1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright 2017 ATMEL
4 * Copyright 2017 Free Electrons
5 *
6 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7 *
8 * Derived from the atmel_nand.c driver which contained the following
9 * copyrights:
10 *
11 * Copyright 2003 Rick Bronson
12 *
13 * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
14 * Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
15 *
16 * Derived from drivers/mtd/spia.c (removed in v3.8)
17 * Copyright 2000 Steven J. Hill (sjhill@cotw.com)
18 *
19 *
20 * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
21 * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
22 *
23 * Derived from Das U-Boot source code
24 * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
25 * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
26 *
27 * Add Programmable Multibit ECC support for various AT91 SoC
28 * Copyright 2012 ATMEL, Hong Xu
29 *
30 * Add Nand Flash Controller support for SAMA5 SoC
31 * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
32 *
33 * A few words about the naming convention in this file. This convention
34 * applies to structure and function names.
35 *
36 * Prefixes:
37 *
38 * - atmel_nand_: all generic structures/functions
39 * - atmel_smc_nand_: all structures/functions specific to the SMC interface
40 * (at91sam9 and avr32 SoCs)
41 * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
42 * (sama5 SoCs and later)
43 * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
44 * that is available in the HSMC block
45 * - <soc>_nand_: all SoC specific structures/functions
46 */
47
48 #include <linux/clk.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/genalloc.h>
52 #include <linux/gpio/consumer.h>
53 #include <linux/interrupt.h>
54 #include <linux/mfd/syscon.h>
55 #include <linux/mfd/syscon/atmel-matrix.h>
56 #include <linux/mfd/syscon/atmel-smc.h>
57 #include <linux/module.h>
58 #include <linux/mtd/rawnand.h>
59 #include <linux/of_address.h>
60 #include <linux/of_irq.h>
61 #include <linux/of_platform.h>
62 #include <linux/iopoll.h>
63 #include <linux/platform_device.h>
64 #include <linux/regmap.h>
65 #include <soc/at91/atmel-sfr.h>
66
67 #include "pmecc.h"
68
69 #define ATMEL_HSMC_NFC_CFG 0x0
70 #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24)
71 #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24)
72 #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20))
73 #define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16)
74 #define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13)
75 #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12)
76 #define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9)
77 #define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8)
78 #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0)
79 #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1)
80
81 #define ATMEL_HSMC_NFC_CTRL 0x4
82 #define ATMEL_HSMC_NFC_CTRL_EN BIT(0)
83 #define ATMEL_HSMC_NFC_CTRL_DIS BIT(1)
84
85 #define ATMEL_HSMC_NFC_SR 0x8
86 #define ATMEL_HSMC_NFC_IER 0xc
87 #define ATMEL_HSMC_NFC_IDR 0x10
88 #define ATMEL_HSMC_NFC_IMR 0x14
89 #define ATMEL_HSMC_NFC_SR_ENABLED BIT(1)
90 #define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4)
91 #define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5)
92 #define ATMEL_HSMC_NFC_SR_BUSY BIT(8)
93 #define ATMEL_HSMC_NFC_SR_WR BIT(11)
94 #define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12)
95 #define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16)
96 #define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17)
97 #define ATMEL_HSMC_NFC_SR_DTOE BIT(20)
98 #define ATMEL_HSMC_NFC_SR_UNDEF BIT(21)
99 #define ATMEL_HSMC_NFC_SR_AWB BIT(22)
100 #define ATMEL_HSMC_NFC_SR_NFCASE BIT(23)
101 #define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \
102 ATMEL_HSMC_NFC_SR_UNDEF | \
103 ATMEL_HSMC_NFC_SR_AWB | \
104 ATMEL_HSMC_NFC_SR_NFCASE)
105 #define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24)
106
107 #define ATMEL_HSMC_NFC_ADDR 0x18
108 #define ATMEL_HSMC_NFC_BANK 0x1c
109
110 #define ATMEL_NFC_MAX_RB_ID 7
111
112 #define ATMEL_NFC_SRAM_SIZE 0x2400
113
114 #define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2))
115 #define ATMEL_NFC_VCMD2 BIT(18)
116 #define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19)
117 #define ATMEL_NFC_CSID(cs) ((cs) << 22)
118 #define ATMEL_NFC_DATAEN BIT(25)
119 #define ATMEL_NFC_NFCWR BIT(26)
120
121 #define ATMEL_NFC_MAX_ADDR_CYCLES 5
122
123 #define ATMEL_NAND_ALE_OFFSET BIT(21)
124 #define ATMEL_NAND_CLE_OFFSET BIT(22)
125
126 #define DEFAULT_TIMEOUT_MS 1000
127 #define MIN_DMA_LEN 128
128
129 static bool atmel_nand_avoid_dma __read_mostly;
130
131 MODULE_PARM_DESC(avoiddma, "Avoid using DMA");
132 module_param_named(avoiddma, atmel_nand_avoid_dma, bool, 0400);
133
134 enum atmel_nand_rb_type {
135 ATMEL_NAND_NO_RB,
136 ATMEL_NAND_NATIVE_RB,
137 ATMEL_NAND_GPIO_RB,
138 };
139
140 struct atmel_nand_rb {
141 enum atmel_nand_rb_type type;
142 union {
143 struct gpio_desc *gpio;
144 int id;
145 };
146 };
147
148 struct atmel_nand_cs {
149 int id;
150 struct atmel_nand_rb rb;
151 struct gpio_desc *csgpio;
152 struct {
153 void __iomem *virt;
154 dma_addr_t dma;
155 } io;
156
157 struct atmel_smc_cs_conf smcconf;
158 };
159
160 struct atmel_nand {
161 struct list_head node;
162 struct device *dev;
163 struct nand_chip base;
164 struct atmel_nand_cs *activecs;
165 struct atmel_pmecc_user *pmecc;
166 struct gpio_desc *cdgpio;
167 int numcs;
168 struct atmel_nand_cs cs[];
169 };
170
to_atmel_nand(struct nand_chip *chip)171 static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
172 {
173 return container_of(chip, struct atmel_nand, base);
174 }
175
176 enum atmel_nfc_data_xfer {
177 ATMEL_NFC_NO_DATA,
178 ATMEL_NFC_READ_DATA,
179 ATMEL_NFC_WRITE_DATA,
180 };
181
182 struct atmel_nfc_op {
183 u8 cs;
184 u8 ncmds;
185 u8 cmds[2];
186 u8 naddrs;
187 u8 addrs[5];
188 enum atmel_nfc_data_xfer data;
189 u32 wait;
190 u32 errors;
191 };
192
193 struct atmel_nand_controller;
194 struct atmel_nand_controller_caps;
195
196 struct atmel_nand_controller_ops {
197 int (*probe)(struct platform_device *pdev,
198 const struct atmel_nand_controller_caps *caps);
199 int (*remove)(struct atmel_nand_controller *nc);
200 void (*nand_init)(struct atmel_nand_controller *nc,
201 struct atmel_nand *nand);
202 int (*ecc_init)(struct nand_chip *chip);
203 int (*setup_interface)(struct atmel_nand *nand, int csline,
204 const struct nand_interface_config *conf);
205 int (*exec_op)(struct atmel_nand *nand,
206 const struct nand_operation *op, bool check_only);
207 };
208
209 struct atmel_nand_controller_caps {
210 bool has_dma;
211 bool legacy_of_bindings;
212 u32 ale_offs;
213 u32 cle_offs;
214 const char *ebi_csa_regmap_name;
215 const struct atmel_nand_controller_ops *ops;
216 };
217
218 struct atmel_nand_controller {
219 struct nand_controller base;
220 const struct atmel_nand_controller_caps *caps;
221 struct device *dev;
222 struct regmap *smc;
223 struct dma_chan *dmac;
224 struct atmel_pmecc *pmecc;
225 struct list_head chips;
226 struct clk *mck;
227 };
228
229 static inline struct atmel_nand_controller *
to_nand_controller(struct nand_controller *ctl)230 to_nand_controller(struct nand_controller *ctl)
231 {
232 return container_of(ctl, struct atmel_nand_controller, base);
233 }
234
235 struct atmel_smc_nand_ebi_csa_cfg {
236 u32 offs;
237 u32 nfd0_on_d16;
238 };
239
240 struct atmel_smc_nand_controller {
241 struct atmel_nand_controller base;
242 struct regmap *ebi_csa_regmap;
243 struct atmel_smc_nand_ebi_csa_cfg *ebi_csa;
244 };
245
246 static inline struct atmel_smc_nand_controller *
to_smc_nand_controller(struct nand_controller *ctl)247 to_smc_nand_controller(struct nand_controller *ctl)
248 {
249 return container_of(to_nand_controller(ctl),
250 struct atmel_smc_nand_controller, base);
251 }
252
253 struct atmel_hsmc_nand_controller {
254 struct atmel_nand_controller base;
255 struct {
256 struct gen_pool *pool;
257 void __iomem *virt;
258 dma_addr_t dma;
259 } sram;
260 const struct atmel_hsmc_reg_layout *hsmc_layout;
261 struct regmap *io;
262 struct atmel_nfc_op op;
263 struct completion complete;
264 u32 cfg;
265 int irq;
266
267 /* Only used when instantiating from legacy DT bindings. */
268 struct clk *clk;
269 };
270
271 static inline struct atmel_hsmc_nand_controller *
to_hsmc_nand_controller(struct nand_controller *ctl)272 to_hsmc_nand_controller(struct nand_controller *ctl)
273 {
274 return container_of(to_nand_controller(ctl),
275 struct atmel_hsmc_nand_controller, base);
276 }
277
atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)278 static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
279 {
280 op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
281 op->wait ^= status & op->wait;
282
283 return !op->wait || op->errors;
284 }
285
atmel_nfc_interrupt(int irq, void *data)286 static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
287 {
288 struct atmel_hsmc_nand_controller *nc = data;
289 u32 sr, rcvd;
290 bool done;
291
292 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
293
294 rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
295 done = atmel_nfc_op_done(&nc->op, sr);
296
297 if (rcvd)
298 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
299
300 if (done)
301 complete(&nc->complete);
302
303 return rcvd ? IRQ_HANDLED : IRQ_NONE;
304 }
305
atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll, unsigned int timeout_ms)306 static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
307 unsigned int timeout_ms)
308 {
309 int ret;
310
311 if (!timeout_ms)
312 timeout_ms = DEFAULT_TIMEOUT_MS;
313
314 if (poll) {
315 u32 status;
316
317 ret = regmap_read_poll_timeout(nc->base.smc,
318 ATMEL_HSMC_NFC_SR, status,
319 atmel_nfc_op_done(&nc->op,
320 status),
321 0, timeout_ms * 1000);
322 } else {
323 init_completion(&nc->complete);
324 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
325 nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
326 ret = wait_for_completion_timeout(&nc->complete,
327 msecs_to_jiffies(timeout_ms));
328 if (!ret)
329 ret = -ETIMEDOUT;
330 else
331 ret = 0;
332
333 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
334 }
335
336 if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
337 dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
338 ret = -ETIMEDOUT;
339 }
340
341 if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
342 dev_err(nc->base.dev, "Access to an undefined area\n");
343 ret = -EIO;
344 }
345
346 if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
347 dev_err(nc->base.dev, "Access while busy\n");
348 ret = -EIO;
349 }
350
351 if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
352 dev_err(nc->base.dev, "Wrong access size\n");
353 ret = -EIO;
354 }
355
356 return ret;
357 }
358
atmel_nand_dma_transfer_finished(void *data)359 static void atmel_nand_dma_transfer_finished(void *data)
360 {
361 struct completion *finished = data;
362
363 complete(finished);
364 }
365
atmel_nand_dma_transfer(struct atmel_nand_controller *nc, void *buf, dma_addr_t dev_dma, size_t len, enum dma_data_direction dir)366 static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
367 void *buf, dma_addr_t dev_dma, size_t len,
368 enum dma_data_direction dir)
369 {
370 DECLARE_COMPLETION_ONSTACK(finished);
371 dma_addr_t src_dma, dst_dma, buf_dma;
372 struct dma_async_tx_descriptor *tx;
373 dma_cookie_t cookie;
374
375 buf_dma = dma_map_single(nc->dev, buf, len, dir);
376 if (dma_mapping_error(nc->dev, dev_dma)) {
377 dev_err(nc->dev,
378 "Failed to prepare a buffer for DMA access\n");
379 goto err;
380 }
381
382 if (dir == DMA_FROM_DEVICE) {
383 src_dma = dev_dma;
384 dst_dma = buf_dma;
385 } else {
386 src_dma = buf_dma;
387 dst_dma = dev_dma;
388 }
389
390 tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
391 DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
392 if (!tx) {
393 dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
394 goto err_unmap;
395 }
396
397 tx->callback = atmel_nand_dma_transfer_finished;
398 tx->callback_param = &finished;
399
400 cookie = dmaengine_submit(tx);
401 if (dma_submit_error(cookie)) {
402 dev_err(nc->dev, "Failed to do DMA tx_submit\n");
403 goto err_unmap;
404 }
405
406 dma_async_issue_pending(nc->dmac);
407 wait_for_completion(&finished);
408 dma_unmap_single(nc->dev, buf_dma, len, dir);
409
410 return 0;
411
412 err_unmap:
413 dma_unmap_single(nc->dev, buf_dma, len, dir);
414
415 err:
416 dev_dbg(nc->dev, "Fall back to CPU I/O\n");
417
418 return -EIO;
419 }
420
atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)421 static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
422 {
423 u8 *addrs = nc->op.addrs;
424 unsigned int op = 0;
425 u32 addr, val;
426 int i, ret;
427
428 nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
429
430 for (i = 0; i < nc->op.ncmds; i++)
431 op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
432
433 if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
434 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
435
436 op |= ATMEL_NFC_CSID(nc->op.cs) |
437 ATMEL_NFC_ACYCLE(nc->op.naddrs);
438
439 if (nc->op.ncmds > 1)
440 op |= ATMEL_NFC_VCMD2;
441
442 addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
443 (addrs[3] << 24);
444
445 if (nc->op.data != ATMEL_NFC_NO_DATA) {
446 op |= ATMEL_NFC_DATAEN;
447 nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
448
449 if (nc->op.data == ATMEL_NFC_WRITE_DATA)
450 op |= ATMEL_NFC_NFCWR;
451 }
452
453 /* Clear all flags. */
454 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
455
456 /* Send the command. */
457 regmap_write(nc->io, op, addr);
458
459 ret = atmel_nfc_wait(nc, poll, 0);
460 if (ret)
461 dev_err(nc->base.dev,
462 "Failed to send NAND command (err = %d)!",
463 ret);
464
465 /* Reset the op state. */
466 memset(&nc->op, 0, sizeof(nc->op));
467
468 return ret;
469 }
470
atmel_nand_data_in(struct atmel_nand *nand, void *buf, unsigned int len, bool force_8bit)471 static void atmel_nand_data_in(struct atmel_nand *nand, void *buf,
472 unsigned int len, bool force_8bit)
473 {
474 struct atmel_nand_controller *nc;
475
476 nc = to_nand_controller(nand->base.controller);
477
478 /*
479 * If the controller supports DMA, the buffer address is DMA-able and
480 * len is long enough to make DMA transfers profitable, let's trigger
481 * a DMA transfer. If it fails, fallback to PIO mode.
482 */
483 if (nc->dmac && virt_addr_valid(buf) &&
484 len >= MIN_DMA_LEN && !force_8bit &&
485 !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
486 DMA_FROM_DEVICE))
487 return;
488
489 if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit)
490 ioread16_rep(nand->activecs->io.virt, buf, len / 2);
491 else
492 ioread8_rep(nand->activecs->io.virt, buf, len);
493 }
494
atmel_nand_data_out(struct atmel_nand *nand, const void *buf, unsigned int len, bool force_8bit)495 static void atmel_nand_data_out(struct atmel_nand *nand, const void *buf,
496 unsigned int len, bool force_8bit)
497 {
498 struct atmel_nand_controller *nc;
499
500 nc = to_nand_controller(nand->base.controller);
501
502 /*
503 * If the controller supports DMA, the buffer address is DMA-able and
504 * len is long enough to make DMA transfers profitable, let's trigger
505 * a DMA transfer. If it fails, fallback to PIO mode.
506 */
507 if (nc->dmac && virt_addr_valid(buf) &&
508 len >= MIN_DMA_LEN && !force_8bit &&
509 !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
510 len, DMA_TO_DEVICE))
511 return;
512
513 if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit)
514 iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
515 else
516 iowrite8_rep(nand->activecs->io.virt, buf, len);
517 }
518
atmel_nand_waitrdy(struct atmel_nand *nand, unsigned int timeout_ms)519 static int atmel_nand_waitrdy(struct atmel_nand *nand, unsigned int timeout_ms)
520 {
521 if (nand->activecs->rb.type == ATMEL_NAND_NO_RB)
522 return nand_soft_waitrdy(&nand->base, timeout_ms);
523
524 return nand_gpio_waitrdy(&nand->base, nand->activecs->rb.gpio,
525 timeout_ms);
526 }
527
atmel_hsmc_nand_waitrdy(struct atmel_nand *nand, unsigned int timeout_ms)528 static int atmel_hsmc_nand_waitrdy(struct atmel_nand *nand,
529 unsigned int timeout_ms)
530 {
531 struct atmel_hsmc_nand_controller *nc;
532 u32 status, mask;
533
534 if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB)
535 return atmel_nand_waitrdy(nand, timeout_ms);
536
537 nc = to_hsmc_nand_controller(nand->base.controller);
538 mask = ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
539 return regmap_read_poll_timeout_atomic(nc->base.smc, ATMEL_HSMC_NFC_SR,
540 status, status & mask,
541 10, timeout_ms * 1000);
542 }
543
atmel_nand_select_target(struct atmel_nand *nand, unsigned int cs)544 static void atmel_nand_select_target(struct atmel_nand *nand,
545 unsigned int cs)
546 {
547 nand->activecs = &nand->cs[cs];
548 }
549
atmel_hsmc_nand_select_target(struct atmel_nand *nand, unsigned int cs)550 static void atmel_hsmc_nand_select_target(struct atmel_nand *nand,
551 unsigned int cs)
552 {
553 struct mtd_info *mtd = nand_to_mtd(&nand->base);
554 struct atmel_hsmc_nand_controller *nc;
555 u32 cfg = ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
556 ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
557 ATMEL_HSMC_NFC_CFG_RSPARE;
558
559 nand->activecs = &nand->cs[cs];
560 nc = to_hsmc_nand_controller(nand->base.controller);
561 if (nc->cfg == cfg)
562 return;
563
564 regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
565 ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
566 ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
567 ATMEL_HSMC_NFC_CFG_RSPARE |
568 ATMEL_HSMC_NFC_CFG_WSPARE,
569 cfg);
570 nc->cfg = cfg;
571 }
572
atmel_smc_nand_exec_instr(struct atmel_nand *nand, const struct nand_op_instr *instr)573 static int atmel_smc_nand_exec_instr(struct atmel_nand *nand,
574 const struct nand_op_instr *instr)
575 {
576 struct atmel_nand_controller *nc;
577 unsigned int i;
578
579 nc = to_nand_controller(nand->base.controller);
580 switch (instr->type) {
581 case NAND_OP_CMD_INSTR:
582 writeb(instr->ctx.cmd.opcode,
583 nand->activecs->io.virt + nc->caps->cle_offs);
584 return 0;
585 case NAND_OP_ADDR_INSTR:
586 for (i = 0; i < instr->ctx.addr.naddrs; i++)
587 writeb(instr->ctx.addr.addrs[i],
588 nand->activecs->io.virt + nc->caps->ale_offs);
589 return 0;
590 case NAND_OP_DATA_IN_INSTR:
591 atmel_nand_data_in(nand, instr->ctx.data.buf.in,
592 instr->ctx.data.len,
593 instr->ctx.data.force_8bit);
594 return 0;
595 case NAND_OP_DATA_OUT_INSTR:
596 atmel_nand_data_out(nand, instr->ctx.data.buf.out,
597 instr->ctx.data.len,
598 instr->ctx.data.force_8bit);
599 return 0;
600 case NAND_OP_WAITRDY_INSTR:
601 return atmel_nand_waitrdy(nand,
602 instr->ctx.waitrdy.timeout_ms);
603 default:
604 break;
605 }
606
607 return -EINVAL;
608 }
609
atmel_smc_nand_exec_op(struct atmel_nand *nand, const struct nand_operation *op, bool check_only)610 static int atmel_smc_nand_exec_op(struct atmel_nand *nand,
611 const struct nand_operation *op,
612 bool check_only)
613 {
614 unsigned int i;
615 int ret = 0;
616
617 if (check_only)
618 return 0;
619
620 atmel_nand_select_target(nand, op->cs);
621 gpiod_set_value(nand->activecs->csgpio, 0);
622 for (i = 0; i < op->ninstrs; i++) {
623 ret = atmel_smc_nand_exec_instr(nand, &op->instrs[i]);
624 if (ret)
625 break;
626 }
627 gpiod_set_value(nand->activecs->csgpio, 1);
628
629 return ret;
630 }
631
atmel_hsmc_exec_cmd_addr(struct nand_chip *chip, const struct nand_subop *subop)632 static int atmel_hsmc_exec_cmd_addr(struct nand_chip *chip,
633 const struct nand_subop *subop)
634 {
635 struct atmel_nand *nand = to_atmel_nand(chip);
636 struct atmel_hsmc_nand_controller *nc;
637 unsigned int i, j;
638
639 nc = to_hsmc_nand_controller(chip->controller);
640
641 nc->op.cs = nand->activecs->id;
642 for (i = 0; i < subop->ninstrs; i++) {
643 const struct nand_op_instr *instr = &subop->instrs[i];
644
645 if (instr->type == NAND_OP_CMD_INSTR) {
646 nc->op.cmds[nc->op.ncmds++] = instr->ctx.cmd.opcode;
647 continue;
648 }
649
650 for (j = nand_subop_get_addr_start_off(subop, i);
651 j < nand_subop_get_num_addr_cyc(subop, i); j++) {
652 nc->op.addrs[nc->op.naddrs] = instr->ctx.addr.addrs[j];
653 nc->op.naddrs++;
654 }
655 }
656
657 return atmel_nfc_exec_op(nc, true);
658 }
659
atmel_hsmc_exec_rw(struct nand_chip *chip, const struct nand_subop *subop)660 static int atmel_hsmc_exec_rw(struct nand_chip *chip,
661 const struct nand_subop *subop)
662 {
663 const struct nand_op_instr *instr = subop->instrs;
664 struct atmel_nand *nand = to_atmel_nand(chip);
665
666 if (instr->type == NAND_OP_DATA_IN_INSTR)
667 atmel_nand_data_in(nand, instr->ctx.data.buf.in,
668 instr->ctx.data.len,
669 instr->ctx.data.force_8bit);
670 else
671 atmel_nand_data_out(nand, instr->ctx.data.buf.out,
672 instr->ctx.data.len,
673 instr->ctx.data.force_8bit);
674
675 return 0;
676 }
677
atmel_hsmc_exec_waitrdy(struct nand_chip *chip, const struct nand_subop *subop)678 static int atmel_hsmc_exec_waitrdy(struct nand_chip *chip,
679 const struct nand_subop *subop)
680 {
681 const struct nand_op_instr *instr = subop->instrs;
682 struct atmel_nand *nand = to_atmel_nand(chip);
683
684 return atmel_hsmc_nand_waitrdy(nand, instr->ctx.waitrdy.timeout_ms);
685 }
686
687 static const struct nand_op_parser atmel_hsmc_op_parser = NAND_OP_PARSER(
688 NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_cmd_addr,
689 NAND_OP_PARSER_PAT_CMD_ELEM(true),
690 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
691 NAND_OP_PARSER_PAT_CMD_ELEM(true)),
692 NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw,
693 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 0)),
694 NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw,
695 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 0)),
696 NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_waitrdy,
697 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
698 );
699
atmel_hsmc_nand_exec_op(struct atmel_nand *nand, const struct nand_operation *op, bool check_only)700 static int atmel_hsmc_nand_exec_op(struct atmel_nand *nand,
701 const struct nand_operation *op,
702 bool check_only)
703 {
704 int ret;
705
706 if (check_only)
707 return nand_op_parser_exec_op(&nand->base,
708 &atmel_hsmc_op_parser, op, true);
709
710 atmel_hsmc_nand_select_target(nand, op->cs);
711 ret = nand_op_parser_exec_op(&nand->base, &atmel_hsmc_op_parser, op,
712 false);
713
714 return ret;
715 }
716
atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf, bool oob_required)717 static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
718 bool oob_required)
719 {
720 struct mtd_info *mtd = nand_to_mtd(chip);
721 struct atmel_hsmc_nand_controller *nc;
722 int ret = -EIO;
723
724 nc = to_hsmc_nand_controller(chip->controller);
725
726 if (nc->base.dmac)
727 ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
728 nc->sram.dma, mtd->writesize,
729 DMA_TO_DEVICE);
730
731 /* Falling back to CPU copy. */
732 if (ret)
733 memcpy_toio(nc->sram.virt, buf, mtd->writesize);
734
735 if (oob_required)
736 memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
737 mtd->oobsize);
738 }
739
atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf, bool oob_required)740 static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
741 bool oob_required)
742 {
743 struct mtd_info *mtd = nand_to_mtd(chip);
744 struct atmel_hsmc_nand_controller *nc;
745 int ret = -EIO;
746
747 nc = to_hsmc_nand_controller(chip->controller);
748
749 if (nc->base.dmac)
750 ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
751 mtd->writesize, DMA_FROM_DEVICE);
752
753 /* Falling back to CPU copy. */
754 if (ret)
755 memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
756
757 if (oob_required)
758 memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
759 mtd->oobsize);
760 }
761
atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)762 static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
763 {
764 struct mtd_info *mtd = nand_to_mtd(chip);
765 struct atmel_hsmc_nand_controller *nc;
766
767 nc = to_hsmc_nand_controller(chip->controller);
768
769 if (column >= 0) {
770 nc->op.addrs[nc->op.naddrs++] = column;
771
772 /*
773 * 2 address cycles for the column offset on large page NANDs.
774 */
775 if (mtd->writesize > 512)
776 nc->op.addrs[nc->op.naddrs++] = column >> 8;
777 }
778
779 if (page >= 0) {
780 nc->op.addrs[nc->op.naddrs++] = page;
781 nc->op.addrs[nc->op.naddrs++] = page >> 8;
782
783 if (chip->options & NAND_ROW_ADDR_3)
784 nc->op.addrs[nc->op.naddrs++] = page >> 16;
785 }
786 }
787
atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)788 static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
789 {
790 struct atmel_nand *nand = to_atmel_nand(chip);
791 struct atmel_nand_controller *nc;
792 int ret;
793
794 nc = to_nand_controller(chip->controller);
795
796 if (raw)
797 return 0;
798
799 ret = atmel_pmecc_enable(nand->pmecc, op);
800 if (ret)
801 dev_err(nc->dev,
802 "Failed to enable ECC engine (err = %d)\n", ret);
803
804 return ret;
805 }
806
atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)807 static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
808 {
809 struct atmel_nand *nand = to_atmel_nand(chip);
810
811 if (!raw)
812 atmel_pmecc_disable(nand->pmecc);
813 }
814
atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)815 static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
816 {
817 struct atmel_nand *nand = to_atmel_nand(chip);
818 struct mtd_info *mtd = nand_to_mtd(chip);
819 struct atmel_nand_controller *nc;
820 struct mtd_oob_region oobregion;
821 void *eccbuf;
822 int ret, i;
823
824 nc = to_nand_controller(chip->controller);
825
826 if (raw)
827 return 0;
828
829 ret = atmel_pmecc_wait_rdy(nand->pmecc);
830 if (ret) {
831 dev_err(nc->dev,
832 "Failed to transfer NAND page data (err = %d)\n",
833 ret);
834 return ret;
835 }
836
837 mtd_ooblayout_ecc(mtd, 0, &oobregion);
838 eccbuf = chip->oob_poi + oobregion.offset;
839
840 for (i = 0; i < chip->ecc.steps; i++) {
841 atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
842 eccbuf);
843 eccbuf += chip->ecc.bytes;
844 }
845
846 return 0;
847 }
848
atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf, bool raw)849 static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
850 bool raw)
851 {
852 struct atmel_nand *nand = to_atmel_nand(chip);
853 struct mtd_info *mtd = nand_to_mtd(chip);
854 struct atmel_nand_controller *nc;
855 struct mtd_oob_region oobregion;
856 int ret, i, max_bitflips = 0;
857 void *databuf, *eccbuf;
858
859 nc = to_nand_controller(chip->controller);
860
861 if (raw)
862 return 0;
863
864 ret = atmel_pmecc_wait_rdy(nand->pmecc);
865 if (ret) {
866 dev_err(nc->dev,
867 "Failed to read NAND page data (err = %d)\n",
868 ret);
869 return ret;
870 }
871
872 mtd_ooblayout_ecc(mtd, 0, &oobregion);
873 eccbuf = chip->oob_poi + oobregion.offset;
874 databuf = buf;
875
876 for (i = 0; i < chip->ecc.steps; i++) {
877 ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
878 eccbuf);
879 if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
880 ret = nand_check_erased_ecc_chunk(databuf,
881 chip->ecc.size,
882 eccbuf,
883 chip->ecc.bytes,
884 NULL, 0,
885 chip->ecc.strength);
886
887 if (ret >= 0) {
888 mtd->ecc_stats.corrected += ret;
889 max_bitflips = max(ret, max_bitflips);
890 } else {
891 mtd->ecc_stats.failed++;
892 }
893
894 databuf += chip->ecc.size;
895 eccbuf += chip->ecc.bytes;
896 }
897
898 return max_bitflips;
899 }
900
atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf, bool oob_required, int page, bool raw)901 static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
902 bool oob_required, int page, bool raw)
903 {
904 struct mtd_info *mtd = nand_to_mtd(chip);
905 struct atmel_nand *nand = to_atmel_nand(chip);
906 int ret;
907
908 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
909
910 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
911 if (ret)
912 return ret;
913
914 nand_write_data_op(chip, buf, mtd->writesize, false);
915
916 ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
917 if (ret) {
918 atmel_pmecc_disable(nand->pmecc);
919 return ret;
920 }
921
922 atmel_nand_pmecc_disable(chip, raw);
923
924 nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
925
926 return nand_prog_page_end_op(chip);
927 }
928
atmel_nand_pmecc_write_page(struct nand_chip *chip, const u8 *buf, int oob_required, int page)929 static int atmel_nand_pmecc_write_page(struct nand_chip *chip, const u8 *buf,
930 int oob_required, int page)
931 {
932 return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
933 }
934
atmel_nand_pmecc_write_page_raw(struct nand_chip *chip, const u8 *buf, int oob_required, int page)935 static int atmel_nand_pmecc_write_page_raw(struct nand_chip *chip,
936 const u8 *buf, int oob_required,
937 int page)
938 {
939 return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
940 }
941
atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf, bool oob_required, int page, bool raw)942 static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
943 bool oob_required, int page, bool raw)
944 {
945 struct mtd_info *mtd = nand_to_mtd(chip);
946 int ret;
947
948 nand_read_page_op(chip, page, 0, NULL, 0);
949
950 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
951 if (ret)
952 return ret;
953
954 ret = nand_read_data_op(chip, buf, mtd->writesize, false, false);
955 if (ret)
956 goto out_disable;
957
958 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, false);
959 if (ret)
960 goto out_disable;
961
962 ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
963
964 out_disable:
965 atmel_nand_pmecc_disable(chip, raw);
966
967 return ret;
968 }
969
atmel_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf, int oob_required, int page)970 static int atmel_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
971 int oob_required, int page)
972 {
973 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
974 }
975
atmel_nand_pmecc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_required, int page)976 static int atmel_nand_pmecc_read_page_raw(struct nand_chip *chip, u8 *buf,
977 int oob_required, int page)
978 {
979 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
980 }
981
atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf, bool oob_required, int page, bool raw)982 static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
983 const u8 *buf, bool oob_required,
984 int page, bool raw)
985 {
986 struct mtd_info *mtd = nand_to_mtd(chip);
987 struct atmel_nand *nand = to_atmel_nand(chip);
988 struct atmel_hsmc_nand_controller *nc;
989 int ret;
990
991 atmel_hsmc_nand_select_target(nand, chip->cur_cs);
992 nc = to_hsmc_nand_controller(chip->controller);
993
994 atmel_nfc_copy_to_sram(chip, buf, false);
995
996 nc->op.cmds[0] = NAND_CMD_SEQIN;
997 nc->op.ncmds = 1;
998 atmel_nfc_set_op_addr(chip, page, 0x0);
999 nc->op.cs = nand->activecs->id;
1000 nc->op.data = ATMEL_NFC_WRITE_DATA;
1001
1002 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
1003 if (ret)
1004 return ret;
1005
1006 ret = atmel_nfc_exec_op(nc, false);
1007 if (ret) {
1008 atmel_nand_pmecc_disable(chip, raw);
1009 dev_err(nc->base.dev,
1010 "Failed to transfer NAND page data (err = %d)\n",
1011 ret);
1012 return ret;
1013 }
1014
1015 ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
1016
1017 atmel_nand_pmecc_disable(chip, raw);
1018
1019 if (ret)
1020 return ret;
1021
1022 nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
1023
1024 return nand_prog_page_end_op(chip);
1025 }
1026
atmel_hsmc_nand_pmecc_write_page(struct nand_chip *chip, const u8 *buf, int oob_required, int page)1027 static int atmel_hsmc_nand_pmecc_write_page(struct nand_chip *chip,
1028 const u8 *buf, int oob_required,
1029 int page)
1030 {
1031 return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
1032 false);
1033 }
1034
atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip *chip, const u8 *buf, int oob_required, int page)1035 static int atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip *chip,
1036 const u8 *buf,
1037 int oob_required, int page)
1038 {
1039 return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
1040 true);
1041 }
1042
atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf, bool oob_required, int page, bool raw)1043 static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
1044 bool oob_required, int page,
1045 bool raw)
1046 {
1047 struct mtd_info *mtd = nand_to_mtd(chip);
1048 struct atmel_nand *nand = to_atmel_nand(chip);
1049 struct atmel_hsmc_nand_controller *nc;
1050 int ret;
1051
1052 atmel_hsmc_nand_select_target(nand, chip->cur_cs);
1053 nc = to_hsmc_nand_controller(chip->controller);
1054
1055 /*
1056 * Optimized read page accessors only work when the NAND R/B pin is
1057 * connected to a native SoC R/B pin. If that's not the case, fallback
1058 * to the non-optimized one.
1059 */
1060 if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB)
1061 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
1062 raw);
1063
1064 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
1065
1066 if (mtd->writesize > 512)
1067 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
1068
1069 atmel_nfc_set_op_addr(chip, page, 0x0);
1070 nc->op.cs = nand->activecs->id;
1071 nc->op.data = ATMEL_NFC_READ_DATA;
1072
1073 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
1074 if (ret)
1075 return ret;
1076
1077 ret = atmel_nfc_exec_op(nc, false);
1078 if (ret) {
1079 atmel_nand_pmecc_disable(chip, raw);
1080 dev_err(nc->base.dev,
1081 "Failed to load NAND page data (err = %d)\n",
1082 ret);
1083 return ret;
1084 }
1085
1086 atmel_nfc_copy_from_sram(chip, buf, true);
1087
1088 ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
1089
1090 atmel_nand_pmecc_disable(chip, raw);
1091
1092 return ret;
1093 }
1094
atmel_hsmc_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf, int oob_required, int page)1095 static int atmel_hsmc_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
1096 int oob_required, int page)
1097 {
1098 return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1099 false);
1100 }
1101
atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_required, int page)1102 static int atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip *chip,
1103 u8 *buf, int oob_required,
1104 int page)
1105 {
1106 return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1107 true);
1108 }
1109
atmel_nand_pmecc_init(struct nand_chip *chip)1110 static int atmel_nand_pmecc_init(struct nand_chip *chip)
1111 {
1112 const struct nand_ecc_props *requirements =
1113 nanddev_get_ecc_requirements(&chip->base);
1114 struct mtd_info *mtd = nand_to_mtd(chip);
1115 struct nand_device *nanddev = mtd_to_nanddev(mtd);
1116 struct atmel_nand *nand = to_atmel_nand(chip);
1117 struct atmel_nand_controller *nc;
1118 struct atmel_pmecc_user_req req;
1119
1120 nc = to_nand_controller(chip->controller);
1121
1122 if (!nc->pmecc) {
1123 dev_err(nc->dev, "HW ECC not supported\n");
1124 return -ENOTSUPP;
1125 }
1126
1127 if (nc->caps->legacy_of_bindings) {
1128 u32 val;
1129
1130 if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
1131 &val))
1132 chip->ecc.strength = val;
1133
1134 if (!of_property_read_u32(nc->dev->of_node,
1135 "atmel,pmecc-sector-size",
1136 &val))
1137 chip->ecc.size = val;
1138 }
1139
1140 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
1141 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1142 else if (chip->ecc.strength)
1143 req.ecc.strength = chip->ecc.strength;
1144 else if (requirements->strength)
1145 req.ecc.strength = requirements->strength;
1146 else
1147 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1148
1149 if (chip->ecc.size)
1150 req.ecc.sectorsize = chip->ecc.size;
1151 else if (requirements->step_size)
1152 req.ecc.sectorsize = requirements->step_size;
1153 else
1154 req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
1155
1156 req.pagesize = mtd->writesize;
1157 req.oobsize = mtd->oobsize;
1158
1159 if (mtd->writesize <= 512) {
1160 req.ecc.bytes = 4;
1161 req.ecc.ooboffset = 0;
1162 } else {
1163 req.ecc.bytes = mtd->oobsize - 2;
1164 req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
1165 }
1166
1167 nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
1168 if (IS_ERR(nand->pmecc))
1169 return PTR_ERR(nand->pmecc);
1170
1171 chip->ecc.algo = NAND_ECC_ALGO_BCH;
1172 chip->ecc.size = req.ecc.sectorsize;
1173 chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
1174 chip->ecc.strength = req.ecc.strength;
1175
1176 chip->options |= NAND_NO_SUBPAGE_WRITE;
1177
1178 mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
1179
1180 return 0;
1181 }
1182
atmel_nand_ecc_init(struct nand_chip *chip)1183 static int atmel_nand_ecc_init(struct nand_chip *chip)
1184 {
1185 struct atmel_nand_controller *nc;
1186 int ret;
1187
1188 nc = to_nand_controller(chip->controller);
1189
1190 switch (chip->ecc.engine_type) {
1191 case NAND_ECC_ENGINE_TYPE_NONE:
1192 case NAND_ECC_ENGINE_TYPE_SOFT:
1193 /*
1194 * Nothing to do, the core will initialize everything for us.
1195 */
1196 break;
1197
1198 case NAND_ECC_ENGINE_TYPE_ON_HOST:
1199 ret = atmel_nand_pmecc_init(chip);
1200 if (ret)
1201 return ret;
1202
1203 chip->ecc.read_page = atmel_nand_pmecc_read_page;
1204 chip->ecc.write_page = atmel_nand_pmecc_write_page;
1205 chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
1206 chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
1207 break;
1208
1209 default:
1210 /* Other modes are not supported. */
1211 dev_err(nc->dev, "Unsupported ECC mode: %d\n",
1212 chip->ecc.engine_type);
1213 return -ENOTSUPP;
1214 }
1215
1216 return 0;
1217 }
1218
atmel_hsmc_nand_ecc_init(struct nand_chip *chip)1219 static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip)
1220 {
1221 int ret;
1222
1223 ret = atmel_nand_ecc_init(chip);
1224 if (ret)
1225 return ret;
1226
1227 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
1228 return 0;
1229
1230 /* Adjust the ECC operations for the HSMC IP. */
1231 chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
1232 chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
1233 chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
1234 chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
1235
1236 return 0;
1237 }
1238
atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand, const struct nand_interface_config *conf, struct atmel_smc_cs_conf *smcconf)1239 static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
1240 const struct nand_interface_config *conf,
1241 struct atmel_smc_cs_conf *smcconf)
1242 {
1243 u32 ncycles, totalcycles, timeps, mckperiodps;
1244 struct atmel_nand_controller *nc;
1245 int ret;
1246
1247 nc = to_nand_controller(nand->base.controller);
1248
1249 /* DDR interface not supported. */
1250 if (!nand_interface_is_sdr(conf))
1251 return -ENOTSUPP;
1252
1253 /*
1254 * tRC < 30ns implies EDO mode. This controller does not support this
1255 * mode.
1256 */
1257 if (conf->timings.sdr.tRC_min < 30000)
1258 return -ENOTSUPP;
1259
1260 atmel_smc_cs_conf_init(smcconf);
1261
1262 mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
1263 mckperiodps *= 1000;
1264
1265 /*
1266 * Set write pulse timing. This one is easy to extract:
1267 *
1268 * NWE_PULSE = tWP
1269 */
1270 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
1271 totalcycles = ncycles;
1272 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
1273 ncycles);
1274 if (ret)
1275 return ret;
1276
1277 /*
1278 * The write setup timing depends on the operation done on the NAND.
1279 * All operations goes through the same data bus, but the operation
1280 * type depends on the address we are writing to (ALE/CLE address
1281 * lines).
1282 * Since we have no way to differentiate the different operations at
1283 * the SMC level, we must consider the worst case (the biggest setup
1284 * time among all operation types):
1285 *
1286 * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
1287 */
1288 timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
1289 conf->timings.sdr.tALS_min);
1290 timeps = max(timeps, conf->timings.sdr.tDS_min);
1291 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1292 ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
1293 totalcycles += ncycles;
1294 ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
1295 ncycles);
1296 if (ret)
1297 return ret;
1298
1299 /*
1300 * As for the write setup timing, the write hold timing depends on the
1301 * operation done on the NAND:
1302 *
1303 * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
1304 */
1305 timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
1306 conf->timings.sdr.tALH_min);
1307 timeps = max3(timeps, conf->timings.sdr.tDH_min,
1308 conf->timings.sdr.tWH_min);
1309 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1310 totalcycles += ncycles;
1311
1312 /*
1313 * The write cycle timing is directly matching tWC, but is also
1314 * dependent on the other timings on the setup and hold timings we
1315 * calculated earlier, which gives:
1316 *
1317 * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
1318 */
1319 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
1320 ncycles = max(totalcycles, ncycles);
1321 ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
1322 ncycles);
1323 if (ret)
1324 return ret;
1325
1326 /*
1327 * We don't want the CS line to be toggled between each byte/word
1328 * transfer to the NAND. The only way to guarantee that is to have the
1329 * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1330 *
1331 * NCS_WR_PULSE = NWE_CYCLE
1332 */
1333 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
1334 ncycles);
1335 if (ret)
1336 return ret;
1337
1338 /*
1339 * As for the write setup timing, the read hold timing depends on the
1340 * operation done on the NAND:
1341 *
1342 * NRD_HOLD = max(tREH, tRHOH)
1343 */
1344 timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
1345 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1346 totalcycles = ncycles;
1347
1348 /*
1349 * TDF = tRHZ - NRD_HOLD
1350 */
1351 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
1352 ncycles -= totalcycles;
1353
1354 /*
1355 * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
1356 * we might end up with a config that does not fit in the TDF field.
1357 * Just take the max value in this case and hope that the NAND is more
1358 * tolerant than advertised.
1359 */
1360 if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
1361 ncycles = ATMEL_SMC_MODE_TDF_MAX;
1362 else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
1363 ncycles = ATMEL_SMC_MODE_TDF_MIN;
1364
1365 smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
1366 ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
1367
1368 /*
1369 * Read pulse timing directly matches tRP:
1370 *
1371 * NRD_PULSE = tRP
1372 */
1373 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
1374 totalcycles += ncycles;
1375 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
1376 ncycles);
1377 if (ret)
1378 return ret;
1379
1380 /*
1381 * The write cycle timing is directly matching tWC, but is also
1382 * dependent on the setup and hold timings we calculated earlier,
1383 * which gives:
1384 *
1385 * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
1386 *
1387 * NRD_SETUP is always 0.
1388 */
1389 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
1390 ncycles = max(totalcycles, ncycles);
1391 ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
1392 ncycles);
1393 if (ret)
1394 return ret;
1395
1396 /*
1397 * We don't want the CS line to be toggled between each byte/word
1398 * transfer from the NAND. The only way to guarantee that is to have
1399 * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1400 *
1401 * NCS_RD_PULSE = NRD_CYCLE
1402 */
1403 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
1404 ncycles);
1405 if (ret)
1406 return ret;
1407
1408 /* Txxx timings are directly matching tXXX ones. */
1409 ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
1410 ret = atmel_smc_cs_conf_set_timing(smcconf,
1411 ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
1412 ncycles);
1413 if (ret)
1414 return ret;
1415
1416 ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
1417 ret = atmel_smc_cs_conf_set_timing(smcconf,
1418 ATMEL_HSMC_TIMINGS_TADL_SHIFT,
1419 ncycles);
1420 /*
1421 * Version 4 of the ONFI spec mandates that tADL be at least 400
1422 * nanoseconds, but, depending on the master clock rate, 400 ns may not
1423 * fit in the tADL field of the SMC reg. We need to relax the check and
1424 * accept the -ERANGE return code.
1425 *
1426 * Note that previous versions of the ONFI spec had a lower tADL_min
1427 * (100 or 200 ns). It's not clear why this timing constraint got
1428 * increased but it seems most NANDs are fine with values lower than
1429 * 400ns, so we should be safe.
1430 */
1431 if (ret && ret != -ERANGE)
1432 return ret;
1433
1434 ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
1435 ret = atmel_smc_cs_conf_set_timing(smcconf,
1436 ATMEL_HSMC_TIMINGS_TAR_SHIFT,
1437 ncycles);
1438 if (ret)
1439 return ret;
1440
1441 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
1442 ret = atmel_smc_cs_conf_set_timing(smcconf,
1443 ATMEL_HSMC_TIMINGS_TRR_SHIFT,
1444 ncycles);
1445 if (ret)
1446 return ret;
1447
1448 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
1449 ret = atmel_smc_cs_conf_set_timing(smcconf,
1450 ATMEL_HSMC_TIMINGS_TWB_SHIFT,
1451 ncycles);
1452 if (ret)
1453 return ret;
1454
1455 /* Attach the CS line to the NFC logic. */
1456 smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
1457
1458 /* Set the appropriate data bus width. */
1459 if (nand->base.options & NAND_BUSWIDTH_16)
1460 smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
1461
1462 /* Operate in NRD/NWE READ/WRITEMODE. */
1463 smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
1464 ATMEL_SMC_MODE_WRITEMODE_NWE;
1465
1466 return 0;
1467 }
1468
atmel_smc_nand_setup_interface(struct atmel_nand *nand, int csline, const struct nand_interface_config *conf)1469 static int atmel_smc_nand_setup_interface(struct atmel_nand *nand,
1470 int csline,
1471 const struct nand_interface_config *conf)
1472 {
1473 struct atmel_nand_controller *nc;
1474 struct atmel_smc_cs_conf smcconf;
1475 struct atmel_nand_cs *cs;
1476 int ret;
1477
1478 nc = to_nand_controller(nand->base.controller);
1479
1480 ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1481 if (ret)
1482 return ret;
1483
1484 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1485 return 0;
1486
1487 cs = &nand->cs[csline];
1488 cs->smcconf = smcconf;
1489 atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
1490
1491 return 0;
1492 }
1493
atmel_hsmc_nand_setup_interface(struct atmel_nand *nand, int csline, const struct nand_interface_config *conf)1494 static int atmel_hsmc_nand_setup_interface(struct atmel_nand *nand,
1495 int csline,
1496 const struct nand_interface_config *conf)
1497 {
1498 struct atmel_hsmc_nand_controller *nc;
1499 struct atmel_smc_cs_conf smcconf;
1500 struct atmel_nand_cs *cs;
1501 int ret;
1502
1503 nc = to_hsmc_nand_controller(nand->base.controller);
1504
1505 ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1506 if (ret)
1507 return ret;
1508
1509 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1510 return 0;
1511
1512 cs = &nand->cs[csline];
1513 cs->smcconf = smcconf;
1514
1515 if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
1516 cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
1517
1518 atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
1519 &cs->smcconf);
1520
1521 return 0;
1522 }
1523
atmel_nand_setup_interface(struct nand_chip *chip, int csline, const struct nand_interface_config *conf)1524 static int atmel_nand_setup_interface(struct nand_chip *chip, int csline,
1525 const struct nand_interface_config *conf)
1526 {
1527 struct atmel_nand *nand = to_atmel_nand(chip);
1528 struct atmel_nand_controller *nc;
1529
1530 nc = to_nand_controller(nand->base.controller);
1531
1532 if (csline >= nand->numcs ||
1533 (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
1534 return -EINVAL;
1535
1536 return nc->caps->ops->setup_interface(nand, csline, conf);
1537 }
1538
atmel_nand_exec_op(struct nand_chip *chip, const struct nand_operation *op, bool check_only)1539 static int atmel_nand_exec_op(struct nand_chip *chip,
1540 const struct nand_operation *op,
1541 bool check_only)
1542 {
1543 struct atmel_nand *nand = to_atmel_nand(chip);
1544 struct atmel_nand_controller *nc;
1545
1546 nc = to_nand_controller(nand->base.controller);
1547
1548 return nc->caps->ops->exec_op(nand, op, check_only);
1549 }
1550
atmel_nand_init(struct atmel_nand_controller *nc, struct atmel_nand *nand)1551 static void atmel_nand_init(struct atmel_nand_controller *nc,
1552 struct atmel_nand *nand)
1553 {
1554 struct nand_chip *chip = &nand->base;
1555 struct mtd_info *mtd = nand_to_mtd(chip);
1556
1557 mtd->dev.parent = nc->dev;
1558 nand->base.controller = &nc->base;
1559
1560 if (!nc->mck || !nc->caps->ops->setup_interface)
1561 chip->options |= NAND_KEEP_TIMINGS;
1562
1563 /*
1564 * Use a bounce buffer when the buffer passed by the MTD user is not
1565 * suitable for DMA.
1566 */
1567 if (nc->dmac)
1568 chip->options |= NAND_USES_DMA;
1569
1570 /* Default to HW ECC if pmecc is available. */
1571 if (nc->pmecc)
1572 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1573 }
1574
atmel_smc_nand_init(struct atmel_nand_controller *nc, struct atmel_nand *nand)1575 static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
1576 struct atmel_nand *nand)
1577 {
1578 struct nand_chip *chip = &nand->base;
1579 struct atmel_smc_nand_controller *smc_nc;
1580 int i;
1581
1582 atmel_nand_init(nc, nand);
1583
1584 smc_nc = to_smc_nand_controller(chip->controller);
1585 if (!smc_nc->ebi_csa_regmap)
1586 return;
1587
1588 /* Attach the CS to the NAND Flash logic. */
1589 for (i = 0; i < nand->numcs; i++)
1590 regmap_update_bits(smc_nc->ebi_csa_regmap,
1591 smc_nc->ebi_csa->offs,
1592 BIT(nand->cs[i].id), BIT(nand->cs[i].id));
1593
1594 if (smc_nc->ebi_csa->nfd0_on_d16)
1595 regmap_update_bits(smc_nc->ebi_csa_regmap,
1596 smc_nc->ebi_csa->offs,
1597 smc_nc->ebi_csa->nfd0_on_d16,
1598 smc_nc->ebi_csa->nfd0_on_d16);
1599 }
1600
atmel_nand_controller_remove_nand(struct atmel_nand *nand)1601 static int atmel_nand_controller_remove_nand(struct atmel_nand *nand)
1602 {
1603 struct nand_chip *chip = &nand->base;
1604 struct mtd_info *mtd = nand_to_mtd(chip);
1605 int ret;
1606
1607 ret = mtd_device_unregister(mtd);
1608 if (ret)
1609 return ret;
1610
1611 nand_cleanup(chip);
1612 list_del(&nand->node);
1613
1614 return 0;
1615 }
1616
atmel_nand_create(struct atmel_nand_controller *nc, struct device_node *np, int reg_cells)1617 static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
1618 struct device_node *np,
1619 int reg_cells)
1620 {
1621 struct atmel_nand *nand;
1622 struct gpio_desc *gpio;
1623 int numcs, ret, i;
1624
1625 numcs = of_property_count_elems_of_size(np, "reg",
1626 reg_cells * sizeof(u32));
1627 if (numcs < 1) {
1628 dev_err(nc->dev, "Missing or invalid reg property\n");
1629 return ERR_PTR(-EINVAL);
1630 }
1631
1632 nand = devm_kzalloc(nc->dev, struct_size(nand, cs, numcs), GFP_KERNEL);
1633 if (!nand) {
1634 dev_err(nc->dev, "Failed to allocate NAND object\n");
1635 return ERR_PTR(-ENOMEM);
1636 }
1637
1638 nand->numcs = numcs;
1639
1640 gpio = devm_fwnode_gpiod_get(nc->dev, of_fwnode_handle(np),
1641 "det", GPIOD_IN, "nand-det");
1642 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1643 dev_err(nc->dev,
1644 "Failed to get detect gpio (err = %ld)\n",
1645 PTR_ERR(gpio));
1646 return ERR_CAST(gpio);
1647 }
1648
1649 if (!IS_ERR(gpio))
1650 nand->cdgpio = gpio;
1651
1652 for (i = 0; i < numcs; i++) {
1653 struct resource res;
1654 u32 val;
1655
1656 ret = of_address_to_resource(np, 0, &res);
1657 if (ret) {
1658 dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1659 ret);
1660 return ERR_PTR(ret);
1661 }
1662
1663 ret = of_property_read_u32_index(np, "reg", i * reg_cells,
1664 &val);
1665 if (ret) {
1666 dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1667 ret);
1668 return ERR_PTR(ret);
1669 }
1670
1671 nand->cs[i].id = val;
1672
1673 nand->cs[i].io.dma = res.start;
1674 nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
1675 if (IS_ERR(nand->cs[i].io.virt))
1676 return ERR_CAST(nand->cs[i].io.virt);
1677
1678 if (!of_property_read_u32(np, "atmel,rb", &val)) {
1679 if (val > ATMEL_NFC_MAX_RB_ID)
1680 return ERR_PTR(-EINVAL);
1681
1682 nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
1683 nand->cs[i].rb.id = val;
1684 } else {
1685 gpio = devm_fwnode_gpiod_get_index(nc->dev,
1686 of_fwnode_handle(np),
1687 "rb", i, GPIOD_IN,
1688 "nand-rb");
1689 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1690 dev_err(nc->dev,
1691 "Failed to get R/B gpio (err = %ld)\n",
1692 PTR_ERR(gpio));
1693 return ERR_CAST(gpio);
1694 }
1695
1696 if (!IS_ERR(gpio)) {
1697 nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
1698 nand->cs[i].rb.gpio = gpio;
1699 }
1700 }
1701
1702 gpio = devm_fwnode_gpiod_get_index(nc->dev,
1703 of_fwnode_handle(np),
1704 "cs", i, GPIOD_OUT_HIGH,
1705 "nand-cs");
1706 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1707 dev_err(nc->dev,
1708 "Failed to get CS gpio (err = %ld)\n",
1709 PTR_ERR(gpio));
1710 return ERR_CAST(gpio);
1711 }
1712
1713 if (!IS_ERR(gpio))
1714 nand->cs[i].csgpio = gpio;
1715 }
1716
1717 nand_set_flash_node(&nand->base, np);
1718
1719 return nand;
1720 }
1721
1722 static int
atmel_nand_controller_add_nand(struct atmel_nand_controller *nc, struct atmel_nand *nand)1723 atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
1724 struct atmel_nand *nand)
1725 {
1726 struct nand_chip *chip = &nand->base;
1727 struct mtd_info *mtd = nand_to_mtd(chip);
1728 int ret;
1729
1730 /* No card inserted, skip this NAND. */
1731 if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
1732 dev_info(nc->dev, "No SmartMedia card inserted.\n");
1733 return 0;
1734 }
1735
1736 nc->caps->ops->nand_init(nc, nand);
1737
1738 ret = nand_scan(chip, nand->numcs);
1739 if (ret) {
1740 dev_err(nc->dev, "NAND scan failed: %d\n", ret);
1741 return ret;
1742 }
1743
1744 ret = mtd_device_register(mtd, NULL, 0);
1745 if (ret) {
1746 dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
1747 nand_cleanup(chip);
1748 return ret;
1749 }
1750
1751 list_add_tail(&nand->node, &nc->chips);
1752
1753 return 0;
1754 }
1755
1756 static int
atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)1757 atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
1758 {
1759 struct atmel_nand *nand, *tmp;
1760 int ret;
1761
1762 list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
1763 ret = atmel_nand_controller_remove_nand(nand);
1764 if (ret)
1765 return ret;
1766 }
1767
1768 return 0;
1769 }
1770
1771 static int
atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)1772 atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
1773 {
1774 struct device *dev = nc->dev;
1775 struct platform_device *pdev = to_platform_device(dev);
1776 struct atmel_nand *nand;
1777 struct gpio_desc *gpio;
1778 struct resource *res;
1779
1780 /*
1781 * Legacy bindings only allow connecting a single NAND with a unique CS
1782 * line to the controller.
1783 */
1784 nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
1785 GFP_KERNEL);
1786 if (!nand)
1787 return -ENOMEM;
1788
1789 nand->numcs = 1;
1790
1791 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1792 nand->cs[0].io.virt = devm_ioremap_resource(dev, res);
1793 if (IS_ERR(nand->cs[0].io.virt))
1794 return PTR_ERR(nand->cs[0].io.virt);
1795
1796 nand->cs[0].io.dma = res->start;
1797
1798 /*
1799 * The old driver was hardcoding the CS id to 3 for all sama5
1800 * controllers. Since this id is only meaningful for the sama5
1801 * controller we can safely assign this id to 3 no matter the
1802 * controller.
1803 * If one wants to connect a NAND to a different CS line, he will
1804 * have to use the new bindings.
1805 */
1806 nand->cs[0].id = 3;
1807
1808 /* R/B GPIO. */
1809 gpio = devm_gpiod_get_index_optional(dev, NULL, 0, GPIOD_IN);
1810 if (IS_ERR(gpio)) {
1811 dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
1812 PTR_ERR(gpio));
1813 return PTR_ERR(gpio);
1814 }
1815
1816 if (gpio) {
1817 nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
1818 nand->cs[0].rb.gpio = gpio;
1819 }
1820
1821 /* CS GPIO. */
1822 gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
1823 if (IS_ERR(gpio)) {
1824 dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
1825 PTR_ERR(gpio));
1826 return PTR_ERR(gpio);
1827 }
1828
1829 nand->cs[0].csgpio = gpio;
1830
1831 /* Card detect GPIO. */
1832 gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
1833 if (IS_ERR(gpio)) {
1834 dev_err(dev,
1835 "Failed to get detect gpio (err = %ld)\n",
1836 PTR_ERR(gpio));
1837 return PTR_ERR(gpio);
1838 }
1839
1840 nand->cdgpio = gpio;
1841
1842 nand_set_flash_node(&nand->base, nc->dev->of_node);
1843
1844 return atmel_nand_controller_add_nand(nc, nand);
1845 }
1846
atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)1847 static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
1848 {
1849 struct device_node *np, *nand_np;
1850 struct device *dev = nc->dev;
1851 int ret, reg_cells;
1852 u32 val;
1853
1854 /* We do not retrieve the SMC syscon when parsing old DTs. */
1855 if (nc->caps->legacy_of_bindings)
1856 return atmel_nand_controller_legacy_add_nands(nc);
1857
1858 np = dev->of_node;
1859
1860 ret = of_property_read_u32(np, "#address-cells", &val);
1861 if (ret) {
1862 dev_err(dev, "missing #address-cells property\n");
1863 return ret;
1864 }
1865
1866 reg_cells = val;
1867
1868 ret = of_property_read_u32(np, "#size-cells", &val);
1869 if (ret) {
1870 dev_err(dev, "missing #size-cells property\n");
1871 return ret;
1872 }
1873
1874 reg_cells += val;
1875
1876 for_each_child_of_node(np, nand_np) {
1877 struct atmel_nand *nand;
1878
1879 nand = atmel_nand_create(nc, nand_np, reg_cells);
1880 if (IS_ERR(nand)) {
1881 ret = PTR_ERR(nand);
1882 goto err;
1883 }
1884
1885 ret = atmel_nand_controller_add_nand(nc, nand);
1886 if (ret)
1887 goto err;
1888 }
1889
1890 return 0;
1891
1892 err:
1893 atmel_nand_controller_remove_nands(nc);
1894
1895 return ret;
1896 }
1897
atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)1898 static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
1899 {
1900 if (nc->dmac)
1901 dma_release_channel(nc->dmac);
1902
1903 clk_put(nc->mck);
1904 }
1905
1906 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa = {
1907 .offs = AT91SAM9260_MATRIX_EBICSA,
1908 };
1909
1910 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa = {
1911 .offs = AT91SAM9261_MATRIX_EBICSA,
1912 };
1913
1914 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa = {
1915 .offs = AT91SAM9263_MATRIX_EBI0CSA,
1916 };
1917
1918 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa = {
1919 .offs = AT91SAM9RL_MATRIX_EBICSA,
1920 };
1921
1922 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa = {
1923 .offs = AT91SAM9G45_MATRIX_EBICSA,
1924 };
1925
1926 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa = {
1927 .offs = AT91SAM9N12_MATRIX_EBICSA,
1928 };
1929
1930 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa = {
1931 .offs = AT91SAM9X5_MATRIX_EBICSA,
1932 };
1933
1934 static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa = {
1935 .offs = AT91_SFR_CCFG_EBICSA,
1936 .nfd0_on_d16 = AT91_SFR_CCFG_NFD0_ON_D16,
1937 };
1938
1939 static const struct of_device_id atmel_ebi_csa_regmap_of_ids[] = {
1940 {
1941 .compatible = "atmel,at91sam9260-matrix",
1942 .data = &at91sam9260_ebi_csa,
1943 },
1944 {
1945 .compatible = "atmel,at91sam9261-matrix",
1946 .data = &at91sam9261_ebi_csa,
1947 },
1948 {
1949 .compatible = "atmel,at91sam9263-matrix",
1950 .data = &at91sam9263_ebi_csa,
1951 },
1952 {
1953 .compatible = "atmel,at91sam9rl-matrix",
1954 .data = &at91sam9rl_ebi_csa,
1955 },
1956 {
1957 .compatible = "atmel,at91sam9g45-matrix",
1958 .data = &at91sam9g45_ebi_csa,
1959 },
1960 {
1961 .compatible = "atmel,at91sam9n12-matrix",
1962 .data = &at91sam9n12_ebi_csa,
1963 },
1964 {
1965 .compatible = "atmel,at91sam9x5-matrix",
1966 .data = &at91sam9x5_ebi_csa,
1967 },
1968 {
1969 .compatible = "microchip,sam9x60-sfr",
1970 .data = &sam9x60_ebi_csa,
1971 },
1972 { /* sentinel */ },
1973 };
1974
atmel_nand_attach_chip(struct nand_chip *chip)1975 static int atmel_nand_attach_chip(struct nand_chip *chip)
1976 {
1977 struct atmel_nand_controller *nc = to_nand_controller(chip->controller);
1978 struct atmel_nand *nand = to_atmel_nand(chip);
1979 struct mtd_info *mtd = nand_to_mtd(chip);
1980 int ret;
1981
1982 ret = nc->caps->ops->ecc_init(chip);
1983 if (ret)
1984 return ret;
1985
1986 if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
1987 /*
1988 * We keep the MTD name unchanged to avoid breaking platforms
1989 * where the MTD cmdline parser is used and the bootloader
1990 * has not been updated to use the new naming scheme.
1991 */
1992 mtd->name = "atmel_nand";
1993 } else if (!mtd->name) {
1994 /*
1995 * If the new bindings are used and the bootloader has not been
1996 * updated to pass a new mtdparts parameter on the cmdline, you
1997 * should define the following property in your nand node:
1998 *
1999 * label = "atmel_nand";
2000 *
2001 * This way, mtd->name will be set by the core when
2002 * nand_set_flash_node() is called.
2003 */
2004 mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
2005 "%s:nand.%d", dev_name(nc->dev),
2006 nand->cs[0].id);
2007 if (!mtd->name) {
2008 dev_err(nc->dev, "Failed to allocate mtd->name\n");
2009 return -ENOMEM;
2010 }
2011 }
2012
2013 return 0;
2014 }
2015
2016 static const struct nand_controller_ops atmel_nand_controller_ops = {
2017 .attach_chip = atmel_nand_attach_chip,
2018 .setup_interface = atmel_nand_setup_interface,
2019 .exec_op = atmel_nand_exec_op,
2020 };
2021
atmel_nand_controller_init(struct atmel_nand_controller *nc, struct platform_device *pdev, const struct atmel_nand_controller_caps *caps)2022 static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
2023 struct platform_device *pdev,
2024 const struct atmel_nand_controller_caps *caps)
2025 {
2026 struct device *dev = &pdev->dev;
2027 struct device_node *np = dev->of_node;
2028 int ret;
2029
2030 nand_controller_init(&nc->base);
2031 nc->base.ops = &atmel_nand_controller_ops;
2032 INIT_LIST_HEAD(&nc->chips);
2033 nc->dev = dev;
2034 nc->caps = caps;
2035
2036 platform_set_drvdata(pdev, nc);
2037
2038 nc->pmecc = devm_atmel_pmecc_get(dev);
2039 if (IS_ERR(nc->pmecc))
2040 return dev_err_probe(dev, PTR_ERR(nc->pmecc),
2041 "Could not get PMECC object\n");
2042
2043 if (nc->caps->has_dma && !atmel_nand_avoid_dma) {
2044 dma_cap_mask_t mask;
2045
2046 dma_cap_zero(mask);
2047 dma_cap_set(DMA_MEMCPY, mask);
2048
2049 nc->dmac = dma_request_channel(mask, NULL, NULL);
2050 if (!nc->dmac)
2051 dev_err(nc->dev, "Failed to request DMA channel\n");
2052 }
2053
2054 /* We do not retrieve the SMC syscon when parsing old DTs. */
2055 if (nc->caps->legacy_of_bindings)
2056 return 0;
2057
2058 nc->mck = of_clk_get(dev->parent->of_node, 0);
2059 if (IS_ERR(nc->mck)) {
2060 dev_err(dev, "Failed to retrieve MCK clk\n");
2061 ret = PTR_ERR(nc->mck);
2062 goto out_release_dma;
2063 }
2064
2065 np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2066 if (!np) {
2067 dev_err(dev, "Missing or invalid atmel,smc property\n");
2068 ret = -EINVAL;
2069 goto out_release_dma;
2070 }
2071
2072 nc->smc = syscon_node_to_regmap(np);
2073 of_node_put(np);
2074 if (IS_ERR(nc->smc)) {
2075 ret = PTR_ERR(nc->smc);
2076 dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
2077 goto out_release_dma;
2078 }
2079
2080 return 0;
2081
2082 out_release_dma:
2083 if (nc->dmac)
2084 dma_release_channel(nc->dmac);
2085
2086 return ret;
2087 }
2088
2089 static int
atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)2090 atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
2091 {
2092 struct device *dev = nc->base.dev;
2093 const struct of_device_id *match;
2094 struct device_node *np;
2095 int ret;
2096
2097 /* We do not retrieve the EBICSA regmap when parsing old DTs. */
2098 if (nc->base.caps->legacy_of_bindings)
2099 return 0;
2100
2101 np = of_parse_phandle(dev->parent->of_node,
2102 nc->base.caps->ebi_csa_regmap_name, 0);
2103 if (!np)
2104 return 0;
2105
2106 match = of_match_node(atmel_ebi_csa_regmap_of_ids, np);
2107 if (!match) {
2108 of_node_put(np);
2109 return 0;
2110 }
2111
2112 nc->ebi_csa_regmap = syscon_node_to_regmap(np);
2113 of_node_put(np);
2114 if (IS_ERR(nc->ebi_csa_regmap)) {
2115 ret = PTR_ERR(nc->ebi_csa_regmap);
2116 dev_err(dev, "Could not get EBICSA regmap (err = %d)\n", ret);
2117 return ret;
2118 }
2119
2120 nc->ebi_csa = (struct atmel_smc_nand_ebi_csa_cfg *)match->data;
2121
2122 /*
2123 * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
2124 * add 4 to ->ebi_csa->offs.
2125 */
2126 if (of_device_is_compatible(dev->parent->of_node,
2127 "atmel,at91sam9263-ebi1"))
2128 nc->ebi_csa->offs += 4;
2129
2130 return 0;
2131 }
2132
2133 static int
atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)2134 atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
2135 {
2136 struct regmap_config regmap_conf = {
2137 .reg_bits = 32,
2138 .val_bits = 32,
2139 .reg_stride = 4,
2140 };
2141
2142 struct device *dev = nc->base.dev;
2143 struct device_node *nand_np, *nfc_np;
2144 void __iomem *iomem;
2145 struct resource res;
2146 int ret;
2147
2148 nand_np = dev->of_node;
2149 nfc_np = of_get_compatible_child(dev->of_node, "atmel,sama5d3-nfc");
2150 if (!nfc_np) {
2151 dev_err(dev, "Could not find device node for sama5d3-nfc\n");
2152 return -ENODEV;
2153 }
2154
2155 nc->clk = of_clk_get(nfc_np, 0);
2156 if (IS_ERR(nc->clk)) {
2157 ret = PTR_ERR(nc->clk);
2158 dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
2159 ret);
2160 goto out;
2161 }
2162
2163 ret = clk_prepare_enable(nc->clk);
2164 if (ret) {
2165 dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
2166 ret);
2167 goto out;
2168 }
2169
2170 nc->irq = of_irq_get(nand_np, 0);
2171 if (nc->irq <= 0) {
2172 ret = nc->irq ?: -ENXIO;
2173 if (ret != -EPROBE_DEFER)
2174 dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2175 ret);
2176 goto out;
2177 }
2178
2179 ret = of_address_to_resource(nfc_np, 0, &res);
2180 if (ret) {
2181 dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
2182 ret);
2183 goto out;
2184 }
2185
2186 iomem = devm_ioremap_resource(dev, &res);
2187 if (IS_ERR(iomem)) {
2188 ret = PTR_ERR(iomem);
2189 goto out;
2190 }
2191
2192 regmap_conf.name = "nfc-io";
2193 regmap_conf.max_register = resource_size(&res) - 4;
2194 nc->io = devm_regmap_init_mmio(dev, iomem, ®map_conf);
2195 if (IS_ERR(nc->io)) {
2196 ret = PTR_ERR(nc->io);
2197 dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2198 ret);
2199 goto out;
2200 }
2201
2202 ret = of_address_to_resource(nfc_np, 1, &res);
2203 if (ret) {
2204 dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
2205 ret);
2206 goto out;
2207 }
2208
2209 iomem = devm_ioremap_resource(dev, &res);
2210 if (IS_ERR(iomem)) {
2211 ret = PTR_ERR(iomem);
2212 goto out;
2213 }
2214
2215 regmap_conf.name = "smc";
2216 regmap_conf.max_register = resource_size(&res) - 4;
2217 nc->base.smc = devm_regmap_init_mmio(dev, iomem, ®map_conf);
2218 if (IS_ERR(nc->base.smc)) {
2219 ret = PTR_ERR(nc->base.smc);
2220 dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2221 ret);
2222 goto out;
2223 }
2224
2225 ret = of_address_to_resource(nfc_np, 2, &res);
2226 if (ret) {
2227 dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
2228 ret);
2229 goto out;
2230 }
2231
2232 nc->sram.virt = devm_ioremap_resource(dev, &res);
2233 if (IS_ERR(nc->sram.virt)) {
2234 ret = PTR_ERR(nc->sram.virt);
2235 goto out;
2236 }
2237
2238 nc->sram.dma = res.start;
2239
2240 out:
2241 of_node_put(nfc_np);
2242
2243 return ret;
2244 }
2245
2246 static int
atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)2247 atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
2248 {
2249 struct device *dev = nc->base.dev;
2250 struct device_node *np;
2251 int ret;
2252
2253 np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2254 if (!np) {
2255 dev_err(dev, "Missing or invalid atmel,smc property\n");
2256 return -EINVAL;
2257 }
2258
2259 nc->hsmc_layout = atmel_hsmc_get_reg_layout(np);
2260
2261 nc->irq = of_irq_get(np, 0);
2262 of_node_put(np);
2263 if (nc->irq <= 0) {
2264 ret = nc->irq ?: -ENXIO;
2265 if (ret != -EPROBE_DEFER)
2266 dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2267 ret);
2268 return ret;
2269 }
2270
2271 np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
2272 if (!np) {
2273 dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
2274 return -EINVAL;
2275 }
2276
2277 nc->io = syscon_node_to_regmap(np);
2278 of_node_put(np);
2279 if (IS_ERR(nc->io)) {
2280 ret = PTR_ERR(nc->io);
2281 dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
2282 return ret;
2283 }
2284
2285 nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
2286 "atmel,nfc-sram", 0);
2287 if (!nc->sram.pool) {
2288 dev_err(nc->base.dev, "Missing SRAM\n");
2289 return -ENOMEM;
2290 }
2291
2292 nc->sram.virt = (void __iomem *)gen_pool_dma_alloc(nc->sram.pool,
2293 ATMEL_NFC_SRAM_SIZE,
2294 &nc->sram.dma);
2295 if (!nc->sram.virt) {
2296 dev_err(nc->base.dev,
2297 "Could not allocate memory from the NFC SRAM pool\n");
2298 return -ENOMEM;
2299 }
2300
2301 return 0;
2302 }
2303
2304 static int
atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)2305 atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
2306 {
2307 struct atmel_hsmc_nand_controller *hsmc_nc;
2308 int ret;
2309
2310 ret = atmel_nand_controller_remove_nands(nc);
2311 if (ret)
2312 return ret;
2313
2314 hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
2315 regmap_write(hsmc_nc->base.smc, ATMEL_HSMC_NFC_CTRL,
2316 ATMEL_HSMC_NFC_CTRL_DIS);
2317
2318 if (hsmc_nc->sram.pool)
2319 gen_pool_free(hsmc_nc->sram.pool,
2320 (unsigned long)hsmc_nc->sram.virt,
2321 ATMEL_NFC_SRAM_SIZE);
2322
2323 if (hsmc_nc->clk) {
2324 clk_disable_unprepare(hsmc_nc->clk);
2325 clk_put(hsmc_nc->clk);
2326 }
2327
2328 atmel_nand_controller_cleanup(nc);
2329
2330 return 0;
2331 }
2332
atmel_hsmc_nand_controller_probe(struct platform_device *pdev, const struct atmel_nand_controller_caps *caps)2333 static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
2334 const struct atmel_nand_controller_caps *caps)
2335 {
2336 struct device *dev = &pdev->dev;
2337 struct atmel_hsmc_nand_controller *nc;
2338 int ret;
2339
2340 nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2341 if (!nc)
2342 return -ENOMEM;
2343
2344 ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2345 if (ret)
2346 return ret;
2347
2348 if (caps->legacy_of_bindings)
2349 ret = atmel_hsmc_nand_controller_legacy_init(nc);
2350 else
2351 ret = atmel_hsmc_nand_controller_init(nc);
2352
2353 if (ret)
2354 return ret;
2355
2356 /* Make sure all irqs are masked before registering our IRQ handler. */
2357 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
2358 ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
2359 IRQF_SHARED, "nfc", nc);
2360 if (ret) {
2361 dev_err(dev,
2362 "Could not get register NFC interrupt handler (err = %d)\n",
2363 ret);
2364 goto err;
2365 }
2366
2367 /* Initial NFC configuration. */
2368 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
2369 ATMEL_HSMC_NFC_CFG_DTO_MAX);
2370 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
2371 ATMEL_HSMC_NFC_CTRL_EN);
2372
2373 ret = atmel_nand_controller_add_nands(&nc->base);
2374 if (ret)
2375 goto err;
2376
2377 return 0;
2378
2379 err:
2380 atmel_hsmc_nand_controller_remove(&nc->base);
2381
2382 return ret;
2383 }
2384
2385 static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
2386 .probe = atmel_hsmc_nand_controller_probe,
2387 .remove = atmel_hsmc_nand_controller_remove,
2388 .ecc_init = atmel_hsmc_nand_ecc_init,
2389 .nand_init = atmel_nand_init,
2390 .setup_interface = atmel_hsmc_nand_setup_interface,
2391 .exec_op = atmel_hsmc_nand_exec_op,
2392 };
2393
2394 static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
2395 .has_dma = true,
2396 .ale_offs = BIT(21),
2397 .cle_offs = BIT(22),
2398 .ops = &atmel_hsmc_nc_ops,
2399 };
2400
2401 /* Only used to parse old bindings. */
2402 static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
2403 .has_dma = true,
2404 .ale_offs = BIT(21),
2405 .cle_offs = BIT(22),
2406 .ops = &atmel_hsmc_nc_ops,
2407 .legacy_of_bindings = true,
2408 };
2409
atmel_smc_nand_controller_probe(struct platform_device *pdev, const struct atmel_nand_controller_caps *caps)2410 static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
2411 const struct atmel_nand_controller_caps *caps)
2412 {
2413 struct device *dev = &pdev->dev;
2414 struct atmel_smc_nand_controller *nc;
2415 int ret;
2416
2417 nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2418 if (!nc)
2419 return -ENOMEM;
2420
2421 ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2422 if (ret)
2423 return ret;
2424
2425 ret = atmel_smc_nand_controller_init(nc);
2426 if (ret)
2427 return ret;
2428
2429 return atmel_nand_controller_add_nands(&nc->base);
2430 }
2431
2432 static int
atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)2433 atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
2434 {
2435 int ret;
2436
2437 ret = atmel_nand_controller_remove_nands(nc);
2438 if (ret)
2439 return ret;
2440
2441 atmel_nand_controller_cleanup(nc);
2442
2443 return 0;
2444 }
2445
2446 /*
2447 * The SMC reg layout of at91rm9200 is completely different which prevents us
2448 * from re-using atmel_smc_nand_setup_interface() for the
2449 * ->setup_interface() hook.
2450 * At this point, there's no support for the at91rm9200 SMC IP, so we leave
2451 * ->setup_interface() unassigned.
2452 */
2453 static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
2454 .probe = atmel_smc_nand_controller_probe,
2455 .remove = atmel_smc_nand_controller_remove,
2456 .ecc_init = atmel_nand_ecc_init,
2457 .nand_init = atmel_smc_nand_init,
2458 .exec_op = atmel_smc_nand_exec_op,
2459 };
2460
2461 static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
2462 .ale_offs = BIT(21),
2463 .cle_offs = BIT(22),
2464 .ebi_csa_regmap_name = "atmel,matrix",
2465 .ops = &at91rm9200_nc_ops,
2466 };
2467
2468 static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
2469 .probe = atmel_smc_nand_controller_probe,
2470 .remove = atmel_smc_nand_controller_remove,
2471 .ecc_init = atmel_nand_ecc_init,
2472 .nand_init = atmel_smc_nand_init,
2473 .setup_interface = atmel_smc_nand_setup_interface,
2474 .exec_op = atmel_smc_nand_exec_op,
2475 };
2476
2477 static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
2478 .ale_offs = BIT(21),
2479 .cle_offs = BIT(22),
2480 .ebi_csa_regmap_name = "atmel,matrix",
2481 .ops = &atmel_smc_nc_ops,
2482 };
2483
2484 static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
2485 .ale_offs = BIT(22),
2486 .cle_offs = BIT(21),
2487 .ebi_csa_regmap_name = "atmel,matrix",
2488 .ops = &atmel_smc_nc_ops,
2489 };
2490
2491 static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
2492 .has_dma = true,
2493 .ale_offs = BIT(21),
2494 .cle_offs = BIT(22),
2495 .ebi_csa_regmap_name = "atmel,matrix",
2496 .ops = &atmel_smc_nc_ops,
2497 };
2498
2499 static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps = {
2500 .has_dma = true,
2501 .ale_offs = BIT(21),
2502 .cle_offs = BIT(22),
2503 .ebi_csa_regmap_name = "microchip,sfr",
2504 .ops = &atmel_smc_nc_ops,
2505 };
2506
2507 /* Only used to parse old bindings. */
2508 static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
2509 .ale_offs = BIT(21),
2510 .cle_offs = BIT(22),
2511 .ops = &atmel_smc_nc_ops,
2512 .legacy_of_bindings = true,
2513 };
2514
2515 static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
2516 .ale_offs = BIT(22),
2517 .cle_offs = BIT(21),
2518 .ops = &atmel_smc_nc_ops,
2519 .legacy_of_bindings = true,
2520 };
2521
2522 static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
2523 .has_dma = true,
2524 .ale_offs = BIT(21),
2525 .cle_offs = BIT(22),
2526 .ops = &atmel_smc_nc_ops,
2527 .legacy_of_bindings = true,
2528 };
2529
2530 static const struct of_device_id atmel_nand_controller_of_ids[] = {
2531 {
2532 .compatible = "atmel,at91rm9200-nand-controller",
2533 .data = &atmel_rm9200_nc_caps,
2534 },
2535 {
2536 .compatible = "atmel,at91sam9260-nand-controller",
2537 .data = &atmel_sam9260_nc_caps,
2538 },
2539 {
2540 .compatible = "atmel,at91sam9261-nand-controller",
2541 .data = &atmel_sam9261_nc_caps,
2542 },
2543 {
2544 .compatible = "atmel,at91sam9g45-nand-controller",
2545 .data = &atmel_sam9g45_nc_caps,
2546 },
2547 {
2548 .compatible = "atmel,sama5d3-nand-controller",
2549 .data = &atmel_sama5_nc_caps,
2550 },
2551 {
2552 .compatible = "microchip,sam9x60-nand-controller",
2553 .data = µchip_sam9x60_nc_caps,
2554 },
2555 /* Support for old/deprecated bindings: */
2556 {
2557 .compatible = "atmel,at91rm9200-nand",
2558 .data = &atmel_rm9200_nand_caps,
2559 },
2560 {
2561 .compatible = "atmel,sama5d4-nand",
2562 .data = &atmel_rm9200_nand_caps,
2563 },
2564 {
2565 .compatible = "atmel,sama5d2-nand",
2566 .data = &atmel_rm9200_nand_caps,
2567 },
2568 { /* sentinel */ },
2569 };
2570 MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
2571
atmel_nand_controller_probe(struct platform_device *pdev)2572 static int atmel_nand_controller_probe(struct platform_device *pdev)
2573 {
2574 const struct atmel_nand_controller_caps *caps;
2575
2576 if (pdev->id_entry)
2577 caps = (void *)pdev->id_entry->driver_data;
2578 else
2579 caps = of_device_get_match_data(&pdev->dev);
2580
2581 if (!caps) {
2582 dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
2583 return -EINVAL;
2584 }
2585
2586 if (caps->legacy_of_bindings) {
2587 struct device_node *nfc_node;
2588 u32 ale_offs = 21;
2589
2590 /*
2591 * If we are parsing legacy DT props and the DT contains a
2592 * valid NFC node, forward the request to the sama5 logic.
2593 */
2594 nfc_node = of_get_compatible_child(pdev->dev.of_node,
2595 "atmel,sama5d3-nfc");
2596 if (nfc_node) {
2597 caps = &atmel_sama5_nand_caps;
2598 of_node_put(nfc_node);
2599 }
2600
2601 /*
2602 * Even if the compatible says we are dealing with an
2603 * at91rm9200 controller, the atmel,nand-has-dma specify that
2604 * this controller supports DMA, which means we are in fact
2605 * dealing with an at91sam9g45+ controller.
2606 */
2607 if (!caps->has_dma &&
2608 of_property_read_bool(pdev->dev.of_node,
2609 "atmel,nand-has-dma"))
2610 caps = &atmel_sam9g45_nand_caps;
2611
2612 /*
2613 * All SoCs except the at91sam9261 are assigning ALE to A21 and
2614 * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
2615 * actually dealing with an at91sam9261 controller.
2616 */
2617 of_property_read_u32(pdev->dev.of_node,
2618 "atmel,nand-addr-offset", &ale_offs);
2619 if (ale_offs != 21)
2620 caps = &atmel_sam9261_nand_caps;
2621 }
2622
2623 return caps->ops->probe(pdev, caps);
2624 }
2625
atmel_nand_controller_remove(struct platform_device *pdev)2626 static int atmel_nand_controller_remove(struct platform_device *pdev)
2627 {
2628 struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
2629
2630 return nc->caps->ops->remove(nc);
2631 }
2632
atmel_nand_controller_resume(struct device *dev)2633 static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
2634 {
2635 struct atmel_nand_controller *nc = dev_get_drvdata(dev);
2636 struct atmel_nand *nand;
2637
2638 if (nc->pmecc)
2639 atmel_pmecc_reset(nc->pmecc);
2640
2641 list_for_each_entry(nand, &nc->chips, node) {
2642 int i;
2643
2644 for (i = 0; i < nand->numcs; i++)
2645 nand_reset(&nand->base, i);
2646 }
2647
2648 return 0;
2649 }
2650
2651 static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL,
2652 atmel_nand_controller_resume);
2653
2654 static struct platform_driver atmel_nand_controller_driver = {
2655 .driver = {
2656 .name = "atmel-nand-controller",
2657 .of_match_table = of_match_ptr(atmel_nand_controller_of_ids),
2658 .pm = &atmel_nand_controller_pm_ops,
2659 },
2660 .probe = atmel_nand_controller_probe,
2661 .remove = atmel_nand_controller_remove,
2662 };
2663 module_platform_driver(atmel_nand_controller_driver);
2664
2665 MODULE_LICENSE("GPL");
2666 MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
2667 MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
2668 MODULE_ALIAS("platform:atmel-nand-controller");
2669