1 /*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 *
33 */
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <linux/inet.h>
45 #include <rdma/ib_cache.h>
46 #include <scsi/scsi_proto.h>
47 #include <scsi/scsi_tcq.h>
48 #include <target/target_core_base.h>
49 #include <target/target_core_fabric.h>
50 #include "ib_srpt.h"
51
52 /* Name of this kernel module. */
53 #define DRV_NAME "ib_srpt"
54
55 #define SRPT_ID_STRING "Linux SRP target"
56
57 #undef pr_fmt
58 #define pr_fmt(fmt) DRV_NAME " " fmt
59
60 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
61 MODULE_DESCRIPTION("SCSI RDMA Protocol target driver");
62 MODULE_LICENSE("Dual BSD/GPL");
63
64 /*
65 * Global Variables
66 */
67
68 static u64 srpt_service_guid;
69 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */
70 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */
71
72 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
73 module_param(srp_max_req_size, int, 0444);
74 MODULE_PARM_DESC(srp_max_req_size,
75 "Maximum size of SRP request messages in bytes.");
76
77 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
78 module_param(srpt_srq_size, int, 0444);
79 MODULE_PARM_DESC(srpt_srq_size,
80 "Shared receive queue (SRQ) size.");
81
srpt_get_u64_x(char *buffer, const struct kernel_param *kp)82 static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp)
83 {
84 return sprintf(buffer, "0x%016llx\n", *(u64 *)kp->arg);
85 }
86 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
87 0444);
88 MODULE_PARM_DESC(srpt_service_guid,
89 "Using this value for ioc_guid, id_ext, and cm_listen_id instead of using the node_guid of the first HCA.");
90
91 static struct ib_client srpt_client;
92 /* Protects both rdma_cm_port and rdma_cm_id. */
93 static DEFINE_MUTEX(rdma_cm_mutex);
94 /* Port number RDMA/CM will bind to. */
95 static u16 rdma_cm_port;
96 static struct rdma_cm_id *rdma_cm_id;
97 static void srpt_release_cmd(struct se_cmd *se_cmd);
98 static void srpt_free_ch(struct kref *kref);
99 static int srpt_queue_status(struct se_cmd *cmd);
100 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
101 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
102 static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
103
104 /*
105 * The only allowed channel state changes are those that change the channel
106 * state into a state with a higher numerical value. Hence the new > prev test.
107 */
srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)108 static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
109 {
110 unsigned long flags;
111 enum rdma_ch_state prev;
112 bool changed = false;
113
114 spin_lock_irqsave(&ch->spinlock, flags);
115 prev = ch->state;
116 if (new > prev) {
117 ch->state = new;
118 changed = true;
119 }
120 spin_unlock_irqrestore(&ch->spinlock, flags);
121
122 return changed;
123 }
124
125 /**
126 * srpt_event_handler - asynchronous IB event callback function
127 * @handler: IB event handler registered by ib_register_event_handler().
128 * @event: Description of the event that occurred.
129 *
130 * Callback function called by the InfiniBand core when an asynchronous IB
131 * event occurs. This callback may occur in interrupt context. See also
132 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
133 * Architecture Specification.
134 */
srpt_event_handler(struct ib_event_handler *handler, struct ib_event *event)135 static void srpt_event_handler(struct ib_event_handler *handler,
136 struct ib_event *event)
137 {
138 struct srpt_device *sdev =
139 container_of(handler, struct srpt_device, event_handler);
140 struct srpt_port *sport;
141 u8 port_num;
142
143 pr_debug("ASYNC event= %d on device= %s\n", event->event,
144 dev_name(&sdev->device->dev));
145
146 switch (event->event) {
147 case IB_EVENT_PORT_ERR:
148 port_num = event->element.port_num - 1;
149 if (port_num < sdev->device->phys_port_cnt) {
150 sport = &sdev->port[port_num];
151 sport->lid = 0;
152 sport->sm_lid = 0;
153 } else {
154 WARN(true, "event %d: port_num %d out of range 1..%d\n",
155 event->event, port_num + 1,
156 sdev->device->phys_port_cnt);
157 }
158 break;
159 case IB_EVENT_PORT_ACTIVE:
160 case IB_EVENT_LID_CHANGE:
161 case IB_EVENT_PKEY_CHANGE:
162 case IB_EVENT_SM_CHANGE:
163 case IB_EVENT_CLIENT_REREGISTER:
164 case IB_EVENT_GID_CHANGE:
165 /* Refresh port data asynchronously. */
166 port_num = event->element.port_num - 1;
167 if (port_num < sdev->device->phys_port_cnt) {
168 sport = &sdev->port[port_num];
169 if (!sport->lid && !sport->sm_lid)
170 schedule_work(&sport->work);
171 } else {
172 WARN(true, "event %d: port_num %d out of range 1..%d\n",
173 event->event, port_num + 1,
174 sdev->device->phys_port_cnt);
175 }
176 break;
177 default:
178 pr_err("received unrecognized IB event %d\n", event->event);
179 break;
180 }
181 }
182
183 /**
184 * srpt_srq_event - SRQ event callback function
185 * @event: Description of the event that occurred.
186 * @ctx: Context pointer specified at SRQ creation time.
187 */
srpt_srq_event(struct ib_event *event, void *ctx)188 static void srpt_srq_event(struct ib_event *event, void *ctx)
189 {
190 pr_debug("SRQ event %d\n", event->event);
191 }
192
get_ch_state_name(enum rdma_ch_state s)193 static const char *get_ch_state_name(enum rdma_ch_state s)
194 {
195 switch (s) {
196 case CH_CONNECTING:
197 return "connecting";
198 case CH_LIVE:
199 return "live";
200 case CH_DISCONNECTING:
201 return "disconnecting";
202 case CH_DRAINING:
203 return "draining";
204 case CH_DISCONNECTED:
205 return "disconnected";
206 }
207 return "???";
208 }
209
210 /**
211 * srpt_qp_event - QP event callback function
212 * @event: Description of the event that occurred.
213 * @ch: SRPT RDMA channel.
214 */
srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)215 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
216 {
217 pr_debug("QP event %d on ch=%p sess_name=%s-%d state=%s\n",
218 event->event, ch, ch->sess_name, ch->qp->qp_num,
219 get_ch_state_name(ch->state));
220
221 switch (event->event) {
222 case IB_EVENT_COMM_EST:
223 if (ch->using_rdma_cm)
224 rdma_notify(ch->rdma_cm.cm_id, event->event);
225 else
226 ib_cm_notify(ch->ib_cm.cm_id, event->event);
227 break;
228 case IB_EVENT_QP_LAST_WQE_REACHED:
229 pr_debug("%s-%d, state %s: received Last WQE event.\n",
230 ch->sess_name, ch->qp->qp_num,
231 get_ch_state_name(ch->state));
232 break;
233 default:
234 pr_err("received unrecognized IB QP event %d\n", event->event);
235 break;
236 }
237 }
238
239 /**
240 * srpt_set_ioc - initialize a IOUnitInfo structure
241 * @c_list: controller list.
242 * @slot: one-based slot number.
243 * @value: four-bit value.
244 *
245 * Copies the lowest four bits of value in element slot of the array of four
246 * bit elements called c_list (controller list). The index slot is one-based.
247 */
srpt_set_ioc(u8 *c_list, u32 slot, u8 value)248 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
249 {
250 u16 id;
251 u8 tmp;
252
253 id = (slot - 1) / 2;
254 if (slot & 0x1) {
255 tmp = c_list[id] & 0xf;
256 c_list[id] = (value << 4) | tmp;
257 } else {
258 tmp = c_list[id] & 0xf0;
259 c_list[id] = (value & 0xf) | tmp;
260 }
261 }
262
263 /**
264 * srpt_get_class_port_info - copy ClassPortInfo to a management datagram
265 * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO.
266 *
267 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
268 * Specification.
269 */
srpt_get_class_port_info(struct ib_dm_mad *mad)270 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
271 {
272 struct ib_class_port_info *cif;
273
274 cif = (struct ib_class_port_info *)mad->data;
275 memset(cif, 0, sizeof(*cif));
276 cif->base_version = 1;
277 cif->class_version = 1;
278
279 ib_set_cpi_resp_time(cif, 20);
280 mad->mad_hdr.status = 0;
281 }
282
283 /**
284 * srpt_get_iou - write IOUnitInfo to a management datagram
285 * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO.
286 *
287 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
288 * Specification. See also section B.7, table B.6 in the SRP r16a document.
289 */
srpt_get_iou(struct ib_dm_mad *mad)290 static void srpt_get_iou(struct ib_dm_mad *mad)
291 {
292 struct ib_dm_iou_info *ioui;
293 u8 slot;
294 int i;
295
296 ioui = (struct ib_dm_iou_info *)mad->data;
297 ioui->change_id = cpu_to_be16(1);
298 ioui->max_controllers = 16;
299
300 /* set present for slot 1 and empty for the rest */
301 srpt_set_ioc(ioui->controller_list, 1, 1);
302 for (i = 1, slot = 2; i < 16; i++, slot++)
303 srpt_set_ioc(ioui->controller_list, slot, 0);
304
305 mad->mad_hdr.status = 0;
306 }
307
308 /**
309 * srpt_get_ioc - write IOControllerprofile to a management datagram
310 * @sport: HCA port through which the MAD has been received.
311 * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query.
312 * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE.
313 *
314 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
315 * Architecture Specification. See also section B.7, table B.7 in the SRP
316 * r16a document.
317 */
srpt_get_ioc(struct srpt_port *sport, u32 slot, struct ib_dm_mad *mad)318 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
319 struct ib_dm_mad *mad)
320 {
321 struct srpt_device *sdev = sport->sdev;
322 struct ib_dm_ioc_profile *iocp;
323 int send_queue_depth;
324
325 iocp = (struct ib_dm_ioc_profile *)mad->data;
326
327 if (!slot || slot > 16) {
328 mad->mad_hdr.status
329 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
330 return;
331 }
332
333 if (slot > 2) {
334 mad->mad_hdr.status
335 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
336 return;
337 }
338
339 if (sdev->use_srq)
340 send_queue_depth = sdev->srq_size;
341 else
342 send_queue_depth = min(MAX_SRPT_RQ_SIZE,
343 sdev->device->attrs.max_qp_wr);
344
345 memset(iocp, 0, sizeof(*iocp));
346 strcpy(iocp->id_string, SRPT_ID_STRING);
347 iocp->guid = cpu_to_be64(srpt_service_guid);
348 iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
349 iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
350 iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
351 iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
352 iocp->subsys_device_id = 0x0;
353 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
354 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
355 iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
356 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
357 iocp->send_queue_depth = cpu_to_be16(send_queue_depth);
358 iocp->rdma_read_depth = 4;
359 iocp->send_size = cpu_to_be32(srp_max_req_size);
360 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
361 1U << 24));
362 iocp->num_svc_entries = 1;
363 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
364 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
365
366 mad->mad_hdr.status = 0;
367 }
368
369 /**
370 * srpt_get_svc_entries - write ServiceEntries to a management datagram
371 * @ioc_guid: I/O controller GUID to use in reply.
372 * @slot: I/O controller number.
373 * @hi: End of the range of service entries to be specified in the reply.
374 * @lo: Start of the range of service entries to be specified in the reply..
375 * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES.
376 *
377 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
378 * Specification. See also section B.7, table B.8 in the SRP r16a document.
379 */
srpt_get_svc_entries(u64 ioc_guid, u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)380 static void srpt_get_svc_entries(u64 ioc_guid,
381 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
382 {
383 struct ib_dm_svc_entries *svc_entries;
384
385 WARN_ON(!ioc_guid);
386
387 if (!slot || slot > 16) {
388 mad->mad_hdr.status
389 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
390 return;
391 }
392
393 if (slot > 2 || lo > hi || hi > 1) {
394 mad->mad_hdr.status
395 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
396 return;
397 }
398
399 svc_entries = (struct ib_dm_svc_entries *)mad->data;
400 memset(svc_entries, 0, sizeof(*svc_entries));
401 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
402 snprintf(svc_entries->service_entries[0].name,
403 sizeof(svc_entries->service_entries[0].name),
404 "%s%016llx",
405 SRP_SERVICE_NAME_PREFIX,
406 ioc_guid);
407
408 mad->mad_hdr.status = 0;
409 }
410
411 /**
412 * srpt_mgmt_method_get - process a received management datagram
413 * @sp: HCA port through which the MAD has been received.
414 * @rq_mad: received MAD.
415 * @rsp_mad: response MAD.
416 */
srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, struct ib_dm_mad *rsp_mad)417 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
418 struct ib_dm_mad *rsp_mad)
419 {
420 u16 attr_id;
421 u32 slot;
422 u8 hi, lo;
423
424 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
425 switch (attr_id) {
426 case DM_ATTR_CLASS_PORT_INFO:
427 srpt_get_class_port_info(rsp_mad);
428 break;
429 case DM_ATTR_IOU_INFO:
430 srpt_get_iou(rsp_mad);
431 break;
432 case DM_ATTR_IOC_PROFILE:
433 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
434 srpt_get_ioc(sp, slot, rsp_mad);
435 break;
436 case DM_ATTR_SVC_ENTRIES:
437 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
438 hi = (u8) ((slot >> 8) & 0xff);
439 lo = (u8) (slot & 0xff);
440 slot = (u16) ((slot >> 16) & 0xffff);
441 srpt_get_svc_entries(srpt_service_guid,
442 slot, hi, lo, rsp_mad);
443 break;
444 default:
445 rsp_mad->mad_hdr.status =
446 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
447 break;
448 }
449 }
450
451 /**
452 * srpt_mad_send_handler - MAD send completion callback
453 * @mad_agent: Return value of ib_register_mad_agent().
454 * @mad_wc: Work completion reporting that the MAD has been sent.
455 */
srpt_mad_send_handler(struct ib_mad_agent *mad_agent, struct ib_mad_send_wc *mad_wc)456 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
457 struct ib_mad_send_wc *mad_wc)
458 {
459 rdma_destroy_ah(mad_wc->send_buf->ah, RDMA_DESTROY_AH_SLEEPABLE);
460 ib_free_send_mad(mad_wc->send_buf);
461 }
462
463 /**
464 * srpt_mad_recv_handler - MAD reception callback function
465 * @mad_agent: Return value of ib_register_mad_agent().
466 * @send_buf: Not used.
467 * @mad_wc: Work completion reporting that a MAD has been received.
468 */
srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, struct ib_mad_send_buf *send_buf, struct ib_mad_recv_wc *mad_wc)469 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
470 struct ib_mad_send_buf *send_buf,
471 struct ib_mad_recv_wc *mad_wc)
472 {
473 struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
474 struct ib_ah *ah;
475 struct ib_mad_send_buf *rsp;
476 struct ib_dm_mad *dm_mad;
477
478 if (!mad_wc || !mad_wc->recv_buf.mad)
479 return;
480
481 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
482 mad_wc->recv_buf.grh, mad_agent->port_num);
483 if (IS_ERR(ah))
484 goto err;
485
486 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
487
488 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
489 mad_wc->wc->pkey_index, 0,
490 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
491 GFP_KERNEL,
492 IB_MGMT_BASE_VERSION);
493 if (IS_ERR(rsp))
494 goto err_rsp;
495
496 rsp->ah = ah;
497
498 dm_mad = rsp->mad;
499 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
500 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
501 dm_mad->mad_hdr.status = 0;
502
503 switch (mad_wc->recv_buf.mad->mad_hdr.method) {
504 case IB_MGMT_METHOD_GET:
505 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
506 break;
507 case IB_MGMT_METHOD_SET:
508 dm_mad->mad_hdr.status =
509 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
510 break;
511 default:
512 dm_mad->mad_hdr.status =
513 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
514 break;
515 }
516
517 if (!ib_post_send_mad(rsp, NULL)) {
518 ib_free_recv_mad(mad_wc);
519 /* will destroy_ah & free_send_mad in send completion */
520 return;
521 }
522
523 ib_free_send_mad(rsp);
524
525 err_rsp:
526 rdma_destroy_ah(ah, RDMA_DESTROY_AH_SLEEPABLE);
527 err:
528 ib_free_recv_mad(mad_wc);
529 }
530
srpt_format_guid(char *buf, unsigned int size, const __be64 *guid)531 static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid)
532 {
533 const __be16 *g = (const __be16 *)guid;
534
535 return snprintf(buf, size, "%04x:%04x:%04x:%04x",
536 be16_to_cpu(g[0]), be16_to_cpu(g[1]),
537 be16_to_cpu(g[2]), be16_to_cpu(g[3]));
538 }
539
540 /**
541 * srpt_refresh_port - configure a HCA port
542 * @sport: SRPT HCA port.
543 *
544 * Enable InfiniBand management datagram processing, update the cached sm_lid,
545 * lid and gid values, and register a callback function for processing MADs
546 * on the specified port.
547 *
548 * Note: It is safe to call this function more than once for the same port.
549 */
srpt_refresh_port(struct srpt_port *sport)550 static int srpt_refresh_port(struct srpt_port *sport)
551 {
552 struct ib_mad_agent *mad_agent;
553 struct ib_mad_reg_req reg_req;
554 struct ib_port_modify port_modify;
555 struct ib_port_attr port_attr;
556 int ret;
557
558 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
559 if (ret)
560 return ret;
561
562 sport->sm_lid = port_attr.sm_lid;
563 sport->lid = port_attr.lid;
564
565 ret = rdma_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
566 if (ret)
567 return ret;
568
569 srpt_format_guid(sport->guid_name, ARRAY_SIZE(sport->guid_name),
570 &sport->gid.global.interface_id);
571 snprintf(sport->gid_name, ARRAY_SIZE(sport->gid_name),
572 "0x%016llx%016llx",
573 be64_to_cpu(sport->gid.global.subnet_prefix),
574 be64_to_cpu(sport->gid.global.interface_id));
575
576 if (rdma_protocol_iwarp(sport->sdev->device, sport->port))
577 return 0;
578
579 memset(&port_modify, 0, sizeof(port_modify));
580 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
581 port_modify.clr_port_cap_mask = 0;
582
583 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
584 if (ret) {
585 pr_warn("%s-%d: enabling device management failed (%d). Note: this is expected if SR-IOV is enabled.\n",
586 dev_name(&sport->sdev->device->dev), sport->port, ret);
587 return 0;
588 }
589
590 if (!sport->mad_agent) {
591 memset(®_req, 0, sizeof(reg_req));
592 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
593 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
594 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
595 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
596
597 mad_agent = ib_register_mad_agent(sport->sdev->device,
598 sport->port,
599 IB_QPT_GSI,
600 ®_req, 0,
601 srpt_mad_send_handler,
602 srpt_mad_recv_handler,
603 sport, 0);
604 if (IS_ERR(mad_agent)) {
605 pr_err("%s-%d: MAD agent registration failed (%ld). Note: this is expected if SR-IOV is enabled.\n",
606 dev_name(&sport->sdev->device->dev), sport->port,
607 PTR_ERR(mad_agent));
608 sport->mad_agent = NULL;
609 memset(&port_modify, 0, sizeof(port_modify));
610 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
611 ib_modify_port(sport->sdev->device, sport->port, 0,
612 &port_modify);
613 return 0;
614 }
615
616 sport->mad_agent = mad_agent;
617 }
618
619 return 0;
620 }
621
622 /**
623 * srpt_unregister_mad_agent - unregister MAD callback functions
624 * @sdev: SRPT HCA pointer.
625 * @port_cnt: number of ports with registered MAD
626 *
627 * Note: It is safe to call this function more than once for the same device.
628 */
srpt_unregister_mad_agent(struct srpt_device *sdev, int port_cnt)629 static void srpt_unregister_mad_agent(struct srpt_device *sdev, int port_cnt)
630 {
631 struct ib_port_modify port_modify = {
632 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
633 };
634 struct srpt_port *sport;
635 int i;
636
637 for (i = 1; i <= port_cnt; i++) {
638 sport = &sdev->port[i - 1];
639 WARN_ON(sport->port != i);
640 if (sport->mad_agent) {
641 ib_modify_port(sdev->device, i, 0, &port_modify);
642 ib_unregister_mad_agent(sport->mad_agent);
643 sport->mad_agent = NULL;
644 }
645 }
646 }
647
648 /**
649 * srpt_alloc_ioctx - allocate a SRPT I/O context structure
650 * @sdev: SRPT HCA pointer.
651 * @ioctx_size: I/O context size.
652 * @buf_cache: I/O buffer cache.
653 * @dir: DMA data direction.
654 */
srpt_alloc_ioctx(struct srpt_device *sdev, int ioctx_size, struct kmem_cache *buf_cache, enum dma_data_direction dir)655 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
656 int ioctx_size,
657 struct kmem_cache *buf_cache,
658 enum dma_data_direction dir)
659 {
660 struct srpt_ioctx *ioctx;
661
662 ioctx = kzalloc(ioctx_size, GFP_KERNEL);
663 if (!ioctx)
664 goto err;
665
666 ioctx->buf = kmem_cache_alloc(buf_cache, GFP_KERNEL);
667 if (!ioctx->buf)
668 goto err_free_ioctx;
669
670 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf,
671 kmem_cache_size(buf_cache), dir);
672 if (ib_dma_mapping_error(sdev->device, ioctx->dma))
673 goto err_free_buf;
674
675 return ioctx;
676
677 err_free_buf:
678 kmem_cache_free(buf_cache, ioctx->buf);
679 err_free_ioctx:
680 kfree(ioctx);
681 err:
682 return NULL;
683 }
684
685 /**
686 * srpt_free_ioctx - free a SRPT I/O context structure
687 * @sdev: SRPT HCA pointer.
688 * @ioctx: I/O context pointer.
689 * @buf_cache: I/O buffer cache.
690 * @dir: DMA data direction.
691 */
srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, struct kmem_cache *buf_cache, enum dma_data_direction dir)692 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
693 struct kmem_cache *buf_cache,
694 enum dma_data_direction dir)
695 {
696 if (!ioctx)
697 return;
698
699 ib_dma_unmap_single(sdev->device, ioctx->dma,
700 kmem_cache_size(buf_cache), dir);
701 kmem_cache_free(buf_cache, ioctx->buf);
702 kfree(ioctx);
703 }
704
705 /**
706 * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures
707 * @sdev: Device to allocate the I/O context ring for.
708 * @ring_size: Number of elements in the I/O context ring.
709 * @ioctx_size: I/O context size.
710 * @buf_cache: I/O buffer cache.
711 * @alignment_offset: Offset in each ring buffer at which the SRP information
712 * unit starts.
713 * @dir: DMA data direction.
714 */
srpt_alloc_ioctx_ring(struct srpt_device *sdev, int ring_size, int ioctx_size, struct kmem_cache *buf_cache, int alignment_offset, enum dma_data_direction dir)715 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
716 int ring_size, int ioctx_size,
717 struct kmem_cache *buf_cache,
718 int alignment_offset,
719 enum dma_data_direction dir)
720 {
721 struct srpt_ioctx **ring;
722 int i;
723
724 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) &&
725 ioctx_size != sizeof(struct srpt_send_ioctx));
726
727 ring = kvmalloc_array(ring_size, sizeof(ring[0]), GFP_KERNEL);
728 if (!ring)
729 goto out;
730 for (i = 0; i < ring_size; ++i) {
731 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, buf_cache, dir);
732 if (!ring[i])
733 goto err;
734 ring[i]->index = i;
735 ring[i]->offset = alignment_offset;
736 }
737 goto out;
738
739 err:
740 while (--i >= 0)
741 srpt_free_ioctx(sdev, ring[i], buf_cache, dir);
742 kvfree(ring);
743 ring = NULL;
744 out:
745 return ring;
746 }
747
748 /**
749 * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures
750 * @ioctx_ring: I/O context ring to be freed.
751 * @sdev: SRPT HCA pointer.
752 * @ring_size: Number of ring elements.
753 * @buf_cache: I/O buffer cache.
754 * @dir: DMA data direction.
755 */
srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, struct srpt_device *sdev, int ring_size, struct kmem_cache *buf_cache, enum dma_data_direction dir)756 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
757 struct srpt_device *sdev, int ring_size,
758 struct kmem_cache *buf_cache,
759 enum dma_data_direction dir)
760 {
761 int i;
762
763 if (!ioctx_ring)
764 return;
765
766 for (i = 0; i < ring_size; ++i)
767 srpt_free_ioctx(sdev, ioctx_ring[i], buf_cache, dir);
768 kvfree(ioctx_ring);
769 }
770
771 /**
772 * srpt_set_cmd_state - set the state of a SCSI command
773 * @ioctx: Send I/O context.
774 * @new: New I/O context state.
775 *
776 * Does not modify the state of aborted commands. Returns the previous command
777 * state.
778 */
srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, enum srpt_command_state new)779 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
780 enum srpt_command_state new)
781 {
782 enum srpt_command_state previous;
783
784 previous = ioctx->state;
785 if (previous != SRPT_STATE_DONE)
786 ioctx->state = new;
787
788 return previous;
789 }
790
791 /**
792 * srpt_test_and_set_cmd_state - test and set the state of a command
793 * @ioctx: Send I/O context.
794 * @old: Current I/O context state.
795 * @new: New I/O context state.
796 *
797 * Returns true if and only if the previous command state was equal to 'old'.
798 */
srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, enum srpt_command_state old, enum srpt_command_state new)799 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
800 enum srpt_command_state old,
801 enum srpt_command_state new)
802 {
803 enum srpt_command_state previous;
804
805 WARN_ON(!ioctx);
806 WARN_ON(old == SRPT_STATE_DONE);
807 WARN_ON(new == SRPT_STATE_NEW);
808
809 previous = ioctx->state;
810 if (previous == old)
811 ioctx->state = new;
812
813 return previous == old;
814 }
815
816 /**
817 * srpt_post_recv - post an IB receive request
818 * @sdev: SRPT HCA pointer.
819 * @ch: SRPT RDMA channel.
820 * @ioctx: Receive I/O context pointer.
821 */
srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *ioctx)822 static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch,
823 struct srpt_recv_ioctx *ioctx)
824 {
825 struct ib_sge list;
826 struct ib_recv_wr wr;
827
828 BUG_ON(!sdev);
829 list.addr = ioctx->ioctx.dma + ioctx->ioctx.offset;
830 list.length = srp_max_req_size;
831 list.lkey = sdev->lkey;
832
833 ioctx->ioctx.cqe.done = srpt_recv_done;
834 wr.wr_cqe = &ioctx->ioctx.cqe;
835 wr.next = NULL;
836 wr.sg_list = &list;
837 wr.num_sge = 1;
838
839 if (sdev->use_srq)
840 return ib_post_srq_recv(sdev->srq, &wr, NULL);
841 else
842 return ib_post_recv(ch->qp, &wr, NULL);
843 }
844
845 /**
846 * srpt_zerolength_write - perform a zero-length RDMA write
847 * @ch: SRPT RDMA channel.
848 *
849 * A quote from the InfiniBand specification: C9-88: For an HCA responder
850 * using Reliable Connection service, for each zero-length RDMA READ or WRITE
851 * request, the R_Key shall not be validated, even if the request includes
852 * Immediate data.
853 */
srpt_zerolength_write(struct srpt_rdma_ch *ch)854 static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
855 {
856 struct ib_rdma_wr wr = {
857 .wr = {
858 .next = NULL,
859 { .wr_cqe = &ch->zw_cqe, },
860 .opcode = IB_WR_RDMA_WRITE,
861 .send_flags = IB_SEND_SIGNALED,
862 }
863 };
864
865 pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
866 ch->qp->qp_num);
867
868 return ib_post_send(ch->qp, &wr.wr, NULL);
869 }
870
srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)871 static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
872 {
873 struct srpt_rdma_ch *ch = wc->qp->qp_context;
874
875 pr_debug("%s-%d wc->status %d\n", ch->sess_name, ch->qp->qp_num,
876 wc->status);
877
878 if (wc->status == IB_WC_SUCCESS) {
879 srpt_process_wait_list(ch);
880 } else {
881 if (srpt_set_ch_state(ch, CH_DISCONNECTED))
882 schedule_work(&ch->release_work);
883 else
884 pr_debug("%s-%d: already disconnected.\n",
885 ch->sess_name, ch->qp->qp_num);
886 }
887 }
888
srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx, struct srp_direct_buf *db, int nbufs, struct scatterlist **sg, unsigned *sg_cnt)889 static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
890 struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
891 unsigned *sg_cnt)
892 {
893 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
894 struct srpt_rdma_ch *ch = ioctx->ch;
895 struct scatterlist *prev = NULL;
896 unsigned prev_nents;
897 int ret, i;
898
899 if (nbufs == 1) {
900 ioctx->rw_ctxs = &ioctx->s_rw_ctx;
901 } else {
902 ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
903 GFP_KERNEL);
904 if (!ioctx->rw_ctxs)
905 return -ENOMEM;
906 }
907
908 for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
909 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
910 u64 remote_addr = be64_to_cpu(db->va);
911 u32 size = be32_to_cpu(db->len);
912 u32 rkey = be32_to_cpu(db->key);
913
914 ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
915 i < nbufs - 1);
916 if (ret)
917 goto unwind;
918
919 ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
920 ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
921 if (ret < 0) {
922 target_free_sgl(ctx->sg, ctx->nents);
923 goto unwind;
924 }
925
926 ioctx->n_rdma += ret;
927 ioctx->n_rw_ctx++;
928
929 if (prev) {
930 sg_unmark_end(&prev[prev_nents - 1]);
931 sg_chain(prev, prev_nents + 1, ctx->sg);
932 } else {
933 *sg = ctx->sg;
934 }
935
936 prev = ctx->sg;
937 prev_nents = ctx->nents;
938
939 *sg_cnt += ctx->nents;
940 }
941
942 return 0;
943
944 unwind:
945 while (--i >= 0) {
946 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
947
948 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
949 ctx->sg, ctx->nents, dir);
950 target_free_sgl(ctx->sg, ctx->nents);
951 }
952 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
953 kfree(ioctx->rw_ctxs);
954 return ret;
955 }
956
srpt_free_rw_ctxs(struct srpt_rdma_ch *ch, struct srpt_send_ioctx *ioctx)957 static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
958 struct srpt_send_ioctx *ioctx)
959 {
960 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
961 int i;
962
963 for (i = 0; i < ioctx->n_rw_ctx; i++) {
964 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
965
966 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
967 ctx->sg, ctx->nents, dir);
968 target_free_sgl(ctx->sg, ctx->nents);
969 }
970
971 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
972 kfree(ioctx->rw_ctxs);
973 }
974
srpt_get_desc_buf(struct srp_cmd *srp_cmd)975 static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
976 {
977 /*
978 * The pointer computations below will only be compiled correctly
979 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
980 * whether srp_cmd::add_data has been declared as a byte pointer.
981 */
982 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
983 !__same_type(srp_cmd->add_data[0], (u8)0));
984
985 /*
986 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
987 * CDB LENGTH' field are reserved and the size in bytes of this field
988 * is four times the value specified in bits 3..7. Hence the "& ~3".
989 */
990 return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
991 }
992
993 /**
994 * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request
995 * @recv_ioctx: I/O context associated with the received command @srp_cmd.
996 * @ioctx: I/O context that will be used for responding to the initiator.
997 * @srp_cmd: Pointer to the SRP_CMD request data.
998 * @dir: Pointer to the variable to which the transfer direction will be
999 * written.
1000 * @sg: [out] scatterlist for the parsed SRP_CMD.
1001 * @sg_cnt: [out] length of @sg.
1002 * @data_len: Pointer to the variable to which the total data length of all
1003 * descriptors in the SRP_CMD request will be written.
1004 * @imm_data_offset: [in] Offset in SRP_CMD requests at which immediate data
1005 * starts.
1006 *
1007 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
1008 *
1009 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
1010 * -ENOMEM when memory allocation fails and zero upon success.
1011 */
srpt_get_desc_tbl(struct srpt_recv_ioctx *recv_ioctx, struct srpt_send_ioctx *ioctx, struct srp_cmd *srp_cmd, enum dma_data_direction *dir, struct scatterlist **sg, unsigned int *sg_cnt, u64 *data_len, u16 imm_data_offset)1012 static int srpt_get_desc_tbl(struct srpt_recv_ioctx *recv_ioctx,
1013 struct srpt_send_ioctx *ioctx,
1014 struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
1015 struct scatterlist **sg, unsigned int *sg_cnt, u64 *data_len,
1016 u16 imm_data_offset)
1017 {
1018 BUG_ON(!dir);
1019 BUG_ON(!data_len);
1020
1021 /*
1022 * The lower four bits of the buffer format field contain the DATA-IN
1023 * buffer descriptor format, and the highest four bits contain the
1024 * DATA-OUT buffer descriptor format.
1025 */
1026 if (srp_cmd->buf_fmt & 0xf)
1027 /* DATA-IN: transfer data from target to initiator (read). */
1028 *dir = DMA_FROM_DEVICE;
1029 else if (srp_cmd->buf_fmt >> 4)
1030 /* DATA-OUT: transfer data from initiator to target (write). */
1031 *dir = DMA_TO_DEVICE;
1032 else
1033 *dir = DMA_NONE;
1034
1035 /* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
1036 ioctx->cmd.data_direction = *dir;
1037
1038 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
1039 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
1040 struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
1041
1042 *data_len = be32_to_cpu(db->len);
1043 return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
1044 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
1045 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
1046 struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
1047 int nbufs = be32_to_cpu(idb->table_desc.len) /
1048 sizeof(struct srp_direct_buf);
1049
1050 if (nbufs >
1051 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
1052 pr_err("received unsupported SRP_CMD request type (%u out + %u in != %u / %zu)\n",
1053 srp_cmd->data_out_desc_cnt,
1054 srp_cmd->data_in_desc_cnt,
1055 be32_to_cpu(idb->table_desc.len),
1056 sizeof(struct srp_direct_buf));
1057 return -EINVAL;
1058 }
1059
1060 *data_len = be32_to_cpu(idb->len);
1061 return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
1062 sg, sg_cnt);
1063 } else if ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_IMM) {
1064 struct srp_imm_buf *imm_buf = srpt_get_desc_buf(srp_cmd);
1065 void *data = (void *)srp_cmd + imm_data_offset;
1066 uint32_t len = be32_to_cpu(imm_buf->len);
1067 uint32_t req_size = imm_data_offset + len;
1068
1069 if (req_size > srp_max_req_size) {
1070 pr_err("Immediate data (length %d + %d) exceeds request size %d\n",
1071 imm_data_offset, len, srp_max_req_size);
1072 return -EINVAL;
1073 }
1074 if (recv_ioctx->byte_len < req_size) {
1075 pr_err("Received too few data - %d < %d\n",
1076 recv_ioctx->byte_len, req_size);
1077 return -EIO;
1078 }
1079 /*
1080 * The immediate data buffer descriptor must occur before the
1081 * immediate data itself.
1082 */
1083 if ((void *)(imm_buf + 1) > (void *)data) {
1084 pr_err("Received invalid write request\n");
1085 return -EINVAL;
1086 }
1087 *data_len = len;
1088 ioctx->recv_ioctx = recv_ioctx;
1089 if ((uintptr_t)data & 511) {
1090 pr_warn_once("Internal error - the receive buffers are not aligned properly.\n");
1091 return -EINVAL;
1092 }
1093 sg_init_one(&ioctx->imm_sg, data, len);
1094 *sg = &ioctx->imm_sg;
1095 *sg_cnt = 1;
1096 return 0;
1097 } else {
1098 *data_len = 0;
1099 return 0;
1100 }
1101 }
1102
1103 /**
1104 * srpt_init_ch_qp - initialize queue pair attributes
1105 * @ch: SRPT RDMA channel.
1106 * @qp: Queue pair pointer.
1107 *
1108 * Initialized the attributes of queue pair 'qp' by allowing local write,
1109 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
1110 */
srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)1111 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1112 {
1113 struct ib_qp_attr *attr;
1114 int ret;
1115
1116 WARN_ON_ONCE(ch->using_rdma_cm);
1117
1118 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1119 if (!attr)
1120 return -ENOMEM;
1121
1122 attr->qp_state = IB_QPS_INIT;
1123 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
1124 attr->port_num = ch->sport->port;
1125
1126 ret = ib_find_cached_pkey(ch->sport->sdev->device, ch->sport->port,
1127 ch->pkey, &attr->pkey_index);
1128 if (ret < 0)
1129 pr_err("Translating pkey %#x failed (%d) - using index 0\n",
1130 ch->pkey, ret);
1131
1132 ret = ib_modify_qp(qp, attr,
1133 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
1134 IB_QP_PKEY_INDEX);
1135
1136 kfree(attr);
1137 return ret;
1138 }
1139
1140 /**
1141 * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR)
1142 * @ch: channel of the queue pair.
1143 * @qp: queue pair to change the state of.
1144 *
1145 * Returns zero upon success and a negative value upon failure.
1146 *
1147 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1148 * If this structure ever becomes larger, it might be necessary to allocate
1149 * it dynamically instead of on the stack.
1150 */
srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)1151 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1152 {
1153 struct ib_qp_attr qp_attr;
1154 int attr_mask;
1155 int ret;
1156
1157 WARN_ON_ONCE(ch->using_rdma_cm);
1158
1159 qp_attr.qp_state = IB_QPS_RTR;
1160 ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1161 if (ret)
1162 goto out;
1163
1164 qp_attr.max_dest_rd_atomic = 4;
1165
1166 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1167
1168 out:
1169 return ret;
1170 }
1171
1172 /**
1173 * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS)
1174 * @ch: channel of the queue pair.
1175 * @qp: queue pair to change the state of.
1176 *
1177 * Returns zero upon success and a negative value upon failure.
1178 *
1179 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1180 * If this structure ever becomes larger, it might be necessary to allocate
1181 * it dynamically instead of on the stack.
1182 */
srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)1183 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1184 {
1185 struct ib_qp_attr qp_attr;
1186 int attr_mask;
1187 int ret;
1188
1189 qp_attr.qp_state = IB_QPS_RTS;
1190 ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1191 if (ret)
1192 goto out;
1193
1194 qp_attr.max_rd_atomic = 4;
1195
1196 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1197
1198 out:
1199 return ret;
1200 }
1201
1202 /**
1203 * srpt_ch_qp_err - set the channel queue pair state to 'error'
1204 * @ch: SRPT RDMA channel.
1205 */
srpt_ch_qp_err(struct srpt_rdma_ch *ch)1206 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1207 {
1208 struct ib_qp_attr qp_attr;
1209
1210 qp_attr.qp_state = IB_QPS_ERR;
1211 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1212 }
1213
1214 /**
1215 * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator
1216 * @ch: SRPT RDMA channel.
1217 */
srpt_get_send_ioctx(struct srpt_rdma_ch *ch)1218 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1219 {
1220 struct srpt_send_ioctx *ioctx;
1221 int tag, cpu;
1222
1223 BUG_ON(!ch);
1224
1225 tag = sbitmap_queue_get(&ch->sess->sess_tag_pool, &cpu);
1226 if (tag < 0)
1227 return NULL;
1228
1229 ioctx = ch->ioctx_ring[tag];
1230 BUG_ON(ioctx->ch != ch);
1231 ioctx->state = SRPT_STATE_NEW;
1232 WARN_ON_ONCE(ioctx->recv_ioctx);
1233 ioctx->n_rdma = 0;
1234 ioctx->n_rw_ctx = 0;
1235 ioctx->queue_status_only = false;
1236 /*
1237 * transport_init_se_cmd() does not initialize all fields, so do it
1238 * here.
1239 */
1240 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1241 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1242 ioctx->cmd.map_tag = tag;
1243 ioctx->cmd.map_cpu = cpu;
1244
1245 return ioctx;
1246 }
1247
1248 /**
1249 * srpt_abort_cmd - abort a SCSI command
1250 * @ioctx: I/O context associated with the SCSI command.
1251 */
srpt_abort_cmd(struct srpt_send_ioctx *ioctx)1252 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1253 {
1254 enum srpt_command_state state;
1255
1256 BUG_ON(!ioctx);
1257
1258 /*
1259 * If the command is in a state where the target core is waiting for
1260 * the ib_srpt driver, change the state to the next state.
1261 */
1262
1263 state = ioctx->state;
1264 switch (state) {
1265 case SRPT_STATE_NEED_DATA:
1266 ioctx->state = SRPT_STATE_DATA_IN;
1267 break;
1268 case SRPT_STATE_CMD_RSP_SENT:
1269 case SRPT_STATE_MGMT_RSP_SENT:
1270 ioctx->state = SRPT_STATE_DONE;
1271 break;
1272 default:
1273 WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
1274 __func__, state);
1275 break;
1276 }
1277
1278 pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state,
1279 ioctx->state, ioctx->cmd.tag);
1280
1281 switch (state) {
1282 case SRPT_STATE_NEW:
1283 case SRPT_STATE_DATA_IN:
1284 case SRPT_STATE_MGMT:
1285 case SRPT_STATE_DONE:
1286 /*
1287 * Do nothing - defer abort processing until
1288 * srpt_queue_response() is invoked.
1289 */
1290 break;
1291 case SRPT_STATE_NEED_DATA:
1292 pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
1293 transport_generic_request_failure(&ioctx->cmd,
1294 TCM_CHECK_CONDITION_ABORT_CMD);
1295 break;
1296 case SRPT_STATE_CMD_RSP_SENT:
1297 /*
1298 * SRP_RSP sending failed or the SRP_RSP send completion has
1299 * not been received in time.
1300 */
1301 transport_generic_free_cmd(&ioctx->cmd, 0);
1302 break;
1303 case SRPT_STATE_MGMT_RSP_SENT:
1304 transport_generic_free_cmd(&ioctx->cmd, 0);
1305 break;
1306 default:
1307 WARN(1, "Unexpected command state (%d)", state);
1308 break;
1309 }
1310
1311 return state;
1312 }
1313
1314 /**
1315 * srpt_rdma_read_done - RDMA read completion callback
1316 * @cq: Completion queue.
1317 * @wc: Work completion.
1318 *
1319 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1320 * the data that has been transferred via IB RDMA had to be postponed until the
1321 * check_stop_free() callback. None of this is necessary anymore and needs to
1322 * be cleaned up.
1323 */
srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)1324 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1325 {
1326 struct srpt_rdma_ch *ch = wc->qp->qp_context;
1327 struct srpt_send_ioctx *ioctx =
1328 container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1329
1330 WARN_ON(ioctx->n_rdma <= 0);
1331 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1332 ioctx->n_rdma = 0;
1333
1334 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1335 pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
1336 ioctx, wc->status);
1337 srpt_abort_cmd(ioctx);
1338 return;
1339 }
1340
1341 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1342 SRPT_STATE_DATA_IN))
1343 target_execute_cmd(&ioctx->cmd);
1344 else
1345 pr_err("%s[%d]: wrong state = %d\n", __func__,
1346 __LINE__, ioctx->state);
1347 }
1348
1349 /**
1350 * srpt_build_cmd_rsp - build a SRP_RSP response
1351 * @ch: RDMA channel through which the request has been received.
1352 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1353 * be built in the buffer ioctx->buf points at and hence this function will
1354 * overwrite the request data.
1355 * @tag: tag of the request for which this response is being generated.
1356 * @status: value for the STATUS field of the SRP_RSP information unit.
1357 *
1358 * Returns the size in bytes of the SRP_RSP response.
1359 *
1360 * An SRP_RSP response contains a SCSI status or service response. See also
1361 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1362 * response. See also SPC-2 for more information about sense data.
1363 */
srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, struct srpt_send_ioctx *ioctx, u64 tag, int status)1364 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1365 struct srpt_send_ioctx *ioctx, u64 tag,
1366 int status)
1367 {
1368 struct se_cmd *cmd = &ioctx->cmd;
1369 struct srp_rsp *srp_rsp;
1370 const u8 *sense_data;
1371 int sense_data_len, max_sense_len;
1372 u32 resid = cmd->residual_count;
1373
1374 /*
1375 * The lowest bit of all SAM-3 status codes is zero (see also
1376 * paragraph 5.3 in SAM-3).
1377 */
1378 WARN_ON(status & 1);
1379
1380 srp_rsp = ioctx->ioctx.buf;
1381 BUG_ON(!srp_rsp);
1382
1383 sense_data = ioctx->sense_data;
1384 sense_data_len = ioctx->cmd.scsi_sense_length;
1385 WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1386
1387 memset(srp_rsp, 0, sizeof(*srp_rsp));
1388 srp_rsp->opcode = SRP_RSP;
1389 srp_rsp->req_lim_delta =
1390 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1391 srp_rsp->tag = tag;
1392 srp_rsp->status = status;
1393
1394 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1395 if (cmd->data_direction == DMA_TO_DEVICE) {
1396 /* residual data from an underflow write */
1397 srp_rsp->flags = SRP_RSP_FLAG_DOUNDER;
1398 srp_rsp->data_out_res_cnt = cpu_to_be32(resid);
1399 } else if (cmd->data_direction == DMA_FROM_DEVICE) {
1400 /* residual data from an underflow read */
1401 srp_rsp->flags = SRP_RSP_FLAG_DIUNDER;
1402 srp_rsp->data_in_res_cnt = cpu_to_be32(resid);
1403 }
1404 } else if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1405 if (cmd->data_direction == DMA_TO_DEVICE) {
1406 /* residual data from an overflow write */
1407 srp_rsp->flags = SRP_RSP_FLAG_DOOVER;
1408 srp_rsp->data_out_res_cnt = cpu_to_be32(resid);
1409 } else if (cmd->data_direction == DMA_FROM_DEVICE) {
1410 /* residual data from an overflow read */
1411 srp_rsp->flags = SRP_RSP_FLAG_DIOVER;
1412 srp_rsp->data_in_res_cnt = cpu_to_be32(resid);
1413 }
1414 }
1415
1416 if (sense_data_len) {
1417 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1418 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1419 if (sense_data_len > max_sense_len) {
1420 pr_warn("truncated sense data from %d to %d bytes\n",
1421 sense_data_len, max_sense_len);
1422 sense_data_len = max_sense_len;
1423 }
1424
1425 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1426 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1427 memcpy(srp_rsp + 1, sense_data, sense_data_len);
1428 }
1429
1430 return sizeof(*srp_rsp) + sense_data_len;
1431 }
1432
1433 /**
1434 * srpt_build_tskmgmt_rsp - build a task management response
1435 * @ch: RDMA channel through which the request has been received.
1436 * @ioctx: I/O context in which the SRP_RSP response will be built.
1437 * @rsp_code: RSP_CODE that will be stored in the response.
1438 * @tag: Tag of the request for which this response is being generated.
1439 *
1440 * Returns the size in bytes of the SRP_RSP response.
1441 *
1442 * An SRP_RSP response contains a SCSI status or service response. See also
1443 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1444 * response.
1445 */
srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, struct srpt_send_ioctx *ioctx, u8 rsp_code, u64 tag)1446 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1447 struct srpt_send_ioctx *ioctx,
1448 u8 rsp_code, u64 tag)
1449 {
1450 struct srp_rsp *srp_rsp;
1451 int resp_data_len;
1452 int resp_len;
1453
1454 resp_data_len = 4;
1455 resp_len = sizeof(*srp_rsp) + resp_data_len;
1456
1457 srp_rsp = ioctx->ioctx.buf;
1458 BUG_ON(!srp_rsp);
1459 memset(srp_rsp, 0, sizeof(*srp_rsp));
1460
1461 srp_rsp->opcode = SRP_RSP;
1462 srp_rsp->req_lim_delta =
1463 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1464 srp_rsp->tag = tag;
1465
1466 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1467 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1468 srp_rsp->data[3] = rsp_code;
1469
1470 return resp_len;
1471 }
1472
srpt_check_stop_free(struct se_cmd *cmd)1473 static int srpt_check_stop_free(struct se_cmd *cmd)
1474 {
1475 struct srpt_send_ioctx *ioctx = container_of(cmd,
1476 struct srpt_send_ioctx, cmd);
1477
1478 return target_put_sess_cmd(&ioctx->cmd);
1479 }
1480
1481 /**
1482 * srpt_handle_cmd - process a SRP_CMD information unit
1483 * @ch: SRPT RDMA channel.
1484 * @recv_ioctx: Receive I/O context.
1485 * @send_ioctx: Send I/O context.
1486 */
srpt_handle_cmd(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx, struct srpt_send_ioctx *send_ioctx)1487 static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
1488 struct srpt_recv_ioctx *recv_ioctx,
1489 struct srpt_send_ioctx *send_ioctx)
1490 {
1491 struct se_cmd *cmd;
1492 struct srp_cmd *srp_cmd;
1493 struct scatterlist *sg = NULL;
1494 unsigned sg_cnt = 0;
1495 u64 data_len;
1496 enum dma_data_direction dir;
1497 int rc;
1498
1499 BUG_ON(!send_ioctx);
1500
1501 srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1502 cmd = &send_ioctx->cmd;
1503 cmd->tag = srp_cmd->tag;
1504
1505 switch (srp_cmd->task_attr) {
1506 case SRP_CMD_SIMPLE_Q:
1507 cmd->sam_task_attr = TCM_SIMPLE_TAG;
1508 break;
1509 case SRP_CMD_ORDERED_Q:
1510 default:
1511 cmd->sam_task_attr = TCM_ORDERED_TAG;
1512 break;
1513 case SRP_CMD_HEAD_OF_Q:
1514 cmd->sam_task_attr = TCM_HEAD_TAG;
1515 break;
1516 case SRP_CMD_ACA:
1517 cmd->sam_task_attr = TCM_ACA_TAG;
1518 break;
1519 }
1520
1521 rc = srpt_get_desc_tbl(recv_ioctx, send_ioctx, srp_cmd, &dir,
1522 &sg, &sg_cnt, &data_len, ch->imm_data_offset);
1523 if (rc) {
1524 if (rc != -EAGAIN) {
1525 pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1526 srp_cmd->tag);
1527 }
1528 goto busy;
1529 }
1530
1531 rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb,
1532 &send_ioctx->sense_data[0],
1533 scsilun_to_int(&srp_cmd->lun), data_len,
1534 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF,
1535 sg, sg_cnt, NULL, 0, NULL, 0);
1536 if (rc != 0) {
1537 pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
1538 srp_cmd->tag);
1539 goto busy;
1540 }
1541 return;
1542
1543 busy:
1544 target_send_busy(cmd);
1545 }
1546
srp_tmr_to_tcm(int fn)1547 static int srp_tmr_to_tcm(int fn)
1548 {
1549 switch (fn) {
1550 case SRP_TSK_ABORT_TASK:
1551 return TMR_ABORT_TASK;
1552 case SRP_TSK_ABORT_TASK_SET:
1553 return TMR_ABORT_TASK_SET;
1554 case SRP_TSK_CLEAR_TASK_SET:
1555 return TMR_CLEAR_TASK_SET;
1556 case SRP_TSK_LUN_RESET:
1557 return TMR_LUN_RESET;
1558 case SRP_TSK_CLEAR_ACA:
1559 return TMR_CLEAR_ACA;
1560 default:
1561 return -1;
1562 }
1563 }
1564
1565 /**
1566 * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit
1567 * @ch: SRPT RDMA channel.
1568 * @recv_ioctx: Receive I/O context.
1569 * @send_ioctx: Send I/O context.
1570 *
1571 * Returns 0 if and only if the request will be processed by the target core.
1572 *
1573 * For more information about SRP_TSK_MGMT information units, see also section
1574 * 6.7 in the SRP r16a document.
1575 */
srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx, struct srpt_send_ioctx *send_ioctx)1576 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1577 struct srpt_recv_ioctx *recv_ioctx,
1578 struct srpt_send_ioctx *send_ioctx)
1579 {
1580 struct srp_tsk_mgmt *srp_tsk;
1581 struct se_cmd *cmd;
1582 struct se_session *sess = ch->sess;
1583 int tcm_tmr;
1584 int rc;
1585
1586 BUG_ON(!send_ioctx);
1587
1588 srp_tsk = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1589 cmd = &send_ioctx->cmd;
1590
1591 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld ch %p sess %p\n",
1592 srp_tsk->tsk_mgmt_func, srp_tsk->task_tag, srp_tsk->tag, ch,
1593 ch->sess);
1594
1595 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1596 send_ioctx->cmd.tag = srp_tsk->tag;
1597 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1598 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
1599 scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
1600 GFP_KERNEL, srp_tsk->task_tag,
1601 TARGET_SCF_ACK_KREF);
1602 if (rc != 0) {
1603 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1604 cmd->se_tfo->queue_tm_rsp(cmd);
1605 }
1606 return;
1607 }
1608
1609 /**
1610 * srpt_handle_new_iu - process a newly received information unit
1611 * @ch: RDMA channel through which the information unit has been received.
1612 * @recv_ioctx: Receive I/O context associated with the information unit.
1613 */
1614 static bool
srpt_handle_new_iu(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx)1615 srpt_handle_new_iu(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx)
1616 {
1617 struct srpt_send_ioctx *send_ioctx = NULL;
1618 struct srp_cmd *srp_cmd;
1619 bool res = false;
1620 u8 opcode;
1621
1622 BUG_ON(!ch);
1623 BUG_ON(!recv_ioctx);
1624
1625 if (unlikely(ch->state == CH_CONNECTING))
1626 goto push;
1627
1628 ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1629 recv_ioctx->ioctx.dma,
1630 recv_ioctx->ioctx.offset + srp_max_req_size,
1631 DMA_FROM_DEVICE);
1632
1633 srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1634 opcode = srp_cmd->opcode;
1635 if (opcode == SRP_CMD || opcode == SRP_TSK_MGMT) {
1636 send_ioctx = srpt_get_send_ioctx(ch);
1637 if (unlikely(!send_ioctx))
1638 goto push;
1639 }
1640
1641 if (!list_empty(&recv_ioctx->wait_list)) {
1642 WARN_ON_ONCE(!ch->processing_wait_list);
1643 list_del_init(&recv_ioctx->wait_list);
1644 }
1645
1646 switch (opcode) {
1647 case SRP_CMD:
1648 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1649 break;
1650 case SRP_TSK_MGMT:
1651 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1652 break;
1653 case SRP_I_LOGOUT:
1654 pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1655 break;
1656 case SRP_CRED_RSP:
1657 pr_debug("received SRP_CRED_RSP\n");
1658 break;
1659 case SRP_AER_RSP:
1660 pr_debug("received SRP_AER_RSP\n");
1661 break;
1662 case SRP_RSP:
1663 pr_err("Received SRP_RSP\n");
1664 break;
1665 default:
1666 pr_err("received IU with unknown opcode 0x%x\n", opcode);
1667 break;
1668 }
1669
1670 if (!send_ioctx || !send_ioctx->recv_ioctx)
1671 srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
1672 res = true;
1673
1674 out:
1675 return res;
1676
1677 push:
1678 if (list_empty(&recv_ioctx->wait_list)) {
1679 WARN_ON_ONCE(ch->processing_wait_list);
1680 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1681 }
1682 goto out;
1683 }
1684
srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)1685 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1686 {
1687 struct srpt_rdma_ch *ch = wc->qp->qp_context;
1688 struct srpt_recv_ioctx *ioctx =
1689 container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1690
1691 if (wc->status == IB_WC_SUCCESS) {
1692 int req_lim;
1693
1694 req_lim = atomic_dec_return(&ch->req_lim);
1695 if (unlikely(req_lim < 0))
1696 pr_err("req_lim = %d < 0\n", req_lim);
1697 ioctx->byte_len = wc->byte_len;
1698 srpt_handle_new_iu(ch, ioctx);
1699 } else {
1700 pr_info_ratelimited("receiving failed for ioctx %p with status %d\n",
1701 ioctx, wc->status);
1702 }
1703 }
1704
1705 /*
1706 * This function must be called from the context in which RDMA completions are
1707 * processed because it accesses the wait list without protection against
1708 * access from other threads.
1709 */
srpt_process_wait_list(struct srpt_rdma_ch *ch)1710 static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
1711 {
1712 struct srpt_recv_ioctx *recv_ioctx, *tmp;
1713
1714 WARN_ON_ONCE(ch->state == CH_CONNECTING);
1715
1716 if (list_empty(&ch->cmd_wait_list))
1717 return;
1718
1719 WARN_ON_ONCE(ch->processing_wait_list);
1720 ch->processing_wait_list = true;
1721 list_for_each_entry_safe(recv_ioctx, tmp, &ch->cmd_wait_list,
1722 wait_list) {
1723 if (!srpt_handle_new_iu(ch, recv_ioctx))
1724 break;
1725 }
1726 ch->processing_wait_list = false;
1727 }
1728
1729 /**
1730 * srpt_send_done - send completion callback
1731 * @cq: Completion queue.
1732 * @wc: Work completion.
1733 *
1734 * Note: Although this has not yet been observed during tests, at least in
1735 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1736 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1737 * value in each response is set to one, and it is possible that this response
1738 * makes the initiator send a new request before the send completion for that
1739 * response has been processed. This could e.g. happen if the call to
1740 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1741 * if IB retransmission causes generation of the send completion to be
1742 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1743 * are queued on cmd_wait_list. The code below processes these delayed
1744 * requests one at a time.
1745 */
srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)1746 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1747 {
1748 struct srpt_rdma_ch *ch = wc->qp->qp_context;
1749 struct srpt_send_ioctx *ioctx =
1750 container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
1751 enum srpt_command_state state;
1752
1753 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1754
1755 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
1756 state != SRPT_STATE_MGMT_RSP_SENT);
1757
1758 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1759
1760 if (wc->status != IB_WC_SUCCESS)
1761 pr_info("sending response for ioctx 0x%p failed with status %d\n",
1762 ioctx, wc->status);
1763
1764 if (state != SRPT_STATE_DONE) {
1765 transport_generic_free_cmd(&ioctx->cmd, 0);
1766 } else {
1767 pr_err("IB completion has been received too late for wr_id = %u.\n",
1768 ioctx->ioctx.index);
1769 }
1770
1771 srpt_process_wait_list(ch);
1772 }
1773
1774 /**
1775 * srpt_create_ch_ib - create receive and send completion queues
1776 * @ch: SRPT RDMA channel.
1777 */
srpt_create_ch_ib(struct srpt_rdma_ch *ch)1778 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
1779 {
1780 struct ib_qp_init_attr *qp_init;
1781 struct srpt_port *sport = ch->sport;
1782 struct srpt_device *sdev = sport->sdev;
1783 const struct ib_device_attr *attrs = &sdev->device->attrs;
1784 int sq_size = sport->port_attrib.srp_sq_size;
1785 int i, ret;
1786
1787 WARN_ON(ch->rq_size < 1);
1788
1789 ret = -ENOMEM;
1790 qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1791 if (!qp_init)
1792 goto out;
1793
1794 retry:
1795 ch->cq = ib_cq_pool_get(sdev->device, ch->rq_size + sq_size, -1,
1796 IB_POLL_WORKQUEUE);
1797 if (IS_ERR(ch->cq)) {
1798 ret = PTR_ERR(ch->cq);
1799 pr_err("failed to create CQ cqe= %d ret= %d\n",
1800 ch->rq_size + sq_size, ret);
1801 goto out;
1802 }
1803 ch->cq_size = ch->rq_size + sq_size;
1804
1805 qp_init->qp_context = (void *)ch;
1806 qp_init->event_handler
1807 = (void(*)(struct ib_event *, void*))srpt_qp_event;
1808 qp_init->send_cq = ch->cq;
1809 qp_init->recv_cq = ch->cq;
1810 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
1811 qp_init->qp_type = IB_QPT_RC;
1812 /*
1813 * We divide up our send queue size into half SEND WRs to send the
1814 * completions, and half R/W contexts to actually do the RDMA
1815 * READ/WRITE transfers. Note that we need to allocate CQ slots for
1816 * both both, as RDMA contexts will also post completions for the
1817 * RDMA READ case.
1818 */
1819 qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr);
1820 qp_init->cap.max_rdma_ctxs = sq_size / 2;
1821 qp_init->cap.max_send_sge = attrs->max_send_sge;
1822 qp_init->cap.max_recv_sge = 1;
1823 qp_init->port_num = ch->sport->port;
1824 if (sdev->use_srq)
1825 qp_init->srq = sdev->srq;
1826 else
1827 qp_init->cap.max_recv_wr = ch->rq_size;
1828
1829 if (ch->using_rdma_cm) {
1830 ret = rdma_create_qp(ch->rdma_cm.cm_id, sdev->pd, qp_init);
1831 ch->qp = ch->rdma_cm.cm_id->qp;
1832 } else {
1833 ch->qp = ib_create_qp(sdev->pd, qp_init);
1834 if (!IS_ERR(ch->qp)) {
1835 ret = srpt_init_ch_qp(ch, ch->qp);
1836 if (ret)
1837 ib_destroy_qp(ch->qp);
1838 } else {
1839 ret = PTR_ERR(ch->qp);
1840 }
1841 }
1842 if (ret) {
1843 bool retry = sq_size > MIN_SRPT_SQ_SIZE;
1844
1845 if (retry) {
1846 pr_debug("failed to create queue pair with sq_size = %d (%d) - retrying\n",
1847 sq_size, ret);
1848 ib_cq_pool_put(ch->cq, ch->cq_size);
1849 sq_size = max(sq_size / 2, MIN_SRPT_SQ_SIZE);
1850 goto retry;
1851 } else {
1852 pr_err("failed to create queue pair with sq_size = %d (%d)\n",
1853 sq_size, ret);
1854 goto err_destroy_cq;
1855 }
1856 }
1857
1858 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
1859
1860 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d ch= %p\n",
1861 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
1862 qp_init->cap.max_send_wr, ch);
1863
1864 if (!sdev->use_srq)
1865 for (i = 0; i < ch->rq_size; i++)
1866 srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]);
1867
1868 out:
1869 kfree(qp_init);
1870 return ret;
1871
1872 err_destroy_cq:
1873 ch->qp = NULL;
1874 ib_cq_pool_put(ch->cq, ch->cq_size);
1875 goto out;
1876 }
1877
srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)1878 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
1879 {
1880 ib_destroy_qp(ch->qp);
1881 ib_cq_pool_put(ch->cq, ch->cq_size);
1882 }
1883
1884 /**
1885 * srpt_close_ch - close a RDMA channel
1886 * @ch: SRPT RDMA channel.
1887 *
1888 * Make sure all resources associated with the channel will be deallocated at
1889 * an appropriate time.
1890 *
1891 * Returns true if and only if the channel state has been modified into
1892 * CH_DRAINING.
1893 */
srpt_close_ch(struct srpt_rdma_ch *ch)1894 static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1895 {
1896 int ret;
1897
1898 if (!srpt_set_ch_state(ch, CH_DRAINING)) {
1899 pr_debug("%s: already closed\n", ch->sess_name);
1900 return false;
1901 }
1902
1903 kref_get(&ch->kref);
1904
1905 ret = srpt_ch_qp_err(ch);
1906 if (ret < 0)
1907 pr_err("%s-%d: changing queue pair into error state failed: %d\n",
1908 ch->sess_name, ch->qp->qp_num, ret);
1909
1910 ret = srpt_zerolength_write(ch);
1911 if (ret < 0) {
1912 pr_err("%s-%d: queuing zero-length write failed: %d\n",
1913 ch->sess_name, ch->qp->qp_num, ret);
1914 if (srpt_set_ch_state(ch, CH_DISCONNECTED))
1915 schedule_work(&ch->release_work);
1916 else
1917 WARN_ON_ONCE(true);
1918 }
1919
1920 kref_put(&ch->kref, srpt_free_ch);
1921
1922 return true;
1923 }
1924
1925 /*
1926 * Change the channel state into CH_DISCONNECTING. If a channel has not yet
1927 * reached the connected state, close it. If a channel is in the connected
1928 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
1929 * the responsibility of the caller to ensure that this function is not
1930 * invoked concurrently with the code that accepts a connection. This means
1931 * that this function must either be invoked from inside a CM callback
1932 * function or that it must be invoked with the srpt_port.mutex held.
1933 */
srpt_disconnect_ch(struct srpt_rdma_ch *ch)1934 static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1935 {
1936 int ret;
1937
1938 if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
1939 return -ENOTCONN;
1940
1941 if (ch->using_rdma_cm) {
1942 ret = rdma_disconnect(ch->rdma_cm.cm_id);
1943 } else {
1944 ret = ib_send_cm_dreq(ch->ib_cm.cm_id, NULL, 0);
1945 if (ret < 0)
1946 ret = ib_send_cm_drep(ch->ib_cm.cm_id, NULL, 0);
1947 }
1948
1949 if (ret < 0 && srpt_close_ch(ch))
1950 ret = 0;
1951
1952 return ret;
1953 }
1954
1955 /* Send DREQ and wait for DREP. */
srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch)1956 static void srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch)
1957 {
1958 DECLARE_COMPLETION_ONSTACK(closed);
1959 struct srpt_port *sport = ch->sport;
1960
1961 pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
1962 ch->state);
1963
1964 ch->closed = &closed;
1965
1966 mutex_lock(&sport->mutex);
1967 srpt_disconnect_ch(ch);
1968 mutex_unlock(&sport->mutex);
1969
1970 while (wait_for_completion_timeout(&closed, 5 * HZ) == 0)
1971 pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
1972 ch->sess_name, ch->qp->qp_num, ch->state);
1973
1974 }
1975
__srpt_close_all_ch(struct srpt_port *sport)1976 static void __srpt_close_all_ch(struct srpt_port *sport)
1977 {
1978 struct srpt_nexus *nexus;
1979 struct srpt_rdma_ch *ch;
1980
1981 lockdep_assert_held(&sport->mutex);
1982
1983 list_for_each_entry(nexus, &sport->nexus_list, entry) {
1984 list_for_each_entry(ch, &nexus->ch_list, list) {
1985 if (srpt_disconnect_ch(ch) >= 0)
1986 pr_info("Closing channel %s-%d because target %s_%d has been disabled\n",
1987 ch->sess_name, ch->qp->qp_num,
1988 dev_name(&sport->sdev->device->dev),
1989 sport->port);
1990 srpt_close_ch(ch);
1991 }
1992 }
1993 }
1994
1995 /*
1996 * Look up (i_port_id, t_port_id) in sport->nexus_list. Create an entry if
1997 * it does not yet exist.
1998 */
srpt_get_nexus(struct srpt_port *sport, const u8 i_port_id[16], const u8 t_port_id[16])1999 static struct srpt_nexus *srpt_get_nexus(struct srpt_port *sport,
2000 const u8 i_port_id[16],
2001 const u8 t_port_id[16])
2002 {
2003 struct srpt_nexus *nexus = NULL, *tmp_nexus = NULL, *n;
2004
2005 for (;;) {
2006 mutex_lock(&sport->mutex);
2007 list_for_each_entry(n, &sport->nexus_list, entry) {
2008 if (memcmp(n->i_port_id, i_port_id, 16) == 0 &&
2009 memcmp(n->t_port_id, t_port_id, 16) == 0) {
2010 nexus = n;
2011 break;
2012 }
2013 }
2014 if (!nexus && tmp_nexus) {
2015 list_add_tail_rcu(&tmp_nexus->entry,
2016 &sport->nexus_list);
2017 swap(nexus, tmp_nexus);
2018 }
2019 mutex_unlock(&sport->mutex);
2020
2021 if (nexus)
2022 break;
2023 tmp_nexus = kzalloc(sizeof(*nexus), GFP_KERNEL);
2024 if (!tmp_nexus) {
2025 nexus = ERR_PTR(-ENOMEM);
2026 break;
2027 }
2028 INIT_LIST_HEAD(&tmp_nexus->ch_list);
2029 memcpy(tmp_nexus->i_port_id, i_port_id, 16);
2030 memcpy(tmp_nexus->t_port_id, t_port_id, 16);
2031 }
2032
2033 kfree(tmp_nexus);
2034
2035 return nexus;
2036 }
2037
2038 static void srpt_set_enabled(struct srpt_port *sport, bool enabled)
2039 __must_hold(&sport->mutex)
2040 {
2041 lockdep_assert_held(&sport->mutex);
2042
2043 if (sport->enabled == enabled)
2044 return;
2045 sport->enabled = enabled;
2046 if (!enabled)
2047 __srpt_close_all_ch(sport);
2048 }
2049
srpt_drop_sport_ref(struct srpt_port *sport)2050 static void srpt_drop_sport_ref(struct srpt_port *sport)
2051 {
2052 if (atomic_dec_return(&sport->refcount) == 0 && sport->freed_channels)
2053 complete(sport->freed_channels);
2054 }
2055
srpt_free_ch(struct kref *kref)2056 static void srpt_free_ch(struct kref *kref)
2057 {
2058 struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);
2059
2060 srpt_drop_sport_ref(ch->sport);
2061 kfree_rcu(ch, rcu);
2062 }
2063
2064 /*
2065 * Shut down the SCSI target session, tell the connection manager to
2066 * disconnect the associated RDMA channel, transition the QP to the error
2067 * state and remove the channel from the channel list. This function is
2068 * typically called from inside srpt_zerolength_write_done(). Concurrent
2069 * srpt_zerolength_write() calls from inside srpt_close_ch() are possible
2070 * as long as the channel is on sport->nexus_list.
2071 */
srpt_release_channel_work(struct work_struct *w)2072 static void srpt_release_channel_work(struct work_struct *w)
2073 {
2074 struct srpt_rdma_ch *ch;
2075 struct srpt_device *sdev;
2076 struct srpt_port *sport;
2077 struct se_session *se_sess;
2078
2079 ch = container_of(w, struct srpt_rdma_ch, release_work);
2080 pr_debug("%s-%d\n", ch->sess_name, ch->qp->qp_num);
2081
2082 sdev = ch->sport->sdev;
2083 BUG_ON(!sdev);
2084
2085 se_sess = ch->sess;
2086 BUG_ON(!se_sess);
2087
2088 target_sess_cmd_list_set_waiting(se_sess);
2089 target_wait_for_sess_cmds(se_sess);
2090
2091 target_remove_session(se_sess);
2092 ch->sess = NULL;
2093
2094 if (ch->using_rdma_cm)
2095 rdma_destroy_id(ch->rdma_cm.cm_id);
2096 else
2097 ib_destroy_cm_id(ch->ib_cm.cm_id);
2098
2099 sport = ch->sport;
2100 mutex_lock(&sport->mutex);
2101 list_del_rcu(&ch->list);
2102 mutex_unlock(&sport->mutex);
2103
2104 if (ch->closed)
2105 complete(ch->closed);
2106
2107 srpt_destroy_ch_ib(ch);
2108
2109 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2110 ch->sport->sdev, ch->rq_size,
2111 ch->rsp_buf_cache, DMA_TO_DEVICE);
2112
2113 kmem_cache_destroy(ch->rsp_buf_cache);
2114
2115 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2116 sdev, ch->rq_size,
2117 ch->req_buf_cache, DMA_FROM_DEVICE);
2118
2119 kmem_cache_destroy(ch->req_buf_cache);
2120
2121 kref_put(&ch->kref, srpt_free_ch);
2122 }
2123
2124 /**
2125 * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED
2126 * @sdev: HCA through which the login request was received.
2127 * @ib_cm_id: IB/CM connection identifier in case of IB/CM.
2128 * @rdma_cm_id: RDMA/CM connection identifier in case of RDMA/CM.
2129 * @port_num: Port through which the REQ message was received.
2130 * @pkey: P_Key of the incoming connection.
2131 * @req: SRP login request.
2132 * @src_addr: GID (IB/CM) or IP address (RDMA/CM) of the port that submitted
2133 * the login request.
2134 *
2135 * Ownership of the cm_id is transferred to the target session if this
2136 * function returns zero. Otherwise the caller remains the owner of cm_id.
2137 */
srpt_cm_req_recv(struct srpt_device *const sdev, struct ib_cm_id *ib_cm_id, struct rdma_cm_id *rdma_cm_id, u8 port_num, __be16 pkey, const struct srp_login_req *req, const char *src_addr)2138 static int srpt_cm_req_recv(struct srpt_device *const sdev,
2139 struct ib_cm_id *ib_cm_id,
2140 struct rdma_cm_id *rdma_cm_id,
2141 u8 port_num, __be16 pkey,
2142 const struct srp_login_req *req,
2143 const char *src_addr)
2144 {
2145 struct srpt_port *sport = &sdev->port[port_num - 1];
2146 struct srpt_nexus *nexus;
2147 struct srp_login_rsp *rsp = NULL;
2148 struct srp_login_rej *rej = NULL;
2149 union {
2150 struct rdma_conn_param rdma_cm;
2151 struct ib_cm_rep_param ib_cm;
2152 } *rep_param = NULL;
2153 struct srpt_rdma_ch *ch = NULL;
2154 char i_port_id[36];
2155 u32 it_iu_len;
2156 int i, tag_num, tag_size, ret;
2157 struct srpt_tpg *stpg;
2158
2159 WARN_ON_ONCE(irqs_disabled());
2160
2161 it_iu_len = be32_to_cpu(req->req_it_iu_len);
2162
2163 pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6); pkey %#04x\n",
2164 req->initiator_port_id, req->target_port_id, it_iu_len,
2165 port_num, &sport->gid, be16_to_cpu(pkey));
2166
2167 nexus = srpt_get_nexus(sport, req->initiator_port_id,
2168 req->target_port_id);
2169 if (IS_ERR(nexus)) {
2170 ret = PTR_ERR(nexus);
2171 goto out;
2172 }
2173
2174 ret = -ENOMEM;
2175 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
2176 rej = kzalloc(sizeof(*rej), GFP_KERNEL);
2177 rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
2178 if (!rsp || !rej || !rep_param)
2179 goto out;
2180
2181 ret = -EINVAL;
2182 if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2183 rej->reason = cpu_to_be32(
2184 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2185 pr_err("rejected SRP_LOGIN_REQ because its length (%d bytes) is out of range (%d .. %d)\n",
2186 it_iu_len, 64, srp_max_req_size);
2187 goto reject;
2188 }
2189
2190 if (!sport->enabled) {
2191 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2192 pr_info("rejected SRP_LOGIN_REQ because target port %s_%d has not yet been enabled\n",
2193 dev_name(&sport->sdev->device->dev), port_num);
2194 goto reject;
2195 }
2196
2197 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2198 || *(__be64 *)(req->target_port_id + 8) !=
2199 cpu_to_be64(srpt_service_guid)) {
2200 rej->reason = cpu_to_be32(
2201 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2202 pr_err("rejected SRP_LOGIN_REQ because it has an invalid target port identifier.\n");
2203 goto reject;
2204 }
2205
2206 ret = -ENOMEM;
2207 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
2208 if (!ch) {
2209 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2210 pr_err("rejected SRP_LOGIN_REQ because out of memory.\n");
2211 goto reject;
2212 }
2213
2214 kref_init(&ch->kref);
2215 ch->pkey = be16_to_cpu(pkey);
2216 ch->nexus = nexus;
2217 ch->zw_cqe.done = srpt_zerolength_write_done;
2218 INIT_WORK(&ch->release_work, srpt_release_channel_work);
2219 ch->sport = sport;
2220 if (ib_cm_id) {
2221 ch->ib_cm.cm_id = ib_cm_id;
2222 ib_cm_id->context = ch;
2223 } else {
2224 ch->using_rdma_cm = true;
2225 ch->rdma_cm.cm_id = rdma_cm_id;
2226 rdma_cm_id->context = ch;
2227 }
2228 /*
2229 * ch->rq_size should be at least as large as the initiator queue
2230 * depth to avoid that the initiator driver has to report QUEUE_FULL
2231 * to the SCSI mid-layer.
2232 */
2233 ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr);
2234 spin_lock_init(&ch->spinlock);
2235 ch->state = CH_CONNECTING;
2236 INIT_LIST_HEAD(&ch->cmd_wait_list);
2237 ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2238
2239 ch->rsp_buf_cache = kmem_cache_create("srpt-rsp-buf", ch->max_rsp_size,
2240 512, 0, NULL);
2241 if (!ch->rsp_buf_cache)
2242 goto free_ch;
2243
2244 ch->ioctx_ring = (struct srpt_send_ioctx **)
2245 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2246 sizeof(*ch->ioctx_ring[0]),
2247 ch->rsp_buf_cache, 0, DMA_TO_DEVICE);
2248 if (!ch->ioctx_ring) {
2249 pr_err("rejected SRP_LOGIN_REQ because creating a new QP SQ ring failed.\n");
2250 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2251 goto free_rsp_cache;
2252 }
2253
2254 for (i = 0; i < ch->rq_size; i++)
2255 ch->ioctx_ring[i]->ch = ch;
2256 if (!sdev->use_srq) {
2257 u16 imm_data_offset = req->req_flags & SRP_IMMED_REQUESTED ?
2258 be16_to_cpu(req->imm_data_offset) : 0;
2259 u16 alignment_offset;
2260 u32 req_sz;
2261
2262 if (req->req_flags & SRP_IMMED_REQUESTED)
2263 pr_debug("imm_data_offset = %d\n",
2264 be16_to_cpu(req->imm_data_offset));
2265 if (imm_data_offset >= sizeof(struct srp_cmd)) {
2266 ch->imm_data_offset = imm_data_offset;
2267 rsp->rsp_flags |= SRP_LOGIN_RSP_IMMED_SUPP;
2268 } else {
2269 ch->imm_data_offset = 0;
2270 }
2271 alignment_offset = round_up(imm_data_offset, 512) -
2272 imm_data_offset;
2273 req_sz = alignment_offset + imm_data_offset + srp_max_req_size;
2274 ch->req_buf_cache = kmem_cache_create("srpt-req-buf", req_sz,
2275 512, 0, NULL);
2276 if (!ch->req_buf_cache)
2277 goto free_rsp_ring;
2278
2279 ch->ioctx_recv_ring = (struct srpt_recv_ioctx **)
2280 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2281 sizeof(*ch->ioctx_recv_ring[0]),
2282 ch->req_buf_cache,
2283 alignment_offset,
2284 DMA_FROM_DEVICE);
2285 if (!ch->ioctx_recv_ring) {
2286 pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n");
2287 rej->reason =
2288 cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2289 goto free_recv_cache;
2290 }
2291 for (i = 0; i < ch->rq_size; i++)
2292 INIT_LIST_HEAD(&ch->ioctx_recv_ring[i]->wait_list);
2293 }
2294
2295 ret = srpt_create_ch_ib(ch);
2296 if (ret) {
2297 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2298 pr_err("rejected SRP_LOGIN_REQ because creating a new RDMA channel failed.\n");
2299 goto free_recv_ring;
2300 }
2301
2302 strlcpy(ch->sess_name, src_addr, sizeof(ch->sess_name));
2303 snprintf(i_port_id, sizeof(i_port_id), "0x%016llx%016llx",
2304 be64_to_cpu(*(__be64 *)nexus->i_port_id),
2305 be64_to_cpu(*(__be64 *)(nexus->i_port_id + 8)));
2306
2307 pr_debug("registering src addr %s or i_port_id %s\n", ch->sess_name,
2308 i_port_id);
2309
2310 tag_num = ch->rq_size;
2311 tag_size = 1; /* ib_srpt does not use se_sess->sess_cmd_map */
2312
2313 if (sport->guid_id) {
2314 mutex_lock(&sport->guid_id->mutex);
2315 list_for_each_entry(stpg, &sport->guid_id->tpg_list, entry) {
2316 if (!IS_ERR_OR_NULL(ch->sess))
2317 break;
2318 ch->sess = target_setup_session(&stpg->tpg, tag_num,
2319 tag_size, TARGET_PROT_NORMAL,
2320 ch->sess_name, ch, NULL);
2321 }
2322 mutex_unlock(&sport->guid_id->mutex);
2323 }
2324
2325 if (sport->gid_id) {
2326 mutex_lock(&sport->gid_id->mutex);
2327 list_for_each_entry(stpg, &sport->gid_id->tpg_list, entry) {
2328 if (!IS_ERR_OR_NULL(ch->sess))
2329 break;
2330 ch->sess = target_setup_session(&stpg->tpg, tag_num,
2331 tag_size, TARGET_PROT_NORMAL, i_port_id,
2332 ch, NULL);
2333 if (!IS_ERR_OR_NULL(ch->sess))
2334 break;
2335 /* Retry without leading "0x" */
2336 ch->sess = target_setup_session(&stpg->tpg, tag_num,
2337 tag_size, TARGET_PROT_NORMAL,
2338 i_port_id + 2, ch, NULL);
2339 }
2340 mutex_unlock(&sport->gid_id->mutex);
2341 }
2342
2343 if (IS_ERR_OR_NULL(ch->sess)) {
2344 WARN_ON_ONCE(ch->sess == NULL);
2345 ret = PTR_ERR(ch->sess);
2346 ch->sess = NULL;
2347 pr_info("Rejected login for initiator %s: ret = %d.\n",
2348 ch->sess_name, ret);
2349 rej->reason = cpu_to_be32(ret == -ENOMEM ?
2350 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2351 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2352 goto destroy_ib;
2353 }
2354
2355 /*
2356 * Once a session has been created destruction of srpt_rdma_ch objects
2357 * will decrement sport->refcount. Hence increment sport->refcount now.
2358 */
2359 atomic_inc(&sport->refcount);
2360
2361 mutex_lock(&sport->mutex);
2362
2363 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2364 struct srpt_rdma_ch *ch2;
2365
2366 list_for_each_entry(ch2, &nexus->ch_list, list) {
2367 if (srpt_disconnect_ch(ch2) < 0)
2368 continue;
2369 pr_info("Relogin - closed existing channel %s\n",
2370 ch2->sess_name);
2371 rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2372 }
2373 } else {
2374 rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2375 }
2376
2377 list_add_tail_rcu(&ch->list, &nexus->ch_list);
2378
2379 if (!sport->enabled) {
2380 rej->reason = cpu_to_be32(
2381 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2382 pr_info("rejected SRP_LOGIN_REQ because target %s_%d is not enabled\n",
2383 dev_name(&sdev->device->dev), port_num);
2384 mutex_unlock(&sport->mutex);
2385 ret = -EINVAL;
2386 goto reject;
2387 }
2388
2389 mutex_unlock(&sport->mutex);
2390
2391 ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rtr(ch, ch->qp);
2392 if (ret) {
2393 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2394 pr_err("rejected SRP_LOGIN_REQ because enabling RTR failed (error code = %d)\n",
2395 ret);
2396 goto reject;
2397 }
2398
2399 pr_debug("Establish connection sess=%p name=%s ch=%p\n", ch->sess,
2400 ch->sess_name, ch);
2401
2402 /* create srp_login_response */
2403 rsp->opcode = SRP_LOGIN_RSP;
2404 rsp->tag = req->tag;
2405 rsp->max_it_iu_len = cpu_to_be32(srp_max_req_size);
2406 rsp->max_ti_iu_len = req->req_it_iu_len;
2407 ch->max_ti_iu_len = it_iu_len;
2408 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2409 SRP_BUF_FORMAT_INDIRECT);
2410 rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2411 atomic_set(&ch->req_lim, ch->rq_size);
2412 atomic_set(&ch->req_lim_delta, 0);
2413
2414 /* create cm reply */
2415 if (ch->using_rdma_cm) {
2416 rep_param->rdma_cm.private_data = (void *)rsp;
2417 rep_param->rdma_cm.private_data_len = sizeof(*rsp);
2418 rep_param->rdma_cm.rnr_retry_count = 7;
2419 rep_param->rdma_cm.flow_control = 1;
2420 rep_param->rdma_cm.responder_resources = 4;
2421 rep_param->rdma_cm.initiator_depth = 4;
2422 } else {
2423 rep_param->ib_cm.qp_num = ch->qp->qp_num;
2424 rep_param->ib_cm.private_data = (void *)rsp;
2425 rep_param->ib_cm.private_data_len = sizeof(*rsp);
2426 rep_param->ib_cm.rnr_retry_count = 7;
2427 rep_param->ib_cm.flow_control = 1;
2428 rep_param->ib_cm.failover_accepted = 0;
2429 rep_param->ib_cm.srq = 1;
2430 rep_param->ib_cm.responder_resources = 4;
2431 rep_param->ib_cm.initiator_depth = 4;
2432 }
2433
2434 /*
2435 * Hold the sport mutex while accepting a connection to avoid that
2436 * srpt_disconnect_ch() is invoked concurrently with this code.
2437 */
2438 mutex_lock(&sport->mutex);
2439 if (sport->enabled && ch->state == CH_CONNECTING) {
2440 if (ch->using_rdma_cm)
2441 ret = rdma_accept(rdma_cm_id, &rep_param->rdma_cm);
2442 else
2443 ret = ib_send_cm_rep(ib_cm_id, &rep_param->ib_cm);
2444 } else {
2445 ret = -EINVAL;
2446 }
2447 mutex_unlock(&sport->mutex);
2448
2449 switch (ret) {
2450 case 0:
2451 break;
2452 case -EINVAL:
2453 goto reject;
2454 default:
2455 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2456 pr_err("sending SRP_LOGIN_REQ response failed (error code = %d)\n",
2457 ret);
2458 goto reject;
2459 }
2460
2461 goto out;
2462
2463 destroy_ib:
2464 srpt_destroy_ch_ib(ch);
2465
2466 free_recv_ring:
2467 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2468 ch->sport->sdev, ch->rq_size,
2469 ch->req_buf_cache, DMA_FROM_DEVICE);
2470
2471 free_recv_cache:
2472 kmem_cache_destroy(ch->req_buf_cache);
2473
2474 free_rsp_ring:
2475 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2476 ch->sport->sdev, ch->rq_size,
2477 ch->rsp_buf_cache, DMA_TO_DEVICE);
2478
2479 free_rsp_cache:
2480 kmem_cache_destroy(ch->rsp_buf_cache);
2481
2482 free_ch:
2483 if (rdma_cm_id)
2484 rdma_cm_id->context = NULL;
2485 else
2486 ib_cm_id->context = NULL;
2487 kfree(ch);
2488 ch = NULL;
2489
2490 WARN_ON_ONCE(ret == 0);
2491
2492 reject:
2493 pr_info("Rejecting login with reason %#x\n", be32_to_cpu(rej->reason));
2494 rej->opcode = SRP_LOGIN_REJ;
2495 rej->tag = req->tag;
2496 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2497 SRP_BUF_FORMAT_INDIRECT);
2498
2499 if (rdma_cm_id)
2500 rdma_reject(rdma_cm_id, rej, sizeof(*rej),
2501 IB_CM_REJ_CONSUMER_DEFINED);
2502 else
2503 ib_send_cm_rej(ib_cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2504 rej, sizeof(*rej));
2505
2506 if (ch && ch->sess) {
2507 srpt_close_ch(ch);
2508 /*
2509 * Tell the caller not to free cm_id since
2510 * srpt_release_channel_work() will do that.
2511 */
2512 ret = 0;
2513 }
2514
2515 out:
2516 kfree(rep_param);
2517 kfree(rsp);
2518 kfree(rej);
2519
2520 return ret;
2521 }
2522
srpt_ib_cm_req_recv(struct ib_cm_id *cm_id, const struct ib_cm_req_event_param *param, void *private_data)2523 static int srpt_ib_cm_req_recv(struct ib_cm_id *cm_id,
2524 const struct ib_cm_req_event_param *param,
2525 void *private_data)
2526 {
2527 char sguid[40];
2528
2529 srpt_format_guid(sguid, sizeof(sguid),
2530 ¶m->primary_path->dgid.global.interface_id);
2531
2532 return srpt_cm_req_recv(cm_id->context, cm_id, NULL, param->port,
2533 param->primary_path->pkey,
2534 private_data, sguid);
2535 }
2536
srpt_rdma_cm_req_recv(struct rdma_cm_id *cm_id, struct rdma_cm_event *event)2537 static int srpt_rdma_cm_req_recv(struct rdma_cm_id *cm_id,
2538 struct rdma_cm_event *event)
2539 {
2540 struct srpt_device *sdev;
2541 struct srp_login_req req;
2542 const struct srp_login_req_rdma *req_rdma;
2543 struct sa_path_rec *path_rec = cm_id->route.path_rec;
2544 char src_addr[40];
2545
2546 sdev = ib_get_client_data(cm_id->device, &srpt_client);
2547 if (!sdev)
2548 return -ECONNREFUSED;
2549
2550 if (event->param.conn.private_data_len < sizeof(*req_rdma))
2551 return -EINVAL;
2552
2553 /* Transform srp_login_req_rdma into srp_login_req. */
2554 req_rdma = event->param.conn.private_data;
2555 memset(&req, 0, sizeof(req));
2556 req.opcode = req_rdma->opcode;
2557 req.tag = req_rdma->tag;
2558 req.req_it_iu_len = req_rdma->req_it_iu_len;
2559 req.req_buf_fmt = req_rdma->req_buf_fmt;
2560 req.req_flags = req_rdma->req_flags;
2561 memcpy(req.initiator_port_id, req_rdma->initiator_port_id, 16);
2562 memcpy(req.target_port_id, req_rdma->target_port_id, 16);
2563 req.imm_data_offset = req_rdma->imm_data_offset;
2564
2565 snprintf(src_addr, sizeof(src_addr), "%pIS",
2566 &cm_id->route.addr.src_addr);
2567
2568 return srpt_cm_req_recv(sdev, NULL, cm_id, cm_id->port_num,
2569 path_rec ? path_rec->pkey : 0, &req, src_addr);
2570 }
2571
srpt_cm_rej_recv(struct srpt_rdma_ch *ch, enum ib_cm_rej_reason reason, const u8 *private_data, u8 private_data_len)2572 static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
2573 enum ib_cm_rej_reason reason,
2574 const u8 *private_data,
2575 u8 private_data_len)
2576 {
2577 char *priv = NULL;
2578 int i;
2579
2580 if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
2581 GFP_KERNEL))) {
2582 for (i = 0; i < private_data_len; i++)
2583 sprintf(priv + 3 * i, " %02x", private_data[i]);
2584 }
2585 pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
2586 ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
2587 "; private data" : "", priv ? priv : " (?)");
2588 kfree(priv);
2589 }
2590
2591 /**
2592 * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event
2593 * @ch: SRPT RDMA channel.
2594 *
2595 * An RTU (ready to use) message indicates that the connection has been
2596 * established and that the recipient may begin transmitting.
2597 */
srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)2598 static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2599 {
2600 int ret;
2601
2602 ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rts(ch, ch->qp);
2603 if (ret < 0) {
2604 pr_err("%s-%d: QP transition to RTS failed\n", ch->sess_name,
2605 ch->qp->qp_num);
2606 srpt_close_ch(ch);
2607 return;
2608 }
2609
2610 /*
2611 * Note: calling srpt_close_ch() if the transition to the LIVE state
2612 * fails is not necessary since that means that that function has
2613 * already been invoked from another thread.
2614 */
2615 if (!srpt_set_ch_state(ch, CH_LIVE)) {
2616 pr_err("%s-%d: channel transition to LIVE state failed\n",
2617 ch->sess_name, ch->qp->qp_num);
2618 return;
2619 }
2620
2621 /* Trigger wait list processing. */
2622 ret = srpt_zerolength_write(ch);
2623 WARN_ONCE(ret < 0, "%d\n", ret);
2624 }
2625
2626 /**
2627 * srpt_cm_handler - IB connection manager callback function
2628 * @cm_id: IB/CM connection identifier.
2629 * @event: IB/CM event.
2630 *
2631 * A non-zero return value will cause the caller destroy the CM ID.
2632 *
2633 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2634 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2635 * a non-zero value in any other case will trigger a race with the
2636 * ib_destroy_cm_id() call in srpt_release_channel().
2637 */
srpt_cm_handler(struct ib_cm_id *cm_id, const struct ib_cm_event *event)2638 static int srpt_cm_handler(struct ib_cm_id *cm_id,
2639 const struct ib_cm_event *event)
2640 {
2641 struct srpt_rdma_ch *ch = cm_id->context;
2642 int ret;
2643
2644 ret = 0;
2645 switch (event->event) {
2646 case IB_CM_REQ_RECEIVED:
2647 ret = srpt_ib_cm_req_recv(cm_id, &event->param.req_rcvd,
2648 event->private_data);
2649 break;
2650 case IB_CM_REJ_RECEIVED:
2651 srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
2652 event->private_data,
2653 IB_CM_REJ_PRIVATE_DATA_SIZE);
2654 break;
2655 case IB_CM_RTU_RECEIVED:
2656 case IB_CM_USER_ESTABLISHED:
2657 srpt_cm_rtu_recv(ch);
2658 break;
2659 case IB_CM_DREQ_RECEIVED:
2660 srpt_disconnect_ch(ch);
2661 break;
2662 case IB_CM_DREP_RECEIVED:
2663 pr_info("Received CM DREP message for ch %s-%d.\n",
2664 ch->sess_name, ch->qp->qp_num);
2665 srpt_close_ch(ch);
2666 break;
2667 case IB_CM_TIMEWAIT_EXIT:
2668 pr_info("Received CM TimeWait exit for ch %s-%d.\n",
2669 ch->sess_name, ch->qp->qp_num);
2670 srpt_close_ch(ch);
2671 break;
2672 case IB_CM_REP_ERROR:
2673 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2674 ch->qp->qp_num);
2675 break;
2676 case IB_CM_DREQ_ERROR:
2677 pr_info("Received CM DREQ ERROR event.\n");
2678 break;
2679 case IB_CM_MRA_RECEIVED:
2680 pr_info("Received CM MRA event\n");
2681 break;
2682 default:
2683 pr_err("received unrecognized CM event %d\n", event->event);
2684 break;
2685 }
2686
2687 return ret;
2688 }
2689
srpt_rdma_cm_handler(struct rdma_cm_id *cm_id, struct rdma_cm_event *event)2690 static int srpt_rdma_cm_handler(struct rdma_cm_id *cm_id,
2691 struct rdma_cm_event *event)
2692 {
2693 struct srpt_rdma_ch *ch = cm_id->context;
2694 int ret = 0;
2695
2696 switch (event->event) {
2697 case RDMA_CM_EVENT_CONNECT_REQUEST:
2698 ret = srpt_rdma_cm_req_recv(cm_id, event);
2699 break;
2700 case RDMA_CM_EVENT_REJECTED:
2701 srpt_cm_rej_recv(ch, event->status,
2702 event->param.conn.private_data,
2703 event->param.conn.private_data_len);
2704 break;
2705 case RDMA_CM_EVENT_ESTABLISHED:
2706 srpt_cm_rtu_recv(ch);
2707 break;
2708 case RDMA_CM_EVENT_DISCONNECTED:
2709 if (ch->state < CH_DISCONNECTING)
2710 srpt_disconnect_ch(ch);
2711 else
2712 srpt_close_ch(ch);
2713 break;
2714 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2715 srpt_close_ch(ch);
2716 break;
2717 case RDMA_CM_EVENT_UNREACHABLE:
2718 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2719 ch->qp->qp_num);
2720 break;
2721 case RDMA_CM_EVENT_DEVICE_REMOVAL:
2722 case RDMA_CM_EVENT_ADDR_CHANGE:
2723 break;
2724 default:
2725 pr_err("received unrecognized RDMA CM event %d\n",
2726 event->event);
2727 break;
2728 }
2729
2730 return ret;
2731 }
2732
2733 /*
2734 * srpt_write_pending - Start data transfer from initiator to target (write).
2735 */
srpt_write_pending(struct se_cmd *se_cmd)2736 static int srpt_write_pending(struct se_cmd *se_cmd)
2737 {
2738 struct srpt_send_ioctx *ioctx =
2739 container_of(se_cmd, struct srpt_send_ioctx, cmd);
2740 struct srpt_rdma_ch *ch = ioctx->ch;
2741 struct ib_send_wr *first_wr = NULL;
2742 struct ib_cqe *cqe = &ioctx->rdma_cqe;
2743 enum srpt_command_state new_state;
2744 int ret, i;
2745
2746 if (ioctx->recv_ioctx) {
2747 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2748 target_execute_cmd(&ioctx->cmd);
2749 return 0;
2750 }
2751
2752 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2753 WARN_ON(new_state == SRPT_STATE_DONE);
2754
2755 if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
2756 pr_warn("%s: IB send queue full (needed %d)\n",
2757 __func__, ioctx->n_rdma);
2758 ret = -ENOMEM;
2759 goto out_undo;
2760 }
2761
2762 cqe->done = srpt_rdma_read_done;
2763 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2764 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2765
2766 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
2767 cqe, first_wr);
2768 cqe = NULL;
2769 }
2770
2771 ret = ib_post_send(ch->qp, first_wr, NULL);
2772 if (ret) {
2773 pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
2774 __func__, ret, ioctx->n_rdma,
2775 atomic_read(&ch->sq_wr_avail));
2776 goto out_undo;
2777 }
2778
2779 return 0;
2780 out_undo:
2781 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
2782 return ret;
2783 }
2784
tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)2785 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2786 {
2787 switch (tcm_mgmt_status) {
2788 case TMR_FUNCTION_COMPLETE:
2789 return SRP_TSK_MGMT_SUCCESS;
2790 case TMR_FUNCTION_REJECTED:
2791 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2792 }
2793 return SRP_TSK_MGMT_FAILED;
2794 }
2795
2796 /**
2797 * srpt_queue_response - transmit the response to a SCSI command
2798 * @cmd: SCSI target command.
2799 *
2800 * Callback function called by the TCM core. Must not block since it can be
2801 * invoked on the context of the IB completion handler.
2802 */
srpt_queue_response(struct se_cmd *cmd)2803 static void srpt_queue_response(struct se_cmd *cmd)
2804 {
2805 struct srpt_send_ioctx *ioctx =
2806 container_of(cmd, struct srpt_send_ioctx, cmd);
2807 struct srpt_rdma_ch *ch = ioctx->ch;
2808 struct srpt_device *sdev = ch->sport->sdev;
2809 struct ib_send_wr send_wr, *first_wr = &send_wr;
2810 struct ib_sge sge;
2811 enum srpt_command_state state;
2812 int resp_len, ret, i;
2813 u8 srp_tm_status;
2814
2815 state = ioctx->state;
2816 switch (state) {
2817 case SRPT_STATE_NEW:
2818 case SRPT_STATE_DATA_IN:
2819 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2820 break;
2821 case SRPT_STATE_MGMT:
2822 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2823 break;
2824 default:
2825 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2826 ch, ioctx->ioctx.index, ioctx->state);
2827 break;
2828 }
2829
2830 if (WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))
2831 return;
2832
2833 /* For read commands, transfer the data to the initiator. */
2834 if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
2835 ioctx->cmd.data_length &&
2836 !ioctx->queue_status_only) {
2837 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2838 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2839
2840 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2841 ch->sport->port, NULL, first_wr);
2842 }
2843 }
2844
2845 if (state != SRPT_STATE_MGMT)
2846 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2847 cmd->scsi_status);
2848 else {
2849 srp_tm_status
2850 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
2851 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2852 ioctx->cmd.tag);
2853 }
2854
2855 atomic_inc(&ch->req_lim);
2856
2857 if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
2858 &ch->sq_wr_avail) < 0)) {
2859 pr_warn("%s: IB send queue full (needed %d)\n",
2860 __func__, ioctx->n_rdma);
2861 ret = -ENOMEM;
2862 goto out;
2863 }
2864
2865 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
2866 DMA_TO_DEVICE);
2867
2868 sge.addr = ioctx->ioctx.dma;
2869 sge.length = resp_len;
2870 sge.lkey = sdev->lkey;
2871
2872 ioctx->ioctx.cqe.done = srpt_send_done;
2873 send_wr.next = NULL;
2874 send_wr.wr_cqe = &ioctx->ioctx.cqe;
2875 send_wr.sg_list = &sge;
2876 send_wr.num_sge = 1;
2877 send_wr.opcode = IB_WR_SEND;
2878 send_wr.send_flags = IB_SEND_SIGNALED;
2879
2880 ret = ib_post_send(ch->qp, first_wr, NULL);
2881 if (ret < 0) {
2882 pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
2883 __func__, ioctx->cmd.tag, ret);
2884 goto out;
2885 }
2886
2887 return;
2888
2889 out:
2890 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
2891 atomic_dec(&ch->req_lim);
2892 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
2893 target_put_sess_cmd(&ioctx->cmd);
2894 }
2895
srpt_queue_data_in(struct se_cmd *cmd)2896 static int srpt_queue_data_in(struct se_cmd *cmd)
2897 {
2898 srpt_queue_response(cmd);
2899 return 0;
2900 }
2901
srpt_queue_tm_rsp(struct se_cmd *cmd)2902 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
2903 {
2904 srpt_queue_response(cmd);
2905 }
2906
2907 /*
2908 * This function is called for aborted commands if no response is sent to the
2909 * initiator. Make sure that the credits freed by aborting a command are
2910 * returned to the initiator the next time a response is sent by incrementing
2911 * ch->req_lim_delta.
2912 */
srpt_aborted_task(struct se_cmd *cmd)2913 static void srpt_aborted_task(struct se_cmd *cmd)
2914 {
2915 struct srpt_send_ioctx *ioctx = container_of(cmd,
2916 struct srpt_send_ioctx, cmd);
2917 struct srpt_rdma_ch *ch = ioctx->ch;
2918
2919 atomic_inc(&ch->req_lim_delta);
2920 }
2921
srpt_queue_status(struct se_cmd *cmd)2922 static int srpt_queue_status(struct se_cmd *cmd)
2923 {
2924 struct srpt_send_ioctx *ioctx;
2925
2926 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2927 BUG_ON(ioctx->sense_data != cmd->sense_buffer);
2928 if (cmd->se_cmd_flags &
2929 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
2930 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
2931 ioctx->queue_status_only = true;
2932 srpt_queue_response(cmd);
2933 return 0;
2934 }
2935
srpt_refresh_port_work(struct work_struct *work)2936 static void srpt_refresh_port_work(struct work_struct *work)
2937 {
2938 struct srpt_port *sport = container_of(work, struct srpt_port, work);
2939
2940 srpt_refresh_port(sport);
2941 }
2942
2943 /**
2944 * srpt_release_sport - disable login and wait for associated channels
2945 * @sport: SRPT HCA port.
2946 */
srpt_release_sport(struct srpt_port *sport)2947 static int srpt_release_sport(struct srpt_port *sport)
2948 {
2949 DECLARE_COMPLETION_ONSTACK(c);
2950 struct srpt_nexus *nexus, *next_n;
2951 struct srpt_rdma_ch *ch;
2952
2953 WARN_ON_ONCE(irqs_disabled());
2954
2955 sport->freed_channels = &c;
2956
2957 mutex_lock(&sport->mutex);
2958 srpt_set_enabled(sport, false);
2959 mutex_unlock(&sport->mutex);
2960
2961 while (atomic_read(&sport->refcount) > 0 &&
2962 wait_for_completion_timeout(&c, 5 * HZ) <= 0) {
2963 pr_info("%s_%d: waiting for unregistration of %d sessions ...\n",
2964 dev_name(&sport->sdev->device->dev), sport->port,
2965 atomic_read(&sport->refcount));
2966 rcu_read_lock();
2967 list_for_each_entry(nexus, &sport->nexus_list, entry) {
2968 list_for_each_entry(ch, &nexus->ch_list, list) {
2969 pr_info("%s-%d: state %s\n",
2970 ch->sess_name, ch->qp->qp_num,
2971 get_ch_state_name(ch->state));
2972 }
2973 }
2974 rcu_read_unlock();
2975 }
2976
2977 mutex_lock(&sport->mutex);
2978 list_for_each_entry_safe(nexus, next_n, &sport->nexus_list, entry) {
2979 list_del(&nexus->entry);
2980 kfree_rcu(nexus, rcu);
2981 }
2982 mutex_unlock(&sport->mutex);
2983
2984 return 0;
2985 }
2986
2987 struct port_and_port_id {
2988 struct srpt_port *sport;
2989 struct srpt_port_id **port_id;
2990 };
2991
__srpt_lookup_port(const char *name)2992 static struct port_and_port_id __srpt_lookup_port(const char *name)
2993 {
2994 struct ib_device *dev;
2995 struct srpt_device *sdev;
2996 struct srpt_port *sport;
2997 int i;
2998
2999 list_for_each_entry(sdev, &srpt_dev_list, list) {
3000 dev = sdev->device;
3001 if (!dev)
3002 continue;
3003
3004 for (i = 0; i < dev->phys_port_cnt; i++) {
3005 sport = &sdev->port[i];
3006
3007 if (strcmp(sport->guid_name, name) == 0) {
3008 kref_get(&sdev->refcnt);
3009 return (struct port_and_port_id){
3010 sport, &sport->guid_id};
3011 }
3012 if (strcmp(sport->gid_name, name) == 0) {
3013 kref_get(&sdev->refcnt);
3014 return (struct port_and_port_id){
3015 sport, &sport->gid_id};
3016 }
3017 }
3018 }
3019
3020 return (struct port_and_port_id){};
3021 }
3022
3023 /**
3024 * srpt_lookup_port() - Look up an RDMA port by name
3025 * @name: ASCII port name
3026 *
3027 * Increments the RDMA port reference count if an RDMA port pointer is returned.
3028 * The caller must drop that reference count by calling srpt_port_put_ref().
3029 */
srpt_lookup_port(const char *name)3030 static struct port_and_port_id srpt_lookup_port(const char *name)
3031 {
3032 struct port_and_port_id papi;
3033
3034 spin_lock(&srpt_dev_lock);
3035 papi = __srpt_lookup_port(name);
3036 spin_unlock(&srpt_dev_lock);
3037
3038 return papi;
3039 }
3040
srpt_free_srq(struct srpt_device *sdev)3041 static void srpt_free_srq(struct srpt_device *sdev)
3042 {
3043 if (!sdev->srq)
3044 return;
3045
3046 ib_destroy_srq(sdev->srq);
3047 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3048 sdev->srq_size, sdev->req_buf_cache,
3049 DMA_FROM_DEVICE);
3050 kmem_cache_destroy(sdev->req_buf_cache);
3051 sdev->srq = NULL;
3052 }
3053
srpt_alloc_srq(struct srpt_device *sdev)3054 static int srpt_alloc_srq(struct srpt_device *sdev)
3055 {
3056 struct ib_srq_init_attr srq_attr = {
3057 .event_handler = srpt_srq_event,
3058 .srq_context = (void *)sdev,
3059 .attr.max_wr = sdev->srq_size,
3060 .attr.max_sge = 1,
3061 .srq_type = IB_SRQT_BASIC,
3062 };
3063 struct ib_device *device = sdev->device;
3064 struct ib_srq *srq;
3065 int i;
3066
3067 WARN_ON_ONCE(sdev->srq);
3068 srq = ib_create_srq(sdev->pd, &srq_attr);
3069 if (IS_ERR(srq)) {
3070 pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq));
3071 return PTR_ERR(srq);
3072 }
3073
3074 pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size,
3075 sdev->device->attrs.max_srq_wr, dev_name(&device->dev));
3076
3077 sdev->req_buf_cache = kmem_cache_create("srpt-srq-req-buf",
3078 srp_max_req_size, 0, 0, NULL);
3079 if (!sdev->req_buf_cache)
3080 goto free_srq;
3081
3082 sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3083 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3084 sizeof(*sdev->ioctx_ring[0]),
3085 sdev->req_buf_cache, 0, DMA_FROM_DEVICE);
3086 if (!sdev->ioctx_ring)
3087 goto free_cache;
3088
3089 sdev->use_srq = true;
3090 sdev->srq = srq;
3091
3092 for (i = 0; i < sdev->srq_size; ++i) {
3093 INIT_LIST_HEAD(&sdev->ioctx_ring[i]->wait_list);
3094 srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]);
3095 }
3096
3097 return 0;
3098
3099 free_cache:
3100 kmem_cache_destroy(sdev->req_buf_cache);
3101
3102 free_srq:
3103 ib_destroy_srq(srq);
3104 return -ENOMEM;
3105 }
3106
srpt_use_srq(struct srpt_device *sdev, bool use_srq)3107 static int srpt_use_srq(struct srpt_device *sdev, bool use_srq)
3108 {
3109 struct ib_device *device = sdev->device;
3110 int ret = 0;
3111
3112 if (!use_srq) {
3113 srpt_free_srq(sdev);
3114 sdev->use_srq = false;
3115 } else if (use_srq && !sdev->srq) {
3116 ret = srpt_alloc_srq(sdev);
3117 }
3118 pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__,
3119 dev_name(&device->dev), sdev->use_srq, ret);
3120 return ret;
3121 }
3122
srpt_free_sdev(struct kref *refcnt)3123 static void srpt_free_sdev(struct kref *refcnt)
3124 {
3125 struct srpt_device *sdev = container_of(refcnt, typeof(*sdev), refcnt);
3126
3127 kfree(sdev);
3128 }
3129
srpt_sdev_put(struct srpt_device *sdev)3130 static void srpt_sdev_put(struct srpt_device *sdev)
3131 {
3132 kref_put(&sdev->refcnt, srpt_free_sdev);
3133 }
3134
3135 /**
3136 * srpt_add_one - InfiniBand device addition callback function
3137 * @device: Describes a HCA.
3138 */
srpt_add_one(struct ib_device *device)3139 static int srpt_add_one(struct ib_device *device)
3140 {
3141 struct srpt_device *sdev;
3142 struct srpt_port *sport;
3143 int i, ret;
3144
3145 pr_debug("device = %p\n", device);
3146
3147 sdev = kzalloc(struct_size(sdev, port, device->phys_port_cnt),
3148 GFP_KERNEL);
3149 if (!sdev)
3150 return -ENOMEM;
3151
3152 kref_init(&sdev->refcnt);
3153 sdev->device = device;
3154 mutex_init(&sdev->sdev_mutex);
3155
3156 sdev->pd = ib_alloc_pd(device, 0);
3157 if (IS_ERR(sdev->pd)) {
3158 ret = PTR_ERR(sdev->pd);
3159 goto free_dev;
3160 }
3161
3162 sdev->lkey = sdev->pd->local_dma_lkey;
3163
3164 sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
3165
3166 srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq);
3167
3168 if (!srpt_service_guid)
3169 srpt_service_guid = be64_to_cpu(device->node_guid);
3170
3171 if (rdma_port_get_link_layer(device, 1) == IB_LINK_LAYER_INFINIBAND)
3172 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3173 if (IS_ERR(sdev->cm_id)) {
3174 pr_info("ib_create_cm_id() failed: %ld\n",
3175 PTR_ERR(sdev->cm_id));
3176 ret = PTR_ERR(sdev->cm_id);
3177 sdev->cm_id = NULL;
3178 if (!rdma_cm_id)
3179 goto err_ring;
3180 }
3181
3182 /* print out target login information */
3183 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,pkey=ffff,service_id=%016llx\n",
3184 srpt_service_guid, srpt_service_guid, srpt_service_guid);
3185
3186 /*
3187 * We do not have a consistent service_id (ie. also id_ext of target_id)
3188 * to identify this target. We currently use the guid of the first HCA
3189 * in the system as service_id; therefore, the target_id will change
3190 * if this HCA is gone bad and replaced by different HCA
3191 */
3192 ret = sdev->cm_id ?
3193 ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0) :
3194 0;
3195 if (ret < 0) {
3196 pr_err("ib_cm_listen() failed: %d (cm_id state = %d)\n", ret,
3197 sdev->cm_id->state);
3198 goto err_cm;
3199 }
3200
3201 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3202 srpt_event_handler);
3203
3204 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3205 sport = &sdev->port[i - 1];
3206 INIT_LIST_HEAD(&sport->nexus_list);
3207 mutex_init(&sport->mutex);
3208 sport->sdev = sdev;
3209 sport->port = i;
3210 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3211 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3212 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3213 sport->port_attrib.use_srq = false;
3214 INIT_WORK(&sport->work, srpt_refresh_port_work);
3215
3216 ret = srpt_refresh_port(sport);
3217 if (ret) {
3218 pr_err("MAD registration failed for %s-%d.\n",
3219 dev_name(&sdev->device->dev), i);
3220 i--;
3221 goto err_port;
3222 }
3223 }
3224
3225 ib_register_event_handler(&sdev->event_handler);
3226 spin_lock(&srpt_dev_lock);
3227 list_add_tail(&sdev->list, &srpt_dev_list);
3228 spin_unlock(&srpt_dev_lock);
3229
3230 ib_set_client_data(device, &srpt_client, sdev);
3231 pr_debug("added %s.\n", dev_name(&device->dev));
3232 return 0;
3233
3234 err_port:
3235 srpt_unregister_mad_agent(sdev, i);
3236 err_cm:
3237 if (sdev->cm_id)
3238 ib_destroy_cm_id(sdev->cm_id);
3239 err_ring:
3240 srpt_free_srq(sdev);
3241 ib_dealloc_pd(sdev->pd);
3242 free_dev:
3243 srpt_sdev_put(sdev);
3244 pr_info("%s(%s) failed.\n", __func__, dev_name(&device->dev));
3245 return ret;
3246 }
3247
3248 /**
3249 * srpt_remove_one - InfiniBand device removal callback function
3250 * @device: Describes a HCA.
3251 * @client_data: The value passed as the third argument to ib_set_client_data().
3252 */
srpt_remove_one(struct ib_device *device, void *client_data)3253 static void srpt_remove_one(struct ib_device *device, void *client_data)
3254 {
3255 struct srpt_device *sdev = client_data;
3256 int i;
3257
3258 srpt_unregister_mad_agent(sdev, sdev->device->phys_port_cnt);
3259
3260 ib_unregister_event_handler(&sdev->event_handler);
3261
3262 /* Cancel any work queued by the just unregistered IB event handler. */
3263 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3264 cancel_work_sync(&sdev->port[i].work);
3265
3266 if (sdev->cm_id)
3267 ib_destroy_cm_id(sdev->cm_id);
3268
3269 ib_set_client_data(device, &srpt_client, NULL);
3270
3271 /*
3272 * Unregistering a target must happen after destroying sdev->cm_id
3273 * such that no new SRP_LOGIN_REQ information units can arrive while
3274 * destroying the target.
3275 */
3276 spin_lock(&srpt_dev_lock);
3277 list_del(&sdev->list);
3278 spin_unlock(&srpt_dev_lock);
3279
3280 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3281 srpt_release_sport(&sdev->port[i]);
3282
3283 srpt_free_srq(sdev);
3284
3285 ib_dealloc_pd(sdev->pd);
3286
3287 srpt_sdev_put(sdev);
3288 }
3289
3290 static struct ib_client srpt_client = {
3291 .name = DRV_NAME,
3292 .add = srpt_add_one,
3293 .remove = srpt_remove_one
3294 };
3295
srpt_check_true(struct se_portal_group *se_tpg)3296 static int srpt_check_true(struct se_portal_group *se_tpg)
3297 {
3298 return 1;
3299 }
3300
srpt_check_false(struct se_portal_group *se_tpg)3301 static int srpt_check_false(struct se_portal_group *se_tpg)
3302 {
3303 return 0;
3304 }
3305
srpt_tpg_to_sport(struct se_portal_group *tpg)3306 static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg)
3307 {
3308 return tpg->se_tpg_wwn->priv;
3309 }
3310
srpt_wwn_to_sport_id(struct se_wwn *wwn)3311 static struct srpt_port_id *srpt_wwn_to_sport_id(struct se_wwn *wwn)
3312 {
3313 struct srpt_port *sport = wwn->priv;
3314
3315 if (sport->guid_id && &sport->guid_id->wwn == wwn)
3316 return sport->guid_id;
3317 if (sport->gid_id && &sport->gid_id->wwn == wwn)
3318 return sport->gid_id;
3319 WARN_ON_ONCE(true);
3320 return NULL;
3321 }
3322
srpt_get_fabric_wwn(struct se_portal_group *tpg)3323 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3324 {
3325 struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg);
3326
3327 return stpg->sport_id->name;
3328 }
3329
srpt_get_tag(struct se_portal_group *tpg)3330 static u16 srpt_get_tag(struct se_portal_group *tpg)
3331 {
3332 return 1;
3333 }
3334
srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)3335 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3336 {
3337 return 1;
3338 }
3339
srpt_release_cmd(struct se_cmd *se_cmd)3340 static void srpt_release_cmd(struct se_cmd *se_cmd)
3341 {
3342 struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3343 struct srpt_send_ioctx, cmd);
3344 struct srpt_rdma_ch *ch = ioctx->ch;
3345 struct srpt_recv_ioctx *recv_ioctx = ioctx->recv_ioctx;
3346
3347 WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE &&
3348 !(ioctx->cmd.transport_state & CMD_T_ABORTED));
3349
3350 if (recv_ioctx) {
3351 WARN_ON_ONCE(!list_empty(&recv_ioctx->wait_list));
3352 ioctx->recv_ioctx = NULL;
3353 srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
3354 }
3355
3356 if (ioctx->n_rw_ctx) {
3357 srpt_free_rw_ctxs(ch, ioctx);
3358 ioctx->n_rw_ctx = 0;
3359 }
3360
3361 target_free_tag(se_cmd->se_sess, se_cmd);
3362 }
3363
3364 /**
3365 * srpt_close_session - forcibly close a session
3366 * @se_sess: SCSI target session.
3367 *
3368 * Callback function invoked by the TCM core to clean up sessions associated
3369 * with a node ACL when the user invokes
3370 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3371 */
srpt_close_session(struct se_session *se_sess)3372 static void srpt_close_session(struct se_session *se_sess)
3373 {
3374 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
3375
3376 srpt_disconnect_ch_sync(ch);
3377 }
3378
3379 /**
3380 * srpt_sess_get_index - return the value of scsiAttIntrPortIndex (SCSI-MIB)
3381 * @se_sess: SCSI target session.
3382 *
3383 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3384 * This object represents an arbitrary integer used to uniquely identify a
3385 * particular attached remote initiator port to a particular SCSI target port
3386 * within a particular SCSI target device within a particular SCSI instance.
3387 */
srpt_sess_get_index(struct se_session *se_sess)3388 static u32 srpt_sess_get_index(struct se_session *se_sess)
3389 {
3390 return 0;
3391 }
3392
srpt_set_default_node_attrs(struct se_node_acl *nacl)3393 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3394 {
3395 }
3396
3397 /* Note: only used from inside debug printk's by the TCM core. */
srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)3398 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3399 {
3400 struct srpt_send_ioctx *ioctx;
3401
3402 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3403 return ioctx->state;
3404 }
3405
srpt_parse_guid(u64 *guid, const char *name)3406 static int srpt_parse_guid(u64 *guid, const char *name)
3407 {
3408 u16 w[4];
3409 int ret = -EINVAL;
3410
3411 if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4)
3412 goto out;
3413 *guid = get_unaligned_be64(w);
3414 ret = 0;
3415 out:
3416 return ret;
3417 }
3418
3419 /**
3420 * srpt_parse_i_port_id - parse an initiator port ID
3421 * @name: ASCII representation of a 128-bit initiator port ID.
3422 * @i_port_id: Binary 128-bit port ID.
3423 */
srpt_parse_i_port_id(u8 i_port_id[16], const char *name)3424 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3425 {
3426 const char *p;
3427 unsigned len, count, leading_zero_bytes;
3428 int ret;
3429
3430 p = name;
3431 if (strncasecmp(p, "0x", 2) == 0)
3432 p += 2;
3433 ret = -EINVAL;
3434 len = strlen(p);
3435 if (len % 2)
3436 goto out;
3437 count = min(len / 2, 16U);
3438 leading_zero_bytes = 16 - count;
3439 memset(i_port_id, 0, leading_zero_bytes);
3440 ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
3441
3442 out:
3443 return ret;
3444 }
3445
3446 /*
3447 * configfs callback function invoked for mkdir
3448 * /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3449 *
3450 * i_port_id must be an initiator port GUID, GID or IP address. See also the
3451 * target_alloc_session() calls in this driver. Examples of valid initiator
3452 * port IDs:
3453 * 0x0000000000000000505400fffe4a0b7b
3454 * 0000000000000000505400fffe4a0b7b
3455 * 5054:00ff:fe4a:0b7b
3456 * 192.168.122.76
3457 */
srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)3458 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3459 {
3460 struct sockaddr_storage sa;
3461 u64 guid;
3462 u8 i_port_id[16];
3463 int ret;
3464
3465 ret = srpt_parse_guid(&guid, name);
3466 if (ret < 0)
3467 ret = srpt_parse_i_port_id(i_port_id, name);
3468 if (ret < 0)
3469 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, name, NULL,
3470 &sa);
3471 if (ret < 0)
3472 pr_err("invalid initiator port ID %s\n", name);
3473 return ret;
3474 }
3475
srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item, char *page)3476 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
3477 char *page)
3478 {
3479 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3480 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3481
3482 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3483 }
3484
srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item, const char *page, size_t count)3485 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
3486 const char *page, size_t count)
3487 {
3488 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3489 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3490 unsigned long val;
3491 int ret;
3492
3493 ret = kstrtoul(page, 0, &val);
3494 if (ret < 0) {
3495 pr_err("kstrtoul() failed with ret: %d\n", ret);
3496 return -EINVAL;
3497 }
3498 if (val > MAX_SRPT_RDMA_SIZE) {
3499 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3500 MAX_SRPT_RDMA_SIZE);
3501 return -EINVAL;
3502 }
3503 if (val < DEFAULT_MAX_RDMA_SIZE) {
3504 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3505 val, DEFAULT_MAX_RDMA_SIZE);
3506 return -EINVAL;
3507 }
3508 sport->port_attrib.srp_max_rdma_size = val;
3509
3510 return count;
3511 }
3512
srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item, char *page)3513 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
3514 char *page)
3515 {
3516 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3517 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3518
3519 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3520 }
3521
srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item, const char *page, size_t count)3522 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
3523 const char *page, size_t count)
3524 {
3525 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3526 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3527 unsigned long val;
3528 int ret;
3529
3530 ret = kstrtoul(page, 0, &val);
3531 if (ret < 0) {
3532 pr_err("kstrtoul() failed with ret: %d\n", ret);
3533 return -EINVAL;
3534 }
3535 if (val > MAX_SRPT_RSP_SIZE) {
3536 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3537 MAX_SRPT_RSP_SIZE);
3538 return -EINVAL;
3539 }
3540 if (val < MIN_MAX_RSP_SIZE) {
3541 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3542 MIN_MAX_RSP_SIZE);
3543 return -EINVAL;
3544 }
3545 sport->port_attrib.srp_max_rsp_size = val;
3546
3547 return count;
3548 }
3549
srpt_tpg_attrib_srp_sq_size_show(struct config_item *item, char *page)3550 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
3551 char *page)
3552 {
3553 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3554 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3555
3556 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3557 }
3558
srpt_tpg_attrib_srp_sq_size_store(struct config_item *item, const char *page, size_t count)3559 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
3560 const char *page, size_t count)
3561 {
3562 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3563 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3564 unsigned long val;
3565 int ret;
3566
3567 ret = kstrtoul(page, 0, &val);
3568 if (ret < 0) {
3569 pr_err("kstrtoul() failed with ret: %d\n", ret);
3570 return -EINVAL;
3571 }
3572 if (val > MAX_SRPT_SRQ_SIZE) {
3573 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3574 MAX_SRPT_SRQ_SIZE);
3575 return -EINVAL;
3576 }
3577 if (val < MIN_SRPT_SRQ_SIZE) {
3578 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3579 MIN_SRPT_SRQ_SIZE);
3580 return -EINVAL;
3581 }
3582 sport->port_attrib.srp_sq_size = val;
3583
3584 return count;
3585 }
3586
srpt_tpg_attrib_use_srq_show(struct config_item *item, char *page)3587 static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item,
3588 char *page)
3589 {
3590 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3591 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3592
3593 return sprintf(page, "%d\n", sport->port_attrib.use_srq);
3594 }
3595
srpt_tpg_attrib_use_srq_store(struct config_item *item, const char *page, size_t count)3596 static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item,
3597 const char *page, size_t count)
3598 {
3599 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3600 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3601 struct srpt_device *sdev = sport->sdev;
3602 unsigned long val;
3603 bool enabled;
3604 int ret;
3605
3606 ret = kstrtoul(page, 0, &val);
3607 if (ret < 0)
3608 return ret;
3609 if (val != !!val)
3610 return -EINVAL;
3611
3612 ret = mutex_lock_interruptible(&sdev->sdev_mutex);
3613 if (ret < 0)
3614 return ret;
3615 ret = mutex_lock_interruptible(&sport->mutex);
3616 if (ret < 0)
3617 goto unlock_sdev;
3618 enabled = sport->enabled;
3619 /* Log out all initiator systems before changing 'use_srq'. */
3620 srpt_set_enabled(sport, false);
3621 sport->port_attrib.use_srq = val;
3622 srpt_use_srq(sdev, sport->port_attrib.use_srq);
3623 srpt_set_enabled(sport, enabled);
3624 ret = count;
3625 mutex_unlock(&sport->mutex);
3626 unlock_sdev:
3627 mutex_unlock(&sdev->sdev_mutex);
3628
3629 return ret;
3630 }
3631
3632 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size);
3633 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size);
3634 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size);
3635 CONFIGFS_ATTR(srpt_tpg_attrib_, use_srq);
3636
3637 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3638 &srpt_tpg_attrib_attr_srp_max_rdma_size,
3639 &srpt_tpg_attrib_attr_srp_max_rsp_size,
3640 &srpt_tpg_attrib_attr_srp_sq_size,
3641 &srpt_tpg_attrib_attr_use_srq,
3642 NULL,
3643 };
3644
srpt_create_rdma_id(struct sockaddr *listen_addr)3645 static struct rdma_cm_id *srpt_create_rdma_id(struct sockaddr *listen_addr)
3646 {
3647 struct rdma_cm_id *rdma_cm_id;
3648 int ret;
3649
3650 rdma_cm_id = rdma_create_id(&init_net, srpt_rdma_cm_handler,
3651 NULL, RDMA_PS_TCP, IB_QPT_RC);
3652 if (IS_ERR(rdma_cm_id)) {
3653 pr_err("RDMA/CM ID creation failed: %ld\n",
3654 PTR_ERR(rdma_cm_id));
3655 goto out;
3656 }
3657
3658 ret = rdma_bind_addr(rdma_cm_id, listen_addr);
3659 if (ret) {
3660 char addr_str[64];
3661
3662 snprintf(addr_str, sizeof(addr_str), "%pISp", listen_addr);
3663 pr_err("Binding RDMA/CM ID to address %s failed: %d\n",
3664 addr_str, ret);
3665 rdma_destroy_id(rdma_cm_id);
3666 rdma_cm_id = ERR_PTR(ret);
3667 goto out;
3668 }
3669
3670 ret = rdma_listen(rdma_cm_id, 128);
3671 if (ret) {
3672 pr_err("rdma_listen() failed: %d\n", ret);
3673 rdma_destroy_id(rdma_cm_id);
3674 rdma_cm_id = ERR_PTR(ret);
3675 }
3676
3677 out:
3678 return rdma_cm_id;
3679 }
3680
srpt_rdma_cm_port_show(struct config_item *item, char *page)3681 static ssize_t srpt_rdma_cm_port_show(struct config_item *item, char *page)
3682 {
3683 return sprintf(page, "%d\n", rdma_cm_port);
3684 }
3685
srpt_rdma_cm_port_store(struct config_item *item, const char *page, size_t count)3686 static ssize_t srpt_rdma_cm_port_store(struct config_item *item,
3687 const char *page, size_t count)
3688 {
3689 struct sockaddr_in addr4 = { .sin_family = AF_INET };
3690 struct sockaddr_in6 addr6 = { .sin6_family = AF_INET6 };
3691 struct rdma_cm_id *new_id = NULL;
3692 u16 val;
3693 int ret;
3694
3695 ret = kstrtou16(page, 0, &val);
3696 if (ret < 0)
3697 return ret;
3698 ret = count;
3699 if (rdma_cm_port == val)
3700 goto out;
3701
3702 if (val) {
3703 addr6.sin6_port = cpu_to_be16(val);
3704 new_id = srpt_create_rdma_id((struct sockaddr *)&addr6);
3705 if (IS_ERR(new_id)) {
3706 addr4.sin_port = cpu_to_be16(val);
3707 new_id = srpt_create_rdma_id((struct sockaddr *)&addr4);
3708 if (IS_ERR(new_id)) {
3709 ret = PTR_ERR(new_id);
3710 goto out;
3711 }
3712 }
3713 }
3714
3715 mutex_lock(&rdma_cm_mutex);
3716 rdma_cm_port = val;
3717 swap(rdma_cm_id, new_id);
3718 mutex_unlock(&rdma_cm_mutex);
3719
3720 if (new_id)
3721 rdma_destroy_id(new_id);
3722 ret = count;
3723 out:
3724 return ret;
3725 }
3726
3727 CONFIGFS_ATTR(srpt_, rdma_cm_port);
3728
3729 static struct configfs_attribute *srpt_da_attrs[] = {
3730 &srpt_attr_rdma_cm_port,
3731 NULL,
3732 };
3733
srpt_tpg_enable_show(struct config_item *item, char *page)3734 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3735 {
3736 struct se_portal_group *se_tpg = to_tpg(item);
3737 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3738
3739 return snprintf(page, PAGE_SIZE, "%d\n", sport->enabled);
3740 }
3741
srpt_tpg_enable_store(struct config_item *item, const char *page, size_t count)3742 static ssize_t srpt_tpg_enable_store(struct config_item *item,
3743 const char *page, size_t count)
3744 {
3745 struct se_portal_group *se_tpg = to_tpg(item);
3746 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3747 unsigned long tmp;
3748 int ret;
3749
3750 ret = kstrtoul(page, 0, &tmp);
3751 if (ret < 0) {
3752 pr_err("Unable to extract srpt_tpg_store_enable\n");
3753 return -EINVAL;
3754 }
3755
3756 if ((tmp != 0) && (tmp != 1)) {
3757 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3758 return -EINVAL;
3759 }
3760
3761 mutex_lock(&sport->mutex);
3762 srpt_set_enabled(sport, tmp);
3763 mutex_unlock(&sport->mutex);
3764
3765 return count;
3766 }
3767
3768 CONFIGFS_ATTR(srpt_tpg_, enable);
3769
3770 static struct configfs_attribute *srpt_tpg_attrs[] = {
3771 &srpt_tpg_attr_enable,
3772 NULL,
3773 };
3774
3775 /**
3776 * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg
3777 * @wwn: Corresponds to $driver/$port.
3778 * @name: $tpg.
3779 */
srpt_make_tpg(struct se_wwn *wwn, const char *name)3780 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3781 const char *name)
3782 {
3783 struct srpt_port_id *sport_id = srpt_wwn_to_sport_id(wwn);
3784 struct srpt_tpg *stpg;
3785 int res = -ENOMEM;
3786
3787 stpg = kzalloc(sizeof(*stpg), GFP_KERNEL);
3788 if (!stpg)
3789 return ERR_PTR(res);
3790 stpg->sport_id = sport_id;
3791 res = core_tpg_register(wwn, &stpg->tpg, SCSI_PROTOCOL_SRP);
3792 if (res) {
3793 kfree(stpg);
3794 return ERR_PTR(res);
3795 }
3796
3797 mutex_lock(&sport_id->mutex);
3798 list_add_tail(&stpg->entry, &sport_id->tpg_list);
3799 mutex_unlock(&sport_id->mutex);
3800
3801 return &stpg->tpg;
3802 }
3803
3804 /**
3805 * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg
3806 * @tpg: Target portal group to deregister.
3807 */
srpt_drop_tpg(struct se_portal_group *tpg)3808 static void srpt_drop_tpg(struct se_portal_group *tpg)
3809 {
3810 struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg);
3811 struct srpt_port_id *sport_id = stpg->sport_id;
3812 struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3813
3814 mutex_lock(&sport_id->mutex);
3815 list_del(&stpg->entry);
3816 mutex_unlock(&sport_id->mutex);
3817
3818 sport->enabled = false;
3819 core_tpg_deregister(tpg);
3820 kfree(stpg);
3821 }
3822
3823 /**
3824 * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port
3825 * @tf: Not used.
3826 * @group: Not used.
3827 * @name: $port.
3828 */
srpt_make_tport(struct target_fabric_configfs *tf, struct config_group *group, const char *name)3829 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3830 struct config_group *group,
3831 const char *name)
3832 {
3833 struct port_and_port_id papi = srpt_lookup_port(name);
3834 struct srpt_port *sport = papi.sport;
3835 struct srpt_port_id *port_id;
3836
3837 if (!papi.port_id)
3838 return ERR_PTR(-EINVAL);
3839 if (*papi.port_id) {
3840 /* Attempt to create a directory that already exists. */
3841 WARN_ON_ONCE(true);
3842 return &(*papi.port_id)->wwn;
3843 }
3844 port_id = kzalloc(sizeof(*port_id), GFP_KERNEL);
3845 if (!port_id) {
3846 srpt_sdev_put(sport->sdev);
3847 return ERR_PTR(-ENOMEM);
3848 }
3849 mutex_init(&port_id->mutex);
3850 INIT_LIST_HEAD(&port_id->tpg_list);
3851 port_id->wwn.priv = sport;
3852 memcpy(port_id->name, port_id == sport->guid_id ? sport->guid_name :
3853 sport->gid_name, ARRAY_SIZE(port_id->name));
3854
3855 *papi.port_id = port_id;
3856
3857 return &port_id->wwn;
3858 }
3859
3860 /**
3861 * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port
3862 * @wwn: $port.
3863 */
srpt_drop_tport(struct se_wwn *wwn)3864 static void srpt_drop_tport(struct se_wwn *wwn)
3865 {
3866 struct srpt_port_id *port_id = container_of(wwn, typeof(*port_id), wwn);
3867 struct srpt_port *sport = wwn->priv;
3868
3869 if (sport->guid_id == port_id)
3870 sport->guid_id = NULL;
3871 else if (sport->gid_id == port_id)
3872 sport->gid_id = NULL;
3873 else
3874 WARN_ON_ONCE(true);
3875
3876 srpt_sdev_put(sport->sdev);
3877 kfree(port_id);
3878 }
3879
srpt_wwn_version_show(struct config_item *item, char *buf)3880 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3881 {
3882 return scnprintf(buf, PAGE_SIZE, "\n");
3883 }
3884
3885 CONFIGFS_ATTR_RO(srpt_wwn_, version);
3886
3887 static struct configfs_attribute *srpt_wwn_attrs[] = {
3888 &srpt_wwn_attr_version,
3889 NULL,
3890 };
3891
3892 static const struct target_core_fabric_ops srpt_template = {
3893 .module = THIS_MODULE,
3894 .fabric_name = "srpt",
3895 .tpg_get_wwn = srpt_get_fabric_wwn,
3896 .tpg_get_tag = srpt_get_tag,
3897 .tpg_check_demo_mode = srpt_check_false,
3898 .tpg_check_demo_mode_cache = srpt_check_true,
3899 .tpg_check_demo_mode_write_protect = srpt_check_true,
3900 .tpg_check_prod_mode_write_protect = srpt_check_false,
3901 .tpg_get_inst_index = srpt_tpg_get_inst_index,
3902 .release_cmd = srpt_release_cmd,
3903 .check_stop_free = srpt_check_stop_free,
3904 .close_session = srpt_close_session,
3905 .sess_get_index = srpt_sess_get_index,
3906 .sess_get_initiator_sid = NULL,
3907 .write_pending = srpt_write_pending,
3908 .set_default_node_attributes = srpt_set_default_node_attrs,
3909 .get_cmd_state = srpt_get_tcm_cmd_state,
3910 .queue_data_in = srpt_queue_data_in,
3911 .queue_status = srpt_queue_status,
3912 .queue_tm_rsp = srpt_queue_tm_rsp,
3913 .aborted_task = srpt_aborted_task,
3914 /*
3915 * Setup function pointers for generic logic in
3916 * target_core_fabric_configfs.c
3917 */
3918 .fabric_make_wwn = srpt_make_tport,
3919 .fabric_drop_wwn = srpt_drop_tport,
3920 .fabric_make_tpg = srpt_make_tpg,
3921 .fabric_drop_tpg = srpt_drop_tpg,
3922 .fabric_init_nodeacl = srpt_init_nodeacl,
3923
3924 .tfc_discovery_attrs = srpt_da_attrs,
3925 .tfc_wwn_attrs = srpt_wwn_attrs,
3926 .tfc_tpg_base_attrs = srpt_tpg_attrs,
3927 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs,
3928 };
3929
3930 /**
3931 * srpt_init_module - kernel module initialization
3932 *
3933 * Note: Since ib_register_client() registers callback functions, and since at
3934 * least one of these callback functions (srpt_add_one()) calls target core
3935 * functions, this driver must be registered with the target core before
3936 * ib_register_client() is called.
3937 */
srpt_init_module(void)3938 static int __init srpt_init_module(void)
3939 {
3940 int ret;
3941
3942 ret = -EINVAL;
3943 if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3944 pr_err("invalid value %d for kernel module parameter srp_max_req_size -- must be at least %d.\n",
3945 srp_max_req_size, MIN_MAX_REQ_SIZE);
3946 goto out;
3947 }
3948
3949 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3950 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3951 pr_err("invalid value %d for kernel module parameter srpt_srq_size -- must be in the range [%d..%d].\n",
3952 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3953 goto out;
3954 }
3955
3956 ret = target_register_template(&srpt_template);
3957 if (ret)
3958 goto out;
3959
3960 ret = ib_register_client(&srpt_client);
3961 if (ret) {
3962 pr_err("couldn't register IB client\n");
3963 goto out_unregister_target;
3964 }
3965
3966 return 0;
3967
3968 out_unregister_target:
3969 target_unregister_template(&srpt_template);
3970 out:
3971 return ret;
3972 }
3973
srpt_cleanup_module(void)3974 static void __exit srpt_cleanup_module(void)
3975 {
3976 if (rdma_cm_id)
3977 rdma_destroy_id(rdma_cm_id);
3978 ib_unregister_client(&srpt_client);
3979 target_unregister_template(&srpt_template);
3980 }
3981
3982 module_init(srpt_init_module);
3983 module_exit(srpt_cleanup_module);
3984