1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/core.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9  */
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/delay.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/leds.h>
19 #include <linux/scatterlist.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pm_wakeup.h>
23 #include <linux/suspend.h>
24 #include <linux/fault-inject.h>
25 #include <linux/random.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28 
29 #include <linux/mmc/card.h>
30 #include <linux/mmc/host.h>
31 #include <linux/mmc/mmc.h>
32 #include <linux/mmc/sd.h>
33 #include <linux/mmc/slot-gpio.h>
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/mmc.h>
37 
38 #include "core.h"
39 #include "card.h"
40 #include "bus.h"
41 #include "host.h"
42 #include "sdio_bus.h"
43 #include "pwrseq.h"
44 
45 #include "mmc_ops.h"
46 #include "sd_ops.h"
47 #include "sdio_ops.h"
48 
49 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
50 #define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
51 #define SD_DISCARD_TIMEOUT_MS	(250)
52 
53 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
54 
55 /*
56  * Enabling software CRCs on the data blocks can be a significant (30%)
57  * performance cost, and for other reasons may not always be desired.
58  * So we allow it it to be disabled.
59  */
60 bool use_spi_crc = 1;
61 module_param(use_spi_crc, bool, 0);
62 
mmc_schedule_delayed_work(struct delayed_work *work, unsigned long delay)63 static int mmc_schedule_delayed_work(struct delayed_work *work,
64 				     unsigned long delay)
65 {
66 	/*
67 	 * We use the system_freezable_wq, because of two reasons.
68 	 * First, it allows several works (not the same work item) to be
69 	 * executed simultaneously. Second, the queue becomes frozen when
70 	 * userspace becomes frozen during system PM.
71 	 */
72 	return queue_delayed_work(system_freezable_wq, work, delay);
73 }
74 
75 #ifdef CONFIG_FAIL_MMC_REQUEST
76 
77 /*
78  * Internal function. Inject random data errors.
79  * If mmc_data is NULL no errors are injected.
80  */
mmc_should_fail_request(struct mmc_host *host, struct mmc_request *mrq)81 static void mmc_should_fail_request(struct mmc_host *host,
82 				    struct mmc_request *mrq)
83 {
84 	struct mmc_command *cmd = mrq->cmd;
85 	struct mmc_data *data = mrq->data;
86 	static const int data_errors[] = {
87 		-ETIMEDOUT,
88 		-EILSEQ,
89 		-EIO,
90 	};
91 
92 	if (!data)
93 		return;
94 
95 	if ((cmd && cmd->error) || data->error ||
96 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
97 		return;
98 
99 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
100 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
101 }
102 
103 #else /* CONFIG_FAIL_MMC_REQUEST */
104 
mmc_should_fail_request(struct mmc_host *host, struct mmc_request *mrq)105 static inline void mmc_should_fail_request(struct mmc_host *host,
106 					   struct mmc_request *mrq)
107 {
108 }
109 
110 #endif /* CONFIG_FAIL_MMC_REQUEST */
111 
mmc_complete_cmd(struct mmc_request *mrq)112 static inline void mmc_complete_cmd(struct mmc_request *mrq)
113 {
114 	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
115 		complete_all(&mrq->cmd_completion);
116 }
117 
mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)118 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
119 {
120 	if (!mrq->cap_cmd_during_tfr)
121 		return;
122 
123 	mmc_complete_cmd(mrq);
124 
125 	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
126 		 mmc_hostname(host), mrq->cmd->opcode);
127 }
128 EXPORT_SYMBOL(mmc_command_done);
129 
130 /**
131  *	mmc_request_done - finish processing an MMC request
132  *	@host: MMC host which completed request
133  *	@mrq: MMC request which request
134  *
135  *	MMC drivers should call this function when they have completed
136  *	their processing of a request.
137  */
mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)138 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
139 {
140 	struct mmc_command *cmd = mrq->cmd;
141 	int err = cmd->error;
142 
143 	/* Flag re-tuning needed on CRC errors */
144 	if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
145 	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
146 	    !host->retune_crc_disable &&
147 	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
148 	    (mrq->data && mrq->data->error == -EILSEQ) ||
149 	    (mrq->stop && mrq->stop->error == -EILSEQ)))
150 		mmc_retune_needed(host);
151 
152 	if (err && cmd->retries && mmc_host_is_spi(host)) {
153 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
154 			cmd->retries = 0;
155 	}
156 
157 	if (host->ongoing_mrq == mrq)
158 		host->ongoing_mrq = NULL;
159 
160 	mmc_complete_cmd(mrq);
161 
162 	trace_mmc_request_done(host, mrq);
163 
164 	/*
165 	 * We list various conditions for the command to be considered
166 	 * properly done:
167 	 *
168 	 * - There was no error, OK fine then
169 	 * - We are not doing some kind of retry
170 	 * - The card was removed (...so just complete everything no matter
171 	 *   if there are errors or retries)
172 	 */
173 	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
174 		mmc_should_fail_request(host, mrq);
175 
176 		if (!host->ongoing_mrq)
177 			led_trigger_event(host->led, LED_OFF);
178 
179 		if (mrq->sbc) {
180 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
181 				mmc_hostname(host), mrq->sbc->opcode,
182 				mrq->sbc->error,
183 				mrq->sbc->resp[0], mrq->sbc->resp[1],
184 				mrq->sbc->resp[2], mrq->sbc->resp[3]);
185 		}
186 
187 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
188 			mmc_hostname(host), cmd->opcode, err,
189 			cmd->resp[0], cmd->resp[1],
190 			cmd->resp[2], cmd->resp[3]);
191 
192 		if (mrq->data) {
193 			pr_debug("%s:     %d bytes transferred: %d\n",
194 				mmc_hostname(host),
195 				mrq->data->bytes_xfered, mrq->data->error);
196 		}
197 
198 		if (mrq->stop) {
199 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
200 				mmc_hostname(host), mrq->stop->opcode,
201 				mrq->stop->error,
202 				mrq->stop->resp[0], mrq->stop->resp[1],
203 				mrq->stop->resp[2], mrq->stop->resp[3]);
204 		}
205 	}
206 	/*
207 	 * Request starter must handle retries - see
208 	 * mmc_wait_for_req_done().
209 	 */
210 	if (mrq->done)
211 		mrq->done(mrq);
212 }
213 
214 EXPORT_SYMBOL(mmc_request_done);
215 
__mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)216 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
217 {
218 	int err;
219 
220 	/* Assumes host controller has been runtime resumed by mmc_claim_host */
221 	err = mmc_retune(host);
222 	if (err) {
223 		mrq->cmd->error = err;
224 		mmc_request_done(host, mrq);
225 		return;
226 	}
227 
228 	/*
229 	 * For sdio rw commands we must wait for card busy otherwise some
230 	 * sdio devices won't work properly.
231 	 * And bypass I/O abort, reset and bus suspend operations.
232 	 */
233 	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
234 	    host->ops->card_busy) {
235 		int tries = 500; /* Wait aprox 500ms at maximum */
236 
237 		while (host->ops->card_busy(host) && --tries)
238 			mmc_delay(1);
239 
240 		if (tries == 0) {
241 			mrq->cmd->error = -EBUSY;
242 			mmc_request_done(host, mrq);
243 			return;
244 		}
245 	}
246 
247 	if (mrq->cap_cmd_during_tfr) {
248 		host->ongoing_mrq = mrq;
249 		/*
250 		 * Retry path could come through here without having waiting on
251 		 * cmd_completion, so ensure it is reinitialised.
252 		 */
253 		reinit_completion(&mrq->cmd_completion);
254 	}
255 
256 	trace_mmc_request_start(host, mrq);
257 
258 	if (host->cqe_on)
259 		host->cqe_ops->cqe_off(host);
260 
261 	host->ops->request(host, mrq);
262 }
263 
mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq, bool cqe)264 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
265 			     bool cqe)
266 {
267 	if (mrq->sbc) {
268 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
269 			 mmc_hostname(host), mrq->sbc->opcode,
270 			 mrq->sbc->arg, mrq->sbc->flags);
271 	}
272 
273 	if (mrq->cmd) {
274 		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
275 			 mmc_hostname(host), cqe ? "CQE direct " : "",
276 			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
277 	} else if (cqe) {
278 		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
279 			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
280 	}
281 
282 	if (mrq->data) {
283 		pr_debug("%s:     blksz %d blocks %d flags %08x "
284 			"tsac %d ms nsac %d\n",
285 			mmc_hostname(host), mrq->data->blksz,
286 			mrq->data->blocks, mrq->data->flags,
287 			mrq->data->timeout_ns / 1000000,
288 			mrq->data->timeout_clks);
289 	}
290 
291 	if (mrq->stop) {
292 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
293 			 mmc_hostname(host), mrq->stop->opcode,
294 			 mrq->stop->arg, mrq->stop->flags);
295 	}
296 }
297 
mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)298 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
299 {
300 	unsigned int i, sz = 0;
301 	struct scatterlist *sg;
302 
303 	if (mrq->cmd) {
304 		mrq->cmd->error = 0;
305 		mrq->cmd->mrq = mrq;
306 		mrq->cmd->data = mrq->data;
307 	}
308 	if (mrq->sbc) {
309 		mrq->sbc->error = 0;
310 		mrq->sbc->mrq = mrq;
311 	}
312 	if (mrq->data) {
313 		if (mrq->data->blksz > host->max_blk_size ||
314 		    mrq->data->blocks > host->max_blk_count ||
315 		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
316 			return -EINVAL;
317 
318 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
319 			sz += sg->length;
320 		if (sz != mrq->data->blocks * mrq->data->blksz)
321 			return -EINVAL;
322 
323 		mrq->data->error = 0;
324 		mrq->data->mrq = mrq;
325 		if (mrq->stop) {
326 			mrq->data->stop = mrq->stop;
327 			mrq->stop->error = 0;
328 			mrq->stop->mrq = mrq;
329 		}
330 	}
331 
332 	return 0;
333 }
334 
mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)335 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
336 {
337 	int err;
338 
339 	init_completion(&mrq->cmd_completion);
340 
341 	mmc_retune_hold(host);
342 
343 	if (mmc_card_removed(host->card))
344 		return -ENOMEDIUM;
345 
346 	mmc_mrq_pr_debug(host, mrq, false);
347 
348 	WARN_ON(!host->claimed);
349 
350 	err = mmc_mrq_prep(host, mrq);
351 	if (err)
352 		return err;
353 
354 	led_trigger_event(host->led, LED_FULL);
355 	__mmc_start_request(host, mrq);
356 
357 	return 0;
358 }
359 EXPORT_SYMBOL(mmc_start_request);
360 
mmc_wait_done(struct mmc_request *mrq)361 static void mmc_wait_done(struct mmc_request *mrq)
362 {
363 	complete(&mrq->completion);
364 }
365 
mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)366 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
367 {
368 	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
369 
370 	/*
371 	 * If there is an ongoing transfer, wait for the command line to become
372 	 * available.
373 	 */
374 	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
375 		wait_for_completion(&ongoing_mrq->cmd_completion);
376 }
377 
__mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)378 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
379 {
380 	int err;
381 
382 	mmc_wait_ongoing_tfr_cmd(host);
383 
384 	init_completion(&mrq->completion);
385 	mrq->done = mmc_wait_done;
386 
387 	err = mmc_start_request(host, mrq);
388 	if (err) {
389 		mrq->cmd->error = err;
390 		mmc_complete_cmd(mrq);
391 		complete(&mrq->completion);
392 	}
393 
394 	return err;
395 }
396 
mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)397 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
398 {
399 	struct mmc_command *cmd;
400 
401 	while (1) {
402 		wait_for_completion(&mrq->completion);
403 
404 		cmd = mrq->cmd;
405 
406 		if (!cmd->error || !cmd->retries ||
407 		    mmc_card_removed(host->card))
408 			break;
409 
410 		mmc_retune_recheck(host);
411 
412 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
413 			 mmc_hostname(host), cmd->opcode, cmd->error);
414 		cmd->retries--;
415 		cmd->error = 0;
416 		__mmc_start_request(host, mrq);
417 	}
418 
419 	mmc_retune_release(host);
420 }
421 EXPORT_SYMBOL(mmc_wait_for_req_done);
422 
423 /*
424  * mmc_cqe_start_req - Start a CQE request.
425  * @host: MMC host to start the request
426  * @mrq: request to start
427  *
428  * Start the request, re-tuning if needed and it is possible. Returns an error
429  * code if the request fails to start or -EBUSY if CQE is busy.
430  */
mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)431 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
432 {
433 	int err;
434 
435 	/*
436 	 * CQE cannot process re-tuning commands. Caller must hold retuning
437 	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
438 	 * active requests i.e. this is the first.  Note, re-tuning will call
439 	 * ->cqe_off().
440 	 */
441 	err = mmc_retune(host);
442 	if (err)
443 		goto out_err;
444 
445 	mrq->host = host;
446 
447 	mmc_mrq_pr_debug(host, mrq, true);
448 
449 	err = mmc_mrq_prep(host, mrq);
450 	if (err)
451 		goto out_err;
452 
453 	err = host->cqe_ops->cqe_request(host, mrq);
454 	if (err)
455 		goto out_err;
456 
457 	trace_mmc_request_start(host, mrq);
458 
459 	return 0;
460 
461 out_err:
462 	if (mrq->cmd) {
463 		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
464 			 mmc_hostname(host), mrq->cmd->opcode, err);
465 	} else {
466 		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
467 			 mmc_hostname(host), mrq->tag, err);
468 	}
469 	return err;
470 }
471 EXPORT_SYMBOL(mmc_cqe_start_req);
472 
473 /**
474  *	mmc_cqe_request_done - CQE has finished processing an MMC request
475  *	@host: MMC host which completed request
476  *	@mrq: MMC request which completed
477  *
478  *	CQE drivers should call this function when they have completed
479  *	their processing of a request.
480  */
mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)481 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
482 {
483 	mmc_should_fail_request(host, mrq);
484 
485 	/* Flag re-tuning needed on CRC errors */
486 	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
487 	    (mrq->data && mrq->data->error == -EILSEQ))
488 		mmc_retune_needed(host);
489 
490 	trace_mmc_request_done(host, mrq);
491 
492 	if (mrq->cmd) {
493 		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
494 			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
495 	} else {
496 		pr_debug("%s: CQE transfer done tag %d\n",
497 			 mmc_hostname(host), mrq->tag);
498 	}
499 
500 	if (mrq->data) {
501 		pr_debug("%s:     %d bytes transferred: %d\n",
502 			 mmc_hostname(host),
503 			 mrq->data->bytes_xfered, mrq->data->error);
504 	}
505 
506 	mrq->done(mrq);
507 }
508 EXPORT_SYMBOL(mmc_cqe_request_done);
509 
510 /**
511  *	mmc_cqe_post_req - CQE post process of a completed MMC request
512  *	@host: MMC host
513  *	@mrq: MMC request to be processed
514  */
mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)515 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
516 {
517 	if (host->cqe_ops->cqe_post_req)
518 		host->cqe_ops->cqe_post_req(host, mrq);
519 }
520 EXPORT_SYMBOL(mmc_cqe_post_req);
521 
522 /* Arbitrary 1 second timeout */
523 #define MMC_CQE_RECOVERY_TIMEOUT	1000
524 
525 /*
526  * mmc_cqe_recovery - Recover from CQE errors.
527  * @host: MMC host to recover
528  *
529  * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
530  * in eMMC, and discarding the queue in CQE. CQE must call
531  * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
532  * fails to discard its queue.
533  */
mmc_cqe_recovery(struct mmc_host *host)534 int mmc_cqe_recovery(struct mmc_host *host)
535 {
536 	struct mmc_command cmd;
537 	int err;
538 
539 	mmc_retune_hold_now(host);
540 
541 	/*
542 	 * Recovery is expected seldom, if at all, but it reduces performance,
543 	 * so make sure it is not completely silent.
544 	 */
545 	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
546 
547 	host->cqe_ops->cqe_recovery_start(host);
548 
549 	memset(&cmd, 0, sizeof(cmd));
550 	cmd.opcode       = MMC_STOP_TRANSMISSION;
551 	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
552 	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
553 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
554 	mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
555 
556 	mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, MMC_BUSY_IO);
557 
558 	memset(&cmd, 0, sizeof(cmd));
559 	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
560 	cmd.arg          = 1; /* Discard entire queue */
561 	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
562 	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
563 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
564 	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
565 
566 	host->cqe_ops->cqe_recovery_finish(host);
567 
568 	if (err)
569 		err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
570 
571 	mmc_retune_release(host);
572 
573 	return err;
574 }
575 EXPORT_SYMBOL(mmc_cqe_recovery);
576 
577 /**
578  *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
579  *	@host: MMC host
580  *	@mrq: MMC request
581  *
582  *	mmc_is_req_done() is used with requests that have
583  *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
584  *	starting a request and before waiting for it to complete. That is,
585  *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
586  *	and before mmc_wait_for_req_done(). If it is called at other times the
587  *	result is not meaningful.
588  */
mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)589 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
590 {
591 	return completion_done(&mrq->completion);
592 }
593 EXPORT_SYMBOL(mmc_is_req_done);
594 
595 /**
596  *	mmc_wait_for_req - start a request and wait for completion
597  *	@host: MMC host to start command
598  *	@mrq: MMC request to start
599  *
600  *	Start a new MMC custom command request for a host, and wait
601  *	for the command to complete. In the case of 'cap_cmd_during_tfr'
602  *	requests, the transfer is ongoing and the caller can issue further
603  *	commands that do not use the data lines, and then wait by calling
604  *	mmc_wait_for_req_done().
605  *	Does not attempt to parse the response.
606  */
mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)607 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
608 {
609 	__mmc_start_req(host, mrq);
610 
611 	if (!mrq->cap_cmd_during_tfr)
612 		mmc_wait_for_req_done(host, mrq);
613 }
614 EXPORT_SYMBOL(mmc_wait_for_req);
615 
616 /**
617  *	mmc_wait_for_cmd - start a command and wait for completion
618  *	@host: MMC host to start command
619  *	@cmd: MMC command to start
620  *	@retries: maximum number of retries
621  *
622  *	Start a new MMC command for a host, and wait for the command
623  *	to complete.  Return any error that occurred while the command
624  *	was executing.  Do not attempt to parse the response.
625  */
mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)626 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
627 {
628 	struct mmc_request mrq = {};
629 
630 	WARN_ON(!host->claimed);
631 
632 	memset(cmd->resp, 0, sizeof(cmd->resp));
633 	cmd->retries = retries;
634 
635 	mrq.cmd = cmd;
636 	cmd->data = NULL;
637 
638 	mmc_wait_for_req(host, &mrq);
639 
640 	return cmd->error;
641 }
642 
643 EXPORT_SYMBOL(mmc_wait_for_cmd);
644 
645 /**
646  *	mmc_set_data_timeout - set the timeout for a data command
647  *	@data: data phase for command
648  *	@card: the MMC card associated with the data transfer
649  *
650  *	Computes the data timeout parameters according to the
651  *	correct algorithm given the card type.
652  */
mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)653 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
654 {
655 	unsigned int mult;
656 
657 	/*
658 	 * SDIO cards only define an upper 1 s limit on access.
659 	 */
660 	if (mmc_card_sdio(card)) {
661 		data->timeout_ns = 1000000000;
662 		data->timeout_clks = 0;
663 		return;
664 	}
665 
666 	/*
667 	 * SD cards use a 100 multiplier rather than 10
668 	 */
669 	mult = mmc_card_sd(card) ? 100 : 10;
670 
671 	/*
672 	 * Scale up the multiplier (and therefore the timeout) by
673 	 * the r2w factor for writes.
674 	 */
675 	if (data->flags & MMC_DATA_WRITE)
676 		mult <<= card->csd.r2w_factor;
677 
678 	data->timeout_ns = card->csd.taac_ns * mult;
679 	data->timeout_clks = card->csd.taac_clks * mult;
680 
681 	/*
682 	 * SD cards also have an upper limit on the timeout.
683 	 */
684 	if (mmc_card_sd(card)) {
685 		unsigned int timeout_us, limit_us;
686 
687 		timeout_us = data->timeout_ns / 1000;
688 		if (card->host->ios.clock)
689 			timeout_us += data->timeout_clks * 1000 /
690 				(card->host->ios.clock / 1000);
691 
692 		if (data->flags & MMC_DATA_WRITE)
693 			/*
694 			 * The MMC spec "It is strongly recommended
695 			 * for hosts to implement more than 500ms
696 			 * timeout value even if the card indicates
697 			 * the 250ms maximum busy length."  Even the
698 			 * previous value of 300ms is known to be
699 			 * insufficient for some cards.
700 			 */
701 			limit_us = 3000000;
702 		else
703 			limit_us = 100000;
704 
705 		/*
706 		 * SDHC cards always use these fixed values.
707 		 */
708 		if (timeout_us > limit_us) {
709 			data->timeout_ns = limit_us * 1000;
710 			data->timeout_clks = 0;
711 		}
712 
713 		/* assign limit value if invalid */
714 		if (timeout_us == 0)
715 			data->timeout_ns = limit_us * 1000;
716 	}
717 
718 	/*
719 	 * Some cards require longer data read timeout than indicated in CSD.
720 	 * Address this by setting the read timeout to a "reasonably high"
721 	 * value. For the cards tested, 600ms has proven enough. If necessary,
722 	 * this value can be increased if other problematic cards require this.
723 	 */
724 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
725 		data->timeout_ns = 600000000;
726 		data->timeout_clks = 0;
727 	}
728 
729 	/*
730 	 * Some cards need very high timeouts if driven in SPI mode.
731 	 * The worst observed timeout was 900ms after writing a
732 	 * continuous stream of data until the internal logic
733 	 * overflowed.
734 	 */
735 	if (mmc_host_is_spi(card->host)) {
736 		if (data->flags & MMC_DATA_WRITE) {
737 			if (data->timeout_ns < 1000000000)
738 				data->timeout_ns = 1000000000;	/* 1s */
739 		} else {
740 			if (data->timeout_ns < 100000000)
741 				data->timeout_ns =  100000000;	/* 100ms */
742 		}
743 	}
744 }
745 EXPORT_SYMBOL(mmc_set_data_timeout);
746 
747 /*
748  * Allow claiming an already claimed host if the context is the same or there is
749  * no context but the task is the same.
750  */
mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx, struct task_struct *task)751 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
752 				   struct task_struct *task)
753 {
754 	return host->claimer == ctx ||
755 	       (!ctx && task && host->claimer->task == task);
756 }
757 
mmc_ctx_set_claimer(struct mmc_host *host, struct mmc_ctx *ctx, struct task_struct *task)758 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
759 				       struct mmc_ctx *ctx,
760 				       struct task_struct *task)
761 {
762 	if (!host->claimer) {
763 		if (ctx)
764 			host->claimer = ctx;
765 		else
766 			host->claimer = &host->default_ctx;
767 	}
768 	if (task)
769 		host->claimer->task = task;
770 }
771 
772 /**
773  *	__mmc_claim_host - exclusively claim a host
774  *	@host: mmc host to claim
775  *	@ctx: context that claims the host or NULL in which case the default
776  *	context will be used
777  *	@abort: whether or not the operation should be aborted
778  *
779  *	Claim a host for a set of operations.  If @abort is non null and
780  *	dereference a non-zero value then this will return prematurely with
781  *	that non-zero value without acquiring the lock.  Returns zero
782  *	with the lock held otherwise.
783  */
__mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx, atomic_t *abort)784 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
785 		     atomic_t *abort)
786 {
787 	struct task_struct *task = ctx ? NULL : current;
788 	DECLARE_WAITQUEUE(wait, current);
789 	unsigned long flags;
790 	int stop;
791 	bool pm = false;
792 
793 	might_sleep();
794 
795 	add_wait_queue(&host->wq, &wait);
796 	spin_lock_irqsave(&host->lock, flags);
797 	while (1) {
798 		set_current_state(TASK_UNINTERRUPTIBLE);
799 		stop = abort ? atomic_read(abort) : 0;
800 		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
801 			break;
802 		spin_unlock_irqrestore(&host->lock, flags);
803 		schedule();
804 		spin_lock_irqsave(&host->lock, flags);
805 	}
806 	set_current_state(TASK_RUNNING);
807 	if (!stop) {
808 		host->claimed = 1;
809 		mmc_ctx_set_claimer(host, ctx, task);
810 		host->claim_cnt += 1;
811 		if (host->claim_cnt == 1)
812 			pm = true;
813 	} else
814 		wake_up(&host->wq);
815 	spin_unlock_irqrestore(&host->lock, flags);
816 	remove_wait_queue(&host->wq, &wait);
817 
818 	if (pm)
819 		pm_runtime_get_sync(mmc_dev(host));
820 
821 	return stop;
822 }
823 EXPORT_SYMBOL(__mmc_claim_host);
824 
825 /**
826  *	mmc_release_host - release a host
827  *	@host: mmc host to release
828  *
829  *	Release a MMC host, allowing others to claim the host
830  *	for their operations.
831  */
mmc_release_host(struct mmc_host *host)832 void mmc_release_host(struct mmc_host *host)
833 {
834 	unsigned long flags;
835 
836 	WARN_ON(!host->claimed);
837 
838 	spin_lock_irqsave(&host->lock, flags);
839 	if (--host->claim_cnt) {
840 		/* Release for nested claim */
841 		spin_unlock_irqrestore(&host->lock, flags);
842 	} else {
843 		host->claimed = 0;
844 		host->claimer->task = NULL;
845 		host->claimer = NULL;
846 		spin_unlock_irqrestore(&host->lock, flags);
847 		wake_up(&host->wq);
848 		pm_runtime_mark_last_busy(mmc_dev(host));
849 		if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
850 			pm_runtime_put_sync_suspend(mmc_dev(host));
851 		else
852 			pm_runtime_put_autosuspend(mmc_dev(host));
853 	}
854 }
855 EXPORT_SYMBOL(mmc_release_host);
856 
857 /*
858  * This is a helper function, which fetches a runtime pm reference for the
859  * card device and also claims the host.
860  */
mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)861 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
862 {
863 	pm_runtime_get_sync(&card->dev);
864 	__mmc_claim_host(card->host, ctx, NULL);
865 }
866 EXPORT_SYMBOL(mmc_get_card);
867 
868 /*
869  * This is a helper function, which releases the host and drops the runtime
870  * pm reference for the card device.
871  */
mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)872 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
873 {
874 	struct mmc_host *host = card->host;
875 
876 	WARN_ON(ctx && host->claimer != ctx);
877 
878 	mmc_release_host(host);
879 	pm_runtime_mark_last_busy(&card->dev);
880 	pm_runtime_put_autosuspend(&card->dev);
881 }
882 EXPORT_SYMBOL(mmc_put_card);
883 
884 /*
885  * Internal function that does the actual ios call to the host driver,
886  * optionally printing some debug output.
887  */
mmc_set_ios(struct mmc_host *host)888 static inline void mmc_set_ios(struct mmc_host *host)
889 {
890 	struct mmc_ios *ios = &host->ios;
891 
892 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
893 		"width %u timing %u\n",
894 		 mmc_hostname(host), ios->clock, ios->bus_mode,
895 		 ios->power_mode, ios->chip_select, ios->vdd,
896 		 1 << ios->bus_width, ios->timing);
897 
898 	host->ops->set_ios(host, ios);
899 }
900 
901 /*
902  * Control chip select pin on a host.
903  */
mmc_set_chip_select(struct mmc_host *host, int mode)904 void mmc_set_chip_select(struct mmc_host *host, int mode)
905 {
906 	host->ios.chip_select = mode;
907 	mmc_set_ios(host);
908 }
909 
910 /*
911  * Sets the host clock to the highest possible frequency that
912  * is below "hz".
913  */
mmc_set_clock(struct mmc_host *host, unsigned int hz)914 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
915 {
916 	WARN_ON(hz && hz < host->f_min);
917 
918 	if (hz > host->f_max)
919 		hz = host->f_max;
920 
921 	host->ios.clock = hz;
922 	mmc_set_ios(host);
923 }
924 
mmc_execute_tuning(struct mmc_card *card)925 int mmc_execute_tuning(struct mmc_card *card)
926 {
927 	struct mmc_host *host = card->host;
928 	u32 opcode;
929 	int err;
930 
931 	if (!host->ops->execute_tuning)
932 		return 0;
933 
934 	if (host->cqe_on)
935 		host->cqe_ops->cqe_off(host);
936 
937 	if (mmc_card_mmc(card))
938 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
939 	else
940 		opcode = MMC_SEND_TUNING_BLOCK;
941 
942 	err = host->ops->execute_tuning(host, opcode);
943 
944 	if (err) {
945 		pr_err("%s: tuning execution failed: %d\n",
946 			mmc_hostname(host), err);
947 	} else {
948 		host->retune_now = 0;
949 		host->need_retune = 0;
950 		mmc_retune_enable(host);
951 	}
952 
953 	return err;
954 }
955 
956 /*
957  * Change the bus mode (open drain/push-pull) of a host.
958  */
mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)959 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
960 {
961 	host->ios.bus_mode = mode;
962 	mmc_set_ios(host);
963 }
964 
965 /*
966  * Change data bus width of a host.
967  */
mmc_set_bus_width(struct mmc_host *host, unsigned int width)968 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
969 {
970 	host->ios.bus_width = width;
971 	mmc_set_ios(host);
972 }
973 
974 /*
975  * Set initial state after a power cycle or a hw_reset.
976  */
mmc_set_initial_state(struct mmc_host *host)977 void mmc_set_initial_state(struct mmc_host *host)
978 {
979 	if (host->cqe_on)
980 		host->cqe_ops->cqe_off(host);
981 
982 	mmc_retune_disable(host);
983 
984 	if (mmc_host_is_spi(host))
985 		host->ios.chip_select = MMC_CS_HIGH;
986 	else
987 		host->ios.chip_select = MMC_CS_DONTCARE;
988 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
989 	host->ios.bus_width = MMC_BUS_WIDTH_1;
990 	host->ios.timing = MMC_TIMING_LEGACY;
991 	host->ios.drv_type = 0;
992 	host->ios.enhanced_strobe = false;
993 
994 	/*
995 	 * Make sure we are in non-enhanced strobe mode before we
996 	 * actually enable it in ext_csd.
997 	 */
998 	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
999 	     host->ops->hs400_enhanced_strobe)
1000 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1001 
1002 	mmc_set_ios(host);
1003 }
1004 
1005 /**
1006  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1007  * @vdd:	voltage (mV)
1008  * @low_bits:	prefer low bits in boundary cases
1009  *
1010  * This function returns the OCR bit number according to the provided @vdd
1011  * value. If conversion is not possible a negative errno value returned.
1012  *
1013  * Depending on the @low_bits flag the function prefers low or high OCR bits
1014  * on boundary voltages. For example,
1015  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1016  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1017  *
1018  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1019  */
mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)1020 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1021 {
1022 	const int max_bit = ilog2(MMC_VDD_35_36);
1023 	int bit;
1024 
1025 	if (vdd < 1650 || vdd > 3600)
1026 		return -EINVAL;
1027 
1028 	if (vdd >= 1650 && vdd <= 1950)
1029 		return ilog2(MMC_VDD_165_195);
1030 
1031 	if (low_bits)
1032 		vdd -= 1;
1033 
1034 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1035 	bit = (vdd - 2000) / 100 + 8;
1036 	if (bit > max_bit)
1037 		return max_bit;
1038 	return bit;
1039 }
1040 
1041 /**
1042  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1043  * @vdd_min:	minimum voltage value (mV)
1044  * @vdd_max:	maximum voltage value (mV)
1045  *
1046  * This function returns the OCR mask bits according to the provided @vdd_min
1047  * and @vdd_max values. If conversion is not possible the function returns 0.
1048  *
1049  * Notes wrt boundary cases:
1050  * This function sets the OCR bits for all boundary voltages, for example
1051  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1052  * MMC_VDD_34_35 mask.
1053  */
mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)1054 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1055 {
1056 	u32 mask = 0;
1057 
1058 	if (vdd_max < vdd_min)
1059 		return 0;
1060 
1061 	/* Prefer high bits for the boundary vdd_max values. */
1062 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1063 	if (vdd_max < 0)
1064 		return 0;
1065 
1066 	/* Prefer low bits for the boundary vdd_min values. */
1067 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1068 	if (vdd_min < 0)
1069 		return 0;
1070 
1071 	/* Fill the mask, from max bit to min bit. */
1072 	while (vdd_max >= vdd_min)
1073 		mask |= 1 << vdd_max--;
1074 
1075 	return mask;
1076 }
1077 
mmc_of_get_func_num(struct device_node *node)1078 static int mmc_of_get_func_num(struct device_node *node)
1079 {
1080 	u32 reg;
1081 	int ret;
1082 
1083 	ret = of_property_read_u32(node, "reg", &reg);
1084 	if (ret < 0)
1085 		return ret;
1086 
1087 	return reg;
1088 }
1089 
mmc_of_find_child_device(struct mmc_host *host, unsigned func_num)1090 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1091 		unsigned func_num)
1092 {
1093 	struct device_node *node;
1094 
1095 	if (!host->parent || !host->parent->of_node)
1096 		return NULL;
1097 
1098 	for_each_child_of_node(host->parent->of_node, node) {
1099 		if (mmc_of_get_func_num(node) == func_num)
1100 			return node;
1101 	}
1102 
1103 	return NULL;
1104 }
1105 
1106 /*
1107  * Mask off any voltages we don't support and select
1108  * the lowest voltage
1109  */
mmc_select_voltage(struct mmc_host *host, u32 ocr)1110 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1111 {
1112 	int bit;
1113 
1114 	/*
1115 	 * Sanity check the voltages that the card claims to
1116 	 * support.
1117 	 */
1118 	if (ocr & 0x7F) {
1119 		dev_warn(mmc_dev(host),
1120 		"card claims to support voltages below defined range\n");
1121 		ocr &= ~0x7F;
1122 	}
1123 
1124 	ocr &= host->ocr_avail;
1125 	if (!ocr) {
1126 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1127 		return 0;
1128 	}
1129 
1130 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1131 		bit = ffs(ocr) - 1;
1132 		ocr &= 3 << bit;
1133 		mmc_power_cycle(host, ocr);
1134 	} else {
1135 		bit = fls(ocr) - 1;
1136 		/*
1137 		 * The bit variable represents the highest voltage bit set in
1138 		 * the OCR register.
1139 		 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1140 		 * we must shift the mask '3' with (bit - 1).
1141 		 */
1142 		ocr &= 3 << (bit - 1);
1143 		if (bit != host->ios.vdd)
1144 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1145 	}
1146 
1147 	return ocr;
1148 }
1149 
mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)1150 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1151 {
1152 	int err = 0;
1153 	int old_signal_voltage = host->ios.signal_voltage;
1154 
1155 	host->ios.signal_voltage = signal_voltage;
1156 	if (host->ops->start_signal_voltage_switch)
1157 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1158 
1159 	if (err)
1160 		host->ios.signal_voltage = old_signal_voltage;
1161 
1162 	return err;
1163 
1164 }
1165 
mmc_set_initial_signal_voltage(struct mmc_host *host)1166 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1167 {
1168 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1169 	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1170 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1171 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1172 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1173 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1174 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1175 }
1176 
mmc_host_set_uhs_voltage(struct mmc_host *host)1177 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1178 {
1179 	u32 clock;
1180 
1181 	/*
1182 	 * During a signal voltage level switch, the clock must be gated
1183 	 * for 5 ms according to the SD spec
1184 	 */
1185 	clock = host->ios.clock;
1186 	host->ios.clock = 0;
1187 	mmc_set_ios(host);
1188 
1189 	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1190 		return -EAGAIN;
1191 
1192 	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1193 	mmc_delay(10);
1194 	host->ios.clock = clock;
1195 	mmc_set_ios(host);
1196 
1197 	return 0;
1198 }
1199 
mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)1200 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1201 {
1202 	struct mmc_command cmd = {};
1203 	int err = 0;
1204 
1205 	/*
1206 	 * If we cannot switch voltages, return failure so the caller
1207 	 * can continue without UHS mode
1208 	 */
1209 	if (!host->ops->start_signal_voltage_switch)
1210 		return -EPERM;
1211 	if (!host->ops->card_busy)
1212 		pr_warn("%s: cannot verify signal voltage switch\n",
1213 			mmc_hostname(host));
1214 
1215 	cmd.opcode = SD_SWITCH_VOLTAGE;
1216 	cmd.arg = 0;
1217 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1218 
1219 	err = mmc_wait_for_cmd(host, &cmd, 0);
1220 	if (err)
1221 		goto power_cycle;
1222 
1223 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1224 		return -EIO;
1225 
1226 	/*
1227 	 * The card should drive cmd and dat[0:3] low immediately
1228 	 * after the response of cmd11, but wait 1 ms to be sure
1229 	 */
1230 	mmc_delay(1);
1231 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1232 		err = -EAGAIN;
1233 		goto power_cycle;
1234 	}
1235 
1236 	if (mmc_host_set_uhs_voltage(host)) {
1237 		/*
1238 		 * Voltages may not have been switched, but we've already
1239 		 * sent CMD11, so a power cycle is required anyway
1240 		 */
1241 		err = -EAGAIN;
1242 		goto power_cycle;
1243 	}
1244 
1245 	/* Wait for at least 1 ms according to spec */
1246 	mmc_delay(1);
1247 
1248 	/*
1249 	 * Failure to switch is indicated by the card holding
1250 	 * dat[0:3] low
1251 	 */
1252 	if (host->ops->card_busy && host->ops->card_busy(host))
1253 		err = -EAGAIN;
1254 
1255 power_cycle:
1256 	if (err) {
1257 		pr_debug("%s: Signal voltage switch failed, "
1258 			"power cycling card\n", mmc_hostname(host));
1259 		mmc_power_cycle(host, ocr);
1260 	}
1261 
1262 	return err;
1263 }
1264 
1265 /*
1266  * Select timing parameters for host.
1267  */
mmc_set_timing(struct mmc_host *host, unsigned int timing)1268 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1269 {
1270 	host->ios.timing = timing;
1271 	mmc_set_ios(host);
1272 }
1273 
1274 /*
1275  * Select appropriate driver type for host.
1276  */
mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)1277 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1278 {
1279 	host->ios.drv_type = drv_type;
1280 	mmc_set_ios(host);
1281 }
1282 
mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr, int card_drv_type, int *drv_type)1283 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1284 			      int card_drv_type, int *drv_type)
1285 {
1286 	struct mmc_host *host = card->host;
1287 	int host_drv_type = SD_DRIVER_TYPE_B;
1288 
1289 	*drv_type = 0;
1290 
1291 	if (!host->ops->select_drive_strength)
1292 		return 0;
1293 
1294 	/* Use SD definition of driver strength for hosts */
1295 	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1296 		host_drv_type |= SD_DRIVER_TYPE_A;
1297 
1298 	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1299 		host_drv_type |= SD_DRIVER_TYPE_C;
1300 
1301 	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1302 		host_drv_type |= SD_DRIVER_TYPE_D;
1303 
1304 	/*
1305 	 * The drive strength that the hardware can support
1306 	 * depends on the board design.  Pass the appropriate
1307 	 * information and let the hardware specific code
1308 	 * return what is possible given the options
1309 	 */
1310 	return host->ops->select_drive_strength(card, max_dtr,
1311 						host_drv_type,
1312 						card_drv_type,
1313 						drv_type);
1314 }
1315 
1316 /*
1317  * Apply power to the MMC stack.  This is a two-stage process.
1318  * First, we enable power to the card without the clock running.
1319  * We then wait a bit for the power to stabilise.  Finally,
1320  * enable the bus drivers and clock to the card.
1321  *
1322  * We must _NOT_ enable the clock prior to power stablising.
1323  *
1324  * If a host does all the power sequencing itself, ignore the
1325  * initial MMC_POWER_UP stage.
1326  */
mmc_power_up(struct mmc_host *host, u32 ocr)1327 void mmc_power_up(struct mmc_host *host, u32 ocr)
1328 {
1329 	if (host->ios.power_mode == MMC_POWER_ON)
1330 		return;
1331 
1332 	mmc_pwrseq_pre_power_on(host);
1333 
1334 	host->ios.vdd = fls(ocr) - 1;
1335 	host->ios.power_mode = MMC_POWER_UP;
1336 	/* Set initial state and call mmc_set_ios */
1337 	mmc_set_initial_state(host);
1338 
1339 	mmc_set_initial_signal_voltage(host);
1340 
1341 	/*
1342 	 * This delay should be sufficient to allow the power supply
1343 	 * to reach the minimum voltage.
1344 	 */
1345 	mmc_delay(host->ios.power_delay_ms);
1346 
1347 	mmc_pwrseq_post_power_on(host);
1348 
1349 	host->ios.clock = host->f_init;
1350 
1351 	host->ios.power_mode = MMC_POWER_ON;
1352 	mmc_set_ios(host);
1353 
1354 	/*
1355 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1356 	 * time required to reach a stable voltage.
1357 	 */
1358 	mmc_delay(host->ios.power_delay_ms);
1359 }
1360 
mmc_power_off(struct mmc_host *host)1361 void mmc_power_off(struct mmc_host *host)
1362 {
1363 	if (host->ios.power_mode == MMC_POWER_OFF)
1364 		return;
1365 
1366 	mmc_pwrseq_power_off(host);
1367 
1368 	host->ios.clock = 0;
1369 	host->ios.vdd = 0;
1370 
1371 	host->ios.power_mode = MMC_POWER_OFF;
1372 	/* Set initial state and call mmc_set_ios */
1373 	mmc_set_initial_state(host);
1374 
1375 	/*
1376 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1377 	 * XO-1.5, require a short delay after poweroff before the card
1378 	 * can be successfully turned on again.
1379 	 */
1380 	mmc_delay(1);
1381 }
1382 
mmc_power_cycle(struct mmc_host *host, u32 ocr)1383 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1384 {
1385 	mmc_power_off(host);
1386 	/* Wait at least 1 ms according to SD spec */
1387 	mmc_delay(1);
1388 	mmc_power_up(host, ocr);
1389 }
1390 
1391 /*
1392  * Cleanup when the last reference to the bus operator is dropped.
1393  */
__mmc_release_bus(struct mmc_host *host)1394 static void __mmc_release_bus(struct mmc_host *host)
1395 {
1396 	WARN_ON(!host->bus_dead);
1397 
1398 	host->bus_ops = NULL;
1399 }
1400 
1401 /*
1402  * Increase reference count of bus operator
1403  */
mmc_bus_get(struct mmc_host *host)1404 static inline void mmc_bus_get(struct mmc_host *host)
1405 {
1406 	unsigned long flags;
1407 
1408 	spin_lock_irqsave(&host->lock, flags);
1409 	host->bus_refs++;
1410 	spin_unlock_irqrestore(&host->lock, flags);
1411 }
1412 
1413 /*
1414  * Decrease reference count of bus operator and free it if
1415  * it is the last reference.
1416  */
mmc_bus_put(struct mmc_host *host)1417 static inline void mmc_bus_put(struct mmc_host *host)
1418 {
1419 	unsigned long flags;
1420 
1421 	spin_lock_irqsave(&host->lock, flags);
1422 	host->bus_refs--;
1423 	if ((host->bus_refs == 0) && host->bus_ops)
1424 		__mmc_release_bus(host);
1425 	spin_unlock_irqrestore(&host->lock, flags);
1426 }
1427 
1428 /*
1429  * Assign a mmc bus handler to a host. Only one bus handler may control a
1430  * host at any given time.
1431  */
mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)1432 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1433 {
1434 	unsigned long flags;
1435 
1436 	WARN_ON(!host->claimed);
1437 
1438 	spin_lock_irqsave(&host->lock, flags);
1439 
1440 	WARN_ON(host->bus_ops);
1441 	WARN_ON(host->bus_refs);
1442 
1443 	host->bus_ops = ops;
1444 	host->bus_refs = 1;
1445 	host->bus_dead = 0;
1446 
1447 	spin_unlock_irqrestore(&host->lock, flags);
1448 }
1449 
1450 /*
1451  * Remove the current bus handler from a host.
1452  */
mmc_detach_bus(struct mmc_host *host)1453 void mmc_detach_bus(struct mmc_host *host)
1454 {
1455 	unsigned long flags;
1456 
1457 	WARN_ON(!host->claimed);
1458 	WARN_ON(!host->bus_ops);
1459 
1460 	spin_lock_irqsave(&host->lock, flags);
1461 
1462 	host->bus_dead = 1;
1463 
1464 	spin_unlock_irqrestore(&host->lock, flags);
1465 
1466 	mmc_bus_put(host);
1467 }
1468 
_mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)1469 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1470 {
1471 	/*
1472 	 * Prevent system sleep for 5s to allow user space to consume the
1473 	 * corresponding uevent. This is especially useful, when CD irq is used
1474 	 * as a system wakeup, but doesn't hurt in other cases.
1475 	 */
1476 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1477 		__pm_wakeup_event(host->ws, 5000);
1478 
1479 	host->detect_change = 1;
1480 	mmc_schedule_delayed_work(&host->detect, delay);
1481 }
1482 
1483 /**
1484  *	mmc_detect_change - process change of state on a MMC socket
1485  *	@host: host which changed state.
1486  *	@delay: optional delay to wait before detection (jiffies)
1487  *
1488  *	MMC drivers should call this when they detect a card has been
1489  *	inserted or removed. The MMC layer will confirm that any
1490  *	present card is still functional, and initialize any newly
1491  *	inserted.
1492  */
mmc_detect_change(struct mmc_host *host, unsigned long delay)1493 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1494 {
1495 	_mmc_detect_change(host, delay, true);
1496 }
1497 EXPORT_SYMBOL(mmc_detect_change);
1498 
mmc_init_erase(struct mmc_card *card)1499 void mmc_init_erase(struct mmc_card *card)
1500 {
1501 	unsigned int sz;
1502 
1503 	if (is_power_of_2(card->erase_size))
1504 		card->erase_shift = ffs(card->erase_size) - 1;
1505 	else
1506 		card->erase_shift = 0;
1507 
1508 	/*
1509 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1510 	 * card.  That is not desirable because it can take a long time
1511 	 * (minutes) potentially delaying more important I/O, and also the
1512 	 * timeout calculations become increasingly hugely over-estimated.
1513 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1514 	 * to that size and alignment.
1515 	 *
1516 	 * For SD cards that define Allocation Unit size, limit erases to one
1517 	 * Allocation Unit at a time.
1518 	 * For MMC, have a stab at ai good value and for modern cards it will
1519 	 * end up being 4MiB. Note that if the value is too small, it can end
1520 	 * up taking longer to erase. Also note, erase_size is already set to
1521 	 * High Capacity Erase Size if available when this function is called.
1522 	 */
1523 	if (mmc_card_sd(card) && card->ssr.au) {
1524 		card->pref_erase = card->ssr.au;
1525 		card->erase_shift = ffs(card->ssr.au) - 1;
1526 	} else if (card->erase_size) {
1527 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1528 		if (sz < 128)
1529 			card->pref_erase = 512 * 1024 / 512;
1530 		else if (sz < 512)
1531 			card->pref_erase = 1024 * 1024 / 512;
1532 		else if (sz < 1024)
1533 			card->pref_erase = 2 * 1024 * 1024 / 512;
1534 		else
1535 			card->pref_erase = 4 * 1024 * 1024 / 512;
1536 		if (card->pref_erase < card->erase_size)
1537 			card->pref_erase = card->erase_size;
1538 		else {
1539 			sz = card->pref_erase % card->erase_size;
1540 			if (sz)
1541 				card->pref_erase += card->erase_size - sz;
1542 		}
1543 	} else
1544 		card->pref_erase = 0;
1545 }
1546 
is_trim_arg(unsigned int arg)1547 static bool is_trim_arg(unsigned int arg)
1548 {
1549 	return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1550 }
1551 
mmc_mmc_erase_timeout(struct mmc_card *card, unsigned int arg, unsigned int qty)1552 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1553 				          unsigned int arg, unsigned int qty)
1554 {
1555 	unsigned int erase_timeout;
1556 
1557 	if (arg == MMC_DISCARD_ARG ||
1558 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1559 		erase_timeout = card->ext_csd.trim_timeout;
1560 	} else if (card->ext_csd.erase_group_def & 1) {
1561 		/* High Capacity Erase Group Size uses HC timeouts */
1562 		if (arg == MMC_TRIM_ARG)
1563 			erase_timeout = card->ext_csd.trim_timeout;
1564 		else
1565 			erase_timeout = card->ext_csd.hc_erase_timeout;
1566 	} else {
1567 		/* CSD Erase Group Size uses write timeout */
1568 		unsigned int mult = (10 << card->csd.r2w_factor);
1569 		unsigned int timeout_clks = card->csd.taac_clks * mult;
1570 		unsigned int timeout_us;
1571 
1572 		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1573 		if (card->csd.taac_ns < 1000000)
1574 			timeout_us = (card->csd.taac_ns * mult) / 1000;
1575 		else
1576 			timeout_us = (card->csd.taac_ns / 1000) * mult;
1577 
1578 		/*
1579 		 * ios.clock is only a target.  The real clock rate might be
1580 		 * less but not that much less, so fudge it by multiplying by 2.
1581 		 */
1582 		timeout_clks <<= 1;
1583 		timeout_us += (timeout_clks * 1000) /
1584 			      (card->host->ios.clock / 1000);
1585 
1586 		erase_timeout = timeout_us / 1000;
1587 
1588 		/*
1589 		 * Theoretically, the calculation could underflow so round up
1590 		 * to 1ms in that case.
1591 		 */
1592 		if (!erase_timeout)
1593 			erase_timeout = 1;
1594 	}
1595 
1596 	/* Multiplier for secure operations */
1597 	if (arg & MMC_SECURE_ARGS) {
1598 		if (arg == MMC_SECURE_ERASE_ARG)
1599 			erase_timeout *= card->ext_csd.sec_erase_mult;
1600 		else
1601 			erase_timeout *= card->ext_csd.sec_trim_mult;
1602 	}
1603 
1604 	erase_timeout *= qty;
1605 
1606 	/*
1607 	 * Ensure at least a 1 second timeout for SPI as per
1608 	 * 'mmc_set_data_timeout()'
1609 	 */
1610 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1611 		erase_timeout = 1000;
1612 
1613 	return erase_timeout;
1614 }
1615 
mmc_sd_erase_timeout(struct mmc_card *card, unsigned int arg, unsigned int qty)1616 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1617 					 unsigned int arg,
1618 					 unsigned int qty)
1619 {
1620 	unsigned int erase_timeout;
1621 
1622 	/* for DISCARD none of the below calculation applies.
1623 	 * the busy timeout is 250msec per discard command.
1624 	 */
1625 	if (arg == SD_DISCARD_ARG)
1626 		return SD_DISCARD_TIMEOUT_MS;
1627 
1628 	if (card->ssr.erase_timeout) {
1629 		/* Erase timeout specified in SD Status Register (SSR) */
1630 		erase_timeout = card->ssr.erase_timeout * qty +
1631 				card->ssr.erase_offset;
1632 	} else {
1633 		/*
1634 		 * Erase timeout not specified in SD Status Register (SSR) so
1635 		 * use 250ms per write block.
1636 		 */
1637 		erase_timeout = 250 * qty;
1638 	}
1639 
1640 	/* Must not be less than 1 second */
1641 	if (erase_timeout < 1000)
1642 		erase_timeout = 1000;
1643 
1644 	return erase_timeout;
1645 }
1646 
mmc_erase_timeout(struct mmc_card *card, unsigned int arg, unsigned int qty)1647 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1648 				      unsigned int arg,
1649 				      unsigned int qty)
1650 {
1651 	if (mmc_card_sd(card))
1652 		return mmc_sd_erase_timeout(card, arg, qty);
1653 	else
1654 		return mmc_mmc_erase_timeout(card, arg, qty);
1655 }
1656 
mmc_do_erase(struct mmc_card *card, unsigned int from, unsigned int to, unsigned int arg)1657 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1658 			unsigned int to, unsigned int arg)
1659 {
1660 	struct mmc_command cmd = {};
1661 	unsigned int qty = 0, busy_timeout = 0;
1662 	bool use_r1b_resp = false;
1663 	int err;
1664 
1665 	mmc_retune_hold(card->host);
1666 
1667 	/*
1668 	 * qty is used to calculate the erase timeout which depends on how many
1669 	 * erase groups (or allocation units in SD terminology) are affected.
1670 	 * We count erasing part of an erase group as one erase group.
1671 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1672 	 * erase group size is almost certainly also power of 2, but it does not
1673 	 * seem to insist on that in the JEDEC standard, so we fall back to
1674 	 * division in that case.  SD may not specify an allocation unit size,
1675 	 * in which case the timeout is based on the number of write blocks.
1676 	 *
1677 	 * Note that the timeout for secure trim 2 will only be correct if the
1678 	 * number of erase groups specified is the same as the total of all
1679 	 * preceding secure trim 1 commands.  Since the power may have been
1680 	 * lost since the secure trim 1 commands occurred, it is generally
1681 	 * impossible to calculate the secure trim 2 timeout correctly.
1682 	 */
1683 	if (card->erase_shift)
1684 		qty += ((to >> card->erase_shift) -
1685 			(from >> card->erase_shift)) + 1;
1686 	else if (mmc_card_sd(card))
1687 		qty += to - from + 1;
1688 	else
1689 		qty += ((to / card->erase_size) -
1690 			(from / card->erase_size)) + 1;
1691 
1692 	if (!mmc_card_blockaddr(card)) {
1693 		from <<= 9;
1694 		to <<= 9;
1695 	}
1696 
1697 	if (mmc_card_sd(card))
1698 		cmd.opcode = SD_ERASE_WR_BLK_START;
1699 	else
1700 		cmd.opcode = MMC_ERASE_GROUP_START;
1701 	cmd.arg = from;
1702 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1703 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1704 	if (err) {
1705 		pr_err("mmc_erase: group start error %d, "
1706 		       "status %#x\n", err, cmd.resp[0]);
1707 		err = -EIO;
1708 		goto out;
1709 	}
1710 
1711 	memset(&cmd, 0, sizeof(struct mmc_command));
1712 	if (mmc_card_sd(card))
1713 		cmd.opcode = SD_ERASE_WR_BLK_END;
1714 	else
1715 		cmd.opcode = MMC_ERASE_GROUP_END;
1716 	cmd.arg = to;
1717 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1718 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1719 	if (err) {
1720 		pr_err("mmc_erase: group end error %d, status %#x\n",
1721 		       err, cmd.resp[0]);
1722 		err = -EIO;
1723 		goto out;
1724 	}
1725 
1726 	memset(&cmd, 0, sizeof(struct mmc_command));
1727 	cmd.opcode = MMC_ERASE;
1728 	cmd.arg = arg;
1729 	busy_timeout = mmc_erase_timeout(card, arg, qty);
1730 	/*
1731 	 * If the host controller supports busy signalling and the timeout for
1732 	 * the erase operation does not exceed the max_busy_timeout, we should
1733 	 * use R1B response. Or we need to prevent the host from doing hw busy
1734 	 * detection, which is done by converting to a R1 response instead.
1735 	 * Note, some hosts requires R1B, which also means they are on their own
1736 	 * when it comes to deal with the busy timeout.
1737 	 */
1738 	if (!(card->host->caps & MMC_CAP_NEED_RSP_BUSY) &&
1739 	    card->host->max_busy_timeout &&
1740 	    busy_timeout > card->host->max_busy_timeout) {
1741 		cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1742 	} else {
1743 		cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1744 		cmd.busy_timeout = busy_timeout;
1745 		use_r1b_resp = true;
1746 	}
1747 
1748 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1749 	if (err) {
1750 		pr_err("mmc_erase: erase error %d, status %#x\n",
1751 		       err, cmd.resp[0]);
1752 		err = -EIO;
1753 		goto out;
1754 	}
1755 
1756 	if (mmc_host_is_spi(card->host))
1757 		goto out;
1758 
1759 	/*
1760 	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1761 	 * shall be avoided.
1762 	 */
1763 	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1764 		goto out;
1765 
1766 	/* Let's poll to find out when the erase operation completes. */
1767 	err = mmc_poll_for_busy(card, busy_timeout, MMC_BUSY_ERASE);
1768 
1769 out:
1770 	mmc_retune_release(card->host);
1771 	return err;
1772 }
1773 
mmc_align_erase_size(struct mmc_card *card, unsigned int *from, unsigned int *to, unsigned int nr)1774 static unsigned int mmc_align_erase_size(struct mmc_card *card,
1775 					 unsigned int *from,
1776 					 unsigned int *to,
1777 					 unsigned int nr)
1778 {
1779 	unsigned int from_new = *from, nr_new = nr, rem;
1780 
1781 	/*
1782 	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1783 	 * to align the erase size efficiently.
1784 	 */
1785 	if (is_power_of_2(card->erase_size)) {
1786 		unsigned int temp = from_new;
1787 
1788 		from_new = round_up(temp, card->erase_size);
1789 		rem = from_new - temp;
1790 
1791 		if (nr_new > rem)
1792 			nr_new -= rem;
1793 		else
1794 			return 0;
1795 
1796 		nr_new = round_down(nr_new, card->erase_size);
1797 	} else {
1798 		rem = from_new % card->erase_size;
1799 		if (rem) {
1800 			rem = card->erase_size - rem;
1801 			from_new += rem;
1802 			if (nr_new > rem)
1803 				nr_new -= rem;
1804 			else
1805 				return 0;
1806 		}
1807 
1808 		rem = nr_new % card->erase_size;
1809 		if (rem)
1810 			nr_new -= rem;
1811 	}
1812 
1813 	if (nr_new == 0)
1814 		return 0;
1815 
1816 	*to = from_new + nr_new;
1817 	*from = from_new;
1818 
1819 	return nr_new;
1820 }
1821 
1822 /**
1823  * mmc_erase - erase sectors.
1824  * @card: card to erase
1825  * @from: first sector to erase
1826  * @nr: number of sectors to erase
1827  * @arg: erase command argument
1828  *
1829  * Caller must claim host before calling this function.
1830  */
mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, unsigned int arg)1831 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1832 	      unsigned int arg)
1833 {
1834 	unsigned int rem, to = from + nr;
1835 	int err;
1836 
1837 	if (!(card->csd.cmdclass & CCC_ERASE))
1838 		return -EOPNOTSUPP;
1839 
1840 	if (!card->erase_size)
1841 		return -EOPNOTSUPP;
1842 
1843 	if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1844 		return -EOPNOTSUPP;
1845 
1846 	if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1847 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1848 		return -EOPNOTSUPP;
1849 
1850 	if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1851 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1852 		return -EOPNOTSUPP;
1853 
1854 	if (arg == MMC_SECURE_ERASE_ARG) {
1855 		if (from % card->erase_size || nr % card->erase_size)
1856 			return -EINVAL;
1857 	}
1858 
1859 	if (arg == MMC_ERASE_ARG)
1860 		nr = mmc_align_erase_size(card, &from, &to, nr);
1861 
1862 	if (nr == 0)
1863 		return 0;
1864 
1865 	if (to <= from)
1866 		return -EINVAL;
1867 
1868 	/* 'from' and 'to' are inclusive */
1869 	to -= 1;
1870 
1871 	/*
1872 	 * Special case where only one erase-group fits in the timeout budget:
1873 	 * If the region crosses an erase-group boundary on this particular
1874 	 * case, we will be trimming more than one erase-group which, does not
1875 	 * fit in the timeout budget of the controller, so we need to split it
1876 	 * and call mmc_do_erase() twice if necessary. This special case is
1877 	 * identified by the card->eg_boundary flag.
1878 	 */
1879 	rem = card->erase_size - (from % card->erase_size);
1880 	if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1881 		err = mmc_do_erase(card, from, from + rem - 1, arg);
1882 		from += rem;
1883 		if ((err) || (to <= from))
1884 			return err;
1885 	}
1886 
1887 	return mmc_do_erase(card, from, to, arg);
1888 }
1889 EXPORT_SYMBOL(mmc_erase);
1890 
mmc_can_erase(struct mmc_card *card)1891 int mmc_can_erase(struct mmc_card *card)
1892 {
1893 	if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1894 		return 1;
1895 	return 0;
1896 }
1897 EXPORT_SYMBOL(mmc_can_erase);
1898 
mmc_can_trim(struct mmc_card *card)1899 int mmc_can_trim(struct mmc_card *card)
1900 {
1901 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1902 	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1903 		return 1;
1904 	return 0;
1905 }
1906 EXPORT_SYMBOL(mmc_can_trim);
1907 
mmc_can_discard(struct mmc_card *card)1908 int mmc_can_discard(struct mmc_card *card)
1909 {
1910 	/*
1911 	 * As there's no way to detect the discard support bit at v4.5
1912 	 * use the s/w feature support filed.
1913 	 */
1914 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1915 		return 1;
1916 	return 0;
1917 }
1918 EXPORT_SYMBOL(mmc_can_discard);
1919 
mmc_can_sanitize(struct mmc_card *card)1920 int mmc_can_sanitize(struct mmc_card *card)
1921 {
1922 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1923 		return 0;
1924 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1925 		return 1;
1926 	return 0;
1927 }
1928 
mmc_can_secure_erase_trim(struct mmc_card *card)1929 int mmc_can_secure_erase_trim(struct mmc_card *card)
1930 {
1931 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1932 	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1933 		return 1;
1934 	return 0;
1935 }
1936 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1937 
mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, unsigned int nr)1938 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1939 			    unsigned int nr)
1940 {
1941 	if (!card->erase_size)
1942 		return 0;
1943 	if (from % card->erase_size || nr % card->erase_size)
1944 		return 0;
1945 	return 1;
1946 }
1947 EXPORT_SYMBOL(mmc_erase_group_aligned);
1948 
mmc_do_calc_max_discard(struct mmc_card *card, unsigned int arg)1949 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1950 					    unsigned int arg)
1951 {
1952 	struct mmc_host *host = card->host;
1953 	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1954 	unsigned int last_timeout = 0;
1955 	unsigned int max_busy_timeout = host->max_busy_timeout ?
1956 			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1957 
1958 	if (card->erase_shift) {
1959 		max_qty = UINT_MAX >> card->erase_shift;
1960 		min_qty = card->pref_erase >> card->erase_shift;
1961 	} else if (mmc_card_sd(card)) {
1962 		max_qty = UINT_MAX;
1963 		min_qty = card->pref_erase;
1964 	} else {
1965 		max_qty = UINT_MAX / card->erase_size;
1966 		min_qty = card->pref_erase / card->erase_size;
1967 	}
1968 
1969 	/*
1970 	 * We should not only use 'host->max_busy_timeout' as the limitation
1971 	 * when deciding the max discard sectors. We should set a balance value
1972 	 * to improve the erase speed, and it can not get too long timeout at
1973 	 * the same time.
1974 	 *
1975 	 * Here we set 'card->pref_erase' as the minimal discard sectors no
1976 	 * matter what size of 'host->max_busy_timeout', but if the
1977 	 * 'host->max_busy_timeout' is large enough for more discard sectors,
1978 	 * then we can continue to increase the max discard sectors until we
1979 	 * get a balance value. In cases when the 'host->max_busy_timeout'
1980 	 * isn't specified, use the default max erase timeout.
1981 	 */
1982 	do {
1983 		y = 0;
1984 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1985 			timeout = mmc_erase_timeout(card, arg, qty + x);
1986 
1987 			if (qty + x > min_qty && timeout > max_busy_timeout)
1988 				break;
1989 
1990 			if (timeout < last_timeout)
1991 				break;
1992 			last_timeout = timeout;
1993 			y = x;
1994 		}
1995 		qty += y;
1996 	} while (y);
1997 
1998 	if (!qty)
1999 		return 0;
2000 
2001 	/*
2002 	 * When specifying a sector range to trim, chances are we might cross
2003 	 * an erase-group boundary even if the amount of sectors is less than
2004 	 * one erase-group.
2005 	 * If we can only fit one erase-group in the controller timeout budget,
2006 	 * we have to care that erase-group boundaries are not crossed by a
2007 	 * single trim operation. We flag that special case with "eg_boundary".
2008 	 * In all other cases we can just decrement qty and pretend that we
2009 	 * always touch (qty + 1) erase-groups as a simple optimization.
2010 	 */
2011 	if (qty == 1)
2012 		card->eg_boundary = 1;
2013 	else
2014 		qty--;
2015 
2016 	/* Convert qty to sectors */
2017 	if (card->erase_shift)
2018 		max_discard = qty << card->erase_shift;
2019 	else if (mmc_card_sd(card))
2020 		max_discard = qty + 1;
2021 	else
2022 		max_discard = qty * card->erase_size;
2023 
2024 	return max_discard;
2025 }
2026 
mmc_calc_max_discard(struct mmc_card *card)2027 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2028 {
2029 	struct mmc_host *host = card->host;
2030 	unsigned int max_discard, max_trim;
2031 
2032 	/*
2033 	 * Without erase_group_def set, MMC erase timeout depends on clock
2034 	 * frequence which can change.  In that case, the best choice is
2035 	 * just the preferred erase size.
2036 	 */
2037 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2038 		return card->pref_erase;
2039 
2040 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2041 	if (mmc_can_trim(card)) {
2042 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2043 		if (max_trim < max_discard || max_discard == 0)
2044 			max_discard = max_trim;
2045 	} else if (max_discard < card->erase_size) {
2046 		max_discard = 0;
2047 	}
2048 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2049 		mmc_hostname(host), max_discard, host->max_busy_timeout ?
2050 		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2051 	return max_discard;
2052 }
2053 EXPORT_SYMBOL(mmc_calc_max_discard);
2054 
mmc_card_is_blockaddr(struct mmc_card *card)2055 bool mmc_card_is_blockaddr(struct mmc_card *card)
2056 {
2057 	return card ? mmc_card_blockaddr(card) : false;
2058 }
2059 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2060 
mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)2061 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2062 {
2063 	struct mmc_command cmd = {};
2064 
2065 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2066 	    mmc_card_hs400(card) || mmc_card_hs400es(card))
2067 		return 0;
2068 
2069 	cmd.opcode = MMC_SET_BLOCKLEN;
2070 	cmd.arg = blocklen;
2071 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2072 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2073 }
2074 EXPORT_SYMBOL(mmc_set_blocklen);
2075 
mmc_hw_reset_for_init(struct mmc_host *host)2076 static void mmc_hw_reset_for_init(struct mmc_host *host)
2077 {
2078 	mmc_pwrseq_reset(host);
2079 
2080 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2081 		return;
2082 	host->ops->hw_reset(host);
2083 }
2084 
2085 /**
2086  * mmc_hw_reset - reset the card in hardware
2087  * @host: MMC host to which the card is attached
2088  *
2089  * Hard reset the card. This function is only for upper layers, like the
2090  * block layer or card drivers. You cannot use it in host drivers (struct
2091  * mmc_card might be gone then).
2092  *
2093  * Return: 0 on success, -errno on failure
2094  */
mmc_hw_reset(struct mmc_host *host)2095 int mmc_hw_reset(struct mmc_host *host)
2096 {
2097 	int ret;
2098 
2099 	if (!host->card)
2100 		return -EINVAL;
2101 
2102 	mmc_bus_get(host);
2103 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->hw_reset) {
2104 		mmc_bus_put(host);
2105 		return -EOPNOTSUPP;
2106 	}
2107 
2108 	ret = host->bus_ops->hw_reset(host);
2109 	mmc_bus_put(host);
2110 
2111 	if (ret < 0)
2112 		pr_warn("%s: tried to HW reset card, got error %d\n",
2113 			mmc_hostname(host), ret);
2114 
2115 	return ret;
2116 }
2117 EXPORT_SYMBOL(mmc_hw_reset);
2118 
mmc_sw_reset(struct mmc_host *host)2119 int mmc_sw_reset(struct mmc_host *host)
2120 {
2121 	int ret;
2122 
2123 	if (!host->card)
2124 		return -EINVAL;
2125 
2126 	mmc_bus_get(host);
2127 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->sw_reset) {
2128 		mmc_bus_put(host);
2129 		return -EOPNOTSUPP;
2130 	}
2131 
2132 	ret = host->bus_ops->sw_reset(host);
2133 	mmc_bus_put(host);
2134 
2135 	if (ret)
2136 		pr_warn("%s: tried to SW reset card, got error %d\n",
2137 			mmc_hostname(host), ret);
2138 
2139 	return ret;
2140 }
2141 EXPORT_SYMBOL(mmc_sw_reset);
2142 
mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)2143 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2144 {
2145 	host->f_init = freq;
2146 
2147 	pr_debug("%s: %s: trying to init card at %u Hz\n",
2148 		mmc_hostname(host), __func__, host->f_init);
2149 
2150 	mmc_power_up(host, host->ocr_avail);
2151 
2152 	/*
2153 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2154 	 * do a hardware reset if possible.
2155 	 */
2156 	mmc_hw_reset_for_init(host);
2157 
2158 	/*
2159 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2160 	 * if the card is being re-initialized, just send it.  CMD52
2161 	 * should be ignored by SD/eMMC cards.
2162 	 * Skip it if we already know that we do not support SDIO commands
2163 	 */
2164 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2165 		sdio_reset(host);
2166 
2167 	mmc_go_idle(host);
2168 
2169 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2170 		mmc_send_if_cond(host, host->ocr_avail);
2171 
2172 	/* Order's important: probe SDIO, then SD, then MMC */
2173 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2174 		if (!mmc_attach_sdio(host))
2175 			return 0;
2176 
2177 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2178 		if (!mmc_attach_sd(host))
2179 			return 0;
2180 
2181 	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2182 		if (!mmc_attach_mmc(host))
2183 			return 0;
2184 
2185 	mmc_power_off(host);
2186 	return -EIO;
2187 }
2188 
_mmc_detect_card_removed(struct mmc_host *host)2189 int _mmc_detect_card_removed(struct mmc_host *host)
2190 {
2191 	int ret;
2192 
2193 	if (!host->card || mmc_card_removed(host->card))
2194 		return 1;
2195 
2196 	ret = host->bus_ops->alive(host);
2197 
2198 	/*
2199 	 * Card detect status and alive check may be out of sync if card is
2200 	 * removed slowly, when card detect switch changes while card/slot
2201 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2202 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2203 	 * detect work 200ms later for this case.
2204 	 */
2205 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2206 		mmc_detect_change(host, msecs_to_jiffies(200));
2207 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2208 	}
2209 
2210 	if (ret) {
2211 		mmc_card_set_removed(host->card);
2212 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2213 	}
2214 
2215 	return ret;
2216 }
2217 
mmc_detect_card_removed(struct mmc_host *host)2218 int mmc_detect_card_removed(struct mmc_host *host)
2219 {
2220 	struct mmc_card *card = host->card;
2221 	int ret;
2222 
2223 	WARN_ON(!host->claimed);
2224 
2225 	if (!card)
2226 		return 1;
2227 
2228 	if (!mmc_card_is_removable(host))
2229 		return 0;
2230 
2231 	ret = mmc_card_removed(card);
2232 	/*
2233 	 * The card will be considered unchanged unless we have been asked to
2234 	 * detect a change or host requires polling to provide card detection.
2235 	 */
2236 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2237 		return ret;
2238 
2239 	host->detect_change = 0;
2240 	if (!ret) {
2241 		ret = _mmc_detect_card_removed(host);
2242 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2243 			/*
2244 			 * Schedule a detect work as soon as possible to let a
2245 			 * rescan handle the card removal.
2246 			 */
2247 			cancel_delayed_work(&host->detect);
2248 			_mmc_detect_change(host, 0, false);
2249 		}
2250 	}
2251 
2252 	return ret;
2253 }
2254 EXPORT_SYMBOL(mmc_detect_card_removed);
2255 
mmc_rescan(struct work_struct *work)2256 void mmc_rescan(struct work_struct *work)
2257 {
2258 	struct mmc_host *host =
2259 		container_of(work, struct mmc_host, detect.work);
2260 	int i;
2261 
2262 	if (host->rescan_disable)
2263 		return;
2264 
2265 	/* If there is a non-removable card registered, only scan once */
2266 	if (!mmc_card_is_removable(host) && host->rescan_entered)
2267 		return;
2268 	host->rescan_entered = 1;
2269 
2270 	if (host->trigger_card_event && host->ops->card_event) {
2271 		mmc_claim_host(host);
2272 		host->ops->card_event(host);
2273 		mmc_release_host(host);
2274 		host->trigger_card_event = false;
2275 	}
2276 
2277 	mmc_bus_get(host);
2278 
2279 	/* Verify a registered card to be functional, else remove it. */
2280 	if (host->bus_ops && !host->bus_dead)
2281 		host->bus_ops->detect(host);
2282 
2283 	host->detect_change = 0;
2284 
2285 	/*
2286 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2287 	 * the card is no longer present.
2288 	 */
2289 	mmc_bus_put(host);
2290 	mmc_bus_get(host);
2291 
2292 	/* if there still is a card present, stop here */
2293 	if (host->bus_ops != NULL) {
2294 		mmc_bus_put(host);
2295 		goto out;
2296 	}
2297 
2298 	/*
2299 	 * Only we can add a new handler, so it's safe to
2300 	 * release the lock here.
2301 	 */
2302 	mmc_bus_put(host);
2303 
2304 	mmc_claim_host(host);
2305 	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2306 			host->ops->get_cd(host) == 0) {
2307 		mmc_power_off(host);
2308 		mmc_release_host(host);
2309 		goto out;
2310 	}
2311 
2312 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2313 		unsigned int freq = freqs[i];
2314 		if (freq > host->f_max) {
2315 			if (i + 1 < ARRAY_SIZE(freqs))
2316 				continue;
2317 			freq = host->f_max;
2318 		}
2319 		if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2320 			break;
2321 		if (freqs[i] <= host->f_min)
2322 			break;
2323 	}
2324 	mmc_release_host(host);
2325 
2326  out:
2327 	if (host->caps & MMC_CAP_NEEDS_POLL)
2328 		mmc_schedule_delayed_work(&host->detect, HZ);
2329 }
2330 
mmc_start_host(struct mmc_host *host)2331 void mmc_start_host(struct mmc_host *host)
2332 {
2333 	host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2334 	host->rescan_disable = 0;
2335 
2336 	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2337 		mmc_claim_host(host);
2338 		mmc_power_up(host, host->ocr_avail);
2339 		mmc_release_host(host);
2340 	}
2341 
2342 	mmc_gpiod_request_cd_irq(host);
2343 	_mmc_detect_change(host, 0, false);
2344 }
2345 
__mmc_stop_host(struct mmc_host *host)2346 void __mmc_stop_host(struct mmc_host *host)
2347 {
2348 	if (host->slot.cd_irq >= 0) {
2349 		mmc_gpio_set_cd_wake(host, false);
2350 		disable_irq(host->slot.cd_irq);
2351 	}
2352 
2353 	host->rescan_disable = 1;
2354 	cancel_delayed_work_sync(&host->detect);
2355 }
2356 
mmc_stop_host(struct mmc_host *host)2357 void mmc_stop_host(struct mmc_host *host)
2358 {
2359 	__mmc_stop_host(host);
2360 
2361 	/* clear pm flags now and let card drivers set them as needed */
2362 	host->pm_flags = 0;
2363 
2364 	mmc_bus_get(host);
2365 	if (host->bus_ops && !host->bus_dead) {
2366 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2367 		host->bus_ops->remove(host);
2368 		mmc_claim_host(host);
2369 		mmc_detach_bus(host);
2370 		mmc_power_off(host);
2371 		mmc_release_host(host);
2372 		mmc_bus_put(host);
2373 		return;
2374 	}
2375 	mmc_bus_put(host);
2376 
2377 	mmc_claim_host(host);
2378 	mmc_power_off(host);
2379 	mmc_release_host(host);
2380 }
2381 
mmc_init(void)2382 static int __init mmc_init(void)
2383 {
2384 	int ret;
2385 
2386 	ret = mmc_register_bus();
2387 	if (ret)
2388 		return ret;
2389 
2390 	ret = mmc_register_host_class();
2391 	if (ret)
2392 		goto unregister_bus;
2393 
2394 	ret = sdio_register_bus();
2395 	if (ret)
2396 		goto unregister_host_class;
2397 
2398 	return 0;
2399 
2400 unregister_host_class:
2401 	mmc_unregister_host_class();
2402 unregister_bus:
2403 	mmc_unregister_bus();
2404 	return ret;
2405 }
2406 
mmc_exit(void)2407 static void __exit mmc_exit(void)
2408 {
2409 	sdio_unregister_bus();
2410 	mmc_unregister_host_class();
2411 	mmc_unregister_bus();
2412 }
2413 
2414 subsys_initcall(mmc_init);
2415 module_exit(mmc_exit);
2416 
2417 MODULE_LICENSE("GPL");
2418