1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A fairly generic DMA-API to IOMMU-API glue layer.
4  *
5  * Copyright (C) 2014-2015 ARM Ltd.
6  *
7  * based in part on arch/arm/mm/dma-mapping.c:
8  * Copyright (C) 2000-2004 Russell King
9  */
10 
11 #include <linux/acpi_iort.h>
12 #include <linux/device.h>
13 #include <linux/dma-map-ops.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/gfp.h>
16 #include <linux/huge_mm.h>
17 #include <linux/iommu.h>
18 #include <linux/iova.h>
19 #include <linux/irq.h>
20 #include <linux/mm.h>
21 #include <linux/mutex.h>
22 #include <linux/pci.h>
23 #include <linux/scatterlist.h>
24 #include <linux/vmalloc.h>
25 #include <linux/crash_dump.h>
26 
27 struct iommu_dma_msi_page {
28 	struct list_head	list;
29 	dma_addr_t		iova;
30 	phys_addr_t		phys;
31 };
32 
33 enum iommu_dma_cookie_type {
34 	IOMMU_DMA_IOVA_COOKIE,
35 	IOMMU_DMA_MSI_COOKIE,
36 };
37 
38 struct iommu_dma_cookie {
39 	enum iommu_dma_cookie_type	type;
40 	union {
41 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
42 		struct iova_domain	iovad;
43 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
44 		dma_addr_t		msi_iova;
45 	};
46 	struct list_head		msi_page_list;
47 
48 	/* Domain for flush queue callback; NULL if flush queue not in use */
49 	struct iommu_domain		*fq_domain;
50 };
51 
cookie_msi_granule(struct iommu_dma_cookie *cookie)52 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
53 {
54 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
55 		return cookie->iovad.granule;
56 	return PAGE_SIZE;
57 }
58 
cookie_alloc(enum iommu_dma_cookie_type type)59 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
60 {
61 	struct iommu_dma_cookie *cookie;
62 
63 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
64 	if (cookie) {
65 		INIT_LIST_HEAD(&cookie->msi_page_list);
66 		cookie->type = type;
67 	}
68 	return cookie;
69 }
70 
71 /**
72  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
73  * @domain: IOMMU domain to prepare for DMA-API usage
74  *
75  * IOMMU drivers should normally call this from their domain_alloc
76  * callback when domain->type == IOMMU_DOMAIN_DMA.
77  */
iommu_get_dma_cookie(struct iommu_domain *domain)78 int iommu_get_dma_cookie(struct iommu_domain *domain)
79 {
80 	if (domain->iova_cookie)
81 		return -EEXIST;
82 
83 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
84 	if (!domain->iova_cookie)
85 		return -ENOMEM;
86 
87 	return 0;
88 }
89 EXPORT_SYMBOL(iommu_get_dma_cookie);
90 
91 /**
92  * iommu_get_msi_cookie - Acquire just MSI remapping resources
93  * @domain: IOMMU domain to prepare
94  * @base: Start address of IOVA region for MSI mappings
95  *
96  * Users who manage their own IOVA allocation and do not want DMA API support,
97  * but would still like to take advantage of automatic MSI remapping, can use
98  * this to initialise their own domain appropriately. Users should reserve a
99  * contiguous IOVA region, starting at @base, large enough to accommodate the
100  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
101  * used by the devices attached to @domain.
102  */
iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)103 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
104 {
105 	struct iommu_dma_cookie *cookie;
106 
107 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
108 		return -EINVAL;
109 
110 	if (domain->iova_cookie)
111 		return -EEXIST;
112 
113 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
114 	if (!cookie)
115 		return -ENOMEM;
116 
117 	cookie->msi_iova = base;
118 	domain->iova_cookie = cookie;
119 	return 0;
120 }
121 EXPORT_SYMBOL(iommu_get_msi_cookie);
122 
123 /**
124  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
125  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
126  *          iommu_get_msi_cookie()
127  *
128  * IOMMU drivers should normally call this from their domain_free callback.
129  */
iommu_put_dma_cookie(struct iommu_domain *domain)130 void iommu_put_dma_cookie(struct iommu_domain *domain)
131 {
132 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
133 	struct iommu_dma_msi_page *msi, *tmp;
134 
135 	if (!cookie)
136 		return;
137 
138 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
139 		put_iova_domain(&cookie->iovad);
140 
141 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
142 		list_del(&msi->list);
143 		kfree(msi);
144 	}
145 	kfree(cookie);
146 	domain->iova_cookie = NULL;
147 }
148 EXPORT_SYMBOL(iommu_put_dma_cookie);
149 
150 /**
151  * iommu_dma_get_resv_regions - Reserved region driver helper
152  * @dev: Device from iommu_get_resv_regions()
153  * @list: Reserved region list from iommu_get_resv_regions()
154  *
155  * IOMMU drivers can use this to implement their .get_resv_regions callback
156  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
157  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
158  * reservation.
159  */
iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)160 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
161 {
162 
163 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
164 		iort_iommu_msi_get_resv_regions(dev, list);
165 
166 }
167 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
168 
cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, phys_addr_t start, phys_addr_t end)169 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
170 		phys_addr_t start, phys_addr_t end)
171 {
172 	struct iova_domain *iovad = &cookie->iovad;
173 	struct iommu_dma_msi_page *msi_page;
174 	int i, num_pages;
175 
176 	start -= iova_offset(iovad, start);
177 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
178 
179 	for (i = 0; i < num_pages; i++) {
180 		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
181 		if (!msi_page)
182 			return -ENOMEM;
183 
184 		msi_page->phys = start;
185 		msi_page->iova = start;
186 		INIT_LIST_HEAD(&msi_page->list);
187 		list_add(&msi_page->list, &cookie->msi_page_list);
188 		start += iovad->granule;
189 	}
190 
191 	return 0;
192 }
193 
iova_reserve_pci_windows(struct pci_dev *dev, struct iova_domain *iovad)194 static int iova_reserve_pci_windows(struct pci_dev *dev,
195 		struct iova_domain *iovad)
196 {
197 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
198 	struct resource_entry *window;
199 	unsigned long lo, hi;
200 	phys_addr_t start = 0, end;
201 
202 	resource_list_for_each_entry(window, &bridge->windows) {
203 		if (resource_type(window->res) != IORESOURCE_MEM)
204 			continue;
205 
206 		lo = iova_pfn(iovad, window->res->start - window->offset);
207 		hi = iova_pfn(iovad, window->res->end - window->offset);
208 		reserve_iova(iovad, lo, hi);
209 	}
210 
211 	/* Get reserved DMA windows from host bridge */
212 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
213 		end = window->res->start - window->offset;
214 resv_iova:
215 		if (end > start) {
216 			lo = iova_pfn(iovad, start);
217 			hi = iova_pfn(iovad, end);
218 			reserve_iova(iovad, lo, hi);
219 		} else if (end < start) {
220 			/* dma_ranges list should be sorted */
221 			dev_err(&dev->dev,
222 				"Failed to reserve IOVA [%pa-%pa]\n",
223 				&start, &end);
224 			return -EINVAL;
225 		}
226 
227 		start = window->res->end - window->offset + 1;
228 		/* If window is last entry */
229 		if (window->node.next == &bridge->dma_ranges &&
230 		    end != ~(phys_addr_t)0) {
231 			end = ~(phys_addr_t)0;
232 			goto resv_iova;
233 		}
234 	}
235 
236 	return 0;
237 }
238 
iova_reserve_iommu_regions(struct device *dev, struct iommu_domain *domain)239 static int iova_reserve_iommu_regions(struct device *dev,
240 		struct iommu_domain *domain)
241 {
242 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
243 	struct iova_domain *iovad = &cookie->iovad;
244 	struct iommu_resv_region *region;
245 	LIST_HEAD(resv_regions);
246 	int ret = 0;
247 
248 	if (dev_is_pci(dev)) {
249 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
250 		if (ret)
251 			return ret;
252 	}
253 
254 	iommu_get_resv_regions(dev, &resv_regions);
255 	list_for_each_entry(region, &resv_regions, list) {
256 		unsigned long lo, hi;
257 
258 		/* We ARE the software that manages these! */
259 		if (region->type == IOMMU_RESV_SW_MSI)
260 			continue;
261 
262 		lo = iova_pfn(iovad, region->start);
263 		hi = iova_pfn(iovad, region->start + region->length - 1);
264 		reserve_iova(iovad, lo, hi);
265 
266 		if (region->type == IOMMU_RESV_MSI)
267 			ret = cookie_init_hw_msi_region(cookie, region->start,
268 					region->start + region->length);
269 		if (ret)
270 			break;
271 	}
272 	iommu_put_resv_regions(dev, &resv_regions);
273 
274 	return ret;
275 }
276 
iommu_dma_flush_iotlb_all(struct iova_domain *iovad)277 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
278 {
279 	struct iommu_dma_cookie *cookie;
280 	struct iommu_domain *domain;
281 
282 	cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
283 	domain = cookie->fq_domain;
284 	/*
285 	 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
286 	 * implies that ops->flush_iotlb_all must be non-NULL.
287 	 */
288 	domain->ops->flush_iotlb_all(domain);
289 }
290 
291 /**
292  * iommu_dma_init_domain - Initialise a DMA mapping domain
293  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
294  * @base: IOVA at which the mappable address space starts
295  * @size: Size of IOVA space
296  * @dev: Device the domain is being initialised for
297  *
298  * @base and @size should be exact multiples of IOMMU page granularity to
299  * avoid rounding surprises. If necessary, we reserve the page at address 0
300  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
301  * any change which could make prior IOVAs invalid will fail.
302  */
iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, u64 size, struct device *dev)303 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
304 		u64 size, struct device *dev)
305 {
306 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
307 	unsigned long order, base_pfn;
308 	struct iova_domain *iovad;
309 	int attr;
310 
311 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
312 		return -EINVAL;
313 
314 	iovad = &cookie->iovad;
315 
316 	/* Use the smallest supported page size for IOVA granularity */
317 	order = __ffs(domain->pgsize_bitmap);
318 	base_pfn = max_t(unsigned long, 1, base >> order);
319 
320 	/* Check the domain allows at least some access to the device... */
321 	if (domain->geometry.force_aperture) {
322 		if (base > domain->geometry.aperture_end ||
323 		    base + size <= domain->geometry.aperture_start) {
324 			pr_warn("specified DMA range outside IOMMU capability\n");
325 			return -EFAULT;
326 		}
327 		/* ...then finally give it a kicking to make sure it fits */
328 		base_pfn = max_t(unsigned long, base_pfn,
329 				domain->geometry.aperture_start >> order);
330 	}
331 
332 	/* start_pfn is always nonzero for an already-initialised domain */
333 	if (iovad->start_pfn) {
334 		if (1UL << order != iovad->granule ||
335 		    base_pfn != iovad->start_pfn) {
336 			pr_warn("Incompatible range for DMA domain\n");
337 			return -EFAULT;
338 		}
339 
340 		return 0;
341 	}
342 
343 	init_iova_domain(iovad, 1UL << order, base_pfn);
344 
345 	if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
346 			DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
347 		if (init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all,
348 					NULL))
349 			pr_warn("iova flush queue initialization failed\n");
350 		else
351 			cookie->fq_domain = domain;
352 	}
353 
354 	if (!dev)
355 		return 0;
356 
357 	return iova_reserve_iommu_regions(dev, domain);
358 }
359 
iommu_dma_deferred_attach(struct device *dev, struct iommu_domain *domain)360 static int iommu_dma_deferred_attach(struct device *dev,
361 		struct iommu_domain *domain)
362 {
363 	const struct iommu_ops *ops = domain->ops;
364 
365 	if (!is_kdump_kernel())
366 		return 0;
367 
368 	if (unlikely(ops->is_attach_deferred &&
369 			ops->is_attach_deferred(domain, dev)))
370 		return iommu_attach_device(domain, dev);
371 
372 	return 0;
373 }
374 
375 /**
376  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
377  *                    page flags.
378  * @dir: Direction of DMA transfer
379  * @coherent: Is the DMA master cache-coherent?
380  * @attrs: DMA attributes for the mapping
381  *
382  * Return: corresponding IOMMU API page protection flags
383  */
dma_info_to_prot(enum dma_data_direction dir, bool coherent, unsigned long attrs)384 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
385 		     unsigned long attrs)
386 {
387 	int prot = coherent ? IOMMU_CACHE : 0;
388 
389 	if (attrs & DMA_ATTR_PRIVILEGED)
390 		prot |= IOMMU_PRIV;
391 
392 	switch (dir) {
393 	case DMA_BIDIRECTIONAL:
394 		return prot | IOMMU_READ | IOMMU_WRITE;
395 	case DMA_TO_DEVICE:
396 		return prot | IOMMU_READ;
397 	case DMA_FROM_DEVICE:
398 		return prot | IOMMU_WRITE;
399 	default:
400 		return 0;
401 	}
402 }
403 
iommu_dma_alloc_iova(struct iommu_domain *domain, size_t size, u64 dma_limit, struct device *dev)404 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
405 		size_t size, u64 dma_limit, struct device *dev)
406 {
407 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
408 	struct iova_domain *iovad = &cookie->iovad;
409 	unsigned long shift, iova_len, iova = 0;
410 
411 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
412 		cookie->msi_iova += size;
413 		return cookie->msi_iova - size;
414 	}
415 
416 	shift = iova_shift(iovad);
417 	iova_len = size >> shift;
418 	/*
419 	 * Freeing non-power-of-two-sized allocations back into the IOVA caches
420 	 * will come back to bite us badly, so we have to waste a bit of space
421 	 * rounding up anything cacheable to make sure that can't happen. The
422 	 * order of the unadjusted size will still match upon freeing.
423 	 */
424 	if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
425 		iova_len = roundup_pow_of_two(iova_len);
426 
427 	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
428 
429 	if (domain->geometry.force_aperture)
430 		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
431 
432 	/* Try to get PCI devices a SAC address */
433 	if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
434 		iova = alloc_iova_fast(iovad, iova_len,
435 				       DMA_BIT_MASK(32) >> shift, false);
436 
437 	if (!iova)
438 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
439 				       true);
440 
441 	return (dma_addr_t)iova << shift;
442 }
443 
iommu_dma_free_iova(struct iommu_dma_cookie *cookie, dma_addr_t iova, size_t size)444 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
445 		dma_addr_t iova, size_t size)
446 {
447 	struct iova_domain *iovad = &cookie->iovad;
448 
449 	/* The MSI case is only ever cleaning up its most recent allocation */
450 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
451 		cookie->msi_iova -= size;
452 	else if (cookie->fq_domain)	/* non-strict mode */
453 		queue_iova(iovad, iova_pfn(iovad, iova),
454 				size >> iova_shift(iovad), 0);
455 	else
456 		free_iova_fast(iovad, iova_pfn(iovad, iova),
457 				size >> iova_shift(iovad));
458 }
459 
__iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t size)460 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
461 		size_t size)
462 {
463 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
464 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
465 	struct iova_domain *iovad = &cookie->iovad;
466 	size_t iova_off = iova_offset(iovad, dma_addr);
467 	struct iommu_iotlb_gather iotlb_gather;
468 	size_t unmapped;
469 
470 	dma_addr -= iova_off;
471 	size = iova_align(iovad, size + iova_off);
472 	iommu_iotlb_gather_init(&iotlb_gather);
473 
474 	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
475 	WARN_ON(unmapped != size);
476 
477 	if (!cookie->fq_domain)
478 		iommu_iotlb_sync(domain, &iotlb_gather);
479 	iommu_dma_free_iova(cookie, dma_addr, size);
480 }
481 
__iommu_dma_map(struct device *dev, phys_addr_t phys, size_t size, int prot, u64 dma_mask)482 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
483 		size_t size, int prot, u64 dma_mask)
484 {
485 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
486 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
487 	struct iova_domain *iovad = &cookie->iovad;
488 	size_t iova_off = iova_offset(iovad, phys);
489 	dma_addr_t iova;
490 
491 	if (unlikely(iommu_dma_deferred_attach(dev, domain)))
492 		return DMA_MAPPING_ERROR;
493 
494 	size = iova_align(iovad, size + iova_off);
495 
496 	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
497 	if (!iova)
498 		return DMA_MAPPING_ERROR;
499 
500 	if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
501 		iommu_dma_free_iova(cookie, iova, size);
502 		return DMA_MAPPING_ERROR;
503 	}
504 	return iova + iova_off;
505 }
506 
__iommu_dma_free_pages(struct page **pages, int count)507 static void __iommu_dma_free_pages(struct page **pages, int count)
508 {
509 	while (count--)
510 		__free_page(pages[count]);
511 	kvfree(pages);
512 }
513 
__iommu_dma_alloc_pages(struct device *dev, unsigned int count, unsigned long order_mask, gfp_t gfp)514 static struct page **__iommu_dma_alloc_pages(struct device *dev,
515 		unsigned int count, unsigned long order_mask, gfp_t gfp)
516 {
517 	struct page **pages;
518 	unsigned int i = 0, nid = dev_to_node(dev);
519 
520 	order_mask &= (2U << MAX_ORDER) - 1;
521 	if (!order_mask)
522 		return NULL;
523 
524 	pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
525 	if (!pages)
526 		return NULL;
527 
528 	/* IOMMU can map any pages, so himem can also be used here */
529 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
530 
531 	/* It makes no sense to muck about with huge pages */
532 	gfp &= ~__GFP_COMP;
533 
534 	while (count) {
535 		struct page *page = NULL;
536 		unsigned int order_size;
537 
538 		/*
539 		 * Higher-order allocations are a convenience rather
540 		 * than a necessity, hence using __GFP_NORETRY until
541 		 * falling back to minimum-order allocations.
542 		 */
543 		for (order_mask &= (2U << __fls(count)) - 1;
544 		     order_mask; order_mask &= ~order_size) {
545 			unsigned int order = __fls(order_mask);
546 			gfp_t alloc_flags = gfp;
547 
548 			order_size = 1U << order;
549 			if (order_mask > order_size)
550 				alloc_flags |= __GFP_NORETRY;
551 			page = alloc_pages_node(nid, alloc_flags, order);
552 			if (!page)
553 				continue;
554 			if (order)
555 				split_page(page, order);
556 			break;
557 		}
558 		if (!page) {
559 			__iommu_dma_free_pages(pages, i);
560 			return NULL;
561 		}
562 		count -= order_size;
563 		while (order_size--)
564 			pages[i++] = page++;
565 	}
566 	return pages;
567 }
568 
569 /**
570  * iommu_dma_alloc_remap - Allocate and map a buffer contiguous in IOVA space
571  * @dev: Device to allocate memory for. Must be a real device
572  *	 attached to an iommu_dma_domain
573  * @size: Size of buffer in bytes
574  * @dma_handle: Out argument for allocated DMA handle
575  * @gfp: Allocation flags
576  * @prot: pgprot_t to use for the remapped mapping
577  * @attrs: DMA attributes for this allocation
578  *
579  * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
580  * but an IOMMU which supports smaller pages might not map the whole thing.
581  *
582  * Return: Mapped virtual address, or NULL on failure.
583  */
iommu_dma_alloc_remap(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot, unsigned long attrs)584 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
585 		dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
586 		unsigned long attrs)
587 {
588 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
589 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
590 	struct iova_domain *iovad = &cookie->iovad;
591 	bool coherent = dev_is_dma_coherent(dev);
592 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
593 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
594 	struct page **pages;
595 	struct sg_table sgt;
596 	dma_addr_t iova;
597 	void *vaddr;
598 
599 	*dma_handle = DMA_MAPPING_ERROR;
600 
601 	if (unlikely(iommu_dma_deferred_attach(dev, domain)))
602 		return NULL;
603 
604 	min_size = alloc_sizes & -alloc_sizes;
605 	if (min_size < PAGE_SIZE) {
606 		min_size = PAGE_SIZE;
607 		alloc_sizes |= PAGE_SIZE;
608 	} else {
609 		size = ALIGN(size, min_size);
610 	}
611 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
612 		alloc_sizes = min_size;
613 
614 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
615 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
616 					gfp);
617 	if (!pages)
618 		return NULL;
619 
620 	size = iova_align(iovad, size);
621 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
622 	if (!iova)
623 		goto out_free_pages;
624 
625 	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
626 		goto out_free_iova;
627 
628 	if (!(ioprot & IOMMU_CACHE)) {
629 		struct scatterlist *sg;
630 		int i;
631 
632 		for_each_sg(sgt.sgl, sg, sgt.orig_nents, i)
633 			arch_dma_prep_coherent(sg_page(sg), sg->length);
634 	}
635 
636 	if (iommu_map_sg_atomic(domain, iova, sgt.sgl, sgt.orig_nents, ioprot)
637 			< size)
638 		goto out_free_sg;
639 
640 	vaddr = dma_common_pages_remap(pages, size, prot,
641 			__builtin_return_address(0));
642 	if (!vaddr)
643 		goto out_unmap;
644 
645 	*dma_handle = iova;
646 	sg_free_table(&sgt);
647 	return vaddr;
648 
649 out_unmap:
650 	__iommu_dma_unmap(dev, iova, size);
651 out_free_sg:
652 	sg_free_table(&sgt);
653 out_free_iova:
654 	iommu_dma_free_iova(cookie, iova, size);
655 out_free_pages:
656 	__iommu_dma_free_pages(pages, count);
657 	return NULL;
658 }
659 
660 /**
661  * __iommu_dma_mmap - Map a buffer into provided user VMA
662  * @pages: Array representing buffer from __iommu_dma_alloc()
663  * @size: Size of buffer in bytes
664  * @vma: VMA describing requested userspace mapping
665  *
666  * Maps the pages of the buffer in @pages into @vma. The caller is responsible
667  * for verifying the correct size and protection of @vma beforehand.
668  */
__iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)669 static int __iommu_dma_mmap(struct page **pages, size_t size,
670 		struct vm_area_struct *vma)
671 {
672 	return vm_map_pages(vma, pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
673 }
674 
iommu_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)675 static void iommu_dma_sync_single_for_cpu(struct device *dev,
676 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
677 {
678 	phys_addr_t phys;
679 
680 	if (dev_is_dma_coherent(dev))
681 		return;
682 
683 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
684 	arch_sync_dma_for_cpu(phys, size, dir);
685 }
686 
iommu_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)687 static void iommu_dma_sync_single_for_device(struct device *dev,
688 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
689 {
690 	phys_addr_t phys;
691 
692 	if (dev_is_dma_coherent(dev))
693 		return;
694 
695 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
696 	arch_sync_dma_for_device(phys, size, dir);
697 }
698 
iommu_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir)699 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
700 		struct scatterlist *sgl, int nelems,
701 		enum dma_data_direction dir)
702 {
703 	struct scatterlist *sg;
704 	int i;
705 
706 	if (dev_is_dma_coherent(dev))
707 		return;
708 
709 	for_each_sg(sgl, sg, nelems, i)
710 		arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
711 }
712 
iommu_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir)713 static void iommu_dma_sync_sg_for_device(struct device *dev,
714 		struct scatterlist *sgl, int nelems,
715 		enum dma_data_direction dir)
716 {
717 	struct scatterlist *sg;
718 	int i;
719 
720 	if (dev_is_dma_coherent(dev))
721 		return;
722 
723 	for_each_sg(sgl, sg, nelems, i)
724 		arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
725 }
726 
iommu_dma_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, unsigned long attrs)727 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
728 		unsigned long offset, size_t size, enum dma_data_direction dir,
729 		unsigned long attrs)
730 {
731 	phys_addr_t phys = page_to_phys(page) + offset;
732 	bool coherent = dev_is_dma_coherent(dev);
733 	int prot = dma_info_to_prot(dir, coherent, attrs);
734 	dma_addr_t dma_handle;
735 
736 	dma_handle = __iommu_dma_map(dev, phys, size, prot, dma_get_mask(dev));
737 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
738 	    dma_handle != DMA_MAPPING_ERROR)
739 		arch_sync_dma_for_device(phys, size, dir);
740 	return dma_handle;
741 }
742 
iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir, unsigned long attrs)743 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
744 		size_t size, enum dma_data_direction dir, unsigned long attrs)
745 {
746 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
747 		iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
748 	__iommu_dma_unmap(dev, dma_handle, size);
749 }
750 
751 /*
752  * Prepare a successfully-mapped scatterlist to give back to the caller.
753  *
754  * At this point the segments are already laid out by iommu_dma_map_sg() to
755  * avoid individually crossing any boundaries, so we merely need to check a
756  * segment's start address to avoid concatenating across one.
757  */
__finalise_sg(struct device *dev, struct scatterlist *sg, int nents, dma_addr_t dma_addr)758 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
759 		dma_addr_t dma_addr)
760 {
761 	struct scatterlist *s, *cur = sg;
762 	unsigned long seg_mask = dma_get_seg_boundary(dev);
763 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
764 	int i, count = 0;
765 
766 	for_each_sg(sg, s, nents, i) {
767 		/* Restore this segment's original unaligned fields first */
768 		unsigned int s_iova_off = sg_dma_address(s);
769 		unsigned int s_length = sg_dma_len(s);
770 		unsigned int s_iova_len = s->length;
771 
772 		s->offset += s_iova_off;
773 		s->length = s_length;
774 		sg_dma_address(s) = DMA_MAPPING_ERROR;
775 		sg_dma_len(s) = 0;
776 
777 		/*
778 		 * Now fill in the real DMA data. If...
779 		 * - there is a valid output segment to append to
780 		 * - and this segment starts on an IOVA page boundary
781 		 * - but doesn't fall at a segment boundary
782 		 * - and wouldn't make the resulting output segment too long
783 		 */
784 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
785 		    (max_len - cur_len >= s_length)) {
786 			/* ...then concatenate it with the previous one */
787 			cur_len += s_length;
788 		} else {
789 			/* Otherwise start the next output segment */
790 			if (i > 0)
791 				cur = sg_next(cur);
792 			cur_len = s_length;
793 			count++;
794 
795 			sg_dma_address(cur) = dma_addr + s_iova_off;
796 		}
797 
798 		sg_dma_len(cur) = cur_len;
799 		dma_addr += s_iova_len;
800 
801 		if (s_length + s_iova_off < s_iova_len)
802 			cur_len = 0;
803 	}
804 	return count;
805 }
806 
807 /*
808  * If mapping failed, then just restore the original list,
809  * but making sure the DMA fields are invalidated.
810  */
__invalidate_sg(struct scatterlist *sg, int nents)811 static void __invalidate_sg(struct scatterlist *sg, int nents)
812 {
813 	struct scatterlist *s;
814 	int i;
815 
816 	for_each_sg(sg, s, nents, i) {
817 		if (sg_dma_address(s) != DMA_MAPPING_ERROR)
818 			s->offset += sg_dma_address(s);
819 		if (sg_dma_len(s))
820 			s->length = sg_dma_len(s);
821 		sg_dma_address(s) = DMA_MAPPING_ERROR;
822 		sg_dma_len(s) = 0;
823 	}
824 }
825 
826 /*
827  * The DMA API client is passing in a scatterlist which could describe
828  * any old buffer layout, but the IOMMU API requires everything to be
829  * aligned to IOMMU pages. Hence the need for this complicated bit of
830  * impedance-matching, to be able to hand off a suitably-aligned list,
831  * but still preserve the original offsets and sizes for the caller.
832  */
iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, unsigned long attrs)833 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
834 		int nents, enum dma_data_direction dir, unsigned long attrs)
835 {
836 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
837 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
838 	struct iova_domain *iovad = &cookie->iovad;
839 	struct scatterlist *s, *prev = NULL;
840 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
841 	dma_addr_t iova;
842 	size_t iova_len = 0;
843 	unsigned long mask = dma_get_seg_boundary(dev);
844 	int i;
845 
846 	if (unlikely(iommu_dma_deferred_attach(dev, domain)))
847 		return 0;
848 
849 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
850 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
851 
852 	/*
853 	 * Work out how much IOVA space we need, and align the segments to
854 	 * IOVA granules for the IOMMU driver to handle. With some clever
855 	 * trickery we can modify the list in-place, but reversibly, by
856 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
857 	 */
858 	for_each_sg(sg, s, nents, i) {
859 		size_t s_iova_off = iova_offset(iovad, s->offset);
860 		size_t s_length = s->length;
861 		size_t pad_len = (mask - iova_len + 1) & mask;
862 
863 		sg_dma_address(s) = s_iova_off;
864 		sg_dma_len(s) = s_length;
865 		s->offset -= s_iova_off;
866 		s_length = iova_align(iovad, s_length + s_iova_off);
867 		s->length = s_length;
868 
869 		/*
870 		 * Due to the alignment of our single IOVA allocation, we can
871 		 * depend on these assumptions about the segment boundary mask:
872 		 * - If mask size >= IOVA size, then the IOVA range cannot
873 		 *   possibly fall across a boundary, so we don't care.
874 		 * - If mask size < IOVA size, then the IOVA range must start
875 		 *   exactly on a boundary, therefore we can lay things out
876 		 *   based purely on segment lengths without needing to know
877 		 *   the actual addresses beforehand.
878 		 * - The mask must be a power of 2, so pad_len == 0 if
879 		 *   iova_len == 0, thus we cannot dereference prev the first
880 		 *   time through here (i.e. before it has a meaningful value).
881 		 */
882 		if (pad_len && pad_len < s_length - 1) {
883 			prev->length += pad_len;
884 			iova_len += pad_len;
885 		}
886 
887 		iova_len += s_length;
888 		prev = s;
889 	}
890 
891 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
892 	if (!iova)
893 		goto out_restore_sg;
894 
895 	/*
896 	 * We'll leave any physical concatenation to the IOMMU driver's
897 	 * implementation - it knows better than we do.
898 	 */
899 	if (iommu_map_sg_atomic(domain, iova, sg, nents, prot) < iova_len)
900 		goto out_free_iova;
901 
902 	return __finalise_sg(dev, sg, nents, iova);
903 
904 out_free_iova:
905 	iommu_dma_free_iova(cookie, iova, iova_len);
906 out_restore_sg:
907 	__invalidate_sg(sg, nents);
908 	return 0;
909 }
910 
iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, unsigned long attrs)911 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
912 		int nents, enum dma_data_direction dir, unsigned long attrs)
913 {
914 	dma_addr_t start, end;
915 	struct scatterlist *tmp;
916 	int i;
917 
918 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
919 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
920 
921 	/*
922 	 * The scatterlist segments are mapped into a single
923 	 * contiguous IOVA allocation, so this is incredibly easy.
924 	 */
925 	start = sg_dma_address(sg);
926 	for_each_sg(sg_next(sg), tmp, nents - 1, i) {
927 		if (sg_dma_len(tmp) == 0)
928 			break;
929 		sg = tmp;
930 	}
931 	end = sg_dma_address(sg) + sg_dma_len(sg);
932 	__iommu_dma_unmap(dev, start, end - start);
933 }
934 
iommu_dma_map_resource(struct device *dev, phys_addr_t phys, size_t size, enum dma_data_direction dir, unsigned long attrs)935 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
936 		size_t size, enum dma_data_direction dir, unsigned long attrs)
937 {
938 	return __iommu_dma_map(dev, phys, size,
939 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
940 			dma_get_mask(dev));
941 }
942 
iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, size_t size, enum dma_data_direction dir, unsigned long attrs)943 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
944 		size_t size, enum dma_data_direction dir, unsigned long attrs)
945 {
946 	__iommu_dma_unmap(dev, handle, size);
947 }
948 
__iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)949 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
950 {
951 	size_t alloc_size = PAGE_ALIGN(size);
952 	int count = alloc_size >> PAGE_SHIFT;
953 	struct page *page = NULL, **pages = NULL;
954 
955 	/* Non-coherent atomic allocation? Easy */
956 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
957 	    dma_free_from_pool(dev, cpu_addr, alloc_size))
958 		return;
959 
960 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
961 		/*
962 		 * If it the address is remapped, then it's either non-coherent
963 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
964 		 */
965 		pages = dma_common_find_pages(cpu_addr);
966 		if (!pages)
967 			page = vmalloc_to_page(cpu_addr);
968 		dma_common_free_remap(cpu_addr, alloc_size);
969 	} else {
970 		/* Lowmem means a coherent atomic or CMA allocation */
971 		page = virt_to_page(cpu_addr);
972 	}
973 
974 	if (pages)
975 		__iommu_dma_free_pages(pages, count);
976 	if (page)
977 		dma_free_contiguous(dev, page, alloc_size);
978 }
979 
iommu_dma_free(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle, unsigned long attrs)980 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
981 		dma_addr_t handle, unsigned long attrs)
982 {
983 	__iommu_dma_unmap(dev, handle, size);
984 	__iommu_dma_free(dev, size, cpu_addr);
985 }
986 
iommu_dma_alloc_pages(struct device *dev, size_t size, struct page **pagep, gfp_t gfp, unsigned long attrs)987 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
988 		struct page **pagep, gfp_t gfp, unsigned long attrs)
989 {
990 	bool coherent = dev_is_dma_coherent(dev);
991 	size_t alloc_size = PAGE_ALIGN(size);
992 	int node = dev_to_node(dev);
993 	struct page *page = NULL;
994 	void *cpu_addr;
995 
996 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
997 	if (!page)
998 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
999 	if (!page)
1000 		return NULL;
1001 
1002 	if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
1003 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1004 
1005 		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1006 				prot, __builtin_return_address(0));
1007 		if (!cpu_addr)
1008 			goto out_free_pages;
1009 
1010 		if (!coherent)
1011 			arch_dma_prep_coherent(page, size);
1012 	} else {
1013 		cpu_addr = page_address(page);
1014 	}
1015 
1016 	*pagep = page;
1017 	memset(cpu_addr, 0, alloc_size);
1018 	return cpu_addr;
1019 out_free_pages:
1020 	dma_free_contiguous(dev, page, alloc_size);
1021 	return NULL;
1022 }
1023 
iommu_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp, unsigned long attrs)1024 static void *iommu_dma_alloc(struct device *dev, size_t size,
1025 		dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1026 {
1027 	bool coherent = dev_is_dma_coherent(dev);
1028 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1029 	struct page *page = NULL;
1030 	void *cpu_addr;
1031 
1032 	gfp |= __GFP_ZERO;
1033 
1034 	if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
1035 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1036 		return iommu_dma_alloc_remap(dev, size, handle, gfp,
1037 				dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1038 	}
1039 
1040 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1041 	    !gfpflags_allow_blocking(gfp) && !coherent)
1042 		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1043 					       gfp, NULL);
1044 	else
1045 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1046 	if (!cpu_addr)
1047 		return NULL;
1048 
1049 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1050 			dev->coherent_dma_mask);
1051 	if (*handle == DMA_MAPPING_ERROR) {
1052 		__iommu_dma_free(dev, size, cpu_addr);
1053 		return NULL;
1054 	}
1055 
1056 	return cpu_addr;
1057 }
1058 
1059 #ifdef CONFIG_DMA_REMAP
iommu_dma_alloc_noncoherent(struct device *dev, size_t size, dma_addr_t *handle, enum dma_data_direction dir, gfp_t gfp)1060 static void *iommu_dma_alloc_noncoherent(struct device *dev, size_t size,
1061 		dma_addr_t *handle, enum dma_data_direction dir, gfp_t gfp)
1062 {
1063 	if (!gfpflags_allow_blocking(gfp)) {
1064 		struct page *page;
1065 
1066 		page = dma_common_alloc_pages(dev, size, handle, dir, gfp);
1067 		if (!page)
1068 			return NULL;
1069 		return page_address(page);
1070 	}
1071 
1072 	return iommu_dma_alloc_remap(dev, size, handle, gfp | __GFP_ZERO,
1073 				     PAGE_KERNEL, 0);
1074 }
1075 
iommu_dma_free_noncoherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle, enum dma_data_direction dir)1076 static void iommu_dma_free_noncoherent(struct device *dev, size_t size,
1077 		void *cpu_addr, dma_addr_t handle, enum dma_data_direction dir)
1078 {
1079 	__iommu_dma_unmap(dev, handle, size);
1080 	__iommu_dma_free(dev, size, cpu_addr);
1081 }
1082 #else
1083 #define iommu_dma_alloc_noncoherent		NULL
1084 #define iommu_dma_free_noncoherent		NULL
1085 #endif /* CONFIG_DMA_REMAP */
1086 
iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs)1087 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1088 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1089 		unsigned long attrs)
1090 {
1091 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1092 	unsigned long pfn, off = vma->vm_pgoff;
1093 	int ret;
1094 
1095 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1096 
1097 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1098 		return ret;
1099 
1100 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1101 		return -ENXIO;
1102 
1103 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1104 		struct page **pages = dma_common_find_pages(cpu_addr);
1105 
1106 		if (pages)
1107 			return __iommu_dma_mmap(pages, size, vma);
1108 		pfn = vmalloc_to_pfn(cpu_addr);
1109 	} else {
1110 		pfn = page_to_pfn(virt_to_page(cpu_addr));
1111 	}
1112 
1113 	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1114 			       vma->vm_end - vma->vm_start,
1115 			       vma->vm_page_prot);
1116 }
1117 
iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs)1118 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1119 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1120 		unsigned long attrs)
1121 {
1122 	struct page *page;
1123 	int ret;
1124 
1125 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1126 		struct page **pages = dma_common_find_pages(cpu_addr);
1127 
1128 		if (pages) {
1129 			return sg_alloc_table_from_pages(sgt, pages,
1130 					PAGE_ALIGN(size) >> PAGE_SHIFT,
1131 					0, size, GFP_KERNEL);
1132 		}
1133 
1134 		page = vmalloc_to_page(cpu_addr);
1135 	} else {
1136 		page = virt_to_page(cpu_addr);
1137 	}
1138 
1139 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1140 	if (!ret)
1141 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1142 	return ret;
1143 }
1144 
iommu_dma_get_merge_boundary(struct device *dev)1145 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1146 {
1147 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1148 
1149 	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1150 }
1151 
1152 static const struct dma_map_ops iommu_dma_ops = {
1153 	.alloc			= iommu_dma_alloc,
1154 	.free			= iommu_dma_free,
1155 	.alloc_pages		= dma_common_alloc_pages,
1156 	.free_pages		= dma_common_free_pages,
1157 	.alloc_noncoherent	= iommu_dma_alloc_noncoherent,
1158 	.free_noncoherent	= iommu_dma_free_noncoherent,
1159 	.mmap			= iommu_dma_mmap,
1160 	.get_sgtable		= iommu_dma_get_sgtable,
1161 	.map_page		= iommu_dma_map_page,
1162 	.unmap_page		= iommu_dma_unmap_page,
1163 	.map_sg			= iommu_dma_map_sg,
1164 	.unmap_sg		= iommu_dma_unmap_sg,
1165 	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu,
1166 	.sync_single_for_device	= iommu_dma_sync_single_for_device,
1167 	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu,
1168 	.sync_sg_for_device	= iommu_dma_sync_sg_for_device,
1169 	.map_resource		= iommu_dma_map_resource,
1170 	.unmap_resource		= iommu_dma_unmap_resource,
1171 	.get_merge_boundary	= iommu_dma_get_merge_boundary,
1172 };
1173 
1174 /*
1175  * The IOMMU core code allocates the default DMA domain, which the underlying
1176  * IOMMU driver needs to support via the dma-iommu layer.
1177  */
iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size)1178 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size)
1179 {
1180 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1181 
1182 	if (!domain)
1183 		goto out_err;
1184 
1185 	/*
1186 	 * The IOMMU core code allocates the default DMA domain, which the
1187 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
1188 	 */
1189 	if (domain->type == IOMMU_DOMAIN_DMA) {
1190 		if (iommu_dma_init_domain(domain, dma_base, size, dev))
1191 			goto out_err;
1192 		dev->dma_ops = &iommu_dma_ops;
1193 	}
1194 
1195 	return;
1196 out_err:
1197 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1198 		 dev_name(dev));
1199 }
1200 
iommu_dma_get_msi_page(struct device *dev, phys_addr_t msi_addr, struct iommu_domain *domain)1201 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1202 		phys_addr_t msi_addr, struct iommu_domain *domain)
1203 {
1204 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1205 	struct iommu_dma_msi_page *msi_page;
1206 	dma_addr_t iova;
1207 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1208 	size_t size = cookie_msi_granule(cookie);
1209 
1210 	msi_addr &= ~(phys_addr_t)(size - 1);
1211 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1212 		if (msi_page->phys == msi_addr)
1213 			return msi_page;
1214 
1215 	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1216 	if (!msi_page)
1217 		return NULL;
1218 
1219 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1220 	if (!iova)
1221 		goto out_free_page;
1222 
1223 	if (iommu_map(domain, iova, msi_addr, size, prot))
1224 		goto out_free_iova;
1225 
1226 	INIT_LIST_HEAD(&msi_page->list);
1227 	msi_page->phys = msi_addr;
1228 	msi_page->iova = iova;
1229 	list_add(&msi_page->list, &cookie->msi_page_list);
1230 	return msi_page;
1231 
1232 out_free_iova:
1233 	iommu_dma_free_iova(cookie, iova, size);
1234 out_free_page:
1235 	kfree(msi_page);
1236 	return NULL;
1237 }
1238 
iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)1239 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1240 {
1241 	struct device *dev = msi_desc_to_dev(desc);
1242 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1243 	struct iommu_dma_msi_page *msi_page;
1244 	static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1245 
1246 	if (!domain || !domain->iova_cookie) {
1247 		desc->iommu_cookie = NULL;
1248 		return 0;
1249 	}
1250 
1251 	/*
1252 	 * In fact the whole prepare operation should already be serialised by
1253 	 * irq_domain_mutex further up the callchain, but that's pretty subtle
1254 	 * on its own, so consider this locking as failsafe documentation...
1255 	 */
1256 	mutex_lock(&msi_prepare_lock);
1257 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1258 	mutex_unlock(&msi_prepare_lock);
1259 
1260 	msi_desc_set_iommu_cookie(desc, msi_page);
1261 
1262 	if (!msi_page)
1263 		return -ENOMEM;
1264 	return 0;
1265 }
1266 
iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg)1267 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1268 			       struct msi_msg *msg)
1269 {
1270 	struct device *dev = msi_desc_to_dev(desc);
1271 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1272 	const struct iommu_dma_msi_page *msi_page;
1273 
1274 	msi_page = msi_desc_get_iommu_cookie(desc);
1275 
1276 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1277 		return;
1278 
1279 	msg->address_hi = upper_32_bits(msi_page->iova);
1280 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1281 	msg->address_lo += lower_32_bits(msi_page->iova);
1282 }
1283 
iommu_dma_init(void)1284 static int iommu_dma_init(void)
1285 {
1286 	return iova_cache_get();
1287 }
1288 arch_initcall(iommu_dma_init);
1289