1 /*
2  * Block driver for media (i.e., flash cards)
3  *
4  * Copyright 2002 Hewlett-Packard Company
5  * Copyright 2005-2008 Pierre Ossman
6  *
7  * Use consistent with the GNU GPL is permitted,
8  * provided that this copyright notice is
9  * preserved in its entirety in all copies and derived works.
10  *
11  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13  * FITNESS FOR ANY PARTICULAR PURPOSE.
14  *
15  * Many thanks to Alessandro Rubini and Jonathan Corbet!
16  *
17  * Author:  Andrew Christian
18  *          28 May 2002
19  */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/cdev.h>
32 #include <linux/mutex.h>
33 #include <linux/scatterlist.h>
34 #include <linux/string_helpers.h>
35 #include <linux/delay.h>
36 #include <linux/capability.h>
37 #include <linux/compat.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/idr.h>
40 #include <linux/debugfs.h>
41 
42 #include <linux/mmc/ioctl.h>
43 #include <linux/mmc/card.h>
44 #include <linux/mmc/host.h>
45 #include <linux/mmc/mmc.h>
46 #include <linux/mmc/sd.h>
47 
48 #include <linux/uaccess.h>
49 
50 #include "queue.h"
51 #include "block.h"
52 #include "core.h"
53 #include "card.h"
54 #include "host.h"
55 #include "bus.h"
56 #include "mmc_ops.h"
57 #include "quirks.h"
58 #include "sd_ops.h"
59 
60 MODULE_ALIAS("mmc:block");
61 #ifdef MODULE_PARAM_PREFIX
62 #undef MODULE_PARAM_PREFIX
63 #endif
64 #define MODULE_PARAM_PREFIX "mmcblk."
65 
66 /*
67  * Set a 10 second timeout for polling write request busy state. Note, mmc core
68  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
69  * second software timer to timeout the whole request, so 10 seconds should be
70  * ample.
71  */
72 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
73 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
74 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
75 
76 #define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
77 				  (rq_data_dir(req) == WRITE))
78 static DEFINE_MUTEX(block_mutex);
79 
80 /*
81  * The defaults come from config options but can be overriden by module
82  * or bootarg options.
83  */
84 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
85 
86 /*
87  * We've only got one major, so number of mmcblk devices is
88  * limited to (1 << 20) / number of minors per device.  It is also
89  * limited by the MAX_DEVICES below.
90  */
91 static int max_devices;
92 
93 #define MAX_DEVICES 256
94 
95 static DEFINE_IDA(mmc_blk_ida);
96 static DEFINE_IDA(mmc_rpmb_ida);
97 
98 /*
99  * There is one mmc_blk_data per slot.
100  */
101 struct mmc_blk_data {
102 	struct device	*parent;
103 	struct gendisk	*disk;
104 	struct mmc_queue queue;
105 	struct list_head part;
106 	struct list_head rpmbs;
107 
108 	unsigned int	flags;
109 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
110 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
111 
112 	unsigned int	usage;
113 	unsigned int	read_only;
114 	unsigned int	part_type;
115 	unsigned int	reset_done;
116 #define MMC_BLK_READ		BIT(0)
117 #define MMC_BLK_WRITE		BIT(1)
118 #define MMC_BLK_DISCARD		BIT(2)
119 #define MMC_BLK_SECDISCARD	BIT(3)
120 #define MMC_BLK_CQE_RECOVERY	BIT(4)
121 
122 	/*
123 	 * Only set in main mmc_blk_data associated
124 	 * with mmc_card with dev_set_drvdata, and keeps
125 	 * track of the current selected device partition.
126 	 */
127 	unsigned int	part_curr;
128 	struct device_attribute force_ro;
129 	struct device_attribute power_ro_lock;
130 	int	area_type;
131 
132 	/* debugfs files (only in main mmc_blk_data) */
133 	struct dentry *status_dentry;
134 	struct dentry *ext_csd_dentry;
135 };
136 
137 /* Device type for RPMB character devices */
138 static dev_t mmc_rpmb_devt;
139 
140 /* Bus type for RPMB character devices */
141 static struct bus_type mmc_rpmb_bus_type = {
142 	.name = "mmc_rpmb",
143 };
144 
145 /**
146  * struct mmc_rpmb_data - special RPMB device type for these areas
147  * @dev: the device for the RPMB area
148  * @chrdev: character device for the RPMB area
149  * @id: unique device ID number
150  * @part_index: partition index (0 on first)
151  * @md: parent MMC block device
152  * @node: list item, so we can put this device on a list
153  */
154 struct mmc_rpmb_data {
155 	struct device dev;
156 	struct cdev chrdev;
157 	int id;
158 	unsigned int part_index;
159 	struct mmc_blk_data *md;
160 	struct list_head node;
161 };
162 
163 static DEFINE_MUTEX(open_lock);
164 
165 module_param(perdev_minors, int, 0444);
166 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
167 
168 static inline int mmc_blk_part_switch(struct mmc_card *card,
169 				      unsigned int part_type);
170 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
171 			       struct mmc_card *card,
172 			       int recovery_mode,
173 			       struct mmc_queue *mq);
174 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
175 
mmc_blk_get(struct gendisk *disk)176 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
177 {
178 	struct mmc_blk_data *md;
179 
180 	mutex_lock(&open_lock);
181 	md = disk->private_data;
182 	if (md && md->usage == 0)
183 		md = NULL;
184 	if (md)
185 		md->usage++;
186 	mutex_unlock(&open_lock);
187 
188 	return md;
189 }
190 
mmc_get_devidx(struct gendisk *disk)191 static inline int mmc_get_devidx(struct gendisk *disk)
192 {
193 	int devidx = disk->first_minor / perdev_minors;
194 	return devidx;
195 }
196 
mmc_blk_put(struct mmc_blk_data *md)197 static void mmc_blk_put(struct mmc_blk_data *md)
198 {
199 	mutex_lock(&open_lock);
200 	md->usage--;
201 	if (md->usage == 0) {
202 		int devidx = mmc_get_devidx(md->disk);
203 		blk_put_queue(md->queue.queue);
204 		ida_simple_remove(&mmc_blk_ida, devidx);
205 		put_disk(md->disk);
206 		kfree(md);
207 	}
208 	mutex_unlock(&open_lock);
209 }
210 
power_ro_lock_show(struct device *dev, struct device_attribute *attr, char *buf)211 static ssize_t power_ro_lock_show(struct device *dev,
212 		struct device_attribute *attr, char *buf)
213 {
214 	int ret;
215 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
216 	struct mmc_card *card = md->queue.card;
217 	int locked = 0;
218 
219 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
220 		locked = 2;
221 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
222 		locked = 1;
223 
224 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
225 
226 	mmc_blk_put(md);
227 
228 	return ret;
229 }
230 
power_ro_lock_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)231 static ssize_t power_ro_lock_store(struct device *dev,
232 		struct device_attribute *attr, const char *buf, size_t count)
233 {
234 	int ret;
235 	struct mmc_blk_data *md, *part_md;
236 	struct mmc_queue *mq;
237 	struct request *req;
238 	unsigned long set;
239 
240 	if (kstrtoul(buf, 0, &set))
241 		return -EINVAL;
242 
243 	if (set != 1)
244 		return count;
245 
246 	md = mmc_blk_get(dev_to_disk(dev));
247 	mq = &md->queue;
248 
249 	/* Dispatch locking to the block layer */
250 	req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
251 	if (IS_ERR(req)) {
252 		count = PTR_ERR(req);
253 		goto out_put;
254 	}
255 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
256 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
257 	blk_execute_rq(mq->queue, NULL, req, 0);
258 	ret = req_to_mmc_queue_req(req)->drv_op_result;
259 	blk_put_request(req);
260 
261 	if (!ret) {
262 		pr_info("%s: Locking boot partition ro until next power on\n",
263 			md->disk->disk_name);
264 		set_disk_ro(md->disk, 1);
265 
266 		list_for_each_entry(part_md, &md->part, part)
267 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
268 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
269 				set_disk_ro(part_md->disk, 1);
270 			}
271 	}
272 out_put:
273 	mmc_blk_put(md);
274 	return count;
275 }
276 
force_ro_show(struct device *dev, struct device_attribute *attr, char *buf)277 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
278 			     char *buf)
279 {
280 	int ret;
281 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
282 
283 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
284 		       get_disk_ro(dev_to_disk(dev)) ^
285 		       md->read_only);
286 	mmc_blk_put(md);
287 	return ret;
288 }
289 
force_ro_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)290 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
291 			      const char *buf, size_t count)
292 {
293 	int ret;
294 	char *end;
295 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
296 	unsigned long set = simple_strtoul(buf, &end, 0);
297 	if (end == buf) {
298 		ret = -EINVAL;
299 		goto out;
300 	}
301 
302 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
303 	ret = count;
304 out:
305 	mmc_blk_put(md);
306 	return ret;
307 }
308 
mmc_blk_open(struct block_device *bdev, fmode_t mode)309 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
310 {
311 	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
312 	int ret = -ENXIO;
313 
314 	mutex_lock(&block_mutex);
315 	if (md) {
316 		ret = 0;
317 		if ((mode & FMODE_WRITE) && md->read_only) {
318 			mmc_blk_put(md);
319 			ret = -EROFS;
320 		}
321 	}
322 	mutex_unlock(&block_mutex);
323 
324 	return ret;
325 }
326 
mmc_blk_release(struct gendisk *disk, fmode_t mode)327 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
328 {
329 	struct mmc_blk_data *md = disk->private_data;
330 
331 	mutex_lock(&block_mutex);
332 	mmc_blk_put(md);
333 	mutex_unlock(&block_mutex);
334 }
335 
336 static int
mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)337 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
338 {
339 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
340 	geo->heads = 4;
341 	geo->sectors = 16;
342 	return 0;
343 }
344 
345 struct mmc_blk_ioc_data {
346 	struct mmc_ioc_cmd ic;
347 	unsigned char *buf;
348 	u64 buf_bytes;
349 	unsigned int flags;
350 #define MMC_BLK_IOC_DROP	BIT(0)	/* drop this mrq */
351 #define MMC_BLK_IOC_SBC	BIT(1)	/* use mrq.sbc */
352 
353 	struct mmc_rpmb_data *rpmb;
354 };
355 
mmc_blk_ioctl_copy_from_user( struct mmc_ioc_cmd __user *user)356 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
357 	struct mmc_ioc_cmd __user *user)
358 {
359 	struct mmc_blk_ioc_data *idata;
360 	int err;
361 
362 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
363 	if (!idata) {
364 		err = -ENOMEM;
365 		goto out;
366 	}
367 
368 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
369 		err = -EFAULT;
370 		goto idata_err;
371 	}
372 
373 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
374 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
375 		err = -EOVERFLOW;
376 		goto idata_err;
377 	}
378 
379 	if (!idata->buf_bytes) {
380 		idata->buf = NULL;
381 		return idata;
382 	}
383 
384 	idata->buf = memdup_user((void __user *)(unsigned long)
385 				 idata->ic.data_ptr, idata->buf_bytes);
386 	if (IS_ERR(idata->buf)) {
387 		err = PTR_ERR(idata->buf);
388 		goto idata_err;
389 	}
390 
391 	return idata;
392 
393 idata_err:
394 	kfree(idata);
395 out:
396 	return ERR_PTR(err);
397 }
398 
mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, struct mmc_blk_ioc_data *idata)399 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
400 				      struct mmc_blk_ioc_data *idata)
401 {
402 	struct mmc_ioc_cmd *ic = &idata->ic;
403 
404 	if (copy_to_user(&(ic_ptr->response), ic->response,
405 			 sizeof(ic->response)))
406 		return -EFAULT;
407 
408 	if (!idata->ic.write_flag) {
409 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
410 				 idata->buf, idata->buf_bytes))
411 			return -EFAULT;
412 	}
413 
414 	return 0;
415 }
416 
card_busy_detect(struct mmc_card *card, unsigned int timeout_ms, u32 *resp_errs)417 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
418 			    u32 *resp_errs)
419 {
420 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
421 	int err = 0;
422 	u32 status;
423 
424 	do {
425 		bool done = time_after(jiffies, timeout);
426 
427 		err = __mmc_send_status(card, &status, 5);
428 		if (err) {
429 			dev_err(mmc_dev(card->host),
430 				"error %d requesting status\n", err);
431 			return err;
432 		}
433 
434 		/* Accumulate any response error bits seen */
435 		if (resp_errs)
436 			*resp_errs |= status;
437 
438 		/*
439 		 * Timeout if the device never becomes ready for data and never
440 		 * leaves the program state.
441 		 */
442 		if (done) {
443 			dev_err(mmc_dev(card->host),
444 				"Card stuck in wrong state! %s status: %#x\n",
445 				 __func__, status);
446 			return -ETIMEDOUT;
447 		}
448 	} while (!mmc_ready_for_data(status));
449 
450 	return err;
451 }
452 
__mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, struct mmc_blk_ioc_data **idatas, int i)453 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
454 			       struct mmc_blk_ioc_data **idatas, int i)
455 {
456 	struct mmc_command cmd = {}, sbc = {};
457 	struct mmc_data data = {};
458 	struct mmc_request mrq = {};
459 	struct scatterlist sg;
460 	int err;
461 	unsigned int target_part;
462 	struct mmc_blk_ioc_data *idata = idatas[i];
463 	struct mmc_blk_ioc_data *prev_idata = NULL;
464 
465 	if (!card || !md || !idata)
466 		return -EINVAL;
467 
468 	if (idata->flags & MMC_BLK_IOC_DROP)
469 		return 0;
470 
471 	if (idata->flags & MMC_BLK_IOC_SBC && i > 0)
472 		prev_idata = idatas[i - 1];
473 
474 	/*
475 	 * The RPMB accesses comes in from the character device, so we
476 	 * need to target these explicitly. Else we just target the
477 	 * partition type for the block device the ioctl() was issued
478 	 * on.
479 	 */
480 	if (idata->rpmb) {
481 		/* Support multiple RPMB partitions */
482 		target_part = idata->rpmb->part_index;
483 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
484 	} else {
485 		target_part = md->part_type;
486 	}
487 
488 	cmd.opcode = idata->ic.opcode;
489 	cmd.arg = idata->ic.arg;
490 	cmd.flags = idata->ic.flags;
491 
492 	if (idata->buf_bytes) {
493 		data.sg = &sg;
494 		data.sg_len = 1;
495 		data.blksz = idata->ic.blksz;
496 		data.blocks = idata->ic.blocks;
497 
498 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
499 
500 		if (idata->ic.write_flag)
501 			data.flags = MMC_DATA_WRITE;
502 		else
503 			data.flags = MMC_DATA_READ;
504 
505 		/* data.flags must already be set before doing this. */
506 		mmc_set_data_timeout(&data, card);
507 
508 		/* Allow overriding the timeout_ns for empirical tuning. */
509 		if (idata->ic.data_timeout_ns)
510 			data.timeout_ns = idata->ic.data_timeout_ns;
511 
512 		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
513 			/*
514 			 * Pretend this is a data transfer and rely on the
515 			 * host driver to compute timeout.  When all host
516 			 * drivers support cmd.cmd_timeout for R1B, this
517 			 * can be changed to:
518 			 *
519 			 *     mrq.data = NULL;
520 			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
521 			 */
522 			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
523 		}
524 
525 		mrq.data = &data;
526 	}
527 
528 	mrq.cmd = &cmd;
529 
530 	err = mmc_blk_part_switch(card, target_part);
531 	if (err)
532 		return err;
533 
534 	if (idata->ic.is_acmd) {
535 		err = mmc_app_cmd(card->host, card);
536 		if (err)
537 			return err;
538 	}
539 
540 	if (idata->rpmb || prev_idata) {
541 		sbc.opcode = MMC_SET_BLOCK_COUNT;
542 		/*
543 		 * We don't do any blockcount validation because the max size
544 		 * may be increased by a future standard. We just copy the
545 		 * 'Reliable Write' bit here.
546 		 */
547 		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
548 		if (prev_idata)
549 			sbc.arg = prev_idata->ic.arg;
550 		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
551 		mrq.sbc = &sbc;
552 	}
553 
554 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
555 	    (cmd.opcode == MMC_SWITCH))
556 		return mmc_sanitize(card);
557 
558 	mmc_wait_for_req(card->host, &mrq);
559 	memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
560 
561 	if (prev_idata) {
562 		memcpy(&prev_idata->ic.response, sbc.resp, sizeof(sbc.resp));
563 		if (sbc.error) {
564 			dev_err(mmc_dev(card->host), "%s: sbc error %d\n",
565 							__func__, sbc.error);
566 			return sbc.error;
567 		}
568 	}
569 
570 	if (cmd.error) {
571 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
572 						__func__, cmd.error);
573 		return cmd.error;
574 	}
575 	if (data.error) {
576 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
577 						__func__, data.error);
578 		return data.error;
579 	}
580 
581 	/*
582 	 * Make sure the cache of the PARTITION_CONFIG register and
583 	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
584 	 * changed it successfully.
585 	 */
586 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
587 	    (cmd.opcode == MMC_SWITCH)) {
588 		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
589 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
590 
591 		/*
592 		 * Update cache so the next mmc_blk_part_switch call operates
593 		 * on up-to-date data.
594 		 */
595 		card->ext_csd.part_config = value;
596 		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
597 	}
598 
599 	/*
600 	 * Make sure to update CACHE_CTRL in case it was changed. The cache
601 	 * will get turned back on if the card is re-initialized, e.g.
602 	 * suspend/resume or hw reset in recovery.
603 	 */
604 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
605 	    (cmd.opcode == MMC_SWITCH)) {
606 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
607 
608 		card->ext_csd.cache_ctrl = value;
609 	}
610 
611 	/*
612 	 * According to the SD specs, some commands require a delay after
613 	 * issuing the command.
614 	 */
615 	if (idata->ic.postsleep_min_us)
616 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
617 
618 	if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
619 		/*
620 		 * Ensure RPMB/R1B command has completed by polling CMD13
621 		 * "Send Status".
622 		 */
623 		err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, NULL);
624 	}
625 
626 	return err;
627 }
628 
mmc_blk_ioctl_cmd(struct mmc_blk_data *md, struct mmc_ioc_cmd __user *ic_ptr, struct mmc_rpmb_data *rpmb)629 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
630 			     struct mmc_ioc_cmd __user *ic_ptr,
631 			     struct mmc_rpmb_data *rpmb)
632 {
633 	struct mmc_blk_ioc_data *idata;
634 	struct mmc_blk_ioc_data *idatas[1];
635 	struct mmc_queue *mq;
636 	struct mmc_card *card;
637 	int err = 0, ioc_err = 0;
638 	struct request *req;
639 
640 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
641 	if (IS_ERR(idata))
642 		return PTR_ERR(idata);
643 	/* This will be NULL on non-RPMB ioctl():s */
644 	idata->rpmb = rpmb;
645 
646 	card = md->queue.card;
647 	if (IS_ERR(card)) {
648 		err = PTR_ERR(card);
649 		goto cmd_done;
650 	}
651 
652 	/*
653 	 * Dispatch the ioctl() into the block request queue.
654 	 */
655 	mq = &md->queue;
656 	req = blk_get_request(mq->queue,
657 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
658 	if (IS_ERR(req)) {
659 		err = PTR_ERR(req);
660 		goto cmd_done;
661 	}
662 	idatas[0] = idata;
663 	req_to_mmc_queue_req(req)->drv_op =
664 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
665 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
666 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
667 	req_to_mmc_queue_req(req)->ioc_count = 1;
668 	blk_execute_rq(mq->queue, NULL, req, 0);
669 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
670 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
671 	blk_put_request(req);
672 
673 cmd_done:
674 	kfree(idata->buf);
675 	kfree(idata);
676 	return ioc_err ? ioc_err : err;
677 }
678 
mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, struct mmc_ioc_multi_cmd __user *user, struct mmc_rpmb_data *rpmb)679 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
680 				   struct mmc_ioc_multi_cmd __user *user,
681 				   struct mmc_rpmb_data *rpmb)
682 {
683 	struct mmc_blk_ioc_data **idata = NULL;
684 	struct mmc_ioc_cmd __user *cmds = user->cmds;
685 	struct mmc_card *card;
686 	struct mmc_queue *mq;
687 	int i, err = 0, ioc_err = 0;
688 	__u64 num_of_cmds;
689 	struct request *req;
690 
691 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
692 			   sizeof(num_of_cmds)))
693 		return -EFAULT;
694 
695 	if (!num_of_cmds)
696 		return 0;
697 
698 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
699 		return -EINVAL;
700 
701 	idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
702 	if (!idata)
703 		return -ENOMEM;
704 
705 	for (i = 0; i < num_of_cmds; i++) {
706 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
707 		if (IS_ERR(idata[i])) {
708 			err = PTR_ERR(idata[i]);
709 			num_of_cmds = i;
710 			goto cmd_err;
711 		}
712 		/* This will be NULL on non-RPMB ioctl():s */
713 		idata[i]->rpmb = rpmb;
714 	}
715 
716 	card = md->queue.card;
717 	if (IS_ERR(card)) {
718 		err = PTR_ERR(card);
719 		goto cmd_err;
720 	}
721 
722 
723 	/*
724 	 * Dispatch the ioctl()s into the block request queue.
725 	 */
726 	mq = &md->queue;
727 	req = blk_get_request(mq->queue,
728 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
729 	if (IS_ERR(req)) {
730 		err = PTR_ERR(req);
731 		goto cmd_err;
732 	}
733 	req_to_mmc_queue_req(req)->drv_op =
734 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
735 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
736 	req_to_mmc_queue_req(req)->drv_op_data = idata;
737 	req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
738 	blk_execute_rq(mq->queue, NULL, req, 0);
739 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
740 
741 	/* copy to user if data and response */
742 	for (i = 0; i < num_of_cmds && !err; i++)
743 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
744 
745 	blk_put_request(req);
746 
747 cmd_err:
748 	for (i = 0; i < num_of_cmds; i++) {
749 		kfree(idata[i]->buf);
750 		kfree(idata[i]);
751 	}
752 	kfree(idata);
753 	return ioc_err ? ioc_err : err;
754 }
755 
mmc_blk_check_blkdev(struct block_device *bdev)756 static int mmc_blk_check_blkdev(struct block_device *bdev)
757 {
758 	/*
759 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
760 	 * whole block device, not on a partition.  This prevents overspray
761 	 * between sibling partitions.
762 	 */
763 	if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
764 		return -EPERM;
765 	return 0;
766 }
767 
mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)768 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
769 	unsigned int cmd, unsigned long arg)
770 {
771 	struct mmc_blk_data *md;
772 	int ret;
773 
774 	switch (cmd) {
775 	case MMC_IOC_CMD:
776 		ret = mmc_blk_check_blkdev(bdev);
777 		if (ret)
778 			return ret;
779 		md = mmc_blk_get(bdev->bd_disk);
780 		if (!md)
781 			return -EINVAL;
782 		ret = mmc_blk_ioctl_cmd(md,
783 					(struct mmc_ioc_cmd __user *)arg,
784 					NULL);
785 		mmc_blk_put(md);
786 		return ret;
787 	case MMC_IOC_MULTI_CMD:
788 		ret = mmc_blk_check_blkdev(bdev);
789 		if (ret)
790 			return ret;
791 		md = mmc_blk_get(bdev->bd_disk);
792 		if (!md)
793 			return -EINVAL;
794 		ret = mmc_blk_ioctl_multi_cmd(md,
795 					(struct mmc_ioc_multi_cmd __user *)arg,
796 					NULL);
797 		mmc_blk_put(md);
798 		return ret;
799 	default:
800 		return -EINVAL;
801 	}
802 }
803 
804 #ifdef CONFIG_COMPAT
mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)805 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
806 	unsigned int cmd, unsigned long arg)
807 {
808 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
809 }
810 #endif
811 
812 static const struct block_device_operations mmc_bdops = {
813 	.open			= mmc_blk_open,
814 	.release		= mmc_blk_release,
815 	.getgeo			= mmc_blk_getgeo,
816 	.owner			= THIS_MODULE,
817 	.ioctl			= mmc_blk_ioctl,
818 #ifdef CONFIG_COMPAT
819 	.compat_ioctl		= mmc_blk_compat_ioctl,
820 #endif
821 };
822 
mmc_blk_part_switch_pre(struct mmc_card *card, unsigned int part_type)823 static int mmc_blk_part_switch_pre(struct mmc_card *card,
824 				   unsigned int part_type)
825 {
826 	const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_RPMB;
827 	int ret = 0;
828 
829 	if ((part_type & mask) == mask) {
830 		if (card->ext_csd.cmdq_en) {
831 			ret = mmc_cmdq_disable(card);
832 			if (ret)
833 				return ret;
834 		}
835 		mmc_retune_pause(card->host);
836 	}
837 
838 	return ret;
839 }
840 
mmc_blk_part_switch_post(struct mmc_card *card, unsigned int part_type)841 static int mmc_blk_part_switch_post(struct mmc_card *card,
842 				    unsigned int part_type)
843 {
844 	const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_RPMB;
845 	int ret = 0;
846 
847 	if ((part_type & mask) == mask) {
848 		mmc_retune_unpause(card->host);
849 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
850 			ret = mmc_cmdq_enable(card);
851 	}
852 
853 	return ret;
854 }
855 
mmc_blk_part_switch(struct mmc_card *card, unsigned int part_type)856 static inline int mmc_blk_part_switch(struct mmc_card *card,
857 				      unsigned int part_type)
858 {
859 	int ret = 0;
860 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
861 
862 	if (main_md->part_curr == part_type)
863 		return 0;
864 
865 	if (mmc_card_mmc(card)) {
866 		u8 part_config = card->ext_csd.part_config;
867 
868 		ret = mmc_blk_part_switch_pre(card, part_type);
869 		if (ret)
870 			return ret;
871 
872 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
873 		part_config |= part_type;
874 
875 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
876 				 EXT_CSD_PART_CONFIG, part_config,
877 				 card->ext_csd.part_time);
878 		if (ret) {
879 			mmc_blk_part_switch_post(card, part_type);
880 			return ret;
881 		}
882 
883 		card->ext_csd.part_config = part_config;
884 
885 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
886 	}
887 
888 	main_md->part_curr = part_type;
889 	return ret;
890 }
891 
mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)892 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
893 {
894 	int err;
895 	u32 result;
896 	__be32 *blocks;
897 
898 	struct mmc_request mrq = {};
899 	struct mmc_command cmd = {};
900 	struct mmc_data data = {};
901 
902 	struct scatterlist sg;
903 
904 	cmd.opcode = MMC_APP_CMD;
905 	cmd.arg = card->rca << 16;
906 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
907 
908 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
909 	if (err)
910 		return err;
911 	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
912 		return -EIO;
913 
914 	memset(&cmd, 0, sizeof(struct mmc_command));
915 
916 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
917 	cmd.arg = 0;
918 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
919 
920 	data.blksz = 4;
921 	data.blocks = 1;
922 	data.flags = MMC_DATA_READ;
923 	data.sg = &sg;
924 	data.sg_len = 1;
925 	mmc_set_data_timeout(&data, card);
926 
927 	mrq.cmd = &cmd;
928 	mrq.data = &data;
929 
930 	blocks = kmalloc(4, GFP_KERNEL);
931 	if (!blocks)
932 		return -ENOMEM;
933 
934 	sg_init_one(&sg, blocks, 4);
935 
936 	mmc_wait_for_req(card->host, &mrq);
937 
938 	result = ntohl(*blocks);
939 	kfree(blocks);
940 
941 	if (cmd.error || data.error)
942 		return -EIO;
943 
944 	*written_blocks = result;
945 
946 	return 0;
947 }
948 
mmc_blk_clock_khz(struct mmc_host *host)949 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
950 {
951 	if (host->actual_clock)
952 		return host->actual_clock / 1000;
953 
954 	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
955 	if (host->ios.clock)
956 		return host->ios.clock / 2000;
957 
958 	/* How can there be no clock */
959 	WARN_ON_ONCE(1);
960 	return 100; /* 100 kHz is minimum possible value */
961 }
962 
mmc_blk_data_timeout_ms(struct mmc_host *host, struct mmc_data *data)963 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
964 					    struct mmc_data *data)
965 {
966 	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
967 	unsigned int khz;
968 
969 	if (data->timeout_clks) {
970 		khz = mmc_blk_clock_khz(host);
971 		ms += DIV_ROUND_UP(data->timeout_clks, khz);
972 	}
973 
974 	return ms;
975 }
976 
mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, int type)977 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
978 			 int type)
979 {
980 	int err;
981 
982 	if (md->reset_done & type)
983 		return -EEXIST;
984 
985 	md->reset_done |= type;
986 	err = mmc_hw_reset(host);
987 	/* Ensure we switch back to the correct partition */
988 	if (err != -EOPNOTSUPP) {
989 		struct mmc_blk_data *main_md =
990 			dev_get_drvdata(&host->card->dev);
991 		int part_err;
992 
993 		main_md->part_curr = main_md->part_type;
994 		part_err = mmc_blk_part_switch(host->card, md->part_type);
995 		if (part_err) {
996 			/*
997 			 * We have failed to get back into the correct
998 			 * partition, so we need to abort the whole request.
999 			 */
1000 			return -ENODEV;
1001 		}
1002 	}
1003 	return err;
1004 }
1005 
mmc_blk_reset_success(struct mmc_blk_data *md, int type)1006 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1007 {
1008 	md->reset_done &= ~type;
1009 }
1010 
mmc_blk_check_sbc(struct mmc_queue_req *mq_rq)1011 static void mmc_blk_check_sbc(struct mmc_queue_req *mq_rq)
1012 {
1013 	struct mmc_blk_ioc_data **idata = mq_rq->drv_op_data;
1014 	int i;
1015 
1016 	for (i = 1; i < mq_rq->ioc_count; i++) {
1017 		if (idata[i - 1]->ic.opcode == MMC_SET_BLOCK_COUNT &&
1018 		    mmc_op_multi(idata[i]->ic.opcode)) {
1019 			idata[i - 1]->flags |= MMC_BLK_IOC_DROP;
1020 			idata[i]->flags |= MMC_BLK_IOC_SBC;
1021 		}
1022 	}
1023 }
1024 
1025 /*
1026  * The non-block commands come back from the block layer after it queued it and
1027  * processed it with all other requests and then they get issued in this
1028  * function.
1029  */
mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)1030 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1031 {
1032 	struct mmc_queue_req *mq_rq;
1033 	struct mmc_card *card = mq->card;
1034 	struct mmc_blk_data *md = mq->blkdata;
1035 	struct mmc_blk_ioc_data **idata;
1036 	bool rpmb_ioctl;
1037 	u8 **ext_csd;
1038 	u32 status;
1039 	int ret;
1040 	int i;
1041 
1042 	mq_rq = req_to_mmc_queue_req(req);
1043 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1044 
1045 	switch (mq_rq->drv_op) {
1046 	case MMC_DRV_OP_IOCTL:
1047 		if (card->ext_csd.cmdq_en) {
1048 			ret = mmc_cmdq_disable(card);
1049 			if (ret)
1050 				break;
1051 		}
1052 
1053 		mmc_blk_check_sbc(mq_rq);
1054 
1055 		fallthrough;
1056 	case MMC_DRV_OP_IOCTL_RPMB:
1057 		idata = mq_rq->drv_op_data;
1058 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1059 			ret = __mmc_blk_ioctl_cmd(card, md, idata, i);
1060 			if (ret)
1061 				break;
1062 		}
1063 		/* Always switch back to main area after RPMB access */
1064 		if (rpmb_ioctl)
1065 			mmc_blk_part_switch(card, 0);
1066 		else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1067 			mmc_cmdq_enable(card);
1068 		break;
1069 	case MMC_DRV_OP_BOOT_WP:
1070 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1071 				 card->ext_csd.boot_ro_lock |
1072 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1073 				 card->ext_csd.part_time);
1074 		if (ret)
1075 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1076 			       md->disk->disk_name, ret);
1077 		else
1078 			card->ext_csd.boot_ro_lock |=
1079 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1080 		break;
1081 	case MMC_DRV_OP_GET_CARD_STATUS:
1082 		ret = mmc_send_status(card, &status);
1083 		if (!ret)
1084 			ret = status;
1085 		break;
1086 	case MMC_DRV_OP_GET_EXT_CSD:
1087 		ext_csd = mq_rq->drv_op_data;
1088 		ret = mmc_get_ext_csd(card, ext_csd);
1089 		break;
1090 	default:
1091 		pr_err("%s: unknown driver specific operation\n",
1092 		       md->disk->disk_name);
1093 		ret = -EINVAL;
1094 		break;
1095 	}
1096 	mq_rq->drv_op_result = ret;
1097 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1098 }
1099 
mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)1100 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1101 {
1102 	struct mmc_blk_data *md = mq->blkdata;
1103 	struct mmc_card *card = md->queue.card;
1104 	unsigned int from, nr;
1105 	int err = 0, type = MMC_BLK_DISCARD;
1106 	blk_status_t status = BLK_STS_OK;
1107 
1108 	if (!mmc_can_erase(card)) {
1109 		status = BLK_STS_NOTSUPP;
1110 		goto fail;
1111 	}
1112 
1113 	from = blk_rq_pos(req);
1114 	nr = blk_rq_sectors(req);
1115 
1116 	do {
1117 		unsigned int erase_arg = card->erase_arg;
1118 
1119 		if (mmc_card_broken_sd_discard(card))
1120 			erase_arg = SD_ERASE_ARG;
1121 
1122 		err = 0;
1123 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1124 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1125 					 INAND_CMD38_ARG_EXT_CSD,
1126 					 card->erase_arg == MMC_TRIM_ARG ?
1127 					 INAND_CMD38_ARG_TRIM :
1128 					 INAND_CMD38_ARG_ERASE,
1129 					 card->ext_csd.generic_cmd6_time);
1130 		}
1131 		if (!err)
1132 			err = mmc_erase(card, from, nr, erase_arg);
1133 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1134 	if (err)
1135 		status = BLK_STS_IOERR;
1136 	else
1137 		mmc_blk_reset_success(md, type);
1138 fail:
1139 	blk_mq_end_request(req, status);
1140 }
1141 
mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, struct request *req)1142 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1143 				       struct request *req)
1144 {
1145 	struct mmc_blk_data *md = mq->blkdata;
1146 	struct mmc_card *card = md->queue.card;
1147 	unsigned int from, nr, arg;
1148 	int err = 0, type = MMC_BLK_SECDISCARD;
1149 	blk_status_t status = BLK_STS_OK;
1150 
1151 	if (!(mmc_can_secure_erase_trim(card))) {
1152 		status = BLK_STS_NOTSUPP;
1153 		goto out;
1154 	}
1155 
1156 	from = blk_rq_pos(req);
1157 	nr = blk_rq_sectors(req);
1158 
1159 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1160 		arg = MMC_SECURE_TRIM1_ARG;
1161 	else
1162 		arg = MMC_SECURE_ERASE_ARG;
1163 
1164 retry:
1165 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1166 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1167 				 INAND_CMD38_ARG_EXT_CSD,
1168 				 arg == MMC_SECURE_TRIM1_ARG ?
1169 				 INAND_CMD38_ARG_SECTRIM1 :
1170 				 INAND_CMD38_ARG_SECERASE,
1171 				 card->ext_csd.generic_cmd6_time);
1172 		if (err)
1173 			goto out_retry;
1174 	}
1175 
1176 	err = mmc_erase(card, from, nr, arg);
1177 	if (err == -EIO)
1178 		goto out_retry;
1179 	if (err) {
1180 		status = BLK_STS_IOERR;
1181 		goto out;
1182 	}
1183 
1184 	if (arg == MMC_SECURE_TRIM1_ARG) {
1185 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1186 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1187 					 INAND_CMD38_ARG_EXT_CSD,
1188 					 INAND_CMD38_ARG_SECTRIM2,
1189 					 card->ext_csd.generic_cmd6_time);
1190 			if (err)
1191 				goto out_retry;
1192 		}
1193 
1194 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1195 		if (err == -EIO)
1196 			goto out_retry;
1197 		if (err) {
1198 			status = BLK_STS_IOERR;
1199 			goto out;
1200 		}
1201 	}
1202 
1203 out_retry:
1204 	if (err && !mmc_blk_reset(md, card->host, type))
1205 		goto retry;
1206 	if (!err)
1207 		mmc_blk_reset_success(md, type);
1208 out:
1209 	blk_mq_end_request(req, status);
1210 }
1211 
mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)1212 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1213 {
1214 	struct mmc_blk_data *md = mq->blkdata;
1215 	struct mmc_card *card = md->queue.card;
1216 	int ret = 0;
1217 
1218 	ret = mmc_flush_cache(card);
1219 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1220 }
1221 
1222 /*
1223  * Reformat current write as a reliable write, supporting
1224  * both legacy and the enhanced reliable write MMC cards.
1225  * In each transfer we'll handle only as much as a single
1226  * reliable write can handle, thus finish the request in
1227  * partial completions.
1228  */
mmc_apply_rel_rw(struct mmc_blk_request *brq, struct mmc_card *card, struct request *req)1229 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1230 				    struct mmc_card *card,
1231 				    struct request *req)
1232 {
1233 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1234 		/* Legacy mode imposes restrictions on transfers. */
1235 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1236 			brq->data.blocks = 1;
1237 
1238 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1239 			brq->data.blocks = card->ext_csd.rel_sectors;
1240 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1241 			brq->data.blocks = 1;
1242 	}
1243 }
1244 
1245 #define CMD_ERRORS_EXCL_OOR						\
1246 	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1247 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1248 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1249 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1250 	 R1_CC_ERROR |		/* Card controller error */		\
1251 	 R1_ERROR)		/* General/unknown error */
1252 
1253 #define CMD_ERRORS							\
1254 	(CMD_ERRORS_EXCL_OOR |						\
1255 	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1256 
mmc_blk_eval_resp_error(struct mmc_blk_request *brq)1257 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1258 {
1259 	u32 val;
1260 
1261 	/*
1262 	 * Per the SD specification(physical layer version 4.10)[1],
1263 	 * section 4.3.3, it explicitly states that "When the last
1264 	 * block of user area is read using CMD18, the host should
1265 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1266 	 * is correct". And JESD84-B51 for eMMC also has a similar
1267 	 * statement on section 6.8.3.
1268 	 *
1269 	 * Multiple block read/write could be done by either predefined
1270 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1271 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1272 	 *
1273 	 * However the spec[1] doesn't tell us whether we should also
1274 	 * ignore that for predefined method. But per the spec[1], section
1275 	 * 4.15 Set Block Count Command, it says"If illegal block count
1276 	 * is set, out of range error will be indicated during read/write
1277 	 * operation (For example, data transfer is stopped at user area
1278 	 * boundary)." In another word, we could expect a out of range error
1279 	 * in the response for the following CMD18/25. And if argument of
1280 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1281 	 * we could also expect to get a -ETIMEDOUT or any error number from
1282 	 * the host drivers due to missing data response(for write)/data(for
1283 	 * read), as the cards will stop the data transfer by itself per the
1284 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1285 	 */
1286 
1287 	if (!brq->stop.error) {
1288 		bool oor_with_open_end;
1289 		/* If there is no error yet, check R1 response */
1290 
1291 		val = brq->stop.resp[0] & CMD_ERRORS;
1292 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1293 
1294 		if (val && !oor_with_open_end)
1295 			brq->stop.error = -EIO;
1296 	}
1297 }
1298 
mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, int recovery_mode, bool *do_rel_wr_p, bool *do_data_tag_p)1299 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1300 			      int recovery_mode, bool *do_rel_wr_p,
1301 			      bool *do_data_tag_p)
1302 {
1303 	struct mmc_blk_data *md = mq->blkdata;
1304 	struct mmc_card *card = md->queue.card;
1305 	struct mmc_blk_request *brq = &mqrq->brq;
1306 	struct request *req = mmc_queue_req_to_req(mqrq);
1307 	bool do_rel_wr, do_data_tag;
1308 
1309 	/*
1310 	 * Reliable writes are used to implement Forced Unit Access and
1311 	 * are supported only on MMCs.
1312 	 */
1313 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1314 		    rq_data_dir(req) == WRITE &&
1315 		    (md->flags & MMC_BLK_REL_WR);
1316 
1317 	memset(brq, 0, sizeof(struct mmc_blk_request));
1318 
1319 	brq->mrq.data = &brq->data;
1320 	brq->mrq.tag = req->tag;
1321 
1322 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1323 	brq->stop.arg = 0;
1324 
1325 	if (rq_data_dir(req) == READ) {
1326 		brq->data.flags = MMC_DATA_READ;
1327 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1328 	} else {
1329 		brq->data.flags = MMC_DATA_WRITE;
1330 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1331 	}
1332 
1333 	brq->data.blksz = 512;
1334 	brq->data.blocks = blk_rq_sectors(req);
1335 	brq->data.blk_addr = blk_rq_pos(req);
1336 
1337 	/*
1338 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1339 	 * The eMMC will give "high" priority tasks priority over "simple"
1340 	 * priority tasks. Here we always set "simple" priority by not setting
1341 	 * MMC_DATA_PRIO.
1342 	 */
1343 
1344 	/*
1345 	 * The block layer doesn't support all sector count
1346 	 * restrictions, so we need to be prepared for too big
1347 	 * requests.
1348 	 */
1349 	if (brq->data.blocks > card->host->max_blk_count)
1350 		brq->data.blocks = card->host->max_blk_count;
1351 
1352 	if (brq->data.blocks > 1) {
1353 		/*
1354 		 * Some SD cards in SPI mode return a CRC error or even lock up
1355 		 * completely when trying to read the last block using a
1356 		 * multiblock read command.
1357 		 */
1358 		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1359 		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1360 		     get_capacity(md->disk)))
1361 			brq->data.blocks--;
1362 
1363 		/*
1364 		 * After a read error, we redo the request one (native) sector
1365 		 * at a time in order to accurately determine which
1366 		 * sectors can be read successfully.
1367 		 */
1368 		if (recovery_mode)
1369 			brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1370 
1371 		/*
1372 		 * Some controllers have HW issues while operating
1373 		 * in multiple I/O mode
1374 		 */
1375 		if (card->host->ops->multi_io_quirk)
1376 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1377 						(rq_data_dir(req) == READ) ?
1378 						MMC_DATA_READ : MMC_DATA_WRITE,
1379 						brq->data.blocks);
1380 	}
1381 
1382 	if (do_rel_wr) {
1383 		mmc_apply_rel_rw(brq, card, req);
1384 		brq->data.flags |= MMC_DATA_REL_WR;
1385 	}
1386 
1387 	/*
1388 	 * Data tag is used only during writing meta data to speed
1389 	 * up write and any subsequent read of this meta data
1390 	 */
1391 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1392 		      (req->cmd_flags & REQ_META) &&
1393 		      (rq_data_dir(req) == WRITE) &&
1394 		      ((brq->data.blocks * brq->data.blksz) >=
1395 		       card->ext_csd.data_tag_unit_size);
1396 
1397 	if (do_data_tag)
1398 		brq->data.flags |= MMC_DATA_DAT_TAG;
1399 
1400 	mmc_set_data_timeout(&brq->data, card);
1401 
1402 	brq->data.sg = mqrq->sg;
1403 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1404 
1405 	/*
1406 	 * Adjust the sg list so it is the same size as the
1407 	 * request.
1408 	 */
1409 	if (brq->data.blocks != blk_rq_sectors(req)) {
1410 		int i, data_size = brq->data.blocks << 9;
1411 		struct scatterlist *sg;
1412 
1413 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1414 			data_size -= sg->length;
1415 			if (data_size <= 0) {
1416 				sg->length += data_size;
1417 				i++;
1418 				break;
1419 			}
1420 		}
1421 		brq->data.sg_len = i;
1422 	}
1423 
1424 	if (do_rel_wr_p)
1425 		*do_rel_wr_p = do_rel_wr;
1426 
1427 	if (do_data_tag_p)
1428 		*do_data_tag_p = do_data_tag;
1429 }
1430 
1431 #define MMC_CQE_RETRIES 2
1432 
mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)1433 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1434 {
1435 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1436 	struct mmc_request *mrq = &mqrq->brq.mrq;
1437 	struct request_queue *q = req->q;
1438 	struct mmc_host *host = mq->card->host;
1439 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1440 	unsigned long flags;
1441 	bool put_card;
1442 	int err;
1443 
1444 	mmc_cqe_post_req(host, mrq);
1445 
1446 	if (mrq->cmd && mrq->cmd->error)
1447 		err = mrq->cmd->error;
1448 	else if (mrq->data && mrq->data->error)
1449 		err = mrq->data->error;
1450 	else
1451 		err = 0;
1452 
1453 	if (err) {
1454 		if (mqrq->retries++ < MMC_CQE_RETRIES)
1455 			blk_mq_requeue_request(req, true);
1456 		else
1457 			blk_mq_end_request(req, BLK_STS_IOERR);
1458 	} else if (mrq->data) {
1459 		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1460 			blk_mq_requeue_request(req, true);
1461 		else
1462 			__blk_mq_end_request(req, BLK_STS_OK);
1463 	} else if (mq->in_recovery) {
1464 		blk_mq_requeue_request(req, true);
1465 	} else {
1466 		blk_mq_end_request(req, BLK_STS_OK);
1467 	}
1468 
1469 	spin_lock_irqsave(&mq->lock, flags);
1470 
1471 	mq->in_flight[issue_type] -= 1;
1472 
1473 	put_card = (mmc_tot_in_flight(mq) == 0);
1474 
1475 	mmc_cqe_check_busy(mq);
1476 
1477 	spin_unlock_irqrestore(&mq->lock, flags);
1478 
1479 	if (!mq->cqe_busy)
1480 		blk_mq_run_hw_queues(q, true);
1481 
1482 	if (put_card)
1483 		mmc_put_card(mq->card, &mq->ctx);
1484 }
1485 
mmc_blk_cqe_recovery(struct mmc_queue *mq)1486 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1487 {
1488 	struct mmc_card *card = mq->card;
1489 	struct mmc_host *host = card->host;
1490 	int err;
1491 
1492 	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1493 
1494 	err = mmc_cqe_recovery(host);
1495 	if (err)
1496 		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1497 	mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1498 
1499 	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1500 }
1501 
mmc_blk_cqe_req_done(struct mmc_request *mrq)1502 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1503 {
1504 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1505 						  brq.mrq);
1506 	struct request *req = mmc_queue_req_to_req(mqrq);
1507 	struct request_queue *q = req->q;
1508 	struct mmc_queue *mq = q->queuedata;
1509 
1510 	/*
1511 	 * Block layer timeouts race with completions which means the normal
1512 	 * completion path cannot be used during recovery.
1513 	 */
1514 	if (mq->in_recovery)
1515 		mmc_blk_cqe_complete_rq(mq, req);
1516 	else if (likely(!blk_should_fake_timeout(req->q)))
1517 		blk_mq_complete_request(req);
1518 }
1519 
mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)1520 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1521 {
1522 	mrq->done		= mmc_blk_cqe_req_done;
1523 	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1524 
1525 	return mmc_cqe_start_req(host, mrq);
1526 }
1527 
mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, struct request *req)1528 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1529 						 struct request *req)
1530 {
1531 	struct mmc_blk_request *brq = &mqrq->brq;
1532 
1533 	memset(brq, 0, sizeof(*brq));
1534 
1535 	brq->mrq.cmd = &brq->cmd;
1536 	brq->mrq.tag = req->tag;
1537 
1538 	return &brq->mrq;
1539 }
1540 
mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)1541 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1542 {
1543 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1544 	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1545 
1546 	mrq->cmd->opcode = MMC_SWITCH;
1547 	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1548 			(EXT_CSD_FLUSH_CACHE << 16) |
1549 			(1 << 8) |
1550 			EXT_CSD_CMD_SET_NORMAL;
1551 	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1552 
1553 	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1554 }
1555 
mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)1556 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1557 {
1558 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1559 	struct mmc_host *host = mq->card->host;
1560 	int err;
1561 
1562 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1563 	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1564 	mmc_pre_req(host, &mqrq->brq.mrq);
1565 
1566 	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1567 	if (err)
1568 		mmc_post_req(host, &mqrq->brq.mrq, err);
1569 
1570 	return err;
1571 }
1572 
mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)1573 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1574 {
1575 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1576 	struct mmc_host *host = mq->card->host;
1577 
1578 	if (host->hsq_enabled)
1579 		return mmc_blk_hsq_issue_rw_rq(mq, req);
1580 
1581 	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1582 
1583 	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1584 }
1585 
mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, struct mmc_card *card, int recovery_mode, struct mmc_queue *mq)1586 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1587 			       struct mmc_card *card,
1588 			       int recovery_mode,
1589 			       struct mmc_queue *mq)
1590 {
1591 	u32 readcmd, writecmd;
1592 	struct mmc_blk_request *brq = &mqrq->brq;
1593 	struct request *req = mmc_queue_req_to_req(mqrq);
1594 	struct mmc_blk_data *md = mq->blkdata;
1595 	bool do_rel_wr, do_data_tag;
1596 
1597 	mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1598 
1599 	brq->mrq.cmd = &brq->cmd;
1600 
1601 	brq->cmd.arg = blk_rq_pos(req);
1602 	if (!mmc_card_blockaddr(card))
1603 		brq->cmd.arg <<= 9;
1604 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1605 
1606 	if (brq->data.blocks > 1 || do_rel_wr) {
1607 		/* SPI multiblock writes terminate using a special
1608 		 * token, not a STOP_TRANSMISSION request.
1609 		 */
1610 		if (!mmc_host_is_spi(card->host) ||
1611 		    rq_data_dir(req) == READ)
1612 			brq->mrq.stop = &brq->stop;
1613 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1614 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1615 	} else {
1616 		brq->mrq.stop = NULL;
1617 		readcmd = MMC_READ_SINGLE_BLOCK;
1618 		writecmd = MMC_WRITE_BLOCK;
1619 	}
1620 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1621 
1622 	/*
1623 	 * Pre-defined multi-block transfers are preferable to
1624 	 * open ended-ones (and necessary for reliable writes).
1625 	 * However, it is not sufficient to just send CMD23,
1626 	 * and avoid the final CMD12, as on an error condition
1627 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1628 	 * with Auto-CMD23 enhancements provided by some
1629 	 * hosts, means that the complexity of dealing
1630 	 * with this is best left to the host. If CMD23 is
1631 	 * supported by card and host, we'll fill sbc in and let
1632 	 * the host deal with handling it correctly. This means
1633 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1634 	 * change of behavior will be observed.
1635 	 *
1636 	 * N.B: Some MMC cards experience perf degradation.
1637 	 * We'll avoid using CMD23-bounded multiblock writes for
1638 	 * these, while retaining features like reliable writes.
1639 	 */
1640 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1641 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1642 	     do_data_tag)) {
1643 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1644 		brq->sbc.arg = brq->data.blocks |
1645 			(do_rel_wr ? (1 << 31) : 0) |
1646 			(do_data_tag ? (1 << 29) : 0);
1647 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1648 		brq->mrq.sbc = &brq->sbc;
1649 	}
1650 }
1651 
1652 #define MMC_MAX_RETRIES		5
1653 #define MMC_DATA_RETRIES	2
1654 #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1655 
mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)1656 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1657 {
1658 	struct mmc_command cmd = {
1659 		.opcode = MMC_STOP_TRANSMISSION,
1660 		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1661 		/* Some hosts wait for busy anyway, so provide a busy timeout */
1662 		.busy_timeout = timeout,
1663 	};
1664 
1665 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1666 }
1667 
mmc_blk_fix_state(struct mmc_card *card, struct request *req)1668 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1669 {
1670 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1671 	struct mmc_blk_request *brq = &mqrq->brq;
1672 	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1673 	int err;
1674 
1675 	mmc_retune_hold_now(card->host);
1676 
1677 	mmc_blk_send_stop(card, timeout);
1678 
1679 	err = card_busy_detect(card, timeout, NULL);
1680 
1681 	mmc_retune_release(card->host);
1682 
1683 	return err;
1684 }
1685 
1686 #define MMC_READ_SINGLE_RETRIES	2
1687 
1688 /* Single (native) sector read during recovery */
mmc_blk_read_single(struct mmc_queue *mq, struct request *req)1689 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1690 {
1691 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1692 	struct mmc_request *mrq = &mqrq->brq.mrq;
1693 	struct mmc_card *card = mq->card;
1694 	struct mmc_host *host = card->host;
1695 	blk_status_t error = BLK_STS_OK;
1696 	size_t bytes_per_read = queue_physical_block_size(mq->queue);
1697 
1698 	do {
1699 		u32 status;
1700 		int err;
1701 		int retries = 0;
1702 
1703 		while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1704 			mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1705 
1706 			mmc_wait_for_req(host, mrq);
1707 
1708 			err = mmc_send_status(card, &status);
1709 			if (err)
1710 				goto error_exit;
1711 
1712 			if (!mmc_host_is_spi(host) &&
1713 			    !mmc_ready_for_data(status)) {
1714 				err = mmc_blk_fix_state(card, req);
1715 				if (err)
1716 					goto error_exit;
1717 			}
1718 
1719 			if (!mrq->cmd->error)
1720 				break;
1721 		}
1722 
1723 		if (mrq->cmd->error ||
1724 		    mrq->data->error ||
1725 		    (!mmc_host_is_spi(host) &&
1726 		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1727 			error = BLK_STS_IOERR;
1728 		else
1729 			error = BLK_STS_OK;
1730 
1731 	} while (blk_update_request(req, error, bytes_per_read));
1732 
1733 	return;
1734 
1735 error_exit:
1736 	mrq->data->bytes_xfered = 0;
1737 	blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1738 	/* Let it try the remaining request again */
1739 	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1740 		mqrq->retries = MMC_MAX_RETRIES - 1;
1741 }
1742 
mmc_blk_oor_valid(struct mmc_blk_request *brq)1743 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1744 {
1745 	return !!brq->mrq.sbc;
1746 }
1747 
mmc_blk_stop_err_bits(struct mmc_blk_request *brq)1748 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1749 {
1750 	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1751 }
1752 
1753 /*
1754  * Check for errors the host controller driver might not have seen such as
1755  * response mode errors or invalid card state.
1756  */
mmc_blk_status_error(struct request *req, u32 status)1757 static bool mmc_blk_status_error(struct request *req, u32 status)
1758 {
1759 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1760 	struct mmc_blk_request *brq = &mqrq->brq;
1761 	struct mmc_queue *mq = req->q->queuedata;
1762 	u32 stop_err_bits;
1763 
1764 	if (mmc_host_is_spi(mq->card->host))
1765 		return false;
1766 
1767 	stop_err_bits = mmc_blk_stop_err_bits(brq);
1768 
1769 	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1770 	       brq->stop.resp[0] & stop_err_bits ||
1771 	       status            & stop_err_bits ||
1772 	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1773 }
1774 
mmc_blk_cmd_started(struct mmc_blk_request *brq)1775 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1776 {
1777 	return !brq->sbc.error && !brq->cmd.error &&
1778 	       !(brq->cmd.resp[0] & CMD_ERRORS);
1779 }
1780 
1781 /*
1782  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1783  * policy:
1784  * 1. A request that has transferred at least some data is considered
1785  * successful and will be requeued if there is remaining data to
1786  * transfer.
1787  * 2. Otherwise the number of retries is incremented and the request
1788  * will be requeued if there are remaining retries.
1789  * 3. Otherwise the request will be errored out.
1790  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1791  * mqrq->retries. So there are only 4 possible actions here:
1792  *	1. do not accept the bytes_xfered value i.e. set it to zero
1793  *	2. change mqrq->retries to determine the number of retries
1794  *	3. try to reset the card
1795  *	4. read one sector at a time
1796  */
mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)1797 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1798 {
1799 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1800 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1801 	struct mmc_blk_request *brq = &mqrq->brq;
1802 	struct mmc_blk_data *md = mq->blkdata;
1803 	struct mmc_card *card = mq->card;
1804 	u32 status;
1805 	u32 blocks;
1806 	int err;
1807 
1808 	/*
1809 	 * Some errors the host driver might not have seen. Set the number of
1810 	 * bytes transferred to zero in that case.
1811 	 */
1812 	err = __mmc_send_status(card, &status, 0);
1813 	if (err || mmc_blk_status_error(req, status))
1814 		brq->data.bytes_xfered = 0;
1815 
1816 	mmc_retune_release(card->host);
1817 
1818 	/*
1819 	 * Try again to get the status. This also provides an opportunity for
1820 	 * re-tuning.
1821 	 */
1822 	if (err)
1823 		err = __mmc_send_status(card, &status, 0);
1824 
1825 	/*
1826 	 * Nothing more to do after the number of bytes transferred has been
1827 	 * updated and there is no card.
1828 	 */
1829 	if (err && mmc_detect_card_removed(card->host))
1830 		return;
1831 
1832 	/* Try to get back to "tran" state */
1833 	if (!mmc_host_is_spi(mq->card->host) &&
1834 	    (err || !mmc_ready_for_data(status)))
1835 		err = mmc_blk_fix_state(mq->card, req);
1836 
1837 	/*
1838 	 * Special case for SD cards where the card might record the number of
1839 	 * blocks written.
1840 	 */
1841 	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1842 	    rq_data_dir(req) == WRITE) {
1843 		if (mmc_sd_num_wr_blocks(card, &blocks))
1844 			brq->data.bytes_xfered = 0;
1845 		else
1846 			brq->data.bytes_xfered = blocks << 9;
1847 	}
1848 
1849 	/* Reset if the card is in a bad state */
1850 	if (!mmc_host_is_spi(mq->card->host) &&
1851 	    err && mmc_blk_reset(md, card->host, type)) {
1852 		pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1853 		mqrq->retries = MMC_NO_RETRIES;
1854 		return;
1855 	}
1856 
1857 	/*
1858 	 * If anything was done, just return and if there is anything remaining
1859 	 * on the request it will get requeued.
1860 	 */
1861 	if (brq->data.bytes_xfered)
1862 		return;
1863 
1864 	/* Reset before last retry */
1865 	if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1866 		mmc_blk_reset(md, card->host, type);
1867 
1868 	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1869 	if (brq->sbc.error || brq->cmd.error)
1870 		return;
1871 
1872 	/* Reduce the remaining retries for data errors */
1873 	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1874 		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1875 		return;
1876 	}
1877 
1878 	if (rq_data_dir(req) == READ && brq->data.blocks >
1879 			queue_physical_block_size(mq->queue) >> 9) {
1880 		/* Read one (native) sector at a time */
1881 		mmc_blk_read_single(mq, req);
1882 		return;
1883 	}
1884 }
1885 
mmc_blk_rq_error(struct mmc_blk_request *brq)1886 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1887 {
1888 	mmc_blk_eval_resp_error(brq);
1889 
1890 	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1891 	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1892 }
1893 
mmc_blk_card_busy(struct mmc_card *card, struct request *req)1894 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1895 {
1896 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1897 	u32 status = 0;
1898 	int err;
1899 
1900 	if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1901 		return 0;
1902 
1903 	err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, &status);
1904 
1905 	/*
1906 	 * Do not assume data transferred correctly if there are any error bits
1907 	 * set.
1908 	 */
1909 	if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1910 		mqrq->brq.data.bytes_xfered = 0;
1911 		err = err ? err : -EIO;
1912 	}
1913 
1914 	/* Copy the exception bit so it will be seen later on */
1915 	if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1916 		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1917 
1918 	return err;
1919 }
1920 
mmc_blk_rw_reset_success(struct mmc_queue *mq, struct request *req)1921 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1922 					    struct request *req)
1923 {
1924 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1925 
1926 	mmc_blk_reset_success(mq->blkdata, type);
1927 }
1928 
mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)1929 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1930 {
1931 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1932 	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1933 
1934 	if (nr_bytes) {
1935 		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1936 			blk_mq_requeue_request(req, true);
1937 		else
1938 			__blk_mq_end_request(req, BLK_STS_OK);
1939 	} else if (!blk_rq_bytes(req)) {
1940 		__blk_mq_end_request(req, BLK_STS_IOERR);
1941 	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1942 		blk_mq_requeue_request(req, true);
1943 	} else {
1944 		if (mmc_card_removed(mq->card))
1945 			req->rq_flags |= RQF_QUIET;
1946 		blk_mq_end_request(req, BLK_STS_IOERR);
1947 	}
1948 }
1949 
mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, struct mmc_queue_req *mqrq)1950 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1951 					struct mmc_queue_req *mqrq)
1952 {
1953 	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1954 	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1955 		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1956 }
1957 
mmc_blk_urgent_bkops(struct mmc_queue *mq, struct mmc_queue_req *mqrq)1958 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1959 				 struct mmc_queue_req *mqrq)
1960 {
1961 	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1962 		mmc_run_bkops(mq->card);
1963 }
1964 
mmc_blk_hsq_req_done(struct mmc_request *mrq)1965 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
1966 {
1967 	struct mmc_queue_req *mqrq =
1968 		container_of(mrq, struct mmc_queue_req, brq.mrq);
1969 	struct request *req = mmc_queue_req_to_req(mqrq);
1970 	struct request_queue *q = req->q;
1971 	struct mmc_queue *mq = q->queuedata;
1972 	struct mmc_host *host = mq->card->host;
1973 	unsigned long flags;
1974 
1975 	if (mmc_blk_rq_error(&mqrq->brq) ||
1976 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
1977 		spin_lock_irqsave(&mq->lock, flags);
1978 		mq->recovery_needed = true;
1979 		mq->recovery_req = req;
1980 		spin_unlock_irqrestore(&mq->lock, flags);
1981 
1982 		host->cqe_ops->cqe_recovery_start(host);
1983 
1984 		schedule_work(&mq->recovery_work);
1985 		return;
1986 	}
1987 
1988 	mmc_blk_rw_reset_success(mq, req);
1989 
1990 	/*
1991 	 * Block layer timeouts race with completions which means the normal
1992 	 * completion path cannot be used during recovery.
1993 	 */
1994 	if (mq->in_recovery)
1995 		mmc_blk_cqe_complete_rq(mq, req);
1996 	else if (likely(!blk_should_fake_timeout(req->q)))
1997 		blk_mq_complete_request(req);
1998 }
1999 
mmc_blk_mq_complete(struct request *req)2000 void mmc_blk_mq_complete(struct request *req)
2001 {
2002 	struct mmc_queue *mq = req->q->queuedata;
2003 
2004 	if (mq->use_cqe)
2005 		mmc_blk_cqe_complete_rq(mq, req);
2006 	else if (likely(!blk_should_fake_timeout(req->q)))
2007 		mmc_blk_mq_complete_rq(mq, req);
2008 }
2009 
mmc_blk_mq_poll_completion(struct mmc_queue *mq, struct request *req)2010 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2011 				       struct request *req)
2012 {
2013 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2014 	struct mmc_host *host = mq->card->host;
2015 
2016 	if (mmc_blk_rq_error(&mqrq->brq) ||
2017 	    mmc_blk_card_busy(mq->card, req)) {
2018 		mmc_blk_mq_rw_recovery(mq, req);
2019 	} else {
2020 		mmc_blk_rw_reset_success(mq, req);
2021 		mmc_retune_release(host);
2022 	}
2023 
2024 	mmc_blk_urgent_bkops(mq, mqrq);
2025 }
2026 
mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type)2027 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type)
2028 {
2029 	unsigned long flags;
2030 	bool put_card;
2031 
2032 	spin_lock_irqsave(&mq->lock, flags);
2033 
2034 	mq->in_flight[issue_type] -= 1;
2035 
2036 	put_card = (mmc_tot_in_flight(mq) == 0);
2037 
2038 	spin_unlock_irqrestore(&mq->lock, flags);
2039 
2040 	if (put_card)
2041 		mmc_put_card(mq->card, &mq->ctx);
2042 }
2043 
mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)2044 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
2045 {
2046 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
2047 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2048 	struct mmc_request *mrq = &mqrq->brq.mrq;
2049 	struct mmc_host *host = mq->card->host;
2050 
2051 	mmc_post_req(host, mrq, 0);
2052 
2053 	/*
2054 	 * Block layer timeouts race with completions which means the normal
2055 	 * completion path cannot be used during recovery.
2056 	 */
2057 	if (mq->in_recovery)
2058 		mmc_blk_mq_complete_rq(mq, req);
2059 	else if (likely(!blk_should_fake_timeout(req->q)))
2060 		blk_mq_complete_request(req);
2061 
2062 	mmc_blk_mq_dec_in_flight(mq, issue_type);
2063 }
2064 
mmc_blk_mq_recovery(struct mmc_queue *mq)2065 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2066 {
2067 	struct request *req = mq->recovery_req;
2068 	struct mmc_host *host = mq->card->host;
2069 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2070 
2071 	mq->recovery_req = NULL;
2072 	mq->rw_wait = false;
2073 
2074 	if (mmc_blk_rq_error(&mqrq->brq)) {
2075 		mmc_retune_hold_now(host);
2076 		mmc_blk_mq_rw_recovery(mq, req);
2077 	}
2078 
2079 	mmc_blk_urgent_bkops(mq, mqrq);
2080 
2081 	mmc_blk_mq_post_req(mq, req);
2082 }
2083 
mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, struct request **prev_req)2084 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2085 					 struct request **prev_req)
2086 {
2087 	if (mmc_host_done_complete(mq->card->host))
2088 		return;
2089 
2090 	mutex_lock(&mq->complete_lock);
2091 
2092 	if (!mq->complete_req)
2093 		goto out_unlock;
2094 
2095 	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2096 
2097 	if (prev_req)
2098 		*prev_req = mq->complete_req;
2099 	else
2100 		mmc_blk_mq_post_req(mq, mq->complete_req);
2101 
2102 	mq->complete_req = NULL;
2103 
2104 out_unlock:
2105 	mutex_unlock(&mq->complete_lock);
2106 }
2107 
mmc_blk_mq_complete_work(struct work_struct *work)2108 void mmc_blk_mq_complete_work(struct work_struct *work)
2109 {
2110 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2111 					    complete_work);
2112 
2113 	mmc_blk_mq_complete_prev_req(mq, NULL);
2114 }
2115 
mmc_blk_mq_req_done(struct mmc_request *mrq)2116 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2117 {
2118 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2119 						  brq.mrq);
2120 	struct request *req = mmc_queue_req_to_req(mqrq);
2121 	struct request_queue *q = req->q;
2122 	struct mmc_queue *mq = q->queuedata;
2123 	struct mmc_host *host = mq->card->host;
2124 	unsigned long flags;
2125 
2126 	if (!mmc_host_done_complete(host)) {
2127 		bool waiting;
2128 
2129 		/*
2130 		 * We cannot complete the request in this context, so record
2131 		 * that there is a request to complete, and that a following
2132 		 * request does not need to wait (although it does need to
2133 		 * complete complete_req first).
2134 		 */
2135 		spin_lock_irqsave(&mq->lock, flags);
2136 		mq->complete_req = req;
2137 		mq->rw_wait = false;
2138 		waiting = mq->waiting;
2139 		spin_unlock_irqrestore(&mq->lock, flags);
2140 
2141 		/*
2142 		 * If 'waiting' then the waiting task will complete this
2143 		 * request, otherwise queue a work to do it. Note that
2144 		 * complete_work may still race with the dispatch of a following
2145 		 * request.
2146 		 */
2147 		if (waiting)
2148 			wake_up(&mq->wait);
2149 		else
2150 			queue_work(mq->card->complete_wq, &mq->complete_work);
2151 
2152 		return;
2153 	}
2154 
2155 	/* Take the recovery path for errors or urgent background operations */
2156 	if (mmc_blk_rq_error(&mqrq->brq) ||
2157 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2158 		spin_lock_irqsave(&mq->lock, flags);
2159 		mq->recovery_needed = true;
2160 		mq->recovery_req = req;
2161 		spin_unlock_irqrestore(&mq->lock, flags);
2162 		wake_up(&mq->wait);
2163 		schedule_work(&mq->recovery_work);
2164 		return;
2165 	}
2166 
2167 	mmc_blk_rw_reset_success(mq, req);
2168 
2169 	mq->rw_wait = false;
2170 	wake_up(&mq->wait);
2171 
2172 	mmc_blk_mq_post_req(mq, req);
2173 }
2174 
mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)2175 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2176 {
2177 	unsigned long flags;
2178 	bool done;
2179 
2180 	/*
2181 	 * Wait while there is another request in progress, but not if recovery
2182 	 * is needed. Also indicate whether there is a request waiting to start.
2183 	 */
2184 	spin_lock_irqsave(&mq->lock, flags);
2185 	if (mq->recovery_needed) {
2186 		*err = -EBUSY;
2187 		done = true;
2188 	} else {
2189 		done = !mq->rw_wait;
2190 	}
2191 	mq->waiting = !done;
2192 	spin_unlock_irqrestore(&mq->lock, flags);
2193 
2194 	return done;
2195 }
2196 
mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)2197 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2198 {
2199 	int err = 0;
2200 
2201 	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2202 
2203 	/* Always complete the previous request if there is one */
2204 	mmc_blk_mq_complete_prev_req(mq, prev_req);
2205 
2206 	return err;
2207 }
2208 
mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, struct request *req)2209 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2210 				  struct request *req)
2211 {
2212 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2213 	struct mmc_host *host = mq->card->host;
2214 	struct request *prev_req = NULL;
2215 	int err = 0;
2216 
2217 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2218 
2219 	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2220 
2221 	mmc_pre_req(host, &mqrq->brq.mrq);
2222 
2223 	err = mmc_blk_rw_wait(mq, &prev_req);
2224 	if (err)
2225 		goto out_post_req;
2226 
2227 	mq->rw_wait = true;
2228 
2229 	err = mmc_start_request(host, &mqrq->brq.mrq);
2230 
2231 	if (prev_req)
2232 		mmc_blk_mq_post_req(mq, prev_req);
2233 
2234 	if (err)
2235 		mq->rw_wait = false;
2236 
2237 	/* Release re-tuning here where there is no synchronization required */
2238 	if (err || mmc_host_done_complete(host))
2239 		mmc_retune_release(host);
2240 
2241 out_post_req:
2242 	if (err)
2243 		mmc_post_req(host, &mqrq->brq.mrq, err);
2244 
2245 	return err;
2246 }
2247 
mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)2248 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2249 {
2250 	if (mq->use_cqe)
2251 		return host->cqe_ops->cqe_wait_for_idle(host);
2252 
2253 	return mmc_blk_rw_wait(mq, NULL);
2254 }
2255 
mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)2256 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2257 {
2258 	struct mmc_blk_data *md = mq->blkdata;
2259 	struct mmc_card *card = md->queue.card;
2260 	struct mmc_host *host = card->host;
2261 	int ret;
2262 
2263 	ret = mmc_blk_part_switch(card, md->part_type);
2264 	if (ret)
2265 		return MMC_REQ_FAILED_TO_START;
2266 
2267 	switch (mmc_issue_type(mq, req)) {
2268 	case MMC_ISSUE_SYNC:
2269 		ret = mmc_blk_wait_for_idle(mq, host);
2270 		if (ret)
2271 			return MMC_REQ_BUSY;
2272 		switch (req_op(req)) {
2273 		case REQ_OP_DRV_IN:
2274 		case REQ_OP_DRV_OUT:
2275 			mmc_blk_issue_drv_op(mq, req);
2276 			break;
2277 		case REQ_OP_DISCARD:
2278 			mmc_blk_issue_discard_rq(mq, req);
2279 			break;
2280 		case REQ_OP_SECURE_ERASE:
2281 			mmc_blk_issue_secdiscard_rq(mq, req);
2282 			break;
2283 		case REQ_OP_FLUSH:
2284 			mmc_blk_issue_flush(mq, req);
2285 			break;
2286 		default:
2287 			WARN_ON_ONCE(1);
2288 			return MMC_REQ_FAILED_TO_START;
2289 		}
2290 		return MMC_REQ_FINISHED;
2291 	case MMC_ISSUE_DCMD:
2292 	case MMC_ISSUE_ASYNC:
2293 		switch (req_op(req)) {
2294 		case REQ_OP_FLUSH:
2295 			if (!mmc_cache_enabled(host)) {
2296 				blk_mq_end_request(req, BLK_STS_OK);
2297 				return MMC_REQ_FINISHED;
2298 			}
2299 			ret = mmc_blk_cqe_issue_flush(mq, req);
2300 			break;
2301 		case REQ_OP_READ:
2302 		case REQ_OP_WRITE:
2303 			if (mq->use_cqe)
2304 				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2305 			else
2306 				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2307 			break;
2308 		default:
2309 			WARN_ON_ONCE(1);
2310 			ret = -EINVAL;
2311 		}
2312 		if (!ret)
2313 			return MMC_REQ_STARTED;
2314 		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2315 	default:
2316 		WARN_ON_ONCE(1);
2317 		return MMC_REQ_FAILED_TO_START;
2318 	}
2319 }
2320 
mmc_blk_readonly(struct mmc_card *card)2321 static inline int mmc_blk_readonly(struct mmc_card *card)
2322 {
2323 	return mmc_card_readonly(card) ||
2324 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2325 }
2326 
mmc_blk_alloc_req(struct mmc_card *card, struct device *parent, sector_t size, bool default_ro, const char *subname, int area_type)2327 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2328 					      struct device *parent,
2329 					      sector_t size,
2330 					      bool default_ro,
2331 					      const char *subname,
2332 					      int area_type)
2333 {
2334 	struct mmc_blk_data *md;
2335 	int devidx, ret;
2336 
2337 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2338 	if (devidx < 0) {
2339 		/*
2340 		 * We get -ENOSPC because there are no more any available
2341 		 * devidx. The reason may be that, either userspace haven't yet
2342 		 * unmounted the partitions, which postpones mmc_blk_release()
2343 		 * from being called, or the device has more partitions than
2344 		 * what we support.
2345 		 */
2346 		if (devidx == -ENOSPC)
2347 			dev_err(mmc_dev(card->host),
2348 				"no more device IDs available\n");
2349 
2350 		return ERR_PTR(devidx);
2351 	}
2352 
2353 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2354 	if (!md) {
2355 		ret = -ENOMEM;
2356 		goto out;
2357 	}
2358 
2359 	md->area_type = area_type;
2360 
2361 	/*
2362 	 * Set the read-only status based on the supported commands
2363 	 * and the write protect switch.
2364 	 */
2365 	md->read_only = mmc_blk_readonly(card);
2366 
2367 	md->disk = alloc_disk(perdev_minors);
2368 	if (md->disk == NULL) {
2369 		ret = -ENOMEM;
2370 		goto err_kfree;
2371 	}
2372 
2373 	INIT_LIST_HEAD(&md->part);
2374 	INIT_LIST_HEAD(&md->rpmbs);
2375 	md->usage = 1;
2376 
2377 	ret = mmc_init_queue(&md->queue, card);
2378 	if (ret)
2379 		goto err_putdisk;
2380 
2381 	md->queue.blkdata = md;
2382 
2383 	/*
2384 	 * Keep an extra reference to the queue so that we can shutdown the
2385 	 * queue (i.e. call blk_cleanup_queue()) while there are still
2386 	 * references to the 'md'. The corresponding blk_put_queue() is in
2387 	 * mmc_blk_put().
2388 	 */
2389 	if (!blk_get_queue(md->queue.queue)) {
2390 		mmc_cleanup_queue(&md->queue);
2391 		ret = -ENODEV;
2392 		goto err_putdisk;
2393 	}
2394 
2395 	md->disk->major	= MMC_BLOCK_MAJOR;
2396 	md->disk->first_minor = devidx * perdev_minors;
2397 	md->disk->fops = &mmc_bdops;
2398 	md->disk->private_data = md;
2399 	md->disk->queue = md->queue.queue;
2400 	md->parent = parent;
2401 	set_disk_ro(md->disk, md->read_only || default_ro);
2402 	md->disk->flags = GENHD_FL_EXT_DEVT;
2403 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2404 		md->disk->flags |= GENHD_FL_NO_PART_SCAN
2405 				   | GENHD_FL_SUPPRESS_PARTITION_INFO;
2406 
2407 	/*
2408 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2409 	 *
2410 	 * - be set for removable media with permanent block devices
2411 	 * - be unset for removable block devices with permanent media
2412 	 *
2413 	 * Since MMC block devices clearly fall under the second
2414 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2415 	 * should use the block device creation/destruction hotplug
2416 	 * messages to tell when the card is present.
2417 	 */
2418 
2419 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2420 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2421 
2422 	set_capacity(md->disk, size);
2423 
2424 	if (mmc_host_cmd23(card->host)) {
2425 		if ((mmc_card_mmc(card) &&
2426 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2427 		    (mmc_card_sd(card) &&
2428 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2429 			md->flags |= MMC_BLK_CMD23;
2430 	}
2431 
2432 	if (mmc_card_mmc(card) &&
2433 	    md->flags & MMC_BLK_CMD23 &&
2434 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2435 	     card->ext_csd.rel_sectors)) {
2436 		md->flags |= MMC_BLK_REL_WR;
2437 		blk_queue_write_cache(md->queue.queue, true, true);
2438 	}
2439 
2440 	return md;
2441 
2442  err_putdisk:
2443 	put_disk(md->disk);
2444  err_kfree:
2445 	kfree(md);
2446  out:
2447 	ida_simple_remove(&mmc_blk_ida, devidx);
2448 	return ERR_PTR(ret);
2449 }
2450 
mmc_blk_alloc(struct mmc_card *card)2451 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2452 {
2453 	sector_t size;
2454 
2455 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2456 		/*
2457 		 * The EXT_CSD sector count is in number or 512 byte
2458 		 * sectors.
2459 		 */
2460 		size = card->ext_csd.sectors;
2461 	} else {
2462 		/*
2463 		 * The CSD capacity field is in units of read_blkbits.
2464 		 * set_capacity takes units of 512 bytes.
2465 		 */
2466 		size = (typeof(sector_t))card->csd.capacity
2467 			<< (card->csd.read_blkbits - 9);
2468 	}
2469 
2470 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2471 					MMC_BLK_DATA_AREA_MAIN);
2472 }
2473 
mmc_blk_alloc_part(struct mmc_card *card, struct mmc_blk_data *md, unsigned int part_type, sector_t size, bool default_ro, const char *subname, int area_type)2474 static int mmc_blk_alloc_part(struct mmc_card *card,
2475 			      struct mmc_blk_data *md,
2476 			      unsigned int part_type,
2477 			      sector_t size,
2478 			      bool default_ro,
2479 			      const char *subname,
2480 			      int area_type)
2481 {
2482 	char cap_str[10];
2483 	struct mmc_blk_data *part_md;
2484 
2485 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2486 				    subname, area_type);
2487 	if (IS_ERR(part_md))
2488 		return PTR_ERR(part_md);
2489 	part_md->part_type = part_type;
2490 	list_add(&part_md->part, &md->part);
2491 
2492 	string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2493 			cap_str, sizeof(cap_str));
2494 	pr_info("%s: %s %s partition %u %s\n",
2495 	       part_md->disk->disk_name, mmc_card_id(card),
2496 	       mmc_card_name(card), part_md->part_type, cap_str);
2497 	return 0;
2498 }
2499 
2500 /**
2501  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2502  * @filp: the character device file
2503  * @cmd: the ioctl() command
2504  * @arg: the argument from userspace
2505  *
2506  * This will essentially just redirect the ioctl()s coming in over to
2507  * the main block device spawning the RPMB character device.
2508  */
mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)2509 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2510 			   unsigned long arg)
2511 {
2512 	struct mmc_rpmb_data *rpmb = filp->private_data;
2513 	int ret;
2514 
2515 	switch (cmd) {
2516 	case MMC_IOC_CMD:
2517 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2518 					(struct mmc_ioc_cmd __user *)arg,
2519 					rpmb);
2520 		break;
2521 	case MMC_IOC_MULTI_CMD:
2522 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2523 					(struct mmc_ioc_multi_cmd __user *)arg,
2524 					rpmb);
2525 		break;
2526 	default:
2527 		ret = -EINVAL;
2528 		break;
2529 	}
2530 
2531 	return ret;
2532 }
2533 
2534 #ifdef CONFIG_COMPAT
mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, unsigned long arg)2535 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2536 			      unsigned long arg)
2537 {
2538 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2539 }
2540 #endif
2541 
mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)2542 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2543 {
2544 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2545 						  struct mmc_rpmb_data, chrdev);
2546 
2547 	get_device(&rpmb->dev);
2548 	filp->private_data = rpmb;
2549 	mmc_blk_get(rpmb->md->disk);
2550 
2551 	return nonseekable_open(inode, filp);
2552 }
2553 
mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)2554 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2555 {
2556 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2557 						  struct mmc_rpmb_data, chrdev);
2558 
2559 	mmc_blk_put(rpmb->md);
2560 	put_device(&rpmb->dev);
2561 
2562 	return 0;
2563 }
2564 
2565 static const struct file_operations mmc_rpmb_fileops = {
2566 	.release = mmc_rpmb_chrdev_release,
2567 	.open = mmc_rpmb_chrdev_open,
2568 	.owner = THIS_MODULE,
2569 	.llseek = no_llseek,
2570 	.unlocked_ioctl = mmc_rpmb_ioctl,
2571 #ifdef CONFIG_COMPAT
2572 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2573 #endif
2574 };
2575 
mmc_blk_rpmb_device_release(struct device *dev)2576 static void mmc_blk_rpmb_device_release(struct device *dev)
2577 {
2578 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2579 
2580 	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2581 	kfree(rpmb);
2582 }
2583 
mmc_blk_alloc_rpmb_part(struct mmc_card *card, struct mmc_blk_data *md, unsigned int part_index, sector_t size, const char *subname)2584 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2585 				   struct mmc_blk_data *md,
2586 				   unsigned int part_index,
2587 				   sector_t size,
2588 				   const char *subname)
2589 {
2590 	int devidx, ret;
2591 	char rpmb_name[DISK_NAME_LEN];
2592 	char cap_str[10];
2593 	struct mmc_rpmb_data *rpmb;
2594 
2595 	/* This creates the minor number for the RPMB char device */
2596 	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2597 	if (devidx < 0)
2598 		return devidx;
2599 
2600 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2601 	if (!rpmb) {
2602 		ida_simple_remove(&mmc_rpmb_ida, devidx);
2603 		return -ENOMEM;
2604 	}
2605 
2606 	snprintf(rpmb_name, sizeof(rpmb_name),
2607 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2608 
2609 	rpmb->id = devidx;
2610 	rpmb->part_index = part_index;
2611 	rpmb->dev.init_name = rpmb_name;
2612 	rpmb->dev.bus = &mmc_rpmb_bus_type;
2613 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2614 	rpmb->dev.parent = &card->dev;
2615 	rpmb->dev.release = mmc_blk_rpmb_device_release;
2616 	device_initialize(&rpmb->dev);
2617 	dev_set_drvdata(&rpmb->dev, rpmb);
2618 	rpmb->md = md;
2619 
2620 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2621 	rpmb->chrdev.owner = THIS_MODULE;
2622 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2623 	if (ret) {
2624 		pr_err("%s: could not add character device\n", rpmb_name);
2625 		goto out_put_device;
2626 	}
2627 
2628 	list_add(&rpmb->node, &md->rpmbs);
2629 
2630 	string_get_size((u64)size, 512, STRING_UNITS_2,
2631 			cap_str, sizeof(cap_str));
2632 
2633 	pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2634 		rpmb_name, mmc_card_id(card),
2635 		mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
2636 		MAJOR(mmc_rpmb_devt), rpmb->id);
2637 
2638 	return 0;
2639 
2640 out_put_device:
2641 	put_device(&rpmb->dev);
2642 	return ret;
2643 }
2644 
mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)2645 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2646 
2647 {
2648 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2649 	put_device(&rpmb->dev);
2650 }
2651 
2652 /* MMC Physical partitions consist of two boot partitions and
2653  * up to four general purpose partitions.
2654  * For each partition enabled in EXT_CSD a block device will be allocatedi
2655  * to provide access to the partition.
2656  */
2657 
mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)2658 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2659 {
2660 	int idx, ret;
2661 
2662 	if (!mmc_card_mmc(card))
2663 		return 0;
2664 
2665 	for (idx = 0; idx < card->nr_parts; idx++) {
2666 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2667 			/*
2668 			 * RPMB partitions does not provide block access, they
2669 			 * are only accessed using ioctl():s. Thus create
2670 			 * special RPMB block devices that do not have a
2671 			 * backing block queue for these.
2672 			 */
2673 			ret = mmc_blk_alloc_rpmb_part(card, md,
2674 				card->part[idx].part_cfg,
2675 				card->part[idx].size >> 9,
2676 				card->part[idx].name);
2677 			if (ret)
2678 				return ret;
2679 		} else if (card->part[idx].size) {
2680 			ret = mmc_blk_alloc_part(card, md,
2681 				card->part[idx].part_cfg,
2682 				card->part[idx].size >> 9,
2683 				card->part[idx].force_ro,
2684 				card->part[idx].name,
2685 				card->part[idx].area_type);
2686 			if (ret)
2687 				return ret;
2688 		}
2689 	}
2690 
2691 	return 0;
2692 }
2693 
mmc_blk_remove_req(struct mmc_blk_data *md)2694 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2695 {
2696 	struct mmc_card *card;
2697 
2698 	if (md) {
2699 		/*
2700 		 * Flush remaining requests and free queues. It
2701 		 * is freeing the queue that stops new requests
2702 		 * from being accepted.
2703 		 */
2704 		card = md->queue.card;
2705 		if (md->disk->flags & GENHD_FL_UP) {
2706 			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2707 			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2708 					card->ext_csd.boot_ro_lockable)
2709 				device_remove_file(disk_to_dev(md->disk),
2710 					&md->power_ro_lock);
2711 
2712 			del_gendisk(md->disk);
2713 		}
2714 		mmc_cleanup_queue(&md->queue);
2715 		mmc_blk_put(md);
2716 	}
2717 }
2718 
mmc_blk_remove_parts(struct mmc_card *card, struct mmc_blk_data *md)2719 static void mmc_blk_remove_parts(struct mmc_card *card,
2720 				 struct mmc_blk_data *md)
2721 {
2722 	struct list_head *pos, *q;
2723 	struct mmc_blk_data *part_md;
2724 	struct mmc_rpmb_data *rpmb;
2725 
2726 	/* Remove RPMB partitions */
2727 	list_for_each_safe(pos, q, &md->rpmbs) {
2728 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2729 		list_del(pos);
2730 		mmc_blk_remove_rpmb_part(rpmb);
2731 	}
2732 	/* Remove block partitions */
2733 	list_for_each_safe(pos, q, &md->part) {
2734 		part_md = list_entry(pos, struct mmc_blk_data, part);
2735 		list_del(pos);
2736 		mmc_blk_remove_req(part_md);
2737 	}
2738 }
2739 
mmc_add_disk(struct mmc_blk_data *md)2740 static int mmc_add_disk(struct mmc_blk_data *md)
2741 {
2742 	int ret;
2743 	struct mmc_card *card = md->queue.card;
2744 
2745 	device_add_disk(md->parent, md->disk, NULL);
2746 	md->force_ro.show = force_ro_show;
2747 	md->force_ro.store = force_ro_store;
2748 	sysfs_attr_init(&md->force_ro.attr);
2749 	md->force_ro.attr.name = "force_ro";
2750 	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2751 	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2752 	if (ret)
2753 		goto force_ro_fail;
2754 
2755 	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2756 	     card->ext_csd.boot_ro_lockable) {
2757 		umode_t mode;
2758 
2759 		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2760 			mode = S_IRUGO;
2761 		else
2762 			mode = S_IRUGO | S_IWUSR;
2763 
2764 		md->power_ro_lock.show = power_ro_lock_show;
2765 		md->power_ro_lock.store = power_ro_lock_store;
2766 		sysfs_attr_init(&md->power_ro_lock.attr);
2767 		md->power_ro_lock.attr.mode = mode;
2768 		md->power_ro_lock.attr.name =
2769 					"ro_lock_until_next_power_on";
2770 		ret = device_create_file(disk_to_dev(md->disk),
2771 				&md->power_ro_lock);
2772 		if (ret)
2773 			goto power_ro_lock_fail;
2774 	}
2775 	return ret;
2776 
2777 power_ro_lock_fail:
2778 	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2779 force_ro_fail:
2780 	del_gendisk(md->disk);
2781 
2782 	return ret;
2783 }
2784 
2785 #ifdef CONFIG_DEBUG_FS
2786 
mmc_dbg_card_status_get(void *data, u64 *val)2787 static int mmc_dbg_card_status_get(void *data, u64 *val)
2788 {
2789 	struct mmc_card *card = data;
2790 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2791 	struct mmc_queue *mq = &md->queue;
2792 	struct request *req;
2793 	int ret;
2794 
2795 	/* Ask the block layer about the card status */
2796 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2797 	if (IS_ERR(req))
2798 		return PTR_ERR(req);
2799 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2800 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
2801 	blk_execute_rq(mq->queue, NULL, req, 0);
2802 	ret = req_to_mmc_queue_req(req)->drv_op_result;
2803 	if (ret >= 0) {
2804 		*val = ret;
2805 		ret = 0;
2806 	}
2807 	blk_put_request(req);
2808 
2809 	return ret;
2810 }
2811 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2812 			 NULL, "%08llx\n");
2813 
2814 /* That is two digits * 512 + 1 for newline */
2815 #define EXT_CSD_STR_LEN 1025
2816 
mmc_ext_csd_open(struct inode *inode, struct file *filp)2817 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2818 {
2819 	struct mmc_card *card = inode->i_private;
2820 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2821 	struct mmc_queue *mq = &md->queue;
2822 	struct request *req;
2823 	char *buf;
2824 	ssize_t n = 0;
2825 	u8 *ext_csd;
2826 	int err, i;
2827 
2828 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2829 	if (!buf)
2830 		return -ENOMEM;
2831 
2832 	/* Ask the block layer for the EXT CSD */
2833 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2834 	if (IS_ERR(req)) {
2835 		err = PTR_ERR(req);
2836 		goto out_free;
2837 	}
2838 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2839 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
2840 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2841 	blk_execute_rq(mq->queue, NULL, req, 0);
2842 	err = req_to_mmc_queue_req(req)->drv_op_result;
2843 	blk_put_request(req);
2844 	if (err) {
2845 		pr_err("FAILED %d\n", err);
2846 		goto out_free;
2847 	}
2848 
2849 	for (i = 0; i < 512; i++)
2850 		n += sprintf(buf + n, "%02x", ext_csd[i]);
2851 	n += sprintf(buf + n, "\n");
2852 
2853 	if (n != EXT_CSD_STR_LEN) {
2854 		err = -EINVAL;
2855 		kfree(ext_csd);
2856 		goto out_free;
2857 	}
2858 
2859 	filp->private_data = buf;
2860 	kfree(ext_csd);
2861 	return 0;
2862 
2863 out_free:
2864 	kfree(buf);
2865 	return err;
2866 }
2867 
mmc_ext_csd_read(struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos)2868 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2869 				size_t cnt, loff_t *ppos)
2870 {
2871 	char *buf = filp->private_data;
2872 
2873 	return simple_read_from_buffer(ubuf, cnt, ppos,
2874 				       buf, EXT_CSD_STR_LEN);
2875 }
2876 
mmc_ext_csd_release(struct inode *inode, struct file *file)2877 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2878 {
2879 	kfree(file->private_data);
2880 	return 0;
2881 }
2882 
2883 static const struct file_operations mmc_dbg_ext_csd_fops = {
2884 	.open		= mmc_ext_csd_open,
2885 	.read		= mmc_ext_csd_read,
2886 	.release	= mmc_ext_csd_release,
2887 	.llseek		= default_llseek,
2888 };
2889 
mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)2890 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2891 {
2892 	struct dentry *root;
2893 
2894 	if (!card->debugfs_root)
2895 		return 0;
2896 
2897 	root = card->debugfs_root;
2898 
2899 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2900 		md->status_dentry =
2901 			debugfs_create_file_unsafe("status", 0400, root,
2902 						   card,
2903 						   &mmc_dbg_card_status_fops);
2904 		if (!md->status_dentry)
2905 			return -EIO;
2906 	}
2907 
2908 	if (mmc_card_mmc(card)) {
2909 		md->ext_csd_dentry =
2910 			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2911 					    &mmc_dbg_ext_csd_fops);
2912 		if (!md->ext_csd_dentry)
2913 			return -EIO;
2914 	}
2915 
2916 	return 0;
2917 }
2918 
mmc_blk_remove_debugfs(struct mmc_card *card, struct mmc_blk_data *md)2919 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2920 				   struct mmc_blk_data *md)
2921 {
2922 	if (!card->debugfs_root)
2923 		return;
2924 
2925 	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2926 		debugfs_remove(md->status_dentry);
2927 		md->status_dentry = NULL;
2928 	}
2929 
2930 	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2931 		debugfs_remove(md->ext_csd_dentry);
2932 		md->ext_csd_dentry = NULL;
2933 	}
2934 }
2935 
2936 #else
2937 
mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)2938 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2939 {
2940 	return 0;
2941 }
2942 
mmc_blk_remove_debugfs(struct mmc_card *card, struct mmc_blk_data *md)2943 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2944 				   struct mmc_blk_data *md)
2945 {
2946 }
2947 
2948 #endif /* CONFIG_DEBUG_FS */
2949 
mmc_blk_probe(struct mmc_card *card)2950 static int mmc_blk_probe(struct mmc_card *card)
2951 {
2952 	struct mmc_blk_data *md, *part_md;
2953 	char cap_str[10];
2954 
2955 	/*
2956 	 * Check that the card supports the command class(es) we need.
2957 	 */
2958 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2959 		return -ENODEV;
2960 
2961 	mmc_fixup_device(card, mmc_blk_fixups);
2962 
2963 	card->complete_wq = alloc_workqueue("mmc_complete",
2964 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2965 	if (unlikely(!card->complete_wq)) {
2966 		pr_err("Failed to create mmc completion workqueue");
2967 		return -ENOMEM;
2968 	}
2969 
2970 	md = mmc_blk_alloc(card);
2971 	if (IS_ERR(md))
2972 		return PTR_ERR(md);
2973 
2974 	string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2975 			cap_str, sizeof(cap_str));
2976 	pr_info("%s: %s %s %s %s\n",
2977 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2978 		cap_str, md->read_only ? "(ro)" : "");
2979 
2980 	if (mmc_blk_alloc_parts(card, md))
2981 		goto out;
2982 
2983 	dev_set_drvdata(&card->dev, md);
2984 
2985 	if (mmc_add_disk(md))
2986 		goto out;
2987 
2988 	list_for_each_entry(part_md, &md->part, part) {
2989 		if (mmc_add_disk(part_md))
2990 			goto out;
2991 	}
2992 
2993 	/* Add two debugfs entries */
2994 	mmc_blk_add_debugfs(card, md);
2995 
2996 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2997 	pm_runtime_use_autosuspend(&card->dev);
2998 
2999 	/*
3000 	 * Don't enable runtime PM for SD-combo cards here. Leave that
3001 	 * decision to be taken during the SDIO init sequence instead.
3002 	 */
3003 	if (card->type != MMC_TYPE_SD_COMBO) {
3004 		pm_runtime_set_active(&card->dev);
3005 		pm_runtime_enable(&card->dev);
3006 	}
3007 
3008 	return 0;
3009 
3010  out:
3011 	mmc_blk_remove_parts(card, md);
3012 	mmc_blk_remove_req(md);
3013 	return 0;
3014 }
3015 
mmc_blk_remove(struct mmc_card *card)3016 static void mmc_blk_remove(struct mmc_card *card)
3017 {
3018 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3019 
3020 	mmc_blk_remove_debugfs(card, md);
3021 	mmc_blk_remove_parts(card, md);
3022 	pm_runtime_get_sync(&card->dev);
3023 	if (md->part_curr != md->part_type) {
3024 		mmc_claim_host(card->host);
3025 		mmc_blk_part_switch(card, md->part_type);
3026 		mmc_release_host(card->host);
3027 	}
3028 	if (card->type != MMC_TYPE_SD_COMBO)
3029 		pm_runtime_disable(&card->dev);
3030 	pm_runtime_put_noidle(&card->dev);
3031 	mmc_blk_remove_req(md);
3032 	dev_set_drvdata(&card->dev, NULL);
3033 	destroy_workqueue(card->complete_wq);
3034 }
3035 
_mmc_blk_suspend(struct mmc_card *card)3036 static int _mmc_blk_suspend(struct mmc_card *card)
3037 {
3038 	struct mmc_blk_data *part_md;
3039 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3040 
3041 	if (md) {
3042 		mmc_queue_suspend(&md->queue);
3043 		list_for_each_entry(part_md, &md->part, part) {
3044 			mmc_queue_suspend(&part_md->queue);
3045 		}
3046 	}
3047 	return 0;
3048 }
3049 
mmc_blk_shutdown(struct mmc_card *card)3050 static void mmc_blk_shutdown(struct mmc_card *card)
3051 {
3052 	_mmc_blk_suspend(card);
3053 }
3054 
3055 #ifdef CONFIG_PM_SLEEP
mmc_blk_suspend(struct device *dev)3056 static int mmc_blk_suspend(struct device *dev)
3057 {
3058 	struct mmc_card *card = mmc_dev_to_card(dev);
3059 
3060 	return _mmc_blk_suspend(card);
3061 }
3062 
mmc_blk_resume(struct device *dev)3063 static int mmc_blk_resume(struct device *dev)
3064 {
3065 	struct mmc_blk_data *part_md;
3066 	struct mmc_blk_data *md = dev_get_drvdata(dev);
3067 
3068 	if (md) {
3069 		/*
3070 		 * Resume involves the card going into idle state,
3071 		 * so current partition is always the main one.
3072 		 */
3073 		md->part_curr = md->part_type;
3074 		mmc_queue_resume(&md->queue);
3075 		list_for_each_entry(part_md, &md->part, part) {
3076 			mmc_queue_resume(&part_md->queue);
3077 		}
3078 	}
3079 	return 0;
3080 }
3081 #endif
3082 
3083 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3084 
3085 static struct mmc_driver mmc_driver = {
3086 	.drv		= {
3087 		.name	= "mmcblk",
3088 		.pm	= &mmc_blk_pm_ops,
3089 	},
3090 	.probe		= mmc_blk_probe,
3091 	.remove		= mmc_blk_remove,
3092 	.shutdown	= mmc_blk_shutdown,
3093 };
3094 
mmc_blk_init(void)3095 static int __init mmc_blk_init(void)
3096 {
3097 	int res;
3098 
3099 	res  = bus_register(&mmc_rpmb_bus_type);
3100 	if (res < 0) {
3101 		pr_err("mmcblk: could not register RPMB bus type\n");
3102 		return res;
3103 	}
3104 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3105 	if (res < 0) {
3106 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3107 		goto out_bus_unreg;
3108 	}
3109 
3110 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3111 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3112 
3113 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3114 
3115 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3116 	if (res)
3117 		goto out_chrdev_unreg;
3118 
3119 	res = mmc_register_driver(&mmc_driver);
3120 	if (res)
3121 		goto out_blkdev_unreg;
3122 
3123 	return 0;
3124 
3125 out_blkdev_unreg:
3126 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3127 out_chrdev_unreg:
3128 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3129 out_bus_unreg:
3130 	bus_unregister(&mmc_rpmb_bus_type);
3131 	return res;
3132 }
3133 
mmc_blk_exit(void)3134 static void __exit mmc_blk_exit(void)
3135 {
3136 	mmc_unregister_driver(&mmc_driver);
3137 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3138 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3139 	bus_unregister(&mmc_rpmb_bus_type);
3140 }
3141 
3142 module_init(mmc_blk_init);
3143 module_exit(mmc_blk_exit);
3144 
3145 MODULE_LICENSE("GPL");
3146 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3147