1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/core/core.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 */
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/delay.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/leds.h>
19 #include <linux/scatterlist.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pm_wakeup.h>
23 #include <linux/suspend.h>
24 #include <linux/fault-inject.h>
25 #include <linux/random.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28
29 #include <linux/mmc/card.h>
30 #include <linux/mmc/host.h>
31 #include <linux/mmc/mmc.h>
32 #include <linux/mmc/sd.h>
33 #include <linux/mmc/slot-gpio.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/mmc.h>
37
38 #include "core.h"
39 #include "card.h"
40 #include "bus.h"
41 #include "host.h"
42 #include "sdio_bus.h"
43 #include "pwrseq.h"
44
45 #include "mmc_ops.h"
46 #include "sd_ops.h"
47 #include "sdio_ops.h"
48
49 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
50 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
51 #define SD_DISCARD_TIMEOUT_MS (250)
52
53 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
54
55 /*
56 * Enabling software CRCs on the data blocks can be a significant (30%)
57 * performance cost, and for other reasons may not always be desired.
58 * So we allow it it to be disabled.
59 */
60 bool use_spi_crc = 1;
61 module_param(use_spi_crc, bool, 0);
62
mmc_schedule_delayed_work(struct delayed_work *work, unsigned long delay)63 static int mmc_schedule_delayed_work(struct delayed_work *work,
64 unsigned long delay)
65 {
66 /*
67 * We use the system_freezable_wq, because of two reasons.
68 * First, it allows several works (not the same work item) to be
69 * executed simultaneously. Second, the queue becomes frozen when
70 * userspace becomes frozen during system PM.
71 */
72 return queue_delayed_work(system_freezable_wq, work, delay);
73 }
74
75 #ifdef CONFIG_FAIL_MMC_REQUEST
76
77 /*
78 * Internal function. Inject random data errors.
79 * If mmc_data is NULL no errors are injected.
80 */
mmc_should_fail_request(struct mmc_host *host, struct mmc_request *mrq)81 static void mmc_should_fail_request(struct mmc_host *host,
82 struct mmc_request *mrq)
83 {
84 struct mmc_command *cmd = mrq->cmd;
85 struct mmc_data *data = mrq->data;
86 static const int data_errors[] = {
87 -ETIMEDOUT,
88 -EILSEQ,
89 -EIO,
90 };
91
92 if (!data)
93 return;
94
95 if ((cmd && cmd->error) || data->error ||
96 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
97 return;
98
99 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
100 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
101 }
102
103 #else /* CONFIG_FAIL_MMC_REQUEST */
104
mmc_should_fail_request(struct mmc_host *host, struct mmc_request *mrq)105 static inline void mmc_should_fail_request(struct mmc_host *host,
106 struct mmc_request *mrq)
107 {
108 }
109
110 #endif /* CONFIG_FAIL_MMC_REQUEST */
111
mmc_complete_cmd(struct mmc_request *mrq)112 static inline void mmc_complete_cmd(struct mmc_request *mrq)
113 {
114 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
115 complete_all(&mrq->cmd_completion);
116 }
117
mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)118 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
119 {
120 if (!mrq->cap_cmd_during_tfr)
121 return;
122
123 mmc_complete_cmd(mrq);
124
125 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
126 mmc_hostname(host), mrq->cmd->opcode);
127 }
128 EXPORT_SYMBOL(mmc_command_done);
129
130 /**
131 * mmc_request_done - finish processing an MMC request
132 * @host: MMC host which completed request
133 * @mrq: MMC request which request
134 *
135 * MMC drivers should call this function when they have completed
136 * their processing of a request.
137 */
mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)138 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
139 {
140 struct mmc_command *cmd = mrq->cmd;
141 int err = cmd->error;
142
143 /* Flag re-tuning needed on CRC errors */
144 if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
145 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
146 !host->retune_crc_disable &&
147 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
148 (mrq->data && mrq->data->error == -EILSEQ) ||
149 (mrq->stop && mrq->stop->error == -EILSEQ)))
150 mmc_retune_needed(host);
151
152 if (err && cmd->retries && mmc_host_is_spi(host)) {
153 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
154 cmd->retries = 0;
155 }
156
157 if (host->ongoing_mrq == mrq)
158 host->ongoing_mrq = NULL;
159
160 mmc_complete_cmd(mrq);
161
162 trace_mmc_request_done(host, mrq);
163
164 /*
165 * We list various conditions for the command to be considered
166 * properly done:
167 *
168 * - There was no error, OK fine then
169 * - We are not doing some kind of retry
170 * - The card was removed (...so just complete everything no matter
171 * if there are errors or retries)
172 */
173 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
174 mmc_should_fail_request(host, mrq);
175
176 if (!host->ongoing_mrq)
177 led_trigger_event(host->led, LED_OFF);
178
179 if (mrq->sbc) {
180 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
181 mmc_hostname(host), mrq->sbc->opcode,
182 mrq->sbc->error,
183 mrq->sbc->resp[0], mrq->sbc->resp[1],
184 mrq->sbc->resp[2], mrq->sbc->resp[3]);
185 }
186
187 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
188 mmc_hostname(host), cmd->opcode, err,
189 cmd->resp[0], cmd->resp[1],
190 cmd->resp[2], cmd->resp[3]);
191
192 if (mrq->data) {
193 pr_debug("%s: %d bytes transferred: %d\n",
194 mmc_hostname(host),
195 mrq->data->bytes_xfered, mrq->data->error);
196 }
197
198 if (mrq->stop) {
199 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
200 mmc_hostname(host), mrq->stop->opcode,
201 mrq->stop->error,
202 mrq->stop->resp[0], mrq->stop->resp[1],
203 mrq->stop->resp[2], mrq->stop->resp[3]);
204 }
205 }
206 /*
207 * Request starter must handle retries - see
208 * mmc_wait_for_req_done().
209 */
210 if (mrq->done)
211 mrq->done(mrq);
212 }
213
214 EXPORT_SYMBOL(mmc_request_done);
215
__mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)216 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
217 {
218 int err;
219
220 /* Assumes host controller has been runtime resumed by mmc_claim_host */
221 err = mmc_retune(host);
222 if (err) {
223 mrq->cmd->error = err;
224 mmc_request_done(host, mrq);
225 return;
226 }
227
228 /*
229 * For sdio rw commands we must wait for card busy otherwise some
230 * sdio devices won't work properly.
231 * And bypass I/O abort, reset and bus suspend operations.
232 */
233 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
234 host->ops->card_busy) {
235 int tries = 500; /* Wait aprox 500ms at maximum */
236
237 while (host->ops->card_busy(host) && --tries)
238 mmc_delay(1);
239
240 if (tries == 0) {
241 mrq->cmd->error = -EBUSY;
242 mmc_request_done(host, mrq);
243 return;
244 }
245 }
246
247 if (mrq->cap_cmd_during_tfr) {
248 host->ongoing_mrq = mrq;
249 /*
250 * Retry path could come through here without having waiting on
251 * cmd_completion, so ensure it is reinitialised.
252 */
253 reinit_completion(&mrq->cmd_completion);
254 }
255
256 trace_mmc_request_start(host, mrq);
257
258 if (host->cqe_on)
259 host->cqe_ops->cqe_off(host);
260
261 host->ops->request(host, mrq);
262 }
263
mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq, bool cqe)264 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
265 bool cqe)
266 {
267 if (mrq->sbc) {
268 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
269 mmc_hostname(host), mrq->sbc->opcode,
270 mrq->sbc->arg, mrq->sbc->flags);
271 }
272
273 if (mrq->cmd) {
274 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
275 mmc_hostname(host), cqe ? "CQE direct " : "",
276 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
277 } else if (cqe) {
278 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
279 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
280 }
281
282 if (mrq->data) {
283 pr_debug("%s: blksz %d blocks %d flags %08x "
284 "tsac %d ms nsac %d\n",
285 mmc_hostname(host), mrq->data->blksz,
286 mrq->data->blocks, mrq->data->flags,
287 mrq->data->timeout_ns / 1000000,
288 mrq->data->timeout_clks);
289 }
290
291 if (mrq->stop) {
292 pr_debug("%s: CMD%u arg %08x flags %08x\n",
293 mmc_hostname(host), mrq->stop->opcode,
294 mrq->stop->arg, mrq->stop->flags);
295 }
296 }
297
mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)298 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
299 {
300 unsigned int i, sz = 0;
301 struct scatterlist *sg;
302
303 if (mrq->cmd) {
304 mrq->cmd->error = 0;
305 mrq->cmd->mrq = mrq;
306 mrq->cmd->data = mrq->data;
307 }
308 if (mrq->sbc) {
309 mrq->sbc->error = 0;
310 mrq->sbc->mrq = mrq;
311 }
312 if (mrq->data) {
313 if (mrq->data->blksz > host->max_blk_size ||
314 mrq->data->blocks > host->max_blk_count ||
315 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
316 return -EINVAL;
317
318 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
319 sz += sg->length;
320 if (sz != mrq->data->blocks * mrq->data->blksz)
321 return -EINVAL;
322
323 mrq->data->error = 0;
324 mrq->data->mrq = mrq;
325 if (mrq->stop) {
326 mrq->data->stop = mrq->stop;
327 mrq->stop->error = 0;
328 mrq->stop->mrq = mrq;
329 }
330 }
331
332 return 0;
333 }
334
mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)335 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
336 {
337 int err;
338
339 init_completion(&mrq->cmd_completion);
340
341 mmc_retune_hold(host);
342
343 if (mmc_card_removed(host->card))
344 return -ENOMEDIUM;
345
346 mmc_mrq_pr_debug(host, mrq, false);
347
348 WARN_ON(!host->claimed);
349
350 err = mmc_mrq_prep(host, mrq);
351 if (err)
352 return err;
353
354 led_trigger_event(host->led, LED_FULL);
355 __mmc_start_request(host, mrq);
356
357 return 0;
358 }
359 EXPORT_SYMBOL(mmc_start_request);
360
mmc_wait_done(struct mmc_request *mrq)361 static void mmc_wait_done(struct mmc_request *mrq)
362 {
363 complete(&mrq->completion);
364 }
365
mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)366 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
367 {
368 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
369
370 /*
371 * If there is an ongoing transfer, wait for the command line to become
372 * available.
373 */
374 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
375 wait_for_completion(&ongoing_mrq->cmd_completion);
376 }
377
__mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)378 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
379 {
380 int err;
381
382 mmc_wait_ongoing_tfr_cmd(host);
383
384 init_completion(&mrq->completion);
385 mrq->done = mmc_wait_done;
386
387 err = mmc_start_request(host, mrq);
388 if (err) {
389 mrq->cmd->error = err;
390 mmc_complete_cmd(mrq);
391 complete(&mrq->completion);
392 }
393
394 return err;
395 }
396
mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)397 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
398 {
399 struct mmc_command *cmd;
400
401 while (1) {
402 wait_for_completion(&mrq->completion);
403
404 cmd = mrq->cmd;
405
406 if (!cmd->error || !cmd->retries ||
407 mmc_card_removed(host->card))
408 break;
409
410 mmc_retune_recheck(host);
411
412 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
413 mmc_hostname(host), cmd->opcode, cmd->error);
414 cmd->retries--;
415 cmd->error = 0;
416 __mmc_start_request(host, mrq);
417 }
418
419 mmc_retune_release(host);
420 }
421 EXPORT_SYMBOL(mmc_wait_for_req_done);
422
423 /*
424 * mmc_cqe_start_req - Start a CQE request.
425 * @host: MMC host to start the request
426 * @mrq: request to start
427 *
428 * Start the request, re-tuning if needed and it is possible. Returns an error
429 * code if the request fails to start or -EBUSY if CQE is busy.
430 */
mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)431 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
432 {
433 int err;
434
435 /*
436 * CQE cannot process re-tuning commands. Caller must hold retuning
437 * while CQE is in use. Re-tuning can happen here only when CQE has no
438 * active requests i.e. this is the first. Note, re-tuning will call
439 * ->cqe_off().
440 */
441 err = mmc_retune(host);
442 if (err)
443 goto out_err;
444
445 mrq->host = host;
446
447 mmc_mrq_pr_debug(host, mrq, true);
448
449 err = mmc_mrq_prep(host, mrq);
450 if (err)
451 goto out_err;
452
453 err = host->cqe_ops->cqe_request(host, mrq);
454 if (err)
455 goto out_err;
456
457 trace_mmc_request_start(host, mrq);
458
459 return 0;
460
461 out_err:
462 if (mrq->cmd) {
463 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
464 mmc_hostname(host), mrq->cmd->opcode, err);
465 } else {
466 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
467 mmc_hostname(host), mrq->tag, err);
468 }
469 return err;
470 }
471 EXPORT_SYMBOL(mmc_cqe_start_req);
472
473 /**
474 * mmc_cqe_request_done - CQE has finished processing an MMC request
475 * @host: MMC host which completed request
476 * @mrq: MMC request which completed
477 *
478 * CQE drivers should call this function when they have completed
479 * their processing of a request.
480 */
mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)481 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
482 {
483 mmc_should_fail_request(host, mrq);
484
485 /* Flag re-tuning needed on CRC errors */
486 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
487 (mrq->data && mrq->data->error == -EILSEQ))
488 mmc_retune_needed(host);
489
490 trace_mmc_request_done(host, mrq);
491
492 if (mrq->cmd) {
493 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
494 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
495 } else {
496 pr_debug("%s: CQE transfer done tag %d\n",
497 mmc_hostname(host), mrq->tag);
498 }
499
500 if (mrq->data) {
501 pr_debug("%s: %d bytes transferred: %d\n",
502 mmc_hostname(host),
503 mrq->data->bytes_xfered, mrq->data->error);
504 }
505
506 mrq->done(mrq);
507 }
508 EXPORT_SYMBOL(mmc_cqe_request_done);
509
510 /**
511 * mmc_cqe_post_req - CQE post process of a completed MMC request
512 * @host: MMC host
513 * @mrq: MMC request to be processed
514 */
mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)515 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
516 {
517 if (host->cqe_ops->cqe_post_req)
518 host->cqe_ops->cqe_post_req(host, mrq);
519 }
520 EXPORT_SYMBOL(mmc_cqe_post_req);
521
522 /* Arbitrary 1 second timeout */
523 #define MMC_CQE_RECOVERY_TIMEOUT 1000
524
525 /*
526 * mmc_cqe_recovery - Recover from CQE errors.
527 * @host: MMC host to recover
528 *
529 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
530 * in eMMC, and discarding the queue in CQE. CQE must call
531 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
532 * fails to discard its queue.
533 */
mmc_cqe_recovery(struct mmc_host *host)534 int mmc_cqe_recovery(struct mmc_host *host)
535 {
536 struct mmc_command cmd;
537 int err;
538
539 mmc_retune_hold_now(host);
540
541 /*
542 * Recovery is expected seldom, if at all, but it reduces performance,
543 * so make sure it is not completely silent.
544 */
545 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
546
547 host->cqe_ops->cqe_recovery_start(host);
548
549 memset(&cmd, 0, sizeof(cmd));
550 cmd.opcode = MMC_STOP_TRANSMISSION;
551 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
552 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
553 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
554 mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
555
556 mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, MMC_BUSY_IO);
557
558 memset(&cmd, 0, sizeof(cmd));
559 cmd.opcode = MMC_CMDQ_TASK_MGMT;
560 cmd.arg = 1; /* Discard entire queue */
561 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
562 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
563 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
564 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
565
566 host->cqe_ops->cqe_recovery_finish(host);
567
568 if (err)
569 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
570
571 mmc_retune_release(host);
572
573 return err;
574 }
575 EXPORT_SYMBOL(mmc_cqe_recovery);
576
577 /**
578 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
579 * @host: MMC host
580 * @mrq: MMC request
581 *
582 * mmc_is_req_done() is used with requests that have
583 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
584 * starting a request and before waiting for it to complete. That is,
585 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
586 * and before mmc_wait_for_req_done(). If it is called at other times the
587 * result is not meaningful.
588 */
mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)589 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
590 {
591 return completion_done(&mrq->completion);
592 }
593 EXPORT_SYMBOL(mmc_is_req_done);
594
595 /**
596 * mmc_wait_for_req - start a request and wait for completion
597 * @host: MMC host to start command
598 * @mrq: MMC request to start
599 *
600 * Start a new MMC custom command request for a host, and wait
601 * for the command to complete. In the case of 'cap_cmd_during_tfr'
602 * requests, the transfer is ongoing and the caller can issue further
603 * commands that do not use the data lines, and then wait by calling
604 * mmc_wait_for_req_done().
605 * Does not attempt to parse the response.
606 */
mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)607 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
608 {
609 __mmc_start_req(host, mrq);
610
611 if (!mrq->cap_cmd_during_tfr)
612 mmc_wait_for_req_done(host, mrq);
613 }
614 EXPORT_SYMBOL(mmc_wait_for_req);
615
616 /**
617 * mmc_wait_for_cmd - start a command and wait for completion
618 * @host: MMC host to start command
619 * @cmd: MMC command to start
620 * @retries: maximum number of retries
621 *
622 * Start a new MMC command for a host, and wait for the command
623 * to complete. Return any error that occurred while the command
624 * was executing. Do not attempt to parse the response.
625 */
mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)626 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
627 {
628 struct mmc_request mrq = {};
629
630 WARN_ON(!host->claimed);
631
632 memset(cmd->resp, 0, sizeof(cmd->resp));
633 cmd->retries = retries;
634
635 mrq.cmd = cmd;
636 cmd->data = NULL;
637
638 mmc_wait_for_req(host, &mrq);
639
640 return cmd->error;
641 }
642
643 EXPORT_SYMBOL(mmc_wait_for_cmd);
644
645 /**
646 * mmc_set_data_timeout - set the timeout for a data command
647 * @data: data phase for command
648 * @card: the MMC card associated with the data transfer
649 *
650 * Computes the data timeout parameters according to the
651 * correct algorithm given the card type.
652 */
mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)653 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
654 {
655 unsigned int mult;
656
657 /*
658 * SDIO cards only define an upper 1 s limit on access.
659 */
660 if (mmc_card_sdio(card)) {
661 data->timeout_ns = 1000000000;
662 data->timeout_clks = 0;
663 return;
664 }
665
666 /*
667 * SD cards use a 100 multiplier rather than 10
668 */
669 mult = mmc_card_sd(card) ? 100 : 10;
670
671 /*
672 * Scale up the multiplier (and therefore the timeout) by
673 * the r2w factor for writes.
674 */
675 if (data->flags & MMC_DATA_WRITE)
676 mult <<= card->csd.r2w_factor;
677
678 data->timeout_ns = card->csd.taac_ns * mult;
679 data->timeout_clks = card->csd.taac_clks * mult;
680
681 /*
682 * SD cards also have an upper limit on the timeout.
683 */
684 if (mmc_card_sd(card)) {
685 unsigned int timeout_us, limit_us;
686
687 timeout_us = data->timeout_ns / 1000;
688 if (card->host->ios.clock)
689 timeout_us += data->timeout_clks * 1000 /
690 (card->host->ios.clock / 1000);
691
692 if (data->flags & MMC_DATA_WRITE)
693 /*
694 * The MMC spec "It is strongly recommended
695 * for hosts to implement more than 500ms
696 * timeout value even if the card indicates
697 * the 250ms maximum busy length." Even the
698 * previous value of 300ms is known to be
699 * insufficient for some cards.
700 */
701 limit_us = 3000000;
702 else
703 limit_us = 100000;
704
705 /*
706 * SDHC cards always use these fixed values.
707 */
708 if (timeout_us > limit_us) {
709 data->timeout_ns = limit_us * 1000;
710 data->timeout_clks = 0;
711 }
712
713 /* assign limit value if invalid */
714 if (timeout_us == 0)
715 data->timeout_ns = limit_us * 1000;
716 }
717
718 /*
719 * Some cards require longer data read timeout than indicated in CSD.
720 * Address this by setting the read timeout to a "reasonably high"
721 * value. For the cards tested, 600ms has proven enough. If necessary,
722 * this value can be increased if other problematic cards require this.
723 */
724 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
725 data->timeout_ns = 600000000;
726 data->timeout_clks = 0;
727 }
728
729 /*
730 * Some cards need very high timeouts if driven in SPI mode.
731 * The worst observed timeout was 900ms after writing a
732 * continuous stream of data until the internal logic
733 * overflowed.
734 */
735 if (mmc_host_is_spi(card->host)) {
736 if (data->flags & MMC_DATA_WRITE) {
737 if (data->timeout_ns < 1000000000)
738 data->timeout_ns = 1000000000; /* 1s */
739 } else {
740 if (data->timeout_ns < 100000000)
741 data->timeout_ns = 100000000; /* 100ms */
742 }
743 }
744 }
745 EXPORT_SYMBOL(mmc_set_data_timeout);
746
747 /*
748 * Allow claiming an already claimed host if the context is the same or there is
749 * no context but the task is the same.
750 */
mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx, struct task_struct *task)751 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
752 struct task_struct *task)
753 {
754 return host->claimer == ctx ||
755 (!ctx && task && host->claimer->task == task);
756 }
757
mmc_ctx_set_claimer(struct mmc_host *host, struct mmc_ctx *ctx, struct task_struct *task)758 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
759 struct mmc_ctx *ctx,
760 struct task_struct *task)
761 {
762 if (!host->claimer) {
763 if (ctx)
764 host->claimer = ctx;
765 else
766 host->claimer = &host->default_ctx;
767 }
768 if (task)
769 host->claimer->task = task;
770 }
771
772 /**
773 * __mmc_claim_host - exclusively claim a host
774 * @host: mmc host to claim
775 * @ctx: context that claims the host or NULL in which case the default
776 * context will be used
777 * @abort: whether or not the operation should be aborted
778 *
779 * Claim a host for a set of operations. If @abort is non null and
780 * dereference a non-zero value then this will return prematurely with
781 * that non-zero value without acquiring the lock. Returns zero
782 * with the lock held otherwise.
783 */
__mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx, atomic_t *abort)784 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
785 atomic_t *abort)
786 {
787 struct task_struct *task = ctx ? NULL : current;
788 DECLARE_WAITQUEUE(wait, current);
789 unsigned long flags;
790 int stop;
791 bool pm = false;
792
793 might_sleep();
794
795 add_wait_queue(&host->wq, &wait);
796 spin_lock_irqsave(&host->lock, flags);
797 while (1) {
798 set_current_state(TASK_UNINTERRUPTIBLE);
799 stop = abort ? atomic_read(abort) : 0;
800 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
801 break;
802 spin_unlock_irqrestore(&host->lock, flags);
803 schedule();
804 spin_lock_irqsave(&host->lock, flags);
805 }
806 set_current_state(TASK_RUNNING);
807 if (!stop) {
808 host->claimed = 1;
809 mmc_ctx_set_claimer(host, ctx, task);
810 host->claim_cnt += 1;
811 if (host->claim_cnt == 1)
812 pm = true;
813 } else
814 wake_up(&host->wq);
815 spin_unlock_irqrestore(&host->lock, flags);
816 remove_wait_queue(&host->wq, &wait);
817
818 if (pm)
819 pm_runtime_get_sync(mmc_dev(host));
820
821 return stop;
822 }
823 EXPORT_SYMBOL(__mmc_claim_host);
824
825 /**
826 * mmc_release_host - release a host
827 * @host: mmc host to release
828 *
829 * Release a MMC host, allowing others to claim the host
830 * for their operations.
831 */
mmc_release_host(struct mmc_host *host)832 void mmc_release_host(struct mmc_host *host)
833 {
834 unsigned long flags;
835
836 WARN_ON(!host->claimed);
837
838 spin_lock_irqsave(&host->lock, flags);
839 if (--host->claim_cnt) {
840 /* Release for nested claim */
841 spin_unlock_irqrestore(&host->lock, flags);
842 } else {
843 host->claimed = 0;
844 host->claimer->task = NULL;
845 host->claimer = NULL;
846 spin_unlock_irqrestore(&host->lock, flags);
847 wake_up(&host->wq);
848 pm_runtime_mark_last_busy(mmc_dev(host));
849 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
850 pm_runtime_put_sync_suspend(mmc_dev(host));
851 else
852 pm_runtime_put_autosuspend(mmc_dev(host));
853 }
854 }
855 EXPORT_SYMBOL(mmc_release_host);
856
857 /*
858 * This is a helper function, which fetches a runtime pm reference for the
859 * card device and also claims the host.
860 */
mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)861 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
862 {
863 pm_runtime_get_sync(&card->dev);
864 __mmc_claim_host(card->host, ctx, NULL);
865 }
866 EXPORT_SYMBOL(mmc_get_card);
867
868 /*
869 * This is a helper function, which releases the host and drops the runtime
870 * pm reference for the card device.
871 */
mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)872 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
873 {
874 struct mmc_host *host = card->host;
875
876 WARN_ON(ctx && host->claimer != ctx);
877
878 mmc_release_host(host);
879 pm_runtime_mark_last_busy(&card->dev);
880 pm_runtime_put_autosuspend(&card->dev);
881 }
882 EXPORT_SYMBOL(mmc_put_card);
883
884 /*
885 * Internal function that does the actual ios call to the host driver,
886 * optionally printing some debug output.
887 */
mmc_set_ios(struct mmc_host *host)888 static inline void mmc_set_ios(struct mmc_host *host)
889 {
890 struct mmc_ios *ios = &host->ios;
891
892 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
893 "width %u timing %u\n",
894 mmc_hostname(host), ios->clock, ios->bus_mode,
895 ios->power_mode, ios->chip_select, ios->vdd,
896 1 << ios->bus_width, ios->timing);
897
898 host->ops->set_ios(host, ios);
899 }
900
901 /*
902 * Control chip select pin on a host.
903 */
mmc_set_chip_select(struct mmc_host *host, int mode)904 void mmc_set_chip_select(struct mmc_host *host, int mode)
905 {
906 host->ios.chip_select = mode;
907 mmc_set_ios(host);
908 }
909
910 /*
911 * Sets the host clock to the highest possible frequency that
912 * is below "hz".
913 */
mmc_set_clock(struct mmc_host *host, unsigned int hz)914 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
915 {
916 WARN_ON(hz && hz < host->f_min);
917
918 if (hz > host->f_max)
919 hz = host->f_max;
920
921 host->ios.clock = hz;
922 mmc_set_ios(host);
923 }
924
mmc_execute_tuning(struct mmc_card *card)925 int mmc_execute_tuning(struct mmc_card *card)
926 {
927 struct mmc_host *host = card->host;
928 u32 opcode;
929 int err;
930
931 if (!host->ops->execute_tuning)
932 return 0;
933
934 if (host->cqe_on)
935 host->cqe_ops->cqe_off(host);
936
937 if (mmc_card_mmc(card))
938 opcode = MMC_SEND_TUNING_BLOCK_HS200;
939 else
940 opcode = MMC_SEND_TUNING_BLOCK;
941
942 err = host->ops->execute_tuning(host, opcode);
943
944 if (err) {
945 pr_err("%s: tuning execution failed: %d\n",
946 mmc_hostname(host), err);
947 } else {
948 host->retune_now = 0;
949 host->need_retune = 0;
950 mmc_retune_enable(host);
951 }
952
953 return err;
954 }
955
956 /*
957 * Change the bus mode (open drain/push-pull) of a host.
958 */
mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)959 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
960 {
961 host->ios.bus_mode = mode;
962 mmc_set_ios(host);
963 }
964
965 /*
966 * Change data bus width of a host.
967 */
mmc_set_bus_width(struct mmc_host *host, unsigned int width)968 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
969 {
970 host->ios.bus_width = width;
971 mmc_set_ios(host);
972 }
973
974 /*
975 * Set initial state after a power cycle or a hw_reset.
976 */
mmc_set_initial_state(struct mmc_host *host)977 void mmc_set_initial_state(struct mmc_host *host)
978 {
979 if (host->cqe_on)
980 host->cqe_ops->cqe_off(host);
981
982 mmc_retune_disable(host);
983
984 if (mmc_host_is_spi(host))
985 host->ios.chip_select = MMC_CS_HIGH;
986 else
987 host->ios.chip_select = MMC_CS_DONTCARE;
988 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
989 host->ios.bus_width = MMC_BUS_WIDTH_1;
990 host->ios.timing = MMC_TIMING_LEGACY;
991 host->ios.drv_type = 0;
992 host->ios.enhanced_strobe = false;
993
994 /*
995 * Make sure we are in non-enhanced strobe mode before we
996 * actually enable it in ext_csd.
997 */
998 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
999 host->ops->hs400_enhanced_strobe)
1000 host->ops->hs400_enhanced_strobe(host, &host->ios);
1001
1002 mmc_set_ios(host);
1003 }
1004
1005 /**
1006 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1007 * @vdd: voltage (mV)
1008 * @low_bits: prefer low bits in boundary cases
1009 *
1010 * This function returns the OCR bit number according to the provided @vdd
1011 * value. If conversion is not possible a negative errno value returned.
1012 *
1013 * Depending on the @low_bits flag the function prefers low or high OCR bits
1014 * on boundary voltages. For example,
1015 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1016 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1017 *
1018 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1019 */
mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)1020 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1021 {
1022 const int max_bit = ilog2(MMC_VDD_35_36);
1023 int bit;
1024
1025 if (vdd < 1650 || vdd > 3600)
1026 return -EINVAL;
1027
1028 if (vdd >= 1650 && vdd <= 1950)
1029 return ilog2(MMC_VDD_165_195);
1030
1031 if (low_bits)
1032 vdd -= 1;
1033
1034 /* Base 2000 mV, step 100 mV, bit's base 8. */
1035 bit = (vdd - 2000) / 100 + 8;
1036 if (bit > max_bit)
1037 return max_bit;
1038 return bit;
1039 }
1040
1041 /**
1042 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1043 * @vdd_min: minimum voltage value (mV)
1044 * @vdd_max: maximum voltage value (mV)
1045 *
1046 * This function returns the OCR mask bits according to the provided @vdd_min
1047 * and @vdd_max values. If conversion is not possible the function returns 0.
1048 *
1049 * Notes wrt boundary cases:
1050 * This function sets the OCR bits for all boundary voltages, for example
1051 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1052 * MMC_VDD_34_35 mask.
1053 */
mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)1054 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1055 {
1056 u32 mask = 0;
1057
1058 if (vdd_max < vdd_min)
1059 return 0;
1060
1061 /* Prefer high bits for the boundary vdd_max values. */
1062 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1063 if (vdd_max < 0)
1064 return 0;
1065
1066 /* Prefer low bits for the boundary vdd_min values. */
1067 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1068 if (vdd_min < 0)
1069 return 0;
1070
1071 /* Fill the mask, from max bit to min bit. */
1072 while (vdd_max >= vdd_min)
1073 mask |= 1 << vdd_max--;
1074
1075 return mask;
1076 }
1077
mmc_of_get_func_num(struct device_node *node)1078 static int mmc_of_get_func_num(struct device_node *node)
1079 {
1080 u32 reg;
1081 int ret;
1082
1083 ret = of_property_read_u32(node, "reg", ®);
1084 if (ret < 0)
1085 return ret;
1086
1087 return reg;
1088 }
1089
mmc_of_find_child_device(struct mmc_host *host, unsigned func_num)1090 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1091 unsigned func_num)
1092 {
1093 struct device_node *node;
1094
1095 if (!host->parent || !host->parent->of_node)
1096 return NULL;
1097
1098 for_each_child_of_node(host->parent->of_node, node) {
1099 if (mmc_of_get_func_num(node) == func_num)
1100 return node;
1101 }
1102
1103 return NULL;
1104 }
1105
1106 /*
1107 * Mask off any voltages we don't support and select
1108 * the lowest voltage
1109 */
mmc_select_voltage(struct mmc_host *host, u32 ocr)1110 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1111 {
1112 int bit;
1113
1114 /*
1115 * Sanity check the voltages that the card claims to
1116 * support.
1117 */
1118 if (ocr & 0x7F) {
1119 dev_warn(mmc_dev(host),
1120 "card claims to support voltages below defined range\n");
1121 ocr &= ~0x7F;
1122 }
1123
1124 ocr &= host->ocr_avail;
1125 if (!ocr) {
1126 dev_warn(mmc_dev(host), "no support for card's volts\n");
1127 return 0;
1128 }
1129
1130 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1131 bit = ffs(ocr) - 1;
1132 ocr &= 3 << bit;
1133 mmc_power_cycle(host, ocr);
1134 } else {
1135 bit = fls(ocr) - 1;
1136 /*
1137 * The bit variable represents the highest voltage bit set in
1138 * the OCR register.
1139 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1140 * we must shift the mask '3' with (bit - 1).
1141 */
1142 ocr &= 3 << (bit - 1);
1143 if (bit != host->ios.vdd)
1144 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1145 }
1146
1147 return ocr;
1148 }
1149
mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)1150 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1151 {
1152 int err = 0;
1153 int old_signal_voltage = host->ios.signal_voltage;
1154
1155 host->ios.signal_voltage = signal_voltage;
1156 if (host->ops->start_signal_voltage_switch)
1157 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1158
1159 if (err)
1160 host->ios.signal_voltage = old_signal_voltage;
1161
1162 return err;
1163
1164 }
1165
mmc_set_initial_signal_voltage(struct mmc_host *host)1166 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1167 {
1168 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1169 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1170 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1171 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1172 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1173 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1174 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1175 }
1176
mmc_host_set_uhs_voltage(struct mmc_host *host)1177 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1178 {
1179 u32 clock;
1180
1181 /*
1182 * During a signal voltage level switch, the clock must be gated
1183 * for 5 ms according to the SD spec
1184 */
1185 clock = host->ios.clock;
1186 host->ios.clock = 0;
1187 mmc_set_ios(host);
1188
1189 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1190 return -EAGAIN;
1191
1192 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1193 mmc_delay(10);
1194 host->ios.clock = clock;
1195 mmc_set_ios(host);
1196
1197 return 0;
1198 }
1199
mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)1200 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1201 {
1202 struct mmc_command cmd = {};
1203 int err = 0;
1204
1205 /*
1206 * If we cannot switch voltages, return failure so the caller
1207 * can continue without UHS mode
1208 */
1209 if (!host->ops->start_signal_voltage_switch)
1210 return -EPERM;
1211 if (!host->ops->card_busy)
1212 pr_warn("%s: cannot verify signal voltage switch\n",
1213 mmc_hostname(host));
1214
1215 cmd.opcode = SD_SWITCH_VOLTAGE;
1216 cmd.arg = 0;
1217 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1218
1219 err = mmc_wait_for_cmd(host, &cmd, 0);
1220 if (err)
1221 goto power_cycle;
1222
1223 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1224 return -EIO;
1225
1226 /*
1227 * The card should drive cmd and dat[0:3] low immediately
1228 * after the response of cmd11, but wait 1 ms to be sure
1229 */
1230 mmc_delay(1);
1231 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1232 err = -EAGAIN;
1233 goto power_cycle;
1234 }
1235
1236 if (mmc_host_set_uhs_voltage(host)) {
1237 /*
1238 * Voltages may not have been switched, but we've already
1239 * sent CMD11, so a power cycle is required anyway
1240 */
1241 err = -EAGAIN;
1242 goto power_cycle;
1243 }
1244
1245 /* Wait for at least 1 ms according to spec */
1246 mmc_delay(1);
1247
1248 /*
1249 * Failure to switch is indicated by the card holding
1250 * dat[0:3] low
1251 */
1252 if (host->ops->card_busy && host->ops->card_busy(host))
1253 err = -EAGAIN;
1254
1255 power_cycle:
1256 if (err) {
1257 pr_debug("%s: Signal voltage switch failed, "
1258 "power cycling card\n", mmc_hostname(host));
1259 mmc_power_cycle(host, ocr);
1260 }
1261
1262 return err;
1263 }
1264
1265 /*
1266 * Select timing parameters for host.
1267 */
mmc_set_timing(struct mmc_host *host, unsigned int timing)1268 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1269 {
1270 host->ios.timing = timing;
1271 mmc_set_ios(host);
1272 }
1273
1274 /*
1275 * Select appropriate driver type for host.
1276 */
mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)1277 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1278 {
1279 host->ios.drv_type = drv_type;
1280 mmc_set_ios(host);
1281 }
1282
mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr, int card_drv_type, int *drv_type)1283 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1284 int card_drv_type, int *drv_type)
1285 {
1286 struct mmc_host *host = card->host;
1287 int host_drv_type = SD_DRIVER_TYPE_B;
1288
1289 *drv_type = 0;
1290
1291 if (!host->ops->select_drive_strength)
1292 return 0;
1293
1294 /* Use SD definition of driver strength for hosts */
1295 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1296 host_drv_type |= SD_DRIVER_TYPE_A;
1297
1298 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1299 host_drv_type |= SD_DRIVER_TYPE_C;
1300
1301 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1302 host_drv_type |= SD_DRIVER_TYPE_D;
1303
1304 /*
1305 * The drive strength that the hardware can support
1306 * depends on the board design. Pass the appropriate
1307 * information and let the hardware specific code
1308 * return what is possible given the options
1309 */
1310 return host->ops->select_drive_strength(card, max_dtr,
1311 host_drv_type,
1312 card_drv_type,
1313 drv_type);
1314 }
1315
1316 /*
1317 * Apply power to the MMC stack. This is a two-stage process.
1318 * First, we enable power to the card without the clock running.
1319 * We then wait a bit for the power to stabilise. Finally,
1320 * enable the bus drivers and clock to the card.
1321 *
1322 * We must _NOT_ enable the clock prior to power stablising.
1323 *
1324 * If a host does all the power sequencing itself, ignore the
1325 * initial MMC_POWER_UP stage.
1326 */
mmc_power_up(struct mmc_host *host, u32 ocr)1327 void mmc_power_up(struct mmc_host *host, u32 ocr)
1328 {
1329 if (host->ios.power_mode == MMC_POWER_ON)
1330 return;
1331
1332 mmc_pwrseq_pre_power_on(host);
1333
1334 host->ios.vdd = fls(ocr) - 1;
1335 host->ios.power_mode = MMC_POWER_UP;
1336 /* Set initial state and call mmc_set_ios */
1337 mmc_set_initial_state(host);
1338
1339 mmc_set_initial_signal_voltage(host);
1340
1341 /*
1342 * This delay should be sufficient to allow the power supply
1343 * to reach the minimum voltage.
1344 */
1345 mmc_delay(host->ios.power_delay_ms);
1346
1347 mmc_pwrseq_post_power_on(host);
1348
1349 host->ios.clock = host->f_init;
1350
1351 host->ios.power_mode = MMC_POWER_ON;
1352 mmc_set_ios(host);
1353
1354 /*
1355 * This delay must be at least 74 clock sizes, or 1 ms, or the
1356 * time required to reach a stable voltage.
1357 */
1358 mmc_delay(host->ios.power_delay_ms);
1359 }
1360
mmc_power_off(struct mmc_host *host)1361 void mmc_power_off(struct mmc_host *host)
1362 {
1363 if (host->ios.power_mode == MMC_POWER_OFF)
1364 return;
1365
1366 mmc_pwrseq_power_off(host);
1367
1368 host->ios.clock = 0;
1369 host->ios.vdd = 0;
1370
1371 host->ios.power_mode = MMC_POWER_OFF;
1372 /* Set initial state and call mmc_set_ios */
1373 mmc_set_initial_state(host);
1374
1375 /*
1376 * Some configurations, such as the 802.11 SDIO card in the OLPC
1377 * XO-1.5, require a short delay after poweroff before the card
1378 * can be successfully turned on again.
1379 */
1380 mmc_delay(1);
1381 }
1382
mmc_power_cycle(struct mmc_host *host, u32 ocr)1383 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1384 {
1385 mmc_power_off(host);
1386 /* Wait at least 1 ms according to SD spec */
1387 mmc_delay(1);
1388 mmc_power_up(host, ocr);
1389 }
1390
1391 /*
1392 * Cleanup when the last reference to the bus operator is dropped.
1393 */
__mmc_release_bus(struct mmc_host *host)1394 static void __mmc_release_bus(struct mmc_host *host)
1395 {
1396 WARN_ON(!host->bus_dead);
1397
1398 host->bus_ops = NULL;
1399 }
1400
1401 /*
1402 * Increase reference count of bus operator
1403 */
mmc_bus_get(struct mmc_host *host)1404 static inline void mmc_bus_get(struct mmc_host *host)
1405 {
1406 unsigned long flags;
1407
1408 spin_lock_irqsave(&host->lock, flags);
1409 host->bus_refs++;
1410 spin_unlock_irqrestore(&host->lock, flags);
1411 }
1412
1413 /*
1414 * Decrease reference count of bus operator and free it if
1415 * it is the last reference.
1416 */
mmc_bus_put(struct mmc_host *host)1417 static inline void mmc_bus_put(struct mmc_host *host)
1418 {
1419 unsigned long flags;
1420
1421 spin_lock_irqsave(&host->lock, flags);
1422 host->bus_refs--;
1423 if ((host->bus_refs == 0) && host->bus_ops)
1424 __mmc_release_bus(host);
1425 spin_unlock_irqrestore(&host->lock, flags);
1426 }
1427
1428 /*
1429 * Assign a mmc bus handler to a host. Only one bus handler may control a
1430 * host at any given time.
1431 */
mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)1432 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1433 {
1434 unsigned long flags;
1435
1436 WARN_ON(!host->claimed);
1437
1438 spin_lock_irqsave(&host->lock, flags);
1439
1440 WARN_ON(host->bus_ops);
1441 WARN_ON(host->bus_refs);
1442
1443 host->bus_ops = ops;
1444 host->bus_refs = 1;
1445 host->bus_dead = 0;
1446
1447 spin_unlock_irqrestore(&host->lock, flags);
1448 }
1449
1450 /*
1451 * Remove the current bus handler from a host.
1452 */
mmc_detach_bus(struct mmc_host *host)1453 void mmc_detach_bus(struct mmc_host *host)
1454 {
1455 unsigned long flags;
1456
1457 WARN_ON(!host->claimed);
1458 WARN_ON(!host->bus_ops);
1459
1460 spin_lock_irqsave(&host->lock, flags);
1461
1462 host->bus_dead = 1;
1463
1464 spin_unlock_irqrestore(&host->lock, flags);
1465
1466 mmc_bus_put(host);
1467 }
1468
_mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)1469 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1470 {
1471 /*
1472 * Prevent system sleep for 5s to allow user space to consume the
1473 * corresponding uevent. This is especially useful, when CD irq is used
1474 * as a system wakeup, but doesn't hurt in other cases.
1475 */
1476 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1477 __pm_wakeup_event(host->ws, 5000);
1478
1479 host->detect_change = 1;
1480 mmc_schedule_delayed_work(&host->detect, delay);
1481 }
1482
1483 /**
1484 * mmc_detect_change - process change of state on a MMC socket
1485 * @host: host which changed state.
1486 * @delay: optional delay to wait before detection (jiffies)
1487 *
1488 * MMC drivers should call this when they detect a card has been
1489 * inserted or removed. The MMC layer will confirm that any
1490 * present card is still functional, and initialize any newly
1491 * inserted.
1492 */
mmc_detect_change(struct mmc_host *host, unsigned long delay)1493 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1494 {
1495 _mmc_detect_change(host, delay, true);
1496 }
1497 EXPORT_SYMBOL(mmc_detect_change);
1498
mmc_init_erase(struct mmc_card *card)1499 void mmc_init_erase(struct mmc_card *card)
1500 {
1501 unsigned int sz;
1502
1503 if (is_power_of_2(card->erase_size))
1504 card->erase_shift = ffs(card->erase_size) - 1;
1505 else
1506 card->erase_shift = 0;
1507
1508 /*
1509 * It is possible to erase an arbitrarily large area of an SD or MMC
1510 * card. That is not desirable because it can take a long time
1511 * (minutes) potentially delaying more important I/O, and also the
1512 * timeout calculations become increasingly hugely over-estimated.
1513 * Consequently, 'pref_erase' is defined as a guide to limit erases
1514 * to that size and alignment.
1515 *
1516 * For SD cards that define Allocation Unit size, limit erases to one
1517 * Allocation Unit at a time.
1518 * For MMC, have a stab at ai good value and for modern cards it will
1519 * end up being 4MiB. Note that if the value is too small, it can end
1520 * up taking longer to erase. Also note, erase_size is already set to
1521 * High Capacity Erase Size if available when this function is called.
1522 */
1523 if (mmc_card_sd(card) && card->ssr.au) {
1524 card->pref_erase = card->ssr.au;
1525 card->erase_shift = ffs(card->ssr.au) - 1;
1526 } else if (card->erase_size) {
1527 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1528 if (sz < 128)
1529 card->pref_erase = 512 * 1024 / 512;
1530 else if (sz < 512)
1531 card->pref_erase = 1024 * 1024 / 512;
1532 else if (sz < 1024)
1533 card->pref_erase = 2 * 1024 * 1024 / 512;
1534 else
1535 card->pref_erase = 4 * 1024 * 1024 / 512;
1536 if (card->pref_erase < card->erase_size)
1537 card->pref_erase = card->erase_size;
1538 else {
1539 sz = card->pref_erase % card->erase_size;
1540 if (sz)
1541 card->pref_erase += card->erase_size - sz;
1542 }
1543 } else
1544 card->pref_erase = 0;
1545 }
1546
is_trim_arg(unsigned int arg)1547 static bool is_trim_arg(unsigned int arg)
1548 {
1549 return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1550 }
1551
mmc_mmc_erase_timeout(struct mmc_card *card, unsigned int arg, unsigned int qty)1552 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1553 unsigned int arg, unsigned int qty)
1554 {
1555 unsigned int erase_timeout;
1556
1557 if (arg == MMC_DISCARD_ARG ||
1558 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1559 erase_timeout = card->ext_csd.trim_timeout;
1560 } else if (card->ext_csd.erase_group_def & 1) {
1561 /* High Capacity Erase Group Size uses HC timeouts */
1562 if (arg == MMC_TRIM_ARG)
1563 erase_timeout = card->ext_csd.trim_timeout;
1564 else
1565 erase_timeout = card->ext_csd.hc_erase_timeout;
1566 } else {
1567 /* CSD Erase Group Size uses write timeout */
1568 unsigned int mult = (10 << card->csd.r2w_factor);
1569 unsigned int timeout_clks = card->csd.taac_clks * mult;
1570 unsigned int timeout_us;
1571
1572 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1573 if (card->csd.taac_ns < 1000000)
1574 timeout_us = (card->csd.taac_ns * mult) / 1000;
1575 else
1576 timeout_us = (card->csd.taac_ns / 1000) * mult;
1577
1578 /*
1579 * ios.clock is only a target. The real clock rate might be
1580 * less but not that much less, so fudge it by multiplying by 2.
1581 */
1582 timeout_clks <<= 1;
1583 timeout_us += (timeout_clks * 1000) /
1584 (card->host->ios.clock / 1000);
1585
1586 erase_timeout = timeout_us / 1000;
1587
1588 /*
1589 * Theoretically, the calculation could underflow so round up
1590 * to 1ms in that case.
1591 */
1592 if (!erase_timeout)
1593 erase_timeout = 1;
1594 }
1595
1596 /* Multiplier for secure operations */
1597 if (arg & MMC_SECURE_ARGS) {
1598 if (arg == MMC_SECURE_ERASE_ARG)
1599 erase_timeout *= card->ext_csd.sec_erase_mult;
1600 else
1601 erase_timeout *= card->ext_csd.sec_trim_mult;
1602 }
1603
1604 erase_timeout *= qty;
1605
1606 /*
1607 * Ensure at least a 1 second timeout for SPI as per
1608 * 'mmc_set_data_timeout()'
1609 */
1610 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1611 erase_timeout = 1000;
1612
1613 return erase_timeout;
1614 }
1615
mmc_sd_erase_timeout(struct mmc_card *card, unsigned int arg, unsigned int qty)1616 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1617 unsigned int arg,
1618 unsigned int qty)
1619 {
1620 unsigned int erase_timeout;
1621
1622 /* for DISCARD none of the below calculation applies.
1623 * the busy timeout is 250msec per discard command.
1624 */
1625 if (arg == SD_DISCARD_ARG)
1626 return SD_DISCARD_TIMEOUT_MS;
1627
1628 if (card->ssr.erase_timeout) {
1629 /* Erase timeout specified in SD Status Register (SSR) */
1630 erase_timeout = card->ssr.erase_timeout * qty +
1631 card->ssr.erase_offset;
1632 } else {
1633 /*
1634 * Erase timeout not specified in SD Status Register (SSR) so
1635 * use 250ms per write block.
1636 */
1637 erase_timeout = 250 * qty;
1638 }
1639
1640 /* Must not be less than 1 second */
1641 if (erase_timeout < 1000)
1642 erase_timeout = 1000;
1643
1644 return erase_timeout;
1645 }
1646
mmc_erase_timeout(struct mmc_card *card, unsigned int arg, unsigned int qty)1647 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1648 unsigned int arg,
1649 unsigned int qty)
1650 {
1651 if (mmc_card_sd(card))
1652 return mmc_sd_erase_timeout(card, arg, qty);
1653 else
1654 return mmc_mmc_erase_timeout(card, arg, qty);
1655 }
1656
mmc_do_erase(struct mmc_card *card, unsigned int from, unsigned int to, unsigned int arg)1657 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1658 unsigned int to, unsigned int arg)
1659 {
1660 struct mmc_command cmd = {};
1661 unsigned int qty = 0, busy_timeout = 0;
1662 bool use_r1b_resp = false;
1663 int err;
1664
1665 mmc_retune_hold(card->host);
1666
1667 /*
1668 * qty is used to calculate the erase timeout which depends on how many
1669 * erase groups (or allocation units in SD terminology) are affected.
1670 * We count erasing part of an erase group as one erase group.
1671 * For SD, the allocation units are always a power of 2. For MMC, the
1672 * erase group size is almost certainly also power of 2, but it does not
1673 * seem to insist on that in the JEDEC standard, so we fall back to
1674 * division in that case. SD may not specify an allocation unit size,
1675 * in which case the timeout is based on the number of write blocks.
1676 *
1677 * Note that the timeout for secure trim 2 will only be correct if the
1678 * number of erase groups specified is the same as the total of all
1679 * preceding secure trim 1 commands. Since the power may have been
1680 * lost since the secure trim 1 commands occurred, it is generally
1681 * impossible to calculate the secure trim 2 timeout correctly.
1682 */
1683 if (card->erase_shift)
1684 qty += ((to >> card->erase_shift) -
1685 (from >> card->erase_shift)) + 1;
1686 else if (mmc_card_sd(card))
1687 qty += to - from + 1;
1688 else
1689 qty += ((to / card->erase_size) -
1690 (from / card->erase_size)) + 1;
1691
1692 if (!mmc_card_blockaddr(card)) {
1693 from <<= 9;
1694 to <<= 9;
1695 }
1696
1697 if (mmc_card_sd(card))
1698 cmd.opcode = SD_ERASE_WR_BLK_START;
1699 else
1700 cmd.opcode = MMC_ERASE_GROUP_START;
1701 cmd.arg = from;
1702 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1703 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1704 if (err) {
1705 pr_err("mmc_erase: group start error %d, "
1706 "status %#x\n", err, cmd.resp[0]);
1707 err = -EIO;
1708 goto out;
1709 }
1710
1711 memset(&cmd, 0, sizeof(struct mmc_command));
1712 if (mmc_card_sd(card))
1713 cmd.opcode = SD_ERASE_WR_BLK_END;
1714 else
1715 cmd.opcode = MMC_ERASE_GROUP_END;
1716 cmd.arg = to;
1717 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1718 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1719 if (err) {
1720 pr_err("mmc_erase: group end error %d, status %#x\n",
1721 err, cmd.resp[0]);
1722 err = -EIO;
1723 goto out;
1724 }
1725
1726 memset(&cmd, 0, sizeof(struct mmc_command));
1727 cmd.opcode = MMC_ERASE;
1728 cmd.arg = arg;
1729 busy_timeout = mmc_erase_timeout(card, arg, qty);
1730 /*
1731 * If the host controller supports busy signalling and the timeout for
1732 * the erase operation does not exceed the max_busy_timeout, we should
1733 * use R1B response. Or we need to prevent the host from doing hw busy
1734 * detection, which is done by converting to a R1 response instead.
1735 * Note, some hosts requires R1B, which also means they are on their own
1736 * when it comes to deal with the busy timeout.
1737 */
1738 if (!(card->host->caps & MMC_CAP_NEED_RSP_BUSY) &&
1739 card->host->max_busy_timeout &&
1740 busy_timeout > card->host->max_busy_timeout) {
1741 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1742 } else {
1743 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1744 cmd.busy_timeout = busy_timeout;
1745 use_r1b_resp = true;
1746 }
1747
1748 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1749 if (err) {
1750 pr_err("mmc_erase: erase error %d, status %#x\n",
1751 err, cmd.resp[0]);
1752 err = -EIO;
1753 goto out;
1754 }
1755
1756 if (mmc_host_is_spi(card->host))
1757 goto out;
1758
1759 /*
1760 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1761 * shall be avoided.
1762 */
1763 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1764 goto out;
1765
1766 /* Let's poll to find out when the erase operation completes. */
1767 err = mmc_poll_for_busy(card, busy_timeout, MMC_BUSY_ERASE);
1768
1769 out:
1770 mmc_retune_release(card->host);
1771 return err;
1772 }
1773
mmc_align_erase_size(struct mmc_card *card, unsigned int *from, unsigned int *to, unsigned int nr)1774 static unsigned int mmc_align_erase_size(struct mmc_card *card,
1775 unsigned int *from,
1776 unsigned int *to,
1777 unsigned int nr)
1778 {
1779 unsigned int from_new = *from, nr_new = nr, rem;
1780
1781 /*
1782 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1783 * to align the erase size efficiently.
1784 */
1785 if (is_power_of_2(card->erase_size)) {
1786 unsigned int temp = from_new;
1787
1788 from_new = round_up(temp, card->erase_size);
1789 rem = from_new - temp;
1790
1791 if (nr_new > rem)
1792 nr_new -= rem;
1793 else
1794 return 0;
1795
1796 nr_new = round_down(nr_new, card->erase_size);
1797 } else {
1798 rem = from_new % card->erase_size;
1799 if (rem) {
1800 rem = card->erase_size - rem;
1801 from_new += rem;
1802 if (nr_new > rem)
1803 nr_new -= rem;
1804 else
1805 return 0;
1806 }
1807
1808 rem = nr_new % card->erase_size;
1809 if (rem)
1810 nr_new -= rem;
1811 }
1812
1813 if (nr_new == 0)
1814 return 0;
1815
1816 *to = from_new + nr_new;
1817 *from = from_new;
1818
1819 return nr_new;
1820 }
1821
1822 /**
1823 * mmc_erase - erase sectors.
1824 * @card: card to erase
1825 * @from: first sector to erase
1826 * @nr: number of sectors to erase
1827 * @arg: erase command argument
1828 *
1829 * Caller must claim host before calling this function.
1830 */
mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, unsigned int arg)1831 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1832 unsigned int arg)
1833 {
1834 unsigned int rem, to = from + nr;
1835 int err;
1836
1837 if (!(card->csd.cmdclass & CCC_ERASE))
1838 return -EOPNOTSUPP;
1839
1840 if (!card->erase_size)
1841 return -EOPNOTSUPP;
1842
1843 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1844 return -EOPNOTSUPP;
1845
1846 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1847 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1848 return -EOPNOTSUPP;
1849
1850 if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1851 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1852 return -EOPNOTSUPP;
1853
1854 if (arg == MMC_SECURE_ERASE_ARG) {
1855 if (from % card->erase_size || nr % card->erase_size)
1856 return -EINVAL;
1857 }
1858
1859 if (arg == MMC_ERASE_ARG)
1860 nr = mmc_align_erase_size(card, &from, &to, nr);
1861
1862 if (nr == 0)
1863 return 0;
1864
1865 if (to <= from)
1866 return -EINVAL;
1867
1868 /* 'from' and 'to' are inclusive */
1869 to -= 1;
1870
1871 /*
1872 * Special case where only one erase-group fits in the timeout budget:
1873 * If the region crosses an erase-group boundary on this particular
1874 * case, we will be trimming more than one erase-group which, does not
1875 * fit in the timeout budget of the controller, so we need to split it
1876 * and call mmc_do_erase() twice if necessary. This special case is
1877 * identified by the card->eg_boundary flag.
1878 */
1879 rem = card->erase_size - (from % card->erase_size);
1880 if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1881 err = mmc_do_erase(card, from, from + rem - 1, arg);
1882 from += rem;
1883 if ((err) || (to <= from))
1884 return err;
1885 }
1886
1887 return mmc_do_erase(card, from, to, arg);
1888 }
1889 EXPORT_SYMBOL(mmc_erase);
1890
mmc_can_erase(struct mmc_card *card)1891 int mmc_can_erase(struct mmc_card *card)
1892 {
1893 if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1894 return 1;
1895 return 0;
1896 }
1897 EXPORT_SYMBOL(mmc_can_erase);
1898
mmc_can_trim(struct mmc_card *card)1899 int mmc_can_trim(struct mmc_card *card)
1900 {
1901 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1902 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1903 return 1;
1904 return 0;
1905 }
1906 EXPORT_SYMBOL(mmc_can_trim);
1907
mmc_can_discard(struct mmc_card *card)1908 int mmc_can_discard(struct mmc_card *card)
1909 {
1910 /*
1911 * As there's no way to detect the discard support bit at v4.5
1912 * use the s/w feature support filed.
1913 */
1914 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1915 return 1;
1916 return 0;
1917 }
1918 EXPORT_SYMBOL(mmc_can_discard);
1919
mmc_can_sanitize(struct mmc_card *card)1920 int mmc_can_sanitize(struct mmc_card *card)
1921 {
1922 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1923 return 0;
1924 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1925 return 1;
1926 return 0;
1927 }
1928
mmc_can_secure_erase_trim(struct mmc_card *card)1929 int mmc_can_secure_erase_trim(struct mmc_card *card)
1930 {
1931 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1932 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1933 return 1;
1934 return 0;
1935 }
1936 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1937
mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, unsigned int nr)1938 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1939 unsigned int nr)
1940 {
1941 if (!card->erase_size)
1942 return 0;
1943 if (from % card->erase_size || nr % card->erase_size)
1944 return 0;
1945 return 1;
1946 }
1947 EXPORT_SYMBOL(mmc_erase_group_aligned);
1948
mmc_do_calc_max_discard(struct mmc_card *card, unsigned int arg)1949 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1950 unsigned int arg)
1951 {
1952 struct mmc_host *host = card->host;
1953 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1954 unsigned int last_timeout = 0;
1955 unsigned int max_busy_timeout = host->max_busy_timeout ?
1956 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1957
1958 if (card->erase_shift) {
1959 max_qty = UINT_MAX >> card->erase_shift;
1960 min_qty = card->pref_erase >> card->erase_shift;
1961 } else if (mmc_card_sd(card)) {
1962 max_qty = UINT_MAX;
1963 min_qty = card->pref_erase;
1964 } else {
1965 max_qty = UINT_MAX / card->erase_size;
1966 min_qty = card->pref_erase / card->erase_size;
1967 }
1968
1969 /*
1970 * We should not only use 'host->max_busy_timeout' as the limitation
1971 * when deciding the max discard sectors. We should set a balance value
1972 * to improve the erase speed, and it can not get too long timeout at
1973 * the same time.
1974 *
1975 * Here we set 'card->pref_erase' as the minimal discard sectors no
1976 * matter what size of 'host->max_busy_timeout', but if the
1977 * 'host->max_busy_timeout' is large enough for more discard sectors,
1978 * then we can continue to increase the max discard sectors until we
1979 * get a balance value. In cases when the 'host->max_busy_timeout'
1980 * isn't specified, use the default max erase timeout.
1981 */
1982 do {
1983 y = 0;
1984 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1985 timeout = mmc_erase_timeout(card, arg, qty + x);
1986
1987 if (qty + x > min_qty && timeout > max_busy_timeout)
1988 break;
1989
1990 if (timeout < last_timeout)
1991 break;
1992 last_timeout = timeout;
1993 y = x;
1994 }
1995 qty += y;
1996 } while (y);
1997
1998 if (!qty)
1999 return 0;
2000
2001 /*
2002 * When specifying a sector range to trim, chances are we might cross
2003 * an erase-group boundary even if the amount of sectors is less than
2004 * one erase-group.
2005 * If we can only fit one erase-group in the controller timeout budget,
2006 * we have to care that erase-group boundaries are not crossed by a
2007 * single trim operation. We flag that special case with "eg_boundary".
2008 * In all other cases we can just decrement qty and pretend that we
2009 * always touch (qty + 1) erase-groups as a simple optimization.
2010 */
2011 if (qty == 1)
2012 card->eg_boundary = 1;
2013 else
2014 qty--;
2015
2016 /* Convert qty to sectors */
2017 if (card->erase_shift)
2018 max_discard = qty << card->erase_shift;
2019 else if (mmc_card_sd(card))
2020 max_discard = qty + 1;
2021 else
2022 max_discard = qty * card->erase_size;
2023
2024 return max_discard;
2025 }
2026
mmc_calc_max_discard(struct mmc_card *card)2027 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2028 {
2029 struct mmc_host *host = card->host;
2030 unsigned int max_discard, max_trim;
2031
2032 /*
2033 * Without erase_group_def set, MMC erase timeout depends on clock
2034 * frequence which can change. In that case, the best choice is
2035 * just the preferred erase size.
2036 */
2037 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2038 return card->pref_erase;
2039
2040 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2041 if (mmc_can_trim(card)) {
2042 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2043 if (max_trim < max_discard || max_discard == 0)
2044 max_discard = max_trim;
2045 } else if (max_discard < card->erase_size) {
2046 max_discard = 0;
2047 }
2048 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2049 mmc_hostname(host), max_discard, host->max_busy_timeout ?
2050 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2051 return max_discard;
2052 }
2053 EXPORT_SYMBOL(mmc_calc_max_discard);
2054
mmc_card_is_blockaddr(struct mmc_card *card)2055 bool mmc_card_is_blockaddr(struct mmc_card *card)
2056 {
2057 return card ? mmc_card_blockaddr(card) : false;
2058 }
2059 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2060
mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)2061 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2062 {
2063 struct mmc_command cmd = {};
2064
2065 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2066 mmc_card_hs400(card) || mmc_card_hs400es(card))
2067 return 0;
2068
2069 cmd.opcode = MMC_SET_BLOCKLEN;
2070 cmd.arg = blocklen;
2071 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2072 return mmc_wait_for_cmd(card->host, &cmd, 5);
2073 }
2074 EXPORT_SYMBOL(mmc_set_blocklen);
2075
mmc_hw_reset_for_init(struct mmc_host *host)2076 static void mmc_hw_reset_for_init(struct mmc_host *host)
2077 {
2078 mmc_pwrseq_reset(host);
2079
2080 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2081 return;
2082 host->ops->hw_reset(host);
2083 }
2084
2085 /**
2086 * mmc_hw_reset - reset the card in hardware
2087 * @host: MMC host to which the card is attached
2088 *
2089 * Hard reset the card. This function is only for upper layers, like the
2090 * block layer or card drivers. You cannot use it in host drivers (struct
2091 * mmc_card might be gone then).
2092 *
2093 * Return: 0 on success, -errno on failure
2094 */
mmc_hw_reset(struct mmc_host *host)2095 int mmc_hw_reset(struct mmc_host *host)
2096 {
2097 int ret;
2098
2099 if (!host->card)
2100 return -EINVAL;
2101
2102 mmc_bus_get(host);
2103 if (!host->bus_ops || host->bus_dead || !host->bus_ops->hw_reset) {
2104 mmc_bus_put(host);
2105 return -EOPNOTSUPP;
2106 }
2107
2108 ret = host->bus_ops->hw_reset(host);
2109 mmc_bus_put(host);
2110
2111 if (ret < 0)
2112 pr_warn("%s: tried to HW reset card, got error %d\n",
2113 mmc_hostname(host), ret);
2114
2115 return ret;
2116 }
2117 EXPORT_SYMBOL(mmc_hw_reset);
2118
mmc_sw_reset(struct mmc_host *host)2119 int mmc_sw_reset(struct mmc_host *host)
2120 {
2121 int ret;
2122
2123 if (!host->card)
2124 return -EINVAL;
2125
2126 mmc_bus_get(host);
2127 if (!host->bus_ops || host->bus_dead || !host->bus_ops->sw_reset) {
2128 mmc_bus_put(host);
2129 return -EOPNOTSUPP;
2130 }
2131
2132 ret = host->bus_ops->sw_reset(host);
2133 mmc_bus_put(host);
2134
2135 if (ret)
2136 pr_warn("%s: tried to SW reset card, got error %d\n",
2137 mmc_hostname(host), ret);
2138
2139 return ret;
2140 }
2141 EXPORT_SYMBOL(mmc_sw_reset);
2142
mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)2143 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2144 {
2145 host->f_init = freq;
2146
2147 pr_debug("%s: %s: trying to init card at %u Hz\n",
2148 mmc_hostname(host), __func__, host->f_init);
2149
2150 mmc_power_up(host, host->ocr_avail);
2151
2152 /*
2153 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2154 * do a hardware reset if possible.
2155 */
2156 mmc_hw_reset_for_init(host);
2157
2158 /*
2159 * sdio_reset sends CMD52 to reset card. Since we do not know
2160 * if the card is being re-initialized, just send it. CMD52
2161 * should be ignored by SD/eMMC cards.
2162 * Skip it if we already know that we do not support SDIO commands
2163 */
2164 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2165 sdio_reset(host);
2166
2167 mmc_go_idle(host);
2168
2169 if (!(host->caps2 & MMC_CAP2_NO_SD))
2170 mmc_send_if_cond(host, host->ocr_avail);
2171
2172 /* Order's important: probe SDIO, then SD, then MMC */
2173 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2174 if (!mmc_attach_sdio(host))
2175 return 0;
2176
2177 if (!(host->caps2 & MMC_CAP2_NO_SD))
2178 if (!mmc_attach_sd(host))
2179 return 0;
2180
2181 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2182 if (!mmc_attach_mmc(host))
2183 return 0;
2184
2185 mmc_power_off(host);
2186 return -EIO;
2187 }
2188
_mmc_detect_card_removed(struct mmc_host *host)2189 int _mmc_detect_card_removed(struct mmc_host *host)
2190 {
2191 int ret;
2192
2193 if (!host->card || mmc_card_removed(host->card))
2194 return 1;
2195
2196 ret = host->bus_ops->alive(host);
2197
2198 /*
2199 * Card detect status and alive check may be out of sync if card is
2200 * removed slowly, when card detect switch changes while card/slot
2201 * pads are still contacted in hardware (refer to "SD Card Mechanical
2202 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2203 * detect work 200ms later for this case.
2204 */
2205 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2206 mmc_detect_change(host, msecs_to_jiffies(200));
2207 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2208 }
2209
2210 if (ret) {
2211 mmc_card_set_removed(host->card);
2212 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2213 }
2214
2215 return ret;
2216 }
2217
mmc_detect_card_removed(struct mmc_host *host)2218 int mmc_detect_card_removed(struct mmc_host *host)
2219 {
2220 struct mmc_card *card = host->card;
2221 int ret;
2222
2223 WARN_ON(!host->claimed);
2224
2225 if (!card)
2226 return 1;
2227
2228 if (!mmc_card_is_removable(host))
2229 return 0;
2230
2231 ret = mmc_card_removed(card);
2232 /*
2233 * The card will be considered unchanged unless we have been asked to
2234 * detect a change or host requires polling to provide card detection.
2235 */
2236 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2237 return ret;
2238
2239 host->detect_change = 0;
2240 if (!ret) {
2241 ret = _mmc_detect_card_removed(host);
2242 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2243 /*
2244 * Schedule a detect work as soon as possible to let a
2245 * rescan handle the card removal.
2246 */
2247 cancel_delayed_work(&host->detect);
2248 _mmc_detect_change(host, 0, false);
2249 }
2250 }
2251
2252 return ret;
2253 }
2254 EXPORT_SYMBOL(mmc_detect_card_removed);
2255
mmc_rescan(struct work_struct *work)2256 void mmc_rescan(struct work_struct *work)
2257 {
2258 struct mmc_host *host =
2259 container_of(work, struct mmc_host, detect.work);
2260 int i;
2261
2262 if (host->rescan_disable)
2263 return;
2264
2265 /* If there is a non-removable card registered, only scan once */
2266 if (!mmc_card_is_removable(host) && host->rescan_entered)
2267 return;
2268 host->rescan_entered = 1;
2269
2270 if (host->trigger_card_event && host->ops->card_event) {
2271 mmc_claim_host(host);
2272 host->ops->card_event(host);
2273 mmc_release_host(host);
2274 host->trigger_card_event = false;
2275 }
2276
2277 mmc_bus_get(host);
2278
2279 /* Verify a registered card to be functional, else remove it. */
2280 if (host->bus_ops && !host->bus_dead)
2281 host->bus_ops->detect(host);
2282
2283 host->detect_change = 0;
2284
2285 /*
2286 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2287 * the card is no longer present.
2288 */
2289 mmc_bus_put(host);
2290 mmc_bus_get(host);
2291
2292 /* if there still is a card present, stop here */
2293 if (host->bus_ops != NULL) {
2294 mmc_bus_put(host);
2295 goto out;
2296 }
2297
2298 /*
2299 * Only we can add a new handler, so it's safe to
2300 * release the lock here.
2301 */
2302 mmc_bus_put(host);
2303
2304 mmc_claim_host(host);
2305 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2306 host->ops->get_cd(host) == 0) {
2307 mmc_power_off(host);
2308 mmc_release_host(host);
2309 goto out;
2310 }
2311
2312 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2313 unsigned int freq = freqs[i];
2314 if (freq > host->f_max) {
2315 if (i + 1 < ARRAY_SIZE(freqs))
2316 continue;
2317 freq = host->f_max;
2318 }
2319 if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2320 break;
2321 if (freqs[i] <= host->f_min)
2322 break;
2323 }
2324 mmc_release_host(host);
2325
2326 out:
2327 if (host->caps & MMC_CAP_NEEDS_POLL)
2328 mmc_schedule_delayed_work(&host->detect, HZ);
2329 }
2330
mmc_start_host(struct mmc_host *host)2331 void mmc_start_host(struct mmc_host *host)
2332 {
2333 host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2334 host->rescan_disable = 0;
2335
2336 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2337 mmc_claim_host(host);
2338 mmc_power_up(host, host->ocr_avail);
2339 mmc_release_host(host);
2340 }
2341
2342 mmc_gpiod_request_cd_irq(host);
2343 _mmc_detect_change(host, 0, false);
2344 }
2345
__mmc_stop_host(struct mmc_host *host)2346 void __mmc_stop_host(struct mmc_host *host)
2347 {
2348 if (host->slot.cd_irq >= 0) {
2349 mmc_gpio_set_cd_wake(host, false);
2350 disable_irq(host->slot.cd_irq);
2351 }
2352
2353 host->rescan_disable = 1;
2354 cancel_delayed_work_sync(&host->detect);
2355 }
2356
mmc_stop_host(struct mmc_host *host)2357 void mmc_stop_host(struct mmc_host *host)
2358 {
2359 __mmc_stop_host(host);
2360
2361 /* clear pm flags now and let card drivers set them as needed */
2362 host->pm_flags = 0;
2363
2364 mmc_bus_get(host);
2365 if (host->bus_ops && !host->bus_dead) {
2366 /* Calling bus_ops->remove() with a claimed host can deadlock */
2367 host->bus_ops->remove(host);
2368 mmc_claim_host(host);
2369 mmc_detach_bus(host);
2370 mmc_power_off(host);
2371 mmc_release_host(host);
2372 mmc_bus_put(host);
2373 return;
2374 }
2375 mmc_bus_put(host);
2376
2377 mmc_claim_host(host);
2378 mmc_power_off(host);
2379 mmc_release_host(host);
2380 }
2381
mmc_init(void)2382 static int __init mmc_init(void)
2383 {
2384 int ret;
2385
2386 ret = mmc_register_bus();
2387 if (ret)
2388 return ret;
2389
2390 ret = mmc_register_host_class();
2391 if (ret)
2392 goto unregister_bus;
2393
2394 ret = sdio_register_bus();
2395 if (ret)
2396 goto unregister_host_class;
2397
2398 return 0;
2399
2400 unregister_host_class:
2401 mmc_unregister_host_class();
2402 unregister_bus:
2403 mmc_unregister_bus();
2404 return ret;
2405 }
2406
mmc_exit(void)2407 static void __exit mmc_exit(void)
2408 {
2409 sdio_unregister_bus();
2410 mmc_unregister_host_class();
2411 mmc_unregister_bus();
2412 }
2413
2414 subsys_initcall(mmc_init);
2415 module_exit(mmc_exit);
2416
2417 MODULE_LICENSE("GPL");
2418