1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * V4L2 fwnode binding parsing library
4 *
5 * The origins of the V4L2 fwnode library are in V4L2 OF library that
6 * formerly was located in v4l2-of.c.
7 *
8 * Copyright (c) 2016 Intel Corporation.
9 * Author: Sakari Ailus <sakari.ailus@linux.intel.com>
10 *
11 * Copyright (C) 2012 - 2013 Samsung Electronics Co., Ltd.
12 * Author: Sylwester Nawrocki <s.nawrocki@samsung.com>
13 *
14 * Copyright (C) 2012 Renesas Electronics Corp.
15 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
16 */
17 #include <linux/acpi.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/property.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26
27 #include <media/v4l2-async.h>
28 #include <media/v4l2-fwnode.h>
29 #include <media/v4l2-subdev.h>
30
31 enum v4l2_fwnode_bus_type {
32 V4L2_FWNODE_BUS_TYPE_GUESS = 0,
33 V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
34 V4L2_FWNODE_BUS_TYPE_CSI1,
35 V4L2_FWNODE_BUS_TYPE_CCP2,
36 V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
37 V4L2_FWNODE_BUS_TYPE_PARALLEL,
38 V4L2_FWNODE_BUS_TYPE_BT656,
39 NR_OF_V4L2_FWNODE_BUS_TYPE,
40 };
41
42 static const struct v4l2_fwnode_bus_conv {
43 enum v4l2_fwnode_bus_type fwnode_bus_type;
44 enum v4l2_mbus_type mbus_type;
45 const char *name;
46 } buses[] = {
47 {
48 V4L2_FWNODE_BUS_TYPE_GUESS,
49 V4L2_MBUS_UNKNOWN,
50 "not specified",
51 }, {
52 V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
53 V4L2_MBUS_CSI2_CPHY,
54 "MIPI CSI-2 C-PHY",
55 }, {
56 V4L2_FWNODE_BUS_TYPE_CSI1,
57 V4L2_MBUS_CSI1,
58 "MIPI CSI-1",
59 }, {
60 V4L2_FWNODE_BUS_TYPE_CCP2,
61 V4L2_MBUS_CCP2,
62 "compact camera port 2",
63 }, {
64 V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
65 V4L2_MBUS_CSI2_DPHY,
66 "MIPI CSI-2 D-PHY",
67 }, {
68 V4L2_FWNODE_BUS_TYPE_PARALLEL,
69 V4L2_MBUS_PARALLEL,
70 "parallel",
71 }, {
72 V4L2_FWNODE_BUS_TYPE_BT656,
73 V4L2_MBUS_BT656,
74 "Bt.656",
75 }
76 };
77
78 static const struct v4l2_fwnode_bus_conv *
get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)79 get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)
80 {
81 unsigned int i;
82
83 for (i = 0; i < ARRAY_SIZE(buses); i++)
84 if (buses[i].fwnode_bus_type == type)
85 return &buses[i];
86
87 return NULL;
88 }
89
90 static enum v4l2_mbus_type
v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)91 v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)
92 {
93 const struct v4l2_fwnode_bus_conv *conv =
94 get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
95
96 return conv ? conv->mbus_type : V4L2_MBUS_INVALID;
97 }
98
99 static const char *
v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)100 v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)
101 {
102 const struct v4l2_fwnode_bus_conv *conv =
103 get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
104
105 return conv ? conv->name : "not found";
106 }
107
108 static const struct v4l2_fwnode_bus_conv *
get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)109 get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)
110 {
111 unsigned int i;
112
113 for (i = 0; i < ARRAY_SIZE(buses); i++)
114 if (buses[i].mbus_type == type)
115 return &buses[i];
116
117 return NULL;
118 }
119
120 static const char *
v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)121 v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)
122 {
123 const struct v4l2_fwnode_bus_conv *conv =
124 get_v4l2_fwnode_bus_conv_by_mbus(type);
125
126 return conv ? conv->name : "not found";
127 }
128
v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode, struct v4l2_fwnode_endpoint *vep, enum v4l2_mbus_type bus_type)129 static int v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode,
130 struct v4l2_fwnode_endpoint *vep,
131 enum v4l2_mbus_type bus_type)
132 {
133 struct v4l2_fwnode_bus_mipi_csi2 *bus = &vep->bus.mipi_csi2;
134 bool have_clk_lane = false, have_data_lanes = false,
135 have_lane_polarities = false;
136 unsigned int flags = 0, lanes_used = 0;
137 u32 array[1 + V4L2_FWNODE_CSI2_MAX_DATA_LANES];
138 u32 clock_lane = 0;
139 unsigned int num_data_lanes = 0;
140 bool use_default_lane_mapping = false;
141 unsigned int i;
142 u32 v;
143 int rval;
144
145 if (bus_type == V4L2_MBUS_CSI2_DPHY ||
146 bus_type == V4L2_MBUS_CSI2_CPHY) {
147 use_default_lane_mapping = true;
148
149 num_data_lanes = min_t(u32, bus->num_data_lanes,
150 V4L2_FWNODE_CSI2_MAX_DATA_LANES);
151
152 clock_lane = bus->clock_lane;
153 if (clock_lane)
154 use_default_lane_mapping = false;
155
156 for (i = 0; i < num_data_lanes; i++) {
157 array[i] = bus->data_lanes[i];
158 if (array[i])
159 use_default_lane_mapping = false;
160 }
161
162 if (use_default_lane_mapping)
163 pr_debug("no lane mapping given, using defaults\n");
164 }
165
166 rval = fwnode_property_count_u32(fwnode, "data-lanes");
167 if (rval > 0) {
168 num_data_lanes =
169 min_t(int, V4L2_FWNODE_CSI2_MAX_DATA_LANES, rval);
170
171 fwnode_property_read_u32_array(fwnode, "data-lanes", array,
172 num_data_lanes);
173
174 have_data_lanes = true;
175 if (use_default_lane_mapping) {
176 pr_debug("data-lanes property exists; disabling default mapping\n");
177 use_default_lane_mapping = false;
178 }
179 }
180
181 for (i = 0; i < num_data_lanes; i++) {
182 if (lanes_used & BIT(array[i])) {
183 if (have_data_lanes || !use_default_lane_mapping)
184 pr_warn("duplicated lane %u in data-lanes, using defaults\n",
185 array[i]);
186 use_default_lane_mapping = true;
187 }
188 lanes_used |= BIT(array[i]);
189
190 if (have_data_lanes)
191 pr_debug("lane %u position %u\n", i, array[i]);
192 }
193
194 rval = fwnode_property_count_u32(fwnode, "lane-polarities");
195 if (rval > 0) {
196 if (rval != 1 + num_data_lanes /* clock+data */) {
197 pr_warn("invalid number of lane-polarities entries (need %u, got %u)\n",
198 1 + num_data_lanes, rval);
199 return -EINVAL;
200 }
201
202 have_lane_polarities = true;
203 }
204
205 if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
206 clock_lane = v;
207 pr_debug("clock lane position %u\n", v);
208 have_clk_lane = true;
209 }
210
211 if (have_clk_lane && lanes_used & BIT(clock_lane) &&
212 !use_default_lane_mapping) {
213 pr_warn("duplicated lane %u in clock-lanes, using defaults\n",
214 v);
215 use_default_lane_mapping = true;
216 }
217
218 if (fwnode_property_present(fwnode, "clock-noncontinuous")) {
219 flags |= V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK;
220 pr_debug("non-continuous clock\n");
221 } else {
222 flags |= V4L2_MBUS_CSI2_CONTINUOUS_CLOCK;
223 }
224
225 if (bus_type == V4L2_MBUS_CSI2_DPHY ||
226 bus_type == V4L2_MBUS_CSI2_CPHY || lanes_used ||
227 have_clk_lane || (flags & ~V4L2_MBUS_CSI2_CONTINUOUS_CLOCK)) {
228 /* Only D-PHY has a clock lane. */
229 unsigned int dfl_data_lane_index =
230 bus_type == V4L2_MBUS_CSI2_DPHY;
231
232 bus->flags = flags;
233 if (bus_type == V4L2_MBUS_UNKNOWN)
234 vep->bus_type = V4L2_MBUS_CSI2_DPHY;
235 bus->num_data_lanes = num_data_lanes;
236
237 if (use_default_lane_mapping) {
238 bus->clock_lane = 0;
239 for (i = 0; i < num_data_lanes; i++)
240 bus->data_lanes[i] = dfl_data_lane_index + i;
241 } else {
242 bus->clock_lane = clock_lane;
243 for (i = 0; i < num_data_lanes; i++)
244 bus->data_lanes[i] = array[i];
245 }
246
247 if (have_lane_polarities) {
248 fwnode_property_read_u32_array(fwnode,
249 "lane-polarities", array,
250 1 + num_data_lanes);
251
252 for (i = 0; i < 1 + num_data_lanes; i++) {
253 bus->lane_polarities[i] = array[i];
254 pr_debug("lane %u polarity %sinverted",
255 i, array[i] ? "" : "not ");
256 }
257 } else {
258 pr_debug("no lane polarities defined, assuming not inverted\n");
259 }
260 }
261
262 return 0;
263 }
264
265 #define PARALLEL_MBUS_FLAGS (V4L2_MBUS_HSYNC_ACTIVE_HIGH | \
266 V4L2_MBUS_HSYNC_ACTIVE_LOW | \
267 V4L2_MBUS_VSYNC_ACTIVE_HIGH | \
268 V4L2_MBUS_VSYNC_ACTIVE_LOW | \
269 V4L2_MBUS_FIELD_EVEN_HIGH | \
270 V4L2_MBUS_FIELD_EVEN_LOW)
271
272 static void
v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle *fwnode, struct v4l2_fwnode_endpoint *vep, enum v4l2_mbus_type bus_type)273 v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle *fwnode,
274 struct v4l2_fwnode_endpoint *vep,
275 enum v4l2_mbus_type bus_type)
276 {
277 struct v4l2_fwnode_bus_parallel *bus = &vep->bus.parallel;
278 unsigned int flags = 0;
279 u32 v;
280
281 if (bus_type == V4L2_MBUS_PARALLEL || bus_type == V4L2_MBUS_BT656)
282 flags = bus->flags;
283
284 if (!fwnode_property_read_u32(fwnode, "hsync-active", &v)) {
285 flags &= ~(V4L2_MBUS_HSYNC_ACTIVE_HIGH |
286 V4L2_MBUS_HSYNC_ACTIVE_LOW);
287 flags |= v ? V4L2_MBUS_HSYNC_ACTIVE_HIGH :
288 V4L2_MBUS_HSYNC_ACTIVE_LOW;
289 pr_debug("hsync-active %s\n", v ? "high" : "low");
290 }
291
292 if (!fwnode_property_read_u32(fwnode, "vsync-active", &v)) {
293 flags &= ~(V4L2_MBUS_VSYNC_ACTIVE_HIGH |
294 V4L2_MBUS_VSYNC_ACTIVE_LOW);
295 flags |= v ? V4L2_MBUS_VSYNC_ACTIVE_HIGH :
296 V4L2_MBUS_VSYNC_ACTIVE_LOW;
297 pr_debug("vsync-active %s\n", v ? "high" : "low");
298 }
299
300 if (!fwnode_property_read_u32(fwnode, "field-even-active", &v)) {
301 flags &= ~(V4L2_MBUS_FIELD_EVEN_HIGH |
302 V4L2_MBUS_FIELD_EVEN_LOW);
303 flags |= v ? V4L2_MBUS_FIELD_EVEN_HIGH :
304 V4L2_MBUS_FIELD_EVEN_LOW;
305 pr_debug("field-even-active %s\n", v ? "high" : "low");
306 }
307
308 if (!fwnode_property_read_u32(fwnode, "pclk-sample", &v)) {
309 flags &= ~(V4L2_MBUS_PCLK_SAMPLE_RISING |
310 V4L2_MBUS_PCLK_SAMPLE_FALLING);
311 flags |= v ? V4L2_MBUS_PCLK_SAMPLE_RISING :
312 V4L2_MBUS_PCLK_SAMPLE_FALLING;
313 pr_debug("pclk-sample %s\n", v ? "high" : "low");
314 }
315
316 if (!fwnode_property_read_u32(fwnode, "data-active", &v)) {
317 flags &= ~(V4L2_MBUS_DATA_ACTIVE_HIGH |
318 V4L2_MBUS_DATA_ACTIVE_LOW);
319 flags |= v ? V4L2_MBUS_DATA_ACTIVE_HIGH :
320 V4L2_MBUS_DATA_ACTIVE_LOW;
321 pr_debug("data-active %s\n", v ? "high" : "low");
322 }
323
324 if (fwnode_property_present(fwnode, "slave-mode")) {
325 pr_debug("slave mode\n");
326 flags &= ~V4L2_MBUS_MASTER;
327 flags |= V4L2_MBUS_SLAVE;
328 } else {
329 flags &= ~V4L2_MBUS_SLAVE;
330 flags |= V4L2_MBUS_MASTER;
331 }
332
333 if (!fwnode_property_read_u32(fwnode, "bus-width", &v)) {
334 bus->bus_width = v;
335 pr_debug("bus-width %u\n", v);
336 }
337
338 if (!fwnode_property_read_u32(fwnode, "data-shift", &v)) {
339 bus->data_shift = v;
340 pr_debug("data-shift %u\n", v);
341 }
342
343 if (!fwnode_property_read_u32(fwnode, "sync-on-green-active", &v)) {
344 flags &= ~(V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH |
345 V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW);
346 flags |= v ? V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH :
347 V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW;
348 pr_debug("sync-on-green-active %s\n", v ? "high" : "low");
349 }
350
351 if (!fwnode_property_read_u32(fwnode, "data-enable-active", &v)) {
352 flags &= ~(V4L2_MBUS_DATA_ENABLE_HIGH |
353 V4L2_MBUS_DATA_ENABLE_LOW);
354 flags |= v ? V4L2_MBUS_DATA_ENABLE_HIGH :
355 V4L2_MBUS_DATA_ENABLE_LOW;
356 pr_debug("data-enable-active %s\n", v ? "high" : "low");
357 }
358
359 switch (bus_type) {
360 default:
361 bus->flags = flags;
362 if (flags & PARALLEL_MBUS_FLAGS)
363 vep->bus_type = V4L2_MBUS_PARALLEL;
364 else
365 vep->bus_type = V4L2_MBUS_BT656;
366 break;
367 case V4L2_MBUS_PARALLEL:
368 vep->bus_type = V4L2_MBUS_PARALLEL;
369 bus->flags = flags;
370 break;
371 case V4L2_MBUS_BT656:
372 vep->bus_type = V4L2_MBUS_BT656;
373 bus->flags = flags & ~PARALLEL_MBUS_FLAGS;
374 break;
375 }
376 }
377
378 static void
v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode, struct v4l2_fwnode_endpoint *vep, enum v4l2_mbus_type bus_type)379 v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode,
380 struct v4l2_fwnode_endpoint *vep,
381 enum v4l2_mbus_type bus_type)
382 {
383 struct v4l2_fwnode_bus_mipi_csi1 *bus = &vep->bus.mipi_csi1;
384 u32 v;
385
386 if (!fwnode_property_read_u32(fwnode, "clock-inv", &v)) {
387 bus->clock_inv = v;
388 pr_debug("clock-inv %u\n", v);
389 }
390
391 if (!fwnode_property_read_u32(fwnode, "strobe", &v)) {
392 bus->strobe = v;
393 pr_debug("strobe %u\n", v);
394 }
395
396 if (!fwnode_property_read_u32(fwnode, "data-lanes", &v)) {
397 bus->data_lane = v;
398 pr_debug("data-lanes %u\n", v);
399 }
400
401 if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
402 bus->clock_lane = v;
403 pr_debug("clock-lanes %u\n", v);
404 }
405
406 if (bus_type == V4L2_MBUS_CCP2)
407 vep->bus_type = V4L2_MBUS_CCP2;
408 else
409 vep->bus_type = V4L2_MBUS_CSI1;
410 }
411
__v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode, struct v4l2_fwnode_endpoint *vep)412 static int __v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
413 struct v4l2_fwnode_endpoint *vep)
414 {
415 u32 bus_type = V4L2_FWNODE_BUS_TYPE_GUESS;
416 enum v4l2_mbus_type mbus_type;
417 int rval;
418
419 if (vep->bus_type == V4L2_MBUS_UNKNOWN) {
420 /* Zero fields from bus union to until the end */
421 memset(&vep->bus, 0,
422 sizeof(*vep) - offsetof(typeof(*vep), bus));
423 }
424
425 pr_debug("===== begin parsing endpoint %pfw\n", fwnode);
426
427 /*
428 * Zero the fwnode graph endpoint memory in case we don't end up parsing
429 * the endpoint.
430 */
431 memset(&vep->base, 0, sizeof(vep->base));
432
433 fwnode_property_read_u32(fwnode, "bus-type", &bus_type);
434 pr_debug("fwnode video bus type %s (%u), mbus type %s (%u)\n",
435 v4l2_fwnode_bus_type_to_string(bus_type), bus_type,
436 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
437 vep->bus_type);
438 mbus_type = v4l2_fwnode_bus_type_to_mbus(bus_type);
439 if (mbus_type == V4L2_MBUS_INVALID) {
440 pr_debug("unsupported bus type %u\n", bus_type);
441 return -EINVAL;
442 }
443
444 if (vep->bus_type != V4L2_MBUS_UNKNOWN) {
445 if (mbus_type != V4L2_MBUS_UNKNOWN &&
446 vep->bus_type != mbus_type) {
447 pr_debug("expecting bus type %s\n",
448 v4l2_fwnode_mbus_type_to_string(vep->bus_type));
449 return -ENXIO;
450 }
451 } else {
452 vep->bus_type = mbus_type;
453 }
454
455 switch (vep->bus_type) {
456 case V4L2_MBUS_UNKNOWN:
457 rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
458 V4L2_MBUS_UNKNOWN);
459 if (rval)
460 return rval;
461
462 if (vep->bus_type == V4L2_MBUS_UNKNOWN)
463 v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
464 V4L2_MBUS_UNKNOWN);
465
466 pr_debug("assuming media bus type %s (%u)\n",
467 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
468 vep->bus_type);
469
470 break;
471 case V4L2_MBUS_CCP2:
472 case V4L2_MBUS_CSI1:
473 v4l2_fwnode_endpoint_parse_csi1_bus(fwnode, vep, vep->bus_type);
474
475 break;
476 case V4L2_MBUS_CSI2_DPHY:
477 case V4L2_MBUS_CSI2_CPHY:
478 rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
479 vep->bus_type);
480 if (rval)
481 return rval;
482
483 break;
484 case V4L2_MBUS_PARALLEL:
485 case V4L2_MBUS_BT656:
486 v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
487 vep->bus_type);
488
489 break;
490 default:
491 pr_warn("unsupported bus type %u\n", mbus_type);
492 return -EINVAL;
493 }
494
495 fwnode_graph_parse_endpoint(fwnode, &vep->base);
496
497 return 0;
498 }
499
v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode, struct v4l2_fwnode_endpoint *vep)500 int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
501 struct v4l2_fwnode_endpoint *vep)
502 {
503 int ret;
504
505 ret = __v4l2_fwnode_endpoint_parse(fwnode, vep);
506
507 pr_debug("===== end parsing endpoint %pfw\n", fwnode);
508
509 return ret;
510 }
511 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_parse);
512
v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep)513 void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep)
514 {
515 if (IS_ERR_OR_NULL(vep))
516 return;
517
518 kfree(vep->link_frequencies);
519 vep->link_frequencies = NULL;
520 }
521 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_free);
522
v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle *fwnode, struct v4l2_fwnode_endpoint *vep)523 int v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle *fwnode,
524 struct v4l2_fwnode_endpoint *vep)
525 {
526 int rval;
527
528 rval = __v4l2_fwnode_endpoint_parse(fwnode, vep);
529 if (rval < 0)
530 return rval;
531
532 rval = fwnode_property_count_u64(fwnode, "link-frequencies");
533 if (rval > 0) {
534 unsigned int i;
535
536 vep->link_frequencies =
537 kmalloc_array(rval, sizeof(*vep->link_frequencies),
538 GFP_KERNEL);
539 if (!vep->link_frequencies)
540 return -ENOMEM;
541
542 vep->nr_of_link_frequencies = rval;
543
544 rval = fwnode_property_read_u64_array(fwnode,
545 "link-frequencies",
546 vep->link_frequencies,
547 vep->nr_of_link_frequencies);
548 if (rval < 0) {
549 v4l2_fwnode_endpoint_free(vep);
550 return rval;
551 }
552
553 for (i = 0; i < vep->nr_of_link_frequencies; i++)
554 pr_debug("link-frequencies %u value %llu\n", i,
555 vep->link_frequencies[i]);
556 }
557
558 pr_debug("===== end parsing endpoint %pfw\n", fwnode);
559
560 return 0;
561 }
562 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_alloc_parse);
563
v4l2_fwnode_parse_link(struct fwnode_handle *fwnode, struct v4l2_fwnode_link *link)564 int v4l2_fwnode_parse_link(struct fwnode_handle *fwnode,
565 struct v4l2_fwnode_link *link)
566 {
567 struct fwnode_endpoint fwep;
568
569 memset(link, 0, sizeof(*link));
570
571 fwnode_graph_parse_endpoint(fwnode, &fwep);
572 link->local_id = fwep.id;
573 link->local_port = fwep.port;
574 link->local_node = fwnode_graph_get_port_parent(fwnode);
575 if (!link->local_node)
576 return -ENOLINK;
577
578 fwnode = fwnode_graph_get_remote_endpoint(fwnode);
579 if (!fwnode)
580 goto err_put_local_node;
581
582 fwnode_graph_parse_endpoint(fwnode, &fwep);
583 link->remote_id = fwep.id;
584 link->remote_port = fwep.port;
585 link->remote_node = fwnode_graph_get_port_parent(fwnode);
586 if (!link->remote_node)
587 goto err_put_remote_endpoint;
588
589 return 0;
590
591 err_put_remote_endpoint:
592 fwnode_handle_put(fwnode);
593
594 err_put_local_node:
595 fwnode_handle_put(link->local_node);
596
597 return -ENOLINK;
598 }
599 EXPORT_SYMBOL_GPL(v4l2_fwnode_parse_link);
600
v4l2_fwnode_put_link(struct v4l2_fwnode_link *link)601 void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link)
602 {
603 fwnode_handle_put(link->local_node);
604 fwnode_handle_put(link->remote_node);
605 }
606 EXPORT_SYMBOL_GPL(v4l2_fwnode_put_link);
607
608 static const struct v4l2_fwnode_connector_conv {
609 enum v4l2_connector_type type;
610 const char *compatible;
611 } connectors[] = {
612 {
613 .type = V4L2_CONN_COMPOSITE,
614 .compatible = "composite-video-connector",
615 }, {
616 .type = V4L2_CONN_SVIDEO,
617 .compatible = "svideo-connector",
618 },
619 };
620
621 static enum v4l2_connector_type
v4l2_fwnode_string_to_connector_type(const char *con_str)622 v4l2_fwnode_string_to_connector_type(const char *con_str)
623 {
624 unsigned int i;
625
626 for (i = 0; i < ARRAY_SIZE(connectors); i++)
627 if (!strcmp(con_str, connectors[i].compatible))
628 return connectors[i].type;
629
630 return V4L2_CONN_UNKNOWN;
631 }
632
633 static void
v4l2_fwnode_connector_parse_analog(struct fwnode_handle *fwnode, struct v4l2_fwnode_connector *vc)634 v4l2_fwnode_connector_parse_analog(struct fwnode_handle *fwnode,
635 struct v4l2_fwnode_connector *vc)
636 {
637 u32 stds;
638 int ret;
639
640 ret = fwnode_property_read_u32(fwnode, "sdtv-standards", &stds);
641
642 /* The property is optional. */
643 vc->connector.analog.sdtv_stds = ret ? V4L2_STD_ALL : stds;
644 }
645
v4l2_fwnode_connector_free(struct v4l2_fwnode_connector *connector)646 void v4l2_fwnode_connector_free(struct v4l2_fwnode_connector *connector)
647 {
648 struct v4l2_connector_link *link, *tmp;
649
650 if (IS_ERR_OR_NULL(connector) || connector->type == V4L2_CONN_UNKNOWN)
651 return;
652
653 list_for_each_entry_safe(link, tmp, &connector->links, head) {
654 v4l2_fwnode_put_link(&link->fwnode_link);
655 list_del(&link->head);
656 kfree(link);
657 }
658
659 kfree(connector->label);
660 connector->label = NULL;
661 connector->type = V4L2_CONN_UNKNOWN;
662 }
663 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_free);
664
665 static enum v4l2_connector_type
v4l2_fwnode_get_connector_type(struct fwnode_handle *fwnode)666 v4l2_fwnode_get_connector_type(struct fwnode_handle *fwnode)
667 {
668 const char *type_name;
669 int err;
670
671 if (!fwnode)
672 return V4L2_CONN_UNKNOWN;
673
674 /* The connector-type is stored within the compatible string. */
675 err = fwnode_property_read_string(fwnode, "compatible", &type_name);
676 if (err)
677 return V4L2_CONN_UNKNOWN;
678
679 return v4l2_fwnode_string_to_connector_type(type_name);
680 }
681
v4l2_fwnode_connector_parse(struct fwnode_handle *fwnode, struct v4l2_fwnode_connector *connector)682 int v4l2_fwnode_connector_parse(struct fwnode_handle *fwnode,
683 struct v4l2_fwnode_connector *connector)
684 {
685 struct fwnode_handle *connector_node;
686 enum v4l2_connector_type connector_type;
687 const char *label;
688 int err;
689
690 if (!fwnode)
691 return -EINVAL;
692
693 memset(connector, 0, sizeof(*connector));
694
695 INIT_LIST_HEAD(&connector->links);
696
697 connector_node = fwnode_graph_get_port_parent(fwnode);
698 connector_type = v4l2_fwnode_get_connector_type(connector_node);
699 if (connector_type == V4L2_CONN_UNKNOWN) {
700 fwnode_handle_put(connector_node);
701 connector_node = fwnode_graph_get_remote_port_parent(fwnode);
702 connector_type = v4l2_fwnode_get_connector_type(connector_node);
703 }
704
705 if (connector_type == V4L2_CONN_UNKNOWN) {
706 pr_err("Unknown connector type\n");
707 err = -ENOTCONN;
708 goto out;
709 }
710
711 connector->type = connector_type;
712 connector->name = fwnode_get_name(connector_node);
713 err = fwnode_property_read_string(connector_node, "label", &label);
714 connector->label = err ? NULL : kstrdup_const(label, GFP_KERNEL);
715
716 /* Parse the connector specific properties. */
717 switch (connector->type) {
718 case V4L2_CONN_COMPOSITE:
719 case V4L2_CONN_SVIDEO:
720 v4l2_fwnode_connector_parse_analog(connector_node, connector);
721 break;
722 /* Avoid compiler warnings */
723 case V4L2_CONN_UNKNOWN:
724 break;
725 }
726
727 out:
728 fwnode_handle_put(connector_node);
729
730 return err;
731 }
732 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_parse);
733
v4l2_fwnode_connector_add_link(struct fwnode_handle *fwnode, struct v4l2_fwnode_connector *connector)734 int v4l2_fwnode_connector_add_link(struct fwnode_handle *fwnode,
735 struct v4l2_fwnode_connector *connector)
736 {
737 struct fwnode_handle *connector_ep;
738 struct v4l2_connector_link *link;
739 int err;
740
741 if (!fwnode || !connector || connector->type == V4L2_CONN_UNKNOWN)
742 return -EINVAL;
743
744 connector_ep = fwnode_graph_get_remote_endpoint(fwnode);
745 if (!connector_ep)
746 return -ENOTCONN;
747
748 link = kzalloc(sizeof(*link), GFP_KERNEL);
749 if (!link) {
750 err = -ENOMEM;
751 goto err;
752 }
753
754 err = v4l2_fwnode_parse_link(connector_ep, &link->fwnode_link);
755 if (err)
756 goto err;
757
758 fwnode_handle_put(connector_ep);
759
760 list_add(&link->head, &connector->links);
761 connector->nr_of_links++;
762
763 return 0;
764
765 err:
766 kfree(link);
767 fwnode_handle_put(connector_ep);
768
769 return err;
770 }
771 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_add_link);
772
v4l2_fwnode_device_parse(struct device *dev, struct v4l2_fwnode_device_properties *props)773 int v4l2_fwnode_device_parse(struct device *dev,
774 struct v4l2_fwnode_device_properties *props)
775 {
776 struct fwnode_handle *fwnode = dev_fwnode(dev);
777 u32 val;
778 int ret;
779
780 memset(props, 0, sizeof(*props));
781
782 props->orientation = V4L2_FWNODE_PROPERTY_UNSET;
783 ret = fwnode_property_read_u32(fwnode, "orientation", &val);
784 if (!ret) {
785 switch (val) {
786 case V4L2_FWNODE_ORIENTATION_FRONT:
787 case V4L2_FWNODE_ORIENTATION_BACK:
788 case V4L2_FWNODE_ORIENTATION_EXTERNAL:
789 break;
790 default:
791 dev_warn(dev, "Unsupported device orientation: %u\n", val);
792 return -EINVAL;
793 }
794
795 props->orientation = val;
796 dev_dbg(dev, "device orientation: %u\n", val);
797 }
798
799 props->rotation = V4L2_FWNODE_PROPERTY_UNSET;
800 ret = fwnode_property_read_u32(fwnode, "rotation", &val);
801 if (!ret) {
802 if (val >= 360) {
803 dev_warn(dev, "Unsupported device rotation: %u\n", val);
804 return -EINVAL;
805 }
806
807 props->rotation = val;
808 dev_dbg(dev, "device rotation: %u\n", val);
809 }
810
811 return 0;
812 }
813 EXPORT_SYMBOL_GPL(v4l2_fwnode_device_parse);
814
815 static int
v4l2_async_notifier_fwnode_parse_endpoint(struct device *dev, struct v4l2_async_notifier *notifier, struct fwnode_handle *endpoint, unsigned int asd_struct_size, parse_endpoint_func parse_endpoint)816 v4l2_async_notifier_fwnode_parse_endpoint(struct device *dev,
817 struct v4l2_async_notifier *notifier,
818 struct fwnode_handle *endpoint,
819 unsigned int asd_struct_size,
820 parse_endpoint_func parse_endpoint)
821 {
822 struct v4l2_fwnode_endpoint vep = { .bus_type = 0 };
823 struct v4l2_async_subdev *asd;
824 int ret;
825
826 asd = kzalloc(asd_struct_size, GFP_KERNEL);
827 if (!asd)
828 return -ENOMEM;
829
830 asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
831 asd->match.fwnode =
832 fwnode_graph_get_remote_port_parent(endpoint);
833 if (!asd->match.fwnode) {
834 dev_dbg(dev, "no remote endpoint found\n");
835 ret = -ENOTCONN;
836 goto out_err;
837 }
838
839 ret = v4l2_fwnode_endpoint_alloc_parse(endpoint, &vep);
840 if (ret) {
841 dev_warn(dev, "unable to parse V4L2 fwnode endpoint (%d)\n",
842 ret);
843 goto out_err;
844 }
845
846 ret = parse_endpoint ? parse_endpoint(dev, &vep, asd) : 0;
847 if (ret == -ENOTCONN)
848 dev_dbg(dev, "ignoring port@%u/endpoint@%u\n", vep.base.port,
849 vep.base.id);
850 else if (ret < 0)
851 dev_warn(dev,
852 "driver could not parse port@%u/endpoint@%u (%d)\n",
853 vep.base.port, vep.base.id, ret);
854 v4l2_fwnode_endpoint_free(&vep);
855 if (ret < 0)
856 goto out_err;
857
858 ret = v4l2_async_notifier_add_subdev(notifier, asd);
859 if (ret < 0) {
860 /* not an error if asd already exists */
861 if (ret == -EEXIST)
862 ret = 0;
863 goto out_err;
864 }
865
866 return 0;
867
868 out_err:
869 fwnode_handle_put(asd->match.fwnode);
870 kfree(asd);
871
872 return ret == -ENOTCONN ? 0 : ret;
873 }
874
875 static int
__v4l2_async_notifier_parse_fwnode_ep(struct device *dev, struct v4l2_async_notifier *notifier, size_t asd_struct_size, unsigned int port, bool has_port, parse_endpoint_func parse_endpoint)876 __v4l2_async_notifier_parse_fwnode_ep(struct device *dev,
877 struct v4l2_async_notifier *notifier,
878 size_t asd_struct_size,
879 unsigned int port,
880 bool has_port,
881 parse_endpoint_func parse_endpoint)
882 {
883 struct fwnode_handle *fwnode;
884 int ret = 0;
885
886 if (WARN_ON(asd_struct_size < sizeof(struct v4l2_async_subdev)))
887 return -EINVAL;
888
889 fwnode_graph_for_each_endpoint(dev_fwnode(dev), fwnode) {
890 struct fwnode_handle *dev_fwnode;
891 bool is_available;
892
893 dev_fwnode = fwnode_graph_get_port_parent(fwnode);
894 is_available = fwnode_device_is_available(dev_fwnode);
895 fwnode_handle_put(dev_fwnode);
896 if (!is_available)
897 continue;
898
899 if (has_port) {
900 struct fwnode_endpoint ep;
901
902 ret = fwnode_graph_parse_endpoint(fwnode, &ep);
903 if (ret)
904 break;
905
906 if (ep.port != port)
907 continue;
908 }
909
910 ret = v4l2_async_notifier_fwnode_parse_endpoint(dev,
911 notifier,
912 fwnode,
913 asd_struct_size,
914 parse_endpoint);
915 if (ret < 0)
916 break;
917 }
918
919 fwnode_handle_put(fwnode);
920
921 return ret;
922 }
923
924 int
v4l2_async_notifier_parse_fwnode_endpoints(struct device *dev, struct v4l2_async_notifier *notifier, size_t asd_struct_size, parse_endpoint_func parse_endpoint)925 v4l2_async_notifier_parse_fwnode_endpoints(struct device *dev,
926 struct v4l2_async_notifier *notifier,
927 size_t asd_struct_size,
928 parse_endpoint_func parse_endpoint)
929 {
930 return __v4l2_async_notifier_parse_fwnode_ep(dev, notifier,
931 asd_struct_size, 0,
932 false, parse_endpoint);
933 }
934 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints);
935
936 int
v4l2_async_notifier_parse_fwnode_endpoints_by_port(struct device *dev, struct v4l2_async_notifier *notifier, size_t asd_struct_size, unsigned int port, parse_endpoint_func parse_endpoint)937 v4l2_async_notifier_parse_fwnode_endpoints_by_port(struct device *dev,
938 struct v4l2_async_notifier *notifier,
939 size_t asd_struct_size,
940 unsigned int port,
941 parse_endpoint_func parse_endpoint)
942 {
943 return __v4l2_async_notifier_parse_fwnode_ep(dev, notifier,
944 asd_struct_size,
945 port, true,
946 parse_endpoint);
947 }
948 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints_by_port);
949
950 /*
951 * v4l2_fwnode_reference_parse - parse references for async sub-devices
952 * @dev: the device node the properties of which are parsed for references
953 * @notifier: the async notifier where the async subdevs will be added
954 * @prop: the name of the property
955 *
956 * Return: 0 on success
957 * -ENOENT if no entries were found
958 * -ENOMEM if memory allocation failed
959 * -EINVAL if property parsing failed
960 */
v4l2_fwnode_reference_parse(struct device *dev, struct v4l2_async_notifier *notifier, const char *prop)961 static int v4l2_fwnode_reference_parse(struct device *dev,
962 struct v4l2_async_notifier *notifier,
963 const char *prop)
964 {
965 struct fwnode_reference_args args;
966 unsigned int index;
967 int ret;
968
969 for (index = 0;
970 !(ret = fwnode_property_get_reference_args(dev_fwnode(dev),
971 prop, NULL, 0,
972 index, &args));
973 index++)
974 fwnode_handle_put(args.fwnode);
975
976 if (!index)
977 return -ENOENT;
978
979 /*
980 * Note that right now both -ENODATA and -ENOENT may signal
981 * out-of-bounds access. Return the error in cases other than that.
982 */
983 if (ret != -ENOENT && ret != -ENODATA)
984 return ret;
985
986 for (index = 0;
987 !fwnode_property_get_reference_args(dev_fwnode(dev), prop, NULL,
988 0, index, &args);
989 index++) {
990 struct v4l2_async_subdev *asd;
991
992 asd = v4l2_async_notifier_add_fwnode_subdev(notifier,
993 args.fwnode,
994 sizeof(*asd));
995 fwnode_handle_put(args.fwnode);
996 if (IS_ERR(asd)) {
997 /* not an error if asd already exists */
998 if (PTR_ERR(asd) == -EEXIST)
999 continue;
1000
1001 return PTR_ERR(asd);
1002 }
1003 }
1004
1005 return 0;
1006 }
1007
1008 /*
1009 * v4l2_fwnode_reference_get_int_prop - parse a reference with integer
1010 * arguments
1011 * @fwnode: fwnode to read @prop from
1012 * @notifier: notifier for @dev
1013 * @prop: the name of the property
1014 * @index: the index of the reference to get
1015 * @props: the array of integer property names
1016 * @nprops: the number of integer property names in @nprops
1017 *
1018 * First find an fwnode referred to by the reference at @index in @prop.
1019 *
1020 * Then under that fwnode, @nprops times, for each property in @props,
1021 * iteratively follow child nodes starting from fwnode such that they have the
1022 * property in @props array at the index of the child node distance from the
1023 * root node and the value of that property matching with the integer argument
1024 * of the reference, at the same index.
1025 *
1026 * The child fwnode reached at the end of the iteration is then returned to the
1027 * caller.
1028 *
1029 * The core reason for this is that you cannot refer to just any node in ACPI.
1030 * So to refer to an endpoint (easy in DT) you need to refer to a device, then
1031 * provide a list of (property name, property value) tuples where each tuple
1032 * uniquely identifies a child node. The first tuple identifies a child directly
1033 * underneath the device fwnode, the next tuple identifies a child node
1034 * underneath the fwnode identified by the previous tuple, etc. until you
1035 * reached the fwnode you need.
1036 *
1037 * THIS EXAMPLE EXISTS MERELY TO DOCUMENT THIS FUNCTION. DO NOT USE IT AS A
1038 * REFERENCE IN HOW ACPI TABLES SHOULD BE WRITTEN!! See documentation under
1039 * Documentation/firmware-guide/acpi/dsd/ instead and especially graph.txt,
1040 * data-node-references.txt and leds.txt .
1041 *
1042 * Scope (\_SB.PCI0.I2C2)
1043 * {
1044 * Device (CAM0)
1045 * {
1046 * Name (_DSD, Package () {
1047 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1048 * Package () {
1049 * Package () {
1050 * "compatible",
1051 * Package () { "nokia,smia" }
1052 * },
1053 * },
1054 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1055 * Package () {
1056 * Package () { "port0", "PRT0" },
1057 * }
1058 * })
1059 * Name (PRT0, Package() {
1060 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1061 * Package () {
1062 * Package () { "port", 0 },
1063 * },
1064 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1065 * Package () {
1066 * Package () { "endpoint0", "EP00" },
1067 * }
1068 * })
1069 * Name (EP00, Package() {
1070 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1071 * Package () {
1072 * Package () { "endpoint", 0 },
1073 * Package () {
1074 * "remote-endpoint",
1075 * Package() {
1076 * \_SB.PCI0.ISP, 4, 0
1077 * }
1078 * },
1079 * }
1080 * })
1081 * }
1082 * }
1083 *
1084 * Scope (\_SB.PCI0)
1085 * {
1086 * Device (ISP)
1087 * {
1088 * Name (_DSD, Package () {
1089 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1090 * Package () {
1091 * Package () { "port4", "PRT4" },
1092 * }
1093 * })
1094 *
1095 * Name (PRT4, Package() {
1096 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1097 * Package () {
1098 * Package () { "port", 4 },
1099 * },
1100 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1101 * Package () {
1102 * Package () { "endpoint0", "EP40" },
1103 * }
1104 * })
1105 *
1106 * Name (EP40, Package() {
1107 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1108 * Package () {
1109 * Package () { "endpoint", 0 },
1110 * Package () {
1111 * "remote-endpoint",
1112 * Package () {
1113 * \_SB.PCI0.I2C2.CAM0,
1114 * 0, 0
1115 * }
1116 * },
1117 * }
1118 * })
1119 * }
1120 * }
1121 *
1122 * From the EP40 node under ISP device, you could parse the graph remote
1123 * endpoint using v4l2_fwnode_reference_get_int_prop with these arguments:
1124 *
1125 * @fwnode: fwnode referring to EP40 under ISP.
1126 * @prop: "remote-endpoint"
1127 * @index: 0
1128 * @props: "port", "endpoint"
1129 * @nprops: 2
1130 *
1131 * And you'd get back fwnode referring to EP00 under CAM0.
1132 *
1133 * The same works the other way around: if you use EP00 under CAM0 as the
1134 * fwnode, you'll get fwnode referring to EP40 under ISP.
1135 *
1136 * The same example in DT syntax would look like this:
1137 *
1138 * cam: cam0 {
1139 * compatible = "nokia,smia";
1140 *
1141 * port {
1142 * port = <0>;
1143 * endpoint {
1144 * endpoint = <0>;
1145 * remote-endpoint = <&isp 4 0>;
1146 * };
1147 * };
1148 * };
1149 *
1150 * isp: isp {
1151 * ports {
1152 * port@4 {
1153 * port = <4>;
1154 * endpoint {
1155 * endpoint = <0>;
1156 * remote-endpoint = <&cam 0 0>;
1157 * };
1158 * };
1159 * };
1160 * };
1161 *
1162 * Return: 0 on success
1163 * -ENOENT if no entries (or the property itself) were found
1164 * -EINVAL if property parsing otherwise failed
1165 * -ENOMEM if memory allocation failed
1166 */
1167 static struct fwnode_handle *
v4l2_fwnode_reference_get_int_prop(struct fwnode_handle *fwnode, const char *prop, unsigned int index, const char * const *props, unsigned int nprops)1168 v4l2_fwnode_reference_get_int_prop(struct fwnode_handle *fwnode,
1169 const char *prop,
1170 unsigned int index,
1171 const char * const *props,
1172 unsigned int nprops)
1173 {
1174 struct fwnode_reference_args fwnode_args;
1175 u64 *args = fwnode_args.args;
1176 struct fwnode_handle *child;
1177 int ret;
1178
1179 /*
1180 * Obtain remote fwnode as well as the integer arguments.
1181 *
1182 * Note that right now both -ENODATA and -ENOENT may signal
1183 * out-of-bounds access. Return -ENOENT in that case.
1184 */
1185 ret = fwnode_property_get_reference_args(fwnode, prop, NULL, nprops,
1186 index, &fwnode_args);
1187 if (ret)
1188 return ERR_PTR(ret == -ENODATA ? -ENOENT : ret);
1189
1190 /*
1191 * Find a node in the tree under the referred fwnode corresponding to
1192 * the integer arguments.
1193 */
1194 fwnode = fwnode_args.fwnode;
1195 while (nprops--) {
1196 u32 val;
1197
1198 /* Loop over all child nodes under fwnode. */
1199 fwnode_for_each_child_node(fwnode, child) {
1200 if (fwnode_property_read_u32(child, *props, &val))
1201 continue;
1202
1203 /* Found property, see if its value matches. */
1204 if (val == *args)
1205 break;
1206 }
1207
1208 fwnode_handle_put(fwnode);
1209
1210 /* No property found; return an error here. */
1211 if (!child) {
1212 fwnode = ERR_PTR(-ENOENT);
1213 break;
1214 }
1215
1216 props++;
1217 args++;
1218 fwnode = child;
1219 }
1220
1221 return fwnode;
1222 }
1223
1224 struct v4l2_fwnode_int_props {
1225 const char *name;
1226 const char * const *props;
1227 unsigned int nprops;
1228 };
1229
1230 /*
1231 * v4l2_fwnode_reference_parse_int_props - parse references for async
1232 * sub-devices
1233 * @dev: struct device pointer
1234 * @notifier: notifier for @dev
1235 * @prop: the name of the property
1236 * @props: the array of integer property names
1237 * @nprops: the number of integer properties
1238 *
1239 * Use v4l2_fwnode_reference_get_int_prop to find fwnodes through reference in
1240 * property @prop with integer arguments with child nodes matching in properties
1241 * @props. Then, set up V4L2 async sub-devices for those fwnodes in the notifier
1242 * accordingly.
1243 *
1244 * While it is technically possible to use this function on DT, it is only
1245 * meaningful on ACPI. On Device tree you can refer to any node in the tree but
1246 * on ACPI the references are limited to devices.
1247 *
1248 * Return: 0 on success
1249 * -ENOENT if no entries (or the property itself) were found
1250 * -EINVAL if property parsing otherwisefailed
1251 * -ENOMEM if memory allocation failed
1252 */
1253 static int
v4l2_fwnode_reference_parse_int_props(struct device *dev, struct v4l2_async_notifier *notifier, const struct v4l2_fwnode_int_props *p)1254 v4l2_fwnode_reference_parse_int_props(struct device *dev,
1255 struct v4l2_async_notifier *notifier,
1256 const struct v4l2_fwnode_int_props *p)
1257 {
1258 struct fwnode_handle *fwnode;
1259 unsigned int index;
1260 int ret;
1261 const char *prop = p->name;
1262 const char * const *props = p->props;
1263 unsigned int nprops = p->nprops;
1264
1265 index = 0;
1266 do {
1267 fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1268 prop, index,
1269 props, nprops);
1270 if (IS_ERR(fwnode)) {
1271 /*
1272 * Note that right now both -ENODATA and -ENOENT may
1273 * signal out-of-bounds access. Return the error in
1274 * cases other than that.
1275 */
1276 if (PTR_ERR(fwnode) != -ENOENT &&
1277 PTR_ERR(fwnode) != -ENODATA)
1278 return PTR_ERR(fwnode);
1279 break;
1280 }
1281 fwnode_handle_put(fwnode);
1282 index++;
1283 } while (1);
1284
1285 for (index = 0;
1286 !IS_ERR((fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1287 prop, index,
1288 props,
1289 nprops)));
1290 index++) {
1291 struct v4l2_async_subdev *asd;
1292
1293 asd = v4l2_async_notifier_add_fwnode_subdev(notifier, fwnode,
1294 sizeof(*asd));
1295 fwnode_handle_put(fwnode);
1296 if (IS_ERR(asd)) {
1297 ret = PTR_ERR(asd);
1298 /* not an error if asd already exists */
1299 if (ret == -EEXIST)
1300 continue;
1301
1302 return PTR_ERR(asd);
1303 }
1304 }
1305
1306 return !fwnode || PTR_ERR(fwnode) == -ENOENT ? 0 : PTR_ERR(fwnode);
1307 }
1308
v4l2_async_notifier_parse_fwnode_sensor_common(struct device *dev, struct v4l2_async_notifier *notifier)1309 int v4l2_async_notifier_parse_fwnode_sensor_common(struct device *dev,
1310 struct v4l2_async_notifier *notifier)
1311 {
1312 static const char * const led_props[] = { "led" };
1313 static const struct v4l2_fwnode_int_props props[] = {
1314 { "flash-leds", led_props, ARRAY_SIZE(led_props) },
1315 { "lens-focus", NULL, 0 },
1316 };
1317 unsigned int i;
1318
1319 for (i = 0; i < ARRAY_SIZE(props); i++) {
1320 int ret;
1321
1322 if (props[i].props && is_acpi_node(dev_fwnode(dev)))
1323 ret = v4l2_fwnode_reference_parse_int_props(dev,
1324 notifier,
1325 &props[i]);
1326 else
1327 ret = v4l2_fwnode_reference_parse(dev, notifier,
1328 props[i].name);
1329 if (ret && ret != -ENOENT) {
1330 dev_warn(dev, "parsing property \"%s\" failed (%d)\n",
1331 props[i].name, ret);
1332 return ret;
1333 }
1334 }
1335
1336 return 0;
1337 }
1338 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_sensor_common);
1339
v4l2_async_register_subdev_sensor_common(struct v4l2_subdev *sd)1340 int v4l2_async_register_subdev_sensor_common(struct v4l2_subdev *sd)
1341 {
1342 struct v4l2_async_notifier *notifier;
1343 int ret;
1344
1345 if (WARN_ON(!sd->dev))
1346 return -ENODEV;
1347
1348 notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
1349 if (!notifier)
1350 return -ENOMEM;
1351
1352 v4l2_async_notifier_init(notifier);
1353
1354 ret = v4l2_async_notifier_parse_fwnode_sensor_common(sd->dev,
1355 notifier);
1356 if (ret < 0)
1357 goto out_cleanup;
1358
1359 ret = v4l2_async_subdev_notifier_register(sd, notifier);
1360 if (ret < 0)
1361 goto out_cleanup;
1362
1363 ret = v4l2_async_register_subdev(sd);
1364 if (ret < 0)
1365 goto out_unregister;
1366
1367 sd->subdev_notifier = notifier;
1368
1369 return 0;
1370
1371 out_unregister:
1372 v4l2_async_notifier_unregister(notifier);
1373
1374 out_cleanup:
1375 v4l2_async_notifier_cleanup(notifier);
1376 kfree(notifier);
1377
1378 return ret;
1379 }
1380 EXPORT_SYMBOL_GPL(v4l2_async_register_subdev_sensor_common);
1381
1382 MODULE_LICENSE("GPL");
1383 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
1384 MODULE_AUTHOR("Sylwester Nawrocki <s.nawrocki@samsung.com>");
1385 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1386