1 /*
2  * Copyright (c) 2005 Cisco Systems.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/string.h>
40 #include <linux/parser.h>
41 #include <linux/random.h>
42 #include <linux/jiffies.h>
43 #include <linux/lockdep.h>
44 #include <linux/inet.h>
45 #include <rdma/ib_cache.h>
46 
47 #include <linux/atomic.h>
48 
49 #include <scsi/scsi.h>
50 #include <scsi/scsi_device.h>
51 #include <scsi/scsi_dbg.h>
52 #include <scsi/scsi_tcq.h>
53 #include <scsi/srp.h>
54 #include <scsi/scsi_transport_srp.h>
55 
56 #include "ib_srp.h"
57 
58 #define DRV_NAME	"ib_srp"
59 #define PFX		DRV_NAME ": "
60 
61 MODULE_AUTHOR("Roland Dreier");
62 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator");
63 MODULE_LICENSE("Dual BSD/GPL");
64 
65 #if !defined(CONFIG_DYNAMIC_DEBUG)
66 #define DEFINE_DYNAMIC_DEBUG_METADATA(name, fmt)
67 #define DYNAMIC_DEBUG_BRANCH(descriptor) false
68 #endif
69 
70 static unsigned int srp_sg_tablesize;
71 static unsigned int cmd_sg_entries;
72 static unsigned int indirect_sg_entries;
73 static bool allow_ext_sg;
74 static bool register_always = true;
75 static bool never_register;
76 static int topspin_workarounds = 1;
77 
78 module_param(srp_sg_tablesize, uint, 0444);
79 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries");
80 
81 module_param(cmd_sg_entries, uint, 0444);
82 MODULE_PARM_DESC(cmd_sg_entries,
83 		 "Default number of gather/scatter entries in the SRP command (default is 12, max 255)");
84 
85 module_param(indirect_sg_entries, uint, 0444);
86 MODULE_PARM_DESC(indirect_sg_entries,
87 		 "Default max number of gather/scatter entries (default is 12, max is " __stringify(SG_MAX_SEGMENTS) ")");
88 
89 module_param(allow_ext_sg, bool, 0444);
90 MODULE_PARM_DESC(allow_ext_sg,
91 		  "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)");
92 
93 module_param(topspin_workarounds, int, 0444);
94 MODULE_PARM_DESC(topspin_workarounds,
95 		 "Enable workarounds for Topspin/Cisco SRP target bugs if != 0");
96 
97 module_param(register_always, bool, 0444);
98 MODULE_PARM_DESC(register_always,
99 		 "Use memory registration even for contiguous memory regions");
100 
101 module_param(never_register, bool, 0444);
102 MODULE_PARM_DESC(never_register, "Never register memory");
103 
104 static const struct kernel_param_ops srp_tmo_ops;
105 
106 static int srp_reconnect_delay = 10;
107 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay,
108 		S_IRUGO | S_IWUSR);
109 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts");
110 
111 static int srp_fast_io_fail_tmo = 15;
112 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo,
113 		S_IRUGO | S_IWUSR);
114 MODULE_PARM_DESC(fast_io_fail_tmo,
115 		 "Number of seconds between the observation of a transport"
116 		 " layer error and failing all I/O. \"off\" means that this"
117 		 " functionality is disabled.");
118 
119 static int srp_dev_loss_tmo = 600;
120 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo,
121 		S_IRUGO | S_IWUSR);
122 MODULE_PARM_DESC(dev_loss_tmo,
123 		 "Maximum number of seconds that the SRP transport should"
124 		 " insulate transport layer errors. After this time has been"
125 		 " exceeded the SCSI host is removed. Should be"
126 		 " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT)
127 		 " if fast_io_fail_tmo has not been set. \"off\" means that"
128 		 " this functionality is disabled.");
129 
130 static bool srp_use_imm_data = true;
131 module_param_named(use_imm_data, srp_use_imm_data, bool, 0644);
132 MODULE_PARM_DESC(use_imm_data,
133 		 "Whether or not to request permission to use immediate data during SRP login.");
134 
135 static unsigned int srp_max_imm_data = 8 * 1024;
136 module_param_named(max_imm_data, srp_max_imm_data, uint, 0644);
137 MODULE_PARM_DESC(max_imm_data, "Maximum immediate data size.");
138 
139 static unsigned ch_count;
140 module_param(ch_count, uint, 0444);
141 MODULE_PARM_DESC(ch_count,
142 		 "Number of RDMA channels to use for communication with an SRP target. Using more than one channel improves performance if the HCA supports multiple completion vectors. The default value is the minimum of four times the number of online CPU sockets and the number of completion vectors supported by the HCA.");
143 
144 static int srp_add_one(struct ib_device *device);
145 static void srp_remove_one(struct ib_device *device, void *client_data);
146 static void srp_rename_dev(struct ib_device *device, void *client_data);
147 static void srp_recv_done(struct ib_cq *cq, struct ib_wc *wc);
148 static void srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc,
149 		const char *opname);
150 static int srp_ib_cm_handler(struct ib_cm_id *cm_id,
151 			     const struct ib_cm_event *event);
152 static int srp_rdma_cm_handler(struct rdma_cm_id *cm_id,
153 			       struct rdma_cm_event *event);
154 
155 static struct scsi_transport_template *ib_srp_transport_template;
156 static struct workqueue_struct *srp_remove_wq;
157 
158 static struct ib_client srp_client = {
159 	.name   = "srp",
160 	.add    = srp_add_one,
161 	.remove = srp_remove_one,
162 	.rename = srp_rename_dev
163 };
164 
165 static struct ib_sa_client srp_sa_client;
166 
srp_tmo_get(char *buffer, const struct kernel_param *kp)167 static int srp_tmo_get(char *buffer, const struct kernel_param *kp)
168 {
169 	int tmo = *(int *)kp->arg;
170 
171 	if (tmo >= 0)
172 		return sprintf(buffer, "%d\n", tmo);
173 	else
174 		return sprintf(buffer, "off\n");
175 }
176 
srp_tmo_set(const char *val, const struct kernel_param *kp)177 static int srp_tmo_set(const char *val, const struct kernel_param *kp)
178 {
179 	int tmo, res;
180 
181 	res = srp_parse_tmo(&tmo, val);
182 	if (res)
183 		goto out;
184 
185 	if (kp->arg == &srp_reconnect_delay)
186 		res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo,
187 				    srp_dev_loss_tmo);
188 	else if (kp->arg == &srp_fast_io_fail_tmo)
189 		res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo);
190 	else
191 		res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo,
192 				    tmo);
193 	if (res)
194 		goto out;
195 	*(int *)kp->arg = tmo;
196 
197 out:
198 	return res;
199 }
200 
201 static const struct kernel_param_ops srp_tmo_ops = {
202 	.get = srp_tmo_get,
203 	.set = srp_tmo_set,
204 };
205 
host_to_target(struct Scsi_Host *host)206 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host)
207 {
208 	return (struct srp_target_port *) host->hostdata;
209 }
210 
srp_target_info(struct Scsi_Host *host)211 static const char *srp_target_info(struct Scsi_Host *host)
212 {
213 	return host_to_target(host)->target_name;
214 }
215 
srp_target_is_topspin(struct srp_target_port *target)216 static int srp_target_is_topspin(struct srp_target_port *target)
217 {
218 	static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad };
219 	static const u8 cisco_oui[3]   = { 0x00, 0x1b, 0x0d };
220 
221 	return topspin_workarounds &&
222 		(!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) ||
223 		 !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui));
224 }
225 
srp_alloc_iu(struct srp_host *host, size_t size, gfp_t gfp_mask, enum dma_data_direction direction)226 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size,
227 				   gfp_t gfp_mask,
228 				   enum dma_data_direction direction)
229 {
230 	struct srp_iu *iu;
231 
232 	iu = kmalloc(sizeof *iu, gfp_mask);
233 	if (!iu)
234 		goto out;
235 
236 	iu->buf = kzalloc(size, gfp_mask);
237 	if (!iu->buf)
238 		goto out_free_iu;
239 
240 	iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size,
241 				    direction);
242 	if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma))
243 		goto out_free_buf;
244 
245 	iu->size      = size;
246 	iu->direction = direction;
247 
248 	return iu;
249 
250 out_free_buf:
251 	kfree(iu->buf);
252 out_free_iu:
253 	kfree(iu);
254 out:
255 	return NULL;
256 }
257 
srp_free_iu(struct srp_host *host, struct srp_iu *iu)258 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu)
259 {
260 	if (!iu)
261 		return;
262 
263 	ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size,
264 			    iu->direction);
265 	kfree(iu->buf);
266 	kfree(iu);
267 }
268 
srp_qp_event(struct ib_event *event, void *context)269 static void srp_qp_event(struct ib_event *event, void *context)
270 {
271 	pr_debug("QP event %s (%d)\n",
272 		 ib_event_msg(event->event), event->event);
273 }
274 
srp_init_ib_qp(struct srp_target_port *target, struct ib_qp *qp)275 static int srp_init_ib_qp(struct srp_target_port *target,
276 			  struct ib_qp *qp)
277 {
278 	struct ib_qp_attr *attr;
279 	int ret;
280 
281 	attr = kmalloc(sizeof *attr, GFP_KERNEL);
282 	if (!attr)
283 		return -ENOMEM;
284 
285 	ret = ib_find_cached_pkey(target->srp_host->srp_dev->dev,
286 				  target->srp_host->port,
287 				  be16_to_cpu(target->ib_cm.pkey),
288 				  &attr->pkey_index);
289 	if (ret)
290 		goto out;
291 
292 	attr->qp_state        = IB_QPS_INIT;
293 	attr->qp_access_flags = (IB_ACCESS_REMOTE_READ |
294 				    IB_ACCESS_REMOTE_WRITE);
295 	attr->port_num        = target->srp_host->port;
296 
297 	ret = ib_modify_qp(qp, attr,
298 			   IB_QP_STATE		|
299 			   IB_QP_PKEY_INDEX	|
300 			   IB_QP_ACCESS_FLAGS	|
301 			   IB_QP_PORT);
302 
303 out:
304 	kfree(attr);
305 	return ret;
306 }
307 
srp_new_ib_cm_id(struct srp_rdma_ch *ch)308 static int srp_new_ib_cm_id(struct srp_rdma_ch *ch)
309 {
310 	struct srp_target_port *target = ch->target;
311 	struct ib_cm_id *new_cm_id;
312 
313 	new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev,
314 				    srp_ib_cm_handler, ch);
315 	if (IS_ERR(new_cm_id))
316 		return PTR_ERR(new_cm_id);
317 
318 	if (ch->ib_cm.cm_id)
319 		ib_destroy_cm_id(ch->ib_cm.cm_id);
320 	ch->ib_cm.cm_id = new_cm_id;
321 	if (rdma_cap_opa_ah(target->srp_host->srp_dev->dev,
322 			    target->srp_host->port))
323 		ch->ib_cm.path.rec_type = SA_PATH_REC_TYPE_OPA;
324 	else
325 		ch->ib_cm.path.rec_type = SA_PATH_REC_TYPE_IB;
326 	ch->ib_cm.path.sgid = target->sgid;
327 	ch->ib_cm.path.dgid = target->ib_cm.orig_dgid;
328 	ch->ib_cm.path.pkey = target->ib_cm.pkey;
329 	ch->ib_cm.path.service_id = target->ib_cm.service_id;
330 
331 	return 0;
332 }
333 
srp_new_rdma_cm_id(struct srp_rdma_ch *ch)334 static int srp_new_rdma_cm_id(struct srp_rdma_ch *ch)
335 {
336 	struct srp_target_port *target = ch->target;
337 	struct rdma_cm_id *new_cm_id;
338 	int ret;
339 
340 	new_cm_id = rdma_create_id(target->net, srp_rdma_cm_handler, ch,
341 				   RDMA_PS_TCP, IB_QPT_RC);
342 	if (IS_ERR(new_cm_id)) {
343 		ret = PTR_ERR(new_cm_id);
344 		new_cm_id = NULL;
345 		goto out;
346 	}
347 
348 	init_completion(&ch->done);
349 	ret = rdma_resolve_addr(new_cm_id, target->rdma_cm.src_specified ?
350 				&target->rdma_cm.src.sa : NULL,
351 				&target->rdma_cm.dst.sa,
352 				SRP_PATH_REC_TIMEOUT_MS);
353 	if (ret) {
354 		pr_err("No route available from %pISpsc to %pISpsc (%d)\n",
355 		       &target->rdma_cm.src, &target->rdma_cm.dst, ret);
356 		goto out;
357 	}
358 	ret = wait_for_completion_interruptible(&ch->done);
359 	if (ret < 0)
360 		goto out;
361 
362 	ret = ch->status;
363 	if (ret) {
364 		pr_err("Resolving address %pISpsc failed (%d)\n",
365 		       &target->rdma_cm.dst, ret);
366 		goto out;
367 	}
368 
369 	swap(ch->rdma_cm.cm_id, new_cm_id);
370 
371 out:
372 	if (new_cm_id)
373 		rdma_destroy_id(new_cm_id);
374 
375 	return ret;
376 }
377 
srp_new_cm_id(struct srp_rdma_ch *ch)378 static int srp_new_cm_id(struct srp_rdma_ch *ch)
379 {
380 	struct srp_target_port *target = ch->target;
381 
382 	return target->using_rdma_cm ? srp_new_rdma_cm_id(ch) :
383 		srp_new_ib_cm_id(ch);
384 }
385 
386 /**
387  * srp_destroy_fr_pool() - free the resources owned by a pool
388  * @pool: Fast registration pool to be destroyed.
389  */
srp_destroy_fr_pool(struct srp_fr_pool *pool)390 static void srp_destroy_fr_pool(struct srp_fr_pool *pool)
391 {
392 	int i;
393 	struct srp_fr_desc *d;
394 
395 	if (!pool)
396 		return;
397 
398 	for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
399 		if (d->mr)
400 			ib_dereg_mr(d->mr);
401 	}
402 	kfree(pool);
403 }
404 
405 /**
406  * srp_create_fr_pool() - allocate and initialize a pool for fast registration
407  * @device:            IB device to allocate fast registration descriptors for.
408  * @pd:                Protection domain associated with the FR descriptors.
409  * @pool_size:         Number of descriptors to allocate.
410  * @max_page_list_len: Maximum fast registration work request page list length.
411  */
srp_create_fr_pool(struct ib_device *device, struct ib_pd *pd, int pool_size, int max_page_list_len)412 static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device,
413 					      struct ib_pd *pd, int pool_size,
414 					      int max_page_list_len)
415 {
416 	struct srp_fr_pool *pool;
417 	struct srp_fr_desc *d;
418 	struct ib_mr *mr;
419 	int i, ret = -EINVAL;
420 	enum ib_mr_type mr_type;
421 
422 	if (pool_size <= 0)
423 		goto err;
424 	ret = -ENOMEM;
425 	pool = kzalloc(struct_size(pool, desc, pool_size), GFP_KERNEL);
426 	if (!pool)
427 		goto err;
428 	pool->size = pool_size;
429 	pool->max_page_list_len = max_page_list_len;
430 	spin_lock_init(&pool->lock);
431 	INIT_LIST_HEAD(&pool->free_list);
432 
433 	if (device->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG)
434 		mr_type = IB_MR_TYPE_SG_GAPS;
435 	else
436 		mr_type = IB_MR_TYPE_MEM_REG;
437 
438 	for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
439 		mr = ib_alloc_mr(pd, mr_type, max_page_list_len);
440 		if (IS_ERR(mr)) {
441 			ret = PTR_ERR(mr);
442 			if (ret == -ENOMEM)
443 				pr_info("%s: ib_alloc_mr() failed. Try to reduce max_cmd_per_lun, max_sect or ch_count\n",
444 					dev_name(&device->dev));
445 			goto destroy_pool;
446 		}
447 		d->mr = mr;
448 		list_add_tail(&d->entry, &pool->free_list);
449 	}
450 
451 out:
452 	return pool;
453 
454 destroy_pool:
455 	srp_destroy_fr_pool(pool);
456 
457 err:
458 	pool = ERR_PTR(ret);
459 	goto out;
460 }
461 
462 /**
463  * srp_fr_pool_get() - obtain a descriptor suitable for fast registration
464  * @pool: Pool to obtain descriptor from.
465  */
srp_fr_pool_get(struct srp_fr_pool *pool)466 static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool)
467 {
468 	struct srp_fr_desc *d = NULL;
469 	unsigned long flags;
470 
471 	spin_lock_irqsave(&pool->lock, flags);
472 	if (!list_empty(&pool->free_list)) {
473 		d = list_first_entry(&pool->free_list, typeof(*d), entry);
474 		list_del(&d->entry);
475 	}
476 	spin_unlock_irqrestore(&pool->lock, flags);
477 
478 	return d;
479 }
480 
481 /**
482  * srp_fr_pool_put() - put an FR descriptor back in the free list
483  * @pool: Pool the descriptor was allocated from.
484  * @desc: Pointer to an array of fast registration descriptor pointers.
485  * @n:    Number of descriptors to put back.
486  *
487  * Note: The caller must already have queued an invalidation request for
488  * desc->mr->rkey before calling this function.
489  */
srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc, int n)490 static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc,
491 			    int n)
492 {
493 	unsigned long flags;
494 	int i;
495 
496 	spin_lock_irqsave(&pool->lock, flags);
497 	for (i = 0; i < n; i++)
498 		list_add(&desc[i]->entry, &pool->free_list);
499 	spin_unlock_irqrestore(&pool->lock, flags);
500 }
501 
srp_alloc_fr_pool(struct srp_target_port *target)502 static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target)
503 {
504 	struct srp_device *dev = target->srp_host->srp_dev;
505 
506 	return srp_create_fr_pool(dev->dev, dev->pd, target->mr_pool_size,
507 				  dev->max_pages_per_mr);
508 }
509 
510 /**
511  * srp_destroy_qp() - destroy an RDMA queue pair
512  * @ch: SRP RDMA channel.
513  *
514  * Drain the qp before destroying it.  This avoids that the receive
515  * completion handler can access the queue pair while it is
516  * being destroyed.
517  */
srp_destroy_qp(struct srp_rdma_ch *ch)518 static void srp_destroy_qp(struct srp_rdma_ch *ch)
519 {
520 	spin_lock_irq(&ch->lock);
521 	ib_process_cq_direct(ch->send_cq, -1);
522 	spin_unlock_irq(&ch->lock);
523 
524 	ib_drain_qp(ch->qp);
525 	ib_destroy_qp(ch->qp);
526 }
527 
srp_create_ch_ib(struct srp_rdma_ch *ch)528 static int srp_create_ch_ib(struct srp_rdma_ch *ch)
529 {
530 	struct srp_target_port *target = ch->target;
531 	struct srp_device *dev = target->srp_host->srp_dev;
532 	const struct ib_device_attr *attr = &dev->dev->attrs;
533 	struct ib_qp_init_attr *init_attr;
534 	struct ib_cq *recv_cq, *send_cq;
535 	struct ib_qp *qp;
536 	struct srp_fr_pool *fr_pool = NULL;
537 	const int m = 1 + dev->use_fast_reg * target->mr_per_cmd * 2;
538 	int ret;
539 
540 	init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL);
541 	if (!init_attr)
542 		return -ENOMEM;
543 
544 	/* queue_size + 1 for ib_drain_rq() */
545 	recv_cq = ib_alloc_cq(dev->dev, ch, target->queue_size + 1,
546 				ch->comp_vector, IB_POLL_SOFTIRQ);
547 	if (IS_ERR(recv_cq)) {
548 		ret = PTR_ERR(recv_cq);
549 		goto err;
550 	}
551 
552 	send_cq = ib_alloc_cq(dev->dev, ch, m * target->queue_size,
553 				ch->comp_vector, IB_POLL_DIRECT);
554 	if (IS_ERR(send_cq)) {
555 		ret = PTR_ERR(send_cq);
556 		goto err_recv_cq;
557 	}
558 
559 	init_attr->event_handler       = srp_qp_event;
560 	init_attr->cap.max_send_wr     = m * target->queue_size;
561 	init_attr->cap.max_recv_wr     = target->queue_size + 1;
562 	init_attr->cap.max_recv_sge    = 1;
563 	init_attr->cap.max_send_sge    = min(SRP_MAX_SGE, attr->max_send_sge);
564 	init_attr->sq_sig_type         = IB_SIGNAL_REQ_WR;
565 	init_attr->qp_type             = IB_QPT_RC;
566 	init_attr->send_cq             = send_cq;
567 	init_attr->recv_cq             = recv_cq;
568 
569 	ch->max_imm_sge = min(init_attr->cap.max_send_sge - 1U, 255U);
570 
571 	if (target->using_rdma_cm) {
572 		ret = rdma_create_qp(ch->rdma_cm.cm_id, dev->pd, init_attr);
573 		qp = ch->rdma_cm.cm_id->qp;
574 	} else {
575 		qp = ib_create_qp(dev->pd, init_attr);
576 		if (!IS_ERR(qp)) {
577 			ret = srp_init_ib_qp(target, qp);
578 			if (ret)
579 				ib_destroy_qp(qp);
580 		} else {
581 			ret = PTR_ERR(qp);
582 		}
583 	}
584 	if (ret) {
585 		pr_err("QP creation failed for dev %s: %d\n",
586 		       dev_name(&dev->dev->dev), ret);
587 		goto err_send_cq;
588 	}
589 
590 	if (dev->use_fast_reg) {
591 		fr_pool = srp_alloc_fr_pool(target);
592 		if (IS_ERR(fr_pool)) {
593 			ret = PTR_ERR(fr_pool);
594 			shost_printk(KERN_WARNING, target->scsi_host, PFX
595 				     "FR pool allocation failed (%d)\n", ret);
596 			goto err_qp;
597 		}
598 	}
599 
600 	if (ch->qp)
601 		srp_destroy_qp(ch);
602 	if (ch->recv_cq)
603 		ib_free_cq(ch->recv_cq);
604 	if (ch->send_cq)
605 		ib_free_cq(ch->send_cq);
606 
607 	ch->qp = qp;
608 	ch->recv_cq = recv_cq;
609 	ch->send_cq = send_cq;
610 
611 	if (dev->use_fast_reg) {
612 		if (ch->fr_pool)
613 			srp_destroy_fr_pool(ch->fr_pool);
614 		ch->fr_pool = fr_pool;
615 	}
616 
617 	kfree(init_attr);
618 	return 0;
619 
620 err_qp:
621 	if (target->using_rdma_cm)
622 		rdma_destroy_qp(ch->rdma_cm.cm_id);
623 	else
624 		ib_destroy_qp(qp);
625 
626 err_send_cq:
627 	ib_free_cq(send_cq);
628 
629 err_recv_cq:
630 	ib_free_cq(recv_cq);
631 
632 err:
633 	kfree(init_attr);
634 	return ret;
635 }
636 
637 /*
638  * Note: this function may be called without srp_alloc_iu_bufs() having been
639  * invoked. Hence the ch->[rt]x_ring checks.
640  */
srp_free_ch_ib(struct srp_target_port *target, struct srp_rdma_ch *ch)641 static void srp_free_ch_ib(struct srp_target_port *target,
642 			   struct srp_rdma_ch *ch)
643 {
644 	struct srp_device *dev = target->srp_host->srp_dev;
645 	int i;
646 
647 	if (!ch->target)
648 		return;
649 
650 	if (target->using_rdma_cm) {
651 		if (ch->rdma_cm.cm_id) {
652 			rdma_destroy_id(ch->rdma_cm.cm_id);
653 			ch->rdma_cm.cm_id = NULL;
654 		}
655 	} else {
656 		if (ch->ib_cm.cm_id) {
657 			ib_destroy_cm_id(ch->ib_cm.cm_id);
658 			ch->ib_cm.cm_id = NULL;
659 		}
660 	}
661 
662 	/* If srp_new_cm_id() succeeded but srp_create_ch_ib() not, return. */
663 	if (!ch->qp)
664 		return;
665 
666 	if (dev->use_fast_reg) {
667 		if (ch->fr_pool)
668 			srp_destroy_fr_pool(ch->fr_pool);
669 	}
670 
671 	srp_destroy_qp(ch);
672 	ib_free_cq(ch->send_cq);
673 	ib_free_cq(ch->recv_cq);
674 
675 	/*
676 	 * Avoid that the SCSI error handler tries to use this channel after
677 	 * it has been freed. The SCSI error handler can namely continue
678 	 * trying to perform recovery actions after scsi_remove_host()
679 	 * returned.
680 	 */
681 	ch->target = NULL;
682 
683 	ch->qp = NULL;
684 	ch->send_cq = ch->recv_cq = NULL;
685 
686 	if (ch->rx_ring) {
687 		for (i = 0; i < target->queue_size; ++i)
688 			srp_free_iu(target->srp_host, ch->rx_ring[i]);
689 		kfree(ch->rx_ring);
690 		ch->rx_ring = NULL;
691 	}
692 	if (ch->tx_ring) {
693 		for (i = 0; i < target->queue_size; ++i)
694 			srp_free_iu(target->srp_host, ch->tx_ring[i]);
695 		kfree(ch->tx_ring);
696 		ch->tx_ring = NULL;
697 	}
698 }
699 
srp_path_rec_completion(int status, struct sa_path_rec *pathrec, void *ch_ptr)700 static void srp_path_rec_completion(int status,
701 				    struct sa_path_rec *pathrec,
702 				    void *ch_ptr)
703 {
704 	struct srp_rdma_ch *ch = ch_ptr;
705 	struct srp_target_port *target = ch->target;
706 
707 	ch->status = status;
708 	if (status)
709 		shost_printk(KERN_ERR, target->scsi_host,
710 			     PFX "Got failed path rec status %d\n", status);
711 	else
712 		ch->ib_cm.path = *pathrec;
713 	complete(&ch->done);
714 }
715 
srp_ib_lookup_path(struct srp_rdma_ch *ch)716 static int srp_ib_lookup_path(struct srp_rdma_ch *ch)
717 {
718 	struct srp_target_port *target = ch->target;
719 	int ret;
720 
721 	ch->ib_cm.path.numb_path = 1;
722 
723 	init_completion(&ch->done);
724 
725 	ch->ib_cm.path_query_id = ib_sa_path_rec_get(&srp_sa_client,
726 					       target->srp_host->srp_dev->dev,
727 					       target->srp_host->port,
728 					       &ch->ib_cm.path,
729 					       IB_SA_PATH_REC_SERVICE_ID |
730 					       IB_SA_PATH_REC_DGID	 |
731 					       IB_SA_PATH_REC_SGID	 |
732 					       IB_SA_PATH_REC_NUMB_PATH	 |
733 					       IB_SA_PATH_REC_PKEY,
734 					       SRP_PATH_REC_TIMEOUT_MS,
735 					       GFP_KERNEL,
736 					       srp_path_rec_completion,
737 					       ch, &ch->ib_cm.path_query);
738 	if (ch->ib_cm.path_query_id < 0)
739 		return ch->ib_cm.path_query_id;
740 
741 	ret = wait_for_completion_interruptible(&ch->done);
742 	if (ret < 0)
743 		return ret;
744 
745 	if (ch->status < 0)
746 		shost_printk(KERN_WARNING, target->scsi_host,
747 			     PFX "Path record query failed: sgid %pI6, dgid %pI6, pkey %#04x, service_id %#16llx\n",
748 			     ch->ib_cm.path.sgid.raw, ch->ib_cm.path.dgid.raw,
749 			     be16_to_cpu(target->ib_cm.pkey),
750 			     be64_to_cpu(target->ib_cm.service_id));
751 
752 	return ch->status;
753 }
754 
srp_rdma_lookup_path(struct srp_rdma_ch *ch)755 static int srp_rdma_lookup_path(struct srp_rdma_ch *ch)
756 {
757 	struct srp_target_port *target = ch->target;
758 	int ret;
759 
760 	init_completion(&ch->done);
761 
762 	ret = rdma_resolve_route(ch->rdma_cm.cm_id, SRP_PATH_REC_TIMEOUT_MS);
763 	if (ret)
764 		return ret;
765 
766 	wait_for_completion_interruptible(&ch->done);
767 
768 	if (ch->status != 0)
769 		shost_printk(KERN_WARNING, target->scsi_host,
770 			     PFX "Path resolution failed\n");
771 
772 	return ch->status;
773 }
774 
srp_lookup_path(struct srp_rdma_ch *ch)775 static int srp_lookup_path(struct srp_rdma_ch *ch)
776 {
777 	struct srp_target_port *target = ch->target;
778 
779 	return target->using_rdma_cm ? srp_rdma_lookup_path(ch) :
780 		srp_ib_lookup_path(ch);
781 }
782 
srp_get_subnet_timeout(struct srp_host *host)783 static u8 srp_get_subnet_timeout(struct srp_host *host)
784 {
785 	struct ib_port_attr attr;
786 	int ret;
787 	u8 subnet_timeout = 18;
788 
789 	ret = ib_query_port(host->srp_dev->dev, host->port, &attr);
790 	if (ret == 0)
791 		subnet_timeout = attr.subnet_timeout;
792 
793 	if (unlikely(subnet_timeout < 15))
794 		pr_warn("%s: subnet timeout %d may cause SRP login to fail.\n",
795 			dev_name(&host->srp_dev->dev->dev), subnet_timeout);
796 
797 	return subnet_timeout;
798 }
799 
srp_send_req(struct srp_rdma_ch *ch, uint32_t max_iu_len, bool multich)800 static int srp_send_req(struct srp_rdma_ch *ch, uint32_t max_iu_len,
801 			bool multich)
802 {
803 	struct srp_target_port *target = ch->target;
804 	struct {
805 		struct rdma_conn_param	  rdma_param;
806 		struct srp_login_req_rdma rdma_req;
807 		struct ib_cm_req_param	  ib_param;
808 		struct srp_login_req	  ib_req;
809 	} *req = NULL;
810 	char *ipi, *tpi;
811 	int status;
812 
813 	req = kzalloc(sizeof *req, GFP_KERNEL);
814 	if (!req)
815 		return -ENOMEM;
816 
817 	req->ib_param.flow_control = 1;
818 	req->ib_param.retry_count = target->tl_retry_count;
819 
820 	/*
821 	 * Pick some arbitrary defaults here; we could make these
822 	 * module parameters if anyone cared about setting them.
823 	 */
824 	req->ib_param.responder_resources = 4;
825 	req->ib_param.rnr_retry_count = 7;
826 	req->ib_param.max_cm_retries = 15;
827 
828 	req->ib_req.opcode = SRP_LOGIN_REQ;
829 	req->ib_req.tag = 0;
830 	req->ib_req.req_it_iu_len = cpu_to_be32(max_iu_len);
831 	req->ib_req.req_buf_fmt	= cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
832 					      SRP_BUF_FORMAT_INDIRECT);
833 	req->ib_req.req_flags = (multich ? SRP_MULTICHAN_MULTI :
834 				 SRP_MULTICHAN_SINGLE);
835 	if (srp_use_imm_data) {
836 		req->ib_req.req_flags |= SRP_IMMED_REQUESTED;
837 		req->ib_req.imm_data_offset = cpu_to_be16(SRP_IMM_DATA_OFFSET);
838 	}
839 
840 	if (target->using_rdma_cm) {
841 		req->rdma_param.flow_control = req->ib_param.flow_control;
842 		req->rdma_param.responder_resources =
843 			req->ib_param.responder_resources;
844 		req->rdma_param.initiator_depth = req->ib_param.initiator_depth;
845 		req->rdma_param.retry_count = req->ib_param.retry_count;
846 		req->rdma_param.rnr_retry_count = req->ib_param.rnr_retry_count;
847 		req->rdma_param.private_data = &req->rdma_req;
848 		req->rdma_param.private_data_len = sizeof(req->rdma_req);
849 
850 		req->rdma_req.opcode = req->ib_req.opcode;
851 		req->rdma_req.tag = req->ib_req.tag;
852 		req->rdma_req.req_it_iu_len = req->ib_req.req_it_iu_len;
853 		req->rdma_req.req_buf_fmt = req->ib_req.req_buf_fmt;
854 		req->rdma_req.req_flags	= req->ib_req.req_flags;
855 		req->rdma_req.imm_data_offset = req->ib_req.imm_data_offset;
856 
857 		ipi = req->rdma_req.initiator_port_id;
858 		tpi = req->rdma_req.target_port_id;
859 	} else {
860 		u8 subnet_timeout;
861 
862 		subnet_timeout = srp_get_subnet_timeout(target->srp_host);
863 
864 		req->ib_param.primary_path = &ch->ib_cm.path;
865 		req->ib_param.alternate_path = NULL;
866 		req->ib_param.service_id = target->ib_cm.service_id;
867 		get_random_bytes(&req->ib_param.starting_psn, 4);
868 		req->ib_param.starting_psn &= 0xffffff;
869 		req->ib_param.qp_num = ch->qp->qp_num;
870 		req->ib_param.qp_type = ch->qp->qp_type;
871 		req->ib_param.local_cm_response_timeout = subnet_timeout + 2;
872 		req->ib_param.remote_cm_response_timeout = subnet_timeout + 2;
873 		req->ib_param.private_data = &req->ib_req;
874 		req->ib_param.private_data_len = sizeof(req->ib_req);
875 
876 		ipi = req->ib_req.initiator_port_id;
877 		tpi = req->ib_req.target_port_id;
878 	}
879 
880 	/*
881 	 * In the published SRP specification (draft rev. 16a), the
882 	 * port identifier format is 8 bytes of ID extension followed
883 	 * by 8 bytes of GUID.  Older drafts put the two halves in the
884 	 * opposite order, so that the GUID comes first.
885 	 *
886 	 * Targets conforming to these obsolete drafts can be
887 	 * recognized by the I/O Class they report.
888 	 */
889 	if (target->io_class == SRP_REV10_IB_IO_CLASS) {
890 		memcpy(ipi,     &target->sgid.global.interface_id, 8);
891 		memcpy(ipi + 8, &target->initiator_ext, 8);
892 		memcpy(tpi,     &target->ioc_guid, 8);
893 		memcpy(tpi + 8, &target->id_ext, 8);
894 	} else {
895 		memcpy(ipi,     &target->initiator_ext, 8);
896 		memcpy(ipi + 8, &target->sgid.global.interface_id, 8);
897 		memcpy(tpi,     &target->id_ext, 8);
898 		memcpy(tpi + 8, &target->ioc_guid, 8);
899 	}
900 
901 	/*
902 	 * Topspin/Cisco SRP targets will reject our login unless we
903 	 * zero out the first 8 bytes of our initiator port ID and set
904 	 * the second 8 bytes to the local node GUID.
905 	 */
906 	if (srp_target_is_topspin(target)) {
907 		shost_printk(KERN_DEBUG, target->scsi_host,
908 			     PFX "Topspin/Cisco initiator port ID workaround "
909 			     "activated for target GUID %016llx\n",
910 			     be64_to_cpu(target->ioc_guid));
911 		memset(ipi, 0, 8);
912 		memcpy(ipi + 8, &target->srp_host->srp_dev->dev->node_guid, 8);
913 	}
914 
915 	if (target->using_rdma_cm)
916 		status = rdma_connect(ch->rdma_cm.cm_id, &req->rdma_param);
917 	else
918 		status = ib_send_cm_req(ch->ib_cm.cm_id, &req->ib_param);
919 
920 	kfree(req);
921 
922 	return status;
923 }
924 
srp_queue_remove_work(struct srp_target_port *target)925 static bool srp_queue_remove_work(struct srp_target_port *target)
926 {
927 	bool changed = false;
928 
929 	spin_lock_irq(&target->lock);
930 	if (target->state != SRP_TARGET_REMOVED) {
931 		target->state = SRP_TARGET_REMOVED;
932 		changed = true;
933 	}
934 	spin_unlock_irq(&target->lock);
935 
936 	if (changed)
937 		queue_work(srp_remove_wq, &target->remove_work);
938 
939 	return changed;
940 }
941 
srp_disconnect_target(struct srp_target_port *target)942 static void srp_disconnect_target(struct srp_target_port *target)
943 {
944 	struct srp_rdma_ch *ch;
945 	int i, ret;
946 
947 	/* XXX should send SRP_I_LOGOUT request */
948 
949 	for (i = 0; i < target->ch_count; i++) {
950 		ch = &target->ch[i];
951 		ch->connected = false;
952 		ret = 0;
953 		if (target->using_rdma_cm) {
954 			if (ch->rdma_cm.cm_id)
955 				rdma_disconnect(ch->rdma_cm.cm_id);
956 		} else {
957 			if (ch->ib_cm.cm_id)
958 				ret = ib_send_cm_dreq(ch->ib_cm.cm_id,
959 						      NULL, 0);
960 		}
961 		if (ret < 0) {
962 			shost_printk(KERN_DEBUG, target->scsi_host,
963 				     PFX "Sending CM DREQ failed\n");
964 		}
965 	}
966 }
967 
srp_exit_cmd_priv(struct Scsi_Host *shost, struct scsi_cmnd *cmd)968 static int srp_exit_cmd_priv(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
969 {
970 	struct srp_target_port *target = host_to_target(shost);
971 	struct srp_device *dev = target->srp_host->srp_dev;
972 	struct ib_device *ibdev = dev->dev;
973 	struct srp_request *req = scsi_cmd_priv(cmd);
974 
975 	kfree(req->fr_list);
976 	if (req->indirect_dma_addr) {
977 		ib_dma_unmap_single(ibdev, req->indirect_dma_addr,
978 				    target->indirect_size,
979 				    DMA_TO_DEVICE);
980 	}
981 	kfree(req->indirect_desc);
982 
983 	return 0;
984 }
985 
srp_init_cmd_priv(struct Scsi_Host *shost, struct scsi_cmnd *cmd)986 static int srp_init_cmd_priv(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
987 {
988 	struct srp_target_port *target = host_to_target(shost);
989 	struct srp_device *srp_dev = target->srp_host->srp_dev;
990 	struct ib_device *ibdev = srp_dev->dev;
991 	struct srp_request *req = scsi_cmd_priv(cmd);
992 	dma_addr_t dma_addr;
993 	int ret = -ENOMEM;
994 
995 	if (srp_dev->use_fast_reg) {
996 		req->fr_list = kmalloc_array(target->mr_per_cmd, sizeof(void *),
997 					GFP_KERNEL);
998 		if (!req->fr_list)
999 			goto out;
1000 	}
1001 	req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL);
1002 	if (!req->indirect_desc)
1003 		goto out;
1004 
1005 	dma_addr = ib_dma_map_single(ibdev, req->indirect_desc,
1006 				     target->indirect_size,
1007 				     DMA_TO_DEVICE);
1008 	if (ib_dma_mapping_error(ibdev, dma_addr)) {
1009 		srp_exit_cmd_priv(shost, cmd);
1010 		goto out;
1011 	}
1012 
1013 	req->indirect_dma_addr = dma_addr;
1014 	ret = 0;
1015 
1016 out:
1017 	return ret;
1018 }
1019 
1020 /**
1021  * srp_del_scsi_host_attr() - Remove attributes defined in the host template.
1022  * @shost: SCSI host whose attributes to remove from sysfs.
1023  *
1024  * Note: Any attributes defined in the host template and that did not exist
1025  * before invocation of this function will be ignored.
1026  */
srp_del_scsi_host_attr(struct Scsi_Host *shost)1027 static void srp_del_scsi_host_attr(struct Scsi_Host *shost)
1028 {
1029 	struct device_attribute **attr;
1030 
1031 	for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr)
1032 		device_remove_file(&shost->shost_dev, *attr);
1033 }
1034 
srp_remove_target(struct srp_target_port *target)1035 static void srp_remove_target(struct srp_target_port *target)
1036 {
1037 	struct srp_rdma_ch *ch;
1038 	int i;
1039 
1040 	WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
1041 
1042 	srp_del_scsi_host_attr(target->scsi_host);
1043 	srp_rport_get(target->rport);
1044 	srp_remove_host(target->scsi_host);
1045 	scsi_remove_host(target->scsi_host);
1046 	srp_stop_rport_timers(target->rport);
1047 	srp_disconnect_target(target);
1048 	kobj_ns_drop(KOBJ_NS_TYPE_NET, target->net);
1049 	for (i = 0; i < target->ch_count; i++) {
1050 		ch = &target->ch[i];
1051 		srp_free_ch_ib(target, ch);
1052 	}
1053 	cancel_work_sync(&target->tl_err_work);
1054 	srp_rport_put(target->rport);
1055 	kfree(target->ch);
1056 	target->ch = NULL;
1057 
1058 	spin_lock(&target->srp_host->target_lock);
1059 	list_del(&target->list);
1060 	spin_unlock(&target->srp_host->target_lock);
1061 
1062 	scsi_host_put(target->scsi_host);
1063 }
1064 
srp_remove_work(struct work_struct *work)1065 static void srp_remove_work(struct work_struct *work)
1066 {
1067 	struct srp_target_port *target =
1068 		container_of(work, struct srp_target_port, remove_work);
1069 
1070 	WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
1071 
1072 	srp_remove_target(target);
1073 }
1074 
srp_rport_delete(struct srp_rport *rport)1075 static void srp_rport_delete(struct srp_rport *rport)
1076 {
1077 	struct srp_target_port *target = rport->lld_data;
1078 
1079 	srp_queue_remove_work(target);
1080 }
1081 
1082 /**
1083  * srp_connected_ch() - number of connected channels
1084  * @target: SRP target port.
1085  */
srp_connected_ch(struct srp_target_port *target)1086 static int srp_connected_ch(struct srp_target_port *target)
1087 {
1088 	int i, c = 0;
1089 
1090 	for (i = 0; i < target->ch_count; i++)
1091 		c += target->ch[i].connected;
1092 
1093 	return c;
1094 }
1095 
srp_connect_ch(struct srp_rdma_ch *ch, uint32_t max_iu_len, bool multich)1096 static int srp_connect_ch(struct srp_rdma_ch *ch, uint32_t max_iu_len,
1097 			  bool multich)
1098 {
1099 	struct srp_target_port *target = ch->target;
1100 	int ret;
1101 
1102 	WARN_ON_ONCE(!multich && srp_connected_ch(target) > 0);
1103 
1104 	ret = srp_lookup_path(ch);
1105 	if (ret)
1106 		goto out;
1107 
1108 	while (1) {
1109 		init_completion(&ch->done);
1110 		ret = srp_send_req(ch, max_iu_len, multich);
1111 		if (ret)
1112 			goto out;
1113 		ret = wait_for_completion_interruptible(&ch->done);
1114 		if (ret < 0)
1115 			goto out;
1116 
1117 		/*
1118 		 * The CM event handling code will set status to
1119 		 * SRP_PORT_REDIRECT if we get a port redirect REJ
1120 		 * back, or SRP_DLID_REDIRECT if we get a lid/qp
1121 		 * redirect REJ back.
1122 		 */
1123 		ret = ch->status;
1124 		switch (ret) {
1125 		case 0:
1126 			ch->connected = true;
1127 			goto out;
1128 
1129 		case SRP_PORT_REDIRECT:
1130 			ret = srp_lookup_path(ch);
1131 			if (ret)
1132 				goto out;
1133 			break;
1134 
1135 		case SRP_DLID_REDIRECT:
1136 			break;
1137 
1138 		case SRP_STALE_CONN:
1139 			shost_printk(KERN_ERR, target->scsi_host, PFX
1140 				     "giving up on stale connection\n");
1141 			ret = -ECONNRESET;
1142 			goto out;
1143 
1144 		default:
1145 			goto out;
1146 		}
1147 	}
1148 
1149 out:
1150 	return ret <= 0 ? ret : -ENODEV;
1151 }
1152 
srp_inv_rkey_err_done(struct ib_cq *cq, struct ib_wc *wc)1153 static void srp_inv_rkey_err_done(struct ib_cq *cq, struct ib_wc *wc)
1154 {
1155 	srp_handle_qp_err(cq, wc, "INV RKEY");
1156 }
1157 
srp_inv_rkey(struct srp_request *req, struct srp_rdma_ch *ch, u32 rkey)1158 static int srp_inv_rkey(struct srp_request *req, struct srp_rdma_ch *ch,
1159 		u32 rkey)
1160 {
1161 	struct ib_send_wr wr = {
1162 		.opcode		    = IB_WR_LOCAL_INV,
1163 		.next		    = NULL,
1164 		.num_sge	    = 0,
1165 		.send_flags	    = 0,
1166 		.ex.invalidate_rkey = rkey,
1167 	};
1168 
1169 	wr.wr_cqe = &req->reg_cqe;
1170 	req->reg_cqe.done = srp_inv_rkey_err_done;
1171 	return ib_post_send(ch->qp, &wr, NULL);
1172 }
1173 
srp_unmap_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch, struct srp_request *req)1174 static void srp_unmap_data(struct scsi_cmnd *scmnd,
1175 			   struct srp_rdma_ch *ch,
1176 			   struct srp_request *req)
1177 {
1178 	struct srp_target_port *target = ch->target;
1179 	struct srp_device *dev = target->srp_host->srp_dev;
1180 	struct ib_device *ibdev = dev->dev;
1181 	int i, res;
1182 
1183 	if (!scsi_sglist(scmnd) ||
1184 	    (scmnd->sc_data_direction != DMA_TO_DEVICE &&
1185 	     scmnd->sc_data_direction != DMA_FROM_DEVICE))
1186 		return;
1187 
1188 	if (dev->use_fast_reg) {
1189 		struct srp_fr_desc **pfr;
1190 
1191 		for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) {
1192 			res = srp_inv_rkey(req, ch, (*pfr)->mr->rkey);
1193 			if (res < 0) {
1194 				shost_printk(KERN_ERR, target->scsi_host, PFX
1195 				  "Queueing INV WR for rkey %#x failed (%d)\n",
1196 				  (*pfr)->mr->rkey, res);
1197 				queue_work(system_long_wq,
1198 					   &target->tl_err_work);
1199 			}
1200 		}
1201 		if (req->nmdesc)
1202 			srp_fr_pool_put(ch->fr_pool, req->fr_list,
1203 					req->nmdesc);
1204 	}
1205 
1206 	ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd),
1207 			scmnd->sc_data_direction);
1208 }
1209 
1210 /**
1211  * srp_claim_req - Take ownership of the scmnd associated with a request.
1212  * @ch: SRP RDMA channel.
1213  * @req: SRP request.
1214  * @sdev: If not NULL, only take ownership for this SCSI device.
1215  * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take
1216  *         ownership of @req->scmnd if it equals @scmnd.
1217  *
1218  * Return value:
1219  * Either NULL or a pointer to the SCSI command the caller became owner of.
1220  */
srp_claim_req(struct srp_rdma_ch *ch, struct srp_request *req, struct scsi_device *sdev, struct scsi_cmnd *scmnd)1221 static struct scsi_cmnd *srp_claim_req(struct srp_rdma_ch *ch,
1222 				       struct srp_request *req,
1223 				       struct scsi_device *sdev,
1224 				       struct scsi_cmnd *scmnd)
1225 {
1226 	unsigned long flags;
1227 
1228 	spin_lock_irqsave(&ch->lock, flags);
1229 	if (req->scmnd &&
1230 	    (!sdev || req->scmnd->device == sdev) &&
1231 	    (!scmnd || req->scmnd == scmnd)) {
1232 		scmnd = req->scmnd;
1233 		req->scmnd = NULL;
1234 	} else {
1235 		scmnd = NULL;
1236 	}
1237 	spin_unlock_irqrestore(&ch->lock, flags);
1238 
1239 	return scmnd;
1240 }
1241 
1242 /**
1243  * srp_free_req() - Unmap data and adjust ch->req_lim.
1244  * @ch:     SRP RDMA channel.
1245  * @req:    Request to be freed.
1246  * @scmnd:  SCSI command associated with @req.
1247  * @req_lim_delta: Amount to be added to @target->req_lim.
1248  */
srp_free_req(struct srp_rdma_ch *ch, struct srp_request *req, struct scsi_cmnd *scmnd, s32 req_lim_delta)1249 static void srp_free_req(struct srp_rdma_ch *ch, struct srp_request *req,
1250 			 struct scsi_cmnd *scmnd, s32 req_lim_delta)
1251 {
1252 	unsigned long flags;
1253 
1254 	srp_unmap_data(scmnd, ch, req);
1255 
1256 	spin_lock_irqsave(&ch->lock, flags);
1257 	ch->req_lim += req_lim_delta;
1258 	spin_unlock_irqrestore(&ch->lock, flags);
1259 }
1260 
srp_finish_req(struct srp_rdma_ch *ch, struct srp_request *req, struct scsi_device *sdev, int result)1261 static void srp_finish_req(struct srp_rdma_ch *ch, struct srp_request *req,
1262 			   struct scsi_device *sdev, int result)
1263 {
1264 	struct scsi_cmnd *scmnd = srp_claim_req(ch, req, sdev, NULL);
1265 
1266 	if (scmnd) {
1267 		srp_free_req(ch, req, scmnd, 0);
1268 		scmnd->result = result;
1269 		scmnd->scsi_done(scmnd);
1270 	}
1271 }
1272 
1273 struct srp_terminate_context {
1274 	struct srp_target_port *srp_target;
1275 	int scsi_result;
1276 };
1277 
srp_terminate_cmd(struct scsi_cmnd *scmnd, void *context_ptr, bool reserved)1278 static bool srp_terminate_cmd(struct scsi_cmnd *scmnd, void *context_ptr,
1279 			      bool reserved)
1280 {
1281 	struct srp_terminate_context *context = context_ptr;
1282 	struct srp_target_port *target = context->srp_target;
1283 	u32 tag = blk_mq_unique_tag(scmnd->request);
1284 	struct srp_rdma_ch *ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
1285 	struct srp_request *req = scsi_cmd_priv(scmnd);
1286 
1287 	srp_finish_req(ch, req, NULL, context->scsi_result);
1288 
1289 	return true;
1290 }
1291 
srp_terminate_io(struct srp_rport *rport)1292 static void srp_terminate_io(struct srp_rport *rport)
1293 {
1294 	struct srp_target_port *target = rport->lld_data;
1295 	struct srp_terminate_context context = { .srp_target = target,
1296 		.scsi_result = DID_TRANSPORT_FAILFAST << 16 };
1297 
1298 	scsi_host_busy_iter(target->scsi_host, srp_terminate_cmd, &context);
1299 }
1300 
1301 /* Calculate maximum initiator to target information unit length. */
srp_max_it_iu_len(int cmd_sg_cnt, bool use_imm_data, uint32_t max_it_iu_size)1302 static uint32_t srp_max_it_iu_len(int cmd_sg_cnt, bool use_imm_data,
1303 				  uint32_t max_it_iu_size)
1304 {
1305 	uint32_t max_iu_len = sizeof(struct srp_cmd) + SRP_MAX_ADD_CDB_LEN +
1306 		sizeof(struct srp_indirect_buf) +
1307 		cmd_sg_cnt * sizeof(struct srp_direct_buf);
1308 
1309 	if (use_imm_data)
1310 		max_iu_len = max(max_iu_len, SRP_IMM_DATA_OFFSET +
1311 				 srp_max_imm_data);
1312 
1313 	if (max_it_iu_size)
1314 		max_iu_len = min(max_iu_len, max_it_iu_size);
1315 
1316 	pr_debug("max_iu_len = %d\n", max_iu_len);
1317 
1318 	return max_iu_len;
1319 }
1320 
1321 /*
1322  * It is up to the caller to ensure that srp_rport_reconnect() calls are
1323  * serialized and that no concurrent srp_queuecommand(), srp_abort(),
1324  * srp_reset_device() or srp_reset_host() calls will occur while this function
1325  * is in progress. One way to realize that is not to call this function
1326  * directly but to call srp_reconnect_rport() instead since that last function
1327  * serializes calls of this function via rport->mutex and also blocks
1328  * srp_queuecommand() calls before invoking this function.
1329  */
srp_rport_reconnect(struct srp_rport *rport)1330 static int srp_rport_reconnect(struct srp_rport *rport)
1331 {
1332 	struct srp_target_port *target = rport->lld_data;
1333 	struct srp_rdma_ch *ch;
1334 	uint32_t max_iu_len = srp_max_it_iu_len(target->cmd_sg_cnt,
1335 						srp_use_imm_data,
1336 						target->max_it_iu_size);
1337 	int i, j, ret = 0;
1338 	bool multich = false;
1339 
1340 	srp_disconnect_target(target);
1341 
1342 	if (target->state == SRP_TARGET_SCANNING)
1343 		return -ENODEV;
1344 
1345 	/*
1346 	 * Now get a new local CM ID so that we avoid confusing the target in
1347 	 * case things are really fouled up. Doing so also ensures that all CM
1348 	 * callbacks will have finished before a new QP is allocated.
1349 	 */
1350 	for (i = 0; i < target->ch_count; i++) {
1351 		ch = &target->ch[i];
1352 		ret += srp_new_cm_id(ch);
1353 	}
1354 	{
1355 		struct srp_terminate_context context = {
1356 			.srp_target = target, .scsi_result = DID_RESET << 16};
1357 
1358 		scsi_host_busy_iter(target->scsi_host, srp_terminate_cmd,
1359 				    &context);
1360 	}
1361 	for (i = 0; i < target->ch_count; i++) {
1362 		ch = &target->ch[i];
1363 		/*
1364 		 * Whether or not creating a new CM ID succeeded, create a new
1365 		 * QP. This guarantees that all completion callback function
1366 		 * invocations have finished before request resetting starts.
1367 		 */
1368 		ret += srp_create_ch_ib(ch);
1369 
1370 		INIT_LIST_HEAD(&ch->free_tx);
1371 		for (j = 0; j < target->queue_size; ++j)
1372 			list_add(&ch->tx_ring[j]->list, &ch->free_tx);
1373 	}
1374 
1375 	target->qp_in_error = false;
1376 
1377 	for (i = 0; i < target->ch_count; i++) {
1378 		ch = &target->ch[i];
1379 		if (ret)
1380 			break;
1381 		ret = srp_connect_ch(ch, max_iu_len, multich);
1382 		multich = true;
1383 	}
1384 
1385 	if (ret == 0)
1386 		shost_printk(KERN_INFO, target->scsi_host,
1387 			     PFX "reconnect succeeded\n");
1388 
1389 	return ret;
1390 }
1391 
srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr, unsigned int dma_len, u32 rkey)1392 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr,
1393 			 unsigned int dma_len, u32 rkey)
1394 {
1395 	struct srp_direct_buf *desc = state->desc;
1396 
1397 	WARN_ON_ONCE(!dma_len);
1398 
1399 	desc->va = cpu_to_be64(dma_addr);
1400 	desc->key = cpu_to_be32(rkey);
1401 	desc->len = cpu_to_be32(dma_len);
1402 
1403 	state->total_len += dma_len;
1404 	state->desc++;
1405 	state->ndesc++;
1406 }
1407 
srp_reg_mr_err_done(struct ib_cq *cq, struct ib_wc *wc)1408 static void srp_reg_mr_err_done(struct ib_cq *cq, struct ib_wc *wc)
1409 {
1410 	srp_handle_qp_err(cq, wc, "FAST REG");
1411 }
1412 
1413 /*
1414  * Map up to sg_nents elements of state->sg where *sg_offset_p is the offset
1415  * where to start in the first element. If sg_offset_p != NULL then
1416  * *sg_offset_p is updated to the offset in state->sg[retval] of the first
1417  * byte that has not yet been mapped.
1418  */
srp_map_finish_fr(struct srp_map_state *state, struct srp_request *req, struct srp_rdma_ch *ch, int sg_nents, unsigned int *sg_offset_p)1419 static int srp_map_finish_fr(struct srp_map_state *state,
1420 			     struct srp_request *req,
1421 			     struct srp_rdma_ch *ch, int sg_nents,
1422 			     unsigned int *sg_offset_p)
1423 {
1424 	struct srp_target_port *target = ch->target;
1425 	struct srp_device *dev = target->srp_host->srp_dev;
1426 	struct ib_reg_wr wr;
1427 	struct srp_fr_desc *desc;
1428 	u32 rkey;
1429 	int n, err;
1430 
1431 	if (state->fr.next >= state->fr.end) {
1432 		shost_printk(KERN_ERR, ch->target->scsi_host,
1433 			     PFX "Out of MRs (mr_per_cmd = %d)\n",
1434 			     ch->target->mr_per_cmd);
1435 		return -ENOMEM;
1436 	}
1437 
1438 	WARN_ON_ONCE(!dev->use_fast_reg);
1439 
1440 	if (sg_nents == 1 && target->global_rkey) {
1441 		unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1442 
1443 		srp_map_desc(state, sg_dma_address(state->sg) + sg_offset,
1444 			     sg_dma_len(state->sg) - sg_offset,
1445 			     target->global_rkey);
1446 		if (sg_offset_p)
1447 			*sg_offset_p = 0;
1448 		return 1;
1449 	}
1450 
1451 	desc = srp_fr_pool_get(ch->fr_pool);
1452 	if (!desc)
1453 		return -ENOMEM;
1454 
1455 	rkey = ib_inc_rkey(desc->mr->rkey);
1456 	ib_update_fast_reg_key(desc->mr, rkey);
1457 
1458 	n = ib_map_mr_sg(desc->mr, state->sg, sg_nents, sg_offset_p,
1459 			 dev->mr_page_size);
1460 	if (unlikely(n < 0)) {
1461 		srp_fr_pool_put(ch->fr_pool, &desc, 1);
1462 		pr_debug("%s: ib_map_mr_sg(%d, %d) returned %d.\n",
1463 			 dev_name(&req->scmnd->device->sdev_gendev), sg_nents,
1464 			 sg_offset_p ? *sg_offset_p : -1, n);
1465 		return n;
1466 	}
1467 
1468 	WARN_ON_ONCE(desc->mr->length == 0);
1469 
1470 	req->reg_cqe.done = srp_reg_mr_err_done;
1471 
1472 	wr.wr.next = NULL;
1473 	wr.wr.opcode = IB_WR_REG_MR;
1474 	wr.wr.wr_cqe = &req->reg_cqe;
1475 	wr.wr.num_sge = 0;
1476 	wr.wr.send_flags = 0;
1477 	wr.mr = desc->mr;
1478 	wr.key = desc->mr->rkey;
1479 	wr.access = (IB_ACCESS_LOCAL_WRITE |
1480 		     IB_ACCESS_REMOTE_READ |
1481 		     IB_ACCESS_REMOTE_WRITE);
1482 
1483 	*state->fr.next++ = desc;
1484 	state->nmdesc++;
1485 
1486 	srp_map_desc(state, desc->mr->iova,
1487 		     desc->mr->length, desc->mr->rkey);
1488 
1489 	err = ib_post_send(ch->qp, &wr.wr, NULL);
1490 	if (unlikely(err)) {
1491 		WARN_ON_ONCE(err == -ENOMEM);
1492 		return err;
1493 	}
1494 
1495 	return n;
1496 }
1497 
srp_map_sg_fr(struct srp_map_state *state, struct srp_rdma_ch *ch, struct srp_request *req, struct scatterlist *scat, int count)1498 static int srp_map_sg_fr(struct srp_map_state *state, struct srp_rdma_ch *ch,
1499 			 struct srp_request *req, struct scatterlist *scat,
1500 			 int count)
1501 {
1502 	unsigned int sg_offset = 0;
1503 
1504 	state->fr.next = req->fr_list;
1505 	state->fr.end = req->fr_list + ch->target->mr_per_cmd;
1506 	state->sg = scat;
1507 
1508 	if (count == 0)
1509 		return 0;
1510 
1511 	while (count) {
1512 		int i, n;
1513 
1514 		n = srp_map_finish_fr(state, req, ch, count, &sg_offset);
1515 		if (unlikely(n < 0))
1516 			return n;
1517 
1518 		count -= n;
1519 		for (i = 0; i < n; i++)
1520 			state->sg = sg_next(state->sg);
1521 	}
1522 
1523 	return 0;
1524 }
1525 
srp_map_sg_dma(struct srp_map_state *state, struct srp_rdma_ch *ch, struct srp_request *req, struct scatterlist *scat, int count)1526 static int srp_map_sg_dma(struct srp_map_state *state, struct srp_rdma_ch *ch,
1527 			  struct srp_request *req, struct scatterlist *scat,
1528 			  int count)
1529 {
1530 	struct srp_target_port *target = ch->target;
1531 	struct scatterlist *sg;
1532 	int i;
1533 
1534 	for_each_sg(scat, sg, count, i) {
1535 		srp_map_desc(state, sg_dma_address(sg), sg_dma_len(sg),
1536 			     target->global_rkey);
1537 	}
1538 
1539 	return 0;
1540 }
1541 
1542 /*
1543  * Register the indirect data buffer descriptor with the HCA.
1544  *
1545  * Note: since the indirect data buffer descriptor has been allocated with
1546  * kmalloc() it is guaranteed that this buffer is a physically contiguous
1547  * memory buffer.
1548  */
srp_map_idb(struct srp_rdma_ch *ch, struct srp_request *req, void **next_mr, void **end_mr, u32 idb_len, __be32 *idb_rkey)1549 static int srp_map_idb(struct srp_rdma_ch *ch, struct srp_request *req,
1550 		       void **next_mr, void **end_mr, u32 idb_len,
1551 		       __be32 *idb_rkey)
1552 {
1553 	struct srp_target_port *target = ch->target;
1554 	struct srp_device *dev = target->srp_host->srp_dev;
1555 	struct srp_map_state state;
1556 	struct srp_direct_buf idb_desc;
1557 	struct scatterlist idb_sg[1];
1558 	int ret;
1559 
1560 	memset(&state, 0, sizeof(state));
1561 	memset(&idb_desc, 0, sizeof(idb_desc));
1562 	state.gen.next = next_mr;
1563 	state.gen.end = end_mr;
1564 	state.desc = &idb_desc;
1565 	state.base_dma_addr = req->indirect_dma_addr;
1566 	state.dma_len = idb_len;
1567 
1568 	if (dev->use_fast_reg) {
1569 		state.sg = idb_sg;
1570 		sg_init_one(idb_sg, req->indirect_desc, idb_len);
1571 		idb_sg->dma_address = req->indirect_dma_addr; /* hack! */
1572 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1573 		idb_sg->dma_length = idb_sg->length;	      /* hack^2 */
1574 #endif
1575 		ret = srp_map_finish_fr(&state, req, ch, 1, NULL);
1576 		if (ret < 0)
1577 			return ret;
1578 		WARN_ON_ONCE(ret < 1);
1579 	} else {
1580 		return -EINVAL;
1581 	}
1582 
1583 	*idb_rkey = idb_desc.key;
1584 
1585 	return 0;
1586 }
1587 
srp_check_mapping(struct srp_map_state *state, struct srp_rdma_ch *ch, struct srp_request *req, struct scatterlist *scat, int count)1588 static void srp_check_mapping(struct srp_map_state *state,
1589 			      struct srp_rdma_ch *ch, struct srp_request *req,
1590 			      struct scatterlist *scat, int count)
1591 {
1592 	struct srp_device *dev = ch->target->srp_host->srp_dev;
1593 	struct srp_fr_desc **pfr;
1594 	u64 desc_len = 0, mr_len = 0;
1595 	int i;
1596 
1597 	for (i = 0; i < state->ndesc; i++)
1598 		desc_len += be32_to_cpu(req->indirect_desc[i].len);
1599 	if (dev->use_fast_reg)
1600 		for (i = 0, pfr = req->fr_list; i < state->nmdesc; i++, pfr++)
1601 			mr_len += (*pfr)->mr->length;
1602 	if (desc_len != scsi_bufflen(req->scmnd) ||
1603 	    mr_len > scsi_bufflen(req->scmnd))
1604 		pr_err("Inconsistent: scsi len %d <> desc len %lld <> mr len %lld; ndesc %d; nmdesc = %d\n",
1605 		       scsi_bufflen(req->scmnd), desc_len, mr_len,
1606 		       state->ndesc, state->nmdesc);
1607 }
1608 
1609 /**
1610  * srp_map_data() - map SCSI data buffer onto an SRP request
1611  * @scmnd: SCSI command to map
1612  * @ch: SRP RDMA channel
1613  * @req: SRP request
1614  *
1615  * Returns the length in bytes of the SRP_CMD IU or a negative value if
1616  * mapping failed. The size of any immediate data is not included in the
1617  * return value.
1618  */
srp_map_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch, struct srp_request *req)1619 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch,
1620 			struct srp_request *req)
1621 {
1622 	struct srp_target_port *target = ch->target;
1623 	struct scatterlist *scat, *sg;
1624 	struct srp_cmd *cmd = req->cmd->buf;
1625 	int i, len, nents, count, ret;
1626 	struct srp_device *dev;
1627 	struct ib_device *ibdev;
1628 	struct srp_map_state state;
1629 	struct srp_indirect_buf *indirect_hdr;
1630 	u64 data_len;
1631 	u32 idb_len, table_len;
1632 	__be32 idb_rkey;
1633 	u8 fmt;
1634 
1635 	req->cmd->num_sge = 1;
1636 
1637 	if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE)
1638 		return sizeof(struct srp_cmd) + cmd->add_cdb_len;
1639 
1640 	if (scmnd->sc_data_direction != DMA_FROM_DEVICE &&
1641 	    scmnd->sc_data_direction != DMA_TO_DEVICE) {
1642 		shost_printk(KERN_WARNING, target->scsi_host,
1643 			     PFX "Unhandled data direction %d\n",
1644 			     scmnd->sc_data_direction);
1645 		return -EINVAL;
1646 	}
1647 
1648 	nents = scsi_sg_count(scmnd);
1649 	scat  = scsi_sglist(scmnd);
1650 	data_len = scsi_bufflen(scmnd);
1651 
1652 	dev = target->srp_host->srp_dev;
1653 	ibdev = dev->dev;
1654 
1655 	count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction);
1656 	if (unlikely(count == 0))
1657 		return -EIO;
1658 
1659 	if (ch->use_imm_data &&
1660 	    count <= ch->max_imm_sge &&
1661 	    SRP_IMM_DATA_OFFSET + data_len <= ch->max_it_iu_len &&
1662 	    scmnd->sc_data_direction == DMA_TO_DEVICE) {
1663 		struct srp_imm_buf *buf;
1664 		struct ib_sge *sge = &req->cmd->sge[1];
1665 
1666 		fmt = SRP_DATA_DESC_IMM;
1667 		len = SRP_IMM_DATA_OFFSET;
1668 		req->nmdesc = 0;
1669 		buf = (void *)cmd->add_data + cmd->add_cdb_len;
1670 		buf->len = cpu_to_be32(data_len);
1671 		WARN_ON_ONCE((void *)(buf + 1) > (void *)cmd + len);
1672 		for_each_sg(scat, sg, count, i) {
1673 			sge[i].addr   = sg_dma_address(sg);
1674 			sge[i].length = sg_dma_len(sg);
1675 			sge[i].lkey   = target->lkey;
1676 		}
1677 		req->cmd->num_sge += count;
1678 		goto map_complete;
1679 	}
1680 
1681 	fmt = SRP_DATA_DESC_DIRECT;
1682 	len = sizeof(struct srp_cmd) + cmd->add_cdb_len +
1683 		sizeof(struct srp_direct_buf);
1684 
1685 	if (count == 1 && target->global_rkey) {
1686 		/*
1687 		 * The midlayer only generated a single gather/scatter
1688 		 * entry, or DMA mapping coalesced everything to a
1689 		 * single entry.  So a direct descriptor along with
1690 		 * the DMA MR suffices.
1691 		 */
1692 		struct srp_direct_buf *buf;
1693 
1694 		buf = (void *)cmd->add_data + cmd->add_cdb_len;
1695 		buf->va  = cpu_to_be64(sg_dma_address(scat));
1696 		buf->key = cpu_to_be32(target->global_rkey);
1697 		buf->len = cpu_to_be32(sg_dma_len(scat));
1698 
1699 		req->nmdesc = 0;
1700 		goto map_complete;
1701 	}
1702 
1703 	/*
1704 	 * We have more than one scatter/gather entry, so build our indirect
1705 	 * descriptor table, trying to merge as many entries as we can.
1706 	 */
1707 	indirect_hdr = (void *)cmd->add_data + cmd->add_cdb_len;
1708 
1709 	ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr,
1710 				   target->indirect_size, DMA_TO_DEVICE);
1711 
1712 	memset(&state, 0, sizeof(state));
1713 	state.desc = req->indirect_desc;
1714 	if (dev->use_fast_reg)
1715 		ret = srp_map_sg_fr(&state, ch, req, scat, count);
1716 	else
1717 		ret = srp_map_sg_dma(&state, ch, req, scat, count);
1718 	req->nmdesc = state.nmdesc;
1719 	if (ret < 0)
1720 		goto unmap;
1721 
1722 	{
1723 		DEFINE_DYNAMIC_DEBUG_METADATA(ddm,
1724 			"Memory mapping consistency check");
1725 		if (DYNAMIC_DEBUG_BRANCH(ddm))
1726 			srp_check_mapping(&state, ch, req, scat, count);
1727 	}
1728 
1729 	/* We've mapped the request, now pull as much of the indirect
1730 	 * descriptor table as we can into the command buffer. If this
1731 	 * target is not using an external indirect table, we are
1732 	 * guaranteed to fit into the command, as the SCSI layer won't
1733 	 * give us more S/G entries than we allow.
1734 	 */
1735 	if (state.ndesc == 1) {
1736 		/*
1737 		 * Memory registration collapsed the sg-list into one entry,
1738 		 * so use a direct descriptor.
1739 		 */
1740 		struct srp_direct_buf *buf;
1741 
1742 		buf = (void *)cmd->add_data + cmd->add_cdb_len;
1743 		*buf = req->indirect_desc[0];
1744 		goto map_complete;
1745 	}
1746 
1747 	if (unlikely(target->cmd_sg_cnt < state.ndesc &&
1748 						!target->allow_ext_sg)) {
1749 		shost_printk(KERN_ERR, target->scsi_host,
1750 			     "Could not fit S/G list into SRP_CMD\n");
1751 		ret = -EIO;
1752 		goto unmap;
1753 	}
1754 
1755 	count = min(state.ndesc, target->cmd_sg_cnt);
1756 	table_len = state.ndesc * sizeof (struct srp_direct_buf);
1757 	idb_len = sizeof(struct srp_indirect_buf) + table_len;
1758 
1759 	fmt = SRP_DATA_DESC_INDIRECT;
1760 	len = sizeof(struct srp_cmd) + cmd->add_cdb_len +
1761 		sizeof(struct srp_indirect_buf);
1762 	len += count * sizeof (struct srp_direct_buf);
1763 
1764 	memcpy(indirect_hdr->desc_list, req->indirect_desc,
1765 	       count * sizeof (struct srp_direct_buf));
1766 
1767 	if (!target->global_rkey) {
1768 		ret = srp_map_idb(ch, req, state.gen.next, state.gen.end,
1769 				  idb_len, &idb_rkey);
1770 		if (ret < 0)
1771 			goto unmap;
1772 		req->nmdesc++;
1773 	} else {
1774 		idb_rkey = cpu_to_be32(target->global_rkey);
1775 	}
1776 
1777 	indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr);
1778 	indirect_hdr->table_desc.key = idb_rkey;
1779 	indirect_hdr->table_desc.len = cpu_to_be32(table_len);
1780 	indirect_hdr->len = cpu_to_be32(state.total_len);
1781 
1782 	if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1783 		cmd->data_out_desc_cnt = count;
1784 	else
1785 		cmd->data_in_desc_cnt = count;
1786 
1787 	ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len,
1788 				      DMA_TO_DEVICE);
1789 
1790 map_complete:
1791 	if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1792 		cmd->buf_fmt = fmt << 4;
1793 	else
1794 		cmd->buf_fmt = fmt;
1795 
1796 	return len;
1797 
1798 unmap:
1799 	srp_unmap_data(scmnd, ch, req);
1800 	if (ret == -ENOMEM && req->nmdesc >= target->mr_pool_size)
1801 		ret = -E2BIG;
1802 	return ret;
1803 }
1804 
1805 /*
1806  * Return an IU and possible credit to the free pool
1807  */
srp_put_tx_iu(struct srp_rdma_ch *ch, struct srp_iu *iu, enum srp_iu_type iu_type)1808 static void srp_put_tx_iu(struct srp_rdma_ch *ch, struct srp_iu *iu,
1809 			  enum srp_iu_type iu_type)
1810 {
1811 	unsigned long flags;
1812 
1813 	spin_lock_irqsave(&ch->lock, flags);
1814 	list_add(&iu->list, &ch->free_tx);
1815 	if (iu_type != SRP_IU_RSP)
1816 		++ch->req_lim;
1817 	spin_unlock_irqrestore(&ch->lock, flags);
1818 }
1819 
1820 /*
1821  * Must be called with ch->lock held to protect req_lim and free_tx.
1822  * If IU is not sent, it must be returned using srp_put_tx_iu().
1823  *
1824  * Note:
1825  * An upper limit for the number of allocated information units for each
1826  * request type is:
1827  * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues
1828  *   more than Scsi_Host.can_queue requests.
1829  * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE.
1830  * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than
1831  *   one unanswered SRP request to an initiator.
1832  */
__srp_get_tx_iu(struct srp_rdma_ch *ch, enum srp_iu_type iu_type)1833 static struct srp_iu *__srp_get_tx_iu(struct srp_rdma_ch *ch,
1834 				      enum srp_iu_type iu_type)
1835 {
1836 	struct srp_target_port *target = ch->target;
1837 	s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE;
1838 	struct srp_iu *iu;
1839 
1840 	lockdep_assert_held(&ch->lock);
1841 
1842 	ib_process_cq_direct(ch->send_cq, -1);
1843 
1844 	if (list_empty(&ch->free_tx))
1845 		return NULL;
1846 
1847 	/* Initiator responses to target requests do not consume credits */
1848 	if (iu_type != SRP_IU_RSP) {
1849 		if (ch->req_lim <= rsv) {
1850 			++target->zero_req_lim;
1851 			return NULL;
1852 		}
1853 
1854 		--ch->req_lim;
1855 	}
1856 
1857 	iu = list_first_entry(&ch->free_tx, struct srp_iu, list);
1858 	list_del(&iu->list);
1859 	return iu;
1860 }
1861 
1862 /*
1863  * Note: if this function is called from inside ib_drain_sq() then it will
1864  * be called without ch->lock being held. If ib_drain_sq() dequeues a WQE
1865  * with status IB_WC_SUCCESS then that's a bug.
1866  */
srp_send_done(struct ib_cq *cq, struct ib_wc *wc)1867 static void srp_send_done(struct ib_cq *cq, struct ib_wc *wc)
1868 {
1869 	struct srp_iu *iu = container_of(wc->wr_cqe, struct srp_iu, cqe);
1870 	struct srp_rdma_ch *ch = cq->cq_context;
1871 
1872 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1873 		srp_handle_qp_err(cq, wc, "SEND");
1874 		return;
1875 	}
1876 
1877 	lockdep_assert_held(&ch->lock);
1878 
1879 	list_add(&iu->list, &ch->free_tx);
1880 }
1881 
1882 /**
1883  * srp_post_send() - send an SRP information unit
1884  * @ch: RDMA channel over which to send the information unit.
1885  * @iu: Information unit to send.
1886  * @len: Length of the information unit excluding immediate data.
1887  */
srp_post_send(struct srp_rdma_ch *ch, struct srp_iu *iu, int len)1888 static int srp_post_send(struct srp_rdma_ch *ch, struct srp_iu *iu, int len)
1889 {
1890 	struct srp_target_port *target = ch->target;
1891 	struct ib_send_wr wr;
1892 
1893 	if (WARN_ON_ONCE(iu->num_sge > SRP_MAX_SGE))
1894 		return -EINVAL;
1895 
1896 	iu->sge[0].addr   = iu->dma;
1897 	iu->sge[0].length = len;
1898 	iu->sge[0].lkey   = target->lkey;
1899 
1900 	iu->cqe.done = srp_send_done;
1901 
1902 	wr.next       = NULL;
1903 	wr.wr_cqe     = &iu->cqe;
1904 	wr.sg_list    = &iu->sge[0];
1905 	wr.num_sge    = iu->num_sge;
1906 	wr.opcode     = IB_WR_SEND;
1907 	wr.send_flags = IB_SEND_SIGNALED;
1908 
1909 	return ib_post_send(ch->qp, &wr, NULL);
1910 }
1911 
srp_post_recv(struct srp_rdma_ch *ch, struct srp_iu *iu)1912 static int srp_post_recv(struct srp_rdma_ch *ch, struct srp_iu *iu)
1913 {
1914 	struct srp_target_port *target = ch->target;
1915 	struct ib_recv_wr wr;
1916 	struct ib_sge list;
1917 
1918 	list.addr   = iu->dma;
1919 	list.length = iu->size;
1920 	list.lkey   = target->lkey;
1921 
1922 	iu->cqe.done = srp_recv_done;
1923 
1924 	wr.next     = NULL;
1925 	wr.wr_cqe   = &iu->cqe;
1926 	wr.sg_list  = &list;
1927 	wr.num_sge  = 1;
1928 
1929 	return ib_post_recv(ch->qp, &wr, NULL);
1930 }
1931 
srp_process_rsp(struct srp_rdma_ch *ch, struct srp_rsp *rsp)1932 static void srp_process_rsp(struct srp_rdma_ch *ch, struct srp_rsp *rsp)
1933 {
1934 	struct srp_target_port *target = ch->target;
1935 	struct srp_request *req;
1936 	struct scsi_cmnd *scmnd;
1937 	unsigned long flags;
1938 
1939 	if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) {
1940 		spin_lock_irqsave(&ch->lock, flags);
1941 		ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1942 		if (rsp->tag == ch->tsk_mgmt_tag) {
1943 			ch->tsk_mgmt_status = -1;
1944 			if (be32_to_cpu(rsp->resp_data_len) >= 4)
1945 				ch->tsk_mgmt_status = rsp->data[3];
1946 			complete(&ch->tsk_mgmt_done);
1947 		} else {
1948 			shost_printk(KERN_ERR, target->scsi_host,
1949 				     "Received tsk mgmt response too late for tag %#llx\n",
1950 				     rsp->tag);
1951 		}
1952 		spin_unlock_irqrestore(&ch->lock, flags);
1953 	} else {
1954 		scmnd = scsi_host_find_tag(target->scsi_host, rsp->tag);
1955 		if (scmnd) {
1956 			req = scsi_cmd_priv(scmnd);
1957 			scmnd = srp_claim_req(ch, req, NULL, scmnd);
1958 		}
1959 		if (!scmnd) {
1960 			shost_printk(KERN_ERR, target->scsi_host,
1961 				     "Null scmnd for RSP w/tag %#016llx received on ch %td / QP %#x\n",
1962 				     rsp->tag, ch - target->ch, ch->qp->qp_num);
1963 
1964 			spin_lock_irqsave(&ch->lock, flags);
1965 			ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1966 			spin_unlock_irqrestore(&ch->lock, flags);
1967 
1968 			return;
1969 		}
1970 		scmnd->result = rsp->status;
1971 
1972 		if (rsp->flags & SRP_RSP_FLAG_SNSVALID) {
1973 			memcpy(scmnd->sense_buffer, rsp->data +
1974 			       be32_to_cpu(rsp->resp_data_len),
1975 			       min_t(int, be32_to_cpu(rsp->sense_data_len),
1976 				     SCSI_SENSE_BUFFERSIZE));
1977 		}
1978 
1979 		if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER))
1980 			scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt));
1981 		else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER))
1982 			scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt));
1983 
1984 		srp_free_req(ch, req, scmnd,
1985 			     be32_to_cpu(rsp->req_lim_delta));
1986 
1987 		scmnd->scsi_done(scmnd);
1988 	}
1989 }
1990 
srp_response_common(struct srp_rdma_ch *ch, s32 req_delta, void *rsp, int len)1991 static int srp_response_common(struct srp_rdma_ch *ch, s32 req_delta,
1992 			       void *rsp, int len)
1993 {
1994 	struct srp_target_port *target = ch->target;
1995 	struct ib_device *dev = target->srp_host->srp_dev->dev;
1996 	unsigned long flags;
1997 	struct srp_iu *iu;
1998 	int err;
1999 
2000 	spin_lock_irqsave(&ch->lock, flags);
2001 	ch->req_lim += req_delta;
2002 	iu = __srp_get_tx_iu(ch, SRP_IU_RSP);
2003 	spin_unlock_irqrestore(&ch->lock, flags);
2004 
2005 	if (!iu) {
2006 		shost_printk(KERN_ERR, target->scsi_host, PFX
2007 			     "no IU available to send response\n");
2008 		return 1;
2009 	}
2010 
2011 	iu->num_sge = 1;
2012 	ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE);
2013 	memcpy(iu->buf, rsp, len);
2014 	ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE);
2015 
2016 	err = srp_post_send(ch, iu, len);
2017 	if (err) {
2018 		shost_printk(KERN_ERR, target->scsi_host, PFX
2019 			     "unable to post response: %d\n", err);
2020 		srp_put_tx_iu(ch, iu, SRP_IU_RSP);
2021 	}
2022 
2023 	return err;
2024 }
2025 
srp_process_cred_req(struct srp_rdma_ch *ch, struct srp_cred_req *req)2026 static void srp_process_cred_req(struct srp_rdma_ch *ch,
2027 				 struct srp_cred_req *req)
2028 {
2029 	struct srp_cred_rsp rsp = {
2030 		.opcode = SRP_CRED_RSP,
2031 		.tag = req->tag,
2032 	};
2033 	s32 delta = be32_to_cpu(req->req_lim_delta);
2034 
2035 	if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
2036 		shost_printk(KERN_ERR, ch->target->scsi_host, PFX
2037 			     "problems processing SRP_CRED_REQ\n");
2038 }
2039 
srp_process_aer_req(struct srp_rdma_ch *ch, struct srp_aer_req *req)2040 static void srp_process_aer_req(struct srp_rdma_ch *ch,
2041 				struct srp_aer_req *req)
2042 {
2043 	struct srp_target_port *target = ch->target;
2044 	struct srp_aer_rsp rsp = {
2045 		.opcode = SRP_AER_RSP,
2046 		.tag = req->tag,
2047 	};
2048 	s32 delta = be32_to_cpu(req->req_lim_delta);
2049 
2050 	shost_printk(KERN_ERR, target->scsi_host, PFX
2051 		     "ignoring AER for LUN %llu\n", scsilun_to_int(&req->lun));
2052 
2053 	if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
2054 		shost_printk(KERN_ERR, target->scsi_host, PFX
2055 			     "problems processing SRP_AER_REQ\n");
2056 }
2057 
srp_recv_done(struct ib_cq *cq, struct ib_wc *wc)2058 static void srp_recv_done(struct ib_cq *cq, struct ib_wc *wc)
2059 {
2060 	struct srp_iu *iu = container_of(wc->wr_cqe, struct srp_iu, cqe);
2061 	struct srp_rdma_ch *ch = cq->cq_context;
2062 	struct srp_target_port *target = ch->target;
2063 	struct ib_device *dev = target->srp_host->srp_dev->dev;
2064 	int res;
2065 	u8 opcode;
2066 
2067 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
2068 		srp_handle_qp_err(cq, wc, "RECV");
2069 		return;
2070 	}
2071 
2072 	ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_ti_iu_len,
2073 				   DMA_FROM_DEVICE);
2074 
2075 	opcode = *(u8 *) iu->buf;
2076 
2077 	if (0) {
2078 		shost_printk(KERN_ERR, target->scsi_host,
2079 			     PFX "recv completion, opcode 0x%02x\n", opcode);
2080 		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1,
2081 			       iu->buf, wc->byte_len, true);
2082 	}
2083 
2084 	switch (opcode) {
2085 	case SRP_RSP:
2086 		srp_process_rsp(ch, iu->buf);
2087 		break;
2088 
2089 	case SRP_CRED_REQ:
2090 		srp_process_cred_req(ch, iu->buf);
2091 		break;
2092 
2093 	case SRP_AER_REQ:
2094 		srp_process_aer_req(ch, iu->buf);
2095 		break;
2096 
2097 	case SRP_T_LOGOUT:
2098 		/* XXX Handle target logout */
2099 		shost_printk(KERN_WARNING, target->scsi_host,
2100 			     PFX "Got target logout request\n");
2101 		break;
2102 
2103 	default:
2104 		shost_printk(KERN_WARNING, target->scsi_host,
2105 			     PFX "Unhandled SRP opcode 0x%02x\n", opcode);
2106 		break;
2107 	}
2108 
2109 	ib_dma_sync_single_for_device(dev, iu->dma, ch->max_ti_iu_len,
2110 				      DMA_FROM_DEVICE);
2111 
2112 	res = srp_post_recv(ch, iu);
2113 	if (res != 0)
2114 		shost_printk(KERN_ERR, target->scsi_host,
2115 			     PFX "Recv failed with error code %d\n", res);
2116 }
2117 
2118 /**
2119  * srp_tl_err_work() - handle a transport layer error
2120  * @work: Work structure embedded in an SRP target port.
2121  *
2122  * Note: This function may get invoked before the rport has been created,
2123  * hence the target->rport test.
2124  */
srp_tl_err_work(struct work_struct *work)2125 static void srp_tl_err_work(struct work_struct *work)
2126 {
2127 	struct srp_target_port *target;
2128 
2129 	target = container_of(work, struct srp_target_port, tl_err_work);
2130 	if (target->rport)
2131 		srp_start_tl_fail_timers(target->rport);
2132 }
2133 
srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc, const char *opname)2134 static void srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc,
2135 		const char *opname)
2136 {
2137 	struct srp_rdma_ch *ch = cq->cq_context;
2138 	struct srp_target_port *target = ch->target;
2139 
2140 	if (ch->connected && !target->qp_in_error) {
2141 		shost_printk(KERN_ERR, target->scsi_host,
2142 			     PFX "failed %s status %s (%d) for CQE %p\n",
2143 			     opname, ib_wc_status_msg(wc->status), wc->status,
2144 			     wc->wr_cqe);
2145 		queue_work(system_long_wq, &target->tl_err_work);
2146 	}
2147 	target->qp_in_error = true;
2148 }
2149 
srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd)2150 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd)
2151 {
2152 	struct srp_target_port *target = host_to_target(shost);
2153 	struct srp_rdma_ch *ch;
2154 	struct srp_request *req = scsi_cmd_priv(scmnd);
2155 	struct srp_iu *iu;
2156 	struct srp_cmd *cmd;
2157 	struct ib_device *dev;
2158 	unsigned long flags;
2159 	u32 tag;
2160 	int len, ret;
2161 
2162 	scmnd->result = srp_chkready(target->rport);
2163 	if (unlikely(scmnd->result))
2164 		goto err;
2165 
2166 	WARN_ON_ONCE(scmnd->request->tag < 0);
2167 	tag = blk_mq_unique_tag(scmnd->request);
2168 	ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
2169 
2170 	spin_lock_irqsave(&ch->lock, flags);
2171 	iu = __srp_get_tx_iu(ch, SRP_IU_CMD);
2172 	spin_unlock_irqrestore(&ch->lock, flags);
2173 
2174 	if (!iu)
2175 		goto err;
2176 
2177 	dev = target->srp_host->srp_dev->dev;
2178 	ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_it_iu_len,
2179 				   DMA_TO_DEVICE);
2180 
2181 	cmd = iu->buf;
2182 	memset(cmd, 0, sizeof *cmd);
2183 
2184 	cmd->opcode = SRP_CMD;
2185 	int_to_scsilun(scmnd->device->lun, &cmd->lun);
2186 	cmd->tag    = tag;
2187 	memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len);
2188 	if (unlikely(scmnd->cmd_len > sizeof(cmd->cdb))) {
2189 		cmd->add_cdb_len = round_up(scmnd->cmd_len - sizeof(cmd->cdb),
2190 					    4);
2191 		if (WARN_ON_ONCE(cmd->add_cdb_len > SRP_MAX_ADD_CDB_LEN))
2192 			goto err_iu;
2193 	}
2194 
2195 	req->scmnd    = scmnd;
2196 	req->cmd      = iu;
2197 
2198 	len = srp_map_data(scmnd, ch, req);
2199 	if (len < 0) {
2200 		shost_printk(KERN_ERR, target->scsi_host,
2201 			     PFX "Failed to map data (%d)\n", len);
2202 		/*
2203 		 * If we ran out of memory descriptors (-ENOMEM) because an
2204 		 * application is queuing many requests with more than
2205 		 * max_pages_per_mr sg-list elements, tell the SCSI mid-layer
2206 		 * to reduce queue depth temporarily.
2207 		 */
2208 		scmnd->result = len == -ENOMEM ?
2209 			DID_OK << 16 | QUEUE_FULL << 1 : DID_ERROR << 16;
2210 		goto err_iu;
2211 	}
2212 
2213 	ib_dma_sync_single_for_device(dev, iu->dma, ch->max_it_iu_len,
2214 				      DMA_TO_DEVICE);
2215 
2216 	if (srp_post_send(ch, iu, len)) {
2217 		shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n");
2218 		scmnd->result = DID_ERROR << 16;
2219 		goto err_unmap;
2220 	}
2221 
2222 	return 0;
2223 
2224 err_unmap:
2225 	srp_unmap_data(scmnd, ch, req);
2226 
2227 err_iu:
2228 	srp_put_tx_iu(ch, iu, SRP_IU_CMD);
2229 
2230 	/*
2231 	 * Avoid that the loops that iterate over the request ring can
2232 	 * encounter a dangling SCSI command pointer.
2233 	 */
2234 	req->scmnd = NULL;
2235 
2236 err:
2237 	if (scmnd->result) {
2238 		scmnd->scsi_done(scmnd);
2239 		ret = 0;
2240 	} else {
2241 		ret = SCSI_MLQUEUE_HOST_BUSY;
2242 	}
2243 
2244 	return ret;
2245 }
2246 
2247 /*
2248  * Note: the resources allocated in this function are freed in
2249  * srp_free_ch_ib().
2250  */
srp_alloc_iu_bufs(struct srp_rdma_ch *ch)2251 static int srp_alloc_iu_bufs(struct srp_rdma_ch *ch)
2252 {
2253 	struct srp_target_port *target = ch->target;
2254 	int i;
2255 
2256 	ch->rx_ring = kcalloc(target->queue_size, sizeof(*ch->rx_ring),
2257 			      GFP_KERNEL);
2258 	if (!ch->rx_ring)
2259 		goto err_no_ring;
2260 	ch->tx_ring = kcalloc(target->queue_size, sizeof(*ch->tx_ring),
2261 			      GFP_KERNEL);
2262 	if (!ch->tx_ring)
2263 		goto err_no_ring;
2264 
2265 	for (i = 0; i < target->queue_size; ++i) {
2266 		ch->rx_ring[i] = srp_alloc_iu(target->srp_host,
2267 					      ch->max_ti_iu_len,
2268 					      GFP_KERNEL, DMA_FROM_DEVICE);
2269 		if (!ch->rx_ring[i])
2270 			goto err;
2271 	}
2272 
2273 	for (i = 0; i < target->queue_size; ++i) {
2274 		ch->tx_ring[i] = srp_alloc_iu(target->srp_host,
2275 					      ch->max_it_iu_len,
2276 					      GFP_KERNEL, DMA_TO_DEVICE);
2277 		if (!ch->tx_ring[i])
2278 			goto err;
2279 
2280 		list_add(&ch->tx_ring[i]->list, &ch->free_tx);
2281 	}
2282 
2283 	return 0;
2284 
2285 err:
2286 	for (i = 0; i < target->queue_size; ++i) {
2287 		srp_free_iu(target->srp_host, ch->rx_ring[i]);
2288 		srp_free_iu(target->srp_host, ch->tx_ring[i]);
2289 	}
2290 
2291 
2292 err_no_ring:
2293 	kfree(ch->tx_ring);
2294 	ch->tx_ring = NULL;
2295 	kfree(ch->rx_ring);
2296 	ch->rx_ring = NULL;
2297 
2298 	return -ENOMEM;
2299 }
2300 
srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask)2301 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask)
2302 {
2303 	uint64_t T_tr_ns, max_compl_time_ms;
2304 	uint32_t rq_tmo_jiffies;
2305 
2306 	/*
2307 	 * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair,
2308 	 * table 91), both the QP timeout and the retry count have to be set
2309 	 * for RC QP's during the RTR to RTS transition.
2310 	 */
2311 	WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) !=
2312 		     (IB_QP_TIMEOUT | IB_QP_RETRY_CNT));
2313 
2314 	/*
2315 	 * Set target->rq_tmo_jiffies to one second more than the largest time
2316 	 * it can take before an error completion is generated. See also
2317 	 * C9-140..142 in the IBTA spec for more information about how to
2318 	 * convert the QP Local ACK Timeout value to nanoseconds.
2319 	 */
2320 	T_tr_ns = 4096 * (1ULL << qp_attr->timeout);
2321 	max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns;
2322 	do_div(max_compl_time_ms, NSEC_PER_MSEC);
2323 	rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000);
2324 
2325 	return rq_tmo_jiffies;
2326 }
2327 
srp_cm_rep_handler(struct ib_cm_id *cm_id, const struct srp_login_rsp *lrsp, struct srp_rdma_ch *ch)2328 static void srp_cm_rep_handler(struct ib_cm_id *cm_id,
2329 			       const struct srp_login_rsp *lrsp,
2330 			       struct srp_rdma_ch *ch)
2331 {
2332 	struct srp_target_port *target = ch->target;
2333 	struct ib_qp_attr *qp_attr = NULL;
2334 	int attr_mask = 0;
2335 	int ret = 0;
2336 	int i;
2337 
2338 	if (lrsp->opcode == SRP_LOGIN_RSP) {
2339 		ch->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len);
2340 		ch->req_lim       = be32_to_cpu(lrsp->req_lim_delta);
2341 		ch->use_imm_data  = srp_use_imm_data &&
2342 			(lrsp->rsp_flags & SRP_LOGIN_RSP_IMMED_SUPP);
2343 		ch->max_it_iu_len = srp_max_it_iu_len(target->cmd_sg_cnt,
2344 						      ch->use_imm_data,
2345 						      target->max_it_iu_size);
2346 		WARN_ON_ONCE(ch->max_it_iu_len >
2347 			     be32_to_cpu(lrsp->max_it_iu_len));
2348 
2349 		if (ch->use_imm_data)
2350 			shost_printk(KERN_DEBUG, target->scsi_host,
2351 				     PFX "using immediate data\n");
2352 
2353 		/*
2354 		 * Reserve credits for task management so we don't
2355 		 * bounce requests back to the SCSI mid-layer.
2356 		 */
2357 		target->scsi_host->can_queue
2358 			= min(ch->req_lim - SRP_TSK_MGMT_SQ_SIZE,
2359 			      target->scsi_host->can_queue);
2360 		target->scsi_host->cmd_per_lun
2361 			= min_t(int, target->scsi_host->can_queue,
2362 				target->scsi_host->cmd_per_lun);
2363 	} else {
2364 		shost_printk(KERN_WARNING, target->scsi_host,
2365 			     PFX "Unhandled RSP opcode %#x\n", lrsp->opcode);
2366 		ret = -ECONNRESET;
2367 		goto error;
2368 	}
2369 
2370 	if (!ch->rx_ring) {
2371 		ret = srp_alloc_iu_bufs(ch);
2372 		if (ret)
2373 			goto error;
2374 	}
2375 
2376 	for (i = 0; i < target->queue_size; i++) {
2377 		struct srp_iu *iu = ch->rx_ring[i];
2378 
2379 		ret = srp_post_recv(ch, iu);
2380 		if (ret)
2381 			goto error;
2382 	}
2383 
2384 	if (!target->using_rdma_cm) {
2385 		ret = -ENOMEM;
2386 		qp_attr = kmalloc(sizeof(*qp_attr), GFP_KERNEL);
2387 		if (!qp_attr)
2388 			goto error;
2389 
2390 		qp_attr->qp_state = IB_QPS_RTR;
2391 		ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2392 		if (ret)
2393 			goto error_free;
2394 
2395 		ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2396 		if (ret)
2397 			goto error_free;
2398 
2399 		qp_attr->qp_state = IB_QPS_RTS;
2400 		ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2401 		if (ret)
2402 			goto error_free;
2403 
2404 		target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask);
2405 
2406 		ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2407 		if (ret)
2408 			goto error_free;
2409 
2410 		ret = ib_send_cm_rtu(cm_id, NULL, 0);
2411 	}
2412 
2413 error_free:
2414 	kfree(qp_attr);
2415 
2416 error:
2417 	ch->status = ret;
2418 }
2419 
srp_ib_cm_rej_handler(struct ib_cm_id *cm_id, const struct ib_cm_event *event, struct srp_rdma_ch *ch)2420 static void srp_ib_cm_rej_handler(struct ib_cm_id *cm_id,
2421 				  const struct ib_cm_event *event,
2422 				  struct srp_rdma_ch *ch)
2423 {
2424 	struct srp_target_port *target = ch->target;
2425 	struct Scsi_Host *shost = target->scsi_host;
2426 	struct ib_class_port_info *cpi;
2427 	int opcode;
2428 	u16 dlid;
2429 
2430 	switch (event->param.rej_rcvd.reason) {
2431 	case IB_CM_REJ_PORT_CM_REDIRECT:
2432 		cpi = event->param.rej_rcvd.ari;
2433 		dlid = be16_to_cpu(cpi->redirect_lid);
2434 		sa_path_set_dlid(&ch->ib_cm.path, dlid);
2435 		ch->ib_cm.path.pkey = cpi->redirect_pkey;
2436 		cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff;
2437 		memcpy(ch->ib_cm.path.dgid.raw, cpi->redirect_gid, 16);
2438 
2439 		ch->status = dlid ? SRP_DLID_REDIRECT : SRP_PORT_REDIRECT;
2440 		break;
2441 
2442 	case IB_CM_REJ_PORT_REDIRECT:
2443 		if (srp_target_is_topspin(target)) {
2444 			union ib_gid *dgid = &ch->ib_cm.path.dgid;
2445 
2446 			/*
2447 			 * Topspin/Cisco SRP gateways incorrectly send
2448 			 * reject reason code 25 when they mean 24
2449 			 * (port redirect).
2450 			 */
2451 			memcpy(dgid->raw, event->param.rej_rcvd.ari, 16);
2452 
2453 			shost_printk(KERN_DEBUG, shost,
2454 				     PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n",
2455 				     be64_to_cpu(dgid->global.subnet_prefix),
2456 				     be64_to_cpu(dgid->global.interface_id));
2457 
2458 			ch->status = SRP_PORT_REDIRECT;
2459 		} else {
2460 			shost_printk(KERN_WARNING, shost,
2461 				     "  REJ reason: IB_CM_REJ_PORT_REDIRECT\n");
2462 			ch->status = -ECONNRESET;
2463 		}
2464 		break;
2465 
2466 	case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2467 		shost_printk(KERN_WARNING, shost,
2468 			    "  REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2469 		ch->status = -ECONNRESET;
2470 		break;
2471 
2472 	case IB_CM_REJ_CONSUMER_DEFINED:
2473 		opcode = *(u8 *) event->private_data;
2474 		if (opcode == SRP_LOGIN_REJ) {
2475 			struct srp_login_rej *rej = event->private_data;
2476 			u32 reason = be32_to_cpu(rej->reason);
2477 
2478 			if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2479 				shost_printk(KERN_WARNING, shost,
2480 					     PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2481 			else
2482 				shost_printk(KERN_WARNING, shost, PFX
2483 					     "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n",
2484 					     target->sgid.raw,
2485 					     target->ib_cm.orig_dgid.raw,
2486 					     reason);
2487 		} else
2488 			shost_printk(KERN_WARNING, shost,
2489 				     "  REJ reason: IB_CM_REJ_CONSUMER_DEFINED,"
2490 				     " opcode 0x%02x\n", opcode);
2491 		ch->status = -ECONNRESET;
2492 		break;
2493 
2494 	case IB_CM_REJ_STALE_CONN:
2495 		shost_printk(KERN_WARNING, shost, "  REJ reason: stale connection\n");
2496 		ch->status = SRP_STALE_CONN;
2497 		break;
2498 
2499 	default:
2500 		shost_printk(KERN_WARNING, shost, "  REJ reason 0x%x\n",
2501 			     event->param.rej_rcvd.reason);
2502 		ch->status = -ECONNRESET;
2503 	}
2504 }
2505 
srp_ib_cm_handler(struct ib_cm_id *cm_id, const struct ib_cm_event *event)2506 static int srp_ib_cm_handler(struct ib_cm_id *cm_id,
2507 			     const struct ib_cm_event *event)
2508 {
2509 	struct srp_rdma_ch *ch = cm_id->context;
2510 	struct srp_target_port *target = ch->target;
2511 	int comp = 0;
2512 
2513 	switch (event->event) {
2514 	case IB_CM_REQ_ERROR:
2515 		shost_printk(KERN_DEBUG, target->scsi_host,
2516 			     PFX "Sending CM REQ failed\n");
2517 		comp = 1;
2518 		ch->status = -ECONNRESET;
2519 		break;
2520 
2521 	case IB_CM_REP_RECEIVED:
2522 		comp = 1;
2523 		srp_cm_rep_handler(cm_id, event->private_data, ch);
2524 		break;
2525 
2526 	case IB_CM_REJ_RECEIVED:
2527 		shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2528 		comp = 1;
2529 
2530 		srp_ib_cm_rej_handler(cm_id, event, ch);
2531 		break;
2532 
2533 	case IB_CM_DREQ_RECEIVED:
2534 		shost_printk(KERN_WARNING, target->scsi_host,
2535 			     PFX "DREQ received - connection closed\n");
2536 		ch->connected = false;
2537 		if (ib_send_cm_drep(cm_id, NULL, 0))
2538 			shost_printk(KERN_ERR, target->scsi_host,
2539 				     PFX "Sending CM DREP failed\n");
2540 		queue_work(system_long_wq, &target->tl_err_work);
2541 		break;
2542 
2543 	case IB_CM_TIMEWAIT_EXIT:
2544 		shost_printk(KERN_ERR, target->scsi_host,
2545 			     PFX "connection closed\n");
2546 		comp = 1;
2547 
2548 		ch->status = 0;
2549 		break;
2550 
2551 	case IB_CM_MRA_RECEIVED:
2552 	case IB_CM_DREQ_ERROR:
2553 	case IB_CM_DREP_RECEIVED:
2554 		break;
2555 
2556 	default:
2557 		shost_printk(KERN_WARNING, target->scsi_host,
2558 			     PFX "Unhandled CM event %d\n", event->event);
2559 		break;
2560 	}
2561 
2562 	if (comp)
2563 		complete(&ch->done);
2564 
2565 	return 0;
2566 }
2567 
srp_rdma_cm_rej_handler(struct srp_rdma_ch *ch, struct rdma_cm_event *event)2568 static void srp_rdma_cm_rej_handler(struct srp_rdma_ch *ch,
2569 				    struct rdma_cm_event *event)
2570 {
2571 	struct srp_target_port *target = ch->target;
2572 	struct Scsi_Host *shost = target->scsi_host;
2573 	int opcode;
2574 
2575 	switch (event->status) {
2576 	case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2577 		shost_printk(KERN_WARNING, shost,
2578 			    "  REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2579 		ch->status = -ECONNRESET;
2580 		break;
2581 
2582 	case IB_CM_REJ_CONSUMER_DEFINED:
2583 		opcode = *(u8 *) event->param.conn.private_data;
2584 		if (opcode == SRP_LOGIN_REJ) {
2585 			struct srp_login_rej *rej =
2586 				(struct srp_login_rej *)
2587 				event->param.conn.private_data;
2588 			u32 reason = be32_to_cpu(rej->reason);
2589 
2590 			if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2591 				shost_printk(KERN_WARNING, shost,
2592 					     PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2593 			else
2594 				shost_printk(KERN_WARNING, shost,
2595 					    PFX "SRP LOGIN REJECTED, reason 0x%08x\n", reason);
2596 		} else {
2597 			shost_printk(KERN_WARNING, shost,
2598 				     "  REJ reason: IB_CM_REJ_CONSUMER_DEFINED, opcode 0x%02x\n",
2599 				     opcode);
2600 		}
2601 		ch->status = -ECONNRESET;
2602 		break;
2603 
2604 	case IB_CM_REJ_STALE_CONN:
2605 		shost_printk(KERN_WARNING, shost,
2606 			     "  REJ reason: stale connection\n");
2607 		ch->status = SRP_STALE_CONN;
2608 		break;
2609 
2610 	default:
2611 		shost_printk(KERN_WARNING, shost, "  REJ reason 0x%x\n",
2612 			     event->status);
2613 		ch->status = -ECONNRESET;
2614 		break;
2615 	}
2616 }
2617 
srp_rdma_cm_handler(struct rdma_cm_id *cm_id, struct rdma_cm_event *event)2618 static int srp_rdma_cm_handler(struct rdma_cm_id *cm_id,
2619 			       struct rdma_cm_event *event)
2620 {
2621 	struct srp_rdma_ch *ch = cm_id->context;
2622 	struct srp_target_port *target = ch->target;
2623 	int comp = 0;
2624 
2625 	switch (event->event) {
2626 	case RDMA_CM_EVENT_ADDR_RESOLVED:
2627 		ch->status = 0;
2628 		comp = 1;
2629 		break;
2630 
2631 	case RDMA_CM_EVENT_ADDR_ERROR:
2632 		ch->status = -ENXIO;
2633 		comp = 1;
2634 		break;
2635 
2636 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
2637 		ch->status = 0;
2638 		comp = 1;
2639 		break;
2640 
2641 	case RDMA_CM_EVENT_ROUTE_ERROR:
2642 	case RDMA_CM_EVENT_UNREACHABLE:
2643 		ch->status = -EHOSTUNREACH;
2644 		comp = 1;
2645 		break;
2646 
2647 	case RDMA_CM_EVENT_CONNECT_ERROR:
2648 		shost_printk(KERN_DEBUG, target->scsi_host,
2649 			     PFX "Sending CM REQ failed\n");
2650 		comp = 1;
2651 		ch->status = -ECONNRESET;
2652 		break;
2653 
2654 	case RDMA_CM_EVENT_ESTABLISHED:
2655 		comp = 1;
2656 		srp_cm_rep_handler(NULL, event->param.conn.private_data, ch);
2657 		break;
2658 
2659 	case RDMA_CM_EVENT_REJECTED:
2660 		shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2661 		comp = 1;
2662 
2663 		srp_rdma_cm_rej_handler(ch, event);
2664 		break;
2665 
2666 	case RDMA_CM_EVENT_DISCONNECTED:
2667 		if (ch->connected) {
2668 			shost_printk(KERN_WARNING, target->scsi_host,
2669 				     PFX "received DREQ\n");
2670 			rdma_disconnect(ch->rdma_cm.cm_id);
2671 			comp = 1;
2672 			ch->status = 0;
2673 			queue_work(system_long_wq, &target->tl_err_work);
2674 		}
2675 		break;
2676 
2677 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2678 		shost_printk(KERN_ERR, target->scsi_host,
2679 			     PFX "connection closed\n");
2680 
2681 		comp = 1;
2682 		ch->status = 0;
2683 		break;
2684 
2685 	default:
2686 		shost_printk(KERN_WARNING, target->scsi_host,
2687 			     PFX "Unhandled CM event %d\n", event->event);
2688 		break;
2689 	}
2690 
2691 	if (comp)
2692 		complete(&ch->done);
2693 
2694 	return 0;
2695 }
2696 
2697 /**
2698  * srp_change_queue_depth - setting device queue depth
2699  * @sdev: scsi device struct
2700  * @qdepth: requested queue depth
2701  *
2702  * Returns queue depth.
2703  */
2704 static int
srp_change_queue_depth(struct scsi_device *sdev, int qdepth)2705 srp_change_queue_depth(struct scsi_device *sdev, int qdepth)
2706 {
2707 	if (!sdev->tagged_supported)
2708 		qdepth = 1;
2709 	return scsi_change_queue_depth(sdev, qdepth);
2710 }
2711 
srp_send_tsk_mgmt(struct srp_rdma_ch *ch, u64 req_tag, u64 lun, u8 func, u8 *status)2712 static int srp_send_tsk_mgmt(struct srp_rdma_ch *ch, u64 req_tag, u64 lun,
2713 			     u8 func, u8 *status)
2714 {
2715 	struct srp_target_port *target = ch->target;
2716 	struct srp_rport *rport = target->rport;
2717 	struct ib_device *dev = target->srp_host->srp_dev->dev;
2718 	struct srp_iu *iu;
2719 	struct srp_tsk_mgmt *tsk_mgmt;
2720 	int res;
2721 
2722 	if (!ch->connected || target->qp_in_error)
2723 		return -1;
2724 
2725 	/*
2726 	 * Lock the rport mutex to avoid that srp_create_ch_ib() is
2727 	 * invoked while a task management function is being sent.
2728 	 */
2729 	mutex_lock(&rport->mutex);
2730 	spin_lock_irq(&ch->lock);
2731 	iu = __srp_get_tx_iu(ch, SRP_IU_TSK_MGMT);
2732 	spin_unlock_irq(&ch->lock);
2733 
2734 	if (!iu) {
2735 		mutex_unlock(&rport->mutex);
2736 
2737 		return -1;
2738 	}
2739 
2740 	iu->num_sge = 1;
2741 
2742 	ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt,
2743 				   DMA_TO_DEVICE);
2744 	tsk_mgmt = iu->buf;
2745 	memset(tsk_mgmt, 0, sizeof *tsk_mgmt);
2746 
2747 	tsk_mgmt->opcode 	= SRP_TSK_MGMT;
2748 	int_to_scsilun(lun, &tsk_mgmt->lun);
2749 	tsk_mgmt->tsk_mgmt_func = func;
2750 	tsk_mgmt->task_tag	= req_tag;
2751 
2752 	spin_lock_irq(&ch->lock);
2753 	ch->tsk_mgmt_tag = (ch->tsk_mgmt_tag + 1) | SRP_TAG_TSK_MGMT;
2754 	tsk_mgmt->tag = ch->tsk_mgmt_tag;
2755 	spin_unlock_irq(&ch->lock);
2756 
2757 	init_completion(&ch->tsk_mgmt_done);
2758 
2759 	ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt,
2760 				      DMA_TO_DEVICE);
2761 	if (srp_post_send(ch, iu, sizeof(*tsk_mgmt))) {
2762 		srp_put_tx_iu(ch, iu, SRP_IU_TSK_MGMT);
2763 		mutex_unlock(&rport->mutex);
2764 
2765 		return -1;
2766 	}
2767 	res = wait_for_completion_timeout(&ch->tsk_mgmt_done,
2768 					msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS));
2769 	if (res > 0 && status)
2770 		*status = ch->tsk_mgmt_status;
2771 	mutex_unlock(&rport->mutex);
2772 
2773 	WARN_ON_ONCE(res < 0);
2774 
2775 	return res > 0 ? 0 : -1;
2776 }
2777 
srp_abort(struct scsi_cmnd *scmnd)2778 static int srp_abort(struct scsi_cmnd *scmnd)
2779 {
2780 	struct srp_target_port *target = host_to_target(scmnd->device->host);
2781 	struct srp_request *req = scsi_cmd_priv(scmnd);
2782 	u32 tag;
2783 	u16 ch_idx;
2784 	struct srp_rdma_ch *ch;
2785 
2786 	shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n");
2787 
2788 	tag = blk_mq_unique_tag(scmnd->request);
2789 	ch_idx = blk_mq_unique_tag_to_hwq(tag);
2790 	if (WARN_ON_ONCE(ch_idx >= target->ch_count))
2791 		return SUCCESS;
2792 	ch = &target->ch[ch_idx];
2793 	if (!srp_claim_req(ch, req, NULL, scmnd))
2794 		return SUCCESS;
2795 	shost_printk(KERN_ERR, target->scsi_host,
2796 		     "Sending SRP abort for tag %#x\n", tag);
2797 	if (srp_send_tsk_mgmt(ch, tag, scmnd->device->lun,
2798 			      SRP_TSK_ABORT_TASK, NULL) == 0) {
2799 		srp_free_req(ch, req, scmnd, 0);
2800 		return SUCCESS;
2801 	}
2802 	if (target->rport->state == SRP_RPORT_LOST)
2803 		return FAST_IO_FAIL;
2804 
2805 	return FAILED;
2806 }
2807 
srp_reset_device(struct scsi_cmnd *scmnd)2808 static int srp_reset_device(struct scsi_cmnd *scmnd)
2809 {
2810 	struct srp_target_port *target = host_to_target(scmnd->device->host);
2811 	struct srp_rdma_ch *ch;
2812 	u8 status;
2813 
2814 	shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n");
2815 
2816 	ch = &target->ch[0];
2817 	if (srp_send_tsk_mgmt(ch, SRP_TAG_NO_REQ, scmnd->device->lun,
2818 			      SRP_TSK_LUN_RESET, &status))
2819 		return FAILED;
2820 	if (status)
2821 		return FAILED;
2822 
2823 	return SUCCESS;
2824 }
2825 
srp_reset_host(struct scsi_cmnd *scmnd)2826 static int srp_reset_host(struct scsi_cmnd *scmnd)
2827 {
2828 	struct srp_target_port *target = host_to_target(scmnd->device->host);
2829 
2830 	shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n");
2831 
2832 	return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED;
2833 }
2834 
srp_target_alloc(struct scsi_target *starget)2835 static int srp_target_alloc(struct scsi_target *starget)
2836 {
2837 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2838 	struct srp_target_port *target = host_to_target(shost);
2839 
2840 	if (target->target_can_queue)
2841 		starget->can_queue = target->target_can_queue;
2842 	return 0;
2843 }
2844 
srp_slave_configure(struct scsi_device *sdev)2845 static int srp_slave_configure(struct scsi_device *sdev)
2846 {
2847 	struct Scsi_Host *shost = sdev->host;
2848 	struct srp_target_port *target = host_to_target(shost);
2849 	struct request_queue *q = sdev->request_queue;
2850 	unsigned long timeout;
2851 
2852 	if (sdev->type == TYPE_DISK) {
2853 		timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies);
2854 		blk_queue_rq_timeout(q, timeout);
2855 	}
2856 
2857 	return 0;
2858 }
2859 
show_id_ext(struct device *dev, struct device_attribute *attr, char *buf)2860 static ssize_t show_id_ext(struct device *dev, struct device_attribute *attr,
2861 			   char *buf)
2862 {
2863 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2864 
2865 	return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->id_ext));
2866 }
2867 
show_ioc_guid(struct device *dev, struct device_attribute *attr, char *buf)2868 static ssize_t show_ioc_guid(struct device *dev, struct device_attribute *attr,
2869 			     char *buf)
2870 {
2871 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2872 
2873 	return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->ioc_guid));
2874 }
2875 
show_service_id(struct device *dev, struct device_attribute *attr, char *buf)2876 static ssize_t show_service_id(struct device *dev,
2877 			       struct device_attribute *attr, char *buf)
2878 {
2879 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2880 
2881 	if (target->using_rdma_cm)
2882 		return -ENOENT;
2883 	return sprintf(buf, "0x%016llx\n",
2884 		       be64_to_cpu(target->ib_cm.service_id));
2885 }
2886 
show_pkey(struct device *dev, struct device_attribute *attr, char *buf)2887 static ssize_t show_pkey(struct device *dev, struct device_attribute *attr,
2888 			 char *buf)
2889 {
2890 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2891 
2892 	if (target->using_rdma_cm)
2893 		return -ENOENT;
2894 	return sprintf(buf, "0x%04x\n", be16_to_cpu(target->ib_cm.pkey));
2895 }
2896 
show_sgid(struct device *dev, struct device_attribute *attr, char *buf)2897 static ssize_t show_sgid(struct device *dev, struct device_attribute *attr,
2898 			 char *buf)
2899 {
2900 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2901 
2902 	return sprintf(buf, "%pI6\n", target->sgid.raw);
2903 }
2904 
show_dgid(struct device *dev, struct device_attribute *attr, char *buf)2905 static ssize_t show_dgid(struct device *dev, struct device_attribute *attr,
2906 			 char *buf)
2907 {
2908 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2909 	struct srp_rdma_ch *ch = &target->ch[0];
2910 
2911 	if (target->using_rdma_cm)
2912 		return -ENOENT;
2913 	return sprintf(buf, "%pI6\n", ch->ib_cm.path.dgid.raw);
2914 }
2915 
show_orig_dgid(struct device *dev, struct device_attribute *attr, char *buf)2916 static ssize_t show_orig_dgid(struct device *dev,
2917 			      struct device_attribute *attr, char *buf)
2918 {
2919 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2920 
2921 	if (target->using_rdma_cm)
2922 		return -ENOENT;
2923 	return sprintf(buf, "%pI6\n", target->ib_cm.orig_dgid.raw);
2924 }
2925 
show_req_lim(struct device *dev, struct device_attribute *attr, char *buf)2926 static ssize_t show_req_lim(struct device *dev,
2927 			    struct device_attribute *attr, char *buf)
2928 {
2929 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2930 	struct srp_rdma_ch *ch;
2931 	int i, req_lim = INT_MAX;
2932 
2933 	for (i = 0; i < target->ch_count; i++) {
2934 		ch = &target->ch[i];
2935 		req_lim = min(req_lim, ch->req_lim);
2936 	}
2937 	return sprintf(buf, "%d\n", req_lim);
2938 }
2939 
show_zero_req_lim(struct device *dev, struct device_attribute *attr, char *buf)2940 static ssize_t show_zero_req_lim(struct device *dev,
2941 				 struct device_attribute *attr, char *buf)
2942 {
2943 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2944 
2945 	return sprintf(buf, "%d\n", target->zero_req_lim);
2946 }
2947 
show_local_ib_port(struct device *dev, struct device_attribute *attr, char *buf)2948 static ssize_t show_local_ib_port(struct device *dev,
2949 				  struct device_attribute *attr, char *buf)
2950 {
2951 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2952 
2953 	return sprintf(buf, "%d\n", target->srp_host->port);
2954 }
2955 
show_local_ib_device(struct device *dev, struct device_attribute *attr, char *buf)2956 static ssize_t show_local_ib_device(struct device *dev,
2957 				    struct device_attribute *attr, char *buf)
2958 {
2959 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2960 
2961 	return sprintf(buf, "%s\n",
2962 		       dev_name(&target->srp_host->srp_dev->dev->dev));
2963 }
2964 
show_ch_count(struct device *dev, struct device_attribute *attr, char *buf)2965 static ssize_t show_ch_count(struct device *dev, struct device_attribute *attr,
2966 			     char *buf)
2967 {
2968 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2969 
2970 	return sprintf(buf, "%d\n", target->ch_count);
2971 }
2972 
show_comp_vector(struct device *dev, struct device_attribute *attr, char *buf)2973 static ssize_t show_comp_vector(struct device *dev,
2974 				struct device_attribute *attr, char *buf)
2975 {
2976 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2977 
2978 	return sprintf(buf, "%d\n", target->comp_vector);
2979 }
2980 
show_tl_retry_count(struct device *dev, struct device_attribute *attr, char *buf)2981 static ssize_t show_tl_retry_count(struct device *dev,
2982 				   struct device_attribute *attr, char *buf)
2983 {
2984 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2985 
2986 	return sprintf(buf, "%d\n", target->tl_retry_count);
2987 }
2988 
show_cmd_sg_entries(struct device *dev, struct device_attribute *attr, char *buf)2989 static ssize_t show_cmd_sg_entries(struct device *dev,
2990 				   struct device_attribute *attr, char *buf)
2991 {
2992 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2993 
2994 	return sprintf(buf, "%u\n", target->cmd_sg_cnt);
2995 }
2996 
show_allow_ext_sg(struct device *dev, struct device_attribute *attr, char *buf)2997 static ssize_t show_allow_ext_sg(struct device *dev,
2998 				 struct device_attribute *attr, char *buf)
2999 {
3000 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
3001 
3002 	return sprintf(buf, "%s\n", target->allow_ext_sg ? "true" : "false");
3003 }
3004 
3005 static DEVICE_ATTR(id_ext,	    S_IRUGO, show_id_ext,	   NULL);
3006 static DEVICE_ATTR(ioc_guid,	    S_IRUGO, show_ioc_guid,	   NULL);
3007 static DEVICE_ATTR(service_id,	    S_IRUGO, show_service_id,	   NULL);
3008 static DEVICE_ATTR(pkey,	    S_IRUGO, show_pkey,		   NULL);
3009 static DEVICE_ATTR(sgid,	    S_IRUGO, show_sgid,		   NULL);
3010 static DEVICE_ATTR(dgid,	    S_IRUGO, show_dgid,		   NULL);
3011 static DEVICE_ATTR(orig_dgid,	    S_IRUGO, show_orig_dgid,	   NULL);
3012 static DEVICE_ATTR(req_lim,         S_IRUGO, show_req_lim,         NULL);
3013 static DEVICE_ATTR(zero_req_lim,    S_IRUGO, show_zero_req_lim,	   NULL);
3014 static DEVICE_ATTR(local_ib_port,   S_IRUGO, show_local_ib_port,   NULL);
3015 static DEVICE_ATTR(local_ib_device, S_IRUGO, show_local_ib_device, NULL);
3016 static DEVICE_ATTR(ch_count,        S_IRUGO, show_ch_count,        NULL);
3017 static DEVICE_ATTR(comp_vector,     S_IRUGO, show_comp_vector,     NULL);
3018 static DEVICE_ATTR(tl_retry_count,  S_IRUGO, show_tl_retry_count,  NULL);
3019 static DEVICE_ATTR(cmd_sg_entries,  S_IRUGO, show_cmd_sg_entries,  NULL);
3020 static DEVICE_ATTR(allow_ext_sg,    S_IRUGO, show_allow_ext_sg,    NULL);
3021 
3022 static struct device_attribute *srp_host_attrs[] = {
3023 	&dev_attr_id_ext,
3024 	&dev_attr_ioc_guid,
3025 	&dev_attr_service_id,
3026 	&dev_attr_pkey,
3027 	&dev_attr_sgid,
3028 	&dev_attr_dgid,
3029 	&dev_attr_orig_dgid,
3030 	&dev_attr_req_lim,
3031 	&dev_attr_zero_req_lim,
3032 	&dev_attr_local_ib_port,
3033 	&dev_attr_local_ib_device,
3034 	&dev_attr_ch_count,
3035 	&dev_attr_comp_vector,
3036 	&dev_attr_tl_retry_count,
3037 	&dev_attr_cmd_sg_entries,
3038 	&dev_attr_allow_ext_sg,
3039 	NULL
3040 };
3041 
3042 static struct scsi_host_template srp_template = {
3043 	.module				= THIS_MODULE,
3044 	.name				= "InfiniBand SRP initiator",
3045 	.proc_name			= DRV_NAME,
3046 	.target_alloc			= srp_target_alloc,
3047 	.slave_configure		= srp_slave_configure,
3048 	.info				= srp_target_info,
3049 	.init_cmd_priv			= srp_init_cmd_priv,
3050 	.exit_cmd_priv			= srp_exit_cmd_priv,
3051 	.queuecommand			= srp_queuecommand,
3052 	.change_queue_depth             = srp_change_queue_depth,
3053 	.eh_timed_out			= srp_timed_out,
3054 	.eh_abort_handler		= srp_abort,
3055 	.eh_device_reset_handler	= srp_reset_device,
3056 	.eh_host_reset_handler		= srp_reset_host,
3057 	.skip_settle_delay		= true,
3058 	.sg_tablesize			= SRP_DEF_SG_TABLESIZE,
3059 	.can_queue			= SRP_DEFAULT_CMD_SQ_SIZE,
3060 	.this_id			= -1,
3061 	.cmd_per_lun			= SRP_DEFAULT_CMD_SQ_SIZE,
3062 	.shost_attrs			= srp_host_attrs,
3063 	.track_queue_depth		= 1,
3064 	.cmd_size			= sizeof(struct srp_request),
3065 };
3066 
srp_sdev_count(struct Scsi_Host *host)3067 static int srp_sdev_count(struct Scsi_Host *host)
3068 {
3069 	struct scsi_device *sdev;
3070 	int c = 0;
3071 
3072 	shost_for_each_device(sdev, host)
3073 		c++;
3074 
3075 	return c;
3076 }
3077 
3078 /*
3079  * Return values:
3080  * < 0 upon failure. Caller is responsible for SRP target port cleanup.
3081  * 0 and target->state == SRP_TARGET_REMOVED if asynchronous target port
3082  *    removal has been scheduled.
3083  * 0 and target->state != SRP_TARGET_REMOVED upon success.
3084  */
srp_add_target(struct srp_host *host, struct srp_target_port *target)3085 static int srp_add_target(struct srp_host *host, struct srp_target_port *target)
3086 {
3087 	struct srp_rport_identifiers ids;
3088 	struct srp_rport *rport;
3089 
3090 	target->state = SRP_TARGET_SCANNING;
3091 	sprintf(target->target_name, "SRP.T10:%016llX",
3092 		be64_to_cpu(target->id_ext));
3093 
3094 	if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dev.parent))
3095 		return -ENODEV;
3096 
3097 	memcpy(ids.port_id, &target->id_ext, 8);
3098 	memcpy(ids.port_id + 8, &target->ioc_guid, 8);
3099 	ids.roles = SRP_RPORT_ROLE_TARGET;
3100 	rport = srp_rport_add(target->scsi_host, &ids);
3101 	if (IS_ERR(rport)) {
3102 		scsi_remove_host(target->scsi_host);
3103 		return PTR_ERR(rport);
3104 	}
3105 
3106 	rport->lld_data = target;
3107 	target->rport = rport;
3108 
3109 	spin_lock(&host->target_lock);
3110 	list_add_tail(&target->list, &host->target_list);
3111 	spin_unlock(&host->target_lock);
3112 
3113 	scsi_scan_target(&target->scsi_host->shost_gendev,
3114 			 0, target->scsi_id, SCAN_WILD_CARD, SCSI_SCAN_INITIAL);
3115 
3116 	if (srp_connected_ch(target) < target->ch_count ||
3117 	    target->qp_in_error) {
3118 		shost_printk(KERN_INFO, target->scsi_host,
3119 			     PFX "SCSI scan failed - removing SCSI host\n");
3120 		srp_queue_remove_work(target);
3121 		goto out;
3122 	}
3123 
3124 	pr_debug("%s: SCSI scan succeeded - detected %d LUNs\n",
3125 		 dev_name(&target->scsi_host->shost_gendev),
3126 		 srp_sdev_count(target->scsi_host));
3127 
3128 	spin_lock_irq(&target->lock);
3129 	if (target->state == SRP_TARGET_SCANNING)
3130 		target->state = SRP_TARGET_LIVE;
3131 	spin_unlock_irq(&target->lock);
3132 
3133 out:
3134 	return 0;
3135 }
3136 
srp_release_dev(struct device *dev)3137 static void srp_release_dev(struct device *dev)
3138 {
3139 	struct srp_host *host =
3140 		container_of(dev, struct srp_host, dev);
3141 
3142 	complete(&host->released);
3143 }
3144 
3145 static struct class srp_class = {
3146 	.name    = "infiniband_srp",
3147 	.dev_release = srp_release_dev
3148 };
3149 
3150 /**
3151  * srp_conn_unique() - check whether the connection to a target is unique
3152  * @host:   SRP host.
3153  * @target: SRP target port.
3154  */
srp_conn_unique(struct srp_host *host, struct srp_target_port *target)3155 static bool srp_conn_unique(struct srp_host *host,
3156 			    struct srp_target_port *target)
3157 {
3158 	struct srp_target_port *t;
3159 	bool ret = false;
3160 
3161 	if (target->state == SRP_TARGET_REMOVED)
3162 		goto out;
3163 
3164 	ret = true;
3165 
3166 	spin_lock(&host->target_lock);
3167 	list_for_each_entry(t, &host->target_list, list) {
3168 		if (t != target &&
3169 		    target->id_ext == t->id_ext &&
3170 		    target->ioc_guid == t->ioc_guid &&
3171 		    target->initiator_ext == t->initiator_ext) {
3172 			ret = false;
3173 			break;
3174 		}
3175 	}
3176 	spin_unlock(&host->target_lock);
3177 
3178 out:
3179 	return ret;
3180 }
3181 
3182 /*
3183  * Target ports are added by writing
3184  *
3185  *     id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>,
3186  *     pkey=<P_Key>,service_id=<service ID>
3187  * or
3188  *     id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,
3189  *     [src=<IPv4 address>,]dest=<IPv4 address>:<port number>
3190  *
3191  * to the add_target sysfs attribute.
3192  */
3193 enum {
3194 	SRP_OPT_ERR		= 0,
3195 	SRP_OPT_ID_EXT		= 1 << 0,
3196 	SRP_OPT_IOC_GUID	= 1 << 1,
3197 	SRP_OPT_DGID		= 1 << 2,
3198 	SRP_OPT_PKEY		= 1 << 3,
3199 	SRP_OPT_SERVICE_ID	= 1 << 4,
3200 	SRP_OPT_MAX_SECT	= 1 << 5,
3201 	SRP_OPT_MAX_CMD_PER_LUN	= 1 << 6,
3202 	SRP_OPT_IO_CLASS	= 1 << 7,
3203 	SRP_OPT_INITIATOR_EXT	= 1 << 8,
3204 	SRP_OPT_CMD_SG_ENTRIES	= 1 << 9,
3205 	SRP_OPT_ALLOW_EXT_SG	= 1 << 10,
3206 	SRP_OPT_SG_TABLESIZE	= 1 << 11,
3207 	SRP_OPT_COMP_VECTOR	= 1 << 12,
3208 	SRP_OPT_TL_RETRY_COUNT	= 1 << 13,
3209 	SRP_OPT_QUEUE_SIZE	= 1 << 14,
3210 	SRP_OPT_IP_SRC		= 1 << 15,
3211 	SRP_OPT_IP_DEST		= 1 << 16,
3212 	SRP_OPT_TARGET_CAN_QUEUE= 1 << 17,
3213 	SRP_OPT_MAX_IT_IU_SIZE  = 1 << 18,
3214 	SRP_OPT_CH_COUNT	= 1 << 19,
3215 };
3216 
3217 static unsigned int srp_opt_mandatory[] = {
3218 	SRP_OPT_ID_EXT		|
3219 	SRP_OPT_IOC_GUID	|
3220 	SRP_OPT_DGID		|
3221 	SRP_OPT_PKEY		|
3222 	SRP_OPT_SERVICE_ID,
3223 	SRP_OPT_ID_EXT		|
3224 	SRP_OPT_IOC_GUID	|
3225 	SRP_OPT_IP_DEST,
3226 };
3227 
3228 static const match_table_t srp_opt_tokens = {
3229 	{ SRP_OPT_ID_EXT,		"id_ext=%s" 		},
3230 	{ SRP_OPT_IOC_GUID,		"ioc_guid=%s" 		},
3231 	{ SRP_OPT_DGID,			"dgid=%s" 		},
3232 	{ SRP_OPT_PKEY,			"pkey=%x" 		},
3233 	{ SRP_OPT_SERVICE_ID,		"service_id=%s"		},
3234 	{ SRP_OPT_MAX_SECT,		"max_sect=%d" 		},
3235 	{ SRP_OPT_MAX_CMD_PER_LUN,	"max_cmd_per_lun=%d" 	},
3236 	{ SRP_OPT_TARGET_CAN_QUEUE,	"target_can_queue=%d"	},
3237 	{ SRP_OPT_IO_CLASS,		"io_class=%x"		},
3238 	{ SRP_OPT_INITIATOR_EXT,	"initiator_ext=%s"	},
3239 	{ SRP_OPT_CMD_SG_ENTRIES,	"cmd_sg_entries=%u"	},
3240 	{ SRP_OPT_ALLOW_EXT_SG,		"allow_ext_sg=%u"	},
3241 	{ SRP_OPT_SG_TABLESIZE,		"sg_tablesize=%u"	},
3242 	{ SRP_OPT_COMP_VECTOR,		"comp_vector=%u"	},
3243 	{ SRP_OPT_TL_RETRY_COUNT,	"tl_retry_count=%u"	},
3244 	{ SRP_OPT_QUEUE_SIZE,		"queue_size=%d"		},
3245 	{ SRP_OPT_IP_SRC,		"src=%s"		},
3246 	{ SRP_OPT_IP_DEST,		"dest=%s"		},
3247 	{ SRP_OPT_MAX_IT_IU_SIZE,	"max_it_iu_size=%d"	},
3248 	{ SRP_OPT_CH_COUNT,		"ch_count=%u",		},
3249 	{ SRP_OPT_ERR,			NULL 			}
3250 };
3251 
3252 /**
3253  * srp_parse_in - parse an IP address and port number combination
3254  * @net:	   [in]  Network namespace.
3255  * @sa:		   [out] Address family, IP address and port number.
3256  * @addr_port_str: [in]  IP address and port number.
3257  * @has_port:	   [out] Whether or not @addr_port_str includes a port number.
3258  *
3259  * Parse the following address formats:
3260  * - IPv4: <ip_address>:<port>, e.g. 1.2.3.4:5.
3261  * - IPv6: \[<ipv6_address>\]:<port>, e.g. [1::2:3%4]:5.
3262  */
srp_parse_in(struct net *net, struct sockaddr_storage *sa, const char *addr_port_str, bool *has_port)3263 static int srp_parse_in(struct net *net, struct sockaddr_storage *sa,
3264 			const char *addr_port_str, bool *has_port)
3265 {
3266 	char *addr_end, *addr = kstrdup(addr_port_str, GFP_KERNEL);
3267 	char *port_str;
3268 	int ret;
3269 
3270 	if (!addr)
3271 		return -ENOMEM;
3272 	port_str = strrchr(addr, ':');
3273 	if (port_str && strchr(port_str, ']'))
3274 		port_str = NULL;
3275 	if (port_str)
3276 		*port_str++ = '\0';
3277 	if (has_port)
3278 		*has_port = port_str != NULL;
3279 	ret = inet_pton_with_scope(net, AF_INET, addr, port_str, sa);
3280 	if (ret && addr[0]) {
3281 		addr_end = addr + strlen(addr) - 1;
3282 		if (addr[0] == '[' && *addr_end == ']') {
3283 			*addr_end = '\0';
3284 			ret = inet_pton_with_scope(net, AF_INET6, addr + 1,
3285 						   port_str, sa);
3286 		}
3287 	}
3288 	kfree(addr);
3289 	pr_debug("%s -> %pISpfsc\n", addr_port_str, sa);
3290 	return ret;
3291 }
3292 
srp_parse_options(struct net *net, const char *buf, struct srp_target_port *target)3293 static int srp_parse_options(struct net *net, const char *buf,
3294 			     struct srp_target_port *target)
3295 {
3296 	char *options, *sep_opt;
3297 	char *p;
3298 	substring_t args[MAX_OPT_ARGS];
3299 	unsigned long long ull;
3300 	bool has_port;
3301 	int opt_mask = 0;
3302 	int token;
3303 	int ret = -EINVAL;
3304 	int i;
3305 
3306 	options = kstrdup(buf, GFP_KERNEL);
3307 	if (!options)
3308 		return -ENOMEM;
3309 
3310 	sep_opt = options;
3311 	while ((p = strsep(&sep_opt, ",\n")) != NULL) {
3312 		if (!*p)
3313 			continue;
3314 
3315 		token = match_token(p, srp_opt_tokens, args);
3316 		opt_mask |= token;
3317 
3318 		switch (token) {
3319 		case SRP_OPT_ID_EXT:
3320 			p = match_strdup(args);
3321 			if (!p) {
3322 				ret = -ENOMEM;
3323 				goto out;
3324 			}
3325 			ret = kstrtoull(p, 16, &ull);
3326 			if (ret) {
3327 				pr_warn("invalid id_ext parameter '%s'\n", p);
3328 				kfree(p);
3329 				goto out;
3330 			}
3331 			target->id_ext = cpu_to_be64(ull);
3332 			kfree(p);
3333 			break;
3334 
3335 		case SRP_OPT_IOC_GUID:
3336 			p = match_strdup(args);
3337 			if (!p) {
3338 				ret = -ENOMEM;
3339 				goto out;
3340 			}
3341 			ret = kstrtoull(p, 16, &ull);
3342 			if (ret) {
3343 				pr_warn("invalid ioc_guid parameter '%s'\n", p);
3344 				kfree(p);
3345 				goto out;
3346 			}
3347 			target->ioc_guid = cpu_to_be64(ull);
3348 			kfree(p);
3349 			break;
3350 
3351 		case SRP_OPT_DGID:
3352 			p = match_strdup(args);
3353 			if (!p) {
3354 				ret = -ENOMEM;
3355 				goto out;
3356 			}
3357 			if (strlen(p) != 32) {
3358 				pr_warn("bad dest GID parameter '%s'\n", p);
3359 				kfree(p);
3360 				goto out;
3361 			}
3362 
3363 			ret = hex2bin(target->ib_cm.orig_dgid.raw, p, 16);
3364 			kfree(p);
3365 			if (ret < 0)
3366 				goto out;
3367 			break;
3368 
3369 		case SRP_OPT_PKEY:
3370 			ret = match_hex(args, &token);
3371 			if (ret) {
3372 				pr_warn("bad P_Key parameter '%s'\n", p);
3373 				goto out;
3374 			}
3375 			target->ib_cm.pkey = cpu_to_be16(token);
3376 			break;
3377 
3378 		case SRP_OPT_SERVICE_ID:
3379 			p = match_strdup(args);
3380 			if (!p) {
3381 				ret = -ENOMEM;
3382 				goto out;
3383 			}
3384 			ret = kstrtoull(p, 16, &ull);
3385 			if (ret) {
3386 				pr_warn("bad service_id parameter '%s'\n", p);
3387 				kfree(p);
3388 				goto out;
3389 			}
3390 			target->ib_cm.service_id = cpu_to_be64(ull);
3391 			kfree(p);
3392 			break;
3393 
3394 		case SRP_OPT_IP_SRC:
3395 			p = match_strdup(args);
3396 			if (!p) {
3397 				ret = -ENOMEM;
3398 				goto out;
3399 			}
3400 			ret = srp_parse_in(net, &target->rdma_cm.src.ss, p,
3401 					   NULL);
3402 			if (ret < 0) {
3403 				pr_warn("bad source parameter '%s'\n", p);
3404 				kfree(p);
3405 				goto out;
3406 			}
3407 			target->rdma_cm.src_specified = true;
3408 			kfree(p);
3409 			break;
3410 
3411 		case SRP_OPT_IP_DEST:
3412 			p = match_strdup(args);
3413 			if (!p) {
3414 				ret = -ENOMEM;
3415 				goto out;
3416 			}
3417 			ret = srp_parse_in(net, &target->rdma_cm.dst.ss, p,
3418 					   &has_port);
3419 			if (!has_port)
3420 				ret = -EINVAL;
3421 			if (ret < 0) {
3422 				pr_warn("bad dest parameter '%s'\n", p);
3423 				kfree(p);
3424 				goto out;
3425 			}
3426 			target->using_rdma_cm = true;
3427 			kfree(p);
3428 			break;
3429 
3430 		case SRP_OPT_MAX_SECT:
3431 			ret = match_int(args, &token);
3432 			if (ret) {
3433 				pr_warn("bad max sect parameter '%s'\n", p);
3434 				goto out;
3435 			}
3436 			target->scsi_host->max_sectors = token;
3437 			break;
3438 
3439 		case SRP_OPT_QUEUE_SIZE:
3440 			ret = match_int(args, &token);
3441 			if (ret) {
3442 				pr_warn("match_int() failed for queue_size parameter '%s', Error %d\n",
3443 					p, ret);
3444 				goto out;
3445 			}
3446 			if (token < 1) {
3447 				pr_warn("bad queue_size parameter '%s'\n", p);
3448 				ret = -EINVAL;
3449 				goto out;
3450 			}
3451 			target->scsi_host->can_queue = token;
3452 			target->queue_size = token + SRP_RSP_SQ_SIZE +
3453 					     SRP_TSK_MGMT_SQ_SIZE;
3454 			if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3455 				target->scsi_host->cmd_per_lun = token;
3456 			break;
3457 
3458 		case SRP_OPT_MAX_CMD_PER_LUN:
3459 			ret = match_int(args, &token);
3460 			if (ret) {
3461 				pr_warn("match_int() failed for max cmd_per_lun parameter '%s', Error %d\n",
3462 					p, ret);
3463 				goto out;
3464 			}
3465 			if (token < 1) {
3466 				pr_warn("bad max cmd_per_lun parameter '%s'\n",
3467 					p);
3468 				ret = -EINVAL;
3469 				goto out;
3470 			}
3471 			target->scsi_host->cmd_per_lun = token;
3472 			break;
3473 
3474 		case SRP_OPT_TARGET_CAN_QUEUE:
3475 			ret = match_int(args, &token);
3476 			if (ret) {
3477 				pr_warn("match_int() failed for max target_can_queue parameter '%s', Error %d\n",
3478 					p, ret);
3479 				goto out;
3480 			}
3481 			if (token < 1) {
3482 				pr_warn("bad max target_can_queue parameter '%s'\n",
3483 					p);
3484 				ret = -EINVAL;
3485 				goto out;
3486 			}
3487 			target->target_can_queue = token;
3488 			break;
3489 
3490 		case SRP_OPT_IO_CLASS:
3491 			ret = match_hex(args, &token);
3492 			if (ret) {
3493 				pr_warn("bad IO class parameter '%s'\n", p);
3494 				goto out;
3495 			}
3496 			if (token != SRP_REV10_IB_IO_CLASS &&
3497 			    token != SRP_REV16A_IB_IO_CLASS) {
3498 				pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n",
3499 					token, SRP_REV10_IB_IO_CLASS,
3500 					SRP_REV16A_IB_IO_CLASS);
3501 				ret = -EINVAL;
3502 				goto out;
3503 			}
3504 			target->io_class = token;
3505 			break;
3506 
3507 		case SRP_OPT_INITIATOR_EXT:
3508 			p = match_strdup(args);
3509 			if (!p) {
3510 				ret = -ENOMEM;
3511 				goto out;
3512 			}
3513 			ret = kstrtoull(p, 16, &ull);
3514 			if (ret) {
3515 				pr_warn("bad initiator_ext value '%s'\n", p);
3516 				kfree(p);
3517 				goto out;
3518 			}
3519 			target->initiator_ext = cpu_to_be64(ull);
3520 			kfree(p);
3521 			break;
3522 
3523 		case SRP_OPT_CMD_SG_ENTRIES:
3524 			ret = match_int(args, &token);
3525 			if (ret) {
3526 				pr_warn("match_int() failed for max cmd_sg_entries parameter '%s', Error %d\n",
3527 					p, ret);
3528 				goto out;
3529 			}
3530 			if (token < 1 || token > 255) {
3531 				pr_warn("bad max cmd_sg_entries parameter '%s'\n",
3532 					p);
3533 				ret = -EINVAL;
3534 				goto out;
3535 			}
3536 			target->cmd_sg_cnt = token;
3537 			break;
3538 
3539 		case SRP_OPT_ALLOW_EXT_SG:
3540 			ret = match_int(args, &token);
3541 			if (ret) {
3542 				pr_warn("bad allow_ext_sg parameter '%s'\n", p);
3543 				goto out;
3544 			}
3545 			target->allow_ext_sg = !!token;
3546 			break;
3547 
3548 		case SRP_OPT_SG_TABLESIZE:
3549 			ret = match_int(args, &token);
3550 			if (ret) {
3551 				pr_warn("match_int() failed for max sg_tablesize parameter '%s', Error %d\n",
3552 					p, ret);
3553 				goto out;
3554 			}
3555 			if (token < 1 || token > SG_MAX_SEGMENTS) {
3556 				pr_warn("bad max sg_tablesize parameter '%s'\n",
3557 					p);
3558 				ret = -EINVAL;
3559 				goto out;
3560 			}
3561 			target->sg_tablesize = token;
3562 			break;
3563 
3564 		case SRP_OPT_COMP_VECTOR:
3565 			ret = match_int(args, &token);
3566 			if (ret) {
3567 				pr_warn("match_int() failed for comp_vector parameter '%s', Error %d\n",
3568 					p, ret);
3569 				goto out;
3570 			}
3571 			if (token < 0) {
3572 				pr_warn("bad comp_vector parameter '%s'\n", p);
3573 				ret = -EINVAL;
3574 				goto out;
3575 			}
3576 			target->comp_vector = token;
3577 			break;
3578 
3579 		case SRP_OPT_TL_RETRY_COUNT:
3580 			ret = match_int(args, &token);
3581 			if (ret) {
3582 				pr_warn("match_int() failed for tl_retry_count parameter '%s', Error %d\n",
3583 					p, ret);
3584 				goto out;
3585 			}
3586 			if (token < 2 || token > 7) {
3587 				pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n",
3588 					p);
3589 				ret = -EINVAL;
3590 				goto out;
3591 			}
3592 			target->tl_retry_count = token;
3593 			break;
3594 
3595 		case SRP_OPT_MAX_IT_IU_SIZE:
3596 			ret = match_int(args, &token);
3597 			if (ret) {
3598 				pr_warn("match_int() failed for max it_iu_size parameter '%s', Error %d\n",
3599 					p, ret);
3600 				goto out;
3601 			}
3602 			if (token < 0) {
3603 				pr_warn("bad maximum initiator to target IU size '%s'\n", p);
3604 				ret = -EINVAL;
3605 				goto out;
3606 			}
3607 			target->max_it_iu_size = token;
3608 			break;
3609 
3610 		case SRP_OPT_CH_COUNT:
3611 			ret = match_int(args, &token);
3612 			if (ret) {
3613 				pr_warn("match_int() failed for channel count parameter '%s', Error %d\n",
3614 					p, ret);
3615 				goto out;
3616 			}
3617 			if (token < 1) {
3618 				pr_warn("bad channel count %s\n", p);
3619 				ret = -EINVAL;
3620 				goto out;
3621 			}
3622 			target->ch_count = token;
3623 			break;
3624 
3625 		default:
3626 			pr_warn("unknown parameter or missing value '%s' in target creation request\n",
3627 				p);
3628 			ret = -EINVAL;
3629 			goto out;
3630 		}
3631 	}
3632 
3633 	for (i = 0; i < ARRAY_SIZE(srp_opt_mandatory); i++) {
3634 		if ((opt_mask & srp_opt_mandatory[i]) == srp_opt_mandatory[i]) {
3635 			ret = 0;
3636 			break;
3637 		}
3638 	}
3639 	if (ret)
3640 		pr_warn("target creation request is missing one or more parameters\n");
3641 
3642 	if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue
3643 	    && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3644 		pr_warn("cmd_per_lun = %d > queue_size = %d\n",
3645 			target->scsi_host->cmd_per_lun,
3646 			target->scsi_host->can_queue);
3647 
3648 out:
3649 	kfree(options);
3650 	return ret;
3651 }
3652 
srp_create_target(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)3653 static ssize_t srp_create_target(struct device *dev,
3654 				 struct device_attribute *attr,
3655 				 const char *buf, size_t count)
3656 {
3657 	struct srp_host *host =
3658 		container_of(dev, struct srp_host, dev);
3659 	struct Scsi_Host *target_host;
3660 	struct srp_target_port *target;
3661 	struct srp_rdma_ch *ch;
3662 	struct srp_device *srp_dev = host->srp_dev;
3663 	struct ib_device *ibdev = srp_dev->dev;
3664 	int ret, i, ch_idx;
3665 	unsigned int max_sectors_per_mr, mr_per_cmd = 0;
3666 	bool multich = false;
3667 	uint32_t max_iu_len;
3668 
3669 	target_host = scsi_host_alloc(&srp_template,
3670 				      sizeof (struct srp_target_port));
3671 	if (!target_host)
3672 		return -ENOMEM;
3673 
3674 	target_host->transportt  = ib_srp_transport_template;
3675 	target_host->max_channel = 0;
3676 	target_host->max_id      = 1;
3677 	target_host->max_lun     = -1LL;
3678 	target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb;
3679 	target_host->max_segment_size = ib_dma_max_seg_size(ibdev);
3680 
3681 	if (!(ibdev->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG))
3682 		target_host->virt_boundary_mask = ~srp_dev->mr_page_mask;
3683 
3684 	target = host_to_target(target_host);
3685 
3686 	target->net		= kobj_ns_grab_current(KOBJ_NS_TYPE_NET);
3687 	target->io_class	= SRP_REV16A_IB_IO_CLASS;
3688 	target->scsi_host	= target_host;
3689 	target->srp_host	= host;
3690 	target->lkey		= host->srp_dev->pd->local_dma_lkey;
3691 	target->global_rkey	= host->srp_dev->global_rkey;
3692 	target->cmd_sg_cnt	= cmd_sg_entries;
3693 	target->sg_tablesize	= indirect_sg_entries ? : cmd_sg_entries;
3694 	target->allow_ext_sg	= allow_ext_sg;
3695 	target->tl_retry_count	= 7;
3696 	target->queue_size	= SRP_DEFAULT_QUEUE_SIZE;
3697 
3698 	/*
3699 	 * Avoid that the SCSI host can be removed by srp_remove_target()
3700 	 * before this function returns.
3701 	 */
3702 	scsi_host_get(target->scsi_host);
3703 
3704 	ret = mutex_lock_interruptible(&host->add_target_mutex);
3705 	if (ret < 0)
3706 		goto put;
3707 
3708 	ret = srp_parse_options(target->net, buf, target);
3709 	if (ret)
3710 		goto out;
3711 
3712 	if (!srp_conn_unique(target->srp_host, target)) {
3713 		if (target->using_rdma_cm) {
3714 			shost_printk(KERN_INFO, target->scsi_host,
3715 				     PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;dest=%pIS\n",
3716 				     be64_to_cpu(target->id_ext),
3717 				     be64_to_cpu(target->ioc_guid),
3718 				     &target->rdma_cm.dst);
3719 		} else {
3720 			shost_printk(KERN_INFO, target->scsi_host,
3721 				     PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n",
3722 				     be64_to_cpu(target->id_ext),
3723 				     be64_to_cpu(target->ioc_guid),
3724 				     be64_to_cpu(target->initiator_ext));
3725 		}
3726 		ret = -EEXIST;
3727 		goto out;
3728 	}
3729 
3730 	if (!srp_dev->has_fr && !target->allow_ext_sg &&
3731 	    target->cmd_sg_cnt < target->sg_tablesize) {
3732 		pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n");
3733 		target->sg_tablesize = target->cmd_sg_cnt;
3734 	}
3735 
3736 	if (srp_dev->use_fast_reg) {
3737 		bool gaps_reg = (ibdev->attrs.device_cap_flags &
3738 				 IB_DEVICE_SG_GAPS_REG);
3739 
3740 		max_sectors_per_mr = srp_dev->max_pages_per_mr <<
3741 				  (ilog2(srp_dev->mr_page_size) - 9);
3742 		if (!gaps_reg) {
3743 			/*
3744 			 * FR can only map one HCA page per entry. If the start
3745 			 * address is not aligned on a HCA page boundary two
3746 			 * entries will be used for the head and the tail
3747 			 * although these two entries combined contain at most
3748 			 * one HCA page of data. Hence the "+ 1" in the
3749 			 * calculation below.
3750 			 *
3751 			 * The indirect data buffer descriptor is contiguous
3752 			 * so the memory for that buffer will only be
3753 			 * registered if register_always is true. Hence add
3754 			 * one to mr_per_cmd if register_always has been set.
3755 			 */
3756 			mr_per_cmd = register_always +
3757 				(target->scsi_host->max_sectors + 1 +
3758 				 max_sectors_per_mr - 1) / max_sectors_per_mr;
3759 		} else {
3760 			mr_per_cmd = register_always +
3761 				(target->sg_tablesize +
3762 				 srp_dev->max_pages_per_mr - 1) /
3763 				srp_dev->max_pages_per_mr;
3764 		}
3765 		pr_debug("max_sectors = %u; max_pages_per_mr = %u; mr_page_size = %u; max_sectors_per_mr = %u; mr_per_cmd = %u\n",
3766 			 target->scsi_host->max_sectors, srp_dev->max_pages_per_mr, srp_dev->mr_page_size,
3767 			 max_sectors_per_mr, mr_per_cmd);
3768 	}
3769 
3770 	target_host->sg_tablesize = target->sg_tablesize;
3771 	target->mr_pool_size = target->scsi_host->can_queue * mr_per_cmd;
3772 	target->mr_per_cmd = mr_per_cmd;
3773 	target->indirect_size = target->sg_tablesize *
3774 				sizeof (struct srp_direct_buf);
3775 	max_iu_len = srp_max_it_iu_len(target->cmd_sg_cnt,
3776 				       srp_use_imm_data,
3777 				       target->max_it_iu_size);
3778 
3779 	INIT_WORK(&target->tl_err_work, srp_tl_err_work);
3780 	INIT_WORK(&target->remove_work, srp_remove_work);
3781 	spin_lock_init(&target->lock);
3782 	ret = rdma_query_gid(ibdev, host->port, 0, &target->sgid);
3783 	if (ret)
3784 		goto out;
3785 
3786 	ret = -ENOMEM;
3787 	if (target->ch_count == 0) {
3788 		target->ch_count =
3789 			min(ch_count ?:
3790 				max(4 * num_online_nodes(),
3791 				    ibdev->num_comp_vectors),
3792 				num_online_cpus());
3793 	}
3794 
3795 	target->ch = kcalloc(target->ch_count, sizeof(*target->ch),
3796 			     GFP_KERNEL);
3797 	if (!target->ch)
3798 		goto out;
3799 
3800 	for (ch_idx = 0; ch_idx < target->ch_count; ++ch_idx) {
3801 		ch = &target->ch[ch_idx];
3802 		ch->target = target;
3803 		ch->comp_vector = ch_idx % ibdev->num_comp_vectors;
3804 		spin_lock_init(&ch->lock);
3805 		INIT_LIST_HEAD(&ch->free_tx);
3806 		ret = srp_new_cm_id(ch);
3807 		if (ret)
3808 			goto err_disconnect;
3809 
3810 		ret = srp_create_ch_ib(ch);
3811 		if (ret)
3812 			goto err_disconnect;
3813 
3814 		ret = srp_connect_ch(ch, max_iu_len, multich);
3815 		if (ret) {
3816 			char dst[64];
3817 
3818 			if (target->using_rdma_cm)
3819 				snprintf(dst, sizeof(dst), "%pIS",
3820 					&target->rdma_cm.dst);
3821 			else
3822 				snprintf(dst, sizeof(dst), "%pI6",
3823 					target->ib_cm.orig_dgid.raw);
3824 			shost_printk(KERN_ERR, target->scsi_host,
3825 				PFX "Connection %d/%d to %s failed\n",
3826 				ch_idx,
3827 				target->ch_count, dst);
3828 			if (ch_idx == 0) {
3829 				goto free_ch;
3830 			} else {
3831 				srp_free_ch_ib(target, ch);
3832 				target->ch_count = ch - target->ch;
3833 				goto connected;
3834 			}
3835 		}
3836 		multich = true;
3837 	}
3838 
3839 connected:
3840 	target->scsi_host->nr_hw_queues = target->ch_count;
3841 
3842 	ret = srp_add_target(host, target);
3843 	if (ret)
3844 		goto err_disconnect;
3845 
3846 	if (target->state != SRP_TARGET_REMOVED) {
3847 		if (target->using_rdma_cm) {
3848 			shost_printk(KERN_DEBUG, target->scsi_host, PFX
3849 				     "new target: id_ext %016llx ioc_guid %016llx sgid %pI6 dest %pIS\n",
3850 				     be64_to_cpu(target->id_ext),
3851 				     be64_to_cpu(target->ioc_guid),
3852 				     target->sgid.raw, &target->rdma_cm.dst);
3853 		} else {
3854 			shost_printk(KERN_DEBUG, target->scsi_host, PFX
3855 				     "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n",
3856 				     be64_to_cpu(target->id_ext),
3857 				     be64_to_cpu(target->ioc_guid),
3858 				     be16_to_cpu(target->ib_cm.pkey),
3859 				     be64_to_cpu(target->ib_cm.service_id),
3860 				     target->sgid.raw,
3861 				     target->ib_cm.orig_dgid.raw);
3862 		}
3863 	}
3864 
3865 	ret = count;
3866 
3867 out:
3868 	mutex_unlock(&host->add_target_mutex);
3869 
3870 put:
3871 	scsi_host_put(target->scsi_host);
3872 	if (ret < 0) {
3873 		/*
3874 		 * If a call to srp_remove_target() has not been scheduled,
3875 		 * drop the network namespace reference now that was obtained
3876 		 * earlier in this function.
3877 		 */
3878 		if (target->state != SRP_TARGET_REMOVED)
3879 			kobj_ns_drop(KOBJ_NS_TYPE_NET, target->net);
3880 		scsi_host_put(target->scsi_host);
3881 	}
3882 
3883 	return ret;
3884 
3885 err_disconnect:
3886 	srp_disconnect_target(target);
3887 
3888 free_ch:
3889 	for (i = 0; i < target->ch_count; i++) {
3890 		ch = &target->ch[i];
3891 		srp_free_ch_ib(target, ch);
3892 	}
3893 
3894 	kfree(target->ch);
3895 	goto out;
3896 }
3897 
3898 static DEVICE_ATTR(add_target, S_IWUSR, NULL, srp_create_target);
3899 
show_ibdev(struct device *dev, struct device_attribute *attr, char *buf)3900 static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr,
3901 			  char *buf)
3902 {
3903 	struct srp_host *host = container_of(dev, struct srp_host, dev);
3904 
3905 	return sprintf(buf, "%s\n", dev_name(&host->srp_dev->dev->dev));
3906 }
3907 
3908 static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL);
3909 
show_port(struct device *dev, struct device_attribute *attr, char *buf)3910 static ssize_t show_port(struct device *dev, struct device_attribute *attr,
3911 			 char *buf)
3912 {
3913 	struct srp_host *host = container_of(dev, struct srp_host, dev);
3914 
3915 	return sprintf(buf, "%d\n", host->port);
3916 }
3917 
3918 static DEVICE_ATTR(port, S_IRUGO, show_port, NULL);
3919 
srp_add_port(struct srp_device *device, u8 port)3920 static struct srp_host *srp_add_port(struct srp_device *device, u8 port)
3921 {
3922 	struct srp_host *host;
3923 
3924 	host = kzalloc(sizeof *host, GFP_KERNEL);
3925 	if (!host)
3926 		return NULL;
3927 
3928 	INIT_LIST_HEAD(&host->target_list);
3929 	spin_lock_init(&host->target_lock);
3930 	init_completion(&host->released);
3931 	mutex_init(&host->add_target_mutex);
3932 	host->srp_dev = device;
3933 	host->port = port;
3934 
3935 	host->dev.class = &srp_class;
3936 	host->dev.parent = device->dev->dev.parent;
3937 	dev_set_name(&host->dev, "srp-%s-%d", dev_name(&device->dev->dev),
3938 		     port);
3939 
3940 	if (device_register(&host->dev))
3941 		goto free_host;
3942 	if (device_create_file(&host->dev, &dev_attr_add_target))
3943 		goto err_class;
3944 	if (device_create_file(&host->dev, &dev_attr_ibdev))
3945 		goto err_class;
3946 	if (device_create_file(&host->dev, &dev_attr_port))
3947 		goto err_class;
3948 
3949 	return host;
3950 
3951 err_class:
3952 	device_unregister(&host->dev);
3953 
3954 free_host:
3955 	kfree(host);
3956 
3957 	return NULL;
3958 }
3959 
srp_rename_dev(struct ib_device *device, void *client_data)3960 static void srp_rename_dev(struct ib_device *device, void *client_data)
3961 {
3962 	struct srp_device *srp_dev = client_data;
3963 	struct srp_host *host, *tmp_host;
3964 
3965 	list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
3966 		char name[IB_DEVICE_NAME_MAX + 8];
3967 
3968 		snprintf(name, sizeof(name), "srp-%s-%d",
3969 			 dev_name(&device->dev), host->port);
3970 		device_rename(&host->dev, name);
3971 	}
3972 }
3973 
srp_add_one(struct ib_device *device)3974 static int srp_add_one(struct ib_device *device)
3975 {
3976 	struct srp_device *srp_dev;
3977 	struct ib_device_attr *attr = &device->attrs;
3978 	struct srp_host *host;
3979 	int mr_page_shift;
3980 	unsigned int p;
3981 	u64 max_pages_per_mr;
3982 	unsigned int flags = 0;
3983 
3984 	srp_dev = kzalloc(sizeof(*srp_dev), GFP_KERNEL);
3985 	if (!srp_dev)
3986 		return -ENOMEM;
3987 
3988 	/*
3989 	 * Use the smallest page size supported by the HCA, down to a
3990 	 * minimum of 4096 bytes. We're unlikely to build large sglists
3991 	 * out of smaller entries.
3992 	 */
3993 	mr_page_shift		= max(12, ffs(attr->page_size_cap) - 1);
3994 	srp_dev->mr_page_size	= 1 << mr_page_shift;
3995 	srp_dev->mr_page_mask	= ~((u64) srp_dev->mr_page_size - 1);
3996 	max_pages_per_mr	= attr->max_mr_size;
3997 	do_div(max_pages_per_mr, srp_dev->mr_page_size);
3998 	pr_debug("%s: %llu / %u = %llu <> %u\n", __func__,
3999 		 attr->max_mr_size, srp_dev->mr_page_size,
4000 		 max_pages_per_mr, SRP_MAX_PAGES_PER_MR);
4001 	srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR,
4002 					  max_pages_per_mr);
4003 
4004 	srp_dev->has_fr = (attr->device_cap_flags &
4005 			   IB_DEVICE_MEM_MGT_EXTENSIONS);
4006 	if (!never_register && !srp_dev->has_fr)
4007 		dev_warn(&device->dev, "FR is not supported\n");
4008 	else if (!never_register &&
4009 		 attr->max_mr_size >= 2 * srp_dev->mr_page_size)
4010 		srp_dev->use_fast_reg = srp_dev->has_fr;
4011 
4012 	if (never_register || !register_always || !srp_dev->has_fr)
4013 		flags |= IB_PD_UNSAFE_GLOBAL_RKEY;
4014 
4015 	if (srp_dev->use_fast_reg) {
4016 		srp_dev->max_pages_per_mr =
4017 			min_t(u32, srp_dev->max_pages_per_mr,
4018 			      attr->max_fast_reg_page_list_len);
4019 	}
4020 	srp_dev->mr_max_size	= srp_dev->mr_page_size *
4021 				   srp_dev->max_pages_per_mr;
4022 	pr_debug("%s: mr_page_shift = %d, device->max_mr_size = %#llx, device->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n",
4023 		 dev_name(&device->dev), mr_page_shift, attr->max_mr_size,
4024 		 attr->max_fast_reg_page_list_len,
4025 		 srp_dev->max_pages_per_mr, srp_dev->mr_max_size);
4026 
4027 	INIT_LIST_HEAD(&srp_dev->dev_list);
4028 
4029 	srp_dev->dev = device;
4030 	srp_dev->pd  = ib_alloc_pd(device, flags);
4031 	if (IS_ERR(srp_dev->pd)) {
4032 		int ret = PTR_ERR(srp_dev->pd);
4033 
4034 		kfree(srp_dev);
4035 		return ret;
4036 	}
4037 
4038 	if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
4039 		srp_dev->global_rkey = srp_dev->pd->unsafe_global_rkey;
4040 		WARN_ON_ONCE(srp_dev->global_rkey == 0);
4041 	}
4042 
4043 	rdma_for_each_port (device, p) {
4044 		host = srp_add_port(srp_dev, p);
4045 		if (host)
4046 			list_add_tail(&host->list, &srp_dev->dev_list);
4047 	}
4048 
4049 	ib_set_client_data(device, &srp_client, srp_dev);
4050 	return 0;
4051 }
4052 
srp_remove_one(struct ib_device *device, void *client_data)4053 static void srp_remove_one(struct ib_device *device, void *client_data)
4054 {
4055 	struct srp_device *srp_dev;
4056 	struct srp_host *host, *tmp_host;
4057 	struct srp_target_port *target;
4058 
4059 	srp_dev = client_data;
4060 
4061 	list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
4062 		device_unregister(&host->dev);
4063 		/*
4064 		 * Wait for the sysfs entry to go away, so that no new
4065 		 * target ports can be created.
4066 		 */
4067 		wait_for_completion(&host->released);
4068 
4069 		/*
4070 		 * Remove all target ports.
4071 		 */
4072 		spin_lock(&host->target_lock);
4073 		list_for_each_entry(target, &host->target_list, list)
4074 			srp_queue_remove_work(target);
4075 		spin_unlock(&host->target_lock);
4076 
4077 		/*
4078 		 * srp_queue_remove_work() queues a call to
4079 		 * srp_remove_target(). The latter function cancels
4080 		 * target->tl_err_work so waiting for the remove works to
4081 		 * finish is sufficient.
4082 		 */
4083 		flush_workqueue(srp_remove_wq);
4084 
4085 		kfree(host);
4086 	}
4087 
4088 	ib_dealloc_pd(srp_dev->pd);
4089 
4090 	kfree(srp_dev);
4091 }
4092 
4093 static struct srp_function_template ib_srp_transport_functions = {
4094 	.has_rport_state	 = true,
4095 	.reset_timer_if_blocked	 = true,
4096 	.reconnect_delay	 = &srp_reconnect_delay,
4097 	.fast_io_fail_tmo	 = &srp_fast_io_fail_tmo,
4098 	.dev_loss_tmo		 = &srp_dev_loss_tmo,
4099 	.reconnect		 = srp_rport_reconnect,
4100 	.rport_delete		 = srp_rport_delete,
4101 	.terminate_rport_io	 = srp_terminate_io,
4102 };
4103 
srp_init_module(void)4104 static int __init srp_init_module(void)
4105 {
4106 	int ret;
4107 
4108 	BUILD_BUG_ON(sizeof(struct srp_imm_buf) != 4);
4109 	BUILD_BUG_ON(sizeof(struct srp_login_req) != 64);
4110 	BUILD_BUG_ON(sizeof(struct srp_login_req_rdma) != 56);
4111 	BUILD_BUG_ON(sizeof(struct srp_cmd) != 48);
4112 
4113 	if (srp_sg_tablesize) {
4114 		pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n");
4115 		if (!cmd_sg_entries)
4116 			cmd_sg_entries = srp_sg_tablesize;
4117 	}
4118 
4119 	if (!cmd_sg_entries)
4120 		cmd_sg_entries = SRP_DEF_SG_TABLESIZE;
4121 
4122 	if (cmd_sg_entries > 255) {
4123 		pr_warn("Clamping cmd_sg_entries to 255\n");
4124 		cmd_sg_entries = 255;
4125 	}
4126 
4127 	if (!indirect_sg_entries)
4128 		indirect_sg_entries = cmd_sg_entries;
4129 	else if (indirect_sg_entries < cmd_sg_entries) {
4130 		pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n",
4131 			cmd_sg_entries);
4132 		indirect_sg_entries = cmd_sg_entries;
4133 	}
4134 
4135 	if (indirect_sg_entries > SG_MAX_SEGMENTS) {
4136 		pr_warn("Clamping indirect_sg_entries to %u\n",
4137 			SG_MAX_SEGMENTS);
4138 		indirect_sg_entries = SG_MAX_SEGMENTS;
4139 	}
4140 
4141 	srp_remove_wq = create_workqueue("srp_remove");
4142 	if (!srp_remove_wq) {
4143 		ret = -ENOMEM;
4144 		goto out;
4145 	}
4146 
4147 	ret = -ENOMEM;
4148 	ib_srp_transport_template =
4149 		srp_attach_transport(&ib_srp_transport_functions);
4150 	if (!ib_srp_transport_template)
4151 		goto destroy_wq;
4152 
4153 	ret = class_register(&srp_class);
4154 	if (ret) {
4155 		pr_err("couldn't register class infiniband_srp\n");
4156 		goto release_tr;
4157 	}
4158 
4159 	ib_sa_register_client(&srp_sa_client);
4160 
4161 	ret = ib_register_client(&srp_client);
4162 	if (ret) {
4163 		pr_err("couldn't register IB client\n");
4164 		goto unreg_sa;
4165 	}
4166 
4167 out:
4168 	return ret;
4169 
4170 unreg_sa:
4171 	ib_sa_unregister_client(&srp_sa_client);
4172 	class_unregister(&srp_class);
4173 
4174 release_tr:
4175 	srp_release_transport(ib_srp_transport_template);
4176 
4177 destroy_wq:
4178 	destroy_workqueue(srp_remove_wq);
4179 	goto out;
4180 }
4181 
srp_cleanup_module(void)4182 static void __exit srp_cleanup_module(void)
4183 {
4184 	ib_unregister_client(&srp_client);
4185 	ib_sa_unregister_client(&srp_sa_client);
4186 	class_unregister(&srp_class);
4187 	srp_release_transport(ib_srp_transport_template);
4188 	destroy_workqueue(srp_remove_wq);
4189 }
4190 
4191 module_init(srp_init_module);
4192 module_exit(srp_cleanup_module);
4193