1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * A fairly generic DMA-API to IOMMU-API glue layer.
4 *
5 * Copyright (C) 2014-2015 ARM Ltd.
6 *
7 * based in part on arch/arm/mm/dma-mapping.c:
8 * Copyright (C) 2000-2004 Russell King
9 */
10
11#include <linux/acpi_iort.h>
12#include <linux/device.h>
13#include <linux/dma-map-ops.h>
14#include <linux/dma-iommu.h>
15#include <linux/gfp.h>
16#include <linux/huge_mm.h>
17#include <linux/iommu.h>
18#include <linux/iova.h>
19#include <linux/irq.h>
20#include <linux/mm.h>
21#include <linux/mutex.h>
22#include <linux/pci.h>
23#include <linux/scatterlist.h>
24#include <linux/vmalloc.h>
25#include <linux/crash_dump.h>
26
27struct iommu_dma_msi_page {
28	struct list_head	list;
29	dma_addr_t		iova;
30	phys_addr_t		phys;
31};
32
33enum iommu_dma_cookie_type {
34	IOMMU_DMA_IOVA_COOKIE,
35	IOMMU_DMA_MSI_COOKIE,
36};
37
38struct iommu_dma_cookie {
39	enum iommu_dma_cookie_type	type;
40	union {
41		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
42		struct iova_domain	iovad;
43		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
44		dma_addr_t		msi_iova;
45	};
46	struct list_head		msi_page_list;
47
48	/* Domain for flush queue callback; NULL if flush queue not in use */
49	struct iommu_domain		*fq_domain;
50};
51
52static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
53{
54	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
55		return cookie->iovad.granule;
56	return PAGE_SIZE;
57}
58
59static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
60{
61	struct iommu_dma_cookie *cookie;
62
63	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
64	if (cookie) {
65		INIT_LIST_HEAD(&cookie->msi_page_list);
66		cookie->type = type;
67	}
68	return cookie;
69}
70
71/**
72 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
73 * @domain: IOMMU domain to prepare for DMA-API usage
74 *
75 * IOMMU drivers should normally call this from their domain_alloc
76 * callback when domain->type == IOMMU_DOMAIN_DMA.
77 */
78int iommu_get_dma_cookie(struct iommu_domain *domain)
79{
80	if (domain->iova_cookie)
81		return -EEXIST;
82
83	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
84	if (!domain->iova_cookie)
85		return -ENOMEM;
86
87	return 0;
88}
89EXPORT_SYMBOL(iommu_get_dma_cookie);
90
91/**
92 * iommu_get_msi_cookie - Acquire just MSI remapping resources
93 * @domain: IOMMU domain to prepare
94 * @base: Start address of IOVA region for MSI mappings
95 *
96 * Users who manage their own IOVA allocation and do not want DMA API support,
97 * but would still like to take advantage of automatic MSI remapping, can use
98 * this to initialise their own domain appropriately. Users should reserve a
99 * contiguous IOVA region, starting at @base, large enough to accommodate the
100 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
101 * used by the devices attached to @domain.
102 */
103int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
104{
105	struct iommu_dma_cookie *cookie;
106
107	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
108		return -EINVAL;
109
110	if (domain->iova_cookie)
111		return -EEXIST;
112
113	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
114	if (!cookie)
115		return -ENOMEM;
116
117	cookie->msi_iova = base;
118	domain->iova_cookie = cookie;
119	return 0;
120}
121EXPORT_SYMBOL(iommu_get_msi_cookie);
122
123/**
124 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
125 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
126 *          iommu_get_msi_cookie()
127 *
128 * IOMMU drivers should normally call this from their domain_free callback.
129 */
130void iommu_put_dma_cookie(struct iommu_domain *domain)
131{
132	struct iommu_dma_cookie *cookie = domain->iova_cookie;
133	struct iommu_dma_msi_page *msi, *tmp;
134
135	if (!cookie)
136		return;
137
138	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
139		put_iova_domain(&cookie->iovad);
140
141	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
142		list_del(&msi->list);
143		kfree(msi);
144	}
145	kfree(cookie);
146	domain->iova_cookie = NULL;
147}
148EXPORT_SYMBOL(iommu_put_dma_cookie);
149
150/**
151 * iommu_dma_get_resv_regions - Reserved region driver helper
152 * @dev: Device from iommu_get_resv_regions()
153 * @list: Reserved region list from iommu_get_resv_regions()
154 *
155 * IOMMU drivers can use this to implement their .get_resv_regions callback
156 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
157 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
158 * reservation.
159 */
160void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
161{
162
163	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
164		iort_iommu_msi_get_resv_regions(dev, list);
165
166}
167EXPORT_SYMBOL(iommu_dma_get_resv_regions);
168
169static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
170		phys_addr_t start, phys_addr_t end)
171{
172	struct iova_domain *iovad = &cookie->iovad;
173	struct iommu_dma_msi_page *msi_page;
174	int i, num_pages;
175
176	start -= iova_offset(iovad, start);
177	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
178
179	for (i = 0; i < num_pages; i++) {
180		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
181		if (!msi_page)
182			return -ENOMEM;
183
184		msi_page->phys = start;
185		msi_page->iova = start;
186		INIT_LIST_HEAD(&msi_page->list);
187		list_add(&msi_page->list, &cookie->msi_page_list);
188		start += iovad->granule;
189	}
190
191	return 0;
192}
193
194static int iova_reserve_pci_windows(struct pci_dev *dev,
195		struct iova_domain *iovad)
196{
197	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
198	struct resource_entry *window;
199	unsigned long lo, hi;
200	phys_addr_t start = 0, end;
201
202	resource_list_for_each_entry(window, &bridge->windows) {
203		if (resource_type(window->res) != IORESOURCE_MEM)
204			continue;
205
206		lo = iova_pfn(iovad, window->res->start - window->offset);
207		hi = iova_pfn(iovad, window->res->end - window->offset);
208		reserve_iova(iovad, lo, hi);
209	}
210
211	/* Get reserved DMA windows from host bridge */
212	resource_list_for_each_entry(window, &bridge->dma_ranges) {
213		end = window->res->start - window->offset;
214resv_iova:
215		if (end > start) {
216			lo = iova_pfn(iovad, start);
217			hi = iova_pfn(iovad, end);
218			reserve_iova(iovad, lo, hi);
219		} else if (end < start) {
220			/* dma_ranges list should be sorted */
221			dev_err(&dev->dev,
222				"Failed to reserve IOVA [%pa-%pa]\n",
223				&start, &end);
224			return -EINVAL;
225		}
226
227		start = window->res->end - window->offset + 1;
228		/* If window is last entry */
229		if (window->node.next == &bridge->dma_ranges &&
230		    end != ~(phys_addr_t)0) {
231			end = ~(phys_addr_t)0;
232			goto resv_iova;
233		}
234	}
235
236	return 0;
237}
238
239static int iova_reserve_iommu_regions(struct device *dev,
240		struct iommu_domain *domain)
241{
242	struct iommu_dma_cookie *cookie = domain->iova_cookie;
243	struct iova_domain *iovad = &cookie->iovad;
244	struct iommu_resv_region *region;
245	LIST_HEAD(resv_regions);
246	int ret = 0;
247
248	if (dev_is_pci(dev)) {
249		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
250		if (ret)
251			return ret;
252	}
253
254	iommu_get_resv_regions(dev, &resv_regions);
255	list_for_each_entry(region, &resv_regions, list) {
256		unsigned long lo, hi;
257
258		/* We ARE the software that manages these! */
259		if (region->type == IOMMU_RESV_SW_MSI)
260			continue;
261
262		lo = iova_pfn(iovad, region->start);
263		hi = iova_pfn(iovad, region->start + region->length - 1);
264		reserve_iova(iovad, lo, hi);
265
266		if (region->type == IOMMU_RESV_MSI)
267			ret = cookie_init_hw_msi_region(cookie, region->start,
268					region->start + region->length);
269		if (ret)
270			break;
271	}
272	iommu_put_resv_regions(dev, &resv_regions);
273
274	return ret;
275}
276
277static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
278{
279	struct iommu_dma_cookie *cookie;
280	struct iommu_domain *domain;
281
282	cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
283	domain = cookie->fq_domain;
284	/*
285	 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
286	 * implies that ops->flush_iotlb_all must be non-NULL.
287	 */
288	domain->ops->flush_iotlb_all(domain);
289}
290
291/**
292 * iommu_dma_init_domain - Initialise a DMA mapping domain
293 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
294 * @base: IOVA at which the mappable address space starts
295 * @size: Size of IOVA space
296 * @dev: Device the domain is being initialised for
297 *
298 * @base and @size should be exact multiples of IOMMU page granularity to
299 * avoid rounding surprises. If necessary, we reserve the page at address 0
300 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
301 * any change which could make prior IOVAs invalid will fail.
302 */
303static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
304		u64 size, struct device *dev)
305{
306	struct iommu_dma_cookie *cookie = domain->iova_cookie;
307	unsigned long order, base_pfn;
308	struct iova_domain *iovad;
309	int attr;
310
311	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
312		return -EINVAL;
313
314	iovad = &cookie->iovad;
315
316	/* Use the smallest supported page size for IOVA granularity */
317	order = __ffs(domain->pgsize_bitmap);
318	base_pfn = max_t(unsigned long, 1, base >> order);
319
320	/* Check the domain allows at least some access to the device... */
321	if (domain->geometry.force_aperture) {
322		if (base > domain->geometry.aperture_end ||
323		    base + size <= domain->geometry.aperture_start) {
324			pr_warn("specified DMA range outside IOMMU capability\n");
325			return -EFAULT;
326		}
327		/* ...then finally give it a kicking to make sure it fits */
328		base_pfn = max_t(unsigned long, base_pfn,
329				domain->geometry.aperture_start >> order);
330	}
331
332	/* start_pfn is always nonzero for an already-initialised domain */
333	if (iovad->start_pfn) {
334		if (1UL << order != iovad->granule ||
335		    base_pfn != iovad->start_pfn) {
336			pr_warn("Incompatible range for DMA domain\n");
337			return -EFAULT;
338		}
339
340		return 0;
341	}
342
343	init_iova_domain(iovad, 1UL << order, base_pfn);
344
345	if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
346			DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
347		if (init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all,
348					NULL))
349			pr_warn("iova flush queue initialization failed\n");
350		else
351			cookie->fq_domain = domain;
352	}
353
354	if (!dev)
355		return 0;
356
357	return iova_reserve_iommu_regions(dev, domain);
358}
359
360static int iommu_dma_deferred_attach(struct device *dev,
361		struct iommu_domain *domain)
362{
363	const struct iommu_ops *ops = domain->ops;
364
365	if (!is_kdump_kernel())
366		return 0;
367
368	if (unlikely(ops->is_attach_deferred &&
369			ops->is_attach_deferred(domain, dev)))
370		return iommu_attach_device(domain, dev);
371
372	return 0;
373}
374
375/**
376 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
377 *                    page flags.
378 * @dir: Direction of DMA transfer
379 * @coherent: Is the DMA master cache-coherent?
380 * @attrs: DMA attributes for the mapping
381 *
382 * Return: corresponding IOMMU API page protection flags
383 */
384static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
385		     unsigned long attrs)
386{
387	int prot = coherent ? IOMMU_CACHE : 0;
388
389	if (attrs & DMA_ATTR_PRIVILEGED)
390		prot |= IOMMU_PRIV;
391
392	switch (dir) {
393	case DMA_BIDIRECTIONAL:
394		return prot | IOMMU_READ | IOMMU_WRITE;
395	case DMA_TO_DEVICE:
396		return prot | IOMMU_READ;
397	case DMA_FROM_DEVICE:
398		return prot | IOMMU_WRITE;
399	default:
400		return 0;
401	}
402}
403
404static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
405		size_t size, u64 dma_limit, struct device *dev)
406{
407	struct iommu_dma_cookie *cookie = domain->iova_cookie;
408	struct iova_domain *iovad = &cookie->iovad;
409	unsigned long shift, iova_len, iova = 0;
410
411	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
412		cookie->msi_iova += size;
413		return cookie->msi_iova - size;
414	}
415
416	shift = iova_shift(iovad);
417	iova_len = size >> shift;
418	/*
419	 * Freeing non-power-of-two-sized allocations back into the IOVA caches
420	 * will come back to bite us badly, so we have to waste a bit of space
421	 * rounding up anything cacheable to make sure that can't happen. The
422	 * order of the unadjusted size will still match upon freeing.
423	 */
424	if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
425		iova_len = roundup_pow_of_two(iova_len);
426
427	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
428
429	if (domain->geometry.force_aperture)
430		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
431
432	/* Try to get PCI devices a SAC address */
433	if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
434		iova = alloc_iova_fast(iovad, iova_len,
435				       DMA_BIT_MASK(32) >> shift, false);
436
437	if (!iova)
438		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
439				       true);
440
441	return (dma_addr_t)iova << shift;
442}
443
444static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
445		dma_addr_t iova, size_t size)
446{
447	struct iova_domain *iovad = &cookie->iovad;
448
449	/* The MSI case is only ever cleaning up its most recent allocation */
450	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
451		cookie->msi_iova -= size;
452	else if (cookie->fq_domain)	/* non-strict mode */
453		queue_iova(iovad, iova_pfn(iovad, iova),
454				size >> iova_shift(iovad), 0);
455	else
456		free_iova_fast(iovad, iova_pfn(iovad, iova),
457				size >> iova_shift(iovad));
458}
459
460static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
461		size_t size)
462{
463	struct iommu_domain *domain = iommu_get_dma_domain(dev);
464	struct iommu_dma_cookie *cookie = domain->iova_cookie;
465	struct iova_domain *iovad = &cookie->iovad;
466	size_t iova_off = iova_offset(iovad, dma_addr);
467	struct iommu_iotlb_gather iotlb_gather;
468	size_t unmapped;
469
470	dma_addr -= iova_off;
471	size = iova_align(iovad, size + iova_off);
472	iommu_iotlb_gather_init(&iotlb_gather);
473
474	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
475	WARN_ON(unmapped != size);
476
477	if (!cookie->fq_domain)
478		iommu_iotlb_sync(domain, &iotlb_gather);
479	iommu_dma_free_iova(cookie, dma_addr, size);
480}
481
482static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
483		size_t size, int prot, u64 dma_mask)
484{
485	struct iommu_domain *domain = iommu_get_dma_domain(dev);
486	struct iommu_dma_cookie *cookie = domain->iova_cookie;
487	struct iova_domain *iovad = &cookie->iovad;
488	size_t iova_off = iova_offset(iovad, phys);
489	dma_addr_t iova;
490
491	if (unlikely(iommu_dma_deferred_attach(dev, domain)))
492		return DMA_MAPPING_ERROR;
493
494	size = iova_align(iovad, size + iova_off);
495
496	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
497	if (!iova)
498		return DMA_MAPPING_ERROR;
499
500	if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
501		iommu_dma_free_iova(cookie, iova, size);
502		return DMA_MAPPING_ERROR;
503	}
504	return iova + iova_off;
505}
506
507static void __iommu_dma_free_pages(struct page **pages, int count)
508{
509	while (count--)
510		__free_page(pages[count]);
511	kvfree(pages);
512}
513
514static struct page **__iommu_dma_alloc_pages(struct device *dev,
515		unsigned int count, unsigned long order_mask, gfp_t gfp)
516{
517	struct page **pages;
518	unsigned int i = 0, nid = dev_to_node(dev);
519
520	order_mask &= (2U << MAX_ORDER) - 1;
521	if (!order_mask)
522		return NULL;
523
524	pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
525	if (!pages)
526		return NULL;
527
528	/* IOMMU can map any pages, so himem can also be used here */
529	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
530
531	/* It makes no sense to muck about with huge pages */
532	gfp &= ~__GFP_COMP;
533
534	while (count) {
535		struct page *page = NULL;
536		unsigned int order_size;
537
538		/*
539		 * Higher-order allocations are a convenience rather
540		 * than a necessity, hence using __GFP_NORETRY until
541		 * falling back to minimum-order allocations.
542		 */
543		for (order_mask &= (2U << __fls(count)) - 1;
544		     order_mask; order_mask &= ~order_size) {
545			unsigned int order = __fls(order_mask);
546			gfp_t alloc_flags = gfp;
547
548			order_size = 1U << order;
549			if (order_mask > order_size)
550				alloc_flags |= __GFP_NORETRY;
551			page = alloc_pages_node(nid, alloc_flags, order);
552			if (!page)
553				continue;
554			if (order)
555				split_page(page, order);
556			break;
557		}
558		if (!page) {
559			__iommu_dma_free_pages(pages, i);
560			return NULL;
561		}
562		count -= order_size;
563		while (order_size--)
564			pages[i++] = page++;
565	}
566	return pages;
567}
568
569/**
570 * iommu_dma_alloc_remap - Allocate and map a buffer contiguous in IOVA space
571 * @dev: Device to allocate memory for. Must be a real device
572 *	 attached to an iommu_dma_domain
573 * @size: Size of buffer in bytes
574 * @dma_handle: Out argument for allocated DMA handle
575 * @gfp: Allocation flags
576 * @prot: pgprot_t to use for the remapped mapping
577 * @attrs: DMA attributes for this allocation
578 *
579 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
580 * but an IOMMU which supports smaller pages might not map the whole thing.
581 *
582 * Return: Mapped virtual address, or NULL on failure.
583 */
584static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
585		dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
586		unsigned long attrs)
587{
588	struct iommu_domain *domain = iommu_get_dma_domain(dev);
589	struct iommu_dma_cookie *cookie = domain->iova_cookie;
590	struct iova_domain *iovad = &cookie->iovad;
591	bool coherent = dev_is_dma_coherent(dev);
592	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
593	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
594	struct page **pages;
595	struct sg_table sgt;
596	dma_addr_t iova;
597	void *vaddr;
598
599	*dma_handle = DMA_MAPPING_ERROR;
600
601	if (unlikely(iommu_dma_deferred_attach(dev, domain)))
602		return NULL;
603
604	min_size = alloc_sizes & -alloc_sizes;
605	if (min_size < PAGE_SIZE) {
606		min_size = PAGE_SIZE;
607		alloc_sizes |= PAGE_SIZE;
608	} else {
609		size = ALIGN(size, min_size);
610	}
611	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
612		alloc_sizes = min_size;
613
614	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
615	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
616					gfp);
617	if (!pages)
618		return NULL;
619
620	size = iova_align(iovad, size);
621	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
622	if (!iova)
623		goto out_free_pages;
624
625	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
626		goto out_free_iova;
627
628	if (!(ioprot & IOMMU_CACHE)) {
629		struct scatterlist *sg;
630		int i;
631
632		for_each_sg(sgt.sgl, sg, sgt.orig_nents, i)
633			arch_dma_prep_coherent(sg_page(sg), sg->length);
634	}
635
636	if (iommu_map_sg_atomic(domain, iova, sgt.sgl, sgt.orig_nents, ioprot)
637			< size)
638		goto out_free_sg;
639
640	vaddr = dma_common_pages_remap(pages, size, prot,
641			__builtin_return_address(0));
642	if (!vaddr)
643		goto out_unmap;
644
645	*dma_handle = iova;
646	sg_free_table(&sgt);
647	return vaddr;
648
649out_unmap:
650	__iommu_dma_unmap(dev, iova, size);
651out_free_sg:
652	sg_free_table(&sgt);
653out_free_iova:
654	iommu_dma_free_iova(cookie, iova, size);
655out_free_pages:
656	__iommu_dma_free_pages(pages, count);
657	return NULL;
658}
659
660/**
661 * __iommu_dma_mmap - Map a buffer into provided user VMA
662 * @pages: Array representing buffer from __iommu_dma_alloc()
663 * @size: Size of buffer in bytes
664 * @vma: VMA describing requested userspace mapping
665 *
666 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
667 * for verifying the correct size and protection of @vma beforehand.
668 */
669static int __iommu_dma_mmap(struct page **pages, size_t size,
670		struct vm_area_struct *vma)
671{
672	return vm_map_pages(vma, pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
673}
674
675static void iommu_dma_sync_single_for_cpu(struct device *dev,
676		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
677{
678	phys_addr_t phys;
679
680	if (dev_is_dma_coherent(dev))
681		return;
682
683	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
684	arch_sync_dma_for_cpu(phys, size, dir);
685}
686
687static void iommu_dma_sync_single_for_device(struct device *dev,
688		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
689{
690	phys_addr_t phys;
691
692	if (dev_is_dma_coherent(dev))
693		return;
694
695	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
696	arch_sync_dma_for_device(phys, size, dir);
697}
698
699static void iommu_dma_sync_sg_for_cpu(struct device *dev,
700		struct scatterlist *sgl, int nelems,
701		enum dma_data_direction dir)
702{
703	struct scatterlist *sg;
704	int i;
705
706	if (dev_is_dma_coherent(dev))
707		return;
708
709	for_each_sg(sgl, sg, nelems, i)
710		arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
711}
712
713static void iommu_dma_sync_sg_for_device(struct device *dev,
714		struct scatterlist *sgl, int nelems,
715		enum dma_data_direction dir)
716{
717	struct scatterlist *sg;
718	int i;
719
720	if (dev_is_dma_coherent(dev))
721		return;
722
723	for_each_sg(sgl, sg, nelems, i)
724		arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
725}
726
727static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
728		unsigned long offset, size_t size, enum dma_data_direction dir,
729		unsigned long attrs)
730{
731	phys_addr_t phys = page_to_phys(page) + offset;
732	bool coherent = dev_is_dma_coherent(dev);
733	int prot = dma_info_to_prot(dir, coherent, attrs);
734	dma_addr_t dma_handle;
735
736	dma_handle = __iommu_dma_map(dev, phys, size, prot, dma_get_mask(dev));
737	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
738	    dma_handle != DMA_MAPPING_ERROR)
739		arch_sync_dma_for_device(phys, size, dir);
740	return dma_handle;
741}
742
743static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
744		size_t size, enum dma_data_direction dir, unsigned long attrs)
745{
746	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
747		iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
748	__iommu_dma_unmap(dev, dma_handle, size);
749}
750
751/*
752 * Prepare a successfully-mapped scatterlist to give back to the caller.
753 *
754 * At this point the segments are already laid out by iommu_dma_map_sg() to
755 * avoid individually crossing any boundaries, so we merely need to check a
756 * segment's start address to avoid concatenating across one.
757 */
758static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
759		dma_addr_t dma_addr)
760{
761	struct scatterlist *s, *cur = sg;
762	unsigned long seg_mask = dma_get_seg_boundary(dev);
763	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
764	int i, count = 0;
765
766	for_each_sg(sg, s, nents, i) {
767		/* Restore this segment's original unaligned fields first */
768		unsigned int s_iova_off = sg_dma_address(s);
769		unsigned int s_length = sg_dma_len(s);
770		unsigned int s_iova_len = s->length;
771
772		s->offset += s_iova_off;
773		s->length = s_length;
774		sg_dma_address(s) = DMA_MAPPING_ERROR;
775		sg_dma_len(s) = 0;
776
777		/*
778		 * Now fill in the real DMA data. If...
779		 * - there is a valid output segment to append to
780		 * - and this segment starts on an IOVA page boundary
781		 * - but doesn't fall at a segment boundary
782		 * - and wouldn't make the resulting output segment too long
783		 */
784		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
785		    (max_len - cur_len >= s_length)) {
786			/* ...then concatenate it with the previous one */
787			cur_len += s_length;
788		} else {
789			/* Otherwise start the next output segment */
790			if (i > 0)
791				cur = sg_next(cur);
792			cur_len = s_length;
793			count++;
794
795			sg_dma_address(cur) = dma_addr + s_iova_off;
796		}
797
798		sg_dma_len(cur) = cur_len;
799		dma_addr += s_iova_len;
800
801		if (s_length + s_iova_off < s_iova_len)
802			cur_len = 0;
803	}
804	return count;
805}
806
807/*
808 * If mapping failed, then just restore the original list,
809 * but making sure the DMA fields are invalidated.
810 */
811static void __invalidate_sg(struct scatterlist *sg, int nents)
812{
813	struct scatterlist *s;
814	int i;
815
816	for_each_sg(sg, s, nents, i) {
817		if (sg_dma_address(s) != DMA_MAPPING_ERROR)
818			s->offset += sg_dma_address(s);
819		if (sg_dma_len(s))
820			s->length = sg_dma_len(s);
821		sg_dma_address(s) = DMA_MAPPING_ERROR;
822		sg_dma_len(s) = 0;
823	}
824}
825
826/*
827 * The DMA API client is passing in a scatterlist which could describe
828 * any old buffer layout, but the IOMMU API requires everything to be
829 * aligned to IOMMU pages. Hence the need for this complicated bit of
830 * impedance-matching, to be able to hand off a suitably-aligned list,
831 * but still preserve the original offsets and sizes for the caller.
832 */
833static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
834		int nents, enum dma_data_direction dir, unsigned long attrs)
835{
836	struct iommu_domain *domain = iommu_get_dma_domain(dev);
837	struct iommu_dma_cookie *cookie = domain->iova_cookie;
838	struct iova_domain *iovad = &cookie->iovad;
839	struct scatterlist *s, *prev = NULL;
840	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
841	dma_addr_t iova;
842	size_t iova_len = 0;
843	unsigned long mask = dma_get_seg_boundary(dev);
844	int i;
845
846	if (unlikely(iommu_dma_deferred_attach(dev, domain)))
847		return 0;
848
849	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
850		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
851
852	/*
853	 * Work out how much IOVA space we need, and align the segments to
854	 * IOVA granules for the IOMMU driver to handle. With some clever
855	 * trickery we can modify the list in-place, but reversibly, by
856	 * stashing the unaligned parts in the as-yet-unused DMA fields.
857	 */
858	for_each_sg(sg, s, nents, i) {
859		size_t s_iova_off = iova_offset(iovad, s->offset);
860		size_t s_length = s->length;
861		size_t pad_len = (mask - iova_len + 1) & mask;
862
863		sg_dma_address(s) = s_iova_off;
864		sg_dma_len(s) = s_length;
865		s->offset -= s_iova_off;
866		s_length = iova_align(iovad, s_length + s_iova_off);
867		s->length = s_length;
868
869		/*
870		 * Due to the alignment of our single IOVA allocation, we can
871		 * depend on these assumptions about the segment boundary mask:
872		 * - If mask size >= IOVA size, then the IOVA range cannot
873		 *   possibly fall across a boundary, so we don't care.
874		 * - If mask size < IOVA size, then the IOVA range must start
875		 *   exactly on a boundary, therefore we can lay things out
876		 *   based purely on segment lengths without needing to know
877		 *   the actual addresses beforehand.
878		 * - The mask must be a power of 2, so pad_len == 0 if
879		 *   iova_len == 0, thus we cannot dereference prev the first
880		 *   time through here (i.e. before it has a meaningful value).
881		 */
882		if (pad_len && pad_len < s_length - 1) {
883			prev->length += pad_len;
884			iova_len += pad_len;
885		}
886
887		iova_len += s_length;
888		prev = s;
889	}
890
891	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
892	if (!iova)
893		goto out_restore_sg;
894
895	/*
896	 * We'll leave any physical concatenation to the IOMMU driver's
897	 * implementation - it knows better than we do.
898	 */
899	if (iommu_map_sg_atomic(domain, iova, sg, nents, prot) < iova_len)
900		goto out_free_iova;
901
902	return __finalise_sg(dev, sg, nents, iova);
903
904out_free_iova:
905	iommu_dma_free_iova(cookie, iova, iova_len);
906out_restore_sg:
907	__invalidate_sg(sg, nents);
908	return 0;
909}
910
911static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
912		int nents, enum dma_data_direction dir, unsigned long attrs)
913{
914	dma_addr_t start, end;
915	struct scatterlist *tmp;
916	int i;
917
918	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
919		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
920
921	/*
922	 * The scatterlist segments are mapped into a single
923	 * contiguous IOVA allocation, so this is incredibly easy.
924	 */
925	start = sg_dma_address(sg);
926	for_each_sg(sg_next(sg), tmp, nents - 1, i) {
927		if (sg_dma_len(tmp) == 0)
928			break;
929		sg = tmp;
930	}
931	end = sg_dma_address(sg) + sg_dma_len(sg);
932	__iommu_dma_unmap(dev, start, end - start);
933}
934
935static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
936		size_t size, enum dma_data_direction dir, unsigned long attrs)
937{
938	return __iommu_dma_map(dev, phys, size,
939			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
940			dma_get_mask(dev));
941}
942
943static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
944		size_t size, enum dma_data_direction dir, unsigned long attrs)
945{
946	__iommu_dma_unmap(dev, handle, size);
947}
948
949static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
950{
951	size_t alloc_size = PAGE_ALIGN(size);
952	int count = alloc_size >> PAGE_SHIFT;
953	struct page *page = NULL, **pages = NULL;
954
955	/* Non-coherent atomic allocation? Easy */
956	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
957	    dma_free_from_pool(dev, cpu_addr, alloc_size))
958		return;
959
960	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
961		/*
962		 * If it the address is remapped, then it's either non-coherent
963		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
964		 */
965		pages = dma_common_find_pages(cpu_addr);
966		if (!pages)
967			page = vmalloc_to_page(cpu_addr);
968		dma_common_free_remap(cpu_addr, alloc_size);
969	} else {
970		/* Lowmem means a coherent atomic or CMA allocation */
971		page = virt_to_page(cpu_addr);
972	}
973
974	if (pages)
975		__iommu_dma_free_pages(pages, count);
976	if (page)
977		dma_free_contiguous(dev, page, alloc_size);
978}
979
980static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
981		dma_addr_t handle, unsigned long attrs)
982{
983	__iommu_dma_unmap(dev, handle, size);
984	__iommu_dma_free(dev, size, cpu_addr);
985}
986
987static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
988		struct page **pagep, gfp_t gfp, unsigned long attrs)
989{
990	bool coherent = dev_is_dma_coherent(dev);
991	size_t alloc_size = PAGE_ALIGN(size);
992	int node = dev_to_node(dev);
993	struct page *page = NULL;
994	void *cpu_addr;
995
996	page = dma_alloc_contiguous(dev, alloc_size, gfp);
997	if (!page)
998		page = alloc_pages_node(node, gfp, get_order(alloc_size));
999	if (!page)
1000		return NULL;
1001
1002	if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
1003		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1004
1005		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1006				prot, __builtin_return_address(0));
1007		if (!cpu_addr)
1008			goto out_free_pages;
1009
1010		if (!coherent)
1011			arch_dma_prep_coherent(page, size);
1012	} else {
1013		cpu_addr = page_address(page);
1014	}
1015
1016	*pagep = page;
1017	memset(cpu_addr, 0, alloc_size);
1018	return cpu_addr;
1019out_free_pages:
1020	dma_free_contiguous(dev, page, alloc_size);
1021	return NULL;
1022}
1023
1024static void *iommu_dma_alloc(struct device *dev, size_t size,
1025		dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1026{
1027	bool coherent = dev_is_dma_coherent(dev);
1028	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1029	struct page *page = NULL;
1030	void *cpu_addr;
1031
1032	gfp |= __GFP_ZERO;
1033
1034	if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
1035	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1036		return iommu_dma_alloc_remap(dev, size, handle, gfp,
1037				dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1038	}
1039
1040	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1041	    !gfpflags_allow_blocking(gfp) && !coherent)
1042		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1043					       gfp, NULL);
1044	else
1045		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1046	if (!cpu_addr)
1047		return NULL;
1048
1049	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1050			dev->coherent_dma_mask);
1051	if (*handle == DMA_MAPPING_ERROR) {
1052		__iommu_dma_free(dev, size, cpu_addr);
1053		return NULL;
1054	}
1055
1056	return cpu_addr;
1057}
1058
1059#ifdef CONFIG_DMA_REMAP
1060static void *iommu_dma_alloc_noncoherent(struct device *dev, size_t size,
1061		dma_addr_t *handle, enum dma_data_direction dir, gfp_t gfp)
1062{
1063	if (!gfpflags_allow_blocking(gfp)) {
1064		struct page *page;
1065
1066		page = dma_common_alloc_pages(dev, size, handle, dir, gfp);
1067		if (!page)
1068			return NULL;
1069		return page_address(page);
1070	}
1071
1072	return iommu_dma_alloc_remap(dev, size, handle, gfp | __GFP_ZERO,
1073				     PAGE_KERNEL, 0);
1074}
1075
1076static void iommu_dma_free_noncoherent(struct device *dev, size_t size,
1077		void *cpu_addr, dma_addr_t handle, enum dma_data_direction dir)
1078{
1079	__iommu_dma_unmap(dev, handle, size);
1080	__iommu_dma_free(dev, size, cpu_addr);
1081}
1082#else
1083#define iommu_dma_alloc_noncoherent		NULL
1084#define iommu_dma_free_noncoherent		NULL
1085#endif /* CONFIG_DMA_REMAP */
1086
1087static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1088		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1089		unsigned long attrs)
1090{
1091	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1092	unsigned long pfn, off = vma->vm_pgoff;
1093	int ret;
1094
1095	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1096
1097	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1098		return ret;
1099
1100	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1101		return -ENXIO;
1102
1103	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1104		struct page **pages = dma_common_find_pages(cpu_addr);
1105
1106		if (pages)
1107			return __iommu_dma_mmap(pages, size, vma);
1108		pfn = vmalloc_to_pfn(cpu_addr);
1109	} else {
1110		pfn = page_to_pfn(virt_to_page(cpu_addr));
1111	}
1112
1113	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1114			       vma->vm_end - vma->vm_start,
1115			       vma->vm_page_prot);
1116}
1117
1118static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1119		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1120		unsigned long attrs)
1121{
1122	struct page *page;
1123	int ret;
1124
1125	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1126		struct page **pages = dma_common_find_pages(cpu_addr);
1127
1128		if (pages) {
1129			return sg_alloc_table_from_pages(sgt, pages,
1130					PAGE_ALIGN(size) >> PAGE_SHIFT,
1131					0, size, GFP_KERNEL);
1132		}
1133
1134		page = vmalloc_to_page(cpu_addr);
1135	} else {
1136		page = virt_to_page(cpu_addr);
1137	}
1138
1139	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1140	if (!ret)
1141		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1142	return ret;
1143}
1144
1145static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1146{
1147	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1148
1149	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1150}
1151
1152static const struct dma_map_ops iommu_dma_ops = {
1153	.alloc			= iommu_dma_alloc,
1154	.free			= iommu_dma_free,
1155	.alloc_pages		= dma_common_alloc_pages,
1156	.free_pages		= dma_common_free_pages,
1157	.alloc_noncoherent	= iommu_dma_alloc_noncoherent,
1158	.free_noncoherent	= iommu_dma_free_noncoherent,
1159	.mmap			= iommu_dma_mmap,
1160	.get_sgtable		= iommu_dma_get_sgtable,
1161	.map_page		= iommu_dma_map_page,
1162	.unmap_page		= iommu_dma_unmap_page,
1163	.map_sg			= iommu_dma_map_sg,
1164	.unmap_sg		= iommu_dma_unmap_sg,
1165	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu,
1166	.sync_single_for_device	= iommu_dma_sync_single_for_device,
1167	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu,
1168	.sync_sg_for_device	= iommu_dma_sync_sg_for_device,
1169	.map_resource		= iommu_dma_map_resource,
1170	.unmap_resource		= iommu_dma_unmap_resource,
1171	.get_merge_boundary	= iommu_dma_get_merge_boundary,
1172};
1173
1174/*
1175 * The IOMMU core code allocates the default DMA domain, which the underlying
1176 * IOMMU driver needs to support via the dma-iommu layer.
1177 */
1178void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size)
1179{
1180	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1181
1182	if (!domain)
1183		goto out_err;
1184
1185	/*
1186	 * The IOMMU core code allocates the default DMA domain, which the
1187	 * underlying IOMMU driver needs to support via the dma-iommu layer.
1188	 */
1189	if (domain->type == IOMMU_DOMAIN_DMA) {
1190		if (iommu_dma_init_domain(domain, dma_base, size, dev))
1191			goto out_err;
1192		dev->dma_ops = &iommu_dma_ops;
1193	}
1194
1195	return;
1196out_err:
1197	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1198		 dev_name(dev));
1199}
1200
1201static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1202		phys_addr_t msi_addr, struct iommu_domain *domain)
1203{
1204	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1205	struct iommu_dma_msi_page *msi_page;
1206	dma_addr_t iova;
1207	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1208	size_t size = cookie_msi_granule(cookie);
1209
1210	msi_addr &= ~(phys_addr_t)(size - 1);
1211	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1212		if (msi_page->phys == msi_addr)
1213			return msi_page;
1214
1215	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1216	if (!msi_page)
1217		return NULL;
1218
1219	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1220	if (!iova)
1221		goto out_free_page;
1222
1223	if (iommu_map(domain, iova, msi_addr, size, prot))
1224		goto out_free_iova;
1225
1226	INIT_LIST_HEAD(&msi_page->list);
1227	msi_page->phys = msi_addr;
1228	msi_page->iova = iova;
1229	list_add(&msi_page->list, &cookie->msi_page_list);
1230	return msi_page;
1231
1232out_free_iova:
1233	iommu_dma_free_iova(cookie, iova, size);
1234out_free_page:
1235	kfree(msi_page);
1236	return NULL;
1237}
1238
1239int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1240{
1241	struct device *dev = msi_desc_to_dev(desc);
1242	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1243	struct iommu_dma_msi_page *msi_page;
1244	static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1245
1246	if (!domain || !domain->iova_cookie) {
1247		desc->iommu_cookie = NULL;
1248		return 0;
1249	}
1250
1251	/*
1252	 * In fact the whole prepare operation should already be serialised by
1253	 * irq_domain_mutex further up the callchain, but that's pretty subtle
1254	 * on its own, so consider this locking as failsafe documentation...
1255	 */
1256	mutex_lock(&msi_prepare_lock);
1257	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1258	mutex_unlock(&msi_prepare_lock);
1259
1260	msi_desc_set_iommu_cookie(desc, msi_page);
1261
1262	if (!msi_page)
1263		return -ENOMEM;
1264	return 0;
1265}
1266
1267void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1268			       struct msi_msg *msg)
1269{
1270	struct device *dev = msi_desc_to_dev(desc);
1271	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1272	const struct iommu_dma_msi_page *msi_page;
1273
1274	msi_page = msi_desc_get_iommu_cookie(desc);
1275
1276	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1277		return;
1278
1279	msg->address_hi = upper_32_bits(msi_page->iova);
1280	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1281	msg->address_lo += lower_32_bits(msi_page->iova);
1282}
1283
1284static int iommu_dma_init(void)
1285{
1286	return iova_cache_get();
1287}
1288arch_initcall(iommu_dma_init);
1289