct mtd_info *mtd = nand_to_mtd(chip);
722 	u32 pending;
723 	int ret;
724 
725 	/* Timeout is expressed in ms */
726 	if (!timeout_ms)
727 		timeout_ms = IRQ_TIMEOUT;
728 
729 	if (mtd->oops_panic_write) {
730 		ret = marvell_nfc_poll_status(nfc, NDSR_RDY(0),
731 					      NDSR_RDY(0),
732 					      timeout_ms);
733 	} else {
734 		init_completion(&nfc->complete);
735 
736 		marvell_nfc_enable_int(nfc, NDCR_RDYM);
737 		ret = wait_for_completion_timeout(&nfc->complete,
738 						  msecs_to_jiffies(timeout_ms));
739 		marvell_nfc_disable_int(nfc, NDCR_RDYM);
740 	}
741 	pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
742 
743 	/*
744 	 * In case the interrupt was not served in the required time frame,
745 	 * check if the ISR was not served or if something went actually wrong.
746 	 */
747 	if (!ret && !pending) {
748 		dev_err(nfc->dev, "Timeout waiting for RB signal\n");
749 		return -ETIMEDOUT;
750 	}
751 
752 	return 0;
753 }
754 
marvell_nfc_select_target(struct nand_chip *chip, unsigned int die_nr)755 static void marvell_nfc_select_target(struct nand_chip *chip,
756 				      unsigned int die_nr)
757 {
758 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
759 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
760 	u32 ndcr_generic;
761 
762 	/*
763 	 * Reset the NDCR register to a clean state for this particular chip,
764 	 * also clear ND_RUN bit.
765 	 */
766 	ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
767 		       NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
768 	writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);
769 
770 	/* Also reset the interrupt status register */
771 	marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
772 
773 	if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
774 		return;
775 
776 	writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
777 	writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
778 
779 	nfc->selected_chip = chip;
780 	marvell_nand->selected_die = die_nr;
781 }
782 
marvell_nfc_isr(int irq, void *dev_id)783 static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
784 {
785 	struct marvell_nfc *nfc = dev_id;
786 	u32 st = readl_relaxed(nfc->regs + NDSR);
787 	u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
788 
789 	/*
790 	 * RDY interrupt mask is one bit in NDCR while there are two status
791 	 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
792 	 */
793 	if (st & NDSR_RDY(1))
794 		st |= NDSR_RDY(0);
795 
796 	if (!(st & ien))
797 		return IRQ_NONE;
798 
799 	marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
800 
801 	if (st & (NDSR_RDY(0) | NDSR_RDY(1)))
802 		complete(&nfc->complete);
803 
804 	return IRQ_HANDLED;
805 }
806 
807 /* HW ECC related functions */
marvell_nfc_enable_hw_ecc(struct nand_chip *chip)808 static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
809 {
810 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
811 	u32 ndcr = readl_relaxed(nfc->regs + NDCR);
812 
813 	if (!(ndcr & NDCR_ECC_EN)) {
814 		writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);
815 
816 		/*
817 		 * When enabling BCH, set threshold to 0 to always know the
818 		 * number of corrected bitflips.
819 		 */
820 		if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
821 			writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
822 	}
823 }
824 
marvell_nfc_disable_hw_ecc(struct nand_chip *chip)825 static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
826 {
827 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
828 	u32 ndcr = readl_relaxed(nfc->regs + NDCR);
829 
830 	if (ndcr & NDCR_ECC_EN) {
831 		writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
832 		if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
833 			writel_relaxed(0, nfc->regs + NDECCCTRL);
834 	}
835 }
836 
837 /* DMA related helpers */
marvell_nfc_enable_dma(struct marvell_nfc *nfc)838 static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
839 {
840 	u32 reg;
841 
842 	reg = readl_relaxed(nfc->regs + NDCR);
843 	writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
844 }
845 
marvell_nfc_disable_dma(struct marvell_nfc *nfc)846 static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
847 {
848 	u32 reg;
849 
850 	reg = readl_relaxed(nfc->regs + NDCR);
851 	writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
852 }
853 
854 /* Read/write PIO/DMA accessors */
marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc, enum dma_data_direction direction, unsigned int len)855 static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
856 				     enum dma_data_direction direction,
857 				     unsigned int len)
858 {
859 	unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
860 	struct dma_async_tx_descriptor *tx;
861 	struct scatterlist sg;
862 	dma_cookie_t cookie;
863 	int ret;
864 
865 	marvell_nfc_enable_dma(nfc);
866 	/* Prepare the DMA transfer */
867 	sg_init_one(&sg, nfc->dma_buf, dma_len);
868 	dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
869 	tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
870 				     direction == DMA_FROM_DEVICE ?
871 				     DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
872 				     DMA_PREP_INTERRUPT);
873 	if (!tx) {
874 		dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
875 		return -ENXIO;
876 	}
877 
878 	/* Do the task and wait for it to finish */
879 	cookie = dmaengine_submit(tx);
880 	ret = dma_submit_error(cookie);
881 	if (ret)
882 		return -EIO;
883 
884 	dma_async_issue_pending(nfc->dma_chan);
885 	ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
886 	dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
887 	marvell_nfc_disable_dma(nfc);
888 	if (ret) {
889 		dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
890 			dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
891 		dmaengine_terminate_all(nfc->dma_chan);
892 		return -ETIMEDOUT;
893 	}
894 
895 	return 0;
896 }
897 
marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in, unsigned int len)898 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
899 					unsigned int len)
900 {
901 	unsigned int last_len = len % FIFO_DEPTH;
902 	unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
903 	int i;
904 
905 	for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
906 		ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));
907 
908 	if (last_len) {
909 		u8 tmp_buf[FIFO_DEPTH];
910 
911 		ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
912 		memcpy(in + last_full_offset, tmp_buf, last_len);
913 	}
914 
915 	return 0;
916 }
917 
marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out, unsigned int len)918 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
919 					 unsigned int len)
920 {
921 	unsigned int last_len = len % FIFO_DEPTH;
922 	unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
923 	int i;
924 
925 	for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
926 		iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));
927 
928 	if (last_len) {
929 		u8 tmp_buf[FIFO_DEPTH];
930 
931 		memcpy(tmp_buf, out + last_full_offset, last_len);
932 		iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
933 	}
934 
935 	return 0;
936 }
937 
marvell_nfc_check_empty_chunk(struct nand_chip *chip, u8 *data, int data_len, u8 *spare, int spare_len, u8 *ecc, int ecc_len, unsigned int *max_bitflips)938 static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
939 					  u8 *data, int data_len,
940 					  u8 *spare, int spare_len,
941 					  u8 *ecc, int ecc_len,
942 					  unsigned int *max_bitflips)
943 {
944 	struct mtd_info *mtd = nand_to_mtd(chip);
945 	int bf;
946 
947 	/*
948 	 * Blank pages (all 0xFF) that have not been written may be recognized
949 	 * as bad if bitflips occur, so whenever an uncorrectable error occurs,
950 	 * check if the entire page (with ECC bytes) is actually blank or not.
951 	 */
952 	if (!data)
953 		data_len = 0;
954 	if (!spare)
955 		spare_len = 0;
956 	if (!ecc)
957 		ecc_len = 0;
958 
959 	bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
960 					 spare, spare_len, chip->ecc.strength);
961 	if (bf < 0) {
962 		mtd->ecc_stats.failed++;
963 		return;
964 	}
965 
966 	/* Update the stats and max_bitflips */
967 	mtd->ecc_stats.corrected += bf;
968 	*max_bitflips = max_t(unsigned int, *max_bitflips, bf);
969 }
970 
971 /*
972  * Check if a chunk is correct or not according to the hardware ECC engine.
973  * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
974  * mtd->ecc_stats.failure is not, the function will instead return a non-zero
975  * value indicating that a check on the emptyness of the subpage must be
976  * performed before actually declaring the subpage as "corrupted".
977  */
marvell_nfc_hw_ecc_check_bitflips(struct nand_chip *chip, unsigned int *max_bitflips)978 static int marvell_nfc_hw_ecc_check_bitflips(struct nand_chip *chip,
979 					     unsigned int *max_bitflips)
980 {
981 	struct mtd_info *mtd = nand_to_mtd(chip);
982 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
983 	int bf = 0;
984 	u32 ndsr;
985 
986 	ndsr = readl_relaxed(nfc->regs + NDSR);
987 
988 	/* Check uncorrectable error flag */
989 	if (ndsr & NDSR_UNCERR) {
990 		writel_relaxed(ndsr, nfc->regs + NDSR);
991 
992 		/*
993 		 * Do not increment ->ecc_stats.failed now, instead, return a
994 		 * non-zero value to indicate that this chunk was apparently
995 		 * bad, and it should be check to see if it empty or not. If
996 		 * the chunk (with ECC bytes) is not declared empty, the calling
997 		 * function must increment the failure count.
998 		 */
999 		return -EBADMSG;
1000 	}
1001 
1002 	/* Check correctable error flag */
1003 	if (ndsr & NDSR_CORERR) {
1004 		writel_relaxed(ndsr, nfc->regs + NDSR);
1005 
1006 		if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
1007 			bf = NDSR_ERRCNT(ndsr);
1008 		else
1009 			bf = 1;
1010 	}
1011 
1012 	/* Update the stats and max_bitflips */
1013 	mtd->ecc_stats.corrected += bf;
1014 	*max_bitflips = max_t(unsigned int, *max_bitflips, bf);
1015 
1016 	return 0;
1017 }
1018 
1019 /* Hamming read helpers */
marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip, u8 *data_buf, u8 *oob_buf, bool raw, int page)1020 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
1021 					       u8 *data_buf, u8 *oob_buf,
1022 					       bool raw, int page)
1023 {
1024 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1025 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1026 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1027 	struct marvell_nfc_op nfc_op = {
1028 		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1029 			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1030 			   NDCB0_DBC |
1031 			   NDCB0_CMD1(NAND_CMD_READ0) |
1032 			   NDCB0_CMD2(NAND_CMD_READSTART),
1033 		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
1034 		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
1035 	};
1036 	unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1037 	int ret;
1038 
1039 	/* NFCv2 needs more information about the operation being executed */
1040 	if (nfc->caps->is_nfcv2)
1041 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1042 
1043 	ret = marvell_nfc_prepare_cmd(chip);
1044 	if (ret)
1045 		return ret;
1046 
1047 	marvell_nfc_send_cmd(chip, &nfc_op);
1048 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1049 				  "RDDREQ while draining FIFO (data/oob)");
1050 	if (ret)
1051 		return ret;
1052 
1053 	/*
1054 	 * Read the page then the OOB area. Unlike what is shown in current
1055 	 * documentation, spare bytes are protected by the ECC engine, and must
1056 	 * be at the beginning of the OOB area or running this driver on legacy
1057 	 * systems will prevent the discovery of the BBM/BBT.
1058 	 */
1059 	if (nfc->use_dma) {
1060 		marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
1061 					  lt->data_bytes + oob_bytes);
1062 		memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
1063 		memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
1064 	} else {
1065 		marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
1066 		marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
1067 	}
1068 
1069 	ret = marvell_nfc_wait_cmdd(chip);
1070 	return ret;
1071 }
1072 
marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_required, int page)1073 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf,
1074 						int oob_required, int page)
1075 {
1076 	marvell_nfc_select_target(chip, chip->cur_cs);
1077 	return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
1078 						   true, page);
1079 }
1080 
marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf, int oob_required, int page)1081 static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf,
1082 					    int oob_required, int page)
1083 {
1084 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1085 	unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1086 	int max_bitflips = 0, ret;
1087 	u8 *raw_buf;
1088 
1089 	marvell_nfc_select_target(chip, chip->cur_cs);
1090 	marvell_nfc_enable_hw_ecc(chip);
1091 	marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
1092 					    page);
1093 	ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips);
1094 	marvell_nfc_disable_hw_ecc(chip);
1095 
1096 	if (!ret)
1097 		return max_bitflips;
1098 
1099 	/*
1100 	 * When ECC failures are detected, check if the full page has been
1101 	 * written or not. Ignore the failure if it is actually empty.
1102 	 */
1103 	raw_buf = kmalloc(full_sz, GFP_KERNEL);
1104 	if (!raw_buf)
1105 		return -ENOMEM;
1106 
1107 	marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
1108 					    lt->data_bytes, true, page);
1109 	marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
1110 				      &max_bitflips);
1111 	kfree(raw_buf);
1112 
1113 	return max_bitflips;
1114 }
1115 
1116 /*
1117  * Spare area in Hamming layouts is not protected by the ECC engine (even if
1118  * it appears before the ECC bytes when reading), the ->read_oob_raw() function
1119  * also stands for ->read_oob().
1120  */
marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page)1121 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page)
1122 {
1123 	u8 *buf = nand_get_data_buf(chip);
1124 
1125 	marvell_nfc_select_target(chip, chip->cur_cs);
1126 	return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
1127 						   true, page);
1128 }
1129 
1130 /* Hamming write helpers */
marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip, const u8 *data_buf, const u8 *oob_buf, bool raw, int page)1131 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
1132 						const u8 *data_buf,
1133 						const u8 *oob_buf, bool raw,
1134 						int page)
1135 {
1136 	const struct nand_sdr_timings *sdr =
1137 		nand_get_sdr_timings(nand_get_interface_config(chip));
1138 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1139 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1140 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1141 	struct marvell_nfc_op nfc_op = {
1142 		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
1143 			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1144 			   NDCB0_CMD1(NAND_CMD_SEQIN) |
1145 			   NDCB0_CMD2(NAND_CMD_PAGEPROG) |
1146 			   NDCB0_DBC,
1147 		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
1148 		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
1149 	};
1150 	unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1151 	u8 status;
1152 	int ret;
1153 
1154 	/* NFCv2 needs more information about the operation being executed */
1155 	if (nfc->caps->is_nfcv2)
1156 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1157 
1158 	ret = marvell_nfc_prepare_cmd(chip);
1159 	if (ret)
1160 		return ret;
1161 
1162 	marvell_nfc_send_cmd(chip, &nfc_op);
1163 	ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1164 				  "WRDREQ while loading FIFO (data)");
1165 	if (ret)
1166 		return ret;
1167 
1168 	/* Write the page then the OOB area */
1169 	if (nfc->use_dma) {
1170 		memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
1171 		memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
1172 		marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
1173 					  lt->ecc_bytes + lt->spare_bytes);
1174 	} else {
1175 		marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
1176 		marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
1177 	}
1178 
1179 	ret = marvell_nfc_wait_cmdd(chip);
1180 	if (ret)
1181 		return ret;
1182 
1183 	ret = marvell_nfc_wait_op(chip,
1184 				  PSEC_TO_MSEC(sdr->tPROG_max));
1185 	if (ret)
1186 		return ret;
1187 
1188 	/* Check write status on the chip side */
1189 	ret = nand_status_op(chip, &status);
1190 	if (ret)
1191 		return ret;
1192 
1193 	if (status & NAND_STATUS_FAIL)
1194 		return -EIO;
1195 
1196 	return 0;
1197 }
1198 
marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip, const u8 *buf, int oob_required, int page)1199 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip,
1200 						 const u8 *buf,
1201 						 int oob_required, int page)
1202 {
1203 	marvell_nfc_select_target(chip, chip->cur_cs);
1204 	return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1205 						    true, page);
1206 }
1207 
marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip, const u8 *buf, int oob_required, int page)1208 static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip,
1209 					     const u8 *buf,
1210 					     int oob_required, int page)
1211 {
1212 	int ret;
1213 
1214 	marvell_nfc_select_target(chip, chip->cur_cs);
1215 	marvell_nfc_enable_hw_ecc(chip);
1216 	ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1217 						   false, page);
1218 	marvell_nfc_disable_hw_ecc(chip);
1219 
1220 	return ret;
1221 }
1222 
1223 /*
1224  * Spare area in Hamming layouts is not protected by the ECC engine (even if
1225  * it appears before the ECC bytes when reading), the ->write_oob_raw() function
1226  * also stands for ->write_oob().
1227  */
marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip, int page)1228 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip,
1229 						int page)
1230 {
1231 	struct mtd_info *mtd = nand_to_mtd(chip);
1232 	u8 *buf = nand_get_data_buf(chip);
1233 
1234 	memset(buf, 0xFF, mtd->writesize);
1235 
1236 	marvell_nfc_select_target(chip, chip->cur_cs);
1237 	return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1238 						    true, page);
1239 }
1240 
1241 /* BCH read helpers */
marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_required, int page)1242 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf,
1243 						int oob_required, int page)
1244 {
1245 	struct mtd_info *mtd = nand_to_mtd(chip);
1246 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1247 	u8 *oob = chip->oob_poi;
1248 	int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1249 	int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1250 		lt->last_spare_bytes;
1251 	int data_len = lt->data_bytes;
1252 	int spare_len = lt->spare_bytes;
1253 	int ecc_len = lt->ecc_bytes;
1254 	int chunk;
1255 
1256 	marvell_nfc_select_target(chip, chip->cur_cs);
1257 
1258 	if (oob_required)
1259 		memset(chip->oob_poi, 0xFF, mtd->oobsize);
1260 
1261 	nand_read_page_op(chip, page, 0, NULL, 0);
1262 
1263 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1264 		/* Update last chunk length */
1265 		if (chunk >= lt->full_chunk_cnt) {
1266 			data_len = lt->last_data_bytes;
1267 			spare_len = lt->last_spare_bytes;
1268 			ecc_len = lt->last_ecc_bytes;
1269 		}
1270 
1271 		/* Read data bytes*/
1272 		nand_change_read_column_op(chip, chunk * chunk_size,
1273 					   buf + (lt->data_bytes * chunk),
1274 					   data_len, false);
1275 
1276 		/* Read spare bytes */
1277 		nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
1278 				  spare_len, false, false);
1279 
1280 		/* Read ECC bytes */
1281 		nand_read_data_op(chip, oob + ecc_offset +
1282 				  (ALIGN(lt->ecc_bytes, 32) * chunk),
1283 				  ecc_len, false, false);
1284 	}
1285 
1286 	return 0;
1287 }
1288 
marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk, u8 *data, unsigned int data_len, u8 *spare, unsigned int spare_len, int page)1289 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
1290 					      u8 *data, unsigned int data_len,
1291 					      u8 *spare, unsigned int spare_len,
1292 					      int page)
1293 {
1294 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1295 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1296 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1297 	int i, ret;
1298 	struct marvell_nfc_op nfc_op = {
1299 		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1300 			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1301 			   NDCB0_LEN_OVRD,
1302 		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
1303 		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
1304 		.ndcb[3] = data_len + spare_len,
1305 	};
1306 
1307 	ret = marvell_nfc_prepare_cmd(chip);
1308 	if (ret)
1309 		return;
1310 
1311 	if (chunk == 0)
1312 		nfc_op.ndcb[0] |= NDCB0_DBC |
1313 				  NDCB0_CMD1(NAND_CMD_READ0) |
1314 				  NDCB0_CMD2(NAND_CMD_READSTART);
1315 
1316 	/*
1317 	 * Trigger the monolithic read on the first chunk, then naked read on
1318 	 * intermediate chunks and finally a last naked read on the last chunk.
1319 	 */
1320 	if (chunk == 0)
1321 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1322 	else if (chunk < lt->nchunks - 1)
1323 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1324 	else
1325 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1326 
1327 	marvell_nfc_send_cmd(chip, &nfc_op);
1328 
1329 	/*
1330 	 * According to the datasheet, when reading from NDDB
1331 	 * with BCH enabled, after each 32 bytes reads, we
1332 	 * have to make sure that the NDSR.RDDREQ bit is set.
1333 	 *
1334 	 * Drain the FIFO, 8 32-bit reads at a time, and skip
1335 	 * the polling on the last read.
1336 	 *
1337 	 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
1338 	 */
1339 	for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1340 		marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1341 				    "RDDREQ while draining FIFO (data)");
1342 		marvell_nfc_xfer_data_in_pio(nfc, data,
1343 					     FIFO_DEPTH * BCH_SEQ_READS);
1344 		data += FIFO_DEPTH * BCH_SEQ_READS;
1345 	}
1346 
1347 	for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1348 		marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1349 				    "RDDREQ while draining FIFO (OOB)");
1350 		marvell_nfc_xfer_data_in_pio(nfc, spare,
1351 					     FIFO_DEPTH * BCH_SEQ_READS);
1352 		spare += FIFO_DEPTH * BCH_SEQ_READS;
1353 	}
1354 }
1355 
marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip, u8 *buf, int oob_required, int page)1356 static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip,
1357 					    u8 *buf, int oob_required,
1358 					    int page)
1359 {
1360 	struct mtd_info *mtd = nand_to_mtd(chip);
1361 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1362 	int data_len = lt->data_bytes, spare_len = lt->spare_bytes;
1363 	u8 *data = buf, *spare = chip->oob_poi;
1364 	int max_bitflips = 0;
1365 	u32 failure_mask = 0;
1366 	int chunk, ret;
1367 
1368 	marvell_nfc_select_target(chip, chip->cur_cs);
1369 
1370 	/*
1371 	 * With BCH, OOB is not fully used (and thus not read entirely), not
1372 	 * expected bytes could show up at the end of the OOB buffer if not
1373 	 * explicitly erased.
1374 	 */
1375 	if (oob_required)
1376 		memset(chip->oob_poi, 0xFF, mtd->oobsize);
1377 
1378 	marvell_nfc_enable_hw_ecc(chip);
1379 
1380 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1381 		/* Update length for the last chunk */
1382 		if (chunk >= lt->full_chunk_cnt) {
1383 			data_len = lt->last_data_bytes;
1384 			spare_len = lt->last_spare_bytes;
1385 		}
1386 
1387 		/* Read the chunk and detect number of bitflips */
1388 		marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
1389 						  spare, spare_len, page);
1390 		ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips);
1391 		if (ret)
1392 			failure_mask |= BIT(chunk);
1393 
1394 		data += data_len;
1395 		spare += spare_len;
1396 	}
1397 
1398 	marvell_nfc_disable_hw_ecc(chip);
1399 
1400 	if (!failure_mask)
1401 		return max_bitflips;
1402 
1403 	/*
1404 	 * Please note that dumping the ECC bytes during a normal read with OOB
1405 	 * area would add a significant overhead as ECC bytes are "consumed" by
1406 	 * the controller in normal mode and must be re-read in raw mode. To
1407 	 * avoid dropping the performances, we prefer not to include them. The
1408 	 * user should re-read the page in raw mode if ECC bytes are required.
1409 	 */
1410 
1411 	/*
1412 	 * In case there is any subpage read error, we usually re-read only ECC
1413 	 * bytes in raw mode and check if the whole page is empty. In this case,
1414 	 * it is normal that the ECC check failed and we just ignore the error.
1415 	 *
1416 	 * However, it has been empirically observed that for some layouts (e.g
1417 	 * 2k page, 8b strength per 512B chunk), the controller tries to correct
1418 	 * bits and may create itself bitflips in the erased area. To overcome
1419 	 * this strange behavior, the whole page is re-read in raw mode, not
1420 	 * only the ECC bytes.
1421 	 */
1422 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1423 		int data_off_in_page, spare_off_in_page, ecc_off_in_page;
1424 		int data_off, spare_off, ecc_off;
1425 		int data_len, spare_len, ecc_len;
1426 
1427 		/* No failure reported for this chunk, move to the next one */
1428 		if (!(failure_mask & BIT(chunk)))
1429 			continue;
1430 
1431 		data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes +
1432 					    lt->ecc_bytes);
1433 		spare_off_in_page = data_off_in_page +
1434 			(chunk < lt->full_chunk_cnt ? lt->data_bytes :
1435 						      lt->last_data_bytes);
1436 		ecc_off_in_page = spare_off_in_page +
1437 			(chunk < lt->full_chunk_cnt ? lt->spare_bytes :
1438 						      lt->last_spare_bytes);
1439 
1440 		data_off = chunk * lt->data_bytes;
1441 		spare_off = chunk * lt->spare_bytes;
1442 		ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) +
1443 			  lt->last_spare_bytes +
1444 			  (chunk * (lt->ecc_bytes + 2));
1445 
1446 		data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes :
1447 							lt->last_data_bytes;
1448 		spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes :
1449 							 lt->last_spare_bytes;
1450 		ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes :
1451 						       lt->last_ecc_bytes;
1452 
1453 		/*
1454 		 * Only re-read the ECC bytes, unless we are using the 2k/8b
1455 		 * layout which is buggy in the sense that the ECC engine will
1456 		 * try to correct data bytes anyway, creating bitflips. In this
1457 		 * case, re-read the entire page.
1458 		 */
1459 		if (lt->writesize == 2048 && lt->strength == 8) {
1460 			nand_change_read_column_op(chip, data_off_in_page,
1461 						   buf + data_off, data_len,
1462 						   false);
1463 			nand_change_read_column_op(chip, spare_off_in_page,
1464 						   chip->oob_poi + spare_off, spare_len,
1465 						   false);
1466 		}
1467 
1468 		nand_change_read_column_op(chip, ecc_off_in_page,
1469 					   chip->oob_poi + ecc_off, ecc_len,
1470 					   false);
1471 
1472 		/* Check the entire chunk (data + spare + ecc) for emptyness */
1473 		marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len,
1474 					      chip->oob_poi + spare_off, spare_len,
1475 					      chip->oob_poi + ecc_off, ecc_len,
1476 					      &max_bitflips);
1477 	}
1478 
1479 	return max_bitflips;
1480 }
1481 
marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page)1482 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page)
1483 {
1484 	u8 *buf = nand_get_data_buf(chip);
1485 
1486 	return chip->ecc.read_page_raw(chip, buf, true, page);
1487 }
1488 
marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page)1489 static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page)
1490 {
1491 	u8 *buf = nand_get_data_buf(chip);
1492 
1493 	return chip->ecc.read_page(chip, buf, true, page);
1494 }
1495 
1496 /* BCH write helpers */
marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip, const u8 *buf, int oob_required, int page)1497 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip,
1498 						 const u8 *buf,
1499 						 int oob_required, int page)
1500 {
1501 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1502 	int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1503 	int data_len = lt->data_bytes;
1504 	int spare_len = lt->spare_bytes;
1505 	int ecc_len = lt->ecc_bytes;
1506 	int spare_offset = 0;
1507 	int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1508 		lt->last_spare_bytes;
1509 	int chunk;
1510 
1511 	marvell_nfc_select_target(chip, chip->cur_cs);
1512 
1513 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1514 
1515 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1516 		if (chunk >= lt->full_chunk_cnt) {
1517 			data_len = lt->last_data_bytes;
1518 			spare_len = lt->last_spare_bytes;
1519 			ecc_len = lt->last_ecc_bytes;
1520 		}
1521 
1522 		/* Point to the column of the next chunk */
1523 		nand_change_write_column_op(chip, chunk * full_chunk_size,
1524 					    NULL, 0, false);
1525 
1526 		/* Write the data */
1527 		nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
1528 				   data_len, false);
1529 
1530 		if (!oob_required)
1531 			continue;
1532 
1533 		/* Write the spare bytes */
1534 		if (spare_len)
1535 			nand_write_data_op(chip, chip->oob_poi + spare_offset,
1536 					   spare_len, false);
1537 
1538 		/* Write the ECC bytes */
1539 		if (ecc_len)
1540 			nand_write_data_op(chip, chip->oob_poi + ecc_offset,
1541 					   ecc_len, false);
1542 
1543 		spare_offset += spare_len;
1544 		ecc_offset += ALIGN(ecc_len, 32);
1545 	}
1546 
1547 	return nand_prog_page_end_op(chip);
1548 }
1549 
1550 static int
marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk, const u8 *data, unsigned int data_len, const u8 *spare, unsigned int spare_len, int page)1551 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
1552 				   const u8 *data, unsigned int data_len,
1553 				   const u8 *spare, unsigned int spare_len,
1554 				   int page)
1555 {
1556 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1557 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1558 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1559 	u32 xtype;
1560 	int ret;
1561 	struct marvell_nfc_op nfc_op = {
1562 		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
1563 		.ndcb[3] = data_len + spare_len,
1564 	};
1565 
1566 	/*
1567 	 * First operation dispatches the CMD_SEQIN command, issue the address
1568 	 * cycles and asks for the first chunk of data.
1569 	 * All operations in the middle (if any) will issue a naked write and
1570 	 * also ask for data.
1571 	 * Last operation (if any) asks for the last chunk of data through a
1572 	 * last naked write.
1573 	 */
1574 	if (chunk == 0) {
1575 		if (lt->nchunks == 1)
1576 			xtype = XTYPE_MONOLITHIC_RW;
1577 		else
1578 			xtype = XTYPE_WRITE_DISPATCH;
1579 
1580 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) |
1581 				  NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1582 				  NDCB0_CMD1(NAND_CMD_SEQIN);
1583 		nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
1584 		nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
1585 	} else if (chunk < lt->nchunks - 1) {
1586 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1587 	} else {
1588 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1589 	}
1590 
1591 	/* Always dispatch the PAGEPROG command on the last chunk */
1592 	if (chunk == lt->nchunks - 1)
1593 		nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;
1594 
1595 	ret = marvell_nfc_prepare_cmd(chip);
1596 	if (ret)
1597 		return ret;
1598 
1599 	marvell_nfc_send_cmd(chip, &nfc_op);
1600 	ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1601 				  "WRDREQ while loading FIFO (data)");
1602 	if (ret)
1603 		return ret;
1604 
1605 	/* Transfer the contents */
1606 	iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
1607 	iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));
1608 
1609 	return 0;
1610 }
1611 
marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip, const u8 *buf, int oob_required, int page)1612 static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip,
1613 					     const u8 *buf,
1614 					     int oob_required, int page)
1615 {
1616 	const struct nand_sdr_timings *sdr =
1617 		nand_get_sdr_timings(nand_get_interface_config(chip));
1618 	struct mtd_info *mtd = nand_to_mtd(chip);
1619 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1620 	const u8 *data = buf;
1621 	const u8 *spare = chip->oob_poi;
1622 	int data_len = lt->data_bytes;
1623 	int spare_len = lt->spare_bytes;
1624 	int chunk, ret;
1625 	u8 status;
1626 
1627 	marvell_nfc_select_target(chip, chip->cur_cs);
1628 
1629 	/* Spare data will be written anyway, so clear it to avoid garbage */
1630 	if (!oob_required)
1631 		memset(chip->oob_poi, 0xFF, mtd->oobsize);
1632 
1633 	marvell_nfc_enable_hw_ecc(chip);
1634 
1635 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1636 		if (chunk >= lt->full_chunk_cnt) {
1637 			data_len = lt->last_data_bytes;
1638 			spare_len = lt->last_spare_bytes;
1639 		}
1640 
1641 		marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
1642 						   spare, spare_len, page);
1643 		data += data_len;
1644 		spare += spare_len;
1645 
1646 		/*
1647 		 * Waiting only for CMDD or PAGED is not enough, ECC are
1648 		 * partially written. No flag is set once the operation is
1649 		 * really finished but the ND_RUN bit is cleared, so wait for it
1650 		 * before stepping into the next command.
1651 		 */
1652 		marvell_nfc_wait_ndrun(chip);
1653 	}
1654 
1655 	ret = marvell_nfc_wait_op(chip, PSEC_TO_MSEC(sdr->tPROG_max));
1656 
1657 	marvell_nfc_disable_hw_ecc(chip);
1658 
1659 	if (ret)
1660 		return ret;
1661 
1662 	/* Check write status on the chip side */
1663 	ret = nand_status_op(chip, &status);
1664 	if (ret)
1665 		return ret;
1666 
1667 	if (status & NAND_STATUS_FAIL)
1668 		return -EIO;
1669 
1670 	return 0;
1671 }
1672 
marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip, int page)1673 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip,
1674 						int page)
1675 {
1676 	struct mtd_info *mtd = nand_to_mtd(chip);
1677 	u8 *buf = nand_get_data_buf(chip);
1678 
1679 	memset(buf, 0xFF, mtd->writesize);
1680 
1681 	return chip->ecc.write_page_raw(chip, buf, true, page);
1682 }
1683 
marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page)1684 static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page)
1685 {
1686 	struct mtd_info *mtd = nand_to_mtd(chip);
1687 	u8 *buf = nand_get_data_buf(chip);
1688 
1689 	memset(buf, 0xFF, mtd->writesize);
1690 
1691 	return chip->ecc.write_page(chip, buf, true, page);
1692 }
1693 
1694 /* NAND framework ->exec_op() hooks and related helpers */
marvell_nfc_parse_instructions(struct nand_chip *chip, const struct nand_subop *subop, struct marvell_nfc_op *nfc_op)1695 static void marvell_nfc_parse_instructions(struct nand_chip *chip,
1696 					   const struct nand_subop *subop,
1697 					   struct marvell_nfc_op *nfc_op)
1698 {
1699 	const struct nand_op_instr *instr = NULL;
1700 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1701 	bool first_cmd = true;
1702 	unsigned int op_id;
1703 	int i;
1704 
1705 	/* Reset the input structure as most of its fields will be OR'ed */
1706 	memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
1707 
1708 	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
1709 		unsigned int offset, naddrs;
1710 		const u8 *addrs;
1711 		int len;
1712 
1713 		instr = &subop->instrs[op_id];
1714 
1715 		switch (instr->type) {
1716 		case NAND_OP_CMD_INSTR:
1717 			if (first_cmd)
1718 				nfc_op->ndcb[0] |=
1719 					NDCB0_CMD1(instr->ctx.cmd.opcode);
1720 			else
1721 				nfc_op->ndcb[0] |=
1722 					NDCB0_CMD2(instr->ctx.cmd.opcode) |
1723 					NDCB0_DBC;
1724 
1725 			nfc_op->cle_ale_delay_ns = instr->delay_ns;
1726 			first_cmd = false;
1727 			break;
1728 
1729 		case NAND_OP_ADDR_INSTR:
1730 			offset = nand_subop_get_addr_start_off(subop, op_id);
1731 			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
1732 			addrs = &instr->ctx.addr.addrs[offset];
1733 
1734 			nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
1735 
1736 			for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
1737 				nfc_op->ndcb[1] |= addrs[i] << (8 * i);
1738 
1739 			if (naddrs >= 5)
1740 				nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
1741 			if (naddrs >= 6)
1742 				nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
1743 			if (naddrs == 7)
1744 				nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);
1745 
1746 			nfc_op->cle_ale_delay_ns = instr->delay_ns;
1747 			break;
1748 
1749 		case NAND_OP_DATA_IN_INSTR:
1750 			nfc_op->data_instr = instr;
1751 			nfc_op->data_instr_idx = op_id;
1752 			nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
1753 			if (nfc->caps->is_nfcv2) {
1754 				nfc_op->ndcb[0] |=
1755 					NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1756 					NDCB0_LEN_OVRD;
1757 				len = nand_subop_get_data_len(subop, op_id);
1758 				nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1759 			}
1760 			nfc_op->data_delay_ns = instr->delay_ns;
1761 			break;
1762 
1763 		case NAND_OP_DATA_OUT_INSTR:
1764 			nfc_op->data_instr = instr;
1765 			nfc_op->data_instr_idx = op_id;
1766 			nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
1767 			if (nfc->caps->is_nfcv2) {
1768 				nfc_op->ndcb[0] |=
1769 					NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1770 					NDCB0_LEN_OVRD;
1771 				len = nand_subop_get_data_len(subop, op_id);
1772 				nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1773 			}
1774 			nfc_op->data_delay_ns = instr->delay_ns;
1775 			break;
1776 
1777 		case NAND_OP_WAITRDY_INSTR:
1778 			nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
1779 			nfc_op->rdy_delay_ns = instr->delay_ns;
1780 			break;
1781 		}
1782 	}
1783 }
1784 
marvell_nfc_xfer_data_pio(struct nand_chip *chip, const struct nand_subop *subop, struct marvell_nfc_op *nfc_op)1785 static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
1786 				     const struct nand_subop *subop,
1787 				     struct marvell_nfc_op *nfc_op)
1788 {
1789 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1790 	const struct nand_op_instr *instr = nfc_op->data_instr;
1791 	unsigned int op_id = nfc_op->data_instr_idx;
1792 	unsigned int len = nand_subop_get_data_len(subop, op_id);
1793 	unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
1794 	bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
1795 	int ret;
1796 
1797 	if (instr->ctx.data.force_8bit)
1798 		marvell_nfc_force_byte_access(chip, true);
1799 
1800 	if (reading) {
1801 		u8 *in = instr->ctx.data.buf.in + offset;
1802 
1803 		ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
1804 	} else {
1805 		const u8 *out = instr->ctx.data.buf.out + offset;
1806 
1807 		ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
1808 	}
1809 
1810 	if (instr->ctx.data.force_8bit)
1811 		marvell_nfc_force_byte_access(chip, false);
1812 
1813 	return ret;
1814 }
1815 
marvell_nfc_monolithic_access_exec(struct nand_chip *chip, const struct nand_subop *subop)1816 static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
1817 					      const struct nand_subop *subop)
1818 {
1819 	struct marvell_nfc_op nfc_op;
1820 	bool reading;
1821 	int ret;
1822 
1823 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1824 	reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
1825 
1826 	ret = marvell_nfc_prepare_cmd(chip);
1827 	if (ret)
1828 		return ret;
1829 
1830 	marvell_nfc_send_cmd(chip, &nfc_op);
1831 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1832 				  "RDDREQ/WRDREQ while draining raw data");
1833 	if (ret)
1834 		return ret;
1835 
1836 	cond_delay(nfc_op.cle_ale_delay_ns);
1837 
1838 	if (reading) {
1839 		if (nfc_op.rdy_timeout_ms) {
1840 			ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1841 			if (ret)
1842 				return ret;
1843 		}
1844 
1845 		cond_delay(nfc_op.rdy_delay_ns);
1846 	}
1847 
1848 	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1849 	ret = marvell_nfc_wait_cmdd(chip);
1850 	if (ret)
1851 		return ret;
1852 
1853 	cond_delay(nfc_op.data_delay_ns);
1854 
1855 	if (!reading) {
1856 		if (nfc_op.rdy_timeout_ms) {
1857 			ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1858 			if (ret)
1859 				return ret;
1860 		}
1861 
1862 		cond_delay(nfc_op.rdy_delay_ns);
1863 	}
1864 
1865 	/*
1866 	 * NDCR ND_RUN bit should be cleared automatically at the end of each
1867 	 * operation but experience shows that the behavior is buggy when it
1868 	 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1869 	 */
1870 	if (!reading) {
1871 		struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1872 
1873 		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1874 			       nfc->regs + NDCR);
1875 	}
1876 
1877 	return 0;
1878 }
1879 
marvell_nfc_naked_access_exec(struct nand_chip *chip, const struct nand_subop *subop)1880 static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
1881 					 const struct nand_subop *subop)
1882 {
1883 	struct marvell_nfc_op nfc_op;
1884 	int ret;
1885 
1886 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1887 
1888 	/*
1889 	 * Naked access are different in that they need to be flagged as naked
1890 	 * by the controller. Reset the controller registers fields that inform
1891 	 * on the type and refill them according to the ongoing operation.
1892 	 */
1893 	nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
1894 			    NDCB0_CMD_XTYPE(XTYPE_MASK));
1895 	switch (subop->instrs[0].type) {
1896 	case NAND_OP_CMD_INSTR:
1897 		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
1898 		break;
1899 	case NAND_OP_ADDR_INSTR:
1900 		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
1901 		break;
1902 	case NAND_OP_DATA_IN_INSTR:
1903 		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
1904 				  NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1905 		break;
1906 	case NAND_OP_DATA_OUT_INSTR:
1907 		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
1908 				  NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1909 		break;
1910 	default:
1911 		/* This should never happen */
1912 		break;
1913 	}
1914 
1915 	ret = marvell_nfc_prepare_cmd(chip);
1916 	if (ret)
1917 		return ret;
1918 
1919 	marvell_nfc_send_cmd(chip, &nfc_op);
1920 
1921 	if (!nfc_op.data_instr) {
1922 		ret = marvell_nfc_wait_cmdd(chip);
1923 		cond_delay(nfc_op.cle_ale_delay_ns);
1924 		return ret;
1925 	}
1926 
1927 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1928 				  "RDDREQ/WRDREQ while draining raw data");
1929 	if (ret)
1930 		return ret;
1931 
1932 	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1933 	ret = marvell_nfc_wait_cmdd(chip);
1934 	if (ret)
1935 		return ret;
1936 
1937 	/*
1938 	 * NDCR ND_RUN bit should be cleared automatically at the end of each
1939 	 * operation but experience shows that the behavior is buggy when it
1940 	 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1941 	 */
1942 	if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
1943 		struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1944 
1945 		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1946 			       nfc->regs + NDCR);
1947 	}
1948 
1949 	return 0;
1950 }
1951 
marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip, const struct nand_subop *subop)1952 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
1953 					  const struct nand_subop *subop)
1954 {
1955 	struct marvell_nfc_op nfc_op;
1956 	int ret;
1957 
1958 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1959 
1960 	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1961 	cond_delay(nfc_op.rdy_delay_ns);
1962 
1963 	return ret;
1964 }
1965 
marvell_nfc_read_id_type_exec(struct nand_chip *chip, const struct nand_subop *subop)1966 static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
1967 					 const struct nand_subop *subop)
1968 {
1969 	struct marvell_nfc_op nfc_op;
1970 	int ret;
1971 
1972 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1973 	nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1974 	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);
1975 
1976 	ret = marvell_nfc_prepare_cmd(chip);
1977 	if (ret)
1978 		return ret;
1979 
1980 	marvell_nfc_send_cmd(chip, &nfc_op);
1981 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1982 				  "RDDREQ while reading ID");
1983 	if (ret)
1984 		return ret;
1985 
1986 	cond_delay(nfc_op.cle_ale_delay_ns);
1987 
1988 	if (nfc_op.rdy_timeout_ms) {
1989 		ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1990 		if (ret)
1991 			return ret;
1992 	}
1993 
1994 	cond_delay(nfc_op.rdy_delay_ns);
1995 
1996 	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1997 	ret = marvell_nfc_wait_cmdd(chip);
1998 	if (ret)
1999 		return ret;
2000 
2001 	cond_delay(nfc_op.data_delay_ns);
2002 
2003 	return 0;
2004 }
2005 
marvell_nfc_read_status_exec(struct nand_chip *chip, const struct nand_subop *subop)2006 static int marvell_nfc_read_status_exec(struct nand_chip *chip,
2007 					const struct nand_subop *subop)
2008 {
2009 	struct marvell_nfc_op nfc_op;
2010 	int ret;
2011 
2012 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2013 	nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
2014 	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);
2015 
2016 	ret = marvell_nfc_prepare_cmd(chip);
2017 	if (ret)
2018 		return ret;
2019 
2020 	marvell_nfc_send_cmd(chip, &nfc_op);
2021 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
2022 				  "RDDREQ while reading status");
2023 	if (ret)
2024 		return ret;
2025 
2026 	cond_delay(nfc_op.cle_ale_delay_ns);
2027 
2028 	if (nfc_op.rdy_timeout_ms) {
2029 		ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2030 		if (ret)
2031 			return ret;
2032 	}
2033 
2034 	cond_delay(nfc_op.rdy_delay_ns);
2035 
2036 	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
2037 	ret = marvell_nfc_wait_cmdd(chip);
2038 	if (ret)
2039 		return ret;
2040 
2041 	cond_delay(nfc_op.data_delay_ns);
2042 
2043 	return 0;
2044 }
2045 
marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip, const struct nand_subop *subop)2046 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
2047 					   const struct nand_subop *subop)
2048 {
2049 	struct marvell_nfc_op nfc_op;
2050 	int ret;
2051 
2052 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2053 	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
2054 
2055 	ret = marvell_nfc_prepare_cmd(chip);
2056 	if (ret)
2057 		return ret;
2058 
2059 	marvell_nfc_send_cmd(chip, &nfc_op);
2060 	ret = marvell_nfc_wait_cmdd(chip);
2061 	if (ret)
2062 		return ret;
2063 
2064 	cond_delay(nfc_op.cle_ale_delay_ns);
2065 
2066 	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2067 	if (ret)
2068 		return ret;
2069 
2070 	cond_delay(nfc_op.rdy_delay_ns);
2071 
2072 	return 0;
2073 }
2074 
marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip, const struct nand_subop *subop)2075 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
2076 					   const struct nand_subop *subop)
2077 {
2078 	struct marvell_nfc_op nfc_op;
2079 	int ret;
2080 
2081 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2082 	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
2083 
2084 	ret = marvell_nfc_prepare_cmd(chip);
2085 	if (ret)
2086 		return ret;
2087 
2088 	marvell_nfc_send_cmd(chip, &nfc_op);
2089 	ret = marvell_nfc_wait_cmdd(chip);
2090 	if (ret)
2091 		return ret;
2092 
2093 	cond_delay(nfc_op.cle_ale_delay_ns);
2094 
2095 	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2096 	if (ret)
2097 		return ret;
2098 
2099 	cond_delay(nfc_op.rdy_delay_ns);
2100 
2101 	return 0;
2102 }
2103 
2104 static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
2105 	/* Monolithic reads/writes */
2106 	NAND_OP_PARSER_PATTERN(
2107 		marvell_nfc_monolithic_access_exec,
2108 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2109 		NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
2110 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
2111 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
2112 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
2113 	NAND_OP_PARSER_PATTERN(
2114 		marvell_nfc_monolithic_access_exec,
2115 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2116 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
2117 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
2118 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
2119 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
2120 	/* Naked commands */
2121 	NAND_OP_PARSER_PATTERN(
2122 		marvell_nfc_naked_access_exec,
2123 		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
2124 	NAND_OP_PARSER_PATTERN(
2125 		marvell_nfc_naked_access_exec,
2126 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
2127 	NAND_OP_PARSER_PATTERN(
2128 		marvell_nfc_naked_access_exec,
2129 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
2130 	NAND_OP_PARSER_PATTERN(
2131 		marvell_nfc_naked_access_exec,
2132 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
2133 	NAND_OP_PARSER_PATTERN(
2134 		marvell_nfc_naked_waitrdy_exec,
2135 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2136 	);
2137 
2138 static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
2139 	/* Naked commands not supported, use a function for each pattern */
2140 	NAND_OP_PARSER_PATTERN(
2141 		marvell_nfc_read_id_type_exec,
2142 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2143 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
2144 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
2145 	NAND_OP_PARSER_PATTERN(
2146 		marvell_nfc_erase_cmd_type_exec,
2147 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2148 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
2149 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2150 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2151 	NAND_OP_PARSER_PATTERN(
2152 		marvell_nfc_read_status_exec,
2153 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2154 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
2155 	NAND_OP_PARSER_PATTERN(
2156 		marvell_nfc_reset_cmd_type_exec,
2157 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2158 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2159 	NAND_OP_PARSER_PATTERN(
2160 		marvell_nfc_naked_waitrdy_exec,
2161 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2162 	);
2163 
marvell_nfc_exec_op(struct nand_chip *chip, const struct nand_operation *op, bool check_only)2164 static int marvell_nfc_exec_op(struct nand_chip *chip,
2165 			       const struct nand_operation *op,
2166 			       bool check_only)
2167 {
2168 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2169 
2170 	if (!check_only)
2171 		marvell_nfc_select_target(chip, op->cs);
2172 
2173 	if (nfc->caps->is_nfcv2)
2174 		return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
2175 					      op, check_only);
2176 	else
2177 		return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
2178 					      op, check_only);
2179 }
2180 
2181 /*
2182  * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
2183  * usable.
2184  */
marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion)2185 static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2186 				      struct mtd_oob_region *oobregion)
2187 {
2188 	struct nand_chip *chip = mtd_to_nand(mtd);
2189 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2190 
2191 	if (section)
2192 		return -ERANGE;
2193 
2194 	oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
2195 			    lt->last_ecc_bytes;
2196 	oobregion->offset = mtd->oobsize - oobregion->length;
2197 
2198 	return 0;
2199 }
2200 
marvell_nand_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion)2201 static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
2202 				       struct mtd_oob_region *oobregion)
2203 {
2204 	struct nand_chip *chip = mtd_to_nand(mtd);
2205 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2206 
2207 	if (section)
2208 		return -ERANGE;
2209 
2210 	/*
2211 	 * Bootrom looks in bytes 0 & 5 for bad blocks for the
2212 	 * 4KB page / 4bit BCH combination.
2213 	 */
2214 	if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
2215 		oobregion->offset = 6;
2216 	else
2217 		oobregion->offset = 2;
2218 
2219 	oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
2220 			    lt->last_spare_bytes - oobregion->offset;
2221 
2222 	return 0;
2223 }
2224 
2225 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
2226 	.ecc = marvell_nand_ooblayout_ecc,
2227 	.free = marvell_nand_ooblayout_free,
2228 };
2229 
marvell_nand_hw_ecc_controller_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc)2230 static int marvell_nand_hw_ecc_controller_init(struct mtd_info *mtd,
2231 					       struct nand_ecc_ctrl *ecc)
2232 {
2233 	struct nand_chip *chip = mtd_to_nand(mtd);
2234 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2235 	const struct marvell_hw_ecc_layout *l;
2236 	int i;
2237 
2238 	if (!nfc->caps->is_nfcv2 &&
2239 	    (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
2240 		dev_err(nfc->dev,
2241 			"NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
2242 			mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
2243 		return -ENOTSUPP;
2244 	}
2245 
2246 	to_marvell_nand(chip)->layout = NULL;
2247 	for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
2248 		l = &marvell_nfc_layouts[i];
2249 		if (mtd->writesize == l->writesize &&
2250 		    ecc->size == l->chunk && ecc->strength == l->strength) {
2251 			to_marvell_nand(chip)->layout = l;
2252 			break;
2253 		}
2254 	}
2255 
2256 	if (!to_marvell_nand(chip)->layout ||
2257 	    (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
2258 		dev_err(nfc->dev,
2259 			"ECC strength %d at page size %d is not supported\n",
2260 			ecc->strength, mtd->writesize);
2261 		return -ENOTSUPP;
2262 	}
2263 
2264 	/* Special care for the layout 2k/8-bit/512B  */
2265 	if (l->writesize == 2048 && l->strength == 8) {
2266 		if (mtd->oobsize < 128) {
2267 			dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n");
2268 			return -ENOTSUPP;
2269 		} else {
2270 			chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2271 		}
2272 	}
2273 
2274 	mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
2275 	ecc->steps = l->nchunks;
2276 	ecc->size = l->data_bytes;
2277 
2278 	if (ecc->strength == 1) {
2279 		chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
2280 		ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
2281 		ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
2282 		ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
2283 		ecc->read_oob = ecc->read_oob_raw;
2284 		ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
2285 		ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
2286 		ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
2287 		ecc->write_oob = ecc->write_oob_raw;
2288 	} else {
2289 		chip->ecc.algo = NAND_ECC_ALGO_BCH;
2290 		ecc->strength = 16;
2291 		ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
2292 		ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
2293 		ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
2294 		ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
2295 		ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
2296 		ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
2297 		ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
2298 		ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
2299 	}
2300 
2301 	return 0;
2302 }
2303 
marvell_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc)2304 static int marvell_nand_ecc_init(struct mtd_info *mtd,
2305 				 struct nand_ecc_ctrl *ecc)
2306 {
2307 	struct nand_chip *chip = mtd_to_nand(mtd);
2308 	const struct nand_ecc_props *requirements =
2309 		nanddev_get_ecc_requirements(&chip->base);
2310 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2311 	int ret;
2312 
2313 	if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
2314 	    (!ecc->size || !ecc->strength)) {
2315 		if (requirements->step_size && requirements->strength) {
2316 			ecc->size = requirements->step_size;
2317 			ecc->strength = requirements->strength;
2318 		} else {
2319 			dev_info(nfc->dev,
2320 				 "No minimum ECC strength, using 1b/512B\n");
2321 			ecc->size = 512;
2322 			ecc->strength = 1;
2323 		}
2324 	}
2325 
2326 	switch (ecc->engine_type) {
2327 	case NAND_ECC_ENGINE_TYPE_ON_HOST:
2328 		ret = marvell_nand_hw_ecc_controller_init(mtd, ecc);
2329 		if (ret)
2330 			return ret;
2331 		break;
2332 	case NAND_ECC_ENGINE_TYPE_NONE:
2333 	case NAND_ECC_ENGINE_TYPE_SOFT:
2334 	case NAND_ECC_ENGINE_TYPE_ON_DIE:
2335 		if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
2336 		    mtd->writesize != SZ_2K) {
2337 			dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
2338 				mtd->writesize);
2339 			return -EINVAL;
2340 		}
2341 		break;
2342 	default:
2343 		return -EINVAL;
2344 	}
2345 
2346 	return 0;
2347 }
2348 
2349 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
2350 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
2351 
2352 static struct nand_bbt_descr bbt_main_descr = {
2353 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2354 		   NAND_BBT_2BIT | NAND_BBT_VERSION,
2355 	.offs =	8,
2356 	.len = 6,
2357 	.veroffs = 14,
2358 	.maxblocks = 8,	/* Last 8 blocks in each chip */
2359 	.pattern = bbt_pattern
2360 };
2361 
2362 static struct nand_bbt_descr bbt_mirror_descr = {
2363 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2364 		   NAND_BBT_2BIT | NAND_BBT_VERSION,
2365 	.offs =	8,
2366 	.len = 6,
2367 	.veroffs = 14,
2368 	.maxblocks = 8,	/* Last 8 blocks in each chip */
2369 	.pattern = bbt_mirror_pattern
2370 };
2371 
marvell_nfc_setup_interface(struct nand_chip *chip, int chipnr, const struct nand_interface_config *conf)2372 static int marvell_nfc_setup_interface(struct nand_chip *chip, int chipnr,
2373 				       const struct nand_interface_config *conf)
2374 {
2375 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2376 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2377 	unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
2378 	const struct nand_sdr_timings *sdr;
2379 	struct marvell_nfc_timings nfc_tmg;
2380 	int read_delay;
2381 
2382 	sdr = nand_get_sdr_timings(conf);
2383 	if (IS_ERR(sdr))
2384 		return PTR_ERR(sdr);
2385 
2386 	/*
2387 	 * SDR timings are given in pico-seconds while NFC timings must be
2388 	 * expressed in NAND controller clock cycles, which is half of the
2389 	 * frequency of the accessible ECC clock retrieved by clk_get_rate().
2390 	 * This is not written anywhere in the datasheet but was observed
2391 	 * with an oscilloscope.
2392 	 *
2393 	 * NFC datasheet gives equations from which thoses calculations
2394 	 * are derived, they tend to be slightly more restrictives than the
2395 	 * given core timings and may improve the overall speed.
2396 	 */
2397 	nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
2398 	nfc_tmg.tRH = nfc_tmg.tRP;
2399 	nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
2400 	nfc_tmg.tWH = nfc_tmg.tWP;
2401 	nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
2402 	nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
2403 	nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
2404 	/*
2405 	 * Read delay is the time of propagation from SoC pins to NFC internal
2406 	 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
2407 	 * EDO mode, an additional delay of tRH must be taken into account so
2408 	 * the data is sampled on the falling edge instead of the rising edge.
2409 	 */
2410 	read_delay = sdr->tRC_min >= 30000 ?
2411 		MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
2412 
2413 	nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
2414 	/*
2415 	 * tWHR and tRHW are supposed to be read to write delays (and vice
2416 	 * versa) but in some cases, ie. when doing a change column, they must
2417 	 * be greater than that to be sure tCCS delay is respected.
2418 	 */
2419 	nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
2420 				 period_ns) - 2,
2421 	nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
2422 				 period_ns);
2423 
2424 	/*
2425 	 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
2426 	 * NFCv1: No WAIT_MODE, tR must be maximal.
2427 	 */
2428 	if (nfc->caps->is_nfcv2) {
2429 		nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
2430 	} else {
2431 		nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
2432 					 period_ns);
2433 		if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
2434 			nfc_tmg.tR = nfc_tmg.tCH - 3;
2435 		else
2436 			nfc_tmg.tR = 0;
2437 	}
2438 
2439 	if (chipnr < 0)
2440 		return 0;
2441 
2442 	marvell_nand->ndtr0 =
2443 		NDTR0_TRP(nfc_tmg.tRP) |
2444 		NDTR0_TRH(nfc_tmg.tRH) |
2445 		NDTR0_ETRP(nfc_tmg.tRP) |
2446 		NDTR0_TWP(nfc_tmg.tWP) |
2447 		NDTR0_TWH(nfc_tmg.tWH) |
2448 		NDTR0_TCS(nfc_tmg.tCS) |
2449 		NDTR0_TCH(nfc_tmg.tCH);
2450 
2451 	marvell_nand->ndtr1 =
2452 		NDTR1_TAR(nfc_tmg.tAR) |
2453 		NDTR1_TWHR(nfc_tmg.tWHR) |
2454 		NDTR1_TR(nfc_tmg.tR);
2455 
2456 	if (nfc->caps->is_nfcv2) {
2457 		marvell_nand->ndtr0 |=
2458 			NDTR0_RD_CNT_DEL(read_delay) |
2459 			NDTR0_SELCNTR |
2460 			NDTR0_TADL(nfc_tmg.tADL);
2461 
2462 		marvell_nand->ndtr1 |=
2463 			NDTR1_TRHW(nfc_tmg.tRHW) |
2464 			NDTR1_WAIT_MODE;
2465 	}
2466 
2467 	/*
2468 	 * Reset nfc->selected_chip so the next command will cause the timing
2469 	 * registers to be updated in marvell_nfc_select_target().
2470 	 */
2471 	nfc->selected_chip = NULL;
2472 
2473 	return 0;
2474 }
2475 
marvell_nand_attach_chip(struct nand_chip *chip)2476 static int marvell_nand_attach_chip(struct nand_chip *chip)
2477 {
2478 	struct mtd_info *mtd = nand_to_mtd(chip);
2479 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2480 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2481 	struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev);
2482 	int ret;
2483 
2484 	if (pdata && pdata->flash_bbt)
2485 		chip->bbt_options |= NAND_BBT_USE_FLASH;
2486 
2487 	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2488 		/*
2489 		 * We'll use a bad block table stored in-flash and don't
2490 		 * allow writing the bad block marker to the flash.
2491 		 */
2492 		chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2493 		chip->bbt_td = &bbt_main_descr;
2494 		chip->bbt_md = &bbt_mirror_descr;
2495 	}
2496 
2497 	/* Save the chip-specific fields of NDCR */
2498 	marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
2499 	if (chip->options & NAND_BUSWIDTH_16)
2500 		marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
2501 
2502 	/*
2503 	 * On small page NANDs, only one cycle is needed to pass the
2504 	 * column address.
2505 	 */
2506 	if (mtd->writesize <= 512) {
2507 		marvell_nand->addr_cyc = 1;
2508 	} else {
2509 		marvell_nand->addr_cyc = 2;
2510 		marvell_nand->ndcr |= NDCR_RA_START;
2511 	}
2512 
2513 	/*
2514 	 * Now add the number of cycles needed to pass the row
2515 	 * address.
2516 	 *
2517 	 * Addressing a chip using CS 2 or 3 should also need the third row
2518 	 * cycle but due to inconsistance in the documentation and lack of
2519 	 * hardware to test this situation, this case is not supported.
2520 	 */
2521 	if (chip->options & NAND_ROW_ADDR_3)
2522 		marvell_nand->addr_cyc += 3;
2523 	else
2524 		marvell_nand->addr_cyc += 2;
2525 
2526 	if (pdata) {
2527 		chip->ecc.size = pdata->ecc_step_size;
2528 		chip->ecc.strength = pdata->ecc_strength;
2529 	}
2530 
2531 	ret = marvell_nand_ecc_init(mtd, &chip->ecc);
2532 	if (ret) {
2533 		dev_err(nfc->dev, "ECC init failed: %d\n", ret);
2534 		return ret;
2535 	}
2536 
2537 	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
2538 		/*
2539 		 * Subpage write not available with hardware ECC, prohibit also
2540 		 * subpage read as in userspace subpage access would still be
2541 		 * allowed and subpage write, if used, would lead to numerous
2542 		 * uncorrectable ECC errors.
2543 		 */
2544 		chip->options |= NAND_NO_SUBPAGE_WRITE;
2545 	}
2546 
2547 	if (pdata || nfc->caps->legacy_of_bindings) {
2548 		/*
2549 		 * We keep the MTD name unchanged to avoid breaking platforms
2550 		 * where the MTD cmdline parser is used and the bootloader
2551 		 * has not been updated to use the new naming scheme.
2552 		 */
2553 		mtd->name = "pxa3xx_nand-0";
2554 	} else if (!mtd->name) {
2555 		/*
2556 		 * If the new bindings are used and the bootloader has not been
2557 		 * updated to pass a new mtdparts parameter on the cmdline, you
2558 		 * should define the following property in your NAND node, ie:
2559 		 *
2560 		 *	label = "main-storage";
2561 		 *
2562 		 * This way, mtd->name will be set by the core when
2563 		 * nand_set_flash_node() is called.
2564 		 */
2565 		mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
2566 					   "%s:nand.%d", dev_name(nfc->dev),
2567 					   marvell_nand->sels[0].cs);
2568 		if (!mtd->name) {
2569 			dev_err(nfc->dev, "Failed to allocate mtd->name\n");
2570 			return -ENOMEM;
2571 		}
2572 	}
2573 
2574 	return 0;
2575 }
2576 
2577 static const struct nand_controller_ops marvell_nand_controller_ops = {
2578 	.attach_chip = marvell_nand_attach_chip,
2579 	.exec_op = marvell_nfc_exec_op,
2580 	.setup_interface = marvell_nfc_setup_interface,
2581 };
2582 
marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc, struct device_node *np)2583 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
2584 				  struct device_node *np)
2585 {
2586 	struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
2587 	struct marvell_nand_chip *marvell_nand;
2588 	struct mtd_info *mtd;
2589 	struct nand_chip *chip;
2590 	int nsels, ret, i;
2591 	u32 cs, rb;
2592 
2593 	/*
2594 	 * The legacy "num-cs" property indicates the number of CS on the only
2595 	 * chip connected to the controller (legacy bindings does not support
2596 	 * more than one chip). The CS and RB pins are always the #0.
2597 	 *
2598 	 * When not using legacy bindings, a couple of "reg" and "nand-rb"
2599 	 * properties must be filled. For each chip, expressed as a subnode,
2600 	 * "reg" points to the CS lines and "nand-rb" to the RB line.
2601 	 */
2602 	if (pdata || nfc->caps->legacy_of_bindings) {
2603 		nsels = 1;
2604 	} else {
2605 		nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2606 		if (nsels <= 0) {
2607 			dev_err(dev, "missing/invalid reg property\n");
2608 			return -EINVAL;
2609 		}
2610 	}
2611 
2612 	/* Alloc the nand chip structure */
2613 	marvell_nand = devm_kzalloc(dev,
2614 				    struct_size(marvell_nand, sels, nsels),
2615 				    GFP_KERNEL);
2616 	if (!marvell_nand) {
2617 		dev_err(dev, "could not allocate chip structure\n");
2618 		return -ENOMEM;
2619 	}
2620 
2621 	marvell_nand->nsels = nsels;
2622 	marvell_nand->selected_die = -1;
2623 
2624 	for (i = 0; i < nsels; i++) {
2625 		if (pdata || nfc->caps->legacy_of_bindings) {
2626 			/*
2627 			 * Legacy bindings use the CS lines in natural
2628 			 * order (0, 1, ...)
2629 			 */
2630 			cs = i;
2631 		} else {
2632 			/* Retrieve CS id */
2633 			ret = of_property_read_u32_index(np, "reg", i, &cs);
2634 			if (ret) {
2635 				dev_err(dev, "could not retrieve reg property: %d\n",
2636 					ret);
2637 				return ret;
2638 			}
2639 		}
2640 
2641 		if (cs >= nfc->caps->max_cs_nb) {
2642 			dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
2643 				cs, nfc->caps->max_cs_nb);
2644 			return -EINVAL;
2645 		}
2646 
2647 		if (test_and_set_bit(cs, &nfc->assigned_cs)) {
2648 			dev_err(dev, "CS %d already assigned\n", cs);
2649 			return -EINVAL;
2650 		}
2651 
2652 		/*
2653 		 * The cs variable represents the chip select id, which must be
2654 		 * converted in bit fields for NDCB0 and NDCB2 to select the
2655 		 * right chip. Unfortunately, due to a lack of information on
2656 		 * the subject and incoherent documentation, the user should not
2657 		 * use CS1 and CS3 at all as asserting them is not supported in
2658 		 * a reliable way (due to multiplexing inside ADDR5 field).
2659 		 */
2660 		marvell_nand->sels[i].cs = cs;
2661 		switch (cs) {
2662 		case 0:
2663 		case 2:
2664 			marvell_nand->sels[i].ndcb0_csel = 0;
2665 			break;
2666 		case 1:
2667 		case 3:
2668 			marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
2669 			break;
2670 		default:
2671 			return -EINVAL;
2672 		}
2673 
2674 		/* Retrieve RB id */
2675 		if (pdata || nfc->caps->legacy_of_bindings) {
2676 			/* Legacy bindings always use RB #0 */
2677 			rb = 0;
2678 		} else {
2679 			ret = of_property_read_u32_index(np, "nand-rb", i,
2680 							 &rb);
2681 			if (ret) {
2682 				dev_err(dev,
2683 					"could not retrieve RB property: %d\n",
2684 					ret);
2685 				return ret;
2686 			}
2687 		}
2688 
2689 		if (rb >= nfc->caps->max_rb_nb) {
2690 			dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
2691 				rb, nfc->caps->max_rb_nb);
2692 			return -EINVAL;
2693 		}
2694 
2695 		marvell_nand->sels[i].rb = rb;
2696 	}
2697 
2698 	chip = &marvell_nand->chip;
2699 	chip->controller = &nfc->controller;
2700 	nand_set_flash_node(chip, np);
2701 
2702 	if (of_property_read_bool(np, "marvell,nand-keep-config"))
2703 		chip->options |= NAND_KEEP_TIMINGS;
2704 
2705 	mtd = nand_to_mtd(chip);
2706 	mtd->dev.parent = dev;
2707 
2708 	/*
2709 	 * Default to HW ECC engine mode. If the nand-ecc-mode property is given
2710 	 * in the DT node, this entry will be overwritten in nand_scan_ident().
2711 	 */
2712 	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2713 
2714 	/*
2715 	 * Save a reference value for timing registers before
2716 	 * ->setup_interface() is called.
2717 	 */
2718 	marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
2719 	marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);
2720 
2721 	chip->options |= NAND_BUSWIDTH_AUTO;
2722 
2723 	ret = nand_scan(chip, marvell_nand->nsels);
2724 	if (ret) {
2725 		dev_err(dev, "could not scan the nand chip\n");
2726 		return ret;
2727 	}
2728 
2729 	if (pdata)
2730 		/* Legacy bindings support only one chip */
2731 		ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
2732 	else
2733 		ret = mtd_device_register(mtd, NULL, 0);
2734 	if (ret) {
2735 		dev_err(dev, "failed to register mtd device: %d\n", ret);
2736 		nand_cleanup(chip);
2737 		return ret;
2738 	}
2739 
2740 	list_add_tail(&marvell_nand->node, &nfc->chips);
2741 
2742 	return 0;
2743 }
2744 
marvell_nand_chips_cleanup(struct marvell_nfc *nfc)2745 static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
2746 {
2747 	struct marvell_nand_chip *entry, *temp;
2748 	struct nand_chip *chip;
2749 	int ret;
2750 
2751 	list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
2752 		chip = &entry->chip;
2753 		ret = mtd_device_unregister(nand_to_mtd(chip));
2754 		WARN_ON(ret);
2755 		nand_cleanup(chip);
2756 		list_del(&entry->node);
2757 	}
2758 }
2759 
marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)2760 static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
2761 {
2762 	struct device_node *np = dev->of_node;
2763 	struct device_node *nand_np;
2764 	int max_cs = nfc->caps->max_cs_nb;
2765 	int nchips;
2766 	int ret;
2767 
2768 	if (!np)
2769 		nchips = 1;
2770 	else
2771 		nchips = of_get_child_count(np);
2772 
2773 	if (nchips > max_cs) {
2774 		dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
2775 			max_cs);
2776 		return -EINVAL;
2777 	}
2778 
2779 	/*
2780 	 * Legacy bindings do not use child nodes to exhibit NAND chip
2781 	 * properties and layout. Instead, NAND properties are mixed with the
2782 	 * controller ones, and partitions are defined as direct subnodes of the
2783 	 * NAND controller node.
2784 	 */
2785 	if (nfc->caps->legacy_of_bindings) {
2786 		ret = marvell_nand_chip_init(dev, nfc, np);
2787 		return ret;
2788 	}
2789 
2790 	for_each_child_of_node(np, nand_np) {
2791 		ret = marvell_nand_chip_init(dev, nfc, nand_np);
2792 		if (ret) {
2793 			of_node_put(nand_np);
2794 			goto cleanup_chips;
2795 		}
2796 	}
2797 
2798 	return 0;
2799 
2800 cleanup_chips:
2801 	marvell_nand_chips_cleanup(nfc);
2802 
2803 	return ret;
2804 }
2805 
marvell_nfc_init_dma(struct marvell_nfc *nfc)2806 static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
2807 {
2808 	struct platform_device *pdev = container_of(nfc->dev,
2809 						    struct platform_device,
2810 						    dev);
2811 	struct dma_slave_config config = {};
2812 	struct resource *r;
2813 	int ret;
2814 
2815 	if (!IS_ENABLED(CONFIG_PXA_DMA)) {
2816 		dev_warn(nfc->dev,
2817 			 "DMA not enabled in configuration\n");
2818 		return -ENOTSUPP;
2819 	}
2820 
2821 	ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
2822 	if (ret)
2823 		return ret;
2824 
2825 	nfc->dma_chan =	dma_request_chan(nfc->dev, "data");
2826 	if (IS_ERR(nfc->dma_chan)) {
2827 		ret = PTR_ERR(nfc->dma_chan);
2828 		nfc->dma_chan = NULL;
2829 		return dev_err_probe(nfc->dev, ret, "DMA channel request failed\n");
2830 	}
2831 
2832 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2833 	if (!r) {
2834 		ret = -ENXIO;
2835 		goto release_channel;
2836 	}
2837 
2838 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2839 	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2840 	config.src_addr = r->start + NDDB;
2841 	config.dst_addr = r->start + NDDB;
2842 	config.src_maxburst = 32;
2843 	config.dst_maxburst = 32;
2844 	ret = dmaengine_slave_config(nfc->dma_chan, &config);
2845 	if (ret < 0) {
2846 		dev_err(nfc->dev, "Failed to configure DMA channel\n");
2847 		goto release_channel;
2848 	}
2849 
2850 	/*
2851 	 * DMA must act on length multiple of 32 and this length may be
2852 	 * bigger than the destination buffer. Use this buffer instead
2853 	 * for DMA transfers and then copy the desired amount of data to
2854 	 * the provided buffer.
2855 	 */
2856 	nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
2857 	if (!nfc->dma_buf) {
2858 		ret = -ENOMEM;
2859 		goto release_channel;
2860 	}
2861 
2862 	nfc->use_dma = true;
2863 
2864 	return 0;
2865 
2866 release_channel:
2867 	dma_release_channel(nfc->dma_chan);
2868 	nfc->dma_chan = NULL;
2869 
2870 	return ret;
2871 }
2872 
marvell_nfc_reset(struct marvell_nfc *nfc)2873 static void marvell_nfc_reset(struct marvell_nfc *nfc)
2874 {
2875 	/*
2876 	 * ECC operations and interruptions are only enabled when specifically
2877 	 * needed. ECC shall not be activated in the early stages (fails probe).
2878 	 * Arbiter flag, even if marked as "reserved", must be set (empirical).
2879 	 * SPARE_EN bit must always be set or ECC bytes will not be at the same
2880 	 * offset in the read page and this will fail the protection.
2881 	 */
2882 	writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
2883 		       NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
2884 	writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
2885 	writel_relaxed(0, nfc->regs + NDECCCTRL);
2886 }
2887 
marvell_nfc_init(struct marvell_nfc *nfc)2888 static int marvell_nfc_init(struct marvell_nfc *nfc)
2889 {
2890 	struct device_node *np = nfc->dev->of_node;
2891 
2892 	/*
2893 	 * Some SoCs like A7k/A8k need to enable manually the NAND
2894 	 * controller, gated clocks and reset bits to avoid being bootloader
2895 	 * dependent. This is done through the use of the System Functions
2896 	 * registers.
2897 	 */
2898 	if (nfc->caps->need_system_controller) {
2899 		struct regmap *sysctrl_base =
2900 			syscon_regmap_lookup_by_phandle(np,
2901 							"marvell,system-controller");
2902 
2903 		if (IS_ERR(sysctrl_base))
2904 			return PTR_ERR(sysctrl_base);
2905 
2906 		regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX,
2907 			     GENCONF_SOC_DEVICE_MUX_NFC_EN |
2908 			     GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
2909 			     GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
2910 			     GENCONF_SOC_DEVICE_MUX_NFC_INT_EN);
2911 
2912 		regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL,
2913 				   GENCONF_CLK_GATING_CTRL_ND_GATE,
2914 				   GENCONF_CLK_GATING_CTRL_ND_GATE);
2915 	}
2916 
2917 	/* Configure the DMA if appropriate */
2918 	if (!nfc->caps->is_nfcv2)
2919 		marvell_nfc_init_dma(nfc);
2920 
2921 	marvell_nfc_reset(nfc);
2922 
2923 	return 0;
2924 }
2925 
marvell_nfc_probe(struct platform_device *pdev)2926 static int marvell_nfc_probe(struct platform_device *pdev)
2927 {
2928 	struct device *dev = &pdev->dev;
2929 	struct marvell_nfc *nfc;
2930 	int ret;
2931 	int irq;
2932 
2933 	nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
2934 			   GFP_KERNEL);
2935 	if (!nfc)
2936 		return -ENOMEM;
2937 
2938 	nfc->dev = dev;
2939 	nand_controller_init(&nfc->controller);
2940 	nfc->controller.ops = &marvell_nand_controller_ops;
2941 	INIT_LIST_HEAD(&nfc->chips);
2942 
2943 	nfc->regs = devm_platform_ioremap_resource(pdev, 0);
2944 	if (IS_ERR(nfc->regs))
2945 		return PTR_ERR(nfc->regs);
2946 
2947 	irq = platform_get_irq(pdev, 0);
2948 	if (irq < 0)
2949 		return irq;
2950 
2951 	nfc->core_clk = devm_clk_get(&pdev->dev, "core");
2952 
2953 	/* Managed the legacy case (when the first clock was not named) */
2954 	if (nfc->core_clk == ERR_PTR(-ENOENT))
2955 		nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
2956 
2957 	if (IS_ERR(nfc->core_clk))
2958 		return PTR_ERR(nfc->core_clk);
2959 
2960 	ret = clk_prepare_enable(nfc->core_clk);
2961 	if (ret)
2962 		return ret;
2963 
2964 	nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
2965 	if (IS_ERR(nfc->reg_clk)) {
2966 		if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
2967 			ret = PTR_ERR(nfc->reg_clk);
2968 			goto unprepare_core_clk;
2969 		}
2970 
2971 		nfc->reg_clk = NULL;
2972 	}
2973 
2974 	ret = clk_prepare_enable(nfc->reg_clk);
2975 	if (ret)
2976 		goto unprepare_core_clk;
2977 
2978 	marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
2979 	marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
2980 	ret = devm_request_irq(dev, irq, marvell_nfc_isr,
2981 			       0, "marvell-nfc", nfc);
2982 	if (ret)
2983 		goto unprepare_reg_clk;
2984 
2985 	/* Get NAND controller capabilities */
2986 	if (pdev->id_entry)
2987 		nfc->caps = (void *)pdev->id_entry->driver_data;
2988 	else
2989 		nfc->caps = of_device_get_match_data(&pdev->dev);
2990 
2991 	if (!nfc->caps) {
2992 		dev_err(dev, "Could not retrieve NFC caps\n");
2993 		ret = -EINVAL;
2994 		goto unprepare_reg_clk;
2995 	}
2996 
2997 	/* Init the controller and then probe the chips */
2998 	ret = marvell_nfc_init(nfc);
2999 	if (ret)
3000 		goto unprepare_reg_clk;
3001 
3002 	platform_set_drvdata(pdev, nfc);
3003 
3004 	ret = marvell_nand_chips_init(dev, nfc);
3005 	if (ret)
3006 		goto release_dma;
3007 
3008 	return 0;
3009 
3010 release_dma:
3011 	if (nfc->use_dma)
3012 		dma_release_channel(nfc->dma_chan);
3013 unprepare_reg_clk:
3014 	clk_disable_unprepare(nfc->reg_clk);
3015 unprepare_core_clk:
3016 	clk_disable_unprepare(nfc->core_clk);
3017 
3018 	return ret;
3019 }
3020 
marvell_nfc_remove(struct platform_device *pdev)3021 static int marvell_nfc_remove(struct platform_device *pdev)
3022 {
3023 	struct marvell_nfc *nfc = platform_get_drvdata(pdev);
3024 
3025 	marvell_nand_chips_cleanup(nfc);
3026 
3027 	if (nfc->use_dma) {
3028 		dmaengine_terminate_all(nfc->dma_chan);
3029 		dma_release_channel(nfc->dma_chan);
3030 	}
3031 
3032 	clk_disable_unprepare(nfc->reg_clk);
3033 	clk_disable_unprepare(nfc->core_clk);
3034 
3035 	return 0;
3036 }
3037 
marvell_nfc_suspend(struct device *dev)3038 static int __maybe_unused marvell_nfc_suspend(struct device *dev)
3039 {
3040 	struct marvell_nfc *nfc = dev_get_drvdata(dev);
3041 	struct marvell_nand_chip *chip;
3042 
3043 	list_for_each_entry(chip, &nfc->chips, node)
3044 		marvell_nfc_wait_ndrun(&chip->chip);
3045 
3046 	clk_disable_unprepare(nfc->reg_clk);
3047 	clk_disable_unprepare(nfc->core_clk);
3048 
3049 	return 0;
3050 }
3051 
marvell_nfc_resume(struct device *dev)3052 static int __maybe_unused marvell_nfc_resume(struct device *dev)
3053 {
3054 	struct marvell_nfc *nfc = dev_get_drvdata(dev);
3055 	int ret;
3056 
3057 	ret = clk_prepare_enable(nfc->core_clk);
3058 	if (ret < 0)
3059 		return ret;
3060 
3061 	ret = clk_prepare_enable(nfc->reg_clk);
3062 	if (ret < 0) {
3063 		clk_disable_unprepare(nfc->core_clk);
3064 		return ret;
3065 	}
3066 
3067 	/*
3068 	 * Reset nfc->selected_chip so the next command will cause the timing
3069 	 * registers to be restored in marvell_nfc_select_target().
3070 	 */
3071 	nfc->selected_chip = NULL;
3072 
3073 	/* Reset registers that have lost their contents */
3074 	marvell_nfc_reset(nfc);
3075 
3076 	return 0;
3077 }
3078 
3079 static const struct dev_pm_ops marvell_nfc_pm_ops = {
3080 	SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume)
3081 };
3082 
3083 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
3084 	.max_cs_nb = 4,
3085 	.max_rb_nb = 2,
3086 	.need_system_controller = true,
3087 	.is_nfcv2 = true,
3088 };
3089 
3090 static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
3091 	.max_cs_nb = 4,
3092 	.max_rb_nb = 2,
3093 	.is_nfcv2 = true,
3094 };
3095 
3096 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
3097 	.max_cs_nb = 2,
3098 	.max_rb_nb = 1,
3099 	.use_dma = true,
3100 };
3101 
3102 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
3103 	.max_cs_nb = 4,
3104 	.max_rb_nb = 2,
3105 	.need_system_controller = true,
3106 	.legacy_of_bindings = true,
3107 	.is_nfcv2 = true,
3108 };
3109 
3110 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
3111 	.max_cs_nb = 4,
3112 	.max_rb_nb = 2,
3113 	.legacy_of_bindings = true,
3114 	.is_nfcv2 = true,
3115 };
3116 
3117 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
3118 	.max_cs_nb = 2,
3119 	.max_rb_nb = 1,
3120 	.legacy_of_bindings = true,
3121 	.use_dma = true,
3122 };
3123 
3124 static const struct platform_device_id marvell_nfc_platform_ids[] = {
3125 	{
3126 		.name = "pxa3xx-nand",
3127 		.driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
3128 	},
3129 	{ /* sentinel */ },
3130 };
3131 MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);
3132 
3133 static const struct of_device_id marvell_nfc_of_ids[] = {
3134 	{
3135 		.compatible = "marvell,armada-8k-nand-controller",
3136 		.data = &marvell_armada_8k_nfc_caps,
3137 	},
3138 	{
3139 		.compatible = "marvell,armada370-nand-controller",
3140 		.data = &marvell_armada370_nfc_caps,
3141 	},
3142 	{
3143 		.compatible = "marvell,pxa3xx-nand-controller",
3144 		.data = &marvell_pxa3xx_nfc_caps,
3145 	},
3146 	/* Support for old/deprecated bindings: */
3147 	{
3148 		.compatible = "marvell,armada-8k-nand",
3149 		.data = &marvell_armada_8k_nfc_legacy_caps,
3150 	},
3151 	{
3152 		.compatible = "marvell,armada370-nand",
3153 		.data = &marvell_armada370_nfc_legacy_caps,
3154 	},
3155 	{
3156 		.compatible = "marvell,pxa3xx-nand",
3157 		.data = &marvell_pxa3xx_nfc_legacy_caps,
3158 	},
3159 	{ /* sentinel */ },
3160 };
3161 MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);
3162 
3163 static struct platform_driver marvell_nfc_driver = {
3164 	.driver	= {
3165 		.name		= "marvell-nfc",
3166 		.of_match_table = marvell_nfc_of_ids,
3167 		.pm		= &marvell_nfc_pm_ops,
3168 	},
3169 	.id_table = marvell_nfc_platform_ids,
3170 	.probe = marvell_nfc_probe,
3171 	.remove	= marvell_nfc_remove,
3172 };
3173 module_platform_driver(marvell_nfc_driver);
3174 
3175 MODULE_LICENSE("GPL");
3176 MODULE_DESCRIPTION("Marvell NAND controller driver");
3177