1/* 2 * Block driver for media (i.e., flash cards) 3 * 4 * Copyright 2002 Hewlett-Packard Company 5 * Copyright 2005-2008 Pierre Ossman 6 * 7 * Use consistent with the GNU GPL is permitted, 8 * provided that this copyright notice is 9 * preserved in its entirety in all copies and derived works. 10 * 11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 13 * FITNESS FOR ANY PARTICULAR PURPOSE. 14 * 15 * Many thanks to Alessandro Rubini and Jonathan Corbet! 16 * 17 * Author: Andrew Christian 18 * 28 May 2002 19 */ 20#include <linux/moduleparam.h> 21#include <linux/module.h> 22#include <linux/init.h> 23 24#include <linux/kernel.h> 25#include <linux/fs.h> 26#include <linux/slab.h> 27#include <linux/errno.h> 28#include <linux/hdreg.h> 29#include <linux/kdev_t.h> 30#include <linux/blkdev.h> 31#include <linux/cdev.h> 32#include <linux/mutex.h> 33#include <linux/scatterlist.h> 34#include <linux/string_helpers.h> 35#include <linux/delay.h> 36#include <linux/capability.h> 37#include <linux/compat.h> 38#include <linux/pm_runtime.h> 39#include <linux/idr.h> 40#include <linux/debugfs.h> 41 42#include <linux/mmc/ioctl.h> 43#include <linux/mmc/card.h> 44#include <linux/mmc/host.h> 45#include <linux/mmc/mmc.h> 46#include <linux/mmc/sd.h> 47 48#include <linux/uaccess.h> 49 50#include "queue.h" 51#include "block.h" 52#include "core.h" 53#include "card.h" 54#include "host.h" 55#include "bus.h" 56#include "mmc_ops.h" 57#include "quirks.h" 58#include "sd_ops.h" 59 60MODULE_ALIAS("mmc:block"); 61#ifdef MODULE_PARAM_PREFIX 62#undef MODULE_PARAM_PREFIX 63#endif 64#define MODULE_PARAM_PREFIX "mmcblk." 65 66/* 67 * Set a 10 second timeout for polling write request busy state. Note, mmc core 68 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 69 * second software timer to timeout the whole request, so 10 seconds should be 70 * ample. 71 */ 72#define MMC_BLK_TIMEOUT_MS (10 * 1000) 73#define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 74#define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) 75 76#define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \ 77 (rq_data_dir(req) == WRITE)) 78static DEFINE_MUTEX(block_mutex); 79 80/* 81 * The defaults come from config options but can be overriden by module 82 * or bootarg options. 83 */ 84static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 85 86/* 87 * We've only got one major, so number of mmcblk devices is 88 * limited to (1 << 20) / number of minors per device. It is also 89 * limited by the MAX_DEVICES below. 90 */ 91static int max_devices; 92 93#define MAX_DEVICES 256 94 95static DEFINE_IDA(mmc_blk_ida); 96static DEFINE_IDA(mmc_rpmb_ida); 97 98/* 99 * There is one mmc_blk_data per slot. 100 */ 101struct mmc_blk_data { 102 struct device *parent; 103 struct gendisk *disk; 104 struct mmc_queue queue; 105 struct list_head part; 106 struct list_head rpmbs; 107 108 unsigned int flags; 109#define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 110#define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 111 112 unsigned int usage; 113 unsigned int read_only; 114 unsigned int part_type; 115 unsigned int reset_done; 116#define MMC_BLK_READ BIT(0) 117#define MMC_BLK_WRITE BIT(1) 118#define MMC_BLK_DISCARD BIT(2) 119#define MMC_BLK_SECDISCARD BIT(3) 120#define MMC_BLK_CQE_RECOVERY BIT(4) 121 122 /* 123 * Only set in main mmc_blk_data associated 124 * with mmc_card with dev_set_drvdata, and keeps 125 * track of the current selected device partition. 126 */ 127 unsigned int part_curr; 128 struct device_attribute force_ro; 129 struct device_attribute power_ro_lock; 130 int area_type; 131 132 /* debugfs files (only in main mmc_blk_data) */ 133 struct dentry *status_dentry; 134 struct dentry *ext_csd_dentry; 135}; 136 137/* Device type for RPMB character devices */ 138static dev_t mmc_rpmb_devt; 139 140/* Bus type for RPMB character devices */ 141static struct bus_type mmc_rpmb_bus_type = { 142 .name = "mmc_rpmb", 143}; 144 145/** 146 * struct mmc_rpmb_data - special RPMB device type for these areas 147 * @dev: the device for the RPMB area 148 * @chrdev: character device for the RPMB area 149 * @id: unique device ID number 150 * @part_index: partition index (0 on first) 151 * @md: parent MMC block device 152 * @node: list item, so we can put this device on a list 153 */ 154struct mmc_rpmb_data { 155 struct device dev; 156 struct cdev chrdev; 157 int id; 158 unsigned int part_index; 159 struct mmc_blk_data *md; 160 struct list_head node; 161}; 162 163static DEFINE_MUTEX(open_lock); 164 165module_param(perdev_minors, int, 0444); 166MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 167 168static inline int mmc_blk_part_switch(struct mmc_card *card, 169 unsigned int part_type); 170static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 171 struct mmc_card *card, 172 int recovery_mode, 173 struct mmc_queue *mq); 174static void mmc_blk_hsq_req_done(struct mmc_request *mrq); 175 176static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 177{ 178 struct mmc_blk_data *md; 179 180 mutex_lock(&open_lock); 181 md = disk->private_data; 182 if (md && md->usage == 0) 183 md = NULL; 184 if (md) 185 md->usage++; 186 mutex_unlock(&open_lock); 187 188 return md; 189} 190 191static inline int mmc_get_devidx(struct gendisk *disk) 192{ 193 int devidx = disk->first_minor / perdev_minors; 194 return devidx; 195} 196 197static void mmc_blk_put(struct mmc_blk_data *md) 198{ 199 mutex_lock(&open_lock); 200 md->usage--; 201 if (md->usage == 0) { 202 int devidx = mmc_get_devidx(md->disk); 203 blk_put_queue(md->queue.queue); 204 ida_simple_remove(&mmc_blk_ida, devidx); 205 put_disk(md->disk); 206 kfree(md); 207 } 208 mutex_unlock(&open_lock); 209} 210 211static ssize_t power_ro_lock_show(struct device *dev, 212 struct device_attribute *attr, char *buf) 213{ 214 int ret; 215 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 216 struct mmc_card *card = md->queue.card; 217 int locked = 0; 218 219 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 220 locked = 2; 221 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 222 locked = 1; 223 224 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 225 226 mmc_blk_put(md); 227 228 return ret; 229} 230 231static ssize_t power_ro_lock_store(struct device *dev, 232 struct device_attribute *attr, const char *buf, size_t count) 233{ 234 int ret; 235 struct mmc_blk_data *md, *part_md; 236 struct mmc_queue *mq; 237 struct request *req; 238 unsigned long set; 239 240 if (kstrtoul(buf, 0, &set)) 241 return -EINVAL; 242 243 if (set != 1) 244 return count; 245 246 md = mmc_blk_get(dev_to_disk(dev)); 247 mq = &md->queue; 248 249 /* Dispatch locking to the block layer */ 250 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0); 251 if (IS_ERR(req)) { 252 count = PTR_ERR(req); 253 goto out_put; 254 } 255 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 256 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 257 blk_execute_rq(mq->queue, NULL, req, 0); 258 ret = req_to_mmc_queue_req(req)->drv_op_result; 259 blk_put_request(req); 260 261 if (!ret) { 262 pr_info("%s: Locking boot partition ro until next power on\n", 263 md->disk->disk_name); 264 set_disk_ro(md->disk, 1); 265 266 list_for_each_entry(part_md, &md->part, part) 267 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 268 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 269 set_disk_ro(part_md->disk, 1); 270 } 271 } 272out_put: 273 mmc_blk_put(md); 274 return count; 275} 276 277static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 278 char *buf) 279{ 280 int ret; 281 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 282 283 ret = snprintf(buf, PAGE_SIZE, "%d\n", 284 get_disk_ro(dev_to_disk(dev)) ^ 285 md->read_only); 286 mmc_blk_put(md); 287 return ret; 288} 289 290static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 291 const char *buf, size_t count) 292{ 293 int ret; 294 char *end; 295 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 296 unsigned long set = simple_strtoul(buf, &end, 0); 297 if (end == buf) { 298 ret = -EINVAL; 299 goto out; 300 } 301 302 set_disk_ro(dev_to_disk(dev), set || md->read_only); 303 ret = count; 304out: 305 mmc_blk_put(md); 306 return ret; 307} 308 309static int mmc_blk_open(struct block_device *bdev, fmode_t mode) 310{ 311 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); 312 int ret = -ENXIO; 313 314 mutex_lock(&block_mutex); 315 if (md) { 316 ret = 0; 317 if ((mode & FMODE_WRITE) && md->read_only) { 318 mmc_blk_put(md); 319 ret = -EROFS; 320 } 321 } 322 mutex_unlock(&block_mutex); 323 324 return ret; 325} 326 327static void mmc_blk_release(struct gendisk *disk, fmode_t mode) 328{ 329 struct mmc_blk_data *md = disk->private_data; 330 331 mutex_lock(&block_mutex); 332 mmc_blk_put(md); 333 mutex_unlock(&block_mutex); 334} 335 336static int 337mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 338{ 339 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 340 geo->heads = 4; 341 geo->sectors = 16; 342 return 0; 343} 344 345struct mmc_blk_ioc_data { 346 struct mmc_ioc_cmd ic; 347 unsigned char *buf; 348 u64 buf_bytes; 349 unsigned int flags; 350#define MMC_BLK_IOC_DROP BIT(0) /* drop this mrq */ 351#define MMC_BLK_IOC_SBC BIT(1) /* use mrq.sbc */ 352 353 struct mmc_rpmb_data *rpmb; 354}; 355 356static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 357 struct mmc_ioc_cmd __user *user) 358{ 359 struct mmc_blk_ioc_data *idata; 360 int err; 361 362 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 363 if (!idata) { 364 err = -ENOMEM; 365 goto out; 366 } 367 368 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 369 err = -EFAULT; 370 goto idata_err; 371 } 372 373 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 374 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 375 err = -EOVERFLOW; 376 goto idata_err; 377 } 378 379 if (!idata->buf_bytes) { 380 idata->buf = NULL; 381 return idata; 382 } 383 384 idata->buf = memdup_user((void __user *)(unsigned long) 385 idata->ic.data_ptr, idata->buf_bytes); 386 if (IS_ERR(idata->buf)) { 387 err = PTR_ERR(idata->buf); 388 goto idata_err; 389 } 390 391 return idata; 392 393idata_err: 394 kfree(idata); 395out: 396 return ERR_PTR(err); 397} 398 399static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 400 struct mmc_blk_ioc_data *idata) 401{ 402 struct mmc_ioc_cmd *ic = &idata->ic; 403 404 if (copy_to_user(&(ic_ptr->response), ic->response, 405 sizeof(ic->response))) 406 return -EFAULT; 407 408 if (!idata->ic.write_flag) { 409 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 410 idata->buf, idata->buf_bytes)) 411 return -EFAULT; 412 } 413 414 return 0; 415} 416 417static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms, 418 u32 *resp_errs) 419{ 420 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); 421 int err = 0; 422 u32 status; 423 424 do { 425 bool done = time_after(jiffies, timeout); 426 427 err = __mmc_send_status(card, &status, 5); 428 if (err) { 429 dev_err(mmc_dev(card->host), 430 "error %d requesting status\n", err); 431 return err; 432 } 433 434 /* Accumulate any response error bits seen */ 435 if (resp_errs) 436 *resp_errs |= status; 437 438 /* 439 * Timeout if the device never becomes ready for data and never 440 * leaves the program state. 441 */ 442 if (done) { 443 dev_err(mmc_dev(card->host), 444 "Card stuck in wrong state! %s status: %#x\n", 445 __func__, status); 446 return -ETIMEDOUT; 447 } 448 } while (!mmc_ready_for_data(status)); 449 450 return err; 451} 452 453static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 454 struct mmc_blk_ioc_data **idatas, int i) 455{ 456 struct mmc_command cmd = {}, sbc = {}; 457 struct mmc_data data = {}; 458 struct mmc_request mrq = {}; 459 struct scatterlist sg; 460 int err; 461 unsigned int target_part; 462 struct mmc_blk_ioc_data *idata = idatas[i]; 463 struct mmc_blk_ioc_data *prev_idata = NULL; 464 465 if (!card || !md || !idata) 466 return -EINVAL; 467 468 if (idata->flags & MMC_BLK_IOC_DROP) 469 return 0; 470 471 if (idata->flags & MMC_BLK_IOC_SBC && i > 0) 472 prev_idata = idatas[i - 1]; 473 474 /* 475 * The RPMB accesses comes in from the character device, so we 476 * need to target these explicitly. Else we just target the 477 * partition type for the block device the ioctl() was issued 478 * on. 479 */ 480 if (idata->rpmb) { 481 /* Support multiple RPMB partitions */ 482 target_part = idata->rpmb->part_index; 483 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; 484 } else { 485 target_part = md->part_type; 486 } 487 488 cmd.opcode = idata->ic.opcode; 489 cmd.arg = idata->ic.arg; 490 cmd.flags = idata->ic.flags; 491 492 if (idata->buf_bytes) { 493 data.sg = &sg; 494 data.sg_len = 1; 495 data.blksz = idata->ic.blksz; 496 data.blocks = idata->ic.blocks; 497 498 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 499 500 if (idata->ic.write_flag) 501 data.flags = MMC_DATA_WRITE; 502 else 503 data.flags = MMC_DATA_READ; 504 505 /* data.flags must already be set before doing this. */ 506 mmc_set_data_timeout(&data, card); 507 508 /* Allow overriding the timeout_ns for empirical tuning. */ 509 if (idata->ic.data_timeout_ns) 510 data.timeout_ns = idata->ic.data_timeout_ns; 511 512 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 513 /* 514 * Pretend this is a data transfer and rely on the 515 * host driver to compute timeout. When all host 516 * drivers support cmd.cmd_timeout for R1B, this 517 * can be changed to: 518 * 519 * mrq.data = NULL; 520 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms; 521 */ 522 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000; 523 } 524 525 mrq.data = &data; 526 } 527 528 mrq.cmd = &cmd; 529 530 err = mmc_blk_part_switch(card, target_part); 531 if (err) 532 return err; 533 534 if (idata->ic.is_acmd) { 535 err = mmc_app_cmd(card->host, card); 536 if (err) 537 return err; 538 } 539 540 if (idata->rpmb || prev_idata) { 541 sbc.opcode = MMC_SET_BLOCK_COUNT; 542 /* 543 * We don't do any blockcount validation because the max size 544 * may be increased by a future standard. We just copy the 545 * 'Reliable Write' bit here. 546 */ 547 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31)); 548 if (prev_idata) 549 sbc.arg = prev_idata->ic.arg; 550 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 551 mrq.sbc = &sbc; 552 } 553 554 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 555 (cmd.opcode == MMC_SWITCH)) 556 return mmc_sanitize(card); 557 558 mmc_wait_for_req(card->host, &mrq); 559 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp)); 560 561 if (prev_idata) { 562 memcpy(&prev_idata->ic.response, sbc.resp, sizeof(sbc.resp)); 563 if (sbc.error) { 564 dev_err(mmc_dev(card->host), "%s: sbc error %d\n", 565 __func__, sbc.error); 566 return sbc.error; 567 } 568 } 569 570 if (cmd.error) { 571 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 572 __func__, cmd.error); 573 return cmd.error; 574 } 575 if (data.error) { 576 dev_err(mmc_dev(card->host), "%s: data error %d\n", 577 __func__, data.error); 578 return data.error; 579 } 580 581 /* 582 * Make sure the cache of the PARTITION_CONFIG register and 583 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write 584 * changed it successfully. 585 */ 586 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && 587 (cmd.opcode == MMC_SWITCH)) { 588 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 589 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); 590 591 /* 592 * Update cache so the next mmc_blk_part_switch call operates 593 * on up-to-date data. 594 */ 595 card->ext_csd.part_config = value; 596 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; 597 } 598 599 /* 600 * Make sure to update CACHE_CTRL in case it was changed. The cache 601 * will get turned back on if the card is re-initialized, e.g. 602 * suspend/resume or hw reset in recovery. 603 */ 604 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) && 605 (cmd.opcode == MMC_SWITCH)) { 606 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1; 607 608 card->ext_csd.cache_ctrl = value; 609 } 610 611 /* 612 * According to the SD specs, some commands require a delay after 613 * issuing the command. 614 */ 615 if (idata->ic.postsleep_min_us) 616 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 617 618 if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 619 /* 620 * Ensure RPMB/R1B command has completed by polling CMD13 621 * "Send Status". 622 */ 623 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, NULL); 624 } 625 626 return err; 627} 628 629static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, 630 struct mmc_ioc_cmd __user *ic_ptr, 631 struct mmc_rpmb_data *rpmb) 632{ 633 struct mmc_blk_ioc_data *idata; 634 struct mmc_blk_ioc_data *idatas[1]; 635 struct mmc_queue *mq; 636 struct mmc_card *card; 637 int err = 0, ioc_err = 0; 638 struct request *req; 639 640 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 641 if (IS_ERR(idata)) 642 return PTR_ERR(idata); 643 /* This will be NULL on non-RPMB ioctl():s */ 644 idata->rpmb = rpmb; 645 646 card = md->queue.card; 647 if (IS_ERR(card)) { 648 err = PTR_ERR(card); 649 goto cmd_done; 650 } 651 652 /* 653 * Dispatch the ioctl() into the block request queue. 654 */ 655 mq = &md->queue; 656 req = blk_get_request(mq->queue, 657 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 658 if (IS_ERR(req)) { 659 err = PTR_ERR(req); 660 goto cmd_done; 661 } 662 idatas[0] = idata; 663 req_to_mmc_queue_req(req)->drv_op = 664 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 665 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 666 req_to_mmc_queue_req(req)->drv_op_data = idatas; 667 req_to_mmc_queue_req(req)->ioc_count = 1; 668 blk_execute_rq(mq->queue, NULL, req, 0); 669 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 670 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 671 blk_put_request(req); 672 673cmd_done: 674 kfree(idata->buf); 675 kfree(idata); 676 return ioc_err ? ioc_err : err; 677} 678 679static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, 680 struct mmc_ioc_multi_cmd __user *user, 681 struct mmc_rpmb_data *rpmb) 682{ 683 struct mmc_blk_ioc_data **idata = NULL; 684 struct mmc_ioc_cmd __user *cmds = user->cmds; 685 struct mmc_card *card; 686 struct mmc_queue *mq; 687 int i, err = 0, ioc_err = 0; 688 __u64 num_of_cmds; 689 struct request *req; 690 691 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 692 sizeof(num_of_cmds))) 693 return -EFAULT; 694 695 if (!num_of_cmds) 696 return 0; 697 698 if (num_of_cmds > MMC_IOC_MAX_CMDS) 699 return -EINVAL; 700 701 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL); 702 if (!idata) 703 return -ENOMEM; 704 705 for (i = 0; i < num_of_cmds; i++) { 706 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 707 if (IS_ERR(idata[i])) { 708 err = PTR_ERR(idata[i]); 709 num_of_cmds = i; 710 goto cmd_err; 711 } 712 /* This will be NULL on non-RPMB ioctl():s */ 713 idata[i]->rpmb = rpmb; 714 } 715 716 card = md->queue.card; 717 if (IS_ERR(card)) { 718 err = PTR_ERR(card); 719 goto cmd_err; 720 } 721 722 723 /* 724 * Dispatch the ioctl()s into the block request queue. 725 */ 726 mq = &md->queue; 727 req = blk_get_request(mq->queue, 728 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 729 if (IS_ERR(req)) { 730 err = PTR_ERR(req); 731 goto cmd_err; 732 } 733 req_to_mmc_queue_req(req)->drv_op = 734 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 735 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 736 req_to_mmc_queue_req(req)->drv_op_data = idata; 737 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds; 738 blk_execute_rq(mq->queue, NULL, req, 0); 739 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 740 741 /* copy to user if data and response */ 742 for (i = 0; i < num_of_cmds && !err; i++) 743 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 744 745 blk_put_request(req); 746 747cmd_err: 748 for (i = 0; i < num_of_cmds; i++) { 749 kfree(idata[i]->buf); 750 kfree(idata[i]); 751 } 752 kfree(idata); 753 return ioc_err ? ioc_err : err; 754} 755 756static int mmc_blk_check_blkdev(struct block_device *bdev) 757{ 758 /* 759 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 760 * whole block device, not on a partition. This prevents overspray 761 * between sibling partitions. 762 */ 763 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev)) 764 return -EPERM; 765 return 0; 766} 767 768static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, 769 unsigned int cmd, unsigned long arg) 770{ 771 struct mmc_blk_data *md; 772 int ret; 773 774 switch (cmd) { 775 case MMC_IOC_CMD: 776 ret = mmc_blk_check_blkdev(bdev); 777 if (ret) 778 return ret; 779 md = mmc_blk_get(bdev->bd_disk); 780 if (!md) 781 return -EINVAL; 782 ret = mmc_blk_ioctl_cmd(md, 783 (struct mmc_ioc_cmd __user *)arg, 784 NULL); 785 mmc_blk_put(md); 786 return ret; 787 case MMC_IOC_MULTI_CMD: 788 ret = mmc_blk_check_blkdev(bdev); 789 if (ret) 790 return ret; 791 md = mmc_blk_get(bdev->bd_disk); 792 if (!md) 793 return -EINVAL; 794 ret = mmc_blk_ioctl_multi_cmd(md, 795 (struct mmc_ioc_multi_cmd __user *)arg, 796 NULL); 797 mmc_blk_put(md); 798 return ret; 799 default: 800 return -EINVAL; 801 } 802} 803 804#ifdef CONFIG_COMPAT 805static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, 806 unsigned int cmd, unsigned long arg) 807{ 808 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 809} 810#endif 811 812static const struct block_device_operations mmc_bdops = { 813 .open = mmc_blk_open, 814 .release = mmc_blk_release, 815 .getgeo = mmc_blk_getgeo, 816 .owner = THIS_MODULE, 817 .ioctl = mmc_blk_ioctl, 818#ifdef CONFIG_COMPAT 819 .compat_ioctl = mmc_blk_compat_ioctl, 820#endif 821}; 822 823static int mmc_blk_part_switch_pre(struct mmc_card *card, 824 unsigned int part_type) 825{ 826 const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_RPMB; 827 int ret = 0; 828 829 if ((part_type & mask) == mask) { 830 if (card->ext_csd.cmdq_en) { 831 ret = mmc_cmdq_disable(card); 832 if (ret) 833 return ret; 834 } 835 mmc_retune_pause(card->host); 836 } 837 838 return ret; 839} 840 841static int mmc_blk_part_switch_post(struct mmc_card *card, 842 unsigned int part_type) 843{ 844 const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_RPMB; 845 int ret = 0; 846 847 if ((part_type & mask) == mask) { 848 mmc_retune_unpause(card->host); 849 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 850 ret = mmc_cmdq_enable(card); 851 } 852 853 return ret; 854} 855 856static inline int mmc_blk_part_switch(struct mmc_card *card, 857 unsigned int part_type) 858{ 859 int ret = 0; 860 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 861 862 if (main_md->part_curr == part_type) 863 return 0; 864 865 if (mmc_card_mmc(card)) { 866 u8 part_config = card->ext_csd.part_config; 867 868 ret = mmc_blk_part_switch_pre(card, part_type); 869 if (ret) 870 return ret; 871 872 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 873 part_config |= part_type; 874 875 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 876 EXT_CSD_PART_CONFIG, part_config, 877 card->ext_csd.part_time); 878 if (ret) { 879 mmc_blk_part_switch_post(card, part_type); 880 return ret; 881 } 882 883 card->ext_csd.part_config = part_config; 884 885 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 886 } 887 888 main_md->part_curr = part_type; 889 return ret; 890} 891 892static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 893{ 894 int err; 895 u32 result; 896 __be32 *blocks; 897 898 struct mmc_request mrq = {}; 899 struct mmc_command cmd = {}; 900 struct mmc_data data = {}; 901 902 struct scatterlist sg; 903 904 cmd.opcode = MMC_APP_CMD; 905 cmd.arg = card->rca << 16; 906 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 907 908 err = mmc_wait_for_cmd(card->host, &cmd, 0); 909 if (err) 910 return err; 911 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) 912 return -EIO; 913 914 memset(&cmd, 0, sizeof(struct mmc_command)); 915 916 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 917 cmd.arg = 0; 918 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 919 920 data.blksz = 4; 921 data.blocks = 1; 922 data.flags = MMC_DATA_READ; 923 data.sg = &sg; 924 data.sg_len = 1; 925 mmc_set_data_timeout(&data, card); 926 927 mrq.cmd = &cmd; 928 mrq.data = &data; 929 930 blocks = kmalloc(4, GFP_KERNEL); 931 if (!blocks) 932 return -ENOMEM; 933 934 sg_init_one(&sg, blocks, 4); 935 936 mmc_wait_for_req(card->host, &mrq); 937 938 result = ntohl(*blocks); 939 kfree(blocks); 940 941 if (cmd.error || data.error) 942 return -EIO; 943 944 *written_blocks = result; 945 946 return 0; 947} 948 949static unsigned int mmc_blk_clock_khz(struct mmc_host *host) 950{ 951 if (host->actual_clock) 952 return host->actual_clock / 1000; 953 954 /* Clock may be subject to a divisor, fudge it by a factor of 2. */ 955 if (host->ios.clock) 956 return host->ios.clock / 2000; 957 958 /* How can there be no clock */ 959 WARN_ON_ONCE(1); 960 return 100; /* 100 kHz is minimum possible value */ 961} 962 963static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, 964 struct mmc_data *data) 965{ 966 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); 967 unsigned int khz; 968 969 if (data->timeout_clks) { 970 khz = mmc_blk_clock_khz(host); 971 ms += DIV_ROUND_UP(data->timeout_clks, khz); 972 } 973 974 return ms; 975} 976 977static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 978 int type) 979{ 980 int err; 981 982 if (md->reset_done & type) 983 return -EEXIST; 984 985 md->reset_done |= type; 986 err = mmc_hw_reset(host); 987 /* Ensure we switch back to the correct partition */ 988 if (err != -EOPNOTSUPP) { 989 struct mmc_blk_data *main_md = 990 dev_get_drvdata(&host->card->dev); 991 int part_err; 992 993 main_md->part_curr = main_md->part_type; 994 part_err = mmc_blk_part_switch(host->card, md->part_type); 995 if (part_err) { 996 /* 997 * We have failed to get back into the correct 998 * partition, so we need to abort the whole request. 999 */ 1000 return -ENODEV; 1001 } 1002 } 1003 return err; 1004} 1005 1006static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 1007{ 1008 md->reset_done &= ~type; 1009} 1010 1011static void mmc_blk_check_sbc(struct mmc_queue_req *mq_rq) 1012{ 1013 struct mmc_blk_ioc_data **idata = mq_rq->drv_op_data; 1014 int i; 1015 1016 for (i = 1; i < mq_rq->ioc_count; i++) { 1017 if (idata[i - 1]->ic.opcode == MMC_SET_BLOCK_COUNT && 1018 mmc_op_multi(idata[i]->ic.opcode)) { 1019 idata[i - 1]->flags |= MMC_BLK_IOC_DROP; 1020 idata[i]->flags |= MMC_BLK_IOC_SBC; 1021 } 1022 } 1023} 1024 1025/* 1026 * The non-block commands come back from the block layer after it queued it and 1027 * processed it with all other requests and then they get issued in this 1028 * function. 1029 */ 1030static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 1031{ 1032 struct mmc_queue_req *mq_rq; 1033 struct mmc_card *card = mq->card; 1034 struct mmc_blk_data *md = mq->blkdata; 1035 struct mmc_blk_ioc_data **idata; 1036 bool rpmb_ioctl; 1037 u8 **ext_csd; 1038 u32 status; 1039 int ret; 1040 int i; 1041 1042 mq_rq = req_to_mmc_queue_req(req); 1043 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); 1044 1045 switch (mq_rq->drv_op) { 1046 case MMC_DRV_OP_IOCTL: 1047 if (card->ext_csd.cmdq_en) { 1048 ret = mmc_cmdq_disable(card); 1049 if (ret) 1050 break; 1051 } 1052 1053 mmc_blk_check_sbc(mq_rq); 1054 1055 fallthrough; 1056 case MMC_DRV_OP_IOCTL_RPMB: 1057 idata = mq_rq->drv_op_data; 1058 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { 1059 ret = __mmc_blk_ioctl_cmd(card, md, idata, i); 1060 if (ret) 1061 break; 1062 } 1063 /* Always switch back to main area after RPMB access */ 1064 if (rpmb_ioctl) 1065 mmc_blk_part_switch(card, 0); 1066 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 1067 mmc_cmdq_enable(card); 1068 break; 1069 case MMC_DRV_OP_BOOT_WP: 1070 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1071 card->ext_csd.boot_ro_lock | 1072 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1073 card->ext_csd.part_time); 1074 if (ret) 1075 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1076 md->disk->disk_name, ret); 1077 else 1078 card->ext_csd.boot_ro_lock |= 1079 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1080 break; 1081 case MMC_DRV_OP_GET_CARD_STATUS: 1082 ret = mmc_send_status(card, &status); 1083 if (!ret) 1084 ret = status; 1085 break; 1086 case MMC_DRV_OP_GET_EXT_CSD: 1087 ext_csd = mq_rq->drv_op_data; 1088 ret = mmc_get_ext_csd(card, ext_csd); 1089 break; 1090 default: 1091 pr_err("%s: unknown driver specific operation\n", 1092 md->disk->disk_name); 1093 ret = -EINVAL; 1094 break; 1095 } 1096 mq_rq->drv_op_result = ret; 1097 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1098} 1099 1100static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1101{ 1102 struct mmc_blk_data *md = mq->blkdata; 1103 struct mmc_card *card = md->queue.card; 1104 unsigned int from, nr; 1105 int err = 0, type = MMC_BLK_DISCARD; 1106 blk_status_t status = BLK_STS_OK; 1107 1108 if (!mmc_can_erase(card)) { 1109 status = BLK_STS_NOTSUPP; 1110 goto fail; 1111 } 1112 1113 from = blk_rq_pos(req); 1114 nr = blk_rq_sectors(req); 1115 1116 do { 1117 unsigned int erase_arg = card->erase_arg; 1118 1119 if (mmc_card_broken_sd_discard(card)) 1120 erase_arg = SD_ERASE_ARG; 1121 1122 err = 0; 1123 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1124 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1125 INAND_CMD38_ARG_EXT_CSD, 1126 card->erase_arg == MMC_TRIM_ARG ? 1127 INAND_CMD38_ARG_TRIM : 1128 INAND_CMD38_ARG_ERASE, 1129 card->ext_csd.generic_cmd6_time); 1130 } 1131 if (!err) 1132 err = mmc_erase(card, from, nr, erase_arg); 1133 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1134 if (err) 1135 status = BLK_STS_IOERR; 1136 else 1137 mmc_blk_reset_success(md, type); 1138fail: 1139 blk_mq_end_request(req, status); 1140} 1141 1142static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1143 struct request *req) 1144{ 1145 struct mmc_blk_data *md = mq->blkdata; 1146 struct mmc_card *card = md->queue.card; 1147 unsigned int from, nr, arg; 1148 int err = 0, type = MMC_BLK_SECDISCARD; 1149 blk_status_t status = BLK_STS_OK; 1150 1151 if (!(mmc_can_secure_erase_trim(card))) { 1152 status = BLK_STS_NOTSUPP; 1153 goto out; 1154 } 1155 1156 from = blk_rq_pos(req); 1157 nr = blk_rq_sectors(req); 1158 1159 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1160 arg = MMC_SECURE_TRIM1_ARG; 1161 else 1162 arg = MMC_SECURE_ERASE_ARG; 1163 1164retry: 1165 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1166 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1167 INAND_CMD38_ARG_EXT_CSD, 1168 arg == MMC_SECURE_TRIM1_ARG ? 1169 INAND_CMD38_ARG_SECTRIM1 : 1170 INAND_CMD38_ARG_SECERASE, 1171 card->ext_csd.generic_cmd6_time); 1172 if (err) 1173 goto out_retry; 1174 } 1175 1176 err = mmc_erase(card, from, nr, arg); 1177 if (err == -EIO) 1178 goto out_retry; 1179 if (err) { 1180 status = BLK_STS_IOERR; 1181 goto out; 1182 } 1183 1184 if (arg == MMC_SECURE_TRIM1_ARG) { 1185 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1186 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1187 INAND_CMD38_ARG_EXT_CSD, 1188 INAND_CMD38_ARG_SECTRIM2, 1189 card->ext_csd.generic_cmd6_time); 1190 if (err) 1191 goto out_retry; 1192 } 1193 1194 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1195 if (err == -EIO) 1196 goto out_retry; 1197 if (err) { 1198 status = BLK_STS_IOERR; 1199 goto out; 1200 } 1201 } 1202 1203out_retry: 1204 if (err && !mmc_blk_reset(md, card->host, type)) 1205 goto retry; 1206 if (!err) 1207 mmc_blk_reset_success(md, type); 1208out: 1209 blk_mq_end_request(req, status); 1210} 1211 1212static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1213{ 1214 struct mmc_blk_data *md = mq->blkdata; 1215 struct mmc_card *card = md->queue.card; 1216 int ret = 0; 1217 1218 ret = mmc_flush_cache(card); 1219 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1220} 1221 1222/* 1223 * Reformat current write as a reliable write, supporting 1224 * both legacy and the enhanced reliable write MMC cards. 1225 * In each transfer we'll handle only as much as a single 1226 * reliable write can handle, thus finish the request in 1227 * partial completions. 1228 */ 1229static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1230 struct mmc_card *card, 1231 struct request *req) 1232{ 1233 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1234 /* Legacy mode imposes restrictions on transfers. */ 1235 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1236 brq->data.blocks = 1; 1237 1238 if (brq->data.blocks > card->ext_csd.rel_sectors) 1239 brq->data.blocks = card->ext_csd.rel_sectors; 1240 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1241 brq->data.blocks = 1; 1242 } 1243} 1244 1245#define CMD_ERRORS_EXCL_OOR \ 1246 (R1_ADDRESS_ERROR | /* Misaligned address */ \ 1247 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1248 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1249 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1250 R1_CC_ERROR | /* Card controller error */ \ 1251 R1_ERROR) /* General/unknown error */ 1252 1253#define CMD_ERRORS \ 1254 (CMD_ERRORS_EXCL_OOR | \ 1255 R1_OUT_OF_RANGE) /* Command argument out of range */ \ 1256 1257static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) 1258{ 1259 u32 val; 1260 1261 /* 1262 * Per the SD specification(physical layer version 4.10)[1], 1263 * section 4.3.3, it explicitly states that "When the last 1264 * block of user area is read using CMD18, the host should 1265 * ignore OUT_OF_RANGE error that may occur even the sequence 1266 * is correct". And JESD84-B51 for eMMC also has a similar 1267 * statement on section 6.8.3. 1268 * 1269 * Multiple block read/write could be done by either predefined 1270 * method, namely CMD23, or open-ending mode. For open-ending mode, 1271 * we should ignore the OUT_OF_RANGE error as it's normal behaviour. 1272 * 1273 * However the spec[1] doesn't tell us whether we should also 1274 * ignore that for predefined method. But per the spec[1], section 1275 * 4.15 Set Block Count Command, it says"If illegal block count 1276 * is set, out of range error will be indicated during read/write 1277 * operation (For example, data transfer is stopped at user area 1278 * boundary)." In another word, we could expect a out of range error 1279 * in the response for the following CMD18/25. And if argument of 1280 * CMD23 + the argument of CMD18/25 exceed the max number of blocks, 1281 * we could also expect to get a -ETIMEDOUT or any error number from 1282 * the host drivers due to missing data response(for write)/data(for 1283 * read), as the cards will stop the data transfer by itself per the 1284 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. 1285 */ 1286 1287 if (!brq->stop.error) { 1288 bool oor_with_open_end; 1289 /* If there is no error yet, check R1 response */ 1290 1291 val = brq->stop.resp[0] & CMD_ERRORS; 1292 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; 1293 1294 if (val && !oor_with_open_end) 1295 brq->stop.error = -EIO; 1296 } 1297} 1298 1299static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1300 int recovery_mode, bool *do_rel_wr_p, 1301 bool *do_data_tag_p) 1302{ 1303 struct mmc_blk_data *md = mq->blkdata; 1304 struct mmc_card *card = md->queue.card; 1305 struct mmc_blk_request *brq = &mqrq->brq; 1306 struct request *req = mmc_queue_req_to_req(mqrq); 1307 bool do_rel_wr, do_data_tag; 1308 1309 /* 1310 * Reliable writes are used to implement Forced Unit Access and 1311 * are supported only on MMCs. 1312 */ 1313 do_rel_wr = (req->cmd_flags & REQ_FUA) && 1314 rq_data_dir(req) == WRITE && 1315 (md->flags & MMC_BLK_REL_WR); 1316 1317 memset(brq, 0, sizeof(struct mmc_blk_request)); 1318 1319 brq->mrq.data = &brq->data; 1320 brq->mrq.tag = req->tag; 1321 1322 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1323 brq->stop.arg = 0; 1324 1325 if (rq_data_dir(req) == READ) { 1326 brq->data.flags = MMC_DATA_READ; 1327 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1328 } else { 1329 brq->data.flags = MMC_DATA_WRITE; 1330 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1331 } 1332 1333 brq->data.blksz = 512; 1334 brq->data.blocks = blk_rq_sectors(req); 1335 brq->data.blk_addr = blk_rq_pos(req); 1336 1337 /* 1338 * The command queue supports 2 priorities: "high" (1) and "simple" (0). 1339 * The eMMC will give "high" priority tasks priority over "simple" 1340 * priority tasks. Here we always set "simple" priority by not setting 1341 * MMC_DATA_PRIO. 1342 */ 1343 1344 /* 1345 * The block layer doesn't support all sector count 1346 * restrictions, so we need to be prepared for too big 1347 * requests. 1348 */ 1349 if (brq->data.blocks > card->host->max_blk_count) 1350 brq->data.blocks = card->host->max_blk_count; 1351 1352 if (brq->data.blocks > 1) { 1353 /* 1354 * Some SD cards in SPI mode return a CRC error or even lock up 1355 * completely when trying to read the last block using a 1356 * multiblock read command. 1357 */ 1358 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) && 1359 (blk_rq_pos(req) + blk_rq_sectors(req) == 1360 get_capacity(md->disk))) 1361 brq->data.blocks--; 1362 1363 /* 1364 * After a read error, we redo the request one (native) sector 1365 * at a time in order to accurately determine which 1366 * sectors can be read successfully. 1367 */ 1368 if (recovery_mode) 1369 brq->data.blocks = queue_physical_block_size(mq->queue) >> 9; 1370 1371 /* 1372 * Some controllers have HW issues while operating 1373 * in multiple I/O mode 1374 */ 1375 if (card->host->ops->multi_io_quirk) 1376 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1377 (rq_data_dir(req) == READ) ? 1378 MMC_DATA_READ : MMC_DATA_WRITE, 1379 brq->data.blocks); 1380 } 1381 1382 if (do_rel_wr) { 1383 mmc_apply_rel_rw(brq, card, req); 1384 brq->data.flags |= MMC_DATA_REL_WR; 1385 } 1386 1387 /* 1388 * Data tag is used only during writing meta data to speed 1389 * up write and any subsequent read of this meta data 1390 */ 1391 do_data_tag = card->ext_csd.data_tag_unit_size && 1392 (req->cmd_flags & REQ_META) && 1393 (rq_data_dir(req) == WRITE) && 1394 ((brq->data.blocks * brq->data.blksz) >= 1395 card->ext_csd.data_tag_unit_size); 1396 1397 if (do_data_tag) 1398 brq->data.flags |= MMC_DATA_DAT_TAG; 1399 1400 mmc_set_data_timeout(&brq->data, card); 1401 1402 brq->data.sg = mqrq->sg; 1403 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1404 1405 /* 1406 * Adjust the sg list so it is the same size as the 1407 * request. 1408 */ 1409 if (brq->data.blocks != blk_rq_sectors(req)) { 1410 int i, data_size = brq->data.blocks << 9; 1411 struct scatterlist *sg; 1412 1413 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1414 data_size -= sg->length; 1415 if (data_size <= 0) { 1416 sg->length += data_size; 1417 i++; 1418 break; 1419 } 1420 } 1421 brq->data.sg_len = i; 1422 } 1423 1424 if (do_rel_wr_p) 1425 *do_rel_wr_p = do_rel_wr; 1426 1427 if (do_data_tag_p) 1428 *do_data_tag_p = do_data_tag; 1429} 1430 1431#define MMC_CQE_RETRIES 2 1432 1433static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) 1434{ 1435 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1436 struct mmc_request *mrq = &mqrq->brq.mrq; 1437 struct request_queue *q = req->q; 1438 struct mmc_host *host = mq->card->host; 1439 enum mmc_issue_type issue_type = mmc_issue_type(mq, req); 1440 unsigned long flags; 1441 bool put_card; 1442 int err; 1443 1444 mmc_cqe_post_req(host, mrq); 1445 1446 if (mrq->cmd && mrq->cmd->error) 1447 err = mrq->cmd->error; 1448 else if (mrq->data && mrq->data->error) 1449 err = mrq->data->error; 1450 else 1451 err = 0; 1452 1453 if (err) { 1454 if (mqrq->retries++ < MMC_CQE_RETRIES) 1455 blk_mq_requeue_request(req, true); 1456 else 1457 blk_mq_end_request(req, BLK_STS_IOERR); 1458 } else if (mrq->data) { 1459 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) 1460 blk_mq_requeue_request(req, true); 1461 else 1462 __blk_mq_end_request(req, BLK_STS_OK); 1463 } else if (mq->in_recovery) { 1464 blk_mq_requeue_request(req, true); 1465 } else { 1466 blk_mq_end_request(req, BLK_STS_OK); 1467 } 1468 1469 spin_lock_irqsave(&mq->lock, flags); 1470 1471 mq->in_flight[issue_type] -= 1; 1472 1473 put_card = (mmc_tot_in_flight(mq) == 0); 1474 1475 mmc_cqe_check_busy(mq); 1476 1477 spin_unlock_irqrestore(&mq->lock, flags); 1478 1479 if (!mq->cqe_busy) 1480 blk_mq_run_hw_queues(q, true); 1481 1482 if (put_card) 1483 mmc_put_card(mq->card, &mq->ctx); 1484} 1485 1486void mmc_blk_cqe_recovery(struct mmc_queue *mq) 1487{ 1488 struct mmc_card *card = mq->card; 1489 struct mmc_host *host = card->host; 1490 int err; 1491 1492 pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); 1493 1494 err = mmc_cqe_recovery(host); 1495 if (err) 1496 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); 1497 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); 1498 1499 pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); 1500} 1501 1502static void mmc_blk_cqe_req_done(struct mmc_request *mrq) 1503{ 1504 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 1505 brq.mrq); 1506 struct request *req = mmc_queue_req_to_req(mqrq); 1507 struct request_queue *q = req->q; 1508 struct mmc_queue *mq = q->queuedata; 1509 1510 /* 1511 * Block layer timeouts race with completions which means the normal 1512 * completion path cannot be used during recovery. 1513 */ 1514 if (mq->in_recovery) 1515 mmc_blk_cqe_complete_rq(mq, req); 1516 else if (likely(!blk_should_fake_timeout(req->q))) 1517 blk_mq_complete_request(req); 1518} 1519 1520static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 1521{ 1522 mrq->done = mmc_blk_cqe_req_done; 1523 mrq->recovery_notifier = mmc_cqe_recovery_notifier; 1524 1525 return mmc_cqe_start_req(host, mrq); 1526} 1527 1528static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, 1529 struct request *req) 1530{ 1531 struct mmc_blk_request *brq = &mqrq->brq; 1532 1533 memset(brq, 0, sizeof(*brq)); 1534 1535 brq->mrq.cmd = &brq->cmd; 1536 brq->mrq.tag = req->tag; 1537 1538 return &brq->mrq; 1539} 1540 1541static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) 1542{ 1543 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1544 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); 1545 1546 mrq->cmd->opcode = MMC_SWITCH; 1547 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1548 (EXT_CSD_FLUSH_CACHE << 16) | 1549 (1 << 8) | 1550 EXT_CSD_CMD_SET_NORMAL; 1551 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; 1552 1553 return mmc_blk_cqe_start_req(mq->card->host, mrq); 1554} 1555 1556static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1557{ 1558 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1559 struct mmc_host *host = mq->card->host; 1560 int err; 1561 1562 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 1563 mqrq->brq.mrq.done = mmc_blk_hsq_req_done; 1564 mmc_pre_req(host, &mqrq->brq.mrq); 1565 1566 err = mmc_cqe_start_req(host, &mqrq->brq.mrq); 1567 if (err) 1568 mmc_post_req(host, &mqrq->brq.mrq, err); 1569 1570 return err; 1571} 1572 1573static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1574{ 1575 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1576 struct mmc_host *host = mq->card->host; 1577 1578 if (host->hsq_enabled) 1579 return mmc_blk_hsq_issue_rw_rq(mq, req); 1580 1581 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); 1582 1583 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); 1584} 1585 1586static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1587 struct mmc_card *card, 1588 int recovery_mode, 1589 struct mmc_queue *mq) 1590{ 1591 u32 readcmd, writecmd; 1592 struct mmc_blk_request *brq = &mqrq->brq; 1593 struct request *req = mmc_queue_req_to_req(mqrq); 1594 struct mmc_blk_data *md = mq->blkdata; 1595 bool do_rel_wr, do_data_tag; 1596 1597 mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag); 1598 1599 brq->mrq.cmd = &brq->cmd; 1600 1601 brq->cmd.arg = blk_rq_pos(req); 1602 if (!mmc_card_blockaddr(card)) 1603 brq->cmd.arg <<= 9; 1604 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1605 1606 if (brq->data.blocks > 1 || do_rel_wr) { 1607 /* SPI multiblock writes terminate using a special 1608 * token, not a STOP_TRANSMISSION request. 1609 */ 1610 if (!mmc_host_is_spi(card->host) || 1611 rq_data_dir(req) == READ) 1612 brq->mrq.stop = &brq->stop; 1613 readcmd = MMC_READ_MULTIPLE_BLOCK; 1614 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1615 } else { 1616 brq->mrq.stop = NULL; 1617 readcmd = MMC_READ_SINGLE_BLOCK; 1618 writecmd = MMC_WRITE_BLOCK; 1619 } 1620 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1621 1622 /* 1623 * Pre-defined multi-block transfers are preferable to 1624 * open ended-ones (and necessary for reliable writes). 1625 * However, it is not sufficient to just send CMD23, 1626 * and avoid the final CMD12, as on an error condition 1627 * CMD12 (stop) needs to be sent anyway. This, coupled 1628 * with Auto-CMD23 enhancements provided by some 1629 * hosts, means that the complexity of dealing 1630 * with this is best left to the host. If CMD23 is 1631 * supported by card and host, we'll fill sbc in and let 1632 * the host deal with handling it correctly. This means 1633 * that for hosts that don't expose MMC_CAP_CMD23, no 1634 * change of behavior will be observed. 1635 * 1636 * N.B: Some MMC cards experience perf degradation. 1637 * We'll avoid using CMD23-bounded multiblock writes for 1638 * these, while retaining features like reliable writes. 1639 */ 1640 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1641 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1642 do_data_tag)) { 1643 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1644 brq->sbc.arg = brq->data.blocks | 1645 (do_rel_wr ? (1 << 31) : 0) | 1646 (do_data_tag ? (1 << 29) : 0); 1647 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1648 brq->mrq.sbc = &brq->sbc; 1649 } 1650} 1651 1652#define MMC_MAX_RETRIES 5 1653#define MMC_DATA_RETRIES 2 1654#define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) 1655 1656static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) 1657{ 1658 struct mmc_command cmd = { 1659 .opcode = MMC_STOP_TRANSMISSION, 1660 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, 1661 /* Some hosts wait for busy anyway, so provide a busy timeout */ 1662 .busy_timeout = timeout, 1663 }; 1664 1665 return mmc_wait_for_cmd(card->host, &cmd, 5); 1666} 1667 1668static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) 1669{ 1670 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1671 struct mmc_blk_request *brq = &mqrq->brq; 1672 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); 1673 int err; 1674 1675 mmc_retune_hold_now(card->host); 1676 1677 mmc_blk_send_stop(card, timeout); 1678 1679 err = card_busy_detect(card, timeout, NULL); 1680 1681 mmc_retune_release(card->host); 1682 1683 return err; 1684} 1685 1686#define MMC_READ_SINGLE_RETRIES 2 1687 1688/* Single (native) sector read during recovery */ 1689static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) 1690{ 1691 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1692 struct mmc_request *mrq = &mqrq->brq.mrq; 1693 struct mmc_card *card = mq->card; 1694 struct mmc_host *host = card->host; 1695 blk_status_t error = BLK_STS_OK; 1696 size_t bytes_per_read = queue_physical_block_size(mq->queue); 1697 1698 do { 1699 u32 status; 1700 int err; 1701 int retries = 0; 1702 1703 while (retries++ <= MMC_READ_SINGLE_RETRIES) { 1704 mmc_blk_rw_rq_prep(mqrq, card, 1, mq); 1705 1706 mmc_wait_for_req(host, mrq); 1707 1708 err = mmc_send_status(card, &status); 1709 if (err) 1710 goto error_exit; 1711 1712 if (!mmc_host_is_spi(host) && 1713 !mmc_ready_for_data(status)) { 1714 err = mmc_blk_fix_state(card, req); 1715 if (err) 1716 goto error_exit; 1717 } 1718 1719 if (!mrq->cmd->error) 1720 break; 1721 } 1722 1723 if (mrq->cmd->error || 1724 mrq->data->error || 1725 (!mmc_host_is_spi(host) && 1726 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) 1727 error = BLK_STS_IOERR; 1728 else 1729 error = BLK_STS_OK; 1730 1731 } while (blk_update_request(req, error, bytes_per_read)); 1732 1733 return; 1734 1735error_exit: 1736 mrq->data->bytes_xfered = 0; 1737 blk_update_request(req, BLK_STS_IOERR, bytes_per_read); 1738 /* Let it try the remaining request again */ 1739 if (mqrq->retries > MMC_MAX_RETRIES - 1) 1740 mqrq->retries = MMC_MAX_RETRIES - 1; 1741} 1742 1743static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) 1744{ 1745 return !!brq->mrq.sbc; 1746} 1747 1748static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) 1749{ 1750 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; 1751} 1752 1753/* 1754 * Check for errors the host controller driver might not have seen such as 1755 * response mode errors or invalid card state. 1756 */ 1757static bool mmc_blk_status_error(struct request *req, u32 status) 1758{ 1759 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1760 struct mmc_blk_request *brq = &mqrq->brq; 1761 struct mmc_queue *mq = req->q->queuedata; 1762 u32 stop_err_bits; 1763 1764 if (mmc_host_is_spi(mq->card->host)) 1765 return false; 1766 1767 stop_err_bits = mmc_blk_stop_err_bits(brq); 1768 1769 return brq->cmd.resp[0] & CMD_ERRORS || 1770 brq->stop.resp[0] & stop_err_bits || 1771 status & stop_err_bits || 1772 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status)); 1773} 1774 1775static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) 1776{ 1777 return !brq->sbc.error && !brq->cmd.error && 1778 !(brq->cmd.resp[0] & CMD_ERRORS); 1779} 1780 1781/* 1782 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple 1783 * policy: 1784 * 1. A request that has transferred at least some data is considered 1785 * successful and will be requeued if there is remaining data to 1786 * transfer. 1787 * 2. Otherwise the number of retries is incremented and the request 1788 * will be requeued if there are remaining retries. 1789 * 3. Otherwise the request will be errored out. 1790 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and 1791 * mqrq->retries. So there are only 4 possible actions here: 1792 * 1. do not accept the bytes_xfered value i.e. set it to zero 1793 * 2. change mqrq->retries to determine the number of retries 1794 * 3. try to reset the card 1795 * 4. read one sector at a time 1796 */ 1797static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) 1798{ 1799 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1800 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1801 struct mmc_blk_request *brq = &mqrq->brq; 1802 struct mmc_blk_data *md = mq->blkdata; 1803 struct mmc_card *card = mq->card; 1804 u32 status; 1805 u32 blocks; 1806 int err; 1807 1808 /* 1809 * Some errors the host driver might not have seen. Set the number of 1810 * bytes transferred to zero in that case. 1811 */ 1812 err = __mmc_send_status(card, &status, 0); 1813 if (err || mmc_blk_status_error(req, status)) 1814 brq->data.bytes_xfered = 0; 1815 1816 mmc_retune_release(card->host); 1817 1818 /* 1819 * Try again to get the status. This also provides an opportunity for 1820 * re-tuning. 1821 */ 1822 if (err) 1823 err = __mmc_send_status(card, &status, 0); 1824 1825 /* 1826 * Nothing more to do after the number of bytes transferred has been 1827 * updated and there is no card. 1828 */ 1829 if (err && mmc_detect_card_removed(card->host)) 1830 return; 1831 1832 /* Try to get back to "tran" state */ 1833 if (!mmc_host_is_spi(mq->card->host) && 1834 (err || !mmc_ready_for_data(status))) 1835 err = mmc_blk_fix_state(mq->card, req); 1836 1837 /* 1838 * Special case for SD cards where the card might record the number of 1839 * blocks written. 1840 */ 1841 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && 1842 rq_data_dir(req) == WRITE) { 1843 if (mmc_sd_num_wr_blocks(card, &blocks)) 1844 brq->data.bytes_xfered = 0; 1845 else 1846 brq->data.bytes_xfered = blocks << 9; 1847 } 1848 1849 /* Reset if the card is in a bad state */ 1850 if (!mmc_host_is_spi(mq->card->host) && 1851 err && mmc_blk_reset(md, card->host, type)) { 1852 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name); 1853 mqrq->retries = MMC_NO_RETRIES; 1854 return; 1855 } 1856 1857 /* 1858 * If anything was done, just return and if there is anything remaining 1859 * on the request it will get requeued. 1860 */ 1861 if (brq->data.bytes_xfered) 1862 return; 1863 1864 /* Reset before last retry */ 1865 if (mqrq->retries + 1 == MMC_MAX_RETRIES) 1866 mmc_blk_reset(md, card->host, type); 1867 1868 /* Command errors fail fast, so use all MMC_MAX_RETRIES */ 1869 if (brq->sbc.error || brq->cmd.error) 1870 return; 1871 1872 /* Reduce the remaining retries for data errors */ 1873 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { 1874 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; 1875 return; 1876 } 1877 1878 if (rq_data_dir(req) == READ && brq->data.blocks > 1879 queue_physical_block_size(mq->queue) >> 9) { 1880 /* Read one (native) sector at a time */ 1881 mmc_blk_read_single(mq, req); 1882 return; 1883 } 1884} 1885 1886static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) 1887{ 1888 mmc_blk_eval_resp_error(brq); 1889 1890 return brq->sbc.error || brq->cmd.error || brq->stop.error || 1891 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; 1892} 1893 1894static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) 1895{ 1896 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1897 u32 status = 0; 1898 int err; 1899 1900 if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ) 1901 return 0; 1902 1903 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, &status); 1904 1905 /* 1906 * Do not assume data transferred correctly if there are any error bits 1907 * set. 1908 */ 1909 if (status & mmc_blk_stop_err_bits(&mqrq->brq)) { 1910 mqrq->brq.data.bytes_xfered = 0; 1911 err = err ? err : -EIO; 1912 } 1913 1914 /* Copy the exception bit so it will be seen later on */ 1915 if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT) 1916 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; 1917 1918 return err; 1919} 1920 1921static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, 1922 struct request *req) 1923{ 1924 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1925 1926 mmc_blk_reset_success(mq->blkdata, type); 1927} 1928 1929static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) 1930{ 1931 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1932 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; 1933 1934 if (nr_bytes) { 1935 if (blk_update_request(req, BLK_STS_OK, nr_bytes)) 1936 blk_mq_requeue_request(req, true); 1937 else 1938 __blk_mq_end_request(req, BLK_STS_OK); 1939 } else if (!blk_rq_bytes(req)) { 1940 __blk_mq_end_request(req, BLK_STS_IOERR); 1941 } else if (mqrq->retries++ < MMC_MAX_RETRIES) { 1942 blk_mq_requeue_request(req, true); 1943 } else { 1944 if (mmc_card_removed(mq->card)) 1945 req->rq_flags |= RQF_QUIET; 1946 blk_mq_end_request(req, BLK_STS_IOERR); 1947 } 1948} 1949 1950static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, 1951 struct mmc_queue_req *mqrq) 1952{ 1953 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && 1954 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || 1955 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); 1956} 1957 1958static void mmc_blk_urgent_bkops(struct mmc_queue *mq, 1959 struct mmc_queue_req *mqrq) 1960{ 1961 if (mmc_blk_urgent_bkops_needed(mq, mqrq)) 1962 mmc_run_bkops(mq->card); 1963} 1964 1965static void mmc_blk_hsq_req_done(struct mmc_request *mrq) 1966{ 1967 struct mmc_queue_req *mqrq = 1968 container_of(mrq, struct mmc_queue_req, brq.mrq); 1969 struct request *req = mmc_queue_req_to_req(mqrq); 1970 struct request_queue *q = req->q; 1971 struct mmc_queue *mq = q->queuedata; 1972 struct mmc_host *host = mq->card->host; 1973 unsigned long flags; 1974 1975 if (mmc_blk_rq_error(&mqrq->brq) || 1976 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 1977 spin_lock_irqsave(&mq->lock, flags); 1978 mq->recovery_needed = true; 1979 mq->recovery_req = req; 1980 spin_unlock_irqrestore(&mq->lock, flags); 1981 1982 host->cqe_ops->cqe_recovery_start(host); 1983 1984 schedule_work(&mq->recovery_work); 1985 return; 1986 } 1987 1988 mmc_blk_rw_reset_success(mq, req); 1989 1990 /* 1991 * Block layer timeouts race with completions which means the normal 1992 * completion path cannot be used during recovery. 1993 */ 1994 if (mq->in_recovery) 1995 mmc_blk_cqe_complete_rq(mq, req); 1996 else if (likely(!blk_should_fake_timeout(req->q))) 1997 blk_mq_complete_request(req); 1998} 1999 2000void mmc_blk_mq_complete(struct request *req) 2001{ 2002 struct mmc_queue *mq = req->q->queuedata; 2003 2004 if (mq->use_cqe) 2005 mmc_blk_cqe_complete_rq(mq, req); 2006 else if (likely(!blk_should_fake_timeout(req->q))) 2007 mmc_blk_mq_complete_rq(mq, req); 2008} 2009 2010static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, 2011 struct request *req) 2012{ 2013 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2014 struct mmc_host *host = mq->card->host; 2015 2016 if (mmc_blk_rq_error(&mqrq->brq) || 2017 mmc_blk_card_busy(mq->card, req)) { 2018 mmc_blk_mq_rw_recovery(mq, req); 2019 } else { 2020 mmc_blk_rw_reset_success(mq, req); 2021 mmc_retune_release(host); 2022 } 2023 2024 mmc_blk_urgent_bkops(mq, mqrq); 2025} 2026 2027static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type) 2028{ 2029 unsigned long flags; 2030 bool put_card; 2031 2032 spin_lock_irqsave(&mq->lock, flags); 2033 2034 mq->in_flight[issue_type] -= 1; 2035 2036 put_card = (mmc_tot_in_flight(mq) == 0); 2037 2038 spin_unlock_irqrestore(&mq->lock, flags); 2039 2040 if (put_card) 2041 mmc_put_card(mq->card, &mq->ctx); 2042} 2043 2044static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req) 2045{ 2046 enum mmc_issue_type issue_type = mmc_issue_type(mq, req); 2047 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2048 struct mmc_request *mrq = &mqrq->brq.mrq; 2049 struct mmc_host *host = mq->card->host; 2050 2051 mmc_post_req(host, mrq, 0); 2052 2053 /* 2054 * Block layer timeouts race with completions which means the normal 2055 * completion path cannot be used during recovery. 2056 */ 2057 if (mq->in_recovery) 2058 mmc_blk_mq_complete_rq(mq, req); 2059 else if (likely(!blk_should_fake_timeout(req->q))) 2060 blk_mq_complete_request(req); 2061 2062 mmc_blk_mq_dec_in_flight(mq, issue_type); 2063} 2064 2065void mmc_blk_mq_recovery(struct mmc_queue *mq) 2066{ 2067 struct request *req = mq->recovery_req; 2068 struct mmc_host *host = mq->card->host; 2069 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2070 2071 mq->recovery_req = NULL; 2072 mq->rw_wait = false; 2073 2074 if (mmc_blk_rq_error(&mqrq->brq)) { 2075 mmc_retune_hold_now(host); 2076 mmc_blk_mq_rw_recovery(mq, req); 2077 } 2078 2079 mmc_blk_urgent_bkops(mq, mqrq); 2080 2081 mmc_blk_mq_post_req(mq, req); 2082} 2083 2084static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, 2085 struct request **prev_req) 2086{ 2087 if (mmc_host_done_complete(mq->card->host)) 2088 return; 2089 2090 mutex_lock(&mq->complete_lock); 2091 2092 if (!mq->complete_req) 2093 goto out_unlock; 2094 2095 mmc_blk_mq_poll_completion(mq, mq->complete_req); 2096 2097 if (prev_req) 2098 *prev_req = mq->complete_req; 2099 else 2100 mmc_blk_mq_post_req(mq, mq->complete_req); 2101 2102 mq->complete_req = NULL; 2103 2104out_unlock: 2105 mutex_unlock(&mq->complete_lock); 2106} 2107 2108void mmc_blk_mq_complete_work(struct work_struct *work) 2109{ 2110 struct mmc_queue *mq = container_of(work, struct mmc_queue, 2111 complete_work); 2112 2113 mmc_blk_mq_complete_prev_req(mq, NULL); 2114} 2115 2116static void mmc_blk_mq_req_done(struct mmc_request *mrq) 2117{ 2118 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 2119 brq.mrq); 2120 struct request *req = mmc_queue_req_to_req(mqrq); 2121 struct request_queue *q = req->q; 2122 struct mmc_queue *mq = q->queuedata; 2123 struct mmc_host *host = mq->card->host; 2124 unsigned long flags; 2125 2126 if (!mmc_host_done_complete(host)) { 2127 bool waiting; 2128 2129 /* 2130 * We cannot complete the request in this context, so record 2131 * that there is a request to complete, and that a following 2132 * request does not need to wait (although it does need to 2133 * complete complete_req first). 2134 */ 2135 spin_lock_irqsave(&mq->lock, flags); 2136 mq->complete_req = req; 2137 mq->rw_wait = false; 2138 waiting = mq->waiting; 2139 spin_unlock_irqrestore(&mq->lock, flags); 2140 2141 /* 2142 * If 'waiting' then the waiting task will complete this 2143 * request, otherwise queue a work to do it. Note that 2144 * complete_work may still race with the dispatch of a following 2145 * request. 2146 */ 2147 if (waiting) 2148 wake_up(&mq->wait); 2149 else 2150 queue_work(mq->card->complete_wq, &mq->complete_work); 2151 2152 return; 2153 } 2154 2155 /* Take the recovery path for errors or urgent background operations */ 2156 if (mmc_blk_rq_error(&mqrq->brq) || 2157 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2158 spin_lock_irqsave(&mq->lock, flags); 2159 mq->recovery_needed = true; 2160 mq->recovery_req = req; 2161 spin_unlock_irqrestore(&mq->lock, flags); 2162 wake_up(&mq->wait); 2163 schedule_work(&mq->recovery_work); 2164 return; 2165 } 2166 2167 mmc_blk_rw_reset_success(mq, req); 2168 2169 mq->rw_wait = false; 2170 wake_up(&mq->wait); 2171 2172 mmc_blk_mq_post_req(mq, req); 2173} 2174 2175static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) 2176{ 2177 unsigned long flags; 2178 bool done; 2179 2180 /* 2181 * Wait while there is another request in progress, but not if recovery 2182 * is needed. Also indicate whether there is a request waiting to start. 2183 */ 2184 spin_lock_irqsave(&mq->lock, flags); 2185 if (mq->recovery_needed) { 2186 *err = -EBUSY; 2187 done = true; 2188 } else { 2189 done = !mq->rw_wait; 2190 } 2191 mq->waiting = !done; 2192 spin_unlock_irqrestore(&mq->lock, flags); 2193 2194 return done; 2195} 2196 2197static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) 2198{ 2199 int err = 0; 2200 2201 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); 2202 2203 /* Always complete the previous request if there is one */ 2204 mmc_blk_mq_complete_prev_req(mq, prev_req); 2205 2206 return err; 2207} 2208 2209static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, 2210 struct request *req) 2211{ 2212 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2213 struct mmc_host *host = mq->card->host; 2214 struct request *prev_req = NULL; 2215 int err = 0; 2216 2217 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 2218 2219 mqrq->brq.mrq.done = mmc_blk_mq_req_done; 2220 2221 mmc_pre_req(host, &mqrq->brq.mrq); 2222 2223 err = mmc_blk_rw_wait(mq, &prev_req); 2224 if (err) 2225 goto out_post_req; 2226 2227 mq->rw_wait = true; 2228 2229 err = mmc_start_request(host, &mqrq->brq.mrq); 2230 2231 if (prev_req) 2232 mmc_blk_mq_post_req(mq, prev_req); 2233 2234 if (err) 2235 mq->rw_wait = false; 2236 2237 /* Release re-tuning here where there is no synchronization required */ 2238 if (err || mmc_host_done_complete(host)) 2239 mmc_retune_release(host); 2240 2241out_post_req: 2242 if (err) 2243 mmc_post_req(host, &mqrq->brq.mrq, err); 2244 2245 return err; 2246} 2247 2248static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) 2249{ 2250 if (mq->use_cqe) 2251 return host->cqe_ops->cqe_wait_for_idle(host); 2252 2253 return mmc_blk_rw_wait(mq, NULL); 2254} 2255 2256enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) 2257{ 2258 struct mmc_blk_data *md = mq->blkdata; 2259 struct mmc_card *card = md->queue.card; 2260 struct mmc_host *host = card->host; 2261 int ret; 2262 2263 ret = mmc_blk_part_switch(card, md->part_type); 2264 if (ret) 2265 return MMC_REQ_FAILED_TO_START; 2266 2267 switch (mmc_issue_type(mq, req)) { 2268 case MMC_ISSUE_SYNC: 2269 ret = mmc_blk_wait_for_idle(mq, host); 2270 if (ret) 2271 return MMC_REQ_BUSY; 2272 switch (req_op(req)) { 2273 case REQ_OP_DRV_IN: 2274 case REQ_OP_DRV_OUT: 2275 mmc_blk_issue_drv_op(mq, req); 2276 break; 2277 case REQ_OP_DISCARD: 2278 mmc_blk_issue_discard_rq(mq, req); 2279 break; 2280 case REQ_OP_SECURE_ERASE: 2281 mmc_blk_issue_secdiscard_rq(mq, req); 2282 break; 2283 case REQ_OP_FLUSH: 2284 mmc_blk_issue_flush(mq, req); 2285 break; 2286 default: 2287 WARN_ON_ONCE(1); 2288 return MMC_REQ_FAILED_TO_START; 2289 } 2290 return MMC_REQ_FINISHED; 2291 case MMC_ISSUE_DCMD: 2292 case MMC_ISSUE_ASYNC: 2293 switch (req_op(req)) { 2294 case REQ_OP_FLUSH: 2295 if (!mmc_cache_enabled(host)) { 2296 blk_mq_end_request(req, BLK_STS_OK); 2297 return MMC_REQ_FINISHED; 2298 } 2299 ret = mmc_blk_cqe_issue_flush(mq, req); 2300 break; 2301 case REQ_OP_READ: 2302 case REQ_OP_WRITE: 2303 if (mq->use_cqe) 2304 ret = mmc_blk_cqe_issue_rw_rq(mq, req); 2305 else 2306 ret = mmc_blk_mq_issue_rw_rq(mq, req); 2307 break; 2308 default: 2309 WARN_ON_ONCE(1); 2310 ret = -EINVAL; 2311 } 2312 if (!ret) 2313 return MMC_REQ_STARTED; 2314 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; 2315 default: 2316 WARN_ON_ONCE(1); 2317 return MMC_REQ_FAILED_TO_START; 2318 } 2319} 2320 2321static inline int mmc_blk_readonly(struct mmc_card *card) 2322{ 2323 return mmc_card_readonly(card) || 2324 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2325} 2326 2327static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2328 struct device *parent, 2329 sector_t size, 2330 bool default_ro, 2331 const char *subname, 2332 int area_type) 2333{ 2334 struct mmc_blk_data *md; 2335 int devidx, ret; 2336 2337 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); 2338 if (devidx < 0) { 2339 /* 2340 * We get -ENOSPC because there are no more any available 2341 * devidx. The reason may be that, either userspace haven't yet 2342 * unmounted the partitions, which postpones mmc_blk_release() 2343 * from being called, or the device has more partitions than 2344 * what we support. 2345 */ 2346 if (devidx == -ENOSPC) 2347 dev_err(mmc_dev(card->host), 2348 "no more device IDs available\n"); 2349 2350 return ERR_PTR(devidx); 2351 } 2352 2353 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 2354 if (!md) { 2355 ret = -ENOMEM; 2356 goto out; 2357 } 2358 2359 md->area_type = area_type; 2360 2361 /* 2362 * Set the read-only status based on the supported commands 2363 * and the write protect switch. 2364 */ 2365 md->read_only = mmc_blk_readonly(card); 2366 2367 md->disk = alloc_disk(perdev_minors); 2368 if (md->disk == NULL) { 2369 ret = -ENOMEM; 2370 goto err_kfree; 2371 } 2372 2373 INIT_LIST_HEAD(&md->part); 2374 INIT_LIST_HEAD(&md->rpmbs); 2375 md->usage = 1; 2376 2377 ret = mmc_init_queue(&md->queue, card); 2378 if (ret) 2379 goto err_putdisk; 2380 2381 md->queue.blkdata = md; 2382 2383 /* 2384 * Keep an extra reference to the queue so that we can shutdown the 2385 * queue (i.e. call blk_cleanup_queue()) while there are still 2386 * references to the 'md'. The corresponding blk_put_queue() is in 2387 * mmc_blk_put(). 2388 */ 2389 if (!blk_get_queue(md->queue.queue)) { 2390 mmc_cleanup_queue(&md->queue); 2391 ret = -ENODEV; 2392 goto err_putdisk; 2393 } 2394 2395 md->disk->major = MMC_BLOCK_MAJOR; 2396 md->disk->first_minor = devidx * perdev_minors; 2397 md->disk->fops = &mmc_bdops; 2398 md->disk->private_data = md; 2399 md->disk->queue = md->queue.queue; 2400 md->parent = parent; 2401 set_disk_ro(md->disk, md->read_only || default_ro); 2402 md->disk->flags = GENHD_FL_EXT_DEVT; 2403 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2404 md->disk->flags |= GENHD_FL_NO_PART_SCAN 2405 | GENHD_FL_SUPPRESS_PARTITION_INFO; 2406 2407 /* 2408 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2409 * 2410 * - be set for removable media with permanent block devices 2411 * - be unset for removable block devices with permanent media 2412 * 2413 * Since MMC block devices clearly fall under the second 2414 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2415 * should use the block device creation/destruction hotplug 2416 * messages to tell when the card is present. 2417 */ 2418 2419 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2420 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2421 2422 set_capacity(md->disk, size); 2423 2424 if (mmc_host_cmd23(card->host)) { 2425 if ((mmc_card_mmc(card) && 2426 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 2427 (mmc_card_sd(card) && 2428 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2429 md->flags |= MMC_BLK_CMD23; 2430 } 2431 2432 if (mmc_card_mmc(card) && 2433 md->flags & MMC_BLK_CMD23 && 2434 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2435 card->ext_csd.rel_sectors)) { 2436 md->flags |= MMC_BLK_REL_WR; 2437 blk_queue_write_cache(md->queue.queue, true, true); 2438 } 2439 2440 return md; 2441 2442 err_putdisk: 2443 put_disk(md->disk); 2444 err_kfree: 2445 kfree(md); 2446 out: 2447 ida_simple_remove(&mmc_blk_ida, devidx); 2448 return ERR_PTR(ret); 2449} 2450 2451static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2452{ 2453 sector_t size; 2454 2455 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2456 /* 2457 * The EXT_CSD sector count is in number or 512 byte 2458 * sectors. 2459 */ 2460 size = card->ext_csd.sectors; 2461 } else { 2462 /* 2463 * The CSD capacity field is in units of read_blkbits. 2464 * set_capacity takes units of 512 bytes. 2465 */ 2466 size = (typeof(sector_t))card->csd.capacity 2467 << (card->csd.read_blkbits - 9); 2468 } 2469 2470 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2471 MMC_BLK_DATA_AREA_MAIN); 2472} 2473 2474static int mmc_blk_alloc_part(struct mmc_card *card, 2475 struct mmc_blk_data *md, 2476 unsigned int part_type, 2477 sector_t size, 2478 bool default_ro, 2479 const char *subname, 2480 int area_type) 2481{ 2482 char cap_str[10]; 2483 struct mmc_blk_data *part_md; 2484 2485 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2486 subname, area_type); 2487 if (IS_ERR(part_md)) 2488 return PTR_ERR(part_md); 2489 part_md->part_type = part_type; 2490 list_add(&part_md->part, &md->part); 2491 2492 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2, 2493 cap_str, sizeof(cap_str)); 2494 pr_info("%s: %s %s partition %u %s\n", 2495 part_md->disk->disk_name, mmc_card_id(card), 2496 mmc_card_name(card), part_md->part_type, cap_str); 2497 return 0; 2498} 2499 2500/** 2501 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev 2502 * @filp: the character device file 2503 * @cmd: the ioctl() command 2504 * @arg: the argument from userspace 2505 * 2506 * This will essentially just redirect the ioctl()s coming in over to 2507 * the main block device spawning the RPMB character device. 2508 */ 2509static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, 2510 unsigned long arg) 2511{ 2512 struct mmc_rpmb_data *rpmb = filp->private_data; 2513 int ret; 2514 2515 switch (cmd) { 2516 case MMC_IOC_CMD: 2517 ret = mmc_blk_ioctl_cmd(rpmb->md, 2518 (struct mmc_ioc_cmd __user *)arg, 2519 rpmb); 2520 break; 2521 case MMC_IOC_MULTI_CMD: 2522 ret = mmc_blk_ioctl_multi_cmd(rpmb->md, 2523 (struct mmc_ioc_multi_cmd __user *)arg, 2524 rpmb); 2525 break; 2526 default: 2527 ret = -EINVAL; 2528 break; 2529 } 2530 2531 return ret; 2532} 2533 2534#ifdef CONFIG_COMPAT 2535static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, 2536 unsigned long arg) 2537{ 2538 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2539} 2540#endif 2541 2542static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) 2543{ 2544 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2545 struct mmc_rpmb_data, chrdev); 2546 2547 get_device(&rpmb->dev); 2548 filp->private_data = rpmb; 2549 mmc_blk_get(rpmb->md->disk); 2550 2551 return nonseekable_open(inode, filp); 2552} 2553 2554static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) 2555{ 2556 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2557 struct mmc_rpmb_data, chrdev); 2558 2559 mmc_blk_put(rpmb->md); 2560 put_device(&rpmb->dev); 2561 2562 return 0; 2563} 2564 2565static const struct file_operations mmc_rpmb_fileops = { 2566 .release = mmc_rpmb_chrdev_release, 2567 .open = mmc_rpmb_chrdev_open, 2568 .owner = THIS_MODULE, 2569 .llseek = no_llseek, 2570 .unlocked_ioctl = mmc_rpmb_ioctl, 2571#ifdef CONFIG_COMPAT 2572 .compat_ioctl = mmc_rpmb_ioctl_compat, 2573#endif 2574}; 2575 2576static void mmc_blk_rpmb_device_release(struct device *dev) 2577{ 2578 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2579 2580 ida_simple_remove(&mmc_rpmb_ida, rpmb->id); 2581 kfree(rpmb); 2582} 2583 2584static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, 2585 struct mmc_blk_data *md, 2586 unsigned int part_index, 2587 sector_t size, 2588 const char *subname) 2589{ 2590 int devidx, ret; 2591 char rpmb_name[DISK_NAME_LEN]; 2592 char cap_str[10]; 2593 struct mmc_rpmb_data *rpmb; 2594 2595 /* This creates the minor number for the RPMB char device */ 2596 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL); 2597 if (devidx < 0) 2598 return devidx; 2599 2600 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); 2601 if (!rpmb) { 2602 ida_simple_remove(&mmc_rpmb_ida, devidx); 2603 return -ENOMEM; 2604 } 2605 2606 snprintf(rpmb_name, sizeof(rpmb_name), 2607 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2608 2609 rpmb->id = devidx; 2610 rpmb->part_index = part_index; 2611 rpmb->dev.init_name = rpmb_name; 2612 rpmb->dev.bus = &mmc_rpmb_bus_type; 2613 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); 2614 rpmb->dev.parent = &card->dev; 2615 rpmb->dev.release = mmc_blk_rpmb_device_release; 2616 device_initialize(&rpmb->dev); 2617 dev_set_drvdata(&rpmb->dev, rpmb); 2618 rpmb->md = md; 2619 2620 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); 2621 rpmb->chrdev.owner = THIS_MODULE; 2622 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); 2623 if (ret) { 2624 pr_err("%s: could not add character device\n", rpmb_name); 2625 goto out_put_device; 2626 } 2627 2628 list_add(&rpmb->node, &md->rpmbs); 2629 2630 string_get_size((u64)size, 512, STRING_UNITS_2, 2631 cap_str, sizeof(cap_str)); 2632 2633 pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n", 2634 rpmb_name, mmc_card_id(card), 2635 mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str, 2636 MAJOR(mmc_rpmb_devt), rpmb->id); 2637 2638 return 0; 2639 2640out_put_device: 2641 put_device(&rpmb->dev); 2642 return ret; 2643} 2644 2645static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) 2646 2647{ 2648 cdev_device_del(&rpmb->chrdev, &rpmb->dev); 2649 put_device(&rpmb->dev); 2650} 2651 2652/* MMC Physical partitions consist of two boot partitions and 2653 * up to four general purpose partitions. 2654 * For each partition enabled in EXT_CSD a block device will be allocatedi 2655 * to provide access to the partition. 2656 */ 2657 2658static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2659{ 2660 int idx, ret; 2661 2662 if (!mmc_card_mmc(card)) 2663 return 0; 2664 2665 for (idx = 0; idx < card->nr_parts; idx++) { 2666 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { 2667 /* 2668 * RPMB partitions does not provide block access, they 2669 * are only accessed using ioctl():s. Thus create 2670 * special RPMB block devices that do not have a 2671 * backing block queue for these. 2672 */ 2673 ret = mmc_blk_alloc_rpmb_part(card, md, 2674 card->part[idx].part_cfg, 2675 card->part[idx].size >> 9, 2676 card->part[idx].name); 2677 if (ret) 2678 return ret; 2679 } else if (card->part[idx].size) { 2680 ret = mmc_blk_alloc_part(card, md, 2681 card->part[idx].part_cfg, 2682 card->part[idx].size >> 9, 2683 card->part[idx].force_ro, 2684 card->part[idx].name, 2685 card->part[idx].area_type); 2686 if (ret) 2687 return ret; 2688 } 2689 } 2690 2691 return 0; 2692} 2693 2694static void mmc_blk_remove_req(struct mmc_blk_data *md) 2695{ 2696 struct mmc_card *card; 2697 2698 if (md) { 2699 /* 2700 * Flush remaining requests and free queues. It 2701 * is freeing the queue that stops new requests 2702 * from being accepted. 2703 */ 2704 card = md->queue.card; 2705 if (md->disk->flags & GENHD_FL_UP) { 2706 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2707 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2708 card->ext_csd.boot_ro_lockable) 2709 device_remove_file(disk_to_dev(md->disk), 2710 &md->power_ro_lock); 2711 2712 del_gendisk(md->disk); 2713 } 2714 mmc_cleanup_queue(&md->queue); 2715 mmc_blk_put(md); 2716 } 2717} 2718 2719static void mmc_blk_remove_parts(struct mmc_card *card, 2720 struct mmc_blk_data *md) 2721{ 2722 struct list_head *pos, *q; 2723 struct mmc_blk_data *part_md; 2724 struct mmc_rpmb_data *rpmb; 2725 2726 /* Remove RPMB partitions */ 2727 list_for_each_safe(pos, q, &md->rpmbs) { 2728 rpmb = list_entry(pos, struct mmc_rpmb_data, node); 2729 list_del(pos); 2730 mmc_blk_remove_rpmb_part(rpmb); 2731 } 2732 /* Remove block partitions */ 2733 list_for_each_safe(pos, q, &md->part) { 2734 part_md = list_entry(pos, struct mmc_blk_data, part); 2735 list_del(pos); 2736 mmc_blk_remove_req(part_md); 2737 } 2738} 2739 2740static int mmc_add_disk(struct mmc_blk_data *md) 2741{ 2742 int ret; 2743 struct mmc_card *card = md->queue.card; 2744 2745 device_add_disk(md->parent, md->disk, NULL); 2746 md->force_ro.show = force_ro_show; 2747 md->force_ro.store = force_ro_store; 2748 sysfs_attr_init(&md->force_ro.attr); 2749 md->force_ro.attr.name = "force_ro"; 2750 md->force_ro.attr.mode = S_IRUGO | S_IWUSR; 2751 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro); 2752 if (ret) 2753 goto force_ro_fail; 2754 2755 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2756 card->ext_csd.boot_ro_lockable) { 2757 umode_t mode; 2758 2759 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS) 2760 mode = S_IRUGO; 2761 else 2762 mode = S_IRUGO | S_IWUSR; 2763 2764 md->power_ro_lock.show = power_ro_lock_show; 2765 md->power_ro_lock.store = power_ro_lock_store; 2766 sysfs_attr_init(&md->power_ro_lock.attr); 2767 md->power_ro_lock.attr.mode = mode; 2768 md->power_ro_lock.attr.name = 2769 "ro_lock_until_next_power_on"; 2770 ret = device_create_file(disk_to_dev(md->disk), 2771 &md->power_ro_lock); 2772 if (ret) 2773 goto power_ro_lock_fail; 2774 } 2775 return ret; 2776 2777power_ro_lock_fail: 2778 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2779force_ro_fail: 2780 del_gendisk(md->disk); 2781 2782 return ret; 2783} 2784 2785#ifdef CONFIG_DEBUG_FS 2786 2787static int mmc_dbg_card_status_get(void *data, u64 *val) 2788{ 2789 struct mmc_card *card = data; 2790 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2791 struct mmc_queue *mq = &md->queue; 2792 struct request *req; 2793 int ret; 2794 2795 /* Ask the block layer about the card status */ 2796 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0); 2797 if (IS_ERR(req)) 2798 return PTR_ERR(req); 2799 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; 2800 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 2801 blk_execute_rq(mq->queue, NULL, req, 0); 2802 ret = req_to_mmc_queue_req(req)->drv_op_result; 2803 if (ret >= 0) { 2804 *val = ret; 2805 ret = 0; 2806 } 2807 blk_put_request(req); 2808 2809 return ret; 2810} 2811DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, 2812 NULL, "%08llx\n"); 2813 2814/* That is two digits * 512 + 1 for newline */ 2815#define EXT_CSD_STR_LEN 1025 2816 2817static int mmc_ext_csd_open(struct inode *inode, struct file *filp) 2818{ 2819 struct mmc_card *card = inode->i_private; 2820 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2821 struct mmc_queue *mq = &md->queue; 2822 struct request *req; 2823 char *buf; 2824 ssize_t n = 0; 2825 u8 *ext_csd; 2826 int err, i; 2827 2828 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); 2829 if (!buf) 2830 return -ENOMEM; 2831 2832 /* Ask the block layer for the EXT CSD */ 2833 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0); 2834 if (IS_ERR(req)) { 2835 err = PTR_ERR(req); 2836 goto out_free; 2837 } 2838 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; 2839 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 2840 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; 2841 blk_execute_rq(mq->queue, NULL, req, 0); 2842 err = req_to_mmc_queue_req(req)->drv_op_result; 2843 blk_put_request(req); 2844 if (err) { 2845 pr_err("FAILED %d\n", err); 2846 goto out_free; 2847 } 2848 2849 for (i = 0; i < 512; i++) 2850 n += sprintf(buf + n, "%02x", ext_csd[i]); 2851 n += sprintf(buf + n, "\n"); 2852 2853 if (n != EXT_CSD_STR_LEN) { 2854 err = -EINVAL; 2855 kfree(ext_csd); 2856 goto out_free; 2857 } 2858 2859 filp->private_data = buf; 2860 kfree(ext_csd); 2861 return 0; 2862 2863out_free: 2864 kfree(buf); 2865 return err; 2866} 2867 2868static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, 2869 size_t cnt, loff_t *ppos) 2870{ 2871 char *buf = filp->private_data; 2872 2873 return simple_read_from_buffer(ubuf, cnt, ppos, 2874 buf, EXT_CSD_STR_LEN); 2875} 2876 2877static int mmc_ext_csd_release(struct inode *inode, struct file *file) 2878{ 2879 kfree(file->private_data); 2880 return 0; 2881} 2882 2883static const struct file_operations mmc_dbg_ext_csd_fops = { 2884 .open = mmc_ext_csd_open, 2885 .read = mmc_ext_csd_read, 2886 .release = mmc_ext_csd_release, 2887 .llseek = default_llseek, 2888}; 2889 2890static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2891{ 2892 struct dentry *root; 2893 2894 if (!card->debugfs_root) 2895 return 0; 2896 2897 root = card->debugfs_root; 2898 2899 if (mmc_card_mmc(card) || mmc_card_sd(card)) { 2900 md->status_dentry = 2901 debugfs_create_file_unsafe("status", 0400, root, 2902 card, 2903 &mmc_dbg_card_status_fops); 2904 if (!md->status_dentry) 2905 return -EIO; 2906 } 2907 2908 if (mmc_card_mmc(card)) { 2909 md->ext_csd_dentry = 2910 debugfs_create_file("ext_csd", S_IRUSR, root, card, 2911 &mmc_dbg_ext_csd_fops); 2912 if (!md->ext_csd_dentry) 2913 return -EIO; 2914 } 2915 2916 return 0; 2917} 2918 2919static void mmc_blk_remove_debugfs(struct mmc_card *card, 2920 struct mmc_blk_data *md) 2921{ 2922 if (!card->debugfs_root) 2923 return; 2924 2925 if (!IS_ERR_OR_NULL(md->status_dentry)) { 2926 debugfs_remove(md->status_dentry); 2927 md->status_dentry = NULL; 2928 } 2929 2930 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) { 2931 debugfs_remove(md->ext_csd_dentry); 2932 md->ext_csd_dentry = NULL; 2933 } 2934} 2935 2936#else 2937 2938static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2939{ 2940 return 0; 2941} 2942 2943static void mmc_blk_remove_debugfs(struct mmc_card *card, 2944 struct mmc_blk_data *md) 2945{ 2946} 2947 2948#endif /* CONFIG_DEBUG_FS */ 2949 2950static int mmc_blk_probe(struct mmc_card *card) 2951{ 2952 struct mmc_blk_data *md, *part_md; 2953 char cap_str[10]; 2954 2955 /* 2956 * Check that the card supports the command class(es) we need. 2957 */ 2958 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2959 return -ENODEV; 2960 2961 mmc_fixup_device(card, mmc_blk_fixups); 2962 2963 card->complete_wq = alloc_workqueue("mmc_complete", 2964 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2965 if (unlikely(!card->complete_wq)) { 2966 pr_err("Failed to create mmc completion workqueue"); 2967 return -ENOMEM; 2968 } 2969 2970 md = mmc_blk_alloc(card); 2971 if (IS_ERR(md)) 2972 return PTR_ERR(md); 2973 2974 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2, 2975 cap_str, sizeof(cap_str)); 2976 pr_info("%s: %s %s %s %s\n", 2977 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2978 cap_str, md->read_only ? "(ro)" : ""); 2979 2980 if (mmc_blk_alloc_parts(card, md)) 2981 goto out; 2982 2983 dev_set_drvdata(&card->dev, md); 2984 2985 if (mmc_add_disk(md)) 2986 goto out; 2987 2988 list_for_each_entry(part_md, &md->part, part) { 2989 if (mmc_add_disk(part_md)) 2990 goto out; 2991 } 2992 2993 /* Add two debugfs entries */ 2994 mmc_blk_add_debugfs(card, md); 2995 2996 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2997 pm_runtime_use_autosuspend(&card->dev); 2998 2999 /* 3000 * Don't enable runtime PM for SD-combo cards here. Leave that 3001 * decision to be taken during the SDIO init sequence instead. 3002 */ 3003 if (card->type != MMC_TYPE_SD_COMBO) { 3004 pm_runtime_set_active(&card->dev); 3005 pm_runtime_enable(&card->dev); 3006 } 3007 3008 return 0; 3009 3010 out: 3011 mmc_blk_remove_parts(card, md); 3012 mmc_blk_remove_req(md); 3013 return 0; 3014} 3015 3016static void mmc_blk_remove(struct mmc_card *card) 3017{ 3018 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3019 3020 mmc_blk_remove_debugfs(card, md); 3021 mmc_blk_remove_parts(card, md); 3022 pm_runtime_get_sync(&card->dev); 3023 if (md->part_curr != md->part_type) { 3024 mmc_claim_host(card->host); 3025 mmc_blk_part_switch(card, md->part_type); 3026 mmc_release_host(card->host); 3027 } 3028 if (card->type != MMC_TYPE_SD_COMBO) 3029 pm_runtime_disable(&card->dev); 3030 pm_runtime_put_noidle(&card->dev); 3031 mmc_blk_remove_req(md); 3032 dev_set_drvdata(&card->dev, NULL); 3033 destroy_workqueue(card->complete_wq); 3034} 3035 3036static int _mmc_blk_suspend(struct mmc_card *card) 3037{ 3038 struct mmc_blk_data *part_md; 3039 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3040 3041 if (md) { 3042 mmc_queue_suspend(&md->queue); 3043 list_for_each_entry(part_md, &md->part, part) { 3044 mmc_queue_suspend(&part_md->queue); 3045 } 3046 } 3047 return 0; 3048} 3049 3050static void mmc_blk_shutdown(struct mmc_card *card) 3051{ 3052 _mmc_blk_suspend(card); 3053} 3054 3055#ifdef CONFIG_PM_SLEEP 3056static int mmc_blk_suspend(struct device *dev) 3057{ 3058 struct mmc_card *card = mmc_dev_to_card(dev); 3059 3060 return _mmc_blk_suspend(card); 3061} 3062 3063static int mmc_blk_resume(struct device *dev) 3064{ 3065 struct mmc_blk_data *part_md; 3066 struct mmc_blk_data *md = dev_get_drvdata(dev); 3067 3068 if (md) { 3069 /* 3070 * Resume involves the card going into idle state, 3071 * so current partition is always the main one. 3072 */ 3073 md->part_curr = md->part_type; 3074 mmc_queue_resume(&md->queue); 3075 list_for_each_entry(part_md, &md->part, part) { 3076 mmc_queue_resume(&part_md->queue); 3077 } 3078 } 3079 return 0; 3080} 3081#endif 3082 3083static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 3084 3085static struct mmc_driver mmc_driver = { 3086 .drv = { 3087 .name = "mmcblk", 3088 .pm = &mmc_blk_pm_ops, 3089 }, 3090 .probe = mmc_blk_probe, 3091 .remove = mmc_blk_remove, 3092 .shutdown = mmc_blk_shutdown, 3093}; 3094 3095static int __init mmc_blk_init(void) 3096{ 3097 int res; 3098 3099 res = bus_register(&mmc_rpmb_bus_type); 3100 if (res < 0) { 3101 pr_err("mmcblk: could not register RPMB bus type\n"); 3102 return res; 3103 } 3104 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); 3105 if (res < 0) { 3106 pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); 3107 goto out_bus_unreg; 3108 } 3109 3110 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 3111 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 3112 3113 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 3114 3115 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3116 if (res) 3117 goto out_chrdev_unreg; 3118 3119 res = mmc_register_driver(&mmc_driver); 3120 if (res) 3121 goto out_blkdev_unreg; 3122 3123 return 0; 3124 3125out_blkdev_unreg: 3126 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3127out_chrdev_unreg: 3128 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3129out_bus_unreg: 3130 bus_unregister(&mmc_rpmb_bus_type); 3131 return res; 3132} 3133 3134static void __exit mmc_blk_exit(void) 3135{ 3136 mmc_unregister_driver(&mmc_driver); 3137 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3138 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3139 bus_unregister(&mmc_rpmb_bus_type); 3140} 3141 3142module_init(mmc_blk_init); 3143module_exit(mmc_blk_exit); 3144 3145MODULE_LICENSE("GPL"); 3146MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 3147