1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Arasan NAND Flash Controller Driver
4  *
5  * Copyright (C) 2014 - 2020 Xilinx, Inc.
6  * Author:
7  *   Miquel Raynal <miquel.raynal@bootlin.com>
8  * Original work (fully rewritten):
9  *   Punnaiah Choudary Kalluri <punnaia@xilinx.com>
10  *   Naga Sureshkumar Relli <nagasure@xilinx.com>
11  */
12 
13 #include <linux/bch.h>
14 #include <linux/bitfield.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <linux/iopoll.h>
20 #include <linux/module.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/mtd/partitions.h>
23 #include <linux/mtd/rawnand.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/slab.h>
27 
28 #define PKT_REG				0x00
29 #define   PKT_SIZE(x)			FIELD_PREP(GENMASK(10, 0), (x))
30 #define   PKT_STEPS(x)			FIELD_PREP(GENMASK(23, 12), (x))
31 
32 #define MEM_ADDR1_REG			0x04
33 
34 #define MEM_ADDR2_REG			0x08
35 #define   ADDR2_STRENGTH(x)		FIELD_PREP(GENMASK(27, 25), (x))
36 #define   ADDR2_CS(x)			FIELD_PREP(GENMASK(31, 30), (x))
37 
38 #define CMD_REG				0x0C
39 #define   CMD_1(x)			FIELD_PREP(GENMASK(7, 0), (x))
40 #define   CMD_2(x)			FIELD_PREP(GENMASK(15, 8), (x))
41 #define   CMD_PAGE_SIZE(x)		FIELD_PREP(GENMASK(25, 23), (x))
42 #define   CMD_DMA_ENABLE		BIT(27)
43 #define   CMD_NADDRS(x)			FIELD_PREP(GENMASK(30, 28), (x))
44 #define   CMD_ECC_ENABLE		BIT(31)
45 
46 #define PROG_REG			0x10
47 #define   PROG_PGRD			BIT(0)
48 #define   PROG_ERASE			BIT(2)
49 #define   PROG_STATUS			BIT(3)
50 #define   PROG_PGPROG			BIT(4)
51 #define   PROG_RDID			BIT(6)
52 #define   PROG_RDPARAM			BIT(7)
53 #define   PROG_RST			BIT(8)
54 #define   PROG_GET_FEATURE		BIT(9)
55 #define   PROG_SET_FEATURE		BIT(10)
56 
57 #define INTR_STS_EN_REG			0x14
58 #define INTR_SIG_EN_REG			0x18
59 #define INTR_STS_REG			0x1C
60 #define   WRITE_READY			BIT(0)
61 #define   READ_READY			BIT(1)
62 #define   XFER_COMPLETE			BIT(2)
63 #define   DMA_BOUNDARY			BIT(6)
64 #define   EVENT_MASK			GENMASK(7, 0)
65 
66 #define READY_STS_REG			0x20
67 
68 #define DMA_ADDR0_REG			0x50
69 #define DMA_ADDR1_REG			0x24
70 
71 #define FLASH_STS_REG			0x28
72 
73 #define DATA_PORT_REG			0x30
74 
75 #define ECC_CONF_REG			0x34
76 #define   ECC_CONF_COL(x)		FIELD_PREP(GENMASK(15, 0), (x))
77 #define   ECC_CONF_LEN(x)		FIELD_PREP(GENMASK(26, 16), (x))
78 #define   ECC_CONF_BCH_EN		BIT(27)
79 
80 #define ECC_ERR_CNT_REG			0x38
81 #define   GET_PKT_ERR_CNT(x)		FIELD_GET(GENMASK(7, 0), (x))
82 #define   GET_PAGE_ERR_CNT(x)		FIELD_GET(GENMASK(16, 8), (x))
83 
84 #define ECC_SP_REG			0x3C
85 #define   ECC_SP_CMD1(x)		FIELD_PREP(GENMASK(7, 0), (x))
86 #define   ECC_SP_CMD2(x)		FIELD_PREP(GENMASK(15, 8), (x))
87 #define   ECC_SP_ADDRS(x)		FIELD_PREP(GENMASK(30, 28), (x))
88 
89 #define ECC_1ERR_CNT_REG		0x40
90 #define ECC_2ERR_CNT_REG		0x44
91 
92 #define DATA_INTERFACE_REG		0x6C
93 #define   DIFACE_SDR_MODE(x)		FIELD_PREP(GENMASK(2, 0), (x))
94 #define   DIFACE_DDR_MODE(x)		FIELD_PREP(GENMASK(5, 3), (x))
95 #define   DIFACE_SDR			0
96 #define   DIFACE_NVDDR			BIT(9)
97 
98 #define ANFC_MAX_CS			2
99 #define ANFC_DFLT_TIMEOUT_US		1000000
100 #define ANFC_MAX_CHUNK_SIZE		SZ_1M
101 #define ANFC_MAX_PARAM_SIZE		SZ_4K
102 #define ANFC_MAX_STEPS			SZ_2K
103 #define ANFC_MAX_PKT_SIZE		(SZ_2K - 1)
104 #define ANFC_MAX_ADDR_CYC		5U
105 #define ANFC_RSVD_ECC_BYTES		21
106 
107 #define ANFC_XLNX_SDR_DFLT_CORE_CLK	100000000
108 #define ANFC_XLNX_SDR_HS_CORE_CLK	80000000
109 
110 /**
111  * struct anfc_op - Defines how to execute an operation
112  * @pkt_reg: Packet register
113  * @addr1_reg: Memory address 1 register
114  * @addr2_reg: Memory address 2 register
115  * @cmd_reg: Command register
116  * @prog_reg: Program register
117  * @steps: Number of "packets" to read/write
118  * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
119  * @len: Data transfer length
120  * @read: Data transfer direction from the controller point of view
121  */
122 struct anfc_op {
123 	u32 pkt_reg;
124 	u32 addr1_reg;
125 	u32 addr2_reg;
126 	u32 cmd_reg;
127 	u32 prog_reg;
128 	int steps;
129 	unsigned int rdy_timeout_ms;
130 	unsigned int len;
131 	bool read;
132 	u8 *buf;
133 };
134 
135 /**
136  * struct anand - Defines the NAND chip related information
137  * @node:		Used to store NAND chips into a list
138  * @chip:		NAND chip information structure
139  * @cs:			Chip select line
140  * @rb:			Ready-busy line
141  * @page_sz:		Register value of the page_sz field to use
142  * @clk:		Expected clock frequency to use
143  * @timings:		Data interface timing mode to use
144  * @ecc_conf:		Hardware ECC configuration value
145  * @strength:		Register value of the ECC strength
146  * @raddr_cycles:	Row address cycle information
147  * @caddr_cycles:	Column address cycle information
148  * @ecc_bits:		Exact number of ECC bits per syndrome
149  * @ecc_total:		Total number of ECC bytes
150  * @errloc:		Array of errors located with soft BCH
151  * @hw_ecc:		Buffer to store syndromes computed by hardware
152  * @bch:		BCH structure
153  */
154 struct anand {
155 	struct list_head node;
156 	struct nand_chip chip;
157 	unsigned int cs;
158 	unsigned int rb;
159 	unsigned int page_sz;
160 	unsigned long clk;
161 	u32 timings;
162 	u32 ecc_conf;
163 	u32 strength;
164 	u16 raddr_cycles;
165 	u16 caddr_cycles;
166 	unsigned int ecc_bits;
167 	unsigned int ecc_total;
168 	unsigned int *errloc;
169 	u8 *hw_ecc;
170 	struct bch_control *bch;
171 };
172 
173 /**
174  * struct arasan_nfc - Defines the Arasan NAND flash controller driver instance
175  * @dev:		Pointer to the device structure
176  * @base:		Remapped register area
177  * @controller_clk:		Pointer to the system clock
178  * @bus_clk:		Pointer to the flash clock
179  * @controller:		Base controller structure
180  * @chips:		List of all NAND chips attached to the controller
181  * @assigned_cs:	Bitmask describing already assigned CS lines
182  * @cur_clk:		Current clock rate
183  */
184 struct arasan_nfc {
185 	struct device *dev;
186 	void __iomem *base;
187 	struct clk *controller_clk;
188 	struct clk *bus_clk;
189 	struct nand_controller controller;
190 	struct list_head chips;
191 	unsigned long assigned_cs;
192 	unsigned int cur_clk;
193 };
194 
to_anand(struct nand_chip *nand)195 static struct anand *to_anand(struct nand_chip *nand)
196 {
197 	return container_of(nand, struct anand, chip);
198 }
199 
to_anfc(struct nand_controller *ctrl)200 static struct arasan_nfc *to_anfc(struct nand_controller *ctrl)
201 {
202 	return container_of(ctrl, struct arasan_nfc, controller);
203 }
204 
anfc_wait_for_event(struct arasan_nfc *nfc, unsigned int event)205 static int anfc_wait_for_event(struct arasan_nfc *nfc, unsigned int event)
206 {
207 	u32 val;
208 	int ret;
209 
210 	ret = readl_relaxed_poll_timeout(nfc->base + INTR_STS_REG, val,
211 					 val & event, 0,
212 					 ANFC_DFLT_TIMEOUT_US);
213 	if (ret) {
214 		dev_err(nfc->dev, "Timeout waiting for event 0x%x\n", event);
215 		return -ETIMEDOUT;
216 	}
217 
218 	writel_relaxed(event, nfc->base + INTR_STS_REG);
219 
220 	return 0;
221 }
222 
anfc_wait_for_rb(struct arasan_nfc *nfc, struct nand_chip *chip, unsigned int timeout_ms)223 static int anfc_wait_for_rb(struct arasan_nfc *nfc, struct nand_chip *chip,
224 			    unsigned int timeout_ms)
225 {
226 	struct anand *anand = to_anand(chip);
227 	u32 val;
228 	int ret;
229 
230 	/* There is no R/B interrupt, we must poll a register */
231 	ret = readl_relaxed_poll_timeout(nfc->base + READY_STS_REG, val,
232 					 val & BIT(anand->rb),
233 					 1, timeout_ms * 1000);
234 	if (ret) {
235 		dev_err(nfc->dev, "Timeout waiting for R/B 0x%x\n",
236 			readl_relaxed(nfc->base + READY_STS_REG));
237 		return -ETIMEDOUT;
238 	}
239 
240 	return 0;
241 }
242 
anfc_trigger_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)243 static void anfc_trigger_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
244 {
245 	writel_relaxed(nfc_op->pkt_reg, nfc->base + PKT_REG);
246 	writel_relaxed(nfc_op->addr1_reg, nfc->base + MEM_ADDR1_REG);
247 	writel_relaxed(nfc_op->addr2_reg, nfc->base + MEM_ADDR2_REG);
248 	writel_relaxed(nfc_op->cmd_reg, nfc->base + CMD_REG);
249 	writel_relaxed(nfc_op->prog_reg, nfc->base + PROG_REG);
250 }
251 
anfc_pkt_len_config(unsigned int len, unsigned int *steps, unsigned int *pktsize)252 static int anfc_pkt_len_config(unsigned int len, unsigned int *steps,
253 			       unsigned int *pktsize)
254 {
255 	unsigned int nb, sz;
256 
257 	for (nb = 1; nb < ANFC_MAX_STEPS; nb *= 2) {
258 		sz = len / nb;
259 		if (sz <= ANFC_MAX_PKT_SIZE)
260 			break;
261 	}
262 
263 	if (sz * nb != len)
264 		return -ENOTSUPP;
265 
266 	if (steps)
267 		*steps = nb;
268 
269 	if (pktsize)
270 		*pktsize = sz;
271 
272 	return 0;
273 }
274 
anfc_select_target(struct nand_chip *chip, int target)275 static int anfc_select_target(struct nand_chip *chip, int target)
276 {
277 	struct anand *anand = to_anand(chip);
278 	struct arasan_nfc *nfc = to_anfc(chip->controller);
279 	int ret;
280 
281 	/* Update the controller timings and the potential ECC configuration */
282 	writel_relaxed(anand->timings, nfc->base + DATA_INTERFACE_REG);
283 
284 	/* Update clock frequency */
285 	if (nfc->cur_clk != anand->clk) {
286 		clk_disable_unprepare(nfc->bus_clk);
287 		ret = clk_set_rate(nfc->bus_clk, anand->clk);
288 		if (ret) {
289 			dev_err(nfc->dev, "Failed to change clock rate\n");
290 			return ret;
291 		}
292 
293 		ret = clk_prepare_enable(nfc->bus_clk);
294 		if (ret) {
295 			dev_err(nfc->dev,
296 				"Failed to re-enable the bus clock\n");
297 			return ret;
298 		}
299 
300 		nfc->cur_clk = anand->clk;
301 	}
302 
303 	return 0;
304 }
305 
306 /*
307  * When using the embedded hardware ECC engine, the controller is in charge of
308  * feeding the engine with, first, the ECC residue present in the data array.
309  * A typical read operation is:
310  * 1/ Assert the read operation by sending the relevant command/address cycles
311  *    but targeting the column of the first ECC bytes in the OOB area instead of
312  *    the main data directly.
313  * 2/ After having read the relevant number of ECC bytes, the controller uses
314  *    the RNDOUT/RNDSTART commands which are set into the "ECC Spare Command
315  *    Register" to move the pointer back at the beginning of the main data.
316  * 3/ It will read the content of the main area for a given size (pktsize) and
317  *    will feed the ECC engine with this buffer again.
318  * 4/ The ECC engine derives the ECC bytes for the given data and compare them
319  *    with the ones already received. It eventually trigger status flags and
320  *    then set the "Buffer Read Ready" flag.
321  * 5/ The corrected data is then available for reading from the data port
322  *    register.
323  *
324  * The hardware BCH ECC engine is known to be inconstent in BCH mode and never
325  * reports uncorrectable errors. Because of this bug, we have to use the
326  * software BCH implementation in the read path.
327  */
anfc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf, int oob_required, int page)328 static int anfc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
329 				 int oob_required, int page)
330 {
331 	struct arasan_nfc *nfc = to_anfc(chip->controller);
332 	struct mtd_info *mtd = nand_to_mtd(chip);
333 	struct anand *anand = to_anand(chip);
334 	unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
335 	unsigned int max_bitflips = 0;
336 	dma_addr_t dma_addr;
337 	int step, ret;
338 	struct anfc_op nfc_op = {
339 		.pkt_reg =
340 			PKT_SIZE(chip->ecc.size) |
341 			PKT_STEPS(chip->ecc.steps),
342 		.addr1_reg =
343 			(page & 0xFF) << (8 * (anand->caddr_cycles)) |
344 			(((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
345 		.addr2_reg =
346 			((page >> 16) & 0xFF) |
347 			ADDR2_STRENGTH(anand->strength) |
348 			ADDR2_CS(anand->cs),
349 		.cmd_reg =
350 			CMD_1(NAND_CMD_READ0) |
351 			CMD_2(NAND_CMD_READSTART) |
352 			CMD_PAGE_SIZE(anand->page_sz) |
353 			CMD_DMA_ENABLE |
354 			CMD_NADDRS(anand->caddr_cycles +
355 				   anand->raddr_cycles),
356 		.prog_reg = PROG_PGRD,
357 	};
358 
359 	dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_FROM_DEVICE);
360 	if (dma_mapping_error(nfc->dev, dma_addr)) {
361 		dev_err(nfc->dev, "Buffer mapping error");
362 		return -EIO;
363 	}
364 
365 	writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
366 	writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
367 
368 	anfc_trigger_op(nfc, &nfc_op);
369 
370 	ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
371 	dma_unmap_single(nfc->dev, dma_addr, len, DMA_FROM_DEVICE);
372 	if (ret) {
373 		dev_err(nfc->dev, "Error reading page %d\n", page);
374 		return ret;
375 	}
376 
377 	/* Store the raw OOB bytes as well */
378 	ret = nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi,
379 					 mtd->oobsize, 0);
380 	if (ret)
381 		return ret;
382 
383 	/*
384 	 * For each step, compute by softare the BCH syndrome over the raw data.
385 	 * Compare the theoretical amount of errors and compare with the
386 	 * hardware engine feedback.
387 	 */
388 	for (step = 0; step < chip->ecc.steps; step++) {
389 		u8 *raw_buf = &buf[step * chip->ecc.size];
390 		unsigned int bit, byte;
391 		int bf, i;
392 
393 		/* Extract the syndrome, it is not necessarily aligned */
394 		memset(anand->hw_ecc, 0, chip->ecc.bytes);
395 		nand_extract_bits(anand->hw_ecc, 0,
396 				  &chip->oob_poi[mtd->oobsize - anand->ecc_total],
397 				  anand->ecc_bits * step, anand->ecc_bits);
398 
399 		bf = bch_decode(anand->bch, raw_buf, chip->ecc.size,
400 				anand->hw_ecc, NULL, NULL, anand->errloc);
401 		if (!bf) {
402 			continue;
403 		} else if (bf > 0) {
404 			for (i = 0; i < bf; i++) {
405 				/* Only correct the data, not the syndrome */
406 				if (anand->errloc[i] < (chip->ecc.size * 8)) {
407 					bit = BIT(anand->errloc[i] & 7);
408 					byte = anand->errloc[i] >> 3;
409 					raw_buf[byte] ^= bit;
410 				}
411 			}
412 
413 			mtd->ecc_stats.corrected += bf;
414 			max_bitflips = max_t(unsigned int, max_bitflips, bf);
415 
416 			continue;
417 		}
418 
419 		bf = nand_check_erased_ecc_chunk(raw_buf, chip->ecc.size,
420 						 NULL, 0, NULL, 0,
421 						 chip->ecc.strength);
422 		if (bf > 0) {
423 			mtd->ecc_stats.corrected += bf;
424 			max_bitflips = max_t(unsigned int, max_bitflips, bf);
425 			memset(raw_buf, 0xFF, chip->ecc.size);
426 		} else if (bf < 0) {
427 			mtd->ecc_stats.failed++;
428 		}
429 	}
430 
431 	return 0;
432 }
433 
anfc_sel_read_page_hw_ecc(struct nand_chip *chip, u8 *buf, int oob_required, int page)434 static int anfc_sel_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
435 				     int oob_required, int page)
436 {
437 	int ret;
438 
439 	ret = anfc_select_target(chip, chip->cur_cs);
440 	if (ret)
441 		return ret;
442 
443 	return anfc_read_page_hw_ecc(chip, buf, oob_required, page);
444 };
445 
anfc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf, int oob_required, int page)446 static int anfc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
447 				  int oob_required, int page)
448 {
449 	struct anand *anand = to_anand(chip);
450 	struct arasan_nfc *nfc = to_anfc(chip->controller);
451 	struct mtd_info *mtd = nand_to_mtd(chip);
452 	unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
453 	dma_addr_t dma_addr;
454 	u8 status;
455 	int ret;
456 	struct anfc_op nfc_op = {
457 		.pkt_reg =
458 			PKT_SIZE(chip->ecc.size) |
459 			PKT_STEPS(chip->ecc.steps),
460 		.addr1_reg =
461 			(page & 0xFF) << (8 * (anand->caddr_cycles)) |
462 			(((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
463 		.addr2_reg =
464 			((page >> 16) & 0xFF) |
465 			ADDR2_STRENGTH(anand->strength) |
466 			ADDR2_CS(anand->cs),
467 		.cmd_reg =
468 			CMD_1(NAND_CMD_SEQIN) |
469 			CMD_2(NAND_CMD_PAGEPROG) |
470 			CMD_PAGE_SIZE(anand->page_sz) |
471 			CMD_DMA_ENABLE |
472 			CMD_NADDRS(anand->caddr_cycles +
473 				   anand->raddr_cycles) |
474 			CMD_ECC_ENABLE,
475 		.prog_reg = PROG_PGPROG,
476 	};
477 
478 	writel_relaxed(anand->ecc_conf, nfc->base + ECC_CONF_REG);
479 	writel_relaxed(ECC_SP_CMD1(NAND_CMD_RNDIN) |
480 		       ECC_SP_ADDRS(anand->caddr_cycles),
481 		       nfc->base + ECC_SP_REG);
482 
483 	dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_TO_DEVICE);
484 	if (dma_mapping_error(nfc->dev, dma_addr)) {
485 		dev_err(nfc->dev, "Buffer mapping error");
486 		return -EIO;
487 	}
488 
489 	writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
490 	writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
491 
492 	anfc_trigger_op(nfc, &nfc_op);
493 	ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
494 	dma_unmap_single(nfc->dev, dma_addr, len, DMA_TO_DEVICE);
495 	if (ret) {
496 		dev_err(nfc->dev, "Error writing page %d\n", page);
497 		return ret;
498 	}
499 
500 	/* Spare data is not protected */
501 	if (oob_required) {
502 		ret = nand_write_oob_std(chip, page);
503 		if (ret)
504 			return ret;
505 	}
506 
507 	/* Check write status on the chip side */
508 	ret = nand_status_op(chip, &status);
509 	if (ret)
510 		return ret;
511 
512 	if (status & NAND_STATUS_FAIL)
513 		return -EIO;
514 
515 	return 0;
516 }
517 
anfc_sel_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf, int oob_required, int page)518 static int anfc_sel_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
519 				      int oob_required, int page)
520 {
521 	int ret;
522 
523 	ret = anfc_select_target(chip, chip->cur_cs);
524 	if (ret)
525 		return ret;
526 
527 	return anfc_write_page_hw_ecc(chip, buf, oob_required, page);
528 };
529 
530 /* NAND framework ->exec_op() hooks and related helpers */
anfc_parse_instructions(struct nand_chip *chip, const struct nand_subop *subop, struct anfc_op *nfc_op)531 static int anfc_parse_instructions(struct nand_chip *chip,
532 				   const struct nand_subop *subop,
533 				   struct anfc_op *nfc_op)
534 {
535 	struct anand *anand = to_anand(chip);
536 	const struct nand_op_instr *instr = NULL;
537 	bool first_cmd = true;
538 	unsigned int op_id;
539 	int ret, i;
540 
541 	memset(nfc_op, 0, sizeof(*nfc_op));
542 	nfc_op->addr2_reg = ADDR2_CS(anand->cs);
543 	nfc_op->cmd_reg = CMD_PAGE_SIZE(anand->page_sz);
544 
545 	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
546 		unsigned int offset, naddrs, pktsize;
547 		const u8 *addrs;
548 		u8 *buf;
549 
550 		instr = &subop->instrs[op_id];
551 
552 		switch (instr->type) {
553 		case NAND_OP_CMD_INSTR:
554 			if (first_cmd)
555 				nfc_op->cmd_reg |= CMD_1(instr->ctx.cmd.opcode);
556 			else
557 				nfc_op->cmd_reg |= CMD_2(instr->ctx.cmd.opcode);
558 
559 			first_cmd = false;
560 			break;
561 
562 		case NAND_OP_ADDR_INSTR:
563 			offset = nand_subop_get_addr_start_off(subop, op_id);
564 			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
565 			addrs = &instr->ctx.addr.addrs[offset];
566 			nfc_op->cmd_reg |= CMD_NADDRS(naddrs);
567 
568 			for (i = 0; i < min(ANFC_MAX_ADDR_CYC, naddrs); i++) {
569 				if (i < 4)
570 					nfc_op->addr1_reg |= (u32)addrs[i] << i * 8;
571 				else
572 					nfc_op->addr2_reg |= addrs[i];
573 			}
574 
575 			break;
576 		case NAND_OP_DATA_IN_INSTR:
577 			nfc_op->read = true;
578 			fallthrough;
579 		case NAND_OP_DATA_OUT_INSTR:
580 			offset = nand_subop_get_data_start_off(subop, op_id);
581 			buf = instr->ctx.data.buf.in;
582 			nfc_op->buf = &buf[offset];
583 			nfc_op->len = nand_subop_get_data_len(subop, op_id);
584 			ret = anfc_pkt_len_config(nfc_op->len, &nfc_op->steps,
585 						  &pktsize);
586 			if (ret)
587 				return ret;
588 
589 			/*
590 			 * Number of DATA cycles must be aligned on 4, this
591 			 * means the controller might read/write more than
592 			 * requested. This is harmless most of the time as extra
593 			 * DATA are discarded in the write path and read pointer
594 			 * adjusted in the read path.
595 			 *
596 			 * FIXME: The core should mark operations where
597 			 * reading/writing more is allowed so the exec_op()
598 			 * implementation can take the right decision when the
599 			 * alignment constraint is not met: adjust the number of
600 			 * DATA cycles when it's allowed, reject the operation
601 			 * otherwise.
602 			 */
603 			nfc_op->pkt_reg |= PKT_SIZE(round_up(pktsize, 4)) |
604 					   PKT_STEPS(nfc_op->steps);
605 			break;
606 		case NAND_OP_WAITRDY_INSTR:
607 			nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
608 			break;
609 		}
610 	}
611 
612 	return 0;
613 }
614 
anfc_rw_pio_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)615 static int anfc_rw_pio_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
616 {
617 	unsigned int dwords = (nfc_op->len / 4) / nfc_op->steps;
618 	unsigned int last_len = nfc_op->len % 4;
619 	unsigned int offset, dir;
620 	u8 *buf = nfc_op->buf;
621 	int ret, i;
622 
623 	for (i = 0; i < nfc_op->steps; i++) {
624 		dir = nfc_op->read ? READ_READY : WRITE_READY;
625 		ret = anfc_wait_for_event(nfc, dir);
626 		if (ret) {
627 			dev_err(nfc->dev, "PIO %s ready signal not received\n",
628 				nfc_op->read ? "Read" : "Write");
629 			return ret;
630 		}
631 
632 		offset = i * (dwords * 4);
633 		if (nfc_op->read)
634 			ioread32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
635 				     dwords);
636 		else
637 			iowrite32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
638 				      dwords);
639 	}
640 
641 	if (last_len) {
642 		u32 remainder;
643 
644 		offset = nfc_op->len - last_len;
645 
646 		if (nfc_op->read) {
647 			remainder = readl_relaxed(nfc->base + DATA_PORT_REG);
648 			memcpy(&buf[offset], &remainder, last_len);
649 		} else {
650 			memcpy(&remainder, &buf[offset], last_len);
651 			writel_relaxed(remainder, nfc->base + DATA_PORT_REG);
652 		}
653 	}
654 
655 	return anfc_wait_for_event(nfc, XFER_COMPLETE);
656 }
657 
anfc_misc_data_type_exec(struct nand_chip *chip, const struct nand_subop *subop, u32 prog_reg)658 static int anfc_misc_data_type_exec(struct nand_chip *chip,
659 				    const struct nand_subop *subop,
660 				    u32 prog_reg)
661 {
662 	struct arasan_nfc *nfc = to_anfc(chip->controller);
663 	struct anfc_op nfc_op = {};
664 	int ret;
665 
666 	ret = anfc_parse_instructions(chip, subop, &nfc_op);
667 	if (ret)
668 		return ret;
669 
670 	nfc_op.prog_reg = prog_reg;
671 	anfc_trigger_op(nfc, &nfc_op);
672 
673 	if (nfc_op.rdy_timeout_ms) {
674 		ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
675 		if (ret)
676 			return ret;
677 	}
678 
679 	return anfc_rw_pio_op(nfc, &nfc_op);
680 }
681 
anfc_param_read_type_exec(struct nand_chip *chip, const struct nand_subop *subop)682 static int anfc_param_read_type_exec(struct nand_chip *chip,
683 				     const struct nand_subop *subop)
684 {
685 	return anfc_misc_data_type_exec(chip, subop, PROG_RDPARAM);
686 }
687 
anfc_data_read_type_exec(struct nand_chip *chip, const struct nand_subop *subop)688 static int anfc_data_read_type_exec(struct nand_chip *chip,
689 				    const struct nand_subop *subop)
690 {
691 	return anfc_misc_data_type_exec(chip, subop, PROG_PGRD);
692 }
693 
anfc_param_write_type_exec(struct nand_chip *chip, const struct nand_subop *subop)694 static int anfc_param_write_type_exec(struct nand_chip *chip,
695 				      const struct nand_subop *subop)
696 {
697 	return anfc_misc_data_type_exec(chip, subop, PROG_SET_FEATURE);
698 }
699 
anfc_data_write_type_exec(struct nand_chip *chip, const struct nand_subop *subop)700 static int anfc_data_write_type_exec(struct nand_chip *chip,
701 				     const struct nand_subop *subop)
702 {
703 	return anfc_misc_data_type_exec(chip, subop, PROG_PGPROG);
704 }
705 
anfc_misc_zerolen_type_exec(struct nand_chip *chip, const struct nand_subop *subop, u32 prog_reg)706 static int anfc_misc_zerolen_type_exec(struct nand_chip *chip,
707 				       const struct nand_subop *subop,
708 				       u32 prog_reg)
709 {
710 	struct arasan_nfc *nfc = to_anfc(chip->controller);
711 	struct anfc_op nfc_op = {};
712 	int ret;
713 
714 	ret = anfc_parse_instructions(chip, subop, &nfc_op);
715 	if (ret)
716 		return ret;
717 
718 	nfc_op.prog_reg = prog_reg;
719 	anfc_trigger_op(nfc, &nfc_op);
720 
721 	ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
722 	if (ret)
723 		return ret;
724 
725 	if (nfc_op.rdy_timeout_ms)
726 		ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
727 
728 	return ret;
729 }
730 
anfc_status_type_exec(struct nand_chip *chip, const struct nand_subop *subop)731 static int anfc_status_type_exec(struct nand_chip *chip,
732 				 const struct nand_subop *subop)
733 {
734 	struct arasan_nfc *nfc = to_anfc(chip->controller);
735 	u32 tmp;
736 	int ret;
737 
738 	/* See anfc_check_op() for details about this constraint */
739 	if (subop->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS)
740 		return -ENOTSUPP;
741 
742 	ret = anfc_misc_zerolen_type_exec(chip, subop, PROG_STATUS);
743 	if (ret)
744 		return ret;
745 
746 	tmp = readl_relaxed(nfc->base + FLASH_STS_REG);
747 	memcpy(subop->instrs[1].ctx.data.buf.in, &tmp, 1);
748 
749 	return 0;
750 }
751 
anfc_reset_type_exec(struct nand_chip *chip, const struct nand_subop *subop)752 static int anfc_reset_type_exec(struct nand_chip *chip,
753 				const struct nand_subop *subop)
754 {
755 	return anfc_misc_zerolen_type_exec(chip, subop, PROG_RST);
756 }
757 
anfc_erase_type_exec(struct nand_chip *chip, const struct nand_subop *subop)758 static int anfc_erase_type_exec(struct nand_chip *chip,
759 				const struct nand_subop *subop)
760 {
761 	return anfc_misc_zerolen_type_exec(chip, subop, PROG_ERASE);
762 }
763 
anfc_wait_type_exec(struct nand_chip *chip, const struct nand_subop *subop)764 static int anfc_wait_type_exec(struct nand_chip *chip,
765 			       const struct nand_subop *subop)
766 {
767 	struct arasan_nfc *nfc = to_anfc(chip->controller);
768 	struct anfc_op nfc_op = {};
769 	int ret;
770 
771 	ret = anfc_parse_instructions(chip, subop, &nfc_op);
772 	if (ret)
773 		return ret;
774 
775 	return anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
776 }
777 
778 static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER(
779 	NAND_OP_PARSER_PATTERN(
780 		anfc_param_read_type_exec,
781 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
782 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
783 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
784 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
785 	NAND_OP_PARSER_PATTERN(
786 		anfc_param_write_type_exec,
787 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
788 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
789 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_PARAM_SIZE)),
790 	NAND_OP_PARSER_PATTERN(
791 		anfc_data_read_type_exec,
792 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
793 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
794 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
795 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
796 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, ANFC_MAX_CHUNK_SIZE)),
797 	NAND_OP_PARSER_PATTERN(
798 		anfc_data_write_type_exec,
799 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
800 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
801 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_CHUNK_SIZE),
802 		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
803 	NAND_OP_PARSER_PATTERN(
804 		anfc_reset_type_exec,
805 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
806 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
807 	NAND_OP_PARSER_PATTERN(
808 		anfc_erase_type_exec,
809 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
810 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
811 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
812 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
813 	NAND_OP_PARSER_PATTERN(
814 		anfc_status_type_exec,
815 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
816 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
817 	NAND_OP_PARSER_PATTERN(
818 		anfc_wait_type_exec,
819 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
820 	);
821 
anfc_check_op(struct nand_chip *chip, const struct nand_operation *op)822 static int anfc_check_op(struct nand_chip *chip,
823 			 const struct nand_operation *op)
824 {
825 	const struct nand_op_instr *instr;
826 	int op_id;
827 
828 	/*
829 	 * The controller abstracts all the NAND operations and do not support
830 	 * data only operations.
831 	 *
832 	 * TODO: The nand_op_parser framework should be extended to
833 	 * support custom checks on DATA instructions.
834 	 */
835 	for (op_id = 0; op_id < op->ninstrs; op_id++) {
836 		instr = &op->instrs[op_id];
837 
838 		switch (instr->type) {
839 		case NAND_OP_ADDR_INSTR:
840 			if (instr->ctx.addr.naddrs > ANFC_MAX_ADDR_CYC)
841 				return -ENOTSUPP;
842 
843 			break;
844 		case NAND_OP_DATA_IN_INSTR:
845 		case NAND_OP_DATA_OUT_INSTR:
846 			if (instr->ctx.data.len > ANFC_MAX_CHUNK_SIZE)
847 				return -ENOTSUPP;
848 
849 			if (anfc_pkt_len_config(instr->ctx.data.len, 0, 0))
850 				return -ENOTSUPP;
851 
852 			break;
853 		default:
854 			break;
855 		}
856 	}
857 
858 	/*
859 	 * The controller does not allow to proceed with a CMD+DATA_IN cycle
860 	 * manually on the bus by reading data from the data register. Instead,
861 	 * the controller abstract a status read operation with its own status
862 	 * register after ordering a read status operation. Hence, we cannot
863 	 * support any CMD+DATA_IN operation other than a READ STATUS.
864 	 *
865 	 * TODO: The nand_op_parser() framework should be extended to describe
866 	 * fixed patterns instead of open-coding this check here.
867 	 */
868 	if (op->ninstrs == 2 &&
869 	    op->instrs[0].type == NAND_OP_CMD_INSTR &&
870 	    op->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS &&
871 	    op->instrs[1].type == NAND_OP_DATA_IN_INSTR)
872 		return -ENOTSUPP;
873 
874 	return nand_op_parser_exec_op(chip, &anfc_op_parser, op, true);
875 }
876 
anfc_exec_op(struct nand_chip *chip, const struct nand_operation *op, bool check_only)877 static int anfc_exec_op(struct nand_chip *chip,
878 			const struct nand_operation *op,
879 			bool check_only)
880 {
881 	int ret;
882 
883 	if (check_only)
884 		return anfc_check_op(chip, op);
885 
886 	ret = anfc_select_target(chip, op->cs);
887 	if (ret)
888 		return ret;
889 
890 	return nand_op_parser_exec_op(chip, &anfc_op_parser, op, check_only);
891 }
892 
anfc_setup_interface(struct nand_chip *chip, int target, const struct nand_interface_config *conf)893 static int anfc_setup_interface(struct nand_chip *chip, int target,
894 				const struct nand_interface_config *conf)
895 {
896 	struct anand *anand = to_anand(chip);
897 	struct arasan_nfc *nfc = to_anfc(chip->controller);
898 	struct device_node *np = nfc->dev->of_node;
899 	const struct nand_sdr_timings *sdr;
900 	const struct nand_nvddr_timings *nvddr;
901 
902 	if (nand_interface_is_nvddr(conf)) {
903 		nvddr = nand_get_nvddr_timings(conf);
904 		if (IS_ERR(nvddr))
905 			return PTR_ERR(nvddr);
906 
907 		/*
908 		 * The controller only supports data payload requests which are
909 		 * a multiple of 4. In practice, most data accesses are 4-byte
910 		 * aligned and this is not an issue. However, rounding up will
911 		 * simply be refused by the controller if we reached the end of
912 		 * the device *and* we are using the NV-DDR interface(!). In
913 		 * this situation, unaligned data requests ending at the device
914 		 * boundary will confuse the controller and cannot be performed.
915 		 *
916 		 * This is something that happens in nand_read_subpage() when
917 		 * selecting software ECC support and must be avoided.
918 		 */
919 		if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT)
920 			return -ENOTSUPP;
921 	} else {
922 		sdr = nand_get_sdr_timings(conf);
923 		if (IS_ERR(sdr))
924 			return PTR_ERR(sdr);
925 	}
926 
927 	if (target < 0)
928 		return 0;
929 
930 	if (nand_interface_is_sdr(conf))
931 		anand->timings = DIFACE_SDR |
932 				 DIFACE_SDR_MODE(conf->timings.mode);
933 	else
934 		anand->timings = DIFACE_NVDDR |
935 				 DIFACE_DDR_MODE(conf->timings.mode);
936 
937 	if (nand_interface_is_sdr(conf)) {
938 		anand->clk = ANFC_XLNX_SDR_DFLT_CORE_CLK;
939 	} else {
940 		/* ONFI timings are defined in picoseconds */
941 		anand->clk = div_u64((u64)NSEC_PER_SEC * 1000,
942 				     conf->timings.nvddr.tCK_min);
943 	}
944 
945 	/*
946 	 * Due to a hardware bug in the ZynqMP SoC, SDR timing modes 0-1 work
947 	 * with f > 90MHz (default clock is 100MHz) but signals are unstable
948 	 * with higher modes. Hence we decrease a little bit the clock rate to
949 	 * 80MHz when using SDR modes 2-5 with this SoC.
950 	 */
951 	if (of_device_is_compatible(np, "xlnx,zynqmp-nand-controller") &&
952 	    nand_interface_is_sdr(conf) && conf->timings.mode >= 2)
953 		anand->clk = ANFC_XLNX_SDR_HS_CORE_CLK;
954 
955 	return 0;
956 }
957 
anfc_calc_hw_ecc_bytes(int step_size, int strength)958 static int anfc_calc_hw_ecc_bytes(int step_size, int strength)
959 {
960 	unsigned int bch_gf_mag, ecc_bits;
961 
962 	switch (step_size) {
963 	case SZ_512:
964 		bch_gf_mag = 13;
965 		break;
966 	case SZ_1K:
967 		bch_gf_mag = 14;
968 		break;
969 	default:
970 		return -EINVAL;
971 	}
972 
973 	ecc_bits = bch_gf_mag * strength;
974 
975 	return DIV_ROUND_UP(ecc_bits, 8);
976 }
977 
978 static const int anfc_hw_ecc_512_strengths[] = {4, 8, 12};
979 
980 static const int anfc_hw_ecc_1024_strengths[] = {24};
981 
982 static const struct nand_ecc_step_info anfc_hw_ecc_step_infos[] = {
983 	{
984 		.stepsize = SZ_512,
985 		.strengths = anfc_hw_ecc_512_strengths,
986 		.nstrengths = ARRAY_SIZE(anfc_hw_ecc_512_strengths),
987 	},
988 	{
989 		.stepsize = SZ_1K,
990 		.strengths = anfc_hw_ecc_1024_strengths,
991 		.nstrengths = ARRAY_SIZE(anfc_hw_ecc_1024_strengths),
992 	},
993 };
994 
995 static const struct nand_ecc_caps anfc_hw_ecc_caps = {
996 	.stepinfos = anfc_hw_ecc_step_infos,
997 	.nstepinfos = ARRAY_SIZE(anfc_hw_ecc_step_infos),
998 	.calc_ecc_bytes = anfc_calc_hw_ecc_bytes,
999 };
1000 
anfc_init_hw_ecc_controller(struct arasan_nfc *nfc, struct nand_chip *chip)1001 static int anfc_init_hw_ecc_controller(struct arasan_nfc *nfc,
1002 				       struct nand_chip *chip)
1003 {
1004 	struct anand *anand = to_anand(chip);
1005 	struct mtd_info *mtd = nand_to_mtd(chip);
1006 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1007 	unsigned int bch_prim_poly = 0, bch_gf_mag = 0, ecc_offset;
1008 	int ret;
1009 
1010 	switch (mtd->writesize) {
1011 	case SZ_512:
1012 	case SZ_2K:
1013 	case SZ_4K:
1014 	case SZ_8K:
1015 	case SZ_16K:
1016 		break;
1017 	default:
1018 		dev_err(nfc->dev, "Unsupported page size %d\n", mtd->writesize);
1019 		return -EINVAL;
1020 	}
1021 
1022 	ret = nand_ecc_choose_conf(chip, &anfc_hw_ecc_caps, mtd->oobsize);
1023 	if (ret)
1024 		return ret;
1025 
1026 	switch (ecc->strength) {
1027 	case 12:
1028 		anand->strength = 0x1;
1029 		break;
1030 	case 8:
1031 		anand->strength = 0x2;
1032 		break;
1033 	case 4:
1034 		anand->strength = 0x3;
1035 		break;
1036 	case 24:
1037 		anand->strength = 0x4;
1038 		break;
1039 	default:
1040 		dev_err(nfc->dev, "Unsupported strength %d\n", ecc->strength);
1041 		return -EINVAL;
1042 	}
1043 
1044 	switch (ecc->size) {
1045 	case SZ_512:
1046 		bch_gf_mag = 13;
1047 		bch_prim_poly = 0x201b;
1048 		break;
1049 	case SZ_1K:
1050 		bch_gf_mag = 14;
1051 		bch_prim_poly = 0x4443;
1052 		break;
1053 	default:
1054 		dev_err(nfc->dev, "Unsupported step size %d\n", ecc->strength);
1055 		return -EINVAL;
1056 	}
1057 
1058 	mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
1059 
1060 	ecc->steps = mtd->writesize / ecc->size;
1061 	ecc->algo = NAND_ECC_ALGO_BCH;
1062 	anand->ecc_bits = bch_gf_mag * ecc->strength;
1063 	ecc->bytes = DIV_ROUND_UP(anand->ecc_bits, 8);
1064 	anand->ecc_total = DIV_ROUND_UP(anand->ecc_bits * ecc->steps, 8);
1065 	ecc_offset = mtd->writesize + mtd->oobsize - anand->ecc_total;
1066 	anand->ecc_conf = ECC_CONF_COL(ecc_offset) |
1067 			  ECC_CONF_LEN(anand->ecc_total) |
1068 			  ECC_CONF_BCH_EN;
1069 
1070 	anand->errloc = devm_kmalloc_array(nfc->dev, ecc->strength,
1071 					   sizeof(*anand->errloc), GFP_KERNEL);
1072 	if (!anand->errloc)
1073 		return -ENOMEM;
1074 
1075 	anand->hw_ecc = devm_kmalloc(nfc->dev, ecc->bytes, GFP_KERNEL);
1076 	if (!anand->hw_ecc)
1077 		return -ENOMEM;
1078 
1079 	/* Enforce bit swapping to fit the hardware */
1080 	anand->bch = bch_init(bch_gf_mag, ecc->strength, bch_prim_poly, true);
1081 	if (!anand->bch)
1082 		return -EINVAL;
1083 
1084 	ecc->read_page = anfc_sel_read_page_hw_ecc;
1085 	ecc->write_page = anfc_sel_write_page_hw_ecc;
1086 
1087 	return 0;
1088 }
1089 
anfc_attach_chip(struct nand_chip *chip)1090 static int anfc_attach_chip(struct nand_chip *chip)
1091 {
1092 	struct anand *anand = to_anand(chip);
1093 	struct arasan_nfc *nfc = to_anfc(chip->controller);
1094 	struct mtd_info *mtd = nand_to_mtd(chip);
1095 	int ret = 0;
1096 
1097 	if (mtd->writesize <= SZ_512)
1098 		anand->caddr_cycles = 1;
1099 	else
1100 		anand->caddr_cycles = 2;
1101 
1102 	if (chip->options & NAND_ROW_ADDR_3)
1103 		anand->raddr_cycles = 3;
1104 	else
1105 		anand->raddr_cycles = 2;
1106 
1107 	switch (mtd->writesize) {
1108 	case 512:
1109 		anand->page_sz = 0;
1110 		break;
1111 	case 1024:
1112 		anand->page_sz = 5;
1113 		break;
1114 	case 2048:
1115 		anand->page_sz = 1;
1116 		break;
1117 	case 4096:
1118 		anand->page_sz = 2;
1119 		break;
1120 	case 8192:
1121 		anand->page_sz = 3;
1122 		break;
1123 	case 16384:
1124 		anand->page_sz = 4;
1125 		break;
1126 	default:
1127 		return -EINVAL;
1128 	}
1129 
1130 	/* These hooks are valid for all ECC providers */
1131 	chip->ecc.read_page_raw = nand_monolithic_read_page_raw;
1132 	chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
1133 
1134 	switch (chip->ecc.engine_type) {
1135 	case NAND_ECC_ENGINE_TYPE_NONE:
1136 	case NAND_ECC_ENGINE_TYPE_SOFT:
1137 	case NAND_ECC_ENGINE_TYPE_ON_DIE:
1138 		break;
1139 	case NAND_ECC_ENGINE_TYPE_ON_HOST:
1140 		ret = anfc_init_hw_ecc_controller(nfc, chip);
1141 		break;
1142 	default:
1143 		dev_err(nfc->dev, "Unsupported ECC mode: %d\n",
1144 			chip->ecc.engine_type);
1145 		return -EINVAL;
1146 	}
1147 
1148 	return ret;
1149 }
1150 
anfc_detach_chip(struct nand_chip *chip)1151 static void anfc_detach_chip(struct nand_chip *chip)
1152 {
1153 	struct anand *anand = to_anand(chip);
1154 
1155 	if (anand->bch)
1156 		bch_free(anand->bch);
1157 }
1158 
1159 static const struct nand_controller_ops anfc_ops = {
1160 	.exec_op = anfc_exec_op,
1161 	.setup_interface = anfc_setup_interface,
1162 	.attach_chip = anfc_attach_chip,
1163 	.detach_chip = anfc_detach_chip,
1164 };
1165 
anfc_chip_init(struct arasan_nfc *nfc, struct device_node *np)1166 static int anfc_chip_init(struct arasan_nfc *nfc, struct device_node *np)
1167 {
1168 	struct anand *anand;
1169 	struct nand_chip *chip;
1170 	struct mtd_info *mtd;
1171 	int cs, rb, ret;
1172 
1173 	anand = devm_kzalloc(nfc->dev, sizeof(*anand), GFP_KERNEL);
1174 	if (!anand)
1175 		return -ENOMEM;
1176 
1177 	/* We do not support multiple CS per chip yet */
1178 	if (of_property_count_elems_of_size(np, "reg", sizeof(u32)) != 1) {
1179 		dev_err(nfc->dev, "Invalid reg property\n");
1180 		return -EINVAL;
1181 	}
1182 
1183 	ret = of_property_read_u32(np, "reg", &cs);
1184 	if (ret)
1185 		return ret;
1186 
1187 	ret = of_property_read_u32(np, "nand-rb", &rb);
1188 	if (ret)
1189 		return ret;
1190 
1191 	if (cs >= ANFC_MAX_CS || rb >= ANFC_MAX_CS) {
1192 		dev_err(nfc->dev, "Wrong CS %d or RB %d\n", cs, rb);
1193 		return -EINVAL;
1194 	}
1195 
1196 	if (test_and_set_bit(cs, &nfc->assigned_cs)) {
1197 		dev_err(nfc->dev, "Already assigned CS %d\n", cs);
1198 		return -EINVAL;
1199 	}
1200 
1201 	anand->cs = cs;
1202 	anand->rb = rb;
1203 
1204 	chip = &anand->chip;
1205 	mtd = nand_to_mtd(chip);
1206 	mtd->dev.parent = nfc->dev;
1207 	chip->controller = &nfc->controller;
1208 	chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
1209 			NAND_USES_DMA;
1210 
1211 	nand_set_flash_node(chip, np);
1212 	if (!mtd->name) {
1213 		dev_err(nfc->dev, "NAND label property is mandatory\n");
1214 		return -EINVAL;
1215 	}
1216 
1217 	ret = nand_scan(chip, 1);
1218 	if (ret) {
1219 		dev_err(nfc->dev, "Scan operation failed\n");
1220 		return ret;
1221 	}
1222 
1223 	ret = mtd_device_register(mtd, NULL, 0);
1224 	if (ret) {
1225 		nand_cleanup(chip);
1226 		return ret;
1227 	}
1228 
1229 	list_add_tail(&anand->node, &nfc->chips);
1230 
1231 	return 0;
1232 }
1233 
anfc_chips_cleanup(struct arasan_nfc *nfc)1234 static void anfc_chips_cleanup(struct arasan_nfc *nfc)
1235 {
1236 	struct anand *anand, *tmp;
1237 	struct nand_chip *chip;
1238 	int ret;
1239 
1240 	list_for_each_entry_safe(anand, tmp, &nfc->chips, node) {
1241 		chip = &anand->chip;
1242 		ret = mtd_device_unregister(nand_to_mtd(chip));
1243 		WARN_ON(ret);
1244 		nand_cleanup(chip);
1245 		list_del(&anand->node);
1246 	}
1247 }
1248 
anfc_chips_init(struct arasan_nfc *nfc)1249 static int anfc_chips_init(struct arasan_nfc *nfc)
1250 {
1251 	struct device_node *np = nfc->dev->of_node, *nand_np;
1252 	int nchips = of_get_child_count(np);
1253 	int ret;
1254 
1255 	if (!nchips || nchips > ANFC_MAX_CS) {
1256 		dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
1257 			nchips);
1258 		return -EINVAL;
1259 	}
1260 
1261 	for_each_child_of_node(np, nand_np) {
1262 		ret = anfc_chip_init(nfc, nand_np);
1263 		if (ret) {
1264 			of_node_put(nand_np);
1265 			anfc_chips_cleanup(nfc);
1266 			break;
1267 		}
1268 	}
1269 
1270 	return ret;
1271 }
1272 
anfc_reset(struct arasan_nfc *nfc)1273 static void anfc_reset(struct arasan_nfc *nfc)
1274 {
1275 	/* Disable interrupt signals */
1276 	writel_relaxed(0, nfc->base + INTR_SIG_EN_REG);
1277 
1278 	/* Enable interrupt status */
1279 	writel_relaxed(EVENT_MASK, nfc->base + INTR_STS_EN_REG);
1280 }
1281 
anfc_probe(struct platform_device *pdev)1282 static int anfc_probe(struct platform_device *pdev)
1283 {
1284 	struct arasan_nfc *nfc;
1285 	int ret;
1286 
1287 	nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
1288 	if (!nfc)
1289 		return -ENOMEM;
1290 
1291 	nfc->dev = &pdev->dev;
1292 	nand_controller_init(&nfc->controller);
1293 	nfc->controller.ops = &anfc_ops;
1294 	INIT_LIST_HEAD(&nfc->chips);
1295 
1296 	nfc->base = devm_platform_ioremap_resource(pdev, 0);
1297 	if (IS_ERR(nfc->base))
1298 		return PTR_ERR(nfc->base);
1299 
1300 	anfc_reset(nfc);
1301 
1302 	nfc->controller_clk = devm_clk_get(&pdev->dev, "controller");
1303 	if (IS_ERR(nfc->controller_clk))
1304 		return PTR_ERR(nfc->controller_clk);
1305 
1306 	nfc->bus_clk = devm_clk_get(&pdev->dev, "bus");
1307 	if (IS_ERR(nfc->bus_clk))
1308 		return PTR_ERR(nfc->bus_clk);
1309 
1310 	ret = clk_prepare_enable(nfc->controller_clk);
1311 	if (ret)
1312 		return ret;
1313 
1314 	ret = clk_prepare_enable(nfc->bus_clk);
1315 	if (ret)
1316 		goto disable_controller_clk;
1317 
1318 	ret = anfc_chips_init(nfc);
1319 	if (ret)
1320 		goto disable_bus_clk;
1321 
1322 	platform_set_drvdata(pdev, nfc);
1323 
1324 	return 0;
1325 
1326 disable_bus_clk:
1327 	clk_disable_unprepare(nfc->bus_clk);
1328 
1329 disable_controller_clk:
1330 	clk_disable_unprepare(nfc->controller_clk);
1331 
1332 	return ret;
1333 }
1334 
anfc_remove(struct platform_device *pdev)1335 static int anfc_remove(struct platform_device *pdev)
1336 {
1337 	struct arasan_nfc *nfc = platform_get_drvdata(pdev);
1338 
1339 	anfc_chips_cleanup(nfc);
1340 
1341 	clk_disable_unprepare(nfc->bus_clk);
1342 	clk_disable_unprepare(nfc->controller_clk);
1343 
1344 	return 0;
1345 }
1346 
1347 static const struct of_device_id anfc_ids[] = {
1348 	{
1349 		.compatible = "xlnx,zynqmp-nand-controller",
1350 	},
1351 	{
1352 		.compatible = "arasan,nfc-v3p10",
1353 	},
1354 	{}
1355 };
1356 MODULE_DEVICE_TABLE(of, anfc_ids);
1357 
1358 static struct platform_driver anfc_driver = {
1359 	.driver = {
1360 		.name = "arasan-nand-controller",
1361 		.of_match_table = anfc_ids,
1362 	},
1363 	.probe = anfc_probe,
1364 	.remove = anfc_remove,
1365 };
1366 module_platform_driver(anfc_driver);
1367 
1368 MODULE_LICENSE("GPL v2");
1369 MODULE_AUTHOR("Punnaiah Choudary Kalluri <punnaia@xilinx.com>");
1370 MODULE_AUTHOR("Naga Sureshkumar Relli <nagasure@xilinx.com>");
1371 MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
1372 MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");
1373