1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Arasan NAND Flash Controller Driver
4 *
5 * Copyright (C) 2014 - 2020 Xilinx, Inc.
6 * Author:
7 *   Miquel Raynal <miquel.raynal@bootlin.com>
8 * Original work (fully rewritten):
9 *   Punnaiah Choudary Kalluri <punnaia@xilinx.com>
10 *   Naga Sureshkumar Relli <nagasure@xilinx.com>
11 */
12
13#include <linux/bch.h>
14#include <linux/bitfield.h>
15#include <linux/clk.h>
16#include <linux/delay.h>
17#include <linux/dma-mapping.h>
18#include <linux/interrupt.h>
19#include <linux/iopoll.h>
20#include <linux/module.h>
21#include <linux/mtd/mtd.h>
22#include <linux/mtd/partitions.h>
23#include <linux/mtd/rawnand.h>
24#include <linux/of.h>
25#include <linux/platform_device.h>
26#include <linux/slab.h>
27
28#define PKT_REG				0x00
29#define   PKT_SIZE(x)			FIELD_PREP(GENMASK(10, 0), (x))
30#define   PKT_STEPS(x)			FIELD_PREP(GENMASK(23, 12), (x))
31
32#define MEM_ADDR1_REG			0x04
33
34#define MEM_ADDR2_REG			0x08
35#define   ADDR2_STRENGTH(x)		FIELD_PREP(GENMASK(27, 25), (x))
36#define   ADDR2_CS(x)			FIELD_PREP(GENMASK(31, 30), (x))
37
38#define CMD_REG				0x0C
39#define   CMD_1(x)			FIELD_PREP(GENMASK(7, 0), (x))
40#define   CMD_2(x)			FIELD_PREP(GENMASK(15, 8), (x))
41#define   CMD_PAGE_SIZE(x)		FIELD_PREP(GENMASK(25, 23), (x))
42#define   CMD_DMA_ENABLE		BIT(27)
43#define   CMD_NADDRS(x)			FIELD_PREP(GENMASK(30, 28), (x))
44#define   CMD_ECC_ENABLE		BIT(31)
45
46#define PROG_REG			0x10
47#define   PROG_PGRD			BIT(0)
48#define   PROG_ERASE			BIT(2)
49#define   PROG_STATUS			BIT(3)
50#define   PROG_PGPROG			BIT(4)
51#define   PROG_RDID			BIT(6)
52#define   PROG_RDPARAM			BIT(7)
53#define   PROG_RST			BIT(8)
54#define   PROG_GET_FEATURE		BIT(9)
55#define   PROG_SET_FEATURE		BIT(10)
56
57#define INTR_STS_EN_REG			0x14
58#define INTR_SIG_EN_REG			0x18
59#define INTR_STS_REG			0x1C
60#define   WRITE_READY			BIT(0)
61#define   READ_READY			BIT(1)
62#define   XFER_COMPLETE			BIT(2)
63#define   DMA_BOUNDARY			BIT(6)
64#define   EVENT_MASK			GENMASK(7, 0)
65
66#define READY_STS_REG			0x20
67
68#define DMA_ADDR0_REG			0x50
69#define DMA_ADDR1_REG			0x24
70
71#define FLASH_STS_REG			0x28
72
73#define DATA_PORT_REG			0x30
74
75#define ECC_CONF_REG			0x34
76#define   ECC_CONF_COL(x)		FIELD_PREP(GENMASK(15, 0), (x))
77#define   ECC_CONF_LEN(x)		FIELD_PREP(GENMASK(26, 16), (x))
78#define   ECC_CONF_BCH_EN		BIT(27)
79
80#define ECC_ERR_CNT_REG			0x38
81#define   GET_PKT_ERR_CNT(x)		FIELD_GET(GENMASK(7, 0), (x))
82#define   GET_PAGE_ERR_CNT(x)		FIELD_GET(GENMASK(16, 8), (x))
83
84#define ECC_SP_REG			0x3C
85#define   ECC_SP_CMD1(x)		FIELD_PREP(GENMASK(7, 0), (x))
86#define   ECC_SP_CMD2(x)		FIELD_PREP(GENMASK(15, 8), (x))
87#define   ECC_SP_ADDRS(x)		FIELD_PREP(GENMASK(30, 28), (x))
88
89#define ECC_1ERR_CNT_REG		0x40
90#define ECC_2ERR_CNT_REG		0x44
91
92#define DATA_INTERFACE_REG		0x6C
93#define   DIFACE_SDR_MODE(x)		FIELD_PREP(GENMASK(2, 0), (x))
94#define   DIFACE_DDR_MODE(x)		FIELD_PREP(GENMASK(5, 3), (x))
95#define   DIFACE_SDR			0
96#define   DIFACE_NVDDR			BIT(9)
97
98#define ANFC_MAX_CS			2
99#define ANFC_DFLT_TIMEOUT_US		1000000
100#define ANFC_MAX_CHUNK_SIZE		SZ_1M
101#define ANFC_MAX_PARAM_SIZE		SZ_4K
102#define ANFC_MAX_STEPS			SZ_2K
103#define ANFC_MAX_PKT_SIZE		(SZ_2K - 1)
104#define ANFC_MAX_ADDR_CYC		5U
105#define ANFC_RSVD_ECC_BYTES		21
106
107#define ANFC_XLNX_SDR_DFLT_CORE_CLK	100000000
108#define ANFC_XLNX_SDR_HS_CORE_CLK	80000000
109
110/**
111 * struct anfc_op - Defines how to execute an operation
112 * @pkt_reg: Packet register
113 * @addr1_reg: Memory address 1 register
114 * @addr2_reg: Memory address 2 register
115 * @cmd_reg: Command register
116 * @prog_reg: Program register
117 * @steps: Number of "packets" to read/write
118 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
119 * @len: Data transfer length
120 * @read: Data transfer direction from the controller point of view
121 */
122struct anfc_op {
123	u32 pkt_reg;
124	u32 addr1_reg;
125	u32 addr2_reg;
126	u32 cmd_reg;
127	u32 prog_reg;
128	int steps;
129	unsigned int rdy_timeout_ms;
130	unsigned int len;
131	bool read;
132	u8 *buf;
133};
134
135/**
136 * struct anand - Defines the NAND chip related information
137 * @node:		Used to store NAND chips into a list
138 * @chip:		NAND chip information structure
139 * @cs:			Chip select line
140 * @rb:			Ready-busy line
141 * @page_sz:		Register value of the page_sz field to use
142 * @clk:		Expected clock frequency to use
143 * @timings:		Data interface timing mode to use
144 * @ecc_conf:		Hardware ECC configuration value
145 * @strength:		Register value of the ECC strength
146 * @raddr_cycles:	Row address cycle information
147 * @caddr_cycles:	Column address cycle information
148 * @ecc_bits:		Exact number of ECC bits per syndrome
149 * @ecc_total:		Total number of ECC bytes
150 * @errloc:		Array of errors located with soft BCH
151 * @hw_ecc:		Buffer to store syndromes computed by hardware
152 * @bch:		BCH structure
153 */
154struct anand {
155	struct list_head node;
156	struct nand_chip chip;
157	unsigned int cs;
158	unsigned int rb;
159	unsigned int page_sz;
160	unsigned long clk;
161	u32 timings;
162	u32 ecc_conf;
163	u32 strength;
164	u16 raddr_cycles;
165	u16 caddr_cycles;
166	unsigned int ecc_bits;
167	unsigned int ecc_total;
168	unsigned int *errloc;
169	u8 *hw_ecc;
170	struct bch_control *bch;
171};
172
173/**
174 * struct arasan_nfc - Defines the Arasan NAND flash controller driver instance
175 * @dev:		Pointer to the device structure
176 * @base:		Remapped register area
177 * @controller_clk:		Pointer to the system clock
178 * @bus_clk:		Pointer to the flash clock
179 * @controller:		Base controller structure
180 * @chips:		List of all NAND chips attached to the controller
181 * @assigned_cs:	Bitmask describing already assigned CS lines
182 * @cur_clk:		Current clock rate
183 */
184struct arasan_nfc {
185	struct device *dev;
186	void __iomem *base;
187	struct clk *controller_clk;
188	struct clk *bus_clk;
189	struct nand_controller controller;
190	struct list_head chips;
191	unsigned long assigned_cs;
192	unsigned int cur_clk;
193};
194
195static struct anand *to_anand(struct nand_chip *nand)
196{
197	return container_of(nand, struct anand, chip);
198}
199
200static struct arasan_nfc *to_anfc(struct nand_controller *ctrl)
201{
202	return container_of(ctrl, struct arasan_nfc, controller);
203}
204
205static int anfc_wait_for_event(struct arasan_nfc *nfc, unsigned int event)
206{
207	u32 val;
208	int ret;
209
210	ret = readl_relaxed_poll_timeout(nfc->base + INTR_STS_REG, val,
211					 val & event, 0,
212					 ANFC_DFLT_TIMEOUT_US);
213	if (ret) {
214		dev_err(nfc->dev, "Timeout waiting for event 0x%x\n", event);
215		return -ETIMEDOUT;
216	}
217
218	writel_relaxed(event, nfc->base + INTR_STS_REG);
219
220	return 0;
221}
222
223static int anfc_wait_for_rb(struct arasan_nfc *nfc, struct nand_chip *chip,
224			    unsigned int timeout_ms)
225{
226	struct anand *anand = to_anand(chip);
227	u32 val;
228	int ret;
229
230	/* There is no R/B interrupt, we must poll a register */
231	ret = readl_relaxed_poll_timeout(nfc->base + READY_STS_REG, val,
232					 val & BIT(anand->rb),
233					 1, timeout_ms * 1000);
234	if (ret) {
235		dev_err(nfc->dev, "Timeout waiting for R/B 0x%x\n",
236			readl_relaxed(nfc->base + READY_STS_REG));
237		return -ETIMEDOUT;
238	}
239
240	return 0;
241}
242
243static void anfc_trigger_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
244{
245	writel_relaxed(nfc_op->pkt_reg, nfc->base + PKT_REG);
246	writel_relaxed(nfc_op->addr1_reg, nfc->base + MEM_ADDR1_REG);
247	writel_relaxed(nfc_op->addr2_reg, nfc->base + MEM_ADDR2_REG);
248	writel_relaxed(nfc_op->cmd_reg, nfc->base + CMD_REG);
249	writel_relaxed(nfc_op->prog_reg, nfc->base + PROG_REG);
250}
251
252static int anfc_pkt_len_config(unsigned int len, unsigned int *steps,
253			       unsigned int *pktsize)
254{
255	unsigned int nb, sz;
256
257	for (nb = 1; nb < ANFC_MAX_STEPS; nb *= 2) {
258		sz = len / nb;
259		if (sz <= ANFC_MAX_PKT_SIZE)
260			break;
261	}
262
263	if (sz * nb != len)
264		return -ENOTSUPP;
265
266	if (steps)
267		*steps = nb;
268
269	if (pktsize)
270		*pktsize = sz;
271
272	return 0;
273}
274
275static int anfc_select_target(struct nand_chip *chip, int target)
276{
277	struct anand *anand = to_anand(chip);
278	struct arasan_nfc *nfc = to_anfc(chip->controller);
279	int ret;
280
281	/* Update the controller timings and the potential ECC configuration */
282	writel_relaxed(anand->timings, nfc->base + DATA_INTERFACE_REG);
283
284	/* Update clock frequency */
285	if (nfc->cur_clk != anand->clk) {
286		clk_disable_unprepare(nfc->bus_clk);
287		ret = clk_set_rate(nfc->bus_clk, anand->clk);
288		if (ret) {
289			dev_err(nfc->dev, "Failed to change clock rate\n");
290			return ret;
291		}
292
293		ret = clk_prepare_enable(nfc->bus_clk);
294		if (ret) {
295			dev_err(nfc->dev,
296				"Failed to re-enable the bus clock\n");
297			return ret;
298		}
299
300		nfc->cur_clk = anand->clk;
301	}
302
303	return 0;
304}
305
306/*
307 * When using the embedded hardware ECC engine, the controller is in charge of
308 * feeding the engine with, first, the ECC residue present in the data array.
309 * A typical read operation is:
310 * 1/ Assert the read operation by sending the relevant command/address cycles
311 *    but targeting the column of the first ECC bytes in the OOB area instead of
312 *    the main data directly.
313 * 2/ After having read the relevant number of ECC bytes, the controller uses
314 *    the RNDOUT/RNDSTART commands which are set into the "ECC Spare Command
315 *    Register" to move the pointer back at the beginning of the main data.
316 * 3/ It will read the content of the main area for a given size (pktsize) and
317 *    will feed the ECC engine with this buffer again.
318 * 4/ The ECC engine derives the ECC bytes for the given data and compare them
319 *    with the ones already received. It eventually trigger status flags and
320 *    then set the "Buffer Read Ready" flag.
321 * 5/ The corrected data is then available for reading from the data port
322 *    register.
323 *
324 * The hardware BCH ECC engine is known to be inconstent in BCH mode and never
325 * reports uncorrectable errors. Because of this bug, we have to use the
326 * software BCH implementation in the read path.
327 */
328static int anfc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
329				 int oob_required, int page)
330{
331	struct arasan_nfc *nfc = to_anfc(chip->controller);
332	struct mtd_info *mtd = nand_to_mtd(chip);
333	struct anand *anand = to_anand(chip);
334	unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
335	unsigned int max_bitflips = 0;
336	dma_addr_t dma_addr;
337	int step, ret;
338	struct anfc_op nfc_op = {
339		.pkt_reg =
340			PKT_SIZE(chip->ecc.size) |
341			PKT_STEPS(chip->ecc.steps),
342		.addr1_reg =
343			(page & 0xFF) << (8 * (anand->caddr_cycles)) |
344			(((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
345		.addr2_reg =
346			((page >> 16) & 0xFF) |
347			ADDR2_STRENGTH(anand->strength) |
348			ADDR2_CS(anand->cs),
349		.cmd_reg =
350			CMD_1(NAND_CMD_READ0) |
351			CMD_2(NAND_CMD_READSTART) |
352			CMD_PAGE_SIZE(anand->page_sz) |
353			CMD_DMA_ENABLE |
354			CMD_NADDRS(anand->caddr_cycles +
355				   anand->raddr_cycles),
356		.prog_reg = PROG_PGRD,
357	};
358
359	dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_FROM_DEVICE);
360	if (dma_mapping_error(nfc->dev, dma_addr)) {
361		dev_err(nfc->dev, "Buffer mapping error");
362		return -EIO;
363	}
364
365	writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
366	writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
367
368	anfc_trigger_op(nfc, &nfc_op);
369
370	ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
371	dma_unmap_single(nfc->dev, dma_addr, len, DMA_FROM_DEVICE);
372	if (ret) {
373		dev_err(nfc->dev, "Error reading page %d\n", page);
374		return ret;
375	}
376
377	/* Store the raw OOB bytes as well */
378	ret = nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi,
379					 mtd->oobsize, 0);
380	if (ret)
381		return ret;
382
383	/*
384	 * For each step, compute by softare the BCH syndrome over the raw data.
385	 * Compare the theoretical amount of errors and compare with the
386	 * hardware engine feedback.
387	 */
388	for (step = 0; step < chip->ecc.steps; step++) {
389		u8 *raw_buf = &buf[step * chip->ecc.size];
390		unsigned int bit, byte;
391		int bf, i;
392
393		/* Extract the syndrome, it is not necessarily aligned */
394		memset(anand->hw_ecc, 0, chip->ecc.bytes);
395		nand_extract_bits(anand->hw_ecc, 0,
396				  &chip->oob_poi[mtd->oobsize - anand->ecc_total],
397				  anand->ecc_bits * step, anand->ecc_bits);
398
399		bf = bch_decode(anand->bch, raw_buf, chip->ecc.size,
400				anand->hw_ecc, NULL, NULL, anand->errloc);
401		if (!bf) {
402			continue;
403		} else if (bf > 0) {
404			for (i = 0; i < bf; i++) {
405				/* Only correct the data, not the syndrome */
406				if (anand->errloc[i] < (chip->ecc.size * 8)) {
407					bit = BIT(anand->errloc[i] & 7);
408					byte = anand->errloc[i] >> 3;
409					raw_buf[byte] ^= bit;
410				}
411			}
412
413			mtd->ecc_stats.corrected += bf;
414			max_bitflips = max_t(unsigned int, max_bitflips, bf);
415
416			continue;
417		}
418
419		bf = nand_check_erased_ecc_chunk(raw_buf, chip->ecc.size,
420						 NULL, 0, NULL, 0,
421						 chip->ecc.strength);
422		if (bf > 0) {
423			mtd->ecc_stats.corrected += bf;
424			max_bitflips = max_t(unsigned int, max_bitflips, bf);
425			memset(raw_buf, 0xFF, chip->ecc.size);
426		} else if (bf < 0) {
427			mtd->ecc_stats.failed++;
428		}
429	}
430
431	return 0;
432}
433
434static int anfc_sel_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
435				     int oob_required, int page)
436{
437	int ret;
438
439	ret = anfc_select_target(chip, chip->cur_cs);
440	if (ret)
441		return ret;
442
443	return anfc_read_page_hw_ecc(chip, buf, oob_required, page);
444};
445
446static int anfc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
447				  int oob_required, int page)
448{
449	struct anand *anand = to_anand(chip);
450	struct arasan_nfc *nfc = to_anfc(chip->controller);
451	struct mtd_info *mtd = nand_to_mtd(chip);
452	unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
453	dma_addr_t dma_addr;
454	u8 status;
455	int ret;
456	struct anfc_op nfc_op = {
457		.pkt_reg =
458			PKT_SIZE(chip->ecc.size) |
459			PKT_STEPS(chip->ecc.steps),
460		.addr1_reg =
461			(page & 0xFF) << (8 * (anand->caddr_cycles)) |
462			(((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
463		.addr2_reg =
464			((page >> 16) & 0xFF) |
465			ADDR2_STRENGTH(anand->strength) |
466			ADDR2_CS(anand->cs),
467		.cmd_reg =
468			CMD_1(NAND_CMD_SEQIN) |
469			CMD_2(NAND_CMD_PAGEPROG) |
470			CMD_PAGE_SIZE(anand->page_sz) |
471			CMD_DMA_ENABLE |
472			CMD_NADDRS(anand->caddr_cycles +
473				   anand->raddr_cycles) |
474			CMD_ECC_ENABLE,
475		.prog_reg = PROG_PGPROG,
476	};
477
478	writel_relaxed(anand->ecc_conf, nfc->base + ECC_CONF_REG);
479	writel_relaxed(ECC_SP_CMD1(NAND_CMD_RNDIN) |
480		       ECC_SP_ADDRS(anand->caddr_cycles),
481		       nfc->base + ECC_SP_REG);
482
483	dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_TO_DEVICE);
484	if (dma_mapping_error(nfc->dev, dma_addr)) {
485		dev_err(nfc->dev, "Buffer mapping error");
486		return -EIO;
487	}
488
489	writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
490	writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
491
492	anfc_trigger_op(nfc, &nfc_op);
493	ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
494	dma_unmap_single(nfc->dev, dma_addr, len, DMA_TO_DEVICE);
495	if (ret) {
496		dev_err(nfc->dev, "Error writing page %d\n", page);
497		return ret;
498	}
499
500	/* Spare data is not protected */
501	if (oob_required) {
502		ret = nand_write_oob_std(chip, page);
503		if (ret)
504			return ret;
505	}
506
507	/* Check write status on the chip side */
508	ret = nand_status_op(chip, &status);
509	if (ret)
510		return ret;
511
512	if (status & NAND_STATUS_FAIL)
513		return -EIO;
514
515	return 0;
516}
517
518static int anfc_sel_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
519				      int oob_required, int page)
520{
521	int ret;
522
523	ret = anfc_select_target(chip, chip->cur_cs);
524	if (ret)
525		return ret;
526
527	return anfc_write_page_hw_ecc(chip, buf, oob_required, page);
528};
529
530/* NAND framework ->exec_op() hooks and related helpers */
531static int anfc_parse_instructions(struct nand_chip *chip,
532				   const struct nand_subop *subop,
533				   struct anfc_op *nfc_op)
534{
535	struct anand *anand = to_anand(chip);
536	const struct nand_op_instr *instr = NULL;
537	bool first_cmd = true;
538	unsigned int op_id;
539	int ret, i;
540
541	memset(nfc_op, 0, sizeof(*nfc_op));
542	nfc_op->addr2_reg = ADDR2_CS(anand->cs);
543	nfc_op->cmd_reg = CMD_PAGE_SIZE(anand->page_sz);
544
545	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
546		unsigned int offset, naddrs, pktsize;
547		const u8 *addrs;
548		u8 *buf;
549
550		instr = &subop->instrs[op_id];
551
552		switch (instr->type) {
553		case NAND_OP_CMD_INSTR:
554			if (first_cmd)
555				nfc_op->cmd_reg |= CMD_1(instr->ctx.cmd.opcode);
556			else
557				nfc_op->cmd_reg |= CMD_2(instr->ctx.cmd.opcode);
558
559			first_cmd = false;
560			break;
561
562		case NAND_OP_ADDR_INSTR:
563			offset = nand_subop_get_addr_start_off(subop, op_id);
564			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
565			addrs = &instr->ctx.addr.addrs[offset];
566			nfc_op->cmd_reg |= CMD_NADDRS(naddrs);
567
568			for (i = 0; i < min(ANFC_MAX_ADDR_CYC, naddrs); i++) {
569				if (i < 4)
570					nfc_op->addr1_reg |= (u32)addrs[i] << i * 8;
571				else
572					nfc_op->addr2_reg |= addrs[i];
573			}
574
575			break;
576		case NAND_OP_DATA_IN_INSTR:
577			nfc_op->read = true;
578			fallthrough;
579		case NAND_OP_DATA_OUT_INSTR:
580			offset = nand_subop_get_data_start_off(subop, op_id);
581			buf = instr->ctx.data.buf.in;
582			nfc_op->buf = &buf[offset];
583			nfc_op->len = nand_subop_get_data_len(subop, op_id);
584			ret = anfc_pkt_len_config(nfc_op->len, &nfc_op->steps,
585						  &pktsize);
586			if (ret)
587				return ret;
588
589			/*
590			 * Number of DATA cycles must be aligned on 4, this
591			 * means the controller might read/write more than
592			 * requested. This is harmless most of the time as extra
593			 * DATA are discarded in the write path and read pointer
594			 * adjusted in the read path.
595			 *
596			 * FIXME: The core should mark operations where
597			 * reading/writing more is allowed so the exec_op()
598			 * implementation can take the right decision when the
599			 * alignment constraint is not met: adjust the number of
600			 * DATA cycles when it's allowed, reject the operation
601			 * otherwise.
602			 */
603			nfc_op->pkt_reg |= PKT_SIZE(round_up(pktsize, 4)) |
604					   PKT_STEPS(nfc_op->steps);
605			break;
606		case NAND_OP_WAITRDY_INSTR:
607			nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
608			break;
609		}
610	}
611
612	return 0;
613}
614
615static int anfc_rw_pio_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
616{
617	unsigned int dwords = (nfc_op->len / 4) / nfc_op->steps;
618	unsigned int last_len = nfc_op->len % 4;
619	unsigned int offset, dir;
620	u8 *buf = nfc_op->buf;
621	int ret, i;
622
623	for (i = 0; i < nfc_op->steps; i++) {
624		dir = nfc_op->read ? READ_READY : WRITE_READY;
625		ret = anfc_wait_for_event(nfc, dir);
626		if (ret) {
627			dev_err(nfc->dev, "PIO %s ready signal not received\n",
628				nfc_op->read ? "Read" : "Write");
629			return ret;
630		}
631
632		offset = i * (dwords * 4);
633		if (nfc_op->read)
634			ioread32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
635				     dwords);
636		else
637			iowrite32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
638				      dwords);
639	}
640
641	if (last_len) {
642		u32 remainder;
643
644		offset = nfc_op->len - last_len;
645
646		if (nfc_op->read) {
647			remainder = readl_relaxed(nfc->base + DATA_PORT_REG);
648			memcpy(&buf[offset], &remainder, last_len);
649		} else {
650			memcpy(&remainder, &buf[offset], last_len);
651			writel_relaxed(remainder, nfc->base + DATA_PORT_REG);
652		}
653	}
654
655	return anfc_wait_for_event(nfc, XFER_COMPLETE);
656}
657
658static int anfc_misc_data_type_exec(struct nand_chip *chip,
659				    const struct nand_subop *subop,
660				    u32 prog_reg)
661{
662	struct arasan_nfc *nfc = to_anfc(chip->controller);
663	struct anfc_op nfc_op = {};
664	int ret;
665
666	ret = anfc_parse_instructions(chip, subop, &nfc_op);
667	if (ret)
668		return ret;
669
670	nfc_op.prog_reg = prog_reg;
671	anfc_trigger_op(nfc, &nfc_op);
672
673	if (nfc_op.rdy_timeout_ms) {
674		ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
675		if (ret)
676			return ret;
677	}
678
679	return anfc_rw_pio_op(nfc, &nfc_op);
680}
681
682static int anfc_param_read_type_exec(struct nand_chip *chip,
683				     const struct nand_subop *subop)
684{
685	return anfc_misc_data_type_exec(chip, subop, PROG_RDPARAM);
686}
687
688static int anfc_data_read_type_exec(struct nand_chip *chip,
689				    const struct nand_subop *subop)
690{
691	return anfc_misc_data_type_exec(chip, subop, PROG_PGRD);
692}
693
694static int anfc_param_write_type_exec(struct nand_chip *chip,
695				      const struct nand_subop *subop)
696{
697	return anfc_misc_data_type_exec(chip, subop, PROG_SET_FEATURE);
698}
699
700static int anfc_data_write_type_exec(struct nand_chip *chip,
701				     const struct nand_subop *subop)
702{
703	return anfc_misc_data_type_exec(chip, subop, PROG_PGPROG);
704}
705
706static int anfc_misc_zerolen_type_exec(struct nand_chip *chip,
707				       const struct nand_subop *subop,
708				       u32 prog_reg)
709{
710	struct arasan_nfc *nfc = to_anfc(chip->controller);
711	struct anfc_op nfc_op = {};
712	int ret;
713
714	ret = anfc_parse_instructions(chip, subop, &nfc_op);
715	if (ret)
716		return ret;
717
718	nfc_op.prog_reg = prog_reg;
719	anfc_trigger_op(nfc, &nfc_op);
720
721	ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
722	if (ret)
723		return ret;
724
725	if (nfc_op.rdy_timeout_ms)
726		ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
727
728	return ret;
729}
730
731static int anfc_status_type_exec(struct nand_chip *chip,
732				 const struct nand_subop *subop)
733{
734	struct arasan_nfc *nfc = to_anfc(chip->controller);
735	u32 tmp;
736	int ret;
737
738	/* See anfc_check_op() for details about this constraint */
739	if (subop->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS)
740		return -ENOTSUPP;
741
742	ret = anfc_misc_zerolen_type_exec(chip, subop, PROG_STATUS);
743	if (ret)
744		return ret;
745
746	tmp = readl_relaxed(nfc->base + FLASH_STS_REG);
747	memcpy(subop->instrs[1].ctx.data.buf.in, &tmp, 1);
748
749	return 0;
750}
751
752static int anfc_reset_type_exec(struct nand_chip *chip,
753				const struct nand_subop *subop)
754{
755	return anfc_misc_zerolen_type_exec(chip, subop, PROG_RST);
756}
757
758static int anfc_erase_type_exec(struct nand_chip *chip,
759				const struct nand_subop *subop)
760{
761	return anfc_misc_zerolen_type_exec(chip, subop, PROG_ERASE);
762}
763
764static int anfc_wait_type_exec(struct nand_chip *chip,
765			       const struct nand_subop *subop)
766{
767	struct arasan_nfc *nfc = to_anfc(chip->controller);
768	struct anfc_op nfc_op = {};
769	int ret;
770
771	ret = anfc_parse_instructions(chip, subop, &nfc_op);
772	if (ret)
773		return ret;
774
775	return anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
776}
777
778static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER(
779	NAND_OP_PARSER_PATTERN(
780		anfc_param_read_type_exec,
781		NAND_OP_PARSER_PAT_CMD_ELEM(false),
782		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
783		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
784		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
785	NAND_OP_PARSER_PATTERN(
786		anfc_param_write_type_exec,
787		NAND_OP_PARSER_PAT_CMD_ELEM(false),
788		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
789		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_PARAM_SIZE)),
790	NAND_OP_PARSER_PATTERN(
791		anfc_data_read_type_exec,
792		NAND_OP_PARSER_PAT_CMD_ELEM(false),
793		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
794		NAND_OP_PARSER_PAT_CMD_ELEM(false),
795		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
796		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, ANFC_MAX_CHUNK_SIZE)),
797	NAND_OP_PARSER_PATTERN(
798		anfc_data_write_type_exec,
799		NAND_OP_PARSER_PAT_CMD_ELEM(false),
800		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
801		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_CHUNK_SIZE),
802		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
803	NAND_OP_PARSER_PATTERN(
804		anfc_reset_type_exec,
805		NAND_OP_PARSER_PAT_CMD_ELEM(false),
806		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
807	NAND_OP_PARSER_PATTERN(
808		anfc_erase_type_exec,
809		NAND_OP_PARSER_PAT_CMD_ELEM(false),
810		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
811		NAND_OP_PARSER_PAT_CMD_ELEM(false),
812		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
813	NAND_OP_PARSER_PATTERN(
814		anfc_status_type_exec,
815		NAND_OP_PARSER_PAT_CMD_ELEM(false),
816		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
817	NAND_OP_PARSER_PATTERN(
818		anfc_wait_type_exec,
819		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
820	);
821
822static int anfc_check_op(struct nand_chip *chip,
823			 const struct nand_operation *op)
824{
825	const struct nand_op_instr *instr;
826	int op_id;
827
828	/*
829	 * The controller abstracts all the NAND operations and do not support
830	 * data only operations.
831	 *
832	 * TODO: The nand_op_parser framework should be extended to
833	 * support custom checks on DATA instructions.
834	 */
835	for (op_id = 0; op_id < op->ninstrs; op_id++) {
836		instr = &op->instrs[op_id];
837
838		switch (instr->type) {
839		case NAND_OP_ADDR_INSTR:
840			if (instr->ctx.addr.naddrs > ANFC_MAX_ADDR_CYC)
841				return -ENOTSUPP;
842
843			break;
844		case NAND_OP_DATA_IN_INSTR:
845		case NAND_OP_DATA_OUT_INSTR:
846			if (instr->ctx.data.len > ANFC_MAX_CHUNK_SIZE)
847				return -ENOTSUPP;
848
849			if (anfc_pkt_len_config(instr->ctx.data.len, 0, 0))
850				return -ENOTSUPP;
851
852			break;
853		default:
854			break;
855		}
856	}
857
858	/*
859	 * The controller does not allow to proceed with a CMD+DATA_IN cycle
860	 * manually on the bus by reading data from the data register. Instead,
861	 * the controller abstract a status read operation with its own status
862	 * register after ordering a read status operation. Hence, we cannot
863	 * support any CMD+DATA_IN operation other than a READ STATUS.
864	 *
865	 * TODO: The nand_op_parser() framework should be extended to describe
866	 * fixed patterns instead of open-coding this check here.
867	 */
868	if (op->ninstrs == 2 &&
869	    op->instrs[0].type == NAND_OP_CMD_INSTR &&
870	    op->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS &&
871	    op->instrs[1].type == NAND_OP_DATA_IN_INSTR)
872		return -ENOTSUPP;
873
874	return nand_op_parser_exec_op(chip, &anfc_op_parser, op, true);
875}
876
877static int anfc_exec_op(struct nand_chip *chip,
878			const struct nand_operation *op,
879			bool check_only)
880{
881	int ret;
882
883	if (check_only)
884		return anfc_check_op(chip, op);
885
886	ret = anfc_select_target(chip, op->cs);
887	if (ret)
888		return ret;
889
890	return nand_op_parser_exec_op(chip, &anfc_op_parser, op, check_only);
891}
892
893static int anfc_setup_interface(struct nand_chip *chip, int target,
894				const struct nand_interface_config *conf)
895{
896	struct anand *anand = to_anand(chip);
897	struct arasan_nfc *nfc = to_anfc(chip->controller);
898	struct device_node *np = nfc->dev->of_node;
899	const struct nand_sdr_timings *sdr;
900	const struct nand_nvddr_timings *nvddr;
901
902	if (nand_interface_is_nvddr(conf)) {
903		nvddr = nand_get_nvddr_timings(conf);
904		if (IS_ERR(nvddr))
905			return PTR_ERR(nvddr);
906
907		/*
908		 * The controller only supports data payload requests which are
909		 * a multiple of 4. In practice, most data accesses are 4-byte
910		 * aligned and this is not an issue. However, rounding up will
911		 * simply be refused by the controller if we reached the end of
912		 * the device *and* we are using the NV-DDR interface(!). In
913		 * this situation, unaligned data requests ending at the device
914		 * boundary will confuse the controller and cannot be performed.
915		 *
916		 * This is something that happens in nand_read_subpage() when
917		 * selecting software ECC support and must be avoided.
918		 */
919		if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT)
920			return -ENOTSUPP;
921	} else {
922		sdr = nand_get_sdr_timings(conf);
923		if (IS_ERR(sdr))
924			return PTR_ERR(sdr);
925	}
926
927	if (target < 0)
928		return 0;
929
930	if (nand_interface_is_sdr(conf))
931		anand->timings = DIFACE_SDR |
932				 DIFACE_SDR_MODE(conf->timings.mode);
933	else
934		anand->timings = DIFACE_NVDDR |
935				 DIFACE_DDR_MODE(conf->timings.mode);
936
937	if (nand_interface_is_sdr(conf)) {
938		anand->clk = ANFC_XLNX_SDR_DFLT_CORE_CLK;
939	} else {
940		/* ONFI timings are defined in picoseconds */
941		anand->clk = div_u64((u64)NSEC_PER_SEC * 1000,
942				     conf->timings.nvddr.tCK_min);
943	}
944
945	/*
946	 * Due to a hardware bug in the ZynqMP SoC, SDR timing modes 0-1 work
947	 * with f > 90MHz (default clock is 100MHz) but signals are unstable
948	 * with higher modes. Hence we decrease a little bit the clock rate to
949	 * 80MHz when using SDR modes 2-5 with this SoC.
950	 */
951	if (of_device_is_compatible(np, "xlnx,zynqmp-nand-controller") &&
952	    nand_interface_is_sdr(conf) && conf->timings.mode >= 2)
953		anand->clk = ANFC_XLNX_SDR_HS_CORE_CLK;
954
955	return 0;
956}
957
958static int anfc_calc_hw_ecc_bytes(int step_size, int strength)
959{
960	unsigned int bch_gf_mag, ecc_bits;
961
962	switch (step_size) {
963	case SZ_512:
964		bch_gf_mag = 13;
965		break;
966	case SZ_1K:
967		bch_gf_mag = 14;
968		break;
969	default:
970		return -EINVAL;
971	}
972
973	ecc_bits = bch_gf_mag * strength;
974
975	return DIV_ROUND_UP(ecc_bits, 8);
976}
977
978static const int anfc_hw_ecc_512_strengths[] = {4, 8, 12};
979
980static const int anfc_hw_ecc_1024_strengths[] = {24};
981
982static const struct nand_ecc_step_info anfc_hw_ecc_step_infos[] = {
983	{
984		.stepsize = SZ_512,
985		.strengths = anfc_hw_ecc_512_strengths,
986		.nstrengths = ARRAY_SIZE(anfc_hw_ecc_512_strengths),
987	},
988	{
989		.stepsize = SZ_1K,
990		.strengths = anfc_hw_ecc_1024_strengths,
991		.nstrengths = ARRAY_SIZE(anfc_hw_ecc_1024_strengths),
992	},
993};
994
995static const struct nand_ecc_caps anfc_hw_ecc_caps = {
996	.stepinfos = anfc_hw_ecc_step_infos,
997	.nstepinfos = ARRAY_SIZE(anfc_hw_ecc_step_infos),
998	.calc_ecc_bytes = anfc_calc_hw_ecc_bytes,
999};
1000
1001static int anfc_init_hw_ecc_controller(struct arasan_nfc *nfc,
1002				       struct nand_chip *chip)
1003{
1004	struct anand *anand = to_anand(chip);
1005	struct mtd_info *mtd = nand_to_mtd(chip);
1006	struct nand_ecc_ctrl *ecc = &chip->ecc;
1007	unsigned int bch_prim_poly = 0, bch_gf_mag = 0, ecc_offset;
1008	int ret;
1009
1010	switch (mtd->writesize) {
1011	case SZ_512:
1012	case SZ_2K:
1013	case SZ_4K:
1014	case SZ_8K:
1015	case SZ_16K:
1016		break;
1017	default:
1018		dev_err(nfc->dev, "Unsupported page size %d\n", mtd->writesize);
1019		return -EINVAL;
1020	}
1021
1022	ret = nand_ecc_choose_conf(chip, &anfc_hw_ecc_caps, mtd->oobsize);
1023	if (ret)
1024		return ret;
1025
1026	switch (ecc->strength) {
1027	case 12:
1028		anand->strength = 0x1;
1029		break;
1030	case 8:
1031		anand->strength = 0x2;
1032		break;
1033	case 4:
1034		anand->strength = 0x3;
1035		break;
1036	case 24:
1037		anand->strength = 0x4;
1038		break;
1039	default:
1040		dev_err(nfc->dev, "Unsupported strength %d\n", ecc->strength);
1041		return -EINVAL;
1042	}
1043
1044	switch (ecc->size) {
1045	case SZ_512:
1046		bch_gf_mag = 13;
1047		bch_prim_poly = 0x201b;
1048		break;
1049	case SZ_1K:
1050		bch_gf_mag = 14;
1051		bch_prim_poly = 0x4443;
1052		break;
1053	default:
1054		dev_err(nfc->dev, "Unsupported step size %d\n", ecc->strength);
1055		return -EINVAL;
1056	}
1057
1058	mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
1059
1060	ecc->steps = mtd->writesize / ecc->size;
1061	ecc->algo = NAND_ECC_ALGO_BCH;
1062	anand->ecc_bits = bch_gf_mag * ecc->strength;
1063	ecc->bytes = DIV_ROUND_UP(anand->ecc_bits, 8);
1064	anand->ecc_total = DIV_ROUND_UP(anand->ecc_bits * ecc->steps, 8);
1065	ecc_offset = mtd->writesize + mtd->oobsize - anand->ecc_total;
1066	anand->ecc_conf = ECC_CONF_COL(ecc_offset) |
1067			  ECC_CONF_LEN(anand->ecc_total) |
1068			  ECC_CONF_BCH_EN;
1069
1070	anand->errloc = devm_kmalloc_array(nfc->dev, ecc->strength,
1071					   sizeof(*anand->errloc), GFP_KERNEL);
1072	if (!anand->errloc)
1073		return -ENOMEM;
1074
1075	anand->hw_ecc = devm_kmalloc(nfc->dev, ecc->bytes, GFP_KERNEL);
1076	if (!anand->hw_ecc)
1077		return -ENOMEM;
1078
1079	/* Enforce bit swapping to fit the hardware */
1080	anand->bch = bch_init(bch_gf_mag, ecc->strength, bch_prim_poly, true);
1081	if (!anand->bch)
1082		return -EINVAL;
1083
1084	ecc->read_page = anfc_sel_read_page_hw_ecc;
1085	ecc->write_page = anfc_sel_write_page_hw_ecc;
1086
1087	return 0;
1088}
1089
1090static int anfc_attach_chip(struct nand_chip *chip)
1091{
1092	struct anand *anand = to_anand(chip);
1093	struct arasan_nfc *nfc = to_anfc(chip->controller);
1094	struct mtd_info *mtd = nand_to_mtd(chip);
1095	int ret = 0;
1096
1097	if (mtd->writesize <= SZ_512)
1098		anand->caddr_cycles = 1;
1099	else
1100		anand->caddr_cycles = 2;
1101
1102	if (chip->options & NAND_ROW_ADDR_3)
1103		anand->raddr_cycles = 3;
1104	else
1105		anand->raddr_cycles = 2;
1106
1107	switch (mtd->writesize) {
1108	case 512:
1109		anand->page_sz = 0;
1110		break;
1111	case 1024:
1112		anand->page_sz = 5;
1113		break;
1114	case 2048:
1115		anand->page_sz = 1;
1116		break;
1117	case 4096:
1118		anand->page_sz = 2;
1119		break;
1120	case 8192:
1121		anand->page_sz = 3;
1122		break;
1123	case 16384:
1124		anand->page_sz = 4;
1125		break;
1126	default:
1127		return -EINVAL;
1128	}
1129
1130	/* These hooks are valid for all ECC providers */
1131	chip->ecc.read_page_raw = nand_monolithic_read_page_raw;
1132	chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
1133
1134	switch (chip->ecc.engine_type) {
1135	case NAND_ECC_ENGINE_TYPE_NONE:
1136	case NAND_ECC_ENGINE_TYPE_SOFT:
1137	case NAND_ECC_ENGINE_TYPE_ON_DIE:
1138		break;
1139	case NAND_ECC_ENGINE_TYPE_ON_HOST:
1140		ret = anfc_init_hw_ecc_controller(nfc, chip);
1141		break;
1142	default:
1143		dev_err(nfc->dev, "Unsupported ECC mode: %d\n",
1144			chip->ecc.engine_type);
1145		return -EINVAL;
1146	}
1147
1148	return ret;
1149}
1150
1151static void anfc_detach_chip(struct nand_chip *chip)
1152{
1153	struct anand *anand = to_anand(chip);
1154
1155	if (anand->bch)
1156		bch_free(anand->bch);
1157}
1158
1159static const struct nand_controller_ops anfc_ops = {
1160	.exec_op = anfc_exec_op,
1161	.setup_interface = anfc_setup_interface,
1162	.attach_chip = anfc_attach_chip,
1163	.detach_chip = anfc_detach_chip,
1164};
1165
1166static int anfc_chip_init(struct arasan_nfc *nfc, struct device_node *np)
1167{
1168	struct anand *anand;
1169	struct nand_chip *chip;
1170	struct mtd_info *mtd;
1171	int cs, rb, ret;
1172
1173	anand = devm_kzalloc(nfc->dev, sizeof(*anand), GFP_KERNEL);
1174	if (!anand)
1175		return -ENOMEM;
1176
1177	/* We do not support multiple CS per chip yet */
1178	if (of_property_count_elems_of_size(np, "reg", sizeof(u32)) != 1) {
1179		dev_err(nfc->dev, "Invalid reg property\n");
1180		return -EINVAL;
1181	}
1182
1183	ret = of_property_read_u32(np, "reg", &cs);
1184	if (ret)
1185		return ret;
1186
1187	ret = of_property_read_u32(np, "nand-rb", &rb);
1188	if (ret)
1189		return ret;
1190
1191	if (cs >= ANFC_MAX_CS || rb >= ANFC_MAX_CS) {
1192		dev_err(nfc->dev, "Wrong CS %d or RB %d\n", cs, rb);
1193		return -EINVAL;
1194	}
1195
1196	if (test_and_set_bit(cs, &nfc->assigned_cs)) {
1197		dev_err(nfc->dev, "Already assigned CS %d\n", cs);
1198		return -EINVAL;
1199	}
1200
1201	anand->cs = cs;
1202	anand->rb = rb;
1203
1204	chip = &anand->chip;
1205	mtd = nand_to_mtd(chip);
1206	mtd->dev.parent = nfc->dev;
1207	chip->controller = &nfc->controller;
1208	chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
1209			NAND_USES_DMA;
1210
1211	nand_set_flash_node(chip, np);
1212	if (!mtd->name) {
1213		dev_err(nfc->dev, "NAND label property is mandatory\n");
1214		return -EINVAL;
1215	}
1216
1217	ret = nand_scan(chip, 1);
1218	if (ret) {
1219		dev_err(nfc->dev, "Scan operation failed\n");
1220		return ret;
1221	}
1222
1223	ret = mtd_device_register(mtd, NULL, 0);
1224	if (ret) {
1225		nand_cleanup(chip);
1226		return ret;
1227	}
1228
1229	list_add_tail(&anand->node, &nfc->chips);
1230
1231	return 0;
1232}
1233
1234static void anfc_chips_cleanup(struct arasan_nfc *nfc)
1235{
1236	struct anand *anand, *tmp;
1237	struct nand_chip *chip;
1238	int ret;
1239
1240	list_for_each_entry_safe(anand, tmp, &nfc->chips, node) {
1241		chip = &anand->chip;
1242		ret = mtd_device_unregister(nand_to_mtd(chip));
1243		WARN_ON(ret);
1244		nand_cleanup(chip);
1245		list_del(&anand->node);
1246	}
1247}
1248
1249static int anfc_chips_init(struct arasan_nfc *nfc)
1250{
1251	struct device_node *np = nfc->dev->of_node, *nand_np;
1252	int nchips = of_get_child_count(np);
1253	int ret;
1254
1255	if (!nchips || nchips > ANFC_MAX_CS) {
1256		dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
1257			nchips);
1258		return -EINVAL;
1259	}
1260
1261	for_each_child_of_node(np, nand_np) {
1262		ret = anfc_chip_init(nfc, nand_np);
1263		if (ret) {
1264			of_node_put(nand_np);
1265			anfc_chips_cleanup(nfc);
1266			break;
1267		}
1268	}
1269
1270	return ret;
1271}
1272
1273static void anfc_reset(struct arasan_nfc *nfc)
1274{
1275	/* Disable interrupt signals */
1276	writel_relaxed(0, nfc->base + INTR_SIG_EN_REG);
1277
1278	/* Enable interrupt status */
1279	writel_relaxed(EVENT_MASK, nfc->base + INTR_STS_EN_REG);
1280}
1281
1282static int anfc_probe(struct platform_device *pdev)
1283{
1284	struct arasan_nfc *nfc;
1285	int ret;
1286
1287	nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
1288	if (!nfc)
1289		return -ENOMEM;
1290
1291	nfc->dev = &pdev->dev;
1292	nand_controller_init(&nfc->controller);
1293	nfc->controller.ops = &anfc_ops;
1294	INIT_LIST_HEAD(&nfc->chips);
1295
1296	nfc->base = devm_platform_ioremap_resource(pdev, 0);
1297	if (IS_ERR(nfc->base))
1298		return PTR_ERR(nfc->base);
1299
1300	anfc_reset(nfc);
1301
1302	nfc->controller_clk = devm_clk_get(&pdev->dev, "controller");
1303	if (IS_ERR(nfc->controller_clk))
1304		return PTR_ERR(nfc->controller_clk);
1305
1306	nfc->bus_clk = devm_clk_get(&pdev->dev, "bus");
1307	if (IS_ERR(nfc->bus_clk))
1308		return PTR_ERR(nfc->bus_clk);
1309
1310	ret = clk_prepare_enable(nfc->controller_clk);
1311	if (ret)
1312		return ret;
1313
1314	ret = clk_prepare_enable(nfc->bus_clk);
1315	if (ret)
1316		goto disable_controller_clk;
1317
1318	ret = anfc_chips_init(nfc);
1319	if (ret)
1320		goto disable_bus_clk;
1321
1322	platform_set_drvdata(pdev, nfc);
1323
1324	return 0;
1325
1326disable_bus_clk:
1327	clk_disable_unprepare(nfc->bus_clk);
1328
1329disable_controller_clk:
1330	clk_disable_unprepare(nfc->controller_clk);
1331
1332	return ret;
1333}
1334
1335static int anfc_remove(struct platform_device *pdev)
1336{
1337	struct arasan_nfc *nfc = platform_get_drvdata(pdev);
1338
1339	anfc_chips_cleanup(nfc);
1340
1341	clk_disable_unprepare(nfc->bus_clk);
1342	clk_disable_unprepare(nfc->controller_clk);
1343
1344	return 0;
1345}
1346
1347static const struct of_device_id anfc_ids[] = {
1348	{
1349		.compatible = "xlnx,zynqmp-nand-controller",
1350	},
1351	{
1352		.compatible = "arasan,nfc-v3p10",
1353	},
1354	{}
1355};
1356MODULE_DEVICE_TABLE(of, anfc_ids);
1357
1358static struct platform_driver anfc_driver = {
1359	.driver = {
1360		.name = "arasan-nand-controller",
1361		.of_match_table = anfc_ids,
1362	},
1363	.probe = anfc_probe,
1364	.remove = anfc_remove,
1365};
1366module_platform_driver(anfc_driver);
1367
1368MODULE_LICENSE("GPL v2");
1369MODULE_AUTHOR("Punnaiah Choudary Kalluri <punnaia@xilinx.com>");
1370MODULE_AUTHOR("Naga Sureshkumar Relli <nagasure@xilinx.com>");
1371MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
1372MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");
1373