1/*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses.  You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 *     Redistribution and use in source and binary forms, with or
12 *     without modification, are permitted provided that the following
13 *     conditions are met:
14 *
15 *      - Redistributions of source code must retain the above
16 *        copyright notice, this list of conditions and the following
17 *        disclaimer.
18 *
19 *      - Redistributions in binary form must reproduce the above
20 *        copyright notice, this list of conditions and the following
21 *        disclaimer in the documentation and/or other materials
22 *        provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 *
33 */
34
35#include <linux/module.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/err.h>
39#include <linux/ctype.h>
40#include <linux/kthread.h>
41#include <linux/string.h>
42#include <linux/delay.h>
43#include <linux/atomic.h>
44#include <linux/inet.h>
45#include <rdma/ib_cache.h>
46#include <scsi/scsi_proto.h>
47#include <scsi/scsi_tcq.h>
48#include <target/target_core_base.h>
49#include <target/target_core_fabric.h>
50#include "ib_srpt.h"
51
52/* Name of this kernel module. */
53#define DRV_NAME		"ib_srpt"
54
55#define SRPT_ID_STRING	"Linux SRP target"
56
57#undef pr_fmt
58#define pr_fmt(fmt) DRV_NAME " " fmt
59
60MODULE_AUTHOR("Vu Pham and Bart Van Assche");
61MODULE_DESCRIPTION("SCSI RDMA Protocol target driver");
62MODULE_LICENSE("Dual BSD/GPL");
63
64/*
65 * Global Variables
66 */
67
68static u64 srpt_service_guid;
69static DEFINE_SPINLOCK(srpt_dev_lock);	/* Protects srpt_dev_list. */
70static LIST_HEAD(srpt_dev_list);	/* List of srpt_device structures. */
71
72static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
73module_param(srp_max_req_size, int, 0444);
74MODULE_PARM_DESC(srp_max_req_size,
75		 "Maximum size of SRP request messages in bytes.");
76
77static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
78module_param(srpt_srq_size, int, 0444);
79MODULE_PARM_DESC(srpt_srq_size,
80		 "Shared receive queue (SRQ) size.");
81
82static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp)
83{
84	return sprintf(buffer, "0x%016llx\n", *(u64 *)kp->arg);
85}
86module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
87		  0444);
88MODULE_PARM_DESC(srpt_service_guid,
89		 "Using this value for ioc_guid, id_ext, and cm_listen_id instead of using the node_guid of the first HCA.");
90
91static struct ib_client srpt_client;
92/* Protects both rdma_cm_port and rdma_cm_id. */
93static DEFINE_MUTEX(rdma_cm_mutex);
94/* Port number RDMA/CM will bind to. */
95static u16 rdma_cm_port;
96static struct rdma_cm_id *rdma_cm_id;
97static void srpt_release_cmd(struct se_cmd *se_cmd);
98static void srpt_free_ch(struct kref *kref);
99static int srpt_queue_status(struct se_cmd *cmd);
100static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
101static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
102static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
103
104/*
105 * The only allowed channel state changes are those that change the channel
106 * state into a state with a higher numerical value. Hence the new > prev test.
107 */
108static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
109{
110	unsigned long flags;
111	enum rdma_ch_state prev;
112	bool changed = false;
113
114	spin_lock_irqsave(&ch->spinlock, flags);
115	prev = ch->state;
116	if (new > prev) {
117		ch->state = new;
118		changed = true;
119	}
120	spin_unlock_irqrestore(&ch->spinlock, flags);
121
122	return changed;
123}
124
125/**
126 * srpt_event_handler - asynchronous IB event callback function
127 * @handler: IB event handler registered by ib_register_event_handler().
128 * @event: Description of the event that occurred.
129 *
130 * Callback function called by the InfiniBand core when an asynchronous IB
131 * event occurs. This callback may occur in interrupt context. See also
132 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
133 * Architecture Specification.
134 */
135static void srpt_event_handler(struct ib_event_handler *handler,
136			       struct ib_event *event)
137{
138	struct srpt_device *sdev =
139		container_of(handler, struct srpt_device, event_handler);
140	struct srpt_port *sport;
141	u8 port_num;
142
143	pr_debug("ASYNC event= %d on device= %s\n", event->event,
144		 dev_name(&sdev->device->dev));
145
146	switch (event->event) {
147	case IB_EVENT_PORT_ERR:
148		port_num = event->element.port_num - 1;
149		if (port_num < sdev->device->phys_port_cnt) {
150			sport = &sdev->port[port_num];
151			sport->lid = 0;
152			sport->sm_lid = 0;
153		} else {
154			WARN(true, "event %d: port_num %d out of range 1..%d\n",
155			     event->event, port_num + 1,
156			     sdev->device->phys_port_cnt);
157		}
158		break;
159	case IB_EVENT_PORT_ACTIVE:
160	case IB_EVENT_LID_CHANGE:
161	case IB_EVENT_PKEY_CHANGE:
162	case IB_EVENT_SM_CHANGE:
163	case IB_EVENT_CLIENT_REREGISTER:
164	case IB_EVENT_GID_CHANGE:
165		/* Refresh port data asynchronously. */
166		port_num = event->element.port_num - 1;
167		if (port_num < sdev->device->phys_port_cnt) {
168			sport = &sdev->port[port_num];
169			if (!sport->lid && !sport->sm_lid)
170				schedule_work(&sport->work);
171		} else {
172			WARN(true, "event %d: port_num %d out of range 1..%d\n",
173			     event->event, port_num + 1,
174			     sdev->device->phys_port_cnt);
175		}
176		break;
177	default:
178		pr_err("received unrecognized IB event %d\n", event->event);
179		break;
180	}
181}
182
183/**
184 * srpt_srq_event - SRQ event callback function
185 * @event: Description of the event that occurred.
186 * @ctx: Context pointer specified at SRQ creation time.
187 */
188static void srpt_srq_event(struct ib_event *event, void *ctx)
189{
190	pr_debug("SRQ event %d\n", event->event);
191}
192
193static const char *get_ch_state_name(enum rdma_ch_state s)
194{
195	switch (s) {
196	case CH_CONNECTING:
197		return "connecting";
198	case CH_LIVE:
199		return "live";
200	case CH_DISCONNECTING:
201		return "disconnecting";
202	case CH_DRAINING:
203		return "draining";
204	case CH_DISCONNECTED:
205		return "disconnected";
206	}
207	return "???";
208}
209
210/**
211 * srpt_qp_event - QP event callback function
212 * @event: Description of the event that occurred.
213 * @ch: SRPT RDMA channel.
214 */
215static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
216{
217	pr_debug("QP event %d on ch=%p sess_name=%s-%d state=%s\n",
218		 event->event, ch, ch->sess_name, ch->qp->qp_num,
219		 get_ch_state_name(ch->state));
220
221	switch (event->event) {
222	case IB_EVENT_COMM_EST:
223		if (ch->using_rdma_cm)
224			rdma_notify(ch->rdma_cm.cm_id, event->event);
225		else
226			ib_cm_notify(ch->ib_cm.cm_id, event->event);
227		break;
228	case IB_EVENT_QP_LAST_WQE_REACHED:
229		pr_debug("%s-%d, state %s: received Last WQE event.\n",
230			 ch->sess_name, ch->qp->qp_num,
231			 get_ch_state_name(ch->state));
232		break;
233	default:
234		pr_err("received unrecognized IB QP event %d\n", event->event);
235		break;
236	}
237}
238
239/**
240 * srpt_set_ioc - initialize a IOUnitInfo structure
241 * @c_list: controller list.
242 * @slot: one-based slot number.
243 * @value: four-bit value.
244 *
245 * Copies the lowest four bits of value in element slot of the array of four
246 * bit elements called c_list (controller list). The index slot is one-based.
247 */
248static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
249{
250	u16 id;
251	u8 tmp;
252
253	id = (slot - 1) / 2;
254	if (slot & 0x1) {
255		tmp = c_list[id] & 0xf;
256		c_list[id] = (value << 4) | tmp;
257	} else {
258		tmp = c_list[id] & 0xf0;
259		c_list[id] = (value & 0xf) | tmp;
260	}
261}
262
263/**
264 * srpt_get_class_port_info - copy ClassPortInfo to a management datagram
265 * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO.
266 *
267 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
268 * Specification.
269 */
270static void srpt_get_class_port_info(struct ib_dm_mad *mad)
271{
272	struct ib_class_port_info *cif;
273
274	cif = (struct ib_class_port_info *)mad->data;
275	memset(cif, 0, sizeof(*cif));
276	cif->base_version = 1;
277	cif->class_version = 1;
278
279	ib_set_cpi_resp_time(cif, 20);
280	mad->mad_hdr.status = 0;
281}
282
283/**
284 * srpt_get_iou - write IOUnitInfo to a management datagram
285 * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO.
286 *
287 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
288 * Specification. See also section B.7, table B.6 in the SRP r16a document.
289 */
290static void srpt_get_iou(struct ib_dm_mad *mad)
291{
292	struct ib_dm_iou_info *ioui;
293	u8 slot;
294	int i;
295
296	ioui = (struct ib_dm_iou_info *)mad->data;
297	ioui->change_id = cpu_to_be16(1);
298	ioui->max_controllers = 16;
299
300	/* set present for slot 1 and empty for the rest */
301	srpt_set_ioc(ioui->controller_list, 1, 1);
302	for (i = 1, slot = 2; i < 16; i++, slot++)
303		srpt_set_ioc(ioui->controller_list, slot, 0);
304
305	mad->mad_hdr.status = 0;
306}
307
308/**
309 * srpt_get_ioc - write IOControllerprofile to a management datagram
310 * @sport: HCA port through which the MAD has been received.
311 * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query.
312 * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE.
313 *
314 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
315 * Architecture Specification. See also section B.7, table B.7 in the SRP
316 * r16a document.
317 */
318static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
319			 struct ib_dm_mad *mad)
320{
321	struct srpt_device *sdev = sport->sdev;
322	struct ib_dm_ioc_profile *iocp;
323	int send_queue_depth;
324
325	iocp = (struct ib_dm_ioc_profile *)mad->data;
326
327	if (!slot || slot > 16) {
328		mad->mad_hdr.status
329			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
330		return;
331	}
332
333	if (slot > 2) {
334		mad->mad_hdr.status
335			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
336		return;
337	}
338
339	if (sdev->use_srq)
340		send_queue_depth = sdev->srq_size;
341	else
342		send_queue_depth = min(MAX_SRPT_RQ_SIZE,
343				       sdev->device->attrs.max_qp_wr);
344
345	memset(iocp, 0, sizeof(*iocp));
346	strcpy(iocp->id_string, SRPT_ID_STRING);
347	iocp->guid = cpu_to_be64(srpt_service_guid);
348	iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
349	iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
350	iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
351	iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
352	iocp->subsys_device_id = 0x0;
353	iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
354	iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
355	iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
356	iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
357	iocp->send_queue_depth = cpu_to_be16(send_queue_depth);
358	iocp->rdma_read_depth = 4;
359	iocp->send_size = cpu_to_be32(srp_max_req_size);
360	iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
361					  1U << 24));
362	iocp->num_svc_entries = 1;
363	iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
364		SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
365
366	mad->mad_hdr.status = 0;
367}
368
369/**
370 * srpt_get_svc_entries - write ServiceEntries to a management datagram
371 * @ioc_guid: I/O controller GUID to use in reply.
372 * @slot: I/O controller number.
373 * @hi: End of the range of service entries to be specified in the reply.
374 * @lo: Start of the range of service entries to be specified in the reply..
375 * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES.
376 *
377 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
378 * Specification. See also section B.7, table B.8 in the SRP r16a document.
379 */
380static void srpt_get_svc_entries(u64 ioc_guid,
381				 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
382{
383	struct ib_dm_svc_entries *svc_entries;
384
385	WARN_ON(!ioc_guid);
386
387	if (!slot || slot > 16) {
388		mad->mad_hdr.status
389			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
390		return;
391	}
392
393	if (slot > 2 || lo > hi || hi > 1) {
394		mad->mad_hdr.status
395			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
396		return;
397	}
398
399	svc_entries = (struct ib_dm_svc_entries *)mad->data;
400	memset(svc_entries, 0, sizeof(*svc_entries));
401	svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
402	snprintf(svc_entries->service_entries[0].name,
403		 sizeof(svc_entries->service_entries[0].name),
404		 "%s%016llx",
405		 SRP_SERVICE_NAME_PREFIX,
406		 ioc_guid);
407
408	mad->mad_hdr.status = 0;
409}
410
411/**
412 * srpt_mgmt_method_get - process a received management datagram
413 * @sp:      HCA port through which the MAD has been received.
414 * @rq_mad:  received MAD.
415 * @rsp_mad: response MAD.
416 */
417static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
418				 struct ib_dm_mad *rsp_mad)
419{
420	u16 attr_id;
421	u32 slot;
422	u8 hi, lo;
423
424	attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
425	switch (attr_id) {
426	case DM_ATTR_CLASS_PORT_INFO:
427		srpt_get_class_port_info(rsp_mad);
428		break;
429	case DM_ATTR_IOU_INFO:
430		srpt_get_iou(rsp_mad);
431		break;
432	case DM_ATTR_IOC_PROFILE:
433		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
434		srpt_get_ioc(sp, slot, rsp_mad);
435		break;
436	case DM_ATTR_SVC_ENTRIES:
437		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
438		hi = (u8) ((slot >> 8) & 0xff);
439		lo = (u8) (slot & 0xff);
440		slot = (u16) ((slot >> 16) & 0xffff);
441		srpt_get_svc_entries(srpt_service_guid,
442				     slot, hi, lo, rsp_mad);
443		break;
444	default:
445		rsp_mad->mad_hdr.status =
446		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
447		break;
448	}
449}
450
451/**
452 * srpt_mad_send_handler - MAD send completion callback
453 * @mad_agent: Return value of ib_register_mad_agent().
454 * @mad_wc: Work completion reporting that the MAD has been sent.
455 */
456static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
457				  struct ib_mad_send_wc *mad_wc)
458{
459	rdma_destroy_ah(mad_wc->send_buf->ah, RDMA_DESTROY_AH_SLEEPABLE);
460	ib_free_send_mad(mad_wc->send_buf);
461}
462
463/**
464 * srpt_mad_recv_handler - MAD reception callback function
465 * @mad_agent: Return value of ib_register_mad_agent().
466 * @send_buf: Not used.
467 * @mad_wc: Work completion reporting that a MAD has been received.
468 */
469static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
470				  struct ib_mad_send_buf *send_buf,
471				  struct ib_mad_recv_wc *mad_wc)
472{
473	struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
474	struct ib_ah *ah;
475	struct ib_mad_send_buf *rsp;
476	struct ib_dm_mad *dm_mad;
477
478	if (!mad_wc || !mad_wc->recv_buf.mad)
479		return;
480
481	ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
482				  mad_wc->recv_buf.grh, mad_agent->port_num);
483	if (IS_ERR(ah))
484		goto err;
485
486	BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
487
488	rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
489				 mad_wc->wc->pkey_index, 0,
490				 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
491				 GFP_KERNEL,
492				 IB_MGMT_BASE_VERSION);
493	if (IS_ERR(rsp))
494		goto err_rsp;
495
496	rsp->ah = ah;
497
498	dm_mad = rsp->mad;
499	memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
500	dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
501	dm_mad->mad_hdr.status = 0;
502
503	switch (mad_wc->recv_buf.mad->mad_hdr.method) {
504	case IB_MGMT_METHOD_GET:
505		srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
506		break;
507	case IB_MGMT_METHOD_SET:
508		dm_mad->mad_hdr.status =
509		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
510		break;
511	default:
512		dm_mad->mad_hdr.status =
513		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
514		break;
515	}
516
517	if (!ib_post_send_mad(rsp, NULL)) {
518		ib_free_recv_mad(mad_wc);
519		/* will destroy_ah & free_send_mad in send completion */
520		return;
521	}
522
523	ib_free_send_mad(rsp);
524
525err_rsp:
526	rdma_destroy_ah(ah, RDMA_DESTROY_AH_SLEEPABLE);
527err:
528	ib_free_recv_mad(mad_wc);
529}
530
531static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid)
532{
533	const __be16 *g = (const __be16 *)guid;
534
535	return snprintf(buf, size, "%04x:%04x:%04x:%04x",
536			be16_to_cpu(g[0]), be16_to_cpu(g[1]),
537			be16_to_cpu(g[2]), be16_to_cpu(g[3]));
538}
539
540/**
541 * srpt_refresh_port - configure a HCA port
542 * @sport: SRPT HCA port.
543 *
544 * Enable InfiniBand management datagram processing, update the cached sm_lid,
545 * lid and gid values, and register a callback function for processing MADs
546 * on the specified port.
547 *
548 * Note: It is safe to call this function more than once for the same port.
549 */
550static int srpt_refresh_port(struct srpt_port *sport)
551{
552	struct ib_mad_agent *mad_agent;
553	struct ib_mad_reg_req reg_req;
554	struct ib_port_modify port_modify;
555	struct ib_port_attr port_attr;
556	int ret;
557
558	ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
559	if (ret)
560		return ret;
561
562	sport->sm_lid = port_attr.sm_lid;
563	sport->lid = port_attr.lid;
564
565	ret = rdma_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
566	if (ret)
567		return ret;
568
569	srpt_format_guid(sport->guid_name, ARRAY_SIZE(sport->guid_name),
570			 &sport->gid.global.interface_id);
571	snprintf(sport->gid_name, ARRAY_SIZE(sport->gid_name),
572		 "0x%016llx%016llx",
573		 be64_to_cpu(sport->gid.global.subnet_prefix),
574		 be64_to_cpu(sport->gid.global.interface_id));
575
576	if (rdma_protocol_iwarp(sport->sdev->device, sport->port))
577		return 0;
578
579	memset(&port_modify, 0, sizeof(port_modify));
580	port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
581	port_modify.clr_port_cap_mask = 0;
582
583	ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
584	if (ret) {
585		pr_warn("%s-%d: enabling device management failed (%d). Note: this is expected if SR-IOV is enabled.\n",
586			dev_name(&sport->sdev->device->dev), sport->port, ret);
587		return 0;
588	}
589
590	if (!sport->mad_agent) {
591		memset(&reg_req, 0, sizeof(reg_req));
592		reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
593		reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
594		set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
595		set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
596
597		mad_agent = ib_register_mad_agent(sport->sdev->device,
598						  sport->port,
599						  IB_QPT_GSI,
600						  &reg_req, 0,
601						  srpt_mad_send_handler,
602						  srpt_mad_recv_handler,
603						  sport, 0);
604		if (IS_ERR(mad_agent)) {
605			pr_err("%s-%d: MAD agent registration failed (%ld). Note: this is expected if SR-IOV is enabled.\n",
606			       dev_name(&sport->sdev->device->dev), sport->port,
607			       PTR_ERR(mad_agent));
608			sport->mad_agent = NULL;
609			memset(&port_modify, 0, sizeof(port_modify));
610			port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
611			ib_modify_port(sport->sdev->device, sport->port, 0,
612				       &port_modify);
613			return 0;
614		}
615
616		sport->mad_agent = mad_agent;
617	}
618
619	return 0;
620}
621
622/**
623 * srpt_unregister_mad_agent - unregister MAD callback functions
624 * @sdev: SRPT HCA pointer.
625 * @port_cnt: number of ports with registered MAD
626 *
627 * Note: It is safe to call this function more than once for the same device.
628 */
629static void srpt_unregister_mad_agent(struct srpt_device *sdev, int port_cnt)
630{
631	struct ib_port_modify port_modify = {
632		.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
633	};
634	struct srpt_port *sport;
635	int i;
636
637	for (i = 1; i <= port_cnt; i++) {
638		sport = &sdev->port[i - 1];
639		WARN_ON(sport->port != i);
640		if (sport->mad_agent) {
641			ib_modify_port(sdev->device, i, 0, &port_modify);
642			ib_unregister_mad_agent(sport->mad_agent);
643			sport->mad_agent = NULL;
644		}
645	}
646}
647
648/**
649 * srpt_alloc_ioctx - allocate a SRPT I/O context structure
650 * @sdev: SRPT HCA pointer.
651 * @ioctx_size: I/O context size.
652 * @buf_cache: I/O buffer cache.
653 * @dir: DMA data direction.
654 */
655static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
656					   int ioctx_size,
657					   struct kmem_cache *buf_cache,
658					   enum dma_data_direction dir)
659{
660	struct srpt_ioctx *ioctx;
661
662	ioctx = kzalloc(ioctx_size, GFP_KERNEL);
663	if (!ioctx)
664		goto err;
665
666	ioctx->buf = kmem_cache_alloc(buf_cache, GFP_KERNEL);
667	if (!ioctx->buf)
668		goto err_free_ioctx;
669
670	ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf,
671				       kmem_cache_size(buf_cache), dir);
672	if (ib_dma_mapping_error(sdev->device, ioctx->dma))
673		goto err_free_buf;
674
675	return ioctx;
676
677err_free_buf:
678	kmem_cache_free(buf_cache, ioctx->buf);
679err_free_ioctx:
680	kfree(ioctx);
681err:
682	return NULL;
683}
684
685/**
686 * srpt_free_ioctx - free a SRPT I/O context structure
687 * @sdev: SRPT HCA pointer.
688 * @ioctx: I/O context pointer.
689 * @buf_cache: I/O buffer cache.
690 * @dir: DMA data direction.
691 */
692static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
693			    struct kmem_cache *buf_cache,
694			    enum dma_data_direction dir)
695{
696	if (!ioctx)
697		return;
698
699	ib_dma_unmap_single(sdev->device, ioctx->dma,
700			    kmem_cache_size(buf_cache), dir);
701	kmem_cache_free(buf_cache, ioctx->buf);
702	kfree(ioctx);
703}
704
705/**
706 * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures
707 * @sdev:       Device to allocate the I/O context ring for.
708 * @ring_size:  Number of elements in the I/O context ring.
709 * @ioctx_size: I/O context size.
710 * @buf_cache:  I/O buffer cache.
711 * @alignment_offset: Offset in each ring buffer at which the SRP information
712 *		unit starts.
713 * @dir:        DMA data direction.
714 */
715static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
716				int ring_size, int ioctx_size,
717				struct kmem_cache *buf_cache,
718				int alignment_offset,
719				enum dma_data_direction dir)
720{
721	struct srpt_ioctx **ring;
722	int i;
723
724	WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) &&
725		ioctx_size != sizeof(struct srpt_send_ioctx));
726
727	ring = kvmalloc_array(ring_size, sizeof(ring[0]), GFP_KERNEL);
728	if (!ring)
729		goto out;
730	for (i = 0; i < ring_size; ++i) {
731		ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, buf_cache, dir);
732		if (!ring[i])
733			goto err;
734		ring[i]->index = i;
735		ring[i]->offset = alignment_offset;
736	}
737	goto out;
738
739err:
740	while (--i >= 0)
741		srpt_free_ioctx(sdev, ring[i], buf_cache, dir);
742	kvfree(ring);
743	ring = NULL;
744out:
745	return ring;
746}
747
748/**
749 * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures
750 * @ioctx_ring: I/O context ring to be freed.
751 * @sdev: SRPT HCA pointer.
752 * @ring_size: Number of ring elements.
753 * @buf_cache: I/O buffer cache.
754 * @dir: DMA data direction.
755 */
756static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
757				 struct srpt_device *sdev, int ring_size,
758				 struct kmem_cache *buf_cache,
759				 enum dma_data_direction dir)
760{
761	int i;
762
763	if (!ioctx_ring)
764		return;
765
766	for (i = 0; i < ring_size; ++i)
767		srpt_free_ioctx(sdev, ioctx_ring[i], buf_cache, dir);
768	kvfree(ioctx_ring);
769}
770
771/**
772 * srpt_set_cmd_state - set the state of a SCSI command
773 * @ioctx: Send I/O context.
774 * @new: New I/O context state.
775 *
776 * Does not modify the state of aborted commands. Returns the previous command
777 * state.
778 */
779static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
780						  enum srpt_command_state new)
781{
782	enum srpt_command_state previous;
783
784	previous = ioctx->state;
785	if (previous != SRPT_STATE_DONE)
786		ioctx->state = new;
787
788	return previous;
789}
790
791/**
792 * srpt_test_and_set_cmd_state - test and set the state of a command
793 * @ioctx: Send I/O context.
794 * @old: Current I/O context state.
795 * @new: New I/O context state.
796 *
797 * Returns true if and only if the previous command state was equal to 'old'.
798 */
799static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
800					enum srpt_command_state old,
801					enum srpt_command_state new)
802{
803	enum srpt_command_state previous;
804
805	WARN_ON(!ioctx);
806	WARN_ON(old == SRPT_STATE_DONE);
807	WARN_ON(new == SRPT_STATE_NEW);
808
809	previous = ioctx->state;
810	if (previous == old)
811		ioctx->state = new;
812
813	return previous == old;
814}
815
816/**
817 * srpt_post_recv - post an IB receive request
818 * @sdev: SRPT HCA pointer.
819 * @ch: SRPT RDMA channel.
820 * @ioctx: Receive I/O context pointer.
821 */
822static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch,
823			  struct srpt_recv_ioctx *ioctx)
824{
825	struct ib_sge list;
826	struct ib_recv_wr wr;
827
828	BUG_ON(!sdev);
829	list.addr = ioctx->ioctx.dma + ioctx->ioctx.offset;
830	list.length = srp_max_req_size;
831	list.lkey = sdev->lkey;
832
833	ioctx->ioctx.cqe.done = srpt_recv_done;
834	wr.wr_cqe = &ioctx->ioctx.cqe;
835	wr.next = NULL;
836	wr.sg_list = &list;
837	wr.num_sge = 1;
838
839	if (sdev->use_srq)
840		return ib_post_srq_recv(sdev->srq, &wr, NULL);
841	else
842		return ib_post_recv(ch->qp, &wr, NULL);
843}
844
845/**
846 * srpt_zerolength_write - perform a zero-length RDMA write
847 * @ch: SRPT RDMA channel.
848 *
849 * A quote from the InfiniBand specification: C9-88: For an HCA responder
850 * using Reliable Connection service, for each zero-length RDMA READ or WRITE
851 * request, the R_Key shall not be validated, even if the request includes
852 * Immediate data.
853 */
854static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
855{
856	struct ib_rdma_wr wr = {
857		.wr = {
858			.next		= NULL,
859			{ .wr_cqe	= &ch->zw_cqe, },
860			.opcode		= IB_WR_RDMA_WRITE,
861			.send_flags	= IB_SEND_SIGNALED,
862		}
863	};
864
865	pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
866		 ch->qp->qp_num);
867
868	return ib_post_send(ch->qp, &wr.wr, NULL);
869}
870
871static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
872{
873	struct srpt_rdma_ch *ch = wc->qp->qp_context;
874
875	pr_debug("%s-%d wc->status %d\n", ch->sess_name, ch->qp->qp_num,
876		 wc->status);
877
878	if (wc->status == IB_WC_SUCCESS) {
879		srpt_process_wait_list(ch);
880	} else {
881		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
882			schedule_work(&ch->release_work);
883		else
884			pr_debug("%s-%d: already disconnected.\n",
885				 ch->sess_name, ch->qp->qp_num);
886	}
887}
888
889static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
890		struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
891		unsigned *sg_cnt)
892{
893	enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
894	struct srpt_rdma_ch *ch = ioctx->ch;
895	struct scatterlist *prev = NULL;
896	unsigned prev_nents;
897	int ret, i;
898
899	if (nbufs == 1) {
900		ioctx->rw_ctxs = &ioctx->s_rw_ctx;
901	} else {
902		ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
903			GFP_KERNEL);
904		if (!ioctx->rw_ctxs)
905			return -ENOMEM;
906	}
907
908	for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
909		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
910		u64 remote_addr = be64_to_cpu(db->va);
911		u32 size = be32_to_cpu(db->len);
912		u32 rkey = be32_to_cpu(db->key);
913
914		ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
915				i < nbufs - 1);
916		if (ret)
917			goto unwind;
918
919		ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
920				ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
921		if (ret < 0) {
922			target_free_sgl(ctx->sg, ctx->nents);
923			goto unwind;
924		}
925
926		ioctx->n_rdma += ret;
927		ioctx->n_rw_ctx++;
928
929		if (prev) {
930			sg_unmark_end(&prev[prev_nents - 1]);
931			sg_chain(prev, prev_nents + 1, ctx->sg);
932		} else {
933			*sg = ctx->sg;
934		}
935
936		prev = ctx->sg;
937		prev_nents = ctx->nents;
938
939		*sg_cnt += ctx->nents;
940	}
941
942	return 0;
943
944unwind:
945	while (--i >= 0) {
946		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
947
948		rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
949				ctx->sg, ctx->nents, dir);
950		target_free_sgl(ctx->sg, ctx->nents);
951	}
952	if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
953		kfree(ioctx->rw_ctxs);
954	return ret;
955}
956
957static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
958				    struct srpt_send_ioctx *ioctx)
959{
960	enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
961	int i;
962
963	for (i = 0; i < ioctx->n_rw_ctx; i++) {
964		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
965
966		rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
967				ctx->sg, ctx->nents, dir);
968		target_free_sgl(ctx->sg, ctx->nents);
969	}
970
971	if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
972		kfree(ioctx->rw_ctxs);
973}
974
975static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
976{
977	/*
978	 * The pointer computations below will only be compiled correctly
979	 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
980	 * whether srp_cmd::add_data has been declared as a byte pointer.
981	 */
982	BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
983		     !__same_type(srp_cmd->add_data[0], (u8)0));
984
985	/*
986	 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
987	 * CDB LENGTH' field are reserved and the size in bytes of this field
988	 * is four times the value specified in bits 3..7. Hence the "& ~3".
989	 */
990	return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
991}
992
993/**
994 * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request
995 * @recv_ioctx: I/O context associated with the received command @srp_cmd.
996 * @ioctx: I/O context that will be used for responding to the initiator.
997 * @srp_cmd: Pointer to the SRP_CMD request data.
998 * @dir: Pointer to the variable to which the transfer direction will be
999 *   written.
1000 * @sg: [out] scatterlist for the parsed SRP_CMD.
1001 * @sg_cnt: [out] length of @sg.
1002 * @data_len: Pointer to the variable to which the total data length of all
1003 *   descriptors in the SRP_CMD request will be written.
1004 * @imm_data_offset: [in] Offset in SRP_CMD requests at which immediate data
1005 *   starts.
1006 *
1007 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
1008 *
1009 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
1010 * -ENOMEM when memory allocation fails and zero upon success.
1011 */
1012static int srpt_get_desc_tbl(struct srpt_recv_ioctx *recv_ioctx,
1013		struct srpt_send_ioctx *ioctx,
1014		struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
1015		struct scatterlist **sg, unsigned int *sg_cnt, u64 *data_len,
1016		u16 imm_data_offset)
1017{
1018	BUG_ON(!dir);
1019	BUG_ON(!data_len);
1020
1021	/*
1022	 * The lower four bits of the buffer format field contain the DATA-IN
1023	 * buffer descriptor format, and the highest four bits contain the
1024	 * DATA-OUT buffer descriptor format.
1025	 */
1026	if (srp_cmd->buf_fmt & 0xf)
1027		/* DATA-IN: transfer data from target to initiator (read). */
1028		*dir = DMA_FROM_DEVICE;
1029	else if (srp_cmd->buf_fmt >> 4)
1030		/* DATA-OUT: transfer data from initiator to target (write). */
1031		*dir = DMA_TO_DEVICE;
1032	else
1033		*dir = DMA_NONE;
1034
1035	/* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
1036	ioctx->cmd.data_direction = *dir;
1037
1038	if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
1039	    ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
1040		struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
1041
1042		*data_len = be32_to_cpu(db->len);
1043		return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
1044	} else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
1045		   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
1046		struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
1047		int nbufs = be32_to_cpu(idb->table_desc.len) /
1048				sizeof(struct srp_direct_buf);
1049
1050		if (nbufs >
1051		    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
1052			pr_err("received unsupported SRP_CMD request type (%u out + %u in != %u / %zu)\n",
1053			       srp_cmd->data_out_desc_cnt,
1054			       srp_cmd->data_in_desc_cnt,
1055			       be32_to_cpu(idb->table_desc.len),
1056			       sizeof(struct srp_direct_buf));
1057			return -EINVAL;
1058		}
1059
1060		*data_len = be32_to_cpu(idb->len);
1061		return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
1062				sg, sg_cnt);
1063	} else if ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_IMM) {
1064		struct srp_imm_buf *imm_buf = srpt_get_desc_buf(srp_cmd);
1065		void *data = (void *)srp_cmd + imm_data_offset;
1066		uint32_t len = be32_to_cpu(imm_buf->len);
1067		uint32_t req_size = imm_data_offset + len;
1068
1069		if (req_size > srp_max_req_size) {
1070			pr_err("Immediate data (length %d + %d) exceeds request size %d\n",
1071			       imm_data_offset, len, srp_max_req_size);
1072			return -EINVAL;
1073		}
1074		if (recv_ioctx->byte_len < req_size) {
1075			pr_err("Received too few data - %d < %d\n",
1076			       recv_ioctx->byte_len, req_size);
1077			return -EIO;
1078		}
1079		/*
1080		 * The immediate data buffer descriptor must occur before the
1081		 * immediate data itself.
1082		 */
1083		if ((void *)(imm_buf + 1) > (void *)data) {
1084			pr_err("Received invalid write request\n");
1085			return -EINVAL;
1086		}
1087		*data_len = len;
1088		ioctx->recv_ioctx = recv_ioctx;
1089		if ((uintptr_t)data & 511) {
1090			pr_warn_once("Internal error - the receive buffers are not aligned properly.\n");
1091			return -EINVAL;
1092		}
1093		sg_init_one(&ioctx->imm_sg, data, len);
1094		*sg = &ioctx->imm_sg;
1095		*sg_cnt = 1;
1096		return 0;
1097	} else {
1098		*data_len = 0;
1099		return 0;
1100	}
1101}
1102
1103/**
1104 * srpt_init_ch_qp - initialize queue pair attributes
1105 * @ch: SRPT RDMA channel.
1106 * @qp: Queue pair pointer.
1107 *
1108 * Initialized the attributes of queue pair 'qp' by allowing local write,
1109 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
1110 */
1111static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1112{
1113	struct ib_qp_attr *attr;
1114	int ret;
1115
1116	WARN_ON_ONCE(ch->using_rdma_cm);
1117
1118	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1119	if (!attr)
1120		return -ENOMEM;
1121
1122	attr->qp_state = IB_QPS_INIT;
1123	attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
1124	attr->port_num = ch->sport->port;
1125
1126	ret = ib_find_cached_pkey(ch->sport->sdev->device, ch->sport->port,
1127				  ch->pkey, &attr->pkey_index);
1128	if (ret < 0)
1129		pr_err("Translating pkey %#x failed (%d) - using index 0\n",
1130		       ch->pkey, ret);
1131
1132	ret = ib_modify_qp(qp, attr,
1133			   IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
1134			   IB_QP_PKEY_INDEX);
1135
1136	kfree(attr);
1137	return ret;
1138}
1139
1140/**
1141 * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR)
1142 * @ch: channel of the queue pair.
1143 * @qp: queue pair to change the state of.
1144 *
1145 * Returns zero upon success and a negative value upon failure.
1146 *
1147 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1148 * If this structure ever becomes larger, it might be necessary to allocate
1149 * it dynamically instead of on the stack.
1150 */
1151static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1152{
1153	struct ib_qp_attr qp_attr;
1154	int attr_mask;
1155	int ret;
1156
1157	WARN_ON_ONCE(ch->using_rdma_cm);
1158
1159	qp_attr.qp_state = IB_QPS_RTR;
1160	ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1161	if (ret)
1162		goto out;
1163
1164	qp_attr.max_dest_rd_atomic = 4;
1165
1166	ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1167
1168out:
1169	return ret;
1170}
1171
1172/**
1173 * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS)
1174 * @ch: channel of the queue pair.
1175 * @qp: queue pair to change the state of.
1176 *
1177 * Returns zero upon success and a negative value upon failure.
1178 *
1179 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1180 * If this structure ever becomes larger, it might be necessary to allocate
1181 * it dynamically instead of on the stack.
1182 */
1183static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1184{
1185	struct ib_qp_attr qp_attr;
1186	int attr_mask;
1187	int ret;
1188
1189	qp_attr.qp_state = IB_QPS_RTS;
1190	ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1191	if (ret)
1192		goto out;
1193
1194	qp_attr.max_rd_atomic = 4;
1195
1196	ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1197
1198out:
1199	return ret;
1200}
1201
1202/**
1203 * srpt_ch_qp_err - set the channel queue pair state to 'error'
1204 * @ch: SRPT RDMA channel.
1205 */
1206static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1207{
1208	struct ib_qp_attr qp_attr;
1209
1210	qp_attr.qp_state = IB_QPS_ERR;
1211	return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1212}
1213
1214/**
1215 * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator
1216 * @ch: SRPT RDMA channel.
1217 */
1218static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1219{
1220	struct srpt_send_ioctx *ioctx;
1221	int tag, cpu;
1222
1223	BUG_ON(!ch);
1224
1225	tag = sbitmap_queue_get(&ch->sess->sess_tag_pool, &cpu);
1226	if (tag < 0)
1227		return NULL;
1228
1229	ioctx = ch->ioctx_ring[tag];
1230	BUG_ON(ioctx->ch != ch);
1231	ioctx->state = SRPT_STATE_NEW;
1232	WARN_ON_ONCE(ioctx->recv_ioctx);
1233	ioctx->n_rdma = 0;
1234	ioctx->n_rw_ctx = 0;
1235	ioctx->queue_status_only = false;
1236	/*
1237	 * transport_init_se_cmd() does not initialize all fields, so do it
1238	 * here.
1239	 */
1240	memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1241	memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1242	ioctx->cmd.map_tag = tag;
1243	ioctx->cmd.map_cpu = cpu;
1244
1245	return ioctx;
1246}
1247
1248/**
1249 * srpt_abort_cmd - abort a SCSI command
1250 * @ioctx:   I/O context associated with the SCSI command.
1251 */
1252static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1253{
1254	enum srpt_command_state state;
1255
1256	BUG_ON(!ioctx);
1257
1258	/*
1259	 * If the command is in a state where the target core is waiting for
1260	 * the ib_srpt driver, change the state to the next state.
1261	 */
1262
1263	state = ioctx->state;
1264	switch (state) {
1265	case SRPT_STATE_NEED_DATA:
1266		ioctx->state = SRPT_STATE_DATA_IN;
1267		break;
1268	case SRPT_STATE_CMD_RSP_SENT:
1269	case SRPT_STATE_MGMT_RSP_SENT:
1270		ioctx->state = SRPT_STATE_DONE;
1271		break;
1272	default:
1273		WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
1274			  __func__, state);
1275		break;
1276	}
1277
1278	pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state,
1279		 ioctx->state, ioctx->cmd.tag);
1280
1281	switch (state) {
1282	case SRPT_STATE_NEW:
1283	case SRPT_STATE_DATA_IN:
1284	case SRPT_STATE_MGMT:
1285	case SRPT_STATE_DONE:
1286		/*
1287		 * Do nothing - defer abort processing until
1288		 * srpt_queue_response() is invoked.
1289		 */
1290		break;
1291	case SRPT_STATE_NEED_DATA:
1292		pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
1293		transport_generic_request_failure(&ioctx->cmd,
1294					TCM_CHECK_CONDITION_ABORT_CMD);
1295		break;
1296	case SRPT_STATE_CMD_RSP_SENT:
1297		/*
1298		 * SRP_RSP sending failed or the SRP_RSP send completion has
1299		 * not been received in time.
1300		 */
1301		transport_generic_free_cmd(&ioctx->cmd, 0);
1302		break;
1303	case SRPT_STATE_MGMT_RSP_SENT:
1304		transport_generic_free_cmd(&ioctx->cmd, 0);
1305		break;
1306	default:
1307		WARN(1, "Unexpected command state (%d)", state);
1308		break;
1309	}
1310
1311	return state;
1312}
1313
1314/**
1315 * srpt_rdma_read_done - RDMA read completion callback
1316 * @cq: Completion queue.
1317 * @wc: Work completion.
1318 *
1319 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1320 * the data that has been transferred via IB RDMA had to be postponed until the
1321 * check_stop_free() callback.  None of this is necessary anymore and needs to
1322 * be cleaned up.
1323 */
1324static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1325{
1326	struct srpt_rdma_ch *ch = wc->qp->qp_context;
1327	struct srpt_send_ioctx *ioctx =
1328		container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1329
1330	WARN_ON(ioctx->n_rdma <= 0);
1331	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1332	ioctx->n_rdma = 0;
1333
1334	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1335		pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
1336			ioctx, wc->status);
1337		srpt_abort_cmd(ioctx);
1338		return;
1339	}
1340
1341	if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1342					SRPT_STATE_DATA_IN))
1343		target_execute_cmd(&ioctx->cmd);
1344	else
1345		pr_err("%s[%d]: wrong state = %d\n", __func__,
1346		       __LINE__, ioctx->state);
1347}
1348
1349/**
1350 * srpt_build_cmd_rsp - build a SRP_RSP response
1351 * @ch: RDMA channel through which the request has been received.
1352 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1353 *   be built in the buffer ioctx->buf points at and hence this function will
1354 *   overwrite the request data.
1355 * @tag: tag of the request for which this response is being generated.
1356 * @status: value for the STATUS field of the SRP_RSP information unit.
1357 *
1358 * Returns the size in bytes of the SRP_RSP response.
1359 *
1360 * An SRP_RSP response contains a SCSI status or service response. See also
1361 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1362 * response. See also SPC-2 for more information about sense data.
1363 */
1364static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1365			      struct srpt_send_ioctx *ioctx, u64 tag,
1366			      int status)
1367{
1368	struct se_cmd *cmd = &ioctx->cmd;
1369	struct srp_rsp *srp_rsp;
1370	const u8 *sense_data;
1371	int sense_data_len, max_sense_len;
1372	u32 resid = cmd->residual_count;
1373
1374	/*
1375	 * The lowest bit of all SAM-3 status codes is zero (see also
1376	 * paragraph 5.3 in SAM-3).
1377	 */
1378	WARN_ON(status & 1);
1379
1380	srp_rsp = ioctx->ioctx.buf;
1381	BUG_ON(!srp_rsp);
1382
1383	sense_data = ioctx->sense_data;
1384	sense_data_len = ioctx->cmd.scsi_sense_length;
1385	WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1386
1387	memset(srp_rsp, 0, sizeof(*srp_rsp));
1388	srp_rsp->opcode = SRP_RSP;
1389	srp_rsp->req_lim_delta =
1390		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1391	srp_rsp->tag = tag;
1392	srp_rsp->status = status;
1393
1394	if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1395		if (cmd->data_direction == DMA_TO_DEVICE) {
1396			/* residual data from an underflow write */
1397			srp_rsp->flags = SRP_RSP_FLAG_DOUNDER;
1398			srp_rsp->data_out_res_cnt = cpu_to_be32(resid);
1399		} else if (cmd->data_direction == DMA_FROM_DEVICE) {
1400			/* residual data from an underflow read */
1401			srp_rsp->flags = SRP_RSP_FLAG_DIUNDER;
1402			srp_rsp->data_in_res_cnt = cpu_to_be32(resid);
1403		}
1404	} else if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1405		if (cmd->data_direction == DMA_TO_DEVICE) {
1406			/* residual data from an overflow write */
1407			srp_rsp->flags = SRP_RSP_FLAG_DOOVER;
1408			srp_rsp->data_out_res_cnt = cpu_to_be32(resid);
1409		} else if (cmd->data_direction == DMA_FROM_DEVICE) {
1410			/* residual data from an overflow read */
1411			srp_rsp->flags = SRP_RSP_FLAG_DIOVER;
1412			srp_rsp->data_in_res_cnt = cpu_to_be32(resid);
1413		}
1414	}
1415
1416	if (sense_data_len) {
1417		BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1418		max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1419		if (sense_data_len > max_sense_len) {
1420			pr_warn("truncated sense data from %d to %d bytes\n",
1421				sense_data_len, max_sense_len);
1422			sense_data_len = max_sense_len;
1423		}
1424
1425		srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1426		srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1427		memcpy(srp_rsp + 1, sense_data, sense_data_len);
1428	}
1429
1430	return sizeof(*srp_rsp) + sense_data_len;
1431}
1432
1433/**
1434 * srpt_build_tskmgmt_rsp - build a task management response
1435 * @ch:       RDMA channel through which the request has been received.
1436 * @ioctx:    I/O context in which the SRP_RSP response will be built.
1437 * @rsp_code: RSP_CODE that will be stored in the response.
1438 * @tag:      Tag of the request for which this response is being generated.
1439 *
1440 * Returns the size in bytes of the SRP_RSP response.
1441 *
1442 * An SRP_RSP response contains a SCSI status or service response. See also
1443 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1444 * response.
1445 */
1446static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1447				  struct srpt_send_ioctx *ioctx,
1448				  u8 rsp_code, u64 tag)
1449{
1450	struct srp_rsp *srp_rsp;
1451	int resp_data_len;
1452	int resp_len;
1453
1454	resp_data_len = 4;
1455	resp_len = sizeof(*srp_rsp) + resp_data_len;
1456
1457	srp_rsp = ioctx->ioctx.buf;
1458	BUG_ON(!srp_rsp);
1459	memset(srp_rsp, 0, sizeof(*srp_rsp));
1460
1461	srp_rsp->opcode = SRP_RSP;
1462	srp_rsp->req_lim_delta =
1463		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1464	srp_rsp->tag = tag;
1465
1466	srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1467	srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1468	srp_rsp->data[3] = rsp_code;
1469
1470	return resp_len;
1471}
1472
1473static int srpt_check_stop_free(struct se_cmd *cmd)
1474{
1475	struct srpt_send_ioctx *ioctx = container_of(cmd,
1476				struct srpt_send_ioctx, cmd);
1477
1478	return target_put_sess_cmd(&ioctx->cmd);
1479}
1480
1481/**
1482 * srpt_handle_cmd - process a SRP_CMD information unit
1483 * @ch: SRPT RDMA channel.
1484 * @recv_ioctx: Receive I/O context.
1485 * @send_ioctx: Send I/O context.
1486 */
1487static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
1488			    struct srpt_recv_ioctx *recv_ioctx,
1489			    struct srpt_send_ioctx *send_ioctx)
1490{
1491	struct se_cmd *cmd;
1492	struct srp_cmd *srp_cmd;
1493	struct scatterlist *sg = NULL;
1494	unsigned sg_cnt = 0;
1495	u64 data_len;
1496	enum dma_data_direction dir;
1497	int rc;
1498
1499	BUG_ON(!send_ioctx);
1500
1501	srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1502	cmd = &send_ioctx->cmd;
1503	cmd->tag = srp_cmd->tag;
1504
1505	switch (srp_cmd->task_attr) {
1506	case SRP_CMD_SIMPLE_Q:
1507		cmd->sam_task_attr = TCM_SIMPLE_TAG;
1508		break;
1509	case SRP_CMD_ORDERED_Q:
1510	default:
1511		cmd->sam_task_attr = TCM_ORDERED_TAG;
1512		break;
1513	case SRP_CMD_HEAD_OF_Q:
1514		cmd->sam_task_attr = TCM_HEAD_TAG;
1515		break;
1516	case SRP_CMD_ACA:
1517		cmd->sam_task_attr = TCM_ACA_TAG;
1518		break;
1519	}
1520
1521	rc = srpt_get_desc_tbl(recv_ioctx, send_ioctx, srp_cmd, &dir,
1522			       &sg, &sg_cnt, &data_len, ch->imm_data_offset);
1523	if (rc) {
1524		if (rc != -EAGAIN) {
1525			pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1526			       srp_cmd->tag);
1527		}
1528		goto busy;
1529	}
1530
1531	rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb,
1532			       &send_ioctx->sense_data[0],
1533			       scsilun_to_int(&srp_cmd->lun), data_len,
1534			       TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF,
1535			       sg, sg_cnt, NULL, 0, NULL, 0);
1536	if (rc != 0) {
1537		pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
1538			 srp_cmd->tag);
1539		goto busy;
1540	}
1541	return;
1542
1543busy:
1544	target_send_busy(cmd);
1545}
1546
1547static int srp_tmr_to_tcm(int fn)
1548{
1549	switch (fn) {
1550	case SRP_TSK_ABORT_TASK:
1551		return TMR_ABORT_TASK;
1552	case SRP_TSK_ABORT_TASK_SET:
1553		return TMR_ABORT_TASK_SET;
1554	case SRP_TSK_CLEAR_TASK_SET:
1555		return TMR_CLEAR_TASK_SET;
1556	case SRP_TSK_LUN_RESET:
1557		return TMR_LUN_RESET;
1558	case SRP_TSK_CLEAR_ACA:
1559		return TMR_CLEAR_ACA;
1560	default:
1561		return -1;
1562	}
1563}
1564
1565/**
1566 * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit
1567 * @ch: SRPT RDMA channel.
1568 * @recv_ioctx: Receive I/O context.
1569 * @send_ioctx: Send I/O context.
1570 *
1571 * Returns 0 if and only if the request will be processed by the target core.
1572 *
1573 * For more information about SRP_TSK_MGMT information units, see also section
1574 * 6.7 in the SRP r16a document.
1575 */
1576static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1577				 struct srpt_recv_ioctx *recv_ioctx,
1578				 struct srpt_send_ioctx *send_ioctx)
1579{
1580	struct srp_tsk_mgmt *srp_tsk;
1581	struct se_cmd *cmd;
1582	struct se_session *sess = ch->sess;
1583	int tcm_tmr;
1584	int rc;
1585
1586	BUG_ON(!send_ioctx);
1587
1588	srp_tsk = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1589	cmd = &send_ioctx->cmd;
1590
1591	pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld ch %p sess %p\n",
1592		 srp_tsk->tsk_mgmt_func, srp_tsk->task_tag, srp_tsk->tag, ch,
1593		 ch->sess);
1594
1595	srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1596	send_ioctx->cmd.tag = srp_tsk->tag;
1597	tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1598	rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
1599			       scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
1600			       GFP_KERNEL, srp_tsk->task_tag,
1601			       TARGET_SCF_ACK_KREF);
1602	if (rc != 0) {
1603		send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1604		cmd->se_tfo->queue_tm_rsp(cmd);
1605	}
1606	return;
1607}
1608
1609/**
1610 * srpt_handle_new_iu - process a newly received information unit
1611 * @ch:    RDMA channel through which the information unit has been received.
1612 * @recv_ioctx: Receive I/O context associated with the information unit.
1613 */
1614static bool
1615srpt_handle_new_iu(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx)
1616{
1617	struct srpt_send_ioctx *send_ioctx = NULL;
1618	struct srp_cmd *srp_cmd;
1619	bool res = false;
1620	u8 opcode;
1621
1622	BUG_ON(!ch);
1623	BUG_ON(!recv_ioctx);
1624
1625	if (unlikely(ch->state == CH_CONNECTING))
1626		goto push;
1627
1628	ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1629				   recv_ioctx->ioctx.dma,
1630				   recv_ioctx->ioctx.offset + srp_max_req_size,
1631				   DMA_FROM_DEVICE);
1632
1633	srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1634	opcode = srp_cmd->opcode;
1635	if (opcode == SRP_CMD || opcode == SRP_TSK_MGMT) {
1636		send_ioctx = srpt_get_send_ioctx(ch);
1637		if (unlikely(!send_ioctx))
1638			goto push;
1639	}
1640
1641	if (!list_empty(&recv_ioctx->wait_list)) {
1642		WARN_ON_ONCE(!ch->processing_wait_list);
1643		list_del_init(&recv_ioctx->wait_list);
1644	}
1645
1646	switch (opcode) {
1647	case SRP_CMD:
1648		srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1649		break;
1650	case SRP_TSK_MGMT:
1651		srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1652		break;
1653	case SRP_I_LOGOUT:
1654		pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1655		break;
1656	case SRP_CRED_RSP:
1657		pr_debug("received SRP_CRED_RSP\n");
1658		break;
1659	case SRP_AER_RSP:
1660		pr_debug("received SRP_AER_RSP\n");
1661		break;
1662	case SRP_RSP:
1663		pr_err("Received SRP_RSP\n");
1664		break;
1665	default:
1666		pr_err("received IU with unknown opcode 0x%x\n", opcode);
1667		break;
1668	}
1669
1670	if (!send_ioctx || !send_ioctx->recv_ioctx)
1671		srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
1672	res = true;
1673
1674out:
1675	return res;
1676
1677push:
1678	if (list_empty(&recv_ioctx->wait_list)) {
1679		WARN_ON_ONCE(ch->processing_wait_list);
1680		list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1681	}
1682	goto out;
1683}
1684
1685static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1686{
1687	struct srpt_rdma_ch *ch = wc->qp->qp_context;
1688	struct srpt_recv_ioctx *ioctx =
1689		container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1690
1691	if (wc->status == IB_WC_SUCCESS) {
1692		int req_lim;
1693
1694		req_lim = atomic_dec_return(&ch->req_lim);
1695		if (unlikely(req_lim < 0))
1696			pr_err("req_lim = %d < 0\n", req_lim);
1697		ioctx->byte_len = wc->byte_len;
1698		srpt_handle_new_iu(ch, ioctx);
1699	} else {
1700		pr_info_ratelimited("receiving failed for ioctx %p with status %d\n",
1701				    ioctx, wc->status);
1702	}
1703}
1704
1705/*
1706 * This function must be called from the context in which RDMA completions are
1707 * processed because it accesses the wait list without protection against
1708 * access from other threads.
1709 */
1710static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
1711{
1712	struct srpt_recv_ioctx *recv_ioctx, *tmp;
1713
1714	WARN_ON_ONCE(ch->state == CH_CONNECTING);
1715
1716	if (list_empty(&ch->cmd_wait_list))
1717		return;
1718
1719	WARN_ON_ONCE(ch->processing_wait_list);
1720	ch->processing_wait_list = true;
1721	list_for_each_entry_safe(recv_ioctx, tmp, &ch->cmd_wait_list,
1722				 wait_list) {
1723		if (!srpt_handle_new_iu(ch, recv_ioctx))
1724			break;
1725	}
1726	ch->processing_wait_list = false;
1727}
1728
1729/**
1730 * srpt_send_done - send completion callback
1731 * @cq: Completion queue.
1732 * @wc: Work completion.
1733 *
1734 * Note: Although this has not yet been observed during tests, at least in
1735 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1736 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1737 * value in each response is set to one, and it is possible that this response
1738 * makes the initiator send a new request before the send completion for that
1739 * response has been processed. This could e.g. happen if the call to
1740 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1741 * if IB retransmission causes generation of the send completion to be
1742 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1743 * are queued on cmd_wait_list. The code below processes these delayed
1744 * requests one at a time.
1745 */
1746static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1747{
1748	struct srpt_rdma_ch *ch = wc->qp->qp_context;
1749	struct srpt_send_ioctx *ioctx =
1750		container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
1751	enum srpt_command_state state;
1752
1753	state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1754
1755	WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
1756		state != SRPT_STATE_MGMT_RSP_SENT);
1757
1758	atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1759
1760	if (wc->status != IB_WC_SUCCESS)
1761		pr_info("sending response for ioctx 0x%p failed with status %d\n",
1762			ioctx, wc->status);
1763
1764	if (state != SRPT_STATE_DONE) {
1765		transport_generic_free_cmd(&ioctx->cmd, 0);
1766	} else {
1767		pr_err("IB completion has been received too late for wr_id = %u.\n",
1768		       ioctx->ioctx.index);
1769	}
1770
1771	srpt_process_wait_list(ch);
1772}
1773
1774/**
1775 * srpt_create_ch_ib - create receive and send completion queues
1776 * @ch: SRPT RDMA channel.
1777 */
1778static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
1779{
1780	struct ib_qp_init_attr *qp_init;
1781	struct srpt_port *sport = ch->sport;
1782	struct srpt_device *sdev = sport->sdev;
1783	const struct ib_device_attr *attrs = &sdev->device->attrs;
1784	int sq_size = sport->port_attrib.srp_sq_size;
1785	int i, ret;
1786
1787	WARN_ON(ch->rq_size < 1);
1788
1789	ret = -ENOMEM;
1790	qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1791	if (!qp_init)
1792		goto out;
1793
1794retry:
1795	ch->cq = ib_cq_pool_get(sdev->device, ch->rq_size + sq_size, -1,
1796				 IB_POLL_WORKQUEUE);
1797	if (IS_ERR(ch->cq)) {
1798		ret = PTR_ERR(ch->cq);
1799		pr_err("failed to create CQ cqe= %d ret= %d\n",
1800		       ch->rq_size + sq_size, ret);
1801		goto out;
1802	}
1803	ch->cq_size = ch->rq_size + sq_size;
1804
1805	qp_init->qp_context = (void *)ch;
1806	qp_init->event_handler
1807		= (void(*)(struct ib_event *, void*))srpt_qp_event;
1808	qp_init->send_cq = ch->cq;
1809	qp_init->recv_cq = ch->cq;
1810	qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
1811	qp_init->qp_type = IB_QPT_RC;
1812	/*
1813	 * We divide up our send queue size into half SEND WRs to send the
1814	 * completions, and half R/W contexts to actually do the RDMA
1815	 * READ/WRITE transfers.  Note that we need to allocate CQ slots for
1816	 * both both, as RDMA contexts will also post completions for the
1817	 * RDMA READ case.
1818	 */
1819	qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr);
1820	qp_init->cap.max_rdma_ctxs = sq_size / 2;
1821	qp_init->cap.max_send_sge = attrs->max_send_sge;
1822	qp_init->cap.max_recv_sge = 1;
1823	qp_init->port_num = ch->sport->port;
1824	if (sdev->use_srq)
1825		qp_init->srq = sdev->srq;
1826	else
1827		qp_init->cap.max_recv_wr = ch->rq_size;
1828
1829	if (ch->using_rdma_cm) {
1830		ret = rdma_create_qp(ch->rdma_cm.cm_id, sdev->pd, qp_init);
1831		ch->qp = ch->rdma_cm.cm_id->qp;
1832	} else {
1833		ch->qp = ib_create_qp(sdev->pd, qp_init);
1834		if (!IS_ERR(ch->qp)) {
1835			ret = srpt_init_ch_qp(ch, ch->qp);
1836			if (ret)
1837				ib_destroy_qp(ch->qp);
1838		} else {
1839			ret = PTR_ERR(ch->qp);
1840		}
1841	}
1842	if (ret) {
1843		bool retry = sq_size > MIN_SRPT_SQ_SIZE;
1844
1845		if (retry) {
1846			pr_debug("failed to create queue pair with sq_size = %d (%d) - retrying\n",
1847				 sq_size, ret);
1848			ib_cq_pool_put(ch->cq, ch->cq_size);
1849			sq_size = max(sq_size / 2, MIN_SRPT_SQ_SIZE);
1850			goto retry;
1851		} else {
1852			pr_err("failed to create queue pair with sq_size = %d (%d)\n",
1853			       sq_size, ret);
1854			goto err_destroy_cq;
1855		}
1856	}
1857
1858	atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
1859
1860	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d ch= %p\n",
1861		 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
1862		 qp_init->cap.max_send_wr, ch);
1863
1864	if (!sdev->use_srq)
1865		for (i = 0; i < ch->rq_size; i++)
1866			srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]);
1867
1868out:
1869	kfree(qp_init);
1870	return ret;
1871
1872err_destroy_cq:
1873	ch->qp = NULL;
1874	ib_cq_pool_put(ch->cq, ch->cq_size);
1875	goto out;
1876}
1877
1878static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
1879{
1880	ib_destroy_qp(ch->qp);
1881	ib_cq_pool_put(ch->cq, ch->cq_size);
1882}
1883
1884/**
1885 * srpt_close_ch - close a RDMA channel
1886 * @ch: SRPT RDMA channel.
1887 *
1888 * Make sure all resources associated with the channel will be deallocated at
1889 * an appropriate time.
1890 *
1891 * Returns true if and only if the channel state has been modified into
1892 * CH_DRAINING.
1893 */
1894static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1895{
1896	int ret;
1897
1898	if (!srpt_set_ch_state(ch, CH_DRAINING)) {
1899		pr_debug("%s: already closed\n", ch->sess_name);
1900		return false;
1901	}
1902
1903	kref_get(&ch->kref);
1904
1905	ret = srpt_ch_qp_err(ch);
1906	if (ret < 0)
1907		pr_err("%s-%d: changing queue pair into error state failed: %d\n",
1908		       ch->sess_name, ch->qp->qp_num, ret);
1909
1910	ret = srpt_zerolength_write(ch);
1911	if (ret < 0) {
1912		pr_err("%s-%d: queuing zero-length write failed: %d\n",
1913		       ch->sess_name, ch->qp->qp_num, ret);
1914		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
1915			schedule_work(&ch->release_work);
1916		else
1917			WARN_ON_ONCE(true);
1918	}
1919
1920	kref_put(&ch->kref, srpt_free_ch);
1921
1922	return true;
1923}
1924
1925/*
1926 * Change the channel state into CH_DISCONNECTING. If a channel has not yet
1927 * reached the connected state, close it. If a channel is in the connected
1928 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
1929 * the responsibility of the caller to ensure that this function is not
1930 * invoked concurrently with the code that accepts a connection. This means
1931 * that this function must either be invoked from inside a CM callback
1932 * function or that it must be invoked with the srpt_port.mutex held.
1933 */
1934static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1935{
1936	int ret;
1937
1938	if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
1939		return -ENOTCONN;
1940
1941	if (ch->using_rdma_cm) {
1942		ret = rdma_disconnect(ch->rdma_cm.cm_id);
1943	} else {
1944		ret = ib_send_cm_dreq(ch->ib_cm.cm_id, NULL, 0);
1945		if (ret < 0)
1946			ret = ib_send_cm_drep(ch->ib_cm.cm_id, NULL, 0);
1947	}
1948
1949	if (ret < 0 && srpt_close_ch(ch))
1950		ret = 0;
1951
1952	return ret;
1953}
1954
1955/* Send DREQ and wait for DREP. */
1956static void srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch)
1957{
1958	DECLARE_COMPLETION_ONSTACK(closed);
1959	struct srpt_port *sport = ch->sport;
1960
1961	pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
1962		 ch->state);
1963
1964	ch->closed = &closed;
1965
1966	mutex_lock(&sport->mutex);
1967	srpt_disconnect_ch(ch);
1968	mutex_unlock(&sport->mutex);
1969
1970	while (wait_for_completion_timeout(&closed, 5 * HZ) == 0)
1971		pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
1972			ch->sess_name, ch->qp->qp_num, ch->state);
1973
1974}
1975
1976static void __srpt_close_all_ch(struct srpt_port *sport)
1977{
1978	struct srpt_nexus *nexus;
1979	struct srpt_rdma_ch *ch;
1980
1981	lockdep_assert_held(&sport->mutex);
1982
1983	list_for_each_entry(nexus, &sport->nexus_list, entry) {
1984		list_for_each_entry(ch, &nexus->ch_list, list) {
1985			if (srpt_disconnect_ch(ch) >= 0)
1986				pr_info("Closing channel %s-%d because target %s_%d has been disabled\n",
1987					ch->sess_name, ch->qp->qp_num,
1988					dev_name(&sport->sdev->device->dev),
1989					sport->port);
1990			srpt_close_ch(ch);
1991		}
1992	}
1993}
1994
1995/*
1996 * Look up (i_port_id, t_port_id) in sport->nexus_list. Create an entry if
1997 * it does not yet exist.
1998 */
1999static struct srpt_nexus *srpt_get_nexus(struct srpt_port *sport,
2000					 const u8 i_port_id[16],
2001					 const u8 t_port_id[16])
2002{
2003	struct srpt_nexus *nexus = NULL, *tmp_nexus = NULL, *n;
2004
2005	for (;;) {
2006		mutex_lock(&sport->mutex);
2007		list_for_each_entry(n, &sport->nexus_list, entry) {
2008			if (memcmp(n->i_port_id, i_port_id, 16) == 0 &&
2009			    memcmp(n->t_port_id, t_port_id, 16) == 0) {
2010				nexus = n;
2011				break;
2012			}
2013		}
2014		if (!nexus && tmp_nexus) {
2015			list_add_tail_rcu(&tmp_nexus->entry,
2016					  &sport->nexus_list);
2017			swap(nexus, tmp_nexus);
2018		}
2019		mutex_unlock(&sport->mutex);
2020
2021		if (nexus)
2022			break;
2023		tmp_nexus = kzalloc(sizeof(*nexus), GFP_KERNEL);
2024		if (!tmp_nexus) {
2025			nexus = ERR_PTR(-ENOMEM);
2026			break;
2027		}
2028		INIT_LIST_HEAD(&tmp_nexus->ch_list);
2029		memcpy(tmp_nexus->i_port_id, i_port_id, 16);
2030		memcpy(tmp_nexus->t_port_id, t_port_id, 16);
2031	}
2032
2033	kfree(tmp_nexus);
2034
2035	return nexus;
2036}
2037
2038static void srpt_set_enabled(struct srpt_port *sport, bool enabled)
2039	__must_hold(&sport->mutex)
2040{
2041	lockdep_assert_held(&sport->mutex);
2042
2043	if (sport->enabled == enabled)
2044		return;
2045	sport->enabled = enabled;
2046	if (!enabled)
2047		__srpt_close_all_ch(sport);
2048}
2049
2050static void srpt_drop_sport_ref(struct srpt_port *sport)
2051{
2052	if (atomic_dec_return(&sport->refcount) == 0 && sport->freed_channels)
2053		complete(sport->freed_channels);
2054}
2055
2056static void srpt_free_ch(struct kref *kref)
2057{
2058	struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);
2059
2060	srpt_drop_sport_ref(ch->sport);
2061	kfree_rcu(ch, rcu);
2062}
2063
2064/*
2065 * Shut down the SCSI target session, tell the connection manager to
2066 * disconnect the associated RDMA channel, transition the QP to the error
2067 * state and remove the channel from the channel list. This function is
2068 * typically called from inside srpt_zerolength_write_done(). Concurrent
2069 * srpt_zerolength_write() calls from inside srpt_close_ch() are possible
2070 * as long as the channel is on sport->nexus_list.
2071 */
2072static void srpt_release_channel_work(struct work_struct *w)
2073{
2074	struct srpt_rdma_ch *ch;
2075	struct srpt_device *sdev;
2076	struct srpt_port *sport;
2077	struct se_session *se_sess;
2078
2079	ch = container_of(w, struct srpt_rdma_ch, release_work);
2080	pr_debug("%s-%d\n", ch->sess_name, ch->qp->qp_num);
2081
2082	sdev = ch->sport->sdev;
2083	BUG_ON(!sdev);
2084
2085	se_sess = ch->sess;
2086	BUG_ON(!se_sess);
2087
2088	target_sess_cmd_list_set_waiting(se_sess);
2089	target_wait_for_sess_cmds(se_sess);
2090
2091	target_remove_session(se_sess);
2092	ch->sess = NULL;
2093
2094	if (ch->using_rdma_cm)
2095		rdma_destroy_id(ch->rdma_cm.cm_id);
2096	else
2097		ib_destroy_cm_id(ch->ib_cm.cm_id);
2098
2099	sport = ch->sport;
2100	mutex_lock(&sport->mutex);
2101	list_del_rcu(&ch->list);
2102	mutex_unlock(&sport->mutex);
2103
2104	if (ch->closed)
2105		complete(ch->closed);
2106
2107	srpt_destroy_ch_ib(ch);
2108
2109	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2110			     ch->sport->sdev, ch->rq_size,
2111			     ch->rsp_buf_cache, DMA_TO_DEVICE);
2112
2113	kmem_cache_destroy(ch->rsp_buf_cache);
2114
2115	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2116			     sdev, ch->rq_size,
2117			     ch->req_buf_cache, DMA_FROM_DEVICE);
2118
2119	kmem_cache_destroy(ch->req_buf_cache);
2120
2121	kref_put(&ch->kref, srpt_free_ch);
2122}
2123
2124/**
2125 * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED
2126 * @sdev: HCA through which the login request was received.
2127 * @ib_cm_id: IB/CM connection identifier in case of IB/CM.
2128 * @rdma_cm_id: RDMA/CM connection identifier in case of RDMA/CM.
2129 * @port_num: Port through which the REQ message was received.
2130 * @pkey: P_Key of the incoming connection.
2131 * @req: SRP login request.
2132 * @src_addr: GID (IB/CM) or IP address (RDMA/CM) of the port that submitted
2133 * the login request.
2134 *
2135 * Ownership of the cm_id is transferred to the target session if this
2136 * function returns zero. Otherwise the caller remains the owner of cm_id.
2137 */
2138static int srpt_cm_req_recv(struct srpt_device *const sdev,
2139			    struct ib_cm_id *ib_cm_id,
2140			    struct rdma_cm_id *rdma_cm_id,
2141			    u8 port_num, __be16 pkey,
2142			    const struct srp_login_req *req,
2143			    const char *src_addr)
2144{
2145	struct srpt_port *sport = &sdev->port[port_num - 1];
2146	struct srpt_nexus *nexus;
2147	struct srp_login_rsp *rsp = NULL;
2148	struct srp_login_rej *rej = NULL;
2149	union {
2150		struct rdma_conn_param rdma_cm;
2151		struct ib_cm_rep_param ib_cm;
2152	} *rep_param = NULL;
2153	struct srpt_rdma_ch *ch = NULL;
2154	char i_port_id[36];
2155	u32 it_iu_len;
2156	int i, tag_num, tag_size, ret;
2157	struct srpt_tpg *stpg;
2158
2159	WARN_ON_ONCE(irqs_disabled());
2160
2161	it_iu_len = be32_to_cpu(req->req_it_iu_len);
2162
2163	pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6); pkey %#04x\n",
2164		req->initiator_port_id, req->target_port_id, it_iu_len,
2165		port_num, &sport->gid, be16_to_cpu(pkey));
2166
2167	nexus = srpt_get_nexus(sport, req->initiator_port_id,
2168			       req->target_port_id);
2169	if (IS_ERR(nexus)) {
2170		ret = PTR_ERR(nexus);
2171		goto out;
2172	}
2173
2174	ret = -ENOMEM;
2175	rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
2176	rej = kzalloc(sizeof(*rej), GFP_KERNEL);
2177	rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
2178	if (!rsp || !rej || !rep_param)
2179		goto out;
2180
2181	ret = -EINVAL;
2182	if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2183		rej->reason = cpu_to_be32(
2184				SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2185		pr_err("rejected SRP_LOGIN_REQ because its length (%d bytes) is out of range (%d .. %d)\n",
2186		       it_iu_len, 64, srp_max_req_size);
2187		goto reject;
2188	}
2189
2190	if (!sport->enabled) {
2191		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2192		pr_info("rejected SRP_LOGIN_REQ because target port %s_%d has not yet been enabled\n",
2193			dev_name(&sport->sdev->device->dev), port_num);
2194		goto reject;
2195	}
2196
2197	if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2198	    || *(__be64 *)(req->target_port_id + 8) !=
2199	       cpu_to_be64(srpt_service_guid)) {
2200		rej->reason = cpu_to_be32(
2201				SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2202		pr_err("rejected SRP_LOGIN_REQ because it has an invalid target port identifier.\n");
2203		goto reject;
2204	}
2205
2206	ret = -ENOMEM;
2207	ch = kzalloc(sizeof(*ch), GFP_KERNEL);
2208	if (!ch) {
2209		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2210		pr_err("rejected SRP_LOGIN_REQ because out of memory.\n");
2211		goto reject;
2212	}
2213
2214	kref_init(&ch->kref);
2215	ch->pkey = be16_to_cpu(pkey);
2216	ch->nexus = nexus;
2217	ch->zw_cqe.done = srpt_zerolength_write_done;
2218	INIT_WORK(&ch->release_work, srpt_release_channel_work);
2219	ch->sport = sport;
2220	if (ib_cm_id) {
2221		ch->ib_cm.cm_id = ib_cm_id;
2222		ib_cm_id->context = ch;
2223	} else {
2224		ch->using_rdma_cm = true;
2225		ch->rdma_cm.cm_id = rdma_cm_id;
2226		rdma_cm_id->context = ch;
2227	}
2228	/*
2229	 * ch->rq_size should be at least as large as the initiator queue
2230	 * depth to avoid that the initiator driver has to report QUEUE_FULL
2231	 * to the SCSI mid-layer.
2232	 */
2233	ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr);
2234	spin_lock_init(&ch->spinlock);
2235	ch->state = CH_CONNECTING;
2236	INIT_LIST_HEAD(&ch->cmd_wait_list);
2237	ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2238
2239	ch->rsp_buf_cache = kmem_cache_create("srpt-rsp-buf", ch->max_rsp_size,
2240					      512, 0, NULL);
2241	if (!ch->rsp_buf_cache)
2242		goto free_ch;
2243
2244	ch->ioctx_ring = (struct srpt_send_ioctx **)
2245		srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2246				      sizeof(*ch->ioctx_ring[0]),
2247				      ch->rsp_buf_cache, 0, DMA_TO_DEVICE);
2248	if (!ch->ioctx_ring) {
2249		pr_err("rejected SRP_LOGIN_REQ because creating a new QP SQ ring failed.\n");
2250		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2251		goto free_rsp_cache;
2252	}
2253
2254	for (i = 0; i < ch->rq_size; i++)
2255		ch->ioctx_ring[i]->ch = ch;
2256	if (!sdev->use_srq) {
2257		u16 imm_data_offset = req->req_flags & SRP_IMMED_REQUESTED ?
2258			be16_to_cpu(req->imm_data_offset) : 0;
2259		u16 alignment_offset;
2260		u32 req_sz;
2261
2262		if (req->req_flags & SRP_IMMED_REQUESTED)
2263			pr_debug("imm_data_offset = %d\n",
2264				 be16_to_cpu(req->imm_data_offset));
2265		if (imm_data_offset >= sizeof(struct srp_cmd)) {
2266			ch->imm_data_offset = imm_data_offset;
2267			rsp->rsp_flags |= SRP_LOGIN_RSP_IMMED_SUPP;
2268		} else {
2269			ch->imm_data_offset = 0;
2270		}
2271		alignment_offset = round_up(imm_data_offset, 512) -
2272			imm_data_offset;
2273		req_sz = alignment_offset + imm_data_offset + srp_max_req_size;
2274		ch->req_buf_cache = kmem_cache_create("srpt-req-buf", req_sz,
2275						      512, 0, NULL);
2276		if (!ch->req_buf_cache)
2277			goto free_rsp_ring;
2278
2279		ch->ioctx_recv_ring = (struct srpt_recv_ioctx **)
2280			srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2281					      sizeof(*ch->ioctx_recv_ring[0]),
2282					      ch->req_buf_cache,
2283					      alignment_offset,
2284					      DMA_FROM_DEVICE);
2285		if (!ch->ioctx_recv_ring) {
2286			pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n");
2287			rej->reason =
2288			    cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2289			goto free_recv_cache;
2290		}
2291		for (i = 0; i < ch->rq_size; i++)
2292			INIT_LIST_HEAD(&ch->ioctx_recv_ring[i]->wait_list);
2293	}
2294
2295	ret = srpt_create_ch_ib(ch);
2296	if (ret) {
2297		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2298		pr_err("rejected SRP_LOGIN_REQ because creating a new RDMA channel failed.\n");
2299		goto free_recv_ring;
2300	}
2301
2302	strlcpy(ch->sess_name, src_addr, sizeof(ch->sess_name));
2303	snprintf(i_port_id, sizeof(i_port_id), "0x%016llx%016llx",
2304			be64_to_cpu(*(__be64 *)nexus->i_port_id),
2305			be64_to_cpu(*(__be64 *)(nexus->i_port_id + 8)));
2306
2307	pr_debug("registering src addr %s or i_port_id %s\n", ch->sess_name,
2308		 i_port_id);
2309
2310	tag_num = ch->rq_size;
2311	tag_size = 1; /* ib_srpt does not use se_sess->sess_cmd_map */
2312
2313	if (sport->guid_id) {
2314		mutex_lock(&sport->guid_id->mutex);
2315		list_for_each_entry(stpg, &sport->guid_id->tpg_list, entry) {
2316			if (!IS_ERR_OR_NULL(ch->sess))
2317				break;
2318			ch->sess = target_setup_session(&stpg->tpg, tag_num,
2319						tag_size, TARGET_PROT_NORMAL,
2320						ch->sess_name, ch, NULL);
2321		}
2322		mutex_unlock(&sport->guid_id->mutex);
2323	}
2324
2325	if (sport->gid_id) {
2326		mutex_lock(&sport->gid_id->mutex);
2327		list_for_each_entry(stpg, &sport->gid_id->tpg_list, entry) {
2328			if (!IS_ERR_OR_NULL(ch->sess))
2329				break;
2330			ch->sess = target_setup_session(&stpg->tpg, tag_num,
2331					tag_size, TARGET_PROT_NORMAL, i_port_id,
2332					ch, NULL);
2333			if (!IS_ERR_OR_NULL(ch->sess))
2334				break;
2335			/* Retry without leading "0x" */
2336			ch->sess = target_setup_session(&stpg->tpg, tag_num,
2337						tag_size, TARGET_PROT_NORMAL,
2338						i_port_id + 2, ch, NULL);
2339		}
2340		mutex_unlock(&sport->gid_id->mutex);
2341	}
2342
2343	if (IS_ERR_OR_NULL(ch->sess)) {
2344		WARN_ON_ONCE(ch->sess == NULL);
2345		ret = PTR_ERR(ch->sess);
2346		ch->sess = NULL;
2347		pr_info("Rejected login for initiator %s: ret = %d.\n",
2348			ch->sess_name, ret);
2349		rej->reason = cpu_to_be32(ret == -ENOMEM ?
2350				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2351				SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2352		goto destroy_ib;
2353	}
2354
2355	/*
2356	 * Once a session has been created destruction of srpt_rdma_ch objects
2357	 * will decrement sport->refcount. Hence increment sport->refcount now.
2358	 */
2359	atomic_inc(&sport->refcount);
2360
2361	mutex_lock(&sport->mutex);
2362
2363	if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2364		struct srpt_rdma_ch *ch2;
2365
2366		list_for_each_entry(ch2, &nexus->ch_list, list) {
2367			if (srpt_disconnect_ch(ch2) < 0)
2368				continue;
2369			pr_info("Relogin - closed existing channel %s\n",
2370				ch2->sess_name);
2371			rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2372		}
2373	} else {
2374		rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2375	}
2376
2377	list_add_tail_rcu(&ch->list, &nexus->ch_list);
2378
2379	if (!sport->enabled) {
2380		rej->reason = cpu_to_be32(
2381				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2382		pr_info("rejected SRP_LOGIN_REQ because target %s_%d is not enabled\n",
2383			dev_name(&sdev->device->dev), port_num);
2384		mutex_unlock(&sport->mutex);
2385		ret = -EINVAL;
2386		goto reject;
2387	}
2388
2389	mutex_unlock(&sport->mutex);
2390
2391	ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rtr(ch, ch->qp);
2392	if (ret) {
2393		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2394		pr_err("rejected SRP_LOGIN_REQ because enabling RTR failed (error code = %d)\n",
2395		       ret);
2396		goto reject;
2397	}
2398
2399	pr_debug("Establish connection sess=%p name=%s ch=%p\n", ch->sess,
2400		 ch->sess_name, ch);
2401
2402	/* create srp_login_response */
2403	rsp->opcode = SRP_LOGIN_RSP;
2404	rsp->tag = req->tag;
2405	rsp->max_it_iu_len = cpu_to_be32(srp_max_req_size);
2406	rsp->max_ti_iu_len = req->req_it_iu_len;
2407	ch->max_ti_iu_len = it_iu_len;
2408	rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2409				   SRP_BUF_FORMAT_INDIRECT);
2410	rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2411	atomic_set(&ch->req_lim, ch->rq_size);
2412	atomic_set(&ch->req_lim_delta, 0);
2413
2414	/* create cm reply */
2415	if (ch->using_rdma_cm) {
2416		rep_param->rdma_cm.private_data = (void *)rsp;
2417		rep_param->rdma_cm.private_data_len = sizeof(*rsp);
2418		rep_param->rdma_cm.rnr_retry_count = 7;
2419		rep_param->rdma_cm.flow_control = 1;
2420		rep_param->rdma_cm.responder_resources = 4;
2421		rep_param->rdma_cm.initiator_depth = 4;
2422	} else {
2423		rep_param->ib_cm.qp_num = ch->qp->qp_num;
2424		rep_param->ib_cm.private_data = (void *)rsp;
2425		rep_param->ib_cm.private_data_len = sizeof(*rsp);
2426		rep_param->ib_cm.rnr_retry_count = 7;
2427		rep_param->ib_cm.flow_control = 1;
2428		rep_param->ib_cm.failover_accepted = 0;
2429		rep_param->ib_cm.srq = 1;
2430		rep_param->ib_cm.responder_resources = 4;
2431		rep_param->ib_cm.initiator_depth = 4;
2432	}
2433
2434	/*
2435	 * Hold the sport mutex while accepting a connection to avoid that
2436	 * srpt_disconnect_ch() is invoked concurrently with this code.
2437	 */
2438	mutex_lock(&sport->mutex);
2439	if (sport->enabled && ch->state == CH_CONNECTING) {
2440		if (ch->using_rdma_cm)
2441			ret = rdma_accept(rdma_cm_id, &rep_param->rdma_cm);
2442		else
2443			ret = ib_send_cm_rep(ib_cm_id, &rep_param->ib_cm);
2444	} else {
2445		ret = -EINVAL;
2446	}
2447	mutex_unlock(&sport->mutex);
2448
2449	switch (ret) {
2450	case 0:
2451		break;
2452	case -EINVAL:
2453		goto reject;
2454	default:
2455		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2456		pr_err("sending SRP_LOGIN_REQ response failed (error code = %d)\n",
2457		       ret);
2458		goto reject;
2459	}
2460
2461	goto out;
2462
2463destroy_ib:
2464	srpt_destroy_ch_ib(ch);
2465
2466free_recv_ring:
2467	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2468			     ch->sport->sdev, ch->rq_size,
2469			     ch->req_buf_cache, DMA_FROM_DEVICE);
2470
2471free_recv_cache:
2472	kmem_cache_destroy(ch->req_buf_cache);
2473
2474free_rsp_ring:
2475	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2476			     ch->sport->sdev, ch->rq_size,
2477			     ch->rsp_buf_cache, DMA_TO_DEVICE);
2478
2479free_rsp_cache:
2480	kmem_cache_destroy(ch->rsp_buf_cache);
2481
2482free_ch:
2483	if (rdma_cm_id)
2484		rdma_cm_id->context = NULL;
2485	else
2486		ib_cm_id->context = NULL;
2487	kfree(ch);
2488	ch = NULL;
2489
2490	WARN_ON_ONCE(ret == 0);
2491
2492reject:
2493	pr_info("Rejecting login with reason %#x\n", be32_to_cpu(rej->reason));
2494	rej->opcode = SRP_LOGIN_REJ;
2495	rej->tag = req->tag;
2496	rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2497				   SRP_BUF_FORMAT_INDIRECT);
2498
2499	if (rdma_cm_id)
2500		rdma_reject(rdma_cm_id, rej, sizeof(*rej),
2501			    IB_CM_REJ_CONSUMER_DEFINED);
2502	else
2503		ib_send_cm_rej(ib_cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2504			       rej, sizeof(*rej));
2505
2506	if (ch && ch->sess) {
2507		srpt_close_ch(ch);
2508		/*
2509		 * Tell the caller not to free cm_id since
2510		 * srpt_release_channel_work() will do that.
2511		 */
2512		ret = 0;
2513	}
2514
2515out:
2516	kfree(rep_param);
2517	kfree(rsp);
2518	kfree(rej);
2519
2520	return ret;
2521}
2522
2523static int srpt_ib_cm_req_recv(struct ib_cm_id *cm_id,
2524			       const struct ib_cm_req_event_param *param,
2525			       void *private_data)
2526{
2527	char sguid[40];
2528
2529	srpt_format_guid(sguid, sizeof(sguid),
2530			 &param->primary_path->dgid.global.interface_id);
2531
2532	return srpt_cm_req_recv(cm_id->context, cm_id, NULL, param->port,
2533				param->primary_path->pkey,
2534				private_data, sguid);
2535}
2536
2537static int srpt_rdma_cm_req_recv(struct rdma_cm_id *cm_id,
2538				 struct rdma_cm_event *event)
2539{
2540	struct srpt_device *sdev;
2541	struct srp_login_req req;
2542	const struct srp_login_req_rdma *req_rdma;
2543	struct sa_path_rec *path_rec = cm_id->route.path_rec;
2544	char src_addr[40];
2545
2546	sdev = ib_get_client_data(cm_id->device, &srpt_client);
2547	if (!sdev)
2548		return -ECONNREFUSED;
2549
2550	if (event->param.conn.private_data_len < sizeof(*req_rdma))
2551		return -EINVAL;
2552
2553	/* Transform srp_login_req_rdma into srp_login_req. */
2554	req_rdma = event->param.conn.private_data;
2555	memset(&req, 0, sizeof(req));
2556	req.opcode		= req_rdma->opcode;
2557	req.tag			= req_rdma->tag;
2558	req.req_it_iu_len	= req_rdma->req_it_iu_len;
2559	req.req_buf_fmt		= req_rdma->req_buf_fmt;
2560	req.req_flags		= req_rdma->req_flags;
2561	memcpy(req.initiator_port_id, req_rdma->initiator_port_id, 16);
2562	memcpy(req.target_port_id, req_rdma->target_port_id, 16);
2563	req.imm_data_offset	= req_rdma->imm_data_offset;
2564
2565	snprintf(src_addr, sizeof(src_addr), "%pIS",
2566		 &cm_id->route.addr.src_addr);
2567
2568	return srpt_cm_req_recv(sdev, NULL, cm_id, cm_id->port_num,
2569				path_rec ? path_rec->pkey : 0, &req, src_addr);
2570}
2571
2572static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
2573			     enum ib_cm_rej_reason reason,
2574			     const u8 *private_data,
2575			     u8 private_data_len)
2576{
2577	char *priv = NULL;
2578	int i;
2579
2580	if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
2581						GFP_KERNEL))) {
2582		for (i = 0; i < private_data_len; i++)
2583			sprintf(priv + 3 * i, " %02x", private_data[i]);
2584	}
2585	pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
2586		ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
2587		"; private data" : "", priv ? priv : " (?)");
2588	kfree(priv);
2589}
2590
2591/**
2592 * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event
2593 * @ch: SRPT RDMA channel.
2594 *
2595 * An RTU (ready to use) message indicates that the connection has been
2596 * established and that the recipient may begin transmitting.
2597 */
2598static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2599{
2600	int ret;
2601
2602	ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rts(ch, ch->qp);
2603	if (ret < 0) {
2604		pr_err("%s-%d: QP transition to RTS failed\n", ch->sess_name,
2605		       ch->qp->qp_num);
2606		srpt_close_ch(ch);
2607		return;
2608	}
2609
2610	/*
2611	 * Note: calling srpt_close_ch() if the transition to the LIVE state
2612	 * fails is not necessary since that means that that function has
2613	 * already been invoked from another thread.
2614	 */
2615	if (!srpt_set_ch_state(ch, CH_LIVE)) {
2616		pr_err("%s-%d: channel transition to LIVE state failed\n",
2617		       ch->sess_name, ch->qp->qp_num);
2618		return;
2619	}
2620
2621	/* Trigger wait list processing. */
2622	ret = srpt_zerolength_write(ch);
2623	WARN_ONCE(ret < 0, "%d\n", ret);
2624}
2625
2626/**
2627 * srpt_cm_handler - IB connection manager callback function
2628 * @cm_id: IB/CM connection identifier.
2629 * @event: IB/CM event.
2630 *
2631 * A non-zero return value will cause the caller destroy the CM ID.
2632 *
2633 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2634 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2635 * a non-zero value in any other case will trigger a race with the
2636 * ib_destroy_cm_id() call in srpt_release_channel().
2637 */
2638static int srpt_cm_handler(struct ib_cm_id *cm_id,
2639			   const struct ib_cm_event *event)
2640{
2641	struct srpt_rdma_ch *ch = cm_id->context;
2642	int ret;
2643
2644	ret = 0;
2645	switch (event->event) {
2646	case IB_CM_REQ_RECEIVED:
2647		ret = srpt_ib_cm_req_recv(cm_id, &event->param.req_rcvd,
2648					  event->private_data);
2649		break;
2650	case IB_CM_REJ_RECEIVED:
2651		srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
2652				 event->private_data,
2653				 IB_CM_REJ_PRIVATE_DATA_SIZE);
2654		break;
2655	case IB_CM_RTU_RECEIVED:
2656	case IB_CM_USER_ESTABLISHED:
2657		srpt_cm_rtu_recv(ch);
2658		break;
2659	case IB_CM_DREQ_RECEIVED:
2660		srpt_disconnect_ch(ch);
2661		break;
2662	case IB_CM_DREP_RECEIVED:
2663		pr_info("Received CM DREP message for ch %s-%d.\n",
2664			ch->sess_name, ch->qp->qp_num);
2665		srpt_close_ch(ch);
2666		break;
2667	case IB_CM_TIMEWAIT_EXIT:
2668		pr_info("Received CM TimeWait exit for ch %s-%d.\n",
2669			ch->sess_name, ch->qp->qp_num);
2670		srpt_close_ch(ch);
2671		break;
2672	case IB_CM_REP_ERROR:
2673		pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2674			ch->qp->qp_num);
2675		break;
2676	case IB_CM_DREQ_ERROR:
2677		pr_info("Received CM DREQ ERROR event.\n");
2678		break;
2679	case IB_CM_MRA_RECEIVED:
2680		pr_info("Received CM MRA event\n");
2681		break;
2682	default:
2683		pr_err("received unrecognized CM event %d\n", event->event);
2684		break;
2685	}
2686
2687	return ret;
2688}
2689
2690static int srpt_rdma_cm_handler(struct rdma_cm_id *cm_id,
2691				struct rdma_cm_event *event)
2692{
2693	struct srpt_rdma_ch *ch = cm_id->context;
2694	int ret = 0;
2695
2696	switch (event->event) {
2697	case RDMA_CM_EVENT_CONNECT_REQUEST:
2698		ret = srpt_rdma_cm_req_recv(cm_id, event);
2699		break;
2700	case RDMA_CM_EVENT_REJECTED:
2701		srpt_cm_rej_recv(ch, event->status,
2702				 event->param.conn.private_data,
2703				 event->param.conn.private_data_len);
2704		break;
2705	case RDMA_CM_EVENT_ESTABLISHED:
2706		srpt_cm_rtu_recv(ch);
2707		break;
2708	case RDMA_CM_EVENT_DISCONNECTED:
2709		if (ch->state < CH_DISCONNECTING)
2710			srpt_disconnect_ch(ch);
2711		else
2712			srpt_close_ch(ch);
2713		break;
2714	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2715		srpt_close_ch(ch);
2716		break;
2717	case RDMA_CM_EVENT_UNREACHABLE:
2718		pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2719			ch->qp->qp_num);
2720		break;
2721	case RDMA_CM_EVENT_DEVICE_REMOVAL:
2722	case RDMA_CM_EVENT_ADDR_CHANGE:
2723		break;
2724	default:
2725		pr_err("received unrecognized RDMA CM event %d\n",
2726		       event->event);
2727		break;
2728	}
2729
2730	return ret;
2731}
2732
2733/*
2734 * srpt_write_pending - Start data transfer from initiator to target (write).
2735 */
2736static int srpt_write_pending(struct se_cmd *se_cmd)
2737{
2738	struct srpt_send_ioctx *ioctx =
2739		container_of(se_cmd, struct srpt_send_ioctx, cmd);
2740	struct srpt_rdma_ch *ch = ioctx->ch;
2741	struct ib_send_wr *first_wr = NULL;
2742	struct ib_cqe *cqe = &ioctx->rdma_cqe;
2743	enum srpt_command_state new_state;
2744	int ret, i;
2745
2746	if (ioctx->recv_ioctx) {
2747		srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2748		target_execute_cmd(&ioctx->cmd);
2749		return 0;
2750	}
2751
2752	new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2753	WARN_ON(new_state == SRPT_STATE_DONE);
2754
2755	if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
2756		pr_warn("%s: IB send queue full (needed %d)\n",
2757				__func__, ioctx->n_rdma);
2758		ret = -ENOMEM;
2759		goto out_undo;
2760	}
2761
2762	cqe->done = srpt_rdma_read_done;
2763	for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2764		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2765
2766		first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
2767				cqe, first_wr);
2768		cqe = NULL;
2769	}
2770
2771	ret = ib_post_send(ch->qp, first_wr, NULL);
2772	if (ret) {
2773		pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
2774			 __func__, ret, ioctx->n_rdma,
2775			 atomic_read(&ch->sq_wr_avail));
2776		goto out_undo;
2777	}
2778
2779	return 0;
2780out_undo:
2781	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
2782	return ret;
2783}
2784
2785static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2786{
2787	switch (tcm_mgmt_status) {
2788	case TMR_FUNCTION_COMPLETE:
2789		return SRP_TSK_MGMT_SUCCESS;
2790	case TMR_FUNCTION_REJECTED:
2791		return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2792	}
2793	return SRP_TSK_MGMT_FAILED;
2794}
2795
2796/**
2797 * srpt_queue_response - transmit the response to a SCSI command
2798 * @cmd: SCSI target command.
2799 *
2800 * Callback function called by the TCM core. Must not block since it can be
2801 * invoked on the context of the IB completion handler.
2802 */
2803static void srpt_queue_response(struct se_cmd *cmd)
2804{
2805	struct srpt_send_ioctx *ioctx =
2806		container_of(cmd, struct srpt_send_ioctx, cmd);
2807	struct srpt_rdma_ch *ch = ioctx->ch;
2808	struct srpt_device *sdev = ch->sport->sdev;
2809	struct ib_send_wr send_wr, *first_wr = &send_wr;
2810	struct ib_sge sge;
2811	enum srpt_command_state state;
2812	int resp_len, ret, i;
2813	u8 srp_tm_status;
2814
2815	state = ioctx->state;
2816	switch (state) {
2817	case SRPT_STATE_NEW:
2818	case SRPT_STATE_DATA_IN:
2819		ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2820		break;
2821	case SRPT_STATE_MGMT:
2822		ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2823		break;
2824	default:
2825		WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2826			ch, ioctx->ioctx.index, ioctx->state);
2827		break;
2828	}
2829
2830	if (WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))
2831		return;
2832
2833	/* For read commands, transfer the data to the initiator. */
2834	if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
2835	    ioctx->cmd.data_length &&
2836	    !ioctx->queue_status_only) {
2837		for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2838			struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2839
2840			first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2841					ch->sport->port, NULL, first_wr);
2842		}
2843	}
2844
2845	if (state != SRPT_STATE_MGMT)
2846		resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2847					      cmd->scsi_status);
2848	else {
2849		srp_tm_status
2850			= tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
2851		resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2852						 ioctx->cmd.tag);
2853	}
2854
2855	atomic_inc(&ch->req_lim);
2856
2857	if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
2858			&ch->sq_wr_avail) < 0)) {
2859		pr_warn("%s: IB send queue full (needed %d)\n",
2860				__func__, ioctx->n_rdma);
2861		ret = -ENOMEM;
2862		goto out;
2863	}
2864
2865	ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
2866				      DMA_TO_DEVICE);
2867
2868	sge.addr = ioctx->ioctx.dma;
2869	sge.length = resp_len;
2870	sge.lkey = sdev->lkey;
2871
2872	ioctx->ioctx.cqe.done = srpt_send_done;
2873	send_wr.next = NULL;
2874	send_wr.wr_cqe = &ioctx->ioctx.cqe;
2875	send_wr.sg_list = &sge;
2876	send_wr.num_sge = 1;
2877	send_wr.opcode = IB_WR_SEND;
2878	send_wr.send_flags = IB_SEND_SIGNALED;
2879
2880	ret = ib_post_send(ch->qp, first_wr, NULL);
2881	if (ret < 0) {
2882		pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
2883			__func__, ioctx->cmd.tag, ret);
2884		goto out;
2885	}
2886
2887	return;
2888
2889out:
2890	atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
2891	atomic_dec(&ch->req_lim);
2892	srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
2893	target_put_sess_cmd(&ioctx->cmd);
2894}
2895
2896static int srpt_queue_data_in(struct se_cmd *cmd)
2897{
2898	srpt_queue_response(cmd);
2899	return 0;
2900}
2901
2902static void srpt_queue_tm_rsp(struct se_cmd *cmd)
2903{
2904	srpt_queue_response(cmd);
2905}
2906
2907/*
2908 * This function is called for aborted commands if no response is sent to the
2909 * initiator. Make sure that the credits freed by aborting a command are
2910 * returned to the initiator the next time a response is sent by incrementing
2911 * ch->req_lim_delta.
2912 */
2913static void srpt_aborted_task(struct se_cmd *cmd)
2914{
2915	struct srpt_send_ioctx *ioctx = container_of(cmd,
2916				struct srpt_send_ioctx, cmd);
2917	struct srpt_rdma_ch *ch = ioctx->ch;
2918
2919	atomic_inc(&ch->req_lim_delta);
2920}
2921
2922static int srpt_queue_status(struct se_cmd *cmd)
2923{
2924	struct srpt_send_ioctx *ioctx;
2925
2926	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2927	BUG_ON(ioctx->sense_data != cmd->sense_buffer);
2928	if (cmd->se_cmd_flags &
2929	    (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
2930		WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
2931	ioctx->queue_status_only = true;
2932	srpt_queue_response(cmd);
2933	return 0;
2934}
2935
2936static void srpt_refresh_port_work(struct work_struct *work)
2937{
2938	struct srpt_port *sport = container_of(work, struct srpt_port, work);
2939
2940	srpt_refresh_port(sport);
2941}
2942
2943/**
2944 * srpt_release_sport - disable login and wait for associated channels
2945 * @sport: SRPT HCA port.
2946 */
2947static int srpt_release_sport(struct srpt_port *sport)
2948{
2949	DECLARE_COMPLETION_ONSTACK(c);
2950	struct srpt_nexus *nexus, *next_n;
2951	struct srpt_rdma_ch *ch;
2952
2953	WARN_ON_ONCE(irqs_disabled());
2954
2955	sport->freed_channels = &c;
2956
2957	mutex_lock(&sport->mutex);
2958	srpt_set_enabled(sport, false);
2959	mutex_unlock(&sport->mutex);
2960
2961	while (atomic_read(&sport->refcount) > 0 &&
2962	       wait_for_completion_timeout(&c, 5 * HZ) <= 0) {
2963		pr_info("%s_%d: waiting for unregistration of %d sessions ...\n",
2964			dev_name(&sport->sdev->device->dev), sport->port,
2965			atomic_read(&sport->refcount));
2966		rcu_read_lock();
2967		list_for_each_entry(nexus, &sport->nexus_list, entry) {
2968			list_for_each_entry(ch, &nexus->ch_list, list) {
2969				pr_info("%s-%d: state %s\n",
2970					ch->sess_name, ch->qp->qp_num,
2971					get_ch_state_name(ch->state));
2972			}
2973		}
2974		rcu_read_unlock();
2975	}
2976
2977	mutex_lock(&sport->mutex);
2978	list_for_each_entry_safe(nexus, next_n, &sport->nexus_list, entry) {
2979		list_del(&nexus->entry);
2980		kfree_rcu(nexus, rcu);
2981	}
2982	mutex_unlock(&sport->mutex);
2983
2984	return 0;
2985}
2986
2987struct port_and_port_id {
2988	struct srpt_port *sport;
2989	struct srpt_port_id **port_id;
2990};
2991
2992static struct port_and_port_id __srpt_lookup_port(const char *name)
2993{
2994	struct ib_device *dev;
2995	struct srpt_device *sdev;
2996	struct srpt_port *sport;
2997	int i;
2998
2999	list_for_each_entry(sdev, &srpt_dev_list, list) {
3000		dev = sdev->device;
3001		if (!dev)
3002			continue;
3003
3004		for (i = 0; i < dev->phys_port_cnt; i++) {
3005			sport = &sdev->port[i];
3006
3007			if (strcmp(sport->guid_name, name) == 0) {
3008				kref_get(&sdev->refcnt);
3009				return (struct port_and_port_id){
3010					sport, &sport->guid_id};
3011			}
3012			if (strcmp(sport->gid_name, name) == 0) {
3013				kref_get(&sdev->refcnt);
3014				return (struct port_and_port_id){
3015					sport, &sport->gid_id};
3016			}
3017		}
3018	}
3019
3020	return (struct port_and_port_id){};
3021}
3022
3023/**
3024 * srpt_lookup_port() - Look up an RDMA port by name
3025 * @name: ASCII port name
3026 *
3027 * Increments the RDMA port reference count if an RDMA port pointer is returned.
3028 * The caller must drop that reference count by calling srpt_port_put_ref().
3029 */
3030static struct port_and_port_id srpt_lookup_port(const char *name)
3031{
3032	struct port_and_port_id papi;
3033
3034	spin_lock(&srpt_dev_lock);
3035	papi = __srpt_lookup_port(name);
3036	spin_unlock(&srpt_dev_lock);
3037
3038	return papi;
3039}
3040
3041static void srpt_free_srq(struct srpt_device *sdev)
3042{
3043	if (!sdev->srq)
3044		return;
3045
3046	ib_destroy_srq(sdev->srq);
3047	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3048			     sdev->srq_size, sdev->req_buf_cache,
3049			     DMA_FROM_DEVICE);
3050	kmem_cache_destroy(sdev->req_buf_cache);
3051	sdev->srq = NULL;
3052}
3053
3054static int srpt_alloc_srq(struct srpt_device *sdev)
3055{
3056	struct ib_srq_init_attr srq_attr = {
3057		.event_handler = srpt_srq_event,
3058		.srq_context = (void *)sdev,
3059		.attr.max_wr = sdev->srq_size,
3060		.attr.max_sge = 1,
3061		.srq_type = IB_SRQT_BASIC,
3062	};
3063	struct ib_device *device = sdev->device;
3064	struct ib_srq *srq;
3065	int i;
3066
3067	WARN_ON_ONCE(sdev->srq);
3068	srq = ib_create_srq(sdev->pd, &srq_attr);
3069	if (IS_ERR(srq)) {
3070		pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq));
3071		return PTR_ERR(srq);
3072	}
3073
3074	pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size,
3075		 sdev->device->attrs.max_srq_wr, dev_name(&device->dev));
3076
3077	sdev->req_buf_cache = kmem_cache_create("srpt-srq-req-buf",
3078						srp_max_req_size, 0, 0, NULL);
3079	if (!sdev->req_buf_cache)
3080		goto free_srq;
3081
3082	sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3083		srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3084				      sizeof(*sdev->ioctx_ring[0]),
3085				      sdev->req_buf_cache, 0, DMA_FROM_DEVICE);
3086	if (!sdev->ioctx_ring)
3087		goto free_cache;
3088
3089	sdev->use_srq = true;
3090	sdev->srq = srq;
3091
3092	for (i = 0; i < sdev->srq_size; ++i) {
3093		INIT_LIST_HEAD(&sdev->ioctx_ring[i]->wait_list);
3094		srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]);
3095	}
3096
3097	return 0;
3098
3099free_cache:
3100	kmem_cache_destroy(sdev->req_buf_cache);
3101
3102free_srq:
3103	ib_destroy_srq(srq);
3104	return -ENOMEM;
3105}
3106
3107static int srpt_use_srq(struct srpt_device *sdev, bool use_srq)
3108{
3109	struct ib_device *device = sdev->device;
3110	int ret = 0;
3111
3112	if (!use_srq) {
3113		srpt_free_srq(sdev);
3114		sdev->use_srq = false;
3115	} else if (use_srq && !sdev->srq) {
3116		ret = srpt_alloc_srq(sdev);
3117	}
3118	pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__,
3119		 dev_name(&device->dev), sdev->use_srq, ret);
3120	return ret;
3121}
3122
3123static void srpt_free_sdev(struct kref *refcnt)
3124{
3125	struct srpt_device *sdev = container_of(refcnt, typeof(*sdev), refcnt);
3126
3127	kfree(sdev);
3128}
3129
3130static void srpt_sdev_put(struct srpt_device *sdev)
3131{
3132	kref_put(&sdev->refcnt, srpt_free_sdev);
3133}
3134
3135/**
3136 * srpt_add_one - InfiniBand device addition callback function
3137 * @device: Describes a HCA.
3138 */
3139static int srpt_add_one(struct ib_device *device)
3140{
3141	struct srpt_device *sdev;
3142	struct srpt_port *sport;
3143	int i, ret;
3144
3145	pr_debug("device = %p\n", device);
3146
3147	sdev = kzalloc(struct_size(sdev, port, device->phys_port_cnt),
3148		       GFP_KERNEL);
3149	if (!sdev)
3150		return -ENOMEM;
3151
3152	kref_init(&sdev->refcnt);
3153	sdev->device = device;
3154	mutex_init(&sdev->sdev_mutex);
3155
3156	sdev->pd = ib_alloc_pd(device, 0);
3157	if (IS_ERR(sdev->pd)) {
3158		ret = PTR_ERR(sdev->pd);
3159		goto free_dev;
3160	}
3161
3162	sdev->lkey = sdev->pd->local_dma_lkey;
3163
3164	sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
3165
3166	srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq);
3167
3168	if (!srpt_service_guid)
3169		srpt_service_guid = be64_to_cpu(device->node_guid);
3170
3171	if (rdma_port_get_link_layer(device, 1) == IB_LINK_LAYER_INFINIBAND)
3172		sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3173	if (IS_ERR(sdev->cm_id)) {
3174		pr_info("ib_create_cm_id() failed: %ld\n",
3175			PTR_ERR(sdev->cm_id));
3176		ret = PTR_ERR(sdev->cm_id);
3177		sdev->cm_id = NULL;
3178		if (!rdma_cm_id)
3179			goto err_ring;
3180	}
3181
3182	/* print out target login information */
3183	pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,pkey=ffff,service_id=%016llx\n",
3184		 srpt_service_guid, srpt_service_guid, srpt_service_guid);
3185
3186	/*
3187	 * We do not have a consistent service_id (ie. also id_ext of target_id)
3188	 * to identify this target. We currently use the guid of the first HCA
3189	 * in the system as service_id; therefore, the target_id will change
3190	 * if this HCA is gone bad and replaced by different HCA
3191	 */
3192	ret = sdev->cm_id ?
3193		ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0) :
3194		0;
3195	if (ret < 0) {
3196		pr_err("ib_cm_listen() failed: %d (cm_id state = %d)\n", ret,
3197		       sdev->cm_id->state);
3198		goto err_cm;
3199	}
3200
3201	INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3202			      srpt_event_handler);
3203
3204	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3205		sport = &sdev->port[i - 1];
3206		INIT_LIST_HEAD(&sport->nexus_list);
3207		mutex_init(&sport->mutex);
3208		sport->sdev = sdev;
3209		sport->port = i;
3210		sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3211		sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3212		sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3213		sport->port_attrib.use_srq = false;
3214		INIT_WORK(&sport->work, srpt_refresh_port_work);
3215
3216		ret = srpt_refresh_port(sport);
3217		if (ret) {
3218			pr_err("MAD registration failed for %s-%d.\n",
3219			       dev_name(&sdev->device->dev), i);
3220			i--;
3221			goto err_port;
3222		}
3223	}
3224
3225	ib_register_event_handler(&sdev->event_handler);
3226	spin_lock(&srpt_dev_lock);
3227	list_add_tail(&sdev->list, &srpt_dev_list);
3228	spin_unlock(&srpt_dev_lock);
3229
3230	ib_set_client_data(device, &srpt_client, sdev);
3231	pr_debug("added %s.\n", dev_name(&device->dev));
3232	return 0;
3233
3234err_port:
3235	srpt_unregister_mad_agent(sdev, i);
3236err_cm:
3237	if (sdev->cm_id)
3238		ib_destroy_cm_id(sdev->cm_id);
3239err_ring:
3240	srpt_free_srq(sdev);
3241	ib_dealloc_pd(sdev->pd);
3242free_dev:
3243	srpt_sdev_put(sdev);
3244	pr_info("%s(%s) failed.\n", __func__, dev_name(&device->dev));
3245	return ret;
3246}
3247
3248/**
3249 * srpt_remove_one - InfiniBand device removal callback function
3250 * @device: Describes a HCA.
3251 * @client_data: The value passed as the third argument to ib_set_client_data().
3252 */
3253static void srpt_remove_one(struct ib_device *device, void *client_data)
3254{
3255	struct srpt_device *sdev = client_data;
3256	int i;
3257
3258	srpt_unregister_mad_agent(sdev, sdev->device->phys_port_cnt);
3259
3260	ib_unregister_event_handler(&sdev->event_handler);
3261
3262	/* Cancel any work queued by the just unregistered IB event handler. */
3263	for (i = 0; i < sdev->device->phys_port_cnt; i++)
3264		cancel_work_sync(&sdev->port[i].work);
3265
3266	if (sdev->cm_id)
3267		ib_destroy_cm_id(sdev->cm_id);
3268
3269	ib_set_client_data(device, &srpt_client, NULL);
3270
3271	/*
3272	 * Unregistering a target must happen after destroying sdev->cm_id
3273	 * such that no new SRP_LOGIN_REQ information units can arrive while
3274	 * destroying the target.
3275	 */
3276	spin_lock(&srpt_dev_lock);
3277	list_del(&sdev->list);
3278	spin_unlock(&srpt_dev_lock);
3279
3280	for (i = 0; i < sdev->device->phys_port_cnt; i++)
3281		srpt_release_sport(&sdev->port[i]);
3282
3283	srpt_free_srq(sdev);
3284
3285	ib_dealloc_pd(sdev->pd);
3286
3287	srpt_sdev_put(sdev);
3288}
3289
3290static struct ib_client srpt_client = {
3291	.name = DRV_NAME,
3292	.add = srpt_add_one,
3293	.remove = srpt_remove_one
3294};
3295
3296static int srpt_check_true(struct se_portal_group *se_tpg)
3297{
3298	return 1;
3299}
3300
3301static int srpt_check_false(struct se_portal_group *se_tpg)
3302{
3303	return 0;
3304}
3305
3306static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg)
3307{
3308	return tpg->se_tpg_wwn->priv;
3309}
3310
3311static struct srpt_port_id *srpt_wwn_to_sport_id(struct se_wwn *wwn)
3312{
3313	struct srpt_port *sport = wwn->priv;
3314
3315	if (sport->guid_id && &sport->guid_id->wwn == wwn)
3316		return sport->guid_id;
3317	if (sport->gid_id && &sport->gid_id->wwn == wwn)
3318		return sport->gid_id;
3319	WARN_ON_ONCE(true);
3320	return NULL;
3321}
3322
3323static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3324{
3325	struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg);
3326
3327	return stpg->sport_id->name;
3328}
3329
3330static u16 srpt_get_tag(struct se_portal_group *tpg)
3331{
3332	return 1;
3333}
3334
3335static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3336{
3337	return 1;
3338}
3339
3340static void srpt_release_cmd(struct se_cmd *se_cmd)
3341{
3342	struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3343				struct srpt_send_ioctx, cmd);
3344	struct srpt_rdma_ch *ch = ioctx->ch;
3345	struct srpt_recv_ioctx *recv_ioctx = ioctx->recv_ioctx;
3346
3347	WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE &&
3348		     !(ioctx->cmd.transport_state & CMD_T_ABORTED));
3349
3350	if (recv_ioctx) {
3351		WARN_ON_ONCE(!list_empty(&recv_ioctx->wait_list));
3352		ioctx->recv_ioctx = NULL;
3353		srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
3354	}
3355
3356	if (ioctx->n_rw_ctx) {
3357		srpt_free_rw_ctxs(ch, ioctx);
3358		ioctx->n_rw_ctx = 0;
3359	}
3360
3361	target_free_tag(se_cmd->se_sess, se_cmd);
3362}
3363
3364/**
3365 * srpt_close_session - forcibly close a session
3366 * @se_sess: SCSI target session.
3367 *
3368 * Callback function invoked by the TCM core to clean up sessions associated
3369 * with a node ACL when the user invokes
3370 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3371 */
3372static void srpt_close_session(struct se_session *se_sess)
3373{
3374	struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
3375
3376	srpt_disconnect_ch_sync(ch);
3377}
3378
3379/**
3380 * srpt_sess_get_index - return the value of scsiAttIntrPortIndex (SCSI-MIB)
3381 * @se_sess: SCSI target session.
3382 *
3383 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3384 * This object represents an arbitrary integer used to uniquely identify a
3385 * particular attached remote initiator port to a particular SCSI target port
3386 * within a particular SCSI target device within a particular SCSI instance.
3387 */
3388static u32 srpt_sess_get_index(struct se_session *se_sess)
3389{
3390	return 0;
3391}
3392
3393static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3394{
3395}
3396
3397/* Note: only used from inside debug printk's by the TCM core. */
3398static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3399{
3400	struct srpt_send_ioctx *ioctx;
3401
3402	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3403	return ioctx->state;
3404}
3405
3406static int srpt_parse_guid(u64 *guid, const char *name)
3407{
3408	u16 w[4];
3409	int ret = -EINVAL;
3410
3411	if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4)
3412		goto out;
3413	*guid = get_unaligned_be64(w);
3414	ret = 0;
3415out:
3416	return ret;
3417}
3418
3419/**
3420 * srpt_parse_i_port_id - parse an initiator port ID
3421 * @name: ASCII representation of a 128-bit initiator port ID.
3422 * @i_port_id: Binary 128-bit port ID.
3423 */
3424static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3425{
3426	const char *p;
3427	unsigned len, count, leading_zero_bytes;
3428	int ret;
3429
3430	p = name;
3431	if (strncasecmp(p, "0x", 2) == 0)
3432		p += 2;
3433	ret = -EINVAL;
3434	len = strlen(p);
3435	if (len % 2)
3436		goto out;
3437	count = min(len / 2, 16U);
3438	leading_zero_bytes = 16 - count;
3439	memset(i_port_id, 0, leading_zero_bytes);
3440	ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
3441
3442out:
3443	return ret;
3444}
3445
3446/*
3447 * configfs callback function invoked for mkdir
3448 * /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3449 *
3450 * i_port_id must be an initiator port GUID, GID or IP address. See also the
3451 * target_alloc_session() calls in this driver. Examples of valid initiator
3452 * port IDs:
3453 * 0x0000000000000000505400fffe4a0b7b
3454 * 0000000000000000505400fffe4a0b7b
3455 * 5054:00ff:fe4a:0b7b
3456 * 192.168.122.76
3457 */
3458static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3459{
3460	struct sockaddr_storage sa;
3461	u64 guid;
3462	u8 i_port_id[16];
3463	int ret;
3464
3465	ret = srpt_parse_guid(&guid, name);
3466	if (ret < 0)
3467		ret = srpt_parse_i_port_id(i_port_id, name);
3468	if (ret < 0)
3469		ret = inet_pton_with_scope(&init_net, AF_UNSPEC, name, NULL,
3470					   &sa);
3471	if (ret < 0)
3472		pr_err("invalid initiator port ID %s\n", name);
3473	return ret;
3474}
3475
3476static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
3477		char *page)
3478{
3479	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3480	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3481
3482	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3483}
3484
3485static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
3486		const char *page, size_t count)
3487{
3488	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3489	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3490	unsigned long val;
3491	int ret;
3492
3493	ret = kstrtoul(page, 0, &val);
3494	if (ret < 0) {
3495		pr_err("kstrtoul() failed with ret: %d\n", ret);
3496		return -EINVAL;
3497	}
3498	if (val > MAX_SRPT_RDMA_SIZE) {
3499		pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3500			MAX_SRPT_RDMA_SIZE);
3501		return -EINVAL;
3502	}
3503	if (val < DEFAULT_MAX_RDMA_SIZE) {
3504		pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3505			val, DEFAULT_MAX_RDMA_SIZE);
3506		return -EINVAL;
3507	}
3508	sport->port_attrib.srp_max_rdma_size = val;
3509
3510	return count;
3511}
3512
3513static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
3514		char *page)
3515{
3516	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3517	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3518
3519	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3520}
3521
3522static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
3523		const char *page, size_t count)
3524{
3525	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3526	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3527	unsigned long val;
3528	int ret;
3529
3530	ret = kstrtoul(page, 0, &val);
3531	if (ret < 0) {
3532		pr_err("kstrtoul() failed with ret: %d\n", ret);
3533		return -EINVAL;
3534	}
3535	if (val > MAX_SRPT_RSP_SIZE) {
3536		pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3537			MAX_SRPT_RSP_SIZE);
3538		return -EINVAL;
3539	}
3540	if (val < MIN_MAX_RSP_SIZE) {
3541		pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3542			MIN_MAX_RSP_SIZE);
3543		return -EINVAL;
3544	}
3545	sport->port_attrib.srp_max_rsp_size = val;
3546
3547	return count;
3548}
3549
3550static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
3551		char *page)
3552{
3553	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3554	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3555
3556	return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3557}
3558
3559static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
3560		const char *page, size_t count)
3561{
3562	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3563	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3564	unsigned long val;
3565	int ret;
3566
3567	ret = kstrtoul(page, 0, &val);
3568	if (ret < 0) {
3569		pr_err("kstrtoul() failed with ret: %d\n", ret);
3570		return -EINVAL;
3571	}
3572	if (val > MAX_SRPT_SRQ_SIZE) {
3573		pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3574			MAX_SRPT_SRQ_SIZE);
3575		return -EINVAL;
3576	}
3577	if (val < MIN_SRPT_SRQ_SIZE) {
3578		pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3579			MIN_SRPT_SRQ_SIZE);
3580		return -EINVAL;
3581	}
3582	sport->port_attrib.srp_sq_size = val;
3583
3584	return count;
3585}
3586
3587static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item,
3588					    char *page)
3589{
3590	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3591	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3592
3593	return sprintf(page, "%d\n", sport->port_attrib.use_srq);
3594}
3595
3596static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item,
3597					     const char *page, size_t count)
3598{
3599	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3600	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3601	struct srpt_device *sdev = sport->sdev;
3602	unsigned long val;
3603	bool enabled;
3604	int ret;
3605
3606	ret = kstrtoul(page, 0, &val);
3607	if (ret < 0)
3608		return ret;
3609	if (val != !!val)
3610		return -EINVAL;
3611
3612	ret = mutex_lock_interruptible(&sdev->sdev_mutex);
3613	if (ret < 0)
3614		return ret;
3615	ret = mutex_lock_interruptible(&sport->mutex);
3616	if (ret < 0)
3617		goto unlock_sdev;
3618	enabled = sport->enabled;
3619	/* Log out all initiator systems before changing 'use_srq'. */
3620	srpt_set_enabled(sport, false);
3621	sport->port_attrib.use_srq = val;
3622	srpt_use_srq(sdev, sport->port_attrib.use_srq);
3623	srpt_set_enabled(sport, enabled);
3624	ret = count;
3625	mutex_unlock(&sport->mutex);
3626unlock_sdev:
3627	mutex_unlock(&sdev->sdev_mutex);
3628
3629	return ret;
3630}
3631
3632CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rdma_size);
3633CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rsp_size);
3634CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_sq_size);
3635CONFIGFS_ATTR(srpt_tpg_attrib_,  use_srq);
3636
3637static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3638	&srpt_tpg_attrib_attr_srp_max_rdma_size,
3639	&srpt_tpg_attrib_attr_srp_max_rsp_size,
3640	&srpt_tpg_attrib_attr_srp_sq_size,
3641	&srpt_tpg_attrib_attr_use_srq,
3642	NULL,
3643};
3644
3645static struct rdma_cm_id *srpt_create_rdma_id(struct sockaddr *listen_addr)
3646{
3647	struct rdma_cm_id *rdma_cm_id;
3648	int ret;
3649
3650	rdma_cm_id = rdma_create_id(&init_net, srpt_rdma_cm_handler,
3651				    NULL, RDMA_PS_TCP, IB_QPT_RC);
3652	if (IS_ERR(rdma_cm_id)) {
3653		pr_err("RDMA/CM ID creation failed: %ld\n",
3654		       PTR_ERR(rdma_cm_id));
3655		goto out;
3656	}
3657
3658	ret = rdma_bind_addr(rdma_cm_id, listen_addr);
3659	if (ret) {
3660		char addr_str[64];
3661
3662		snprintf(addr_str, sizeof(addr_str), "%pISp", listen_addr);
3663		pr_err("Binding RDMA/CM ID to address %s failed: %d\n",
3664		       addr_str, ret);
3665		rdma_destroy_id(rdma_cm_id);
3666		rdma_cm_id = ERR_PTR(ret);
3667		goto out;
3668	}
3669
3670	ret = rdma_listen(rdma_cm_id, 128);
3671	if (ret) {
3672		pr_err("rdma_listen() failed: %d\n", ret);
3673		rdma_destroy_id(rdma_cm_id);
3674		rdma_cm_id = ERR_PTR(ret);
3675	}
3676
3677out:
3678	return rdma_cm_id;
3679}
3680
3681static ssize_t srpt_rdma_cm_port_show(struct config_item *item, char *page)
3682{
3683	return sprintf(page, "%d\n", rdma_cm_port);
3684}
3685
3686static ssize_t srpt_rdma_cm_port_store(struct config_item *item,
3687				       const char *page, size_t count)
3688{
3689	struct sockaddr_in  addr4 = { .sin_family  = AF_INET  };
3690	struct sockaddr_in6 addr6 = { .sin6_family = AF_INET6 };
3691	struct rdma_cm_id *new_id = NULL;
3692	u16 val;
3693	int ret;
3694
3695	ret = kstrtou16(page, 0, &val);
3696	if (ret < 0)
3697		return ret;
3698	ret = count;
3699	if (rdma_cm_port == val)
3700		goto out;
3701
3702	if (val) {
3703		addr6.sin6_port = cpu_to_be16(val);
3704		new_id = srpt_create_rdma_id((struct sockaddr *)&addr6);
3705		if (IS_ERR(new_id)) {
3706			addr4.sin_port = cpu_to_be16(val);
3707			new_id = srpt_create_rdma_id((struct sockaddr *)&addr4);
3708			if (IS_ERR(new_id)) {
3709				ret = PTR_ERR(new_id);
3710				goto out;
3711			}
3712		}
3713	}
3714
3715	mutex_lock(&rdma_cm_mutex);
3716	rdma_cm_port = val;
3717	swap(rdma_cm_id, new_id);
3718	mutex_unlock(&rdma_cm_mutex);
3719
3720	if (new_id)
3721		rdma_destroy_id(new_id);
3722	ret = count;
3723out:
3724	return ret;
3725}
3726
3727CONFIGFS_ATTR(srpt_, rdma_cm_port);
3728
3729static struct configfs_attribute *srpt_da_attrs[] = {
3730	&srpt_attr_rdma_cm_port,
3731	NULL,
3732};
3733
3734static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3735{
3736	struct se_portal_group *se_tpg = to_tpg(item);
3737	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3738
3739	return snprintf(page, PAGE_SIZE, "%d\n", sport->enabled);
3740}
3741
3742static ssize_t srpt_tpg_enable_store(struct config_item *item,
3743		const char *page, size_t count)
3744{
3745	struct se_portal_group *se_tpg = to_tpg(item);
3746	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3747	unsigned long tmp;
3748	int ret;
3749
3750	ret = kstrtoul(page, 0, &tmp);
3751	if (ret < 0) {
3752		pr_err("Unable to extract srpt_tpg_store_enable\n");
3753		return -EINVAL;
3754	}
3755
3756	if ((tmp != 0) && (tmp != 1)) {
3757		pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3758		return -EINVAL;
3759	}
3760
3761	mutex_lock(&sport->mutex);
3762	srpt_set_enabled(sport, tmp);
3763	mutex_unlock(&sport->mutex);
3764
3765	return count;
3766}
3767
3768CONFIGFS_ATTR(srpt_tpg_, enable);
3769
3770static struct configfs_attribute *srpt_tpg_attrs[] = {
3771	&srpt_tpg_attr_enable,
3772	NULL,
3773};
3774
3775/**
3776 * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg
3777 * @wwn: Corresponds to $driver/$port.
3778 * @name: $tpg.
3779 */
3780static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3781					     const char *name)
3782{
3783	struct srpt_port_id *sport_id = srpt_wwn_to_sport_id(wwn);
3784	struct srpt_tpg *stpg;
3785	int res = -ENOMEM;
3786
3787	stpg = kzalloc(sizeof(*stpg), GFP_KERNEL);
3788	if (!stpg)
3789		return ERR_PTR(res);
3790	stpg->sport_id = sport_id;
3791	res = core_tpg_register(wwn, &stpg->tpg, SCSI_PROTOCOL_SRP);
3792	if (res) {
3793		kfree(stpg);
3794		return ERR_PTR(res);
3795	}
3796
3797	mutex_lock(&sport_id->mutex);
3798	list_add_tail(&stpg->entry, &sport_id->tpg_list);
3799	mutex_unlock(&sport_id->mutex);
3800
3801	return &stpg->tpg;
3802}
3803
3804/**
3805 * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg
3806 * @tpg: Target portal group to deregister.
3807 */
3808static void srpt_drop_tpg(struct se_portal_group *tpg)
3809{
3810	struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg);
3811	struct srpt_port_id *sport_id = stpg->sport_id;
3812	struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3813
3814	mutex_lock(&sport_id->mutex);
3815	list_del(&stpg->entry);
3816	mutex_unlock(&sport_id->mutex);
3817
3818	sport->enabled = false;
3819	core_tpg_deregister(tpg);
3820	kfree(stpg);
3821}
3822
3823/**
3824 * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port
3825 * @tf: Not used.
3826 * @group: Not used.
3827 * @name: $port.
3828 */
3829static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3830				      struct config_group *group,
3831				      const char *name)
3832{
3833	struct port_and_port_id papi = srpt_lookup_port(name);
3834	struct srpt_port *sport = papi.sport;
3835	struct srpt_port_id *port_id;
3836
3837	if (!papi.port_id)
3838		return ERR_PTR(-EINVAL);
3839	if (*papi.port_id) {
3840		/* Attempt to create a directory that already exists. */
3841		WARN_ON_ONCE(true);
3842		return &(*papi.port_id)->wwn;
3843	}
3844	port_id = kzalloc(sizeof(*port_id), GFP_KERNEL);
3845	if (!port_id) {
3846		srpt_sdev_put(sport->sdev);
3847		return ERR_PTR(-ENOMEM);
3848	}
3849	mutex_init(&port_id->mutex);
3850	INIT_LIST_HEAD(&port_id->tpg_list);
3851	port_id->wwn.priv = sport;
3852	memcpy(port_id->name, port_id == sport->guid_id ? sport->guid_name :
3853	       sport->gid_name, ARRAY_SIZE(port_id->name));
3854
3855	*papi.port_id = port_id;
3856
3857	return &port_id->wwn;
3858}
3859
3860/**
3861 * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port
3862 * @wwn: $port.
3863 */
3864static void srpt_drop_tport(struct se_wwn *wwn)
3865{
3866	struct srpt_port_id *port_id = container_of(wwn, typeof(*port_id), wwn);
3867	struct srpt_port *sport = wwn->priv;
3868
3869	if (sport->guid_id == port_id)
3870		sport->guid_id = NULL;
3871	else if (sport->gid_id == port_id)
3872		sport->gid_id = NULL;
3873	else
3874		WARN_ON_ONCE(true);
3875
3876	srpt_sdev_put(sport->sdev);
3877	kfree(port_id);
3878}
3879
3880static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3881{
3882	return scnprintf(buf, PAGE_SIZE, "\n");
3883}
3884
3885CONFIGFS_ATTR_RO(srpt_wwn_, version);
3886
3887static struct configfs_attribute *srpt_wwn_attrs[] = {
3888	&srpt_wwn_attr_version,
3889	NULL,
3890};
3891
3892static const struct target_core_fabric_ops srpt_template = {
3893	.module				= THIS_MODULE,
3894	.fabric_name			= "srpt",
3895	.tpg_get_wwn			= srpt_get_fabric_wwn,
3896	.tpg_get_tag			= srpt_get_tag,
3897	.tpg_check_demo_mode		= srpt_check_false,
3898	.tpg_check_demo_mode_cache	= srpt_check_true,
3899	.tpg_check_demo_mode_write_protect = srpt_check_true,
3900	.tpg_check_prod_mode_write_protect = srpt_check_false,
3901	.tpg_get_inst_index		= srpt_tpg_get_inst_index,
3902	.release_cmd			= srpt_release_cmd,
3903	.check_stop_free		= srpt_check_stop_free,
3904	.close_session			= srpt_close_session,
3905	.sess_get_index			= srpt_sess_get_index,
3906	.sess_get_initiator_sid		= NULL,
3907	.write_pending			= srpt_write_pending,
3908	.set_default_node_attributes	= srpt_set_default_node_attrs,
3909	.get_cmd_state			= srpt_get_tcm_cmd_state,
3910	.queue_data_in			= srpt_queue_data_in,
3911	.queue_status			= srpt_queue_status,
3912	.queue_tm_rsp			= srpt_queue_tm_rsp,
3913	.aborted_task			= srpt_aborted_task,
3914	/*
3915	 * Setup function pointers for generic logic in
3916	 * target_core_fabric_configfs.c
3917	 */
3918	.fabric_make_wwn		= srpt_make_tport,
3919	.fabric_drop_wwn		= srpt_drop_tport,
3920	.fabric_make_tpg		= srpt_make_tpg,
3921	.fabric_drop_tpg		= srpt_drop_tpg,
3922	.fabric_init_nodeacl		= srpt_init_nodeacl,
3923
3924	.tfc_discovery_attrs		= srpt_da_attrs,
3925	.tfc_wwn_attrs			= srpt_wwn_attrs,
3926	.tfc_tpg_base_attrs		= srpt_tpg_attrs,
3927	.tfc_tpg_attrib_attrs		= srpt_tpg_attrib_attrs,
3928};
3929
3930/**
3931 * srpt_init_module - kernel module initialization
3932 *
3933 * Note: Since ib_register_client() registers callback functions, and since at
3934 * least one of these callback functions (srpt_add_one()) calls target core
3935 * functions, this driver must be registered with the target core before
3936 * ib_register_client() is called.
3937 */
3938static int __init srpt_init_module(void)
3939{
3940	int ret;
3941
3942	ret = -EINVAL;
3943	if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3944		pr_err("invalid value %d for kernel module parameter srp_max_req_size -- must be at least %d.\n",
3945		       srp_max_req_size, MIN_MAX_REQ_SIZE);
3946		goto out;
3947	}
3948
3949	if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3950	    || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3951		pr_err("invalid value %d for kernel module parameter srpt_srq_size -- must be in the range [%d..%d].\n",
3952		       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3953		goto out;
3954	}
3955
3956	ret = target_register_template(&srpt_template);
3957	if (ret)
3958		goto out;
3959
3960	ret = ib_register_client(&srpt_client);
3961	if (ret) {
3962		pr_err("couldn't register IB client\n");
3963		goto out_unregister_target;
3964	}
3965
3966	return 0;
3967
3968out_unregister_target:
3969	target_unregister_template(&srpt_template);
3970out:
3971	return ret;
3972}
3973
3974static void __exit srpt_cleanup_module(void)
3975{
3976	if (rdma_cm_id)
3977		rdma_destroy_id(rdma_cm_id);
3978	ib_unregister_client(&srpt_client);
3979	target_unregister_template(&srpt_template);
3980}
3981
3982module_init(srpt_init_module);
3983module_exit(srpt_cleanup_module);
3984