1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Mellanox BlueField I2C bus driver
4 *
5 * Copyright (C) 2020 Mellanox Technologies, Ltd.
6 */
7
8 #include <linux/acpi.h>
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/err.h>
12 #include <linux/interrupt.h>
13 #include <linux/i2c.h>
14 #include <linux/io.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/of_device.h>
19 #include <linux/platform_device.h>
20 #include <linux/string.h>
21
22 /* Defines what functionality is present. */
23 #define MLXBF_I2C_FUNC_SMBUS_BLOCK \
24 (I2C_FUNC_SMBUS_BLOCK_DATA | I2C_FUNC_SMBUS_BLOCK_PROC_CALL)
25
26 #define MLXBF_I2C_FUNC_SMBUS_DEFAULT \
27 (I2C_FUNC_SMBUS_BYTE | I2C_FUNC_SMBUS_BYTE_DATA | \
28 I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_I2C_BLOCK | \
29 I2C_FUNC_SMBUS_PROC_CALL)
30
31 #define MLXBF_I2C_FUNC_ALL \
32 (MLXBF_I2C_FUNC_SMBUS_DEFAULT | MLXBF_I2C_FUNC_SMBUS_BLOCK | \
33 I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SLAVE)
34
35 #define MLXBF_I2C_SMBUS_MAX 3
36
37 /* Shared resources info in BlueField platforms. */
38
39 #define MLXBF_I2C_COALESCE_TYU_ADDR 0x02801300
40 #define MLXBF_I2C_COALESCE_TYU_SIZE 0x010
41
42 #define MLXBF_I2C_GPIO_TYU_ADDR 0x02802000
43 #define MLXBF_I2C_GPIO_TYU_SIZE 0x100
44
45 #define MLXBF_I2C_COREPLL_TYU_ADDR 0x02800358
46 #define MLXBF_I2C_COREPLL_TYU_SIZE 0x008
47
48 #define MLXBF_I2C_COREPLL_YU_ADDR 0x02800c30
49 #define MLXBF_I2C_COREPLL_YU_SIZE 0x00c
50
51 #define MLXBF_I2C_SHARED_RES_MAX 3
52
53 /*
54 * Note that the following SMBus, CAUSE, GPIO and PLL register addresses
55 * refer to their respective offsets relative to the corresponding
56 * memory-mapped region whose addresses are specified in either the DT or
57 * the ACPI tables or above.
58 */
59
60 /*
61 * SMBus Master core clock frequency. Timing configurations are
62 * strongly dependent on the core clock frequency of the SMBus
63 * Master. Default value is set to 400MHz.
64 */
65 #define MLXBF_I2C_TYU_PLL_OUT_FREQ (400 * 1000 * 1000)
66 /* Reference clock for Bluefield - 156 MHz. */
67 #define MLXBF_I2C_PLL_IN_FREQ 156250000ULL
68
69 /* Constant used to determine the PLL frequency. */
70 #define MLNXBF_I2C_COREPLL_CONST 16384ULL
71
72 #define MLXBF_I2C_FREQUENCY_1GHZ 1000000000ULL
73
74 /* PLL registers. */
75 #define MLXBF_I2C_CORE_PLL_REG1 0x4
76 #define MLXBF_I2C_CORE_PLL_REG2 0x8
77
78 /* OR cause register. */
79 #define MLXBF_I2C_CAUSE_OR_EVTEN0 0x14
80 #define MLXBF_I2C_CAUSE_OR_CLEAR 0x18
81
82 /* Arbiter Cause Register. */
83 #define MLXBF_I2C_CAUSE_ARBITER 0x1c
84
85 /*
86 * Cause Status flags. Note that those bits might be considered
87 * as interrupt enabled bits.
88 */
89
90 /* Transaction ended with STOP. */
91 #define MLXBF_I2C_CAUSE_TRANSACTION_ENDED BIT(0)
92 /* Master arbitration lost. */
93 #define MLXBF_I2C_CAUSE_M_ARBITRATION_LOST BIT(1)
94 /* Unexpected start detected. */
95 #define MLXBF_I2C_CAUSE_UNEXPECTED_START BIT(2)
96 /* Unexpected stop detected. */
97 #define MLXBF_I2C_CAUSE_UNEXPECTED_STOP BIT(3)
98 /* Wait for transfer continuation. */
99 #define MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA BIT(4)
100 /* Failed to generate STOP. */
101 #define MLXBF_I2C_CAUSE_PUT_STOP_FAILED BIT(5)
102 /* Failed to generate START. */
103 #define MLXBF_I2C_CAUSE_PUT_START_FAILED BIT(6)
104 /* Clock toggle completed. */
105 #define MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE BIT(7)
106 /* Transfer timeout occurred. */
107 #define MLXBF_I2C_CAUSE_M_FW_TIMEOUT BIT(8)
108 /* Master busy bit reset. */
109 #define MLXBF_I2C_CAUSE_M_GW_BUSY_FALL BIT(9)
110
111 #define MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK GENMASK(9, 0)
112
113 #define MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR \
114 (MLXBF_I2C_CAUSE_M_ARBITRATION_LOST | \
115 MLXBF_I2C_CAUSE_UNEXPECTED_START | \
116 MLXBF_I2C_CAUSE_UNEXPECTED_STOP | \
117 MLXBF_I2C_CAUSE_PUT_STOP_FAILED | \
118 MLXBF_I2C_CAUSE_PUT_START_FAILED | \
119 MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE | \
120 MLXBF_I2C_CAUSE_M_FW_TIMEOUT)
121
122 /*
123 * Slave cause status flags. Note that those bits might be considered
124 * as interrupt enabled bits.
125 */
126
127 /* Write transaction received successfully. */
128 #define MLXBF_I2C_CAUSE_WRITE_SUCCESS BIT(0)
129 /* Read transaction received, waiting for response. */
130 #define MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE BIT(13)
131 /* Slave busy bit reset. */
132 #define MLXBF_I2C_CAUSE_S_GW_BUSY_FALL BIT(18)
133
134 #define MLXBF_I2C_CAUSE_SLAVE_ARBITER_BITS_MASK GENMASK(20, 0)
135
136 /* Cause coalesce registers. */
137 #define MLXBF_I2C_CAUSE_COALESCE_0 0x00
138 #define MLXBF_I2C_CAUSE_COALESCE_1 0x04
139 #define MLXBF_I2C_CAUSE_COALESCE_2 0x08
140
141 #define MLXBF_I2C_CAUSE_TYU_SLAVE_BIT MLXBF_I2C_SMBUS_MAX
142 #define MLXBF_I2C_CAUSE_YU_SLAVE_BIT 1
143
144 /* Functional enable register. */
145 #define MLXBF_I2C_GPIO_0_FUNC_EN_0 0x28
146 /* Force OE enable register. */
147 #define MLXBF_I2C_GPIO_0_FORCE_OE_EN 0x30
148 /*
149 * Note that Smbus GWs are on GPIOs 30:25. Two pins are used to control
150 * SDA/SCL lines:
151 *
152 * SMBUS GW0 -> bits[26:25]
153 * SMBUS GW1 -> bits[28:27]
154 * SMBUS GW2 -> bits[30:29]
155 */
156 #define MLXBF_I2C_GPIO_SMBUS_GW_PINS(num) (25 + ((num) << 1))
157
158 /* Note that gw_id can be 0,1 or 2. */
159 #define MLXBF_I2C_GPIO_SMBUS_GW_MASK(num) \
160 (0xffffffff & (~(0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num))))
161
162 #define MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(num, val) \
163 ((val) & MLXBF_I2C_GPIO_SMBUS_GW_MASK(num))
164
165 #define MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(num, val) \
166 ((val) | (0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num)))
167
168 /* SMBus timing parameters. */
169 #define MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH 0x00
170 #define MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE 0x04
171 #define MLXBF_I2C_SMBUS_TIMER_THOLD 0x08
172 #define MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP 0x0c
173 #define MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA 0x10
174 #define MLXBF_I2C_SMBUS_THIGH_MAX_TBUF 0x14
175 #define MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT 0x18
176
177 enum {
178 MLXBF_I2C_TIMING_100KHZ = 100000,
179 MLXBF_I2C_TIMING_400KHZ = 400000,
180 MLXBF_I2C_TIMING_1000KHZ = 1000000,
181 };
182
183 /*
184 * Defines SMBus operating frequency and core clock frequency.
185 * According to ADB files, default values are compliant to 100KHz SMBus
186 * @ 400MHz core clock. The driver should be able to calculate core
187 * frequency based on PLL parameters.
188 */
189 #define MLXBF_I2C_COREPLL_FREQ MLXBF_I2C_TYU_PLL_OUT_FREQ
190
191 /* Core PLL TYU configuration. */
192 #define MLXBF_I2C_COREPLL_CORE_F_TYU_MASK GENMASK(15, 3)
193 #define MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK GENMASK(19, 16)
194 #define MLXBF_I2C_COREPLL_CORE_R_TYU_MASK GENMASK(25, 20)
195
196 /* Core PLL YU configuration. */
197 #define MLXBF_I2C_COREPLL_CORE_F_YU_MASK GENMASK(25, 0)
198 #define MLXBF_I2C_COREPLL_CORE_OD_YU_MASK GENMASK(3, 0)
199 #define MLXBF_I2C_COREPLL_CORE_R_YU_MASK GENMASK(31, 26)
200
201
202 /* Core PLL frequency. */
203 static u64 mlxbf_i2c_corepll_frequency;
204
205 /* SMBus Master GW. */
206 #define MLXBF_I2C_SMBUS_MASTER_GW 0x200
207 /* Number of bytes received and sent. */
208 #define MLXBF_I2C_SMBUS_RS_BYTES 0x300
209 /* Packet error check (PEC) value. */
210 #define MLXBF_I2C_SMBUS_MASTER_PEC 0x304
211 /* Status bits (ACK/NACK/FW Timeout). */
212 #define MLXBF_I2C_SMBUS_MASTER_STATUS 0x308
213 /* SMbus Master Finite State Machine. */
214 #define MLXBF_I2C_SMBUS_MASTER_FSM 0x310
215
216 /*
217 * When enabled, the master will issue a stop condition in case of
218 * timeout while waiting for FW response.
219 */
220 #define MLXBF_I2C_SMBUS_EN_FW_TIMEOUT 0x31c
221
222 /* SMBus master GW control bits offset in MLXBF_I2C_SMBUS_MASTER_GW[31:3]. */
223 #define MLXBF_I2C_MASTER_LOCK_BIT BIT(31) /* Lock bit. */
224 #define MLXBF_I2C_MASTER_BUSY_BIT BIT(30) /* Busy bit. */
225 #define MLXBF_I2C_MASTER_START_BIT BIT(29) /* Control start. */
226 #define MLXBF_I2C_MASTER_CTL_WRITE_BIT BIT(28) /* Control write phase. */
227 #define MLXBF_I2C_MASTER_CTL_READ_BIT BIT(19) /* Control read phase. */
228 #define MLXBF_I2C_MASTER_STOP_BIT BIT(3) /* Control stop. */
229
230 #define MLXBF_I2C_MASTER_ENABLE \
231 (MLXBF_I2C_MASTER_LOCK_BIT | MLXBF_I2C_MASTER_BUSY_BIT | \
232 MLXBF_I2C_MASTER_START_BIT | MLXBF_I2C_MASTER_STOP_BIT)
233
234 #define MLXBF_I2C_MASTER_ENABLE_WRITE \
235 (MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_WRITE_BIT)
236
237 #define MLXBF_I2C_MASTER_ENABLE_READ \
238 (MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_READ_BIT)
239
240 #define MLXBF_I2C_MASTER_SLV_ADDR_SHIFT 12 /* Slave address shift. */
241 #define MLXBF_I2C_MASTER_WRITE_SHIFT 21 /* Control write bytes shift. */
242 #define MLXBF_I2C_MASTER_SEND_PEC_SHIFT 20 /* Send PEC byte shift. */
243 #define MLXBF_I2C_MASTER_PARSE_EXP_SHIFT 11 /* Parse expected bytes shift. */
244 #define MLXBF_I2C_MASTER_READ_SHIFT 4 /* Control read bytes shift. */
245
246 /* SMBus master GW Data descriptor. */
247 #define MLXBF_I2C_MASTER_DATA_DESC_ADDR 0x280
248 #define MLXBF_I2C_MASTER_DATA_DESC_SIZE 0x80 /* Size in bytes. */
249
250 /* Maximum bytes to read/write per SMBus transaction. */
251 #define MLXBF_I2C_MASTER_DATA_R_LENGTH MLXBF_I2C_MASTER_DATA_DESC_SIZE
252 #define MLXBF_I2C_MASTER_DATA_W_LENGTH (MLXBF_I2C_MASTER_DATA_DESC_SIZE - 1)
253
254 /* All bytes were transmitted. */
255 #define MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE BIT(0)
256 /* NACK received. */
257 #define MLXBF_I2C_SMBUS_STATUS_NACK_RCV BIT(1)
258 /* Slave's byte count >128 bytes. */
259 #define MLXBF_I2C_SMBUS_STATUS_READ_ERR BIT(2)
260 /* Timeout occurred. */
261 #define MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT BIT(3)
262
263 #define MLXBF_I2C_SMBUS_MASTER_STATUS_MASK GENMASK(3, 0)
264
265 #define MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR \
266 (MLXBF_I2C_SMBUS_STATUS_NACK_RCV | \
267 MLXBF_I2C_SMBUS_STATUS_READ_ERR | \
268 MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT)
269
270 #define MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK BIT(31)
271 #define MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK BIT(15)
272
273 /* SMBus slave GW. */
274 #define MLXBF_I2C_SMBUS_SLAVE_GW 0x400
275 /* Number of bytes received and sent from/to master. */
276 #define MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES 0x500
277 /* Packet error check (PEC) value. */
278 #define MLXBF_I2C_SMBUS_SLAVE_PEC 0x504
279 /* SMBus slave Finite State Machine (FSM). */
280 #define MLXBF_I2C_SMBUS_SLAVE_FSM 0x510
281 /*
282 * Should be set when all raised causes handled, and cleared by HW on
283 * every new cause.
284 */
285 #define MLXBF_I2C_SMBUS_SLAVE_READY 0x52c
286
287 /* SMBus slave GW control bits offset in MLXBF_I2C_SMBUS_SLAVE_GW[31:19]. */
288 #define MLXBF_I2C_SLAVE_BUSY_BIT BIT(30) /* Busy bit. */
289 #define MLXBF_I2C_SLAVE_WRITE_BIT BIT(29) /* Control write enable. */
290
291 #define MLXBF_I2C_SLAVE_ENABLE \
292 (MLXBF_I2C_SLAVE_BUSY_BIT | MLXBF_I2C_SLAVE_WRITE_BIT)
293
294 #define MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT 22 /* Number of bytes to write. */
295 #define MLXBF_I2C_SLAVE_SEND_PEC_SHIFT 21 /* Send PEC byte shift. */
296
297 /* SMBus slave GW Data descriptor. */
298 #define MLXBF_I2C_SLAVE_DATA_DESC_ADDR 0x480
299 #define MLXBF_I2C_SLAVE_DATA_DESC_SIZE 0x80 /* Size in bytes. */
300
301 /* SMbus slave configuration registers. */
302 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG 0x514
303 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT 16
304 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT 7
305 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK GENMASK(6, 0)
306
307 #define MLXBF_I2C_SLAVE_ADDR_ENABLED(addr) \
308 ((addr) & (1 << MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT))
309
310 /*
311 * Timeout is given in microsends. Note also that timeout handling is not
312 * exact.
313 */
314 #define MLXBF_I2C_SMBUS_TIMEOUT (300 * 1000) /* 300ms */
315 #define MLXBF_I2C_SMBUS_LOCK_POLL_TIMEOUT (300 * 1000) /* 300ms */
316
317 /* Encapsulates timing parameters. */
318 struct mlxbf_i2c_timings {
319 u16 scl_high; /* Clock high period. */
320 u16 scl_low; /* Clock low period. */
321 u8 sda_rise; /* Data rise time. */
322 u8 sda_fall; /* Data fall time. */
323 u8 scl_rise; /* Clock rise time. */
324 u8 scl_fall; /* Clock fall time. */
325 u16 hold_start; /* Hold time after (REPEATED) START. */
326 u16 hold_data; /* Data hold time. */
327 u16 setup_start; /* REPEATED START condition setup time. */
328 u16 setup_stop; /* STOP condition setup time. */
329 u16 setup_data; /* Data setup time. */
330 u16 pad; /* Padding. */
331 u16 buf; /* Bus free time between STOP and START. */
332 u16 thigh_max; /* Thigh max. */
333 u32 timeout; /* Detect clock low timeout. */
334 };
335
336 enum {
337 MLXBF_I2C_F_READ = BIT(0),
338 MLXBF_I2C_F_WRITE = BIT(1),
339 MLXBF_I2C_F_NORESTART = BIT(3),
340 MLXBF_I2C_F_SMBUS_OPERATION = BIT(4),
341 MLXBF_I2C_F_SMBUS_BLOCK = BIT(5),
342 MLXBF_I2C_F_SMBUS_PEC = BIT(6),
343 MLXBF_I2C_F_SMBUS_PROCESS_CALL = BIT(7),
344 };
345
346 struct mlxbf_i2c_smbus_operation {
347 u32 flags;
348 u32 length; /* Buffer length in bytes. */
349 u8 *buffer;
350 };
351
352 #define MLXBF_I2C_SMBUS_OP_CNT_1 1
353 #define MLXBF_I2C_SMBUS_OP_CNT_2 2
354 #define MLXBF_I2C_SMBUS_OP_CNT_3 3
355 #define MLXBF_I2C_SMBUS_MAX_OP_CNT MLXBF_I2C_SMBUS_OP_CNT_3
356
357 struct mlxbf_i2c_smbus_request {
358 u8 slave;
359 u8 operation_cnt;
360 struct mlxbf_i2c_smbus_operation operation[MLXBF_I2C_SMBUS_MAX_OP_CNT];
361 };
362
363 struct mlxbf_i2c_resource {
364 void __iomem *io;
365 struct resource *params;
366 struct mutex *lock; /* Mutex to protect mlxbf_i2c_resource. */
367 u8 type;
368 };
369
370 /* List of chip resources that are being accessed by the driver. */
371 enum {
372 MLXBF_I2C_SMBUS_RES,
373 MLXBF_I2C_MST_CAUSE_RES,
374 MLXBF_I2C_SLV_CAUSE_RES,
375 MLXBF_I2C_COALESCE_RES,
376 MLXBF_I2C_COREPLL_RES,
377 MLXBF_I2C_GPIO_RES,
378 MLXBF_I2C_END_RES,
379 };
380
381 /* Helper macro to define an I2C resource parameters. */
382 #define MLXBF_I2C_RES_PARAMS(addr, size, str) \
383 { \
384 .start = (addr), \
385 .end = (addr) + (size) - 1, \
386 .name = (str) \
387 }
388
389 static struct resource mlxbf_i2c_coalesce_tyu_params =
390 MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COALESCE_TYU_ADDR,
391 MLXBF_I2C_COALESCE_TYU_SIZE,
392 "COALESCE_MEM");
393 static struct resource mlxbf_i2c_corepll_tyu_params =
394 MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_TYU_ADDR,
395 MLXBF_I2C_COREPLL_TYU_SIZE,
396 "COREPLL_MEM");
397 static struct resource mlxbf_i2c_corepll_yu_params =
398 MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_YU_ADDR,
399 MLXBF_I2C_COREPLL_YU_SIZE,
400 "COREPLL_MEM");
401 static struct resource mlxbf_i2c_gpio_tyu_params =
402 MLXBF_I2C_RES_PARAMS(MLXBF_I2C_GPIO_TYU_ADDR,
403 MLXBF_I2C_GPIO_TYU_SIZE,
404 "GPIO_MEM");
405
406 static struct mutex mlxbf_i2c_coalesce_lock;
407 static struct mutex mlxbf_i2c_corepll_lock;
408 static struct mutex mlxbf_i2c_gpio_lock;
409
410 /* Mellanox BlueField chip type. */
411 enum mlxbf_i2c_chip_type {
412 MLXBF_I2C_CHIP_TYPE_1, /* Mellanox BlueField-1 chip. */
413 MLXBF_I2C_CHIP_TYPE_2, /* Mallanox BlueField-2 chip. */
414 };
415
416 struct mlxbf_i2c_chip_info {
417 enum mlxbf_i2c_chip_type type;
418 /* Chip shared resources that are being used by the I2C controller. */
419 struct mlxbf_i2c_resource *shared_res[MLXBF_I2C_SHARED_RES_MAX];
420
421 /* Callback to calculate the core PLL frequency. */
422 u64 (*calculate_freq)(struct mlxbf_i2c_resource *corepll_res);
423 };
424
425 struct mlxbf_i2c_priv {
426 const struct mlxbf_i2c_chip_info *chip;
427 struct i2c_adapter adap;
428 struct mlxbf_i2c_resource *smbus;
429 struct mlxbf_i2c_resource *mst_cause;
430 struct mlxbf_i2c_resource *slv_cause;
431 struct mlxbf_i2c_resource *coalesce;
432 u64 frequency; /* Core frequency in Hz. */
433 int bus; /* Physical bus identifier. */
434 int irq;
435 struct i2c_client *slave;
436 };
437
438 static struct mlxbf_i2c_resource mlxbf_i2c_coalesce_res[] = {
439 [MLXBF_I2C_CHIP_TYPE_1] = {
440 .params = &mlxbf_i2c_coalesce_tyu_params,
441 .lock = &mlxbf_i2c_coalesce_lock,
442 .type = MLXBF_I2C_COALESCE_RES
443 },
444 {}
445 };
446
447 static struct mlxbf_i2c_resource mlxbf_i2c_corepll_res[] = {
448 [MLXBF_I2C_CHIP_TYPE_1] = {
449 .params = &mlxbf_i2c_corepll_tyu_params,
450 .lock = &mlxbf_i2c_corepll_lock,
451 .type = MLXBF_I2C_COREPLL_RES
452 },
453 [MLXBF_I2C_CHIP_TYPE_2] = {
454 .params = &mlxbf_i2c_corepll_yu_params,
455 .lock = &mlxbf_i2c_corepll_lock,
456 .type = MLXBF_I2C_COREPLL_RES,
457 }
458 };
459
460 static struct mlxbf_i2c_resource mlxbf_i2c_gpio_res[] = {
461 [MLXBF_I2C_CHIP_TYPE_1] = {
462 .params = &mlxbf_i2c_gpio_tyu_params,
463 .lock = &mlxbf_i2c_gpio_lock,
464 .type = MLXBF_I2C_GPIO_RES
465 },
466 {}
467 };
468
469 static u8 mlxbf_i2c_bus_count;
470
471 static struct mutex mlxbf_i2c_bus_lock;
472
473 /* Polling frequency in microseconds. */
474 #define MLXBF_I2C_POLL_FREQ_IN_USEC 200
475
476 #define MLXBF_I2C_SHIFT_0 0
477 #define MLXBF_I2C_SHIFT_8 8
478 #define MLXBF_I2C_SHIFT_16 16
479 #define MLXBF_I2C_SHIFT_24 24
480
481 #define MLXBF_I2C_MASK_8 GENMASK(7, 0)
482 #define MLXBF_I2C_MASK_16 GENMASK(15, 0)
483
484 /*
485 * Function to poll a set of bits at a specific address; it checks whether
486 * the bits are equal to zero when eq_zero is set to 'true', and not equal
487 * to zero when eq_zero is set to 'false'.
488 * Note that the timeout is given in microseconds.
489 */
mlxbf_smbus_poll(void __iomem *io, u32 addr, u32 mask, bool eq_zero, u32 timeout)490 static u32 mlxbf_smbus_poll(void __iomem *io, u32 addr, u32 mask,
491 bool eq_zero, u32 timeout)
492 {
493 u32 bits;
494
495 timeout = (timeout / MLXBF_I2C_POLL_FREQ_IN_USEC) + 1;
496
497 do {
498 bits = readl(io + addr) & mask;
499 if (eq_zero ? bits == 0 : bits != 0)
500 return eq_zero ? 1 : bits;
501 udelay(MLXBF_I2C_POLL_FREQ_IN_USEC);
502 } while (timeout-- != 0);
503
504 return 0;
505 }
506
507 /*
508 * SW must make sure that the SMBus Master GW is idle before starting
509 * a transaction. Accordingly, this function polls the Master FSM stop
510 * bit; it returns false when the bit is asserted, true if not.
511 */
mlxbf_smbus_master_wait_for_idle(struct mlxbf_i2c_priv *priv)512 static bool mlxbf_smbus_master_wait_for_idle(struct mlxbf_i2c_priv *priv)
513 {
514 u32 mask = MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK;
515 u32 addr = MLXBF_I2C_SMBUS_MASTER_FSM;
516 u32 timeout = MLXBF_I2C_SMBUS_TIMEOUT;
517
518 if (mlxbf_smbus_poll(priv->smbus->io, addr, mask, true, timeout))
519 return true;
520
521 return false;
522 }
523
524 /*
525 * wait for the lock to be released before acquiring it.
526 */
mlxbf_i2c_smbus_master_lock(struct mlxbf_i2c_priv *priv)527 static bool mlxbf_i2c_smbus_master_lock(struct mlxbf_i2c_priv *priv)
528 {
529 if (mlxbf_smbus_poll(priv->smbus->io, MLXBF_I2C_SMBUS_MASTER_GW,
530 MLXBF_I2C_MASTER_LOCK_BIT, true,
531 MLXBF_I2C_SMBUS_LOCK_POLL_TIMEOUT))
532 return true;
533
534 return false;
535 }
536
mlxbf_i2c_smbus_master_unlock(struct mlxbf_i2c_priv *priv)537 static void mlxbf_i2c_smbus_master_unlock(struct mlxbf_i2c_priv *priv)
538 {
539 /* Clear the gw to clear the lock */
540 writel(0, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_GW);
541 }
542
mlxbf_i2c_smbus_transaction_success(u32 master_status, u32 cause_status)543 static bool mlxbf_i2c_smbus_transaction_success(u32 master_status,
544 u32 cause_status)
545 {
546 /*
547 * When transaction ended with STOP, all bytes were transmitted,
548 * and no NACK received, then the transaction ended successfully.
549 * On the other hand, when the GW is configured with the stop bit
550 * de-asserted then the SMBus expects the following GW configuration
551 * for transfer continuation.
552 */
553 if ((cause_status & MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA) ||
554 ((cause_status & MLXBF_I2C_CAUSE_TRANSACTION_ENDED) &&
555 (master_status & MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE) &&
556 !(master_status & MLXBF_I2C_SMBUS_STATUS_NACK_RCV)))
557 return true;
558
559 return false;
560 }
561
562 /*
563 * Poll SMBus master status and return transaction status,
564 * i.e. whether succeeded or failed. I2C and SMBus fault codes
565 * are returned as negative numbers from most calls, with zero
566 * or some positive number indicating a non-fault return.
567 */
mlxbf_i2c_smbus_check_status(struct mlxbf_i2c_priv *priv)568 static int mlxbf_i2c_smbus_check_status(struct mlxbf_i2c_priv *priv)
569 {
570 u32 master_status_bits;
571 u32 cause_status_bits;
572
573 /*
574 * GW busy bit is raised by the driver and cleared by the HW
575 * when the transaction is completed. The busy bit is a good
576 * indicator of transaction status. So poll the busy bit, and
577 * then read the cause and master status bits to determine if
578 * errors occurred during the transaction.
579 */
580 mlxbf_smbus_poll(priv->smbus->io, MLXBF_I2C_SMBUS_MASTER_GW,
581 MLXBF_I2C_MASTER_BUSY_BIT, true,
582 MLXBF_I2C_SMBUS_TIMEOUT);
583
584 /* Read cause status bits. */
585 cause_status_bits = readl(priv->mst_cause->io +
586 MLXBF_I2C_CAUSE_ARBITER);
587 cause_status_bits &= MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK;
588
589 /*
590 * Parse both Cause and Master GW bits, then return transaction status.
591 */
592
593 master_status_bits = readl(priv->smbus->io +
594 MLXBF_I2C_SMBUS_MASTER_STATUS);
595 master_status_bits &= MLXBF_I2C_SMBUS_MASTER_STATUS_MASK;
596
597 if (mlxbf_i2c_smbus_transaction_success(master_status_bits,
598 cause_status_bits))
599 return 0;
600
601 /*
602 * In case of timeout on GW busy, the ISR will clear busy bit but
603 * transaction ended bits cause will not be set so the transaction
604 * fails. Then, we must check Master GW status bits.
605 */
606 if ((master_status_bits & MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR) &&
607 (cause_status_bits & (MLXBF_I2C_CAUSE_TRANSACTION_ENDED |
608 MLXBF_I2C_CAUSE_M_GW_BUSY_FALL)))
609 return -EIO;
610
611 if (cause_status_bits & MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR)
612 return -EAGAIN;
613
614 return -ETIMEDOUT;
615 }
616
mlxbf_i2c_smbus_write_data(struct mlxbf_i2c_priv *priv, const u8 *data, u8 length, u32 addr)617 static void mlxbf_i2c_smbus_write_data(struct mlxbf_i2c_priv *priv,
618 const u8 *data, u8 length, u32 addr)
619 {
620 u8 offset, aligned_length;
621 u32 data32;
622
623 aligned_length = round_up(length, 4);
624
625 /*
626 * Copy data bytes from 4-byte aligned source buffer.
627 * Data copied to the Master GW Data Descriptor MUST be shifted
628 * left so the data starts at the MSB of the descriptor registers
629 * as required by the underlying hardware. Enable byte swapping
630 * when writing data bytes to the 32 * 32-bit HW Data registers
631 * a.k.a Master GW Data Descriptor.
632 */
633 for (offset = 0; offset < aligned_length; offset += sizeof(u32)) {
634 data32 = *((u32 *)(data + offset));
635 iowrite32be(data32, priv->smbus->io + addr + offset);
636 }
637 }
638
mlxbf_i2c_smbus_read_data(struct mlxbf_i2c_priv *priv, u8 *data, u8 length, u32 addr)639 static void mlxbf_i2c_smbus_read_data(struct mlxbf_i2c_priv *priv,
640 u8 *data, u8 length, u32 addr)
641 {
642 u32 data32, mask;
643 u8 byte, offset;
644
645 mask = sizeof(u32) - 1;
646
647 /*
648 * Data bytes in the Master GW Data Descriptor are shifted left
649 * so the data starts at the MSB of the descriptor registers as
650 * set by the underlying hardware. Enable byte swapping while
651 * reading data bytes from the 32 * 32-bit HW Data registers
652 * a.k.a Master GW Data Descriptor.
653 */
654
655 for (offset = 0; offset < (length & ~mask); offset += sizeof(u32)) {
656 data32 = ioread32be(priv->smbus->io + addr + offset);
657 *((u32 *)(data + offset)) = data32;
658 }
659
660 if (!(length & mask))
661 return;
662
663 data32 = ioread32be(priv->smbus->io + addr + offset);
664
665 for (byte = 0; byte < (length & mask); byte++) {
666 data[offset + byte] = data32 & GENMASK(7, 0);
667 data32 = ror32(data32, MLXBF_I2C_SHIFT_8);
668 }
669 }
670
mlxbf_i2c_smbus_enable(struct mlxbf_i2c_priv *priv, u8 slave, u8 len, u8 block_en, u8 pec_en, bool read)671 static int mlxbf_i2c_smbus_enable(struct mlxbf_i2c_priv *priv, u8 slave,
672 u8 len, u8 block_en, u8 pec_en, bool read)
673 {
674 u32 command;
675
676 /* Set Master GW control word. */
677 if (read) {
678 command = MLXBF_I2C_MASTER_ENABLE_READ;
679 command |= rol32(len, MLXBF_I2C_MASTER_READ_SHIFT);
680 } else {
681 command = MLXBF_I2C_MASTER_ENABLE_WRITE;
682 command |= rol32(len, MLXBF_I2C_MASTER_WRITE_SHIFT);
683 }
684 command |= rol32(slave, MLXBF_I2C_MASTER_SLV_ADDR_SHIFT);
685 command |= rol32(block_en, MLXBF_I2C_MASTER_PARSE_EXP_SHIFT);
686 command |= rol32(pec_en, MLXBF_I2C_MASTER_SEND_PEC_SHIFT);
687
688 /* Clear status bits. */
689 writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_STATUS);
690 /* Set the cause data. */
691 writel(~0x0, priv->mst_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
692 /* Zero PEC byte. */
693 writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_PEC);
694 /* Zero byte count. */
695 writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_RS_BYTES);
696
697 /* GW activation. */
698 writel(command, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_GW);
699
700 /*
701 * Poll master status and check status bits. An ACK is sent when
702 * completing writing data to the bus (Master 'byte_count_done' bit
703 * is set to 1).
704 */
705 return mlxbf_i2c_smbus_check_status(priv);
706 }
707
708 static int
mlxbf_i2c_smbus_start_transaction(struct mlxbf_i2c_priv *priv, struct mlxbf_i2c_smbus_request *request)709 mlxbf_i2c_smbus_start_transaction(struct mlxbf_i2c_priv *priv,
710 struct mlxbf_i2c_smbus_request *request)
711 {
712 u8 data_desc[MLXBF_I2C_MASTER_DATA_DESC_SIZE] = { 0 };
713 u8 op_idx, data_idx, data_len, write_len, read_len;
714 struct mlxbf_i2c_smbus_operation *operation;
715 u8 read_en, write_en, block_en, pec_en;
716 u8 slave, flags, addr;
717 u8 *read_buf;
718 int ret = 0;
719
720 if (request->operation_cnt > MLXBF_I2C_SMBUS_MAX_OP_CNT)
721 return -EINVAL;
722
723 read_buf = NULL;
724 data_idx = 0;
725 read_en = 0;
726 write_en = 0;
727 write_len = 0;
728 read_len = 0;
729 block_en = 0;
730 pec_en = 0;
731 slave = request->slave & GENMASK(6, 0);
732 addr = slave << 1;
733
734 /*
735 * Try to acquire the smbus gw lock before any reads of the GW register since
736 * a read sets the lock.
737 */
738 if (WARN_ON(!mlxbf_i2c_smbus_master_lock(priv)))
739 return -EBUSY;
740
741 /* Check whether the HW is idle */
742 if (WARN_ON(!mlxbf_smbus_master_wait_for_idle(priv))) {
743 ret = -EBUSY;
744 goto out_unlock;
745 }
746
747 /* Set first byte. */
748 data_desc[data_idx++] = addr;
749
750 for (op_idx = 0; op_idx < request->operation_cnt; op_idx++) {
751 operation = &request->operation[op_idx];
752 flags = operation->flags;
753
754 /*
755 * Note that read and write operations might be handled by a
756 * single command. If the MLXBF_I2C_F_SMBUS_OPERATION is set
757 * then write command byte and set the optional SMBus specific
758 * bits such as block_en and pec_en. These bits MUST be
759 * submitted by the first operation only.
760 */
761 if (op_idx == 0 && flags & MLXBF_I2C_F_SMBUS_OPERATION) {
762 block_en = flags & MLXBF_I2C_F_SMBUS_BLOCK;
763 pec_en = flags & MLXBF_I2C_F_SMBUS_PEC;
764 }
765
766 if (flags & MLXBF_I2C_F_WRITE) {
767 write_en = 1;
768 write_len += operation->length;
769 if (data_idx + operation->length >
770 MLXBF_I2C_MASTER_DATA_DESC_SIZE) {
771 ret = -ENOBUFS;
772 goto out_unlock;
773 }
774 memcpy(data_desc + data_idx,
775 operation->buffer, operation->length);
776 data_idx += operation->length;
777 }
778 /*
779 * We assume that read operations are performed only once per
780 * SMBus transaction. *TBD* protect this statement so it won't
781 * be executed twice? or return an error if we try to read more
782 * than once?
783 */
784 if (flags & MLXBF_I2C_F_READ) {
785 read_en = 1;
786 /* Subtract 1 as required by HW. */
787 read_len = operation->length - 1;
788 read_buf = operation->buffer;
789 }
790 }
791
792 /* Set Master GW data descriptor. */
793 data_len = write_len + 1; /* Add one byte of the slave address. */
794 /*
795 * Note that data_len cannot be 0. Indeed, the slave address byte
796 * must be written to the data registers.
797 */
798 mlxbf_i2c_smbus_write_data(priv, (const u8 *)data_desc, data_len,
799 MLXBF_I2C_MASTER_DATA_DESC_ADDR);
800
801 if (write_en) {
802 ret = mlxbf_i2c_smbus_enable(priv, slave, write_len, block_en,
803 pec_en, 0);
804 if (ret)
805 goto out_unlock;
806 }
807
808 if (read_en) {
809 /* Write slave address to Master GW data descriptor. */
810 mlxbf_i2c_smbus_write_data(priv, (const u8 *)&addr, 1,
811 MLXBF_I2C_MASTER_DATA_DESC_ADDR);
812 ret = mlxbf_i2c_smbus_enable(priv, slave, read_len, block_en,
813 pec_en, 1);
814 if (!ret) {
815 /* Get Master GW data descriptor. */
816 mlxbf_i2c_smbus_read_data(priv, data_desc, read_len + 1,
817 MLXBF_I2C_MASTER_DATA_DESC_ADDR);
818
819 /* Get data from Master GW data descriptor. */
820 memcpy(read_buf, data_desc, read_len + 1);
821 }
822
823 /*
824 * After a read operation the SMBus FSM ps (present state)
825 * needs to be 'manually' reset. This should be removed in
826 * next tag integration.
827 */
828 writel(MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK,
829 priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_FSM);
830 }
831
832 out_unlock:
833 mlxbf_i2c_smbus_master_unlock(priv);
834
835 return ret;
836 }
837
838 /* I2C SMBus protocols. */
839
840 static void
mlxbf_i2c_smbus_quick_command(struct mlxbf_i2c_smbus_request *request, u8 read)841 mlxbf_i2c_smbus_quick_command(struct mlxbf_i2c_smbus_request *request,
842 u8 read)
843 {
844 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1;
845
846 request->operation[0].length = 0;
847 request->operation[0].flags = MLXBF_I2C_F_WRITE;
848 request->operation[0].flags |= read ? MLXBF_I2C_F_READ : 0;
849 }
850
mlxbf_i2c_smbus_byte_func(struct mlxbf_i2c_smbus_request *request, u8 *data, bool read, bool pec_check)851 static void mlxbf_i2c_smbus_byte_func(struct mlxbf_i2c_smbus_request *request,
852 u8 *data, bool read, bool pec_check)
853 {
854 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1;
855
856 request->operation[0].length = 1;
857 request->operation[0].length += pec_check;
858
859 request->operation[0].flags = MLXBF_I2C_F_SMBUS_OPERATION;
860 request->operation[0].flags |= read ?
861 MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
862 request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
863
864 request->operation[0].buffer = data;
865 }
866
867 static void
mlxbf_i2c_smbus_data_byte_func(struct mlxbf_i2c_smbus_request *request, u8 *command, u8 *data, bool read, bool pec_check)868 mlxbf_i2c_smbus_data_byte_func(struct mlxbf_i2c_smbus_request *request,
869 u8 *command, u8 *data, bool read, bool pec_check)
870 {
871 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
872
873 request->operation[0].length = 1;
874 request->operation[0].flags =
875 MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
876 request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
877 request->operation[0].buffer = command;
878
879 request->operation[1].length = 1;
880 request->operation[1].length += pec_check;
881 request->operation[1].flags = read ?
882 MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
883 request->operation[1].buffer = data;
884 }
885
886 static void
mlxbf_i2c_smbus_data_word_func(struct mlxbf_i2c_smbus_request *request, u8 *command, u8 *data, bool read, bool pec_check)887 mlxbf_i2c_smbus_data_word_func(struct mlxbf_i2c_smbus_request *request,
888 u8 *command, u8 *data, bool read, bool pec_check)
889 {
890 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
891
892 request->operation[0].length = 1;
893 request->operation[0].flags =
894 MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
895 request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
896 request->operation[0].buffer = command;
897
898 request->operation[1].length = 2;
899 request->operation[1].length += pec_check;
900 request->operation[1].flags = read ?
901 MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
902 request->operation[1].buffer = data;
903 }
904
905 static void
mlxbf_i2c_smbus_i2c_block_func(struct mlxbf_i2c_smbus_request *request, u8 *command, u8 *data, u8 *data_len, bool read, bool pec_check)906 mlxbf_i2c_smbus_i2c_block_func(struct mlxbf_i2c_smbus_request *request,
907 u8 *command, u8 *data, u8 *data_len, bool read,
908 bool pec_check)
909 {
910 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
911
912 request->operation[0].length = 1;
913 request->operation[0].flags =
914 MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
915 request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
916 request->operation[0].buffer = command;
917
918 /*
919 * As specified in the standard, the max number of bytes to read/write
920 * per block operation is 32 bytes. In Golan code, the controller can
921 * read up to 128 bytes and write up to 127 bytes.
922 */
923 request->operation[1].length =
924 (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
925 I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
926 request->operation[1].flags = read ?
927 MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
928 /*
929 * Skip the first data byte, which corresponds to the number of bytes
930 * to read/write.
931 */
932 request->operation[1].buffer = data + 1;
933
934 *data_len = request->operation[1].length;
935
936 /* Set the number of byte to read. This will be used by userspace. */
937 if (read)
938 data[0] = *data_len;
939 }
940
mlxbf_i2c_smbus_block_func(struct mlxbf_i2c_smbus_request *request, u8 *command, u8 *data, u8 *data_len, bool read, bool pec_check)941 static void mlxbf_i2c_smbus_block_func(struct mlxbf_i2c_smbus_request *request,
942 u8 *command, u8 *data, u8 *data_len,
943 bool read, bool pec_check)
944 {
945 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
946
947 request->operation[0].length = 1;
948 request->operation[0].flags =
949 MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
950 request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
951 request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
952 request->operation[0].buffer = command;
953
954 request->operation[1].length =
955 (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
956 I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
957 request->operation[1].flags = read ?
958 MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
959 request->operation[1].buffer = data + 1;
960
961 *data_len = request->operation[1].length;
962
963 /* Set the number of bytes to read. This will be used by userspace. */
964 if (read)
965 data[0] = *data_len;
966 }
967
968 static void
mlxbf_i2c_smbus_process_call_func(struct mlxbf_i2c_smbus_request *request, u8 *command, u8 *data, bool pec_check)969 mlxbf_i2c_smbus_process_call_func(struct mlxbf_i2c_smbus_request *request,
970 u8 *command, u8 *data, bool pec_check)
971 {
972 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3;
973
974 request->operation[0].length = 1;
975 request->operation[0].flags =
976 MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
977 request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
978 request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
979 request->operation[0].buffer = command;
980
981 request->operation[1].length = 2;
982 request->operation[1].flags = MLXBF_I2C_F_WRITE;
983 request->operation[1].buffer = data;
984
985 request->operation[2].length = 3;
986 request->operation[2].flags = MLXBF_I2C_F_READ;
987 request->operation[2].buffer = data;
988 }
989
990 static void
mlxbf_i2c_smbus_blk_process_call_func(struct mlxbf_i2c_smbus_request *request, u8 *command, u8 *data, u8 *data_len, bool pec_check)991 mlxbf_i2c_smbus_blk_process_call_func(struct mlxbf_i2c_smbus_request *request,
992 u8 *command, u8 *data, u8 *data_len,
993 bool pec_check)
994 {
995 u32 length;
996
997 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3;
998
999 request->operation[0].length = 1;
1000 request->operation[0].flags =
1001 MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
1002 request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
1003 request->operation[0].flags |= (pec_check) ? MLXBF_I2C_F_SMBUS_PEC : 0;
1004 request->operation[0].buffer = command;
1005
1006 length = (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
1007 I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
1008
1009 request->operation[1].length = length - pec_check;
1010 request->operation[1].flags = MLXBF_I2C_F_WRITE;
1011 request->operation[1].buffer = data;
1012
1013 request->operation[2].length = length;
1014 request->operation[2].flags = MLXBF_I2C_F_READ;
1015 request->operation[2].buffer = data;
1016
1017 *data_len = length; /* including PEC byte. */
1018 }
1019
1020 /* Initialization functions. */
1021
mlxbf_i2c_has_chip_type(struct mlxbf_i2c_priv *priv, u8 type)1022 static bool mlxbf_i2c_has_chip_type(struct mlxbf_i2c_priv *priv, u8 type)
1023 {
1024 return priv->chip->type == type;
1025 }
1026
1027 static struct mlxbf_i2c_resource *
mlxbf_i2c_get_shared_resource(struct mlxbf_i2c_priv *priv, u8 type)1028 mlxbf_i2c_get_shared_resource(struct mlxbf_i2c_priv *priv, u8 type)
1029 {
1030 const struct mlxbf_i2c_chip_info *chip = priv->chip;
1031 struct mlxbf_i2c_resource *res;
1032 u8 res_idx = 0;
1033
1034 for (res_idx = 0; res_idx < MLXBF_I2C_SHARED_RES_MAX; res_idx++) {
1035 res = chip->shared_res[res_idx];
1036 if (res && res->type == type)
1037 return res;
1038 }
1039
1040 return NULL;
1041 }
1042
mlxbf_i2c_init_resource(struct platform_device *pdev, struct mlxbf_i2c_resource **res, u8 type)1043 static int mlxbf_i2c_init_resource(struct platform_device *pdev,
1044 struct mlxbf_i2c_resource **res,
1045 u8 type)
1046 {
1047 struct mlxbf_i2c_resource *tmp_res;
1048 struct device *dev = &pdev->dev;
1049
1050 if (!res || *res || type >= MLXBF_I2C_END_RES)
1051 return -EINVAL;
1052
1053 tmp_res = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_resource),
1054 GFP_KERNEL);
1055 if (!tmp_res)
1056 return -ENOMEM;
1057
1058 tmp_res->params = platform_get_resource(pdev, IORESOURCE_MEM, type);
1059 if (!tmp_res->params) {
1060 devm_kfree(dev, tmp_res);
1061 return -EIO;
1062 }
1063
1064 tmp_res->io = devm_ioremap_resource(dev, tmp_res->params);
1065 if (IS_ERR(tmp_res->io)) {
1066 devm_kfree(dev, tmp_res);
1067 return PTR_ERR(tmp_res->io);
1068 }
1069
1070 tmp_res->type = type;
1071
1072 *res = tmp_res;
1073
1074 return 0;
1075 }
1076
mlxbf_i2c_get_ticks(struct mlxbf_i2c_priv *priv, u64 nanoseconds, bool minimum)1077 static u32 mlxbf_i2c_get_ticks(struct mlxbf_i2c_priv *priv, u64 nanoseconds,
1078 bool minimum)
1079 {
1080 u64 frequency;
1081 u32 ticks;
1082
1083 /*
1084 * Compute ticks as follow:
1085 *
1086 * Ticks
1087 * Time = --------- x 10^9 => Ticks = Time x Frequency x 10^-9
1088 * Frequency
1089 */
1090 frequency = priv->frequency;
1091 ticks = (nanoseconds * frequency) / MLXBF_I2C_FREQUENCY_1GHZ;
1092 /*
1093 * The number of ticks is rounded down and if minimum is equal to 1
1094 * then add one tick.
1095 */
1096 if (minimum)
1097 ticks++;
1098
1099 return ticks;
1100 }
1101
mlxbf_i2c_set_timer(struct mlxbf_i2c_priv *priv, u64 nsec, bool opt, u32 mask, u8 shift)1102 static u32 mlxbf_i2c_set_timer(struct mlxbf_i2c_priv *priv, u64 nsec, bool opt,
1103 u32 mask, u8 shift)
1104 {
1105 u32 val = (mlxbf_i2c_get_ticks(priv, nsec, opt) & mask) << shift;
1106
1107 return val;
1108 }
1109
mlxbf_i2c_set_timings(struct mlxbf_i2c_priv *priv, const struct mlxbf_i2c_timings *timings)1110 static void mlxbf_i2c_set_timings(struct mlxbf_i2c_priv *priv,
1111 const struct mlxbf_i2c_timings *timings)
1112 {
1113 u32 timer;
1114
1115 timer = mlxbf_i2c_set_timer(priv, timings->scl_high,
1116 false, MLXBF_I2C_MASK_16,
1117 MLXBF_I2C_SHIFT_0);
1118 timer |= mlxbf_i2c_set_timer(priv, timings->scl_low,
1119 false, MLXBF_I2C_MASK_16,
1120 MLXBF_I2C_SHIFT_16);
1121 writel(timer, priv->smbus->io +
1122 MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH);
1123
1124 timer = mlxbf_i2c_set_timer(priv, timings->sda_rise, false,
1125 MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_0);
1126 timer |= mlxbf_i2c_set_timer(priv, timings->sda_fall, false,
1127 MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_8);
1128 timer |= mlxbf_i2c_set_timer(priv, timings->scl_rise, false,
1129 MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_16);
1130 timer |= mlxbf_i2c_set_timer(priv, timings->scl_fall, false,
1131 MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_24);
1132 writel(timer, priv->smbus->io +
1133 MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE);
1134
1135 timer = mlxbf_i2c_set_timer(priv, timings->hold_start, true,
1136 MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1137 timer |= mlxbf_i2c_set_timer(priv, timings->hold_data, true,
1138 MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1139 writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_TIMER_THOLD);
1140
1141 timer = mlxbf_i2c_set_timer(priv, timings->setup_start, true,
1142 MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1143 timer |= mlxbf_i2c_set_timer(priv, timings->setup_stop, true,
1144 MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1145 writel(timer, priv->smbus->io +
1146 MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP);
1147
1148 timer = mlxbf_i2c_set_timer(priv, timings->setup_data, true,
1149 MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1150 writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA);
1151
1152 timer = mlxbf_i2c_set_timer(priv, timings->buf, false,
1153 MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1154 timer |= mlxbf_i2c_set_timer(priv, timings->thigh_max, false,
1155 MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1156 writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_THIGH_MAX_TBUF);
1157
1158 timer = timings->timeout;
1159 writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT);
1160 }
1161
1162 enum mlxbf_i2c_timings_config {
1163 MLXBF_I2C_TIMING_CONFIG_100KHZ,
1164 MLXBF_I2C_TIMING_CONFIG_400KHZ,
1165 MLXBF_I2C_TIMING_CONFIG_1000KHZ,
1166 };
1167
1168 /*
1169 * Note that the mlxbf_i2c_timings->timeout value is not related to the
1170 * bus frequency, it is impacted by the time it takes the driver to
1171 * complete data transmission before transaction abort.
1172 */
1173 static const struct mlxbf_i2c_timings mlxbf_i2c_timings[] = {
1174 [MLXBF_I2C_TIMING_CONFIG_100KHZ] = {
1175 .scl_high = 4810,
1176 .scl_low = 5000,
1177 .hold_start = 4000,
1178 .setup_start = 4800,
1179 .setup_stop = 4000,
1180 .setup_data = 250,
1181 .sda_rise = 50,
1182 .sda_fall = 50,
1183 .scl_rise = 50,
1184 .scl_fall = 50,
1185 .hold_data = 300,
1186 .buf = 20000,
1187 .thigh_max = 5000,
1188 .timeout = 106500
1189 },
1190 [MLXBF_I2C_TIMING_CONFIG_400KHZ] = {
1191 .scl_high = 1011,
1192 .scl_low = 1300,
1193 .hold_start = 600,
1194 .setup_start = 700,
1195 .setup_stop = 600,
1196 .setup_data = 100,
1197 .sda_rise = 50,
1198 .sda_fall = 50,
1199 .scl_rise = 50,
1200 .scl_fall = 50,
1201 .hold_data = 300,
1202 .buf = 20000,
1203 .thigh_max = 5000,
1204 .timeout = 106500
1205 },
1206 [MLXBF_I2C_TIMING_CONFIG_1000KHZ] = {
1207 .scl_high = 600,
1208 .scl_low = 1300,
1209 .hold_start = 600,
1210 .setup_start = 600,
1211 .setup_stop = 600,
1212 .setup_data = 100,
1213 .sda_rise = 50,
1214 .sda_fall = 50,
1215 .scl_rise = 50,
1216 .scl_fall = 50,
1217 .hold_data = 300,
1218 .buf = 20000,
1219 .thigh_max = 5000,
1220 .timeout = 106500
1221 }
1222 };
1223
mlxbf_i2c_init_timings(struct platform_device *pdev, struct mlxbf_i2c_priv *priv)1224 static int mlxbf_i2c_init_timings(struct platform_device *pdev,
1225 struct mlxbf_i2c_priv *priv)
1226 {
1227 enum mlxbf_i2c_timings_config config_idx;
1228 struct device *dev = &pdev->dev;
1229 u32 config_khz;
1230
1231 int ret;
1232
1233 ret = device_property_read_u32(dev, "clock-frequency", &config_khz);
1234 if (ret < 0)
1235 config_khz = MLXBF_I2C_TIMING_100KHZ;
1236
1237 switch (config_khz) {
1238 default:
1239 /* Default settings is 100 KHz. */
1240 pr_warn("Illegal value %d: defaulting to 100 KHz\n",
1241 config_khz);
1242 fallthrough;
1243 case MLXBF_I2C_TIMING_100KHZ:
1244 config_idx = MLXBF_I2C_TIMING_CONFIG_100KHZ;
1245 break;
1246
1247 case MLXBF_I2C_TIMING_400KHZ:
1248 config_idx = MLXBF_I2C_TIMING_CONFIG_400KHZ;
1249 break;
1250
1251 case MLXBF_I2C_TIMING_1000KHZ:
1252 config_idx = MLXBF_I2C_TIMING_CONFIG_1000KHZ;
1253 break;
1254 }
1255
1256 mlxbf_i2c_set_timings(priv, &mlxbf_i2c_timings[config_idx]);
1257
1258 return 0;
1259 }
1260
mlxbf_i2c_get_gpio(struct platform_device *pdev, struct mlxbf_i2c_priv *priv)1261 static int mlxbf_i2c_get_gpio(struct platform_device *pdev,
1262 struct mlxbf_i2c_priv *priv)
1263 {
1264 struct mlxbf_i2c_resource *gpio_res;
1265 struct device *dev = &pdev->dev;
1266 struct resource *params;
1267 resource_size_t size;
1268
1269 gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1270 if (!gpio_res)
1271 return -EPERM;
1272
1273 /*
1274 * The GPIO region in TYU space is shared among I2C busses.
1275 * This function MUST be serialized to avoid racing when
1276 * claiming the memory region and/or setting up the GPIO.
1277 */
1278 lockdep_assert_held(gpio_res->lock);
1279
1280 /* Check whether the memory map exist. */
1281 if (gpio_res->io)
1282 return 0;
1283
1284 params = gpio_res->params;
1285 size = resource_size(params);
1286
1287 if (!devm_request_mem_region(dev, params->start, size, params->name))
1288 return -EFAULT;
1289
1290 gpio_res->io = devm_ioremap(dev, params->start, size);
1291 if (!gpio_res->io) {
1292 devm_release_mem_region(dev, params->start, size);
1293 return -ENOMEM;
1294 }
1295
1296 return 0;
1297 }
1298
mlxbf_i2c_release_gpio(struct platform_device *pdev, struct mlxbf_i2c_priv *priv)1299 static int mlxbf_i2c_release_gpio(struct platform_device *pdev,
1300 struct mlxbf_i2c_priv *priv)
1301 {
1302 struct mlxbf_i2c_resource *gpio_res;
1303 struct device *dev = &pdev->dev;
1304 struct resource *params;
1305
1306 gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1307 if (!gpio_res)
1308 return 0;
1309
1310 mutex_lock(gpio_res->lock);
1311
1312 if (gpio_res->io) {
1313 /* Release the GPIO resource. */
1314 params = gpio_res->params;
1315 devm_iounmap(dev, gpio_res->io);
1316 devm_release_mem_region(dev, params->start,
1317 resource_size(params));
1318 }
1319
1320 mutex_unlock(gpio_res->lock);
1321
1322 return 0;
1323 }
1324
mlxbf_i2c_get_corepll(struct platform_device *pdev, struct mlxbf_i2c_priv *priv)1325 static int mlxbf_i2c_get_corepll(struct platform_device *pdev,
1326 struct mlxbf_i2c_priv *priv)
1327 {
1328 struct mlxbf_i2c_resource *corepll_res;
1329 struct device *dev = &pdev->dev;
1330 struct resource *params;
1331 resource_size_t size;
1332
1333 corepll_res = mlxbf_i2c_get_shared_resource(priv,
1334 MLXBF_I2C_COREPLL_RES);
1335 if (!corepll_res)
1336 return -EPERM;
1337
1338 /*
1339 * The COREPLL region in TYU space is shared among I2C busses.
1340 * This function MUST be serialized to avoid racing when
1341 * claiming the memory region.
1342 */
1343 lockdep_assert_held(corepll_res->lock);
1344
1345 /* Check whether the memory map exist. */
1346 if (corepll_res->io)
1347 return 0;
1348
1349 params = corepll_res->params;
1350 size = resource_size(params);
1351
1352 if (!devm_request_mem_region(dev, params->start, size, params->name))
1353 return -EFAULT;
1354
1355 corepll_res->io = devm_ioremap(dev, params->start, size);
1356 if (!corepll_res->io) {
1357 devm_release_mem_region(dev, params->start, size);
1358 return -ENOMEM;
1359 }
1360
1361 return 0;
1362 }
1363
mlxbf_i2c_release_corepll(struct platform_device *pdev, struct mlxbf_i2c_priv *priv)1364 static int mlxbf_i2c_release_corepll(struct platform_device *pdev,
1365 struct mlxbf_i2c_priv *priv)
1366 {
1367 struct mlxbf_i2c_resource *corepll_res;
1368 struct device *dev = &pdev->dev;
1369 struct resource *params;
1370
1371 corepll_res = mlxbf_i2c_get_shared_resource(priv,
1372 MLXBF_I2C_COREPLL_RES);
1373
1374 mutex_lock(corepll_res->lock);
1375
1376 if (corepll_res->io) {
1377 /* Release the CorePLL resource. */
1378 params = corepll_res->params;
1379 devm_iounmap(dev, corepll_res->io);
1380 devm_release_mem_region(dev, params->start,
1381 resource_size(params));
1382 }
1383
1384 mutex_unlock(corepll_res->lock);
1385
1386 return 0;
1387 }
1388
mlxbf_i2c_init_master(struct platform_device *pdev, struct mlxbf_i2c_priv *priv)1389 static int mlxbf_i2c_init_master(struct platform_device *pdev,
1390 struct mlxbf_i2c_priv *priv)
1391 {
1392 struct mlxbf_i2c_resource *gpio_res;
1393 struct device *dev = &pdev->dev;
1394 u32 config_reg;
1395 int ret;
1396
1397 /* This configuration is only needed for BlueField 1. */
1398 if (!mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1))
1399 return 0;
1400
1401 gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1402 if (!gpio_res)
1403 return -EPERM;
1404
1405 /*
1406 * The GPIO region in TYU space is shared among I2C busses.
1407 * This function MUST be serialized to avoid racing when
1408 * claiming the memory region and/or setting up the GPIO.
1409 */
1410
1411 mutex_lock(gpio_res->lock);
1412
1413 ret = mlxbf_i2c_get_gpio(pdev, priv);
1414 if (ret < 0) {
1415 dev_err(dev, "Failed to get gpio resource");
1416 mutex_unlock(gpio_res->lock);
1417 return ret;
1418 }
1419
1420 /*
1421 * TYU - Configuration for GPIO pins. Those pins must be asserted in
1422 * MLXBF_I2C_GPIO_0_FUNC_EN_0, i.e. GPIO 0 is controlled by HW, and must
1423 * be reset in MLXBF_I2C_GPIO_0_FORCE_OE_EN, i.e. GPIO_OE will be driven
1424 * instead of HW_OE.
1425 * For now, we do not reset the GPIO state when the driver is removed.
1426 * First, it is not necessary to disable the bus since we are using
1427 * the same busses. Then, some busses might be shared among Linux and
1428 * platform firmware; disabling the bus might compromise the system
1429 * functionality.
1430 */
1431 config_reg = readl(gpio_res->io + MLXBF_I2C_GPIO_0_FUNC_EN_0);
1432 config_reg = MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(priv->bus,
1433 config_reg);
1434 writel(config_reg, gpio_res->io + MLXBF_I2C_GPIO_0_FUNC_EN_0);
1435
1436 config_reg = readl(gpio_res->io + MLXBF_I2C_GPIO_0_FORCE_OE_EN);
1437 config_reg = MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(priv->bus,
1438 config_reg);
1439 writel(config_reg, gpio_res->io + MLXBF_I2C_GPIO_0_FORCE_OE_EN);
1440
1441 mutex_unlock(gpio_res->lock);
1442
1443 return 0;
1444 }
1445
mlxbf_i2c_calculate_freq_from_tyu(struct mlxbf_i2c_resource *corepll_res)1446 static u64 mlxbf_i2c_calculate_freq_from_tyu(struct mlxbf_i2c_resource *corepll_res)
1447 {
1448 u64 core_frequency;
1449 u8 core_od, core_r;
1450 u32 corepll_val;
1451 u16 core_f;
1452
1453 corepll_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG1);
1454
1455 /* Get Core PLL configuration bits. */
1456 core_f = FIELD_GET(MLXBF_I2C_COREPLL_CORE_F_TYU_MASK, corepll_val);
1457 core_od = FIELD_GET(MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK, corepll_val);
1458 core_r = FIELD_GET(MLXBF_I2C_COREPLL_CORE_R_TYU_MASK, corepll_val);
1459
1460 /*
1461 * Compute PLL output frequency as follow:
1462 *
1463 * CORE_F + 1
1464 * PLL_OUT_FREQ = PLL_IN_FREQ * ----------------------------
1465 * (CORE_R + 1) * (CORE_OD + 1)
1466 *
1467 * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency
1468 * and PadFrequency, respectively.
1469 */
1470 core_frequency = MLXBF_I2C_PLL_IN_FREQ * (++core_f);
1471 core_frequency /= (++core_r) * (++core_od);
1472
1473 return core_frequency;
1474 }
1475
mlxbf_i2c_calculate_freq_from_yu(struct mlxbf_i2c_resource *corepll_res)1476 static u64 mlxbf_i2c_calculate_freq_from_yu(struct mlxbf_i2c_resource *corepll_res)
1477 {
1478 u32 corepll_reg1_val, corepll_reg2_val;
1479 u64 corepll_frequency;
1480 u8 core_od, core_r;
1481 u32 core_f;
1482
1483 corepll_reg1_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG1);
1484 corepll_reg2_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG2);
1485
1486 /* Get Core PLL configuration bits */
1487 core_f = FIELD_GET(MLXBF_I2C_COREPLL_CORE_F_YU_MASK, corepll_reg1_val);
1488 core_r = FIELD_GET(MLXBF_I2C_COREPLL_CORE_R_YU_MASK, corepll_reg1_val);
1489 core_od = FIELD_GET(MLXBF_I2C_COREPLL_CORE_OD_YU_MASK, corepll_reg2_val);
1490
1491 /*
1492 * Compute PLL output frequency as follow:
1493 *
1494 * CORE_F / 16384
1495 * PLL_OUT_FREQ = PLL_IN_FREQ * ----------------------------
1496 * (CORE_R + 1) * (CORE_OD + 1)
1497 *
1498 * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency
1499 * and PadFrequency, respectively.
1500 */
1501 corepll_frequency = (MLXBF_I2C_PLL_IN_FREQ * core_f) / MLNXBF_I2C_COREPLL_CONST;
1502 corepll_frequency /= (++core_r) * (++core_od);
1503
1504 return corepll_frequency;
1505 }
1506
mlxbf_i2c_calculate_corepll_freq(struct platform_device *pdev, struct mlxbf_i2c_priv *priv)1507 static int mlxbf_i2c_calculate_corepll_freq(struct platform_device *pdev,
1508 struct mlxbf_i2c_priv *priv)
1509 {
1510 const struct mlxbf_i2c_chip_info *chip = priv->chip;
1511 struct mlxbf_i2c_resource *corepll_res;
1512 struct device *dev = &pdev->dev;
1513 u64 *freq = &priv->frequency;
1514 int ret;
1515
1516 corepll_res = mlxbf_i2c_get_shared_resource(priv,
1517 MLXBF_I2C_COREPLL_RES);
1518 if (!corepll_res)
1519 return -EPERM;
1520
1521 /*
1522 * First, check whether the TYU core Clock frequency is set.
1523 * The TYU core frequency is the same for all I2C busses; when
1524 * the first device gets probed the frequency is determined and
1525 * stored into a globally visible variable. So, first of all,
1526 * check whether the frequency is already set. Here, we assume
1527 * that the frequency is expected to be greater than 0.
1528 */
1529 mutex_lock(corepll_res->lock);
1530 if (!mlxbf_i2c_corepll_frequency) {
1531 if (!chip->calculate_freq) {
1532 mutex_unlock(corepll_res->lock);
1533 return -EPERM;
1534 }
1535
1536 ret = mlxbf_i2c_get_corepll(pdev, priv);
1537 if (ret < 0) {
1538 dev_err(dev, "Failed to get corePLL resource");
1539 mutex_unlock(corepll_res->lock);
1540 return ret;
1541 }
1542
1543 mlxbf_i2c_corepll_frequency = chip->calculate_freq(corepll_res);
1544 }
1545 mutex_unlock(corepll_res->lock);
1546
1547 *freq = mlxbf_i2c_corepll_frequency;
1548
1549 return 0;
1550 }
1551
mlxbf_slave_enable(struct mlxbf_i2c_priv *priv, u8 addr)1552 static int mlxbf_slave_enable(struct mlxbf_i2c_priv *priv, u8 addr)
1553 {
1554 u32 slave_reg, slave_reg_tmp, slave_reg_avail, slave_addr_mask;
1555 u8 reg, reg_cnt, byte, addr_tmp, reg_avail, byte_avail;
1556 bool avail, disabled;
1557
1558 disabled = false;
1559 avail = false;
1560
1561 if (!priv)
1562 return -EPERM;
1563
1564 reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2;
1565 slave_addr_mask = MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK;
1566
1567 /*
1568 * Read the slave registers. There are 4 * 32-bit slave registers.
1569 * Each slave register can hold up to 4 * 8-bit slave configuration
1570 * (7-bit address, 1 status bit (1 if enabled, 0 if not)).
1571 */
1572 for (reg = 0; reg < reg_cnt; reg++) {
1573 slave_reg = readl(priv->smbus->io +
1574 MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4);
1575 /*
1576 * Each register holds 4 slave addresses. So, we have to keep
1577 * the byte order consistent with the value read in order to
1578 * update the register correctly, if needed.
1579 */
1580 slave_reg_tmp = slave_reg;
1581 for (byte = 0; byte < 4; byte++) {
1582 addr_tmp = slave_reg_tmp & GENMASK(7, 0);
1583
1584 /*
1585 * Mark the first available slave address slot, i.e. its
1586 * enabled bit should be unset. This slot might be used
1587 * later on to register our slave.
1588 */
1589 if (!avail && !MLXBF_I2C_SLAVE_ADDR_ENABLED(addr_tmp)) {
1590 avail = true;
1591 reg_avail = reg;
1592 byte_avail = byte;
1593 slave_reg_avail = slave_reg;
1594 }
1595
1596 /*
1597 * Parse slave address bytes and check whether the
1598 * slave address already exists and it's enabled,
1599 * i.e. most significant bit is set.
1600 */
1601 if ((addr_tmp & slave_addr_mask) == addr) {
1602 if (MLXBF_I2C_SLAVE_ADDR_ENABLED(addr_tmp))
1603 return 0;
1604 disabled = true;
1605 break;
1606 }
1607
1608 /* Parse next byte. */
1609 slave_reg_tmp >>= 8;
1610 }
1611
1612 /* Exit the loop if the slave address is found. */
1613 if (disabled)
1614 break;
1615 }
1616
1617 if (!avail && !disabled)
1618 return -EINVAL; /* No room for a new slave address. */
1619
1620 if (avail && !disabled) {
1621 reg = reg_avail;
1622 byte = byte_avail;
1623 /* Set the slave address. */
1624 slave_reg_avail &= ~(slave_addr_mask << (byte * 8));
1625 slave_reg_avail |= addr << (byte * 8);
1626 slave_reg = slave_reg_avail;
1627 }
1628
1629 /* Enable the slave address and update the register. */
1630 slave_reg |= (1 << MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT) << (byte * 8);
1631 writel(slave_reg, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG +
1632 reg * 0x4);
1633
1634 return 0;
1635 }
1636
mlxbf_slave_disable(struct mlxbf_i2c_priv *priv)1637 static int mlxbf_slave_disable(struct mlxbf_i2c_priv *priv)
1638 {
1639 u32 slave_reg, slave_reg_tmp, slave_addr_mask;
1640 u8 addr, addr_tmp, reg, reg_cnt, slave_byte;
1641 struct i2c_client *client = priv->slave;
1642 bool exist;
1643
1644 exist = false;
1645
1646 addr = client->addr;
1647 reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2;
1648 slave_addr_mask = MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK;
1649
1650 /*
1651 * Read the slave registers. There are 4 * 32-bit slave registers.
1652 * Each slave register can hold up to 4 * 8-bit slave configuration
1653 * (7-bit address, 1 status bit (1 if enabled, 0 if not)).
1654 */
1655 for (reg = 0; reg < reg_cnt; reg++) {
1656 slave_reg = readl(priv->smbus->io +
1657 MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4);
1658
1659 /* Check whether the address slots are empty. */
1660 if (slave_reg == 0)
1661 continue;
1662
1663 /*
1664 * Each register holds 4 slave addresses. So, we have to keep
1665 * the byte order consistent with the value read in order to
1666 * update the register correctly, if needed.
1667 */
1668 slave_reg_tmp = slave_reg;
1669 slave_byte = 0;
1670 while (slave_reg_tmp != 0) {
1671 addr_tmp = slave_reg_tmp & slave_addr_mask;
1672 /*
1673 * Parse slave address bytes and check whether the
1674 * slave address already exists.
1675 */
1676 if (addr_tmp == addr) {
1677 exist = true;
1678 break;
1679 }
1680
1681 /* Parse next byte. */
1682 slave_reg_tmp >>= 8;
1683 slave_byte += 1;
1684 }
1685
1686 /* Exit the loop if the slave address is found. */
1687 if (exist)
1688 break;
1689 }
1690
1691 if (!exist)
1692 return 0; /* Slave is not registered, nothing to do. */
1693
1694 /* Cleanup the slave address slot. */
1695 slave_reg &= ~(GENMASK(7, 0) << (slave_byte * 8));
1696 writel(slave_reg, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG +
1697 reg * 0x4);
1698
1699 return 0;
1700 }
1701
mlxbf_i2c_init_coalesce(struct platform_device *pdev, struct mlxbf_i2c_priv *priv)1702 static int mlxbf_i2c_init_coalesce(struct platform_device *pdev,
1703 struct mlxbf_i2c_priv *priv)
1704 {
1705 struct mlxbf_i2c_resource *coalesce_res;
1706 struct resource *params;
1707 resource_size_t size;
1708 int ret = 0;
1709
1710 /*
1711 * Unlike BlueField-1 platform, the coalesce registers is a dedicated
1712 * resource in the next generations of BlueField.
1713 */
1714 if (mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) {
1715 coalesce_res = mlxbf_i2c_get_shared_resource(priv,
1716 MLXBF_I2C_COALESCE_RES);
1717 if (!coalesce_res)
1718 return -EPERM;
1719
1720 /*
1721 * The Cause Coalesce group in TYU space is shared among
1722 * I2C busses. This function MUST be serialized to avoid
1723 * racing when claiming the memory region.
1724 */
1725 lockdep_assert_held(mlxbf_i2c_gpio_res->lock);
1726
1727 /* Check whether the memory map exist. */
1728 if (coalesce_res->io) {
1729 priv->coalesce = coalesce_res;
1730 return 0;
1731 }
1732
1733 params = coalesce_res->params;
1734 size = resource_size(params);
1735
1736 if (!request_mem_region(params->start, size, params->name))
1737 return -EFAULT;
1738
1739 coalesce_res->io = ioremap(params->start, size);
1740 if (!coalesce_res->io) {
1741 release_mem_region(params->start, size);
1742 return -ENOMEM;
1743 }
1744
1745 priv->coalesce = coalesce_res;
1746
1747 } else {
1748 ret = mlxbf_i2c_init_resource(pdev, &priv->coalesce,
1749 MLXBF_I2C_COALESCE_RES);
1750 }
1751
1752 return ret;
1753 }
1754
mlxbf_i2c_release_coalesce(struct platform_device *pdev, struct mlxbf_i2c_priv *priv)1755 static int mlxbf_i2c_release_coalesce(struct platform_device *pdev,
1756 struct mlxbf_i2c_priv *priv)
1757 {
1758 struct mlxbf_i2c_resource *coalesce_res;
1759 struct device *dev = &pdev->dev;
1760 struct resource *params;
1761 resource_size_t size;
1762
1763 coalesce_res = priv->coalesce;
1764
1765 if (coalesce_res->io) {
1766 params = coalesce_res->params;
1767 size = resource_size(params);
1768 if (mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) {
1769 mutex_lock(coalesce_res->lock);
1770 iounmap(coalesce_res->io);
1771 release_mem_region(params->start, size);
1772 mutex_unlock(coalesce_res->lock);
1773 } else {
1774 devm_release_mem_region(dev, params->start, size);
1775 }
1776 }
1777
1778 return 0;
1779 }
1780
mlxbf_i2c_init_slave(struct platform_device *pdev, struct mlxbf_i2c_priv *priv)1781 static int mlxbf_i2c_init_slave(struct platform_device *pdev,
1782 struct mlxbf_i2c_priv *priv)
1783 {
1784 struct device *dev = &pdev->dev;
1785 u32 int_reg;
1786 int ret;
1787
1788 /* Reset FSM. */
1789 writel(0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_FSM);
1790
1791 /*
1792 * Enable slave cause interrupt bits. Drive
1793 * MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE and
1794 * MLXBF_I2C_CAUSE_WRITE_SUCCESS, these are enabled when an external
1795 * masters issue a Read and Write, respectively. But, clear all
1796 * interrupts first.
1797 */
1798 writel(~0, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
1799 int_reg = MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE;
1800 int_reg |= MLXBF_I2C_CAUSE_WRITE_SUCCESS;
1801 writel(int_reg, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_EVTEN0);
1802
1803 /* Finally, set the 'ready' bit to start handling transactions. */
1804 writel(0x1, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1805
1806 /* Initialize the cause coalesce resource. */
1807 ret = mlxbf_i2c_init_coalesce(pdev, priv);
1808 if (ret < 0) {
1809 dev_err(dev, "failed to initialize cause coalesce\n");
1810 return ret;
1811 }
1812
1813 return 0;
1814 }
1815
mlxbf_i2c_has_coalesce(struct mlxbf_i2c_priv *priv, bool *read, bool *write)1816 static bool mlxbf_i2c_has_coalesce(struct mlxbf_i2c_priv *priv, bool *read,
1817 bool *write)
1818 {
1819 const struct mlxbf_i2c_chip_info *chip = priv->chip;
1820 u32 coalesce0_reg, cause_reg;
1821 u8 slave_shift, is_set;
1822
1823 *write = false;
1824 *read = false;
1825
1826 slave_shift = chip->type != MLXBF_I2C_CHIP_TYPE_1 ?
1827 MLXBF_I2C_CAUSE_YU_SLAVE_BIT :
1828 priv->bus + MLXBF_I2C_CAUSE_TYU_SLAVE_BIT;
1829
1830 coalesce0_reg = readl(priv->coalesce->io + MLXBF_I2C_CAUSE_COALESCE_0);
1831 is_set = coalesce0_reg & (1 << slave_shift);
1832
1833 if (!is_set)
1834 return false;
1835
1836 /* Check the source of the interrupt, i.e. whether a Read or Write. */
1837 cause_reg = readl(priv->slv_cause->io + MLXBF_I2C_CAUSE_ARBITER);
1838 if (cause_reg & MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE)
1839 *read = true;
1840 else if (cause_reg & MLXBF_I2C_CAUSE_WRITE_SUCCESS)
1841 *write = true;
1842
1843 /* Clear cause bits. */
1844 writel(~0x0, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
1845
1846 return true;
1847 }
1848
mlxbf_smbus_slave_wait_for_idle(struct mlxbf_i2c_priv *priv, u32 timeout)1849 static bool mlxbf_smbus_slave_wait_for_idle(struct mlxbf_i2c_priv *priv,
1850 u32 timeout)
1851 {
1852 u32 mask = MLXBF_I2C_CAUSE_S_GW_BUSY_FALL;
1853 u32 addr = MLXBF_I2C_CAUSE_ARBITER;
1854
1855 if (mlxbf_smbus_poll(priv->slv_cause->io, addr, mask, false, timeout))
1856 return true;
1857
1858 return false;
1859 }
1860
1861 /* Send byte to 'external' smbus master. */
mlxbf_smbus_irq_send(struct mlxbf_i2c_priv *priv, u8 recv_bytes)1862 static int mlxbf_smbus_irq_send(struct mlxbf_i2c_priv *priv, u8 recv_bytes)
1863 {
1864 u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 };
1865 u8 write_size, pec_en, addr, byte, value, byte_cnt, desc_size;
1866 struct i2c_client *slave = priv->slave;
1867 u32 control32, data32;
1868 int ret;
1869
1870 if (!slave)
1871 return -EINVAL;
1872
1873 addr = 0;
1874 byte = 0;
1875 desc_size = MLXBF_I2C_SLAVE_DATA_DESC_SIZE;
1876
1877 /*
1878 * Read bytes received from the external master. These bytes should
1879 * be located in the first data descriptor register of the slave GW.
1880 * These bytes are the slave address byte and the internal register
1881 * address, if supplied.
1882 */
1883 if (recv_bytes > 0) {
1884 data32 = ioread32be(priv->smbus->io +
1885 MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1886
1887 /* Parse the received bytes. */
1888 switch (recv_bytes) {
1889 case 2:
1890 byte = (data32 >> 8) & GENMASK(7, 0);
1891 fallthrough;
1892 case 1:
1893 addr = (data32 & GENMASK(7, 0)) >> 1;
1894 }
1895
1896 /* Check whether it's our slave address. */
1897 if (slave->addr != addr)
1898 return -EINVAL;
1899 }
1900
1901 /*
1902 * I2C read transactions may start by a WRITE followed by a READ.
1903 * Indeed, most slave devices would expect the internal address
1904 * following the slave address byte. So, write that byte first,
1905 * and then, send the requested data bytes to the master.
1906 */
1907 if (recv_bytes > 1) {
1908 i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value);
1909 value = byte;
1910 ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED,
1911 &value);
1912 i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1913
1914 if (ret < 0)
1915 return ret;
1916 }
1917
1918 /*
1919 * Now, send data to the master; currently, the driver supports
1920 * READ_BYTE, READ_WORD and BLOCK READ protocols. Note that the
1921 * hardware can send up to 128 bytes per transfer. That is the
1922 * size of its data registers.
1923 */
1924 i2c_slave_event(slave, I2C_SLAVE_READ_REQUESTED, &value);
1925
1926 for (byte_cnt = 0; byte_cnt < desc_size; byte_cnt++) {
1927 data_desc[byte_cnt] = value;
1928 i2c_slave_event(slave, I2C_SLAVE_READ_PROCESSED, &value);
1929 }
1930
1931 /* Send a stop condition to the backend. */
1932 i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1933
1934 /* Handle the actual transfer. */
1935
1936 /* Set the number of bytes to write to master. */
1937 write_size = (byte_cnt - 1) & 0x7f;
1938
1939 /* Write data to Slave GW data descriptor. */
1940 mlxbf_i2c_smbus_write_data(priv, data_desc, byte_cnt,
1941 MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1942
1943 pec_en = 0; /* Disable PEC since it is not supported. */
1944
1945 /* Prepare control word. */
1946 control32 = MLXBF_I2C_SLAVE_ENABLE;
1947 control32 |= rol32(write_size, MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT);
1948 control32 |= rol32(pec_en, MLXBF_I2C_SLAVE_SEND_PEC_SHIFT);
1949
1950 writel(control32, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_GW);
1951
1952 /*
1953 * Wait until the transfer is completed; the driver will wait
1954 * until the GW is idle, a cause will rise on fall of GW busy.
1955 */
1956 mlxbf_smbus_slave_wait_for_idle(priv, MLXBF_I2C_SMBUS_TIMEOUT);
1957
1958 /* Release the Slave GW. */
1959 writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
1960 writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_PEC);
1961 writel(0x1, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1962
1963 return 0;
1964 }
1965
1966 /* Receive bytes from 'external' smbus master. */
mlxbf_smbus_irq_recv(struct mlxbf_i2c_priv *priv, u8 recv_bytes)1967 static int mlxbf_smbus_irq_recv(struct mlxbf_i2c_priv *priv, u8 recv_bytes)
1968 {
1969 u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 };
1970 struct i2c_client *slave = priv->slave;
1971 u8 value, byte, addr;
1972 int ret = 0;
1973
1974 if (!slave)
1975 return -EINVAL;
1976
1977 /* Read data from Slave GW data descriptor. */
1978 mlxbf_i2c_smbus_read_data(priv, data_desc, recv_bytes,
1979 MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1980
1981 /* Check whether its our slave address. */
1982 addr = data_desc[0] >> 1;
1983 if (slave->addr != addr)
1984 return -EINVAL;
1985
1986 /*
1987 * Notify the slave backend; another I2C master wants to write data
1988 * to us. This event is sent once the slave address and the write bit
1989 * is detected.
1990 */
1991 i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value);
1992
1993 /* Send the received data to the slave backend. */
1994 for (byte = 1; byte < recv_bytes; byte++) {
1995 value = data_desc[byte];
1996 ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED,
1997 &value);
1998 if (ret < 0)
1999 break;
2000 }
2001
2002 /* Send a stop condition to the backend. */
2003 i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
2004
2005 /* Release the Slave GW. */
2006 writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
2007 writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_PEC);
2008 writel(0x1, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_READY);
2009
2010 return ret;
2011 }
2012
mlxbf_smbus_irq(int irq, void *ptr)2013 static irqreturn_t mlxbf_smbus_irq(int irq, void *ptr)
2014 {
2015 struct mlxbf_i2c_priv *priv = ptr;
2016 bool read, write, irq_is_set;
2017 u32 rw_bytes_reg;
2018 u8 recv_bytes;
2019
2020 /*
2021 * Read TYU interrupt register and determine the source of the
2022 * interrupt. Based on the source of the interrupt one of the
2023 * following actions are performed:
2024 * - Receive data and send response to master.
2025 * - Send data and release slave GW.
2026 *
2027 * Handle read/write transaction only. CRmaster and Iarp requests
2028 * are ignored for now.
2029 */
2030 irq_is_set = mlxbf_i2c_has_coalesce(priv, &read, &write);
2031 if (!irq_is_set || (!read && !write)) {
2032 /* Nothing to do here, interrupt was not from this device. */
2033 return IRQ_NONE;
2034 }
2035
2036 /*
2037 * The MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES includes the number of
2038 * bytes from/to master. These are defined by 8-bits each. If the lower
2039 * 8 bits are set, then the master expect to read N bytes from the
2040 * slave, if the higher 8 bits are sent then the slave expect N bytes
2041 * from the master.
2042 */
2043 rw_bytes_reg = readl(priv->smbus->io +
2044 MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
2045 recv_bytes = (rw_bytes_reg >> 8) & GENMASK(7, 0);
2046
2047 /*
2048 * For now, the slave supports 128 bytes transfer. Discard remaining
2049 * data bytes if the master wrote more than
2050 * MLXBF_I2C_SLAVE_DATA_DESC_SIZE, i.e, the actual size of the slave
2051 * data descriptor.
2052 *
2053 * Note that we will never expect to transfer more than 128 bytes; as
2054 * specified in the SMBus standard, block transactions cannot exceed
2055 * 32 bytes.
2056 */
2057 recv_bytes = recv_bytes > MLXBF_I2C_SLAVE_DATA_DESC_SIZE ?
2058 MLXBF_I2C_SLAVE_DATA_DESC_SIZE : recv_bytes;
2059
2060 if (read)
2061 mlxbf_smbus_irq_send(priv, recv_bytes);
2062 else
2063 mlxbf_smbus_irq_recv(priv, recv_bytes);
2064
2065 return IRQ_HANDLED;
2066 }
2067
2068 /* Return negative errno on error. */
mlxbf_i2c_smbus_xfer(struct i2c_adapter *adap, u16 addr, unsigned short flags, char read_write, u8 command, int size, union i2c_smbus_data *data)2069 static s32 mlxbf_i2c_smbus_xfer(struct i2c_adapter *adap, u16 addr,
2070 unsigned short flags, char read_write,
2071 u8 command, int size,
2072 union i2c_smbus_data *data)
2073 {
2074 struct mlxbf_i2c_smbus_request request = { 0 };
2075 struct mlxbf_i2c_priv *priv;
2076 bool read, pec;
2077 u8 byte_cnt;
2078
2079 request.slave = addr;
2080
2081 read = (read_write == I2C_SMBUS_READ);
2082 pec = flags & I2C_FUNC_SMBUS_PEC;
2083
2084 switch (size) {
2085 case I2C_SMBUS_QUICK:
2086 mlxbf_i2c_smbus_quick_command(&request, read);
2087 dev_dbg(&adap->dev, "smbus quick, slave 0x%02x\n", addr);
2088 break;
2089
2090 case I2C_SMBUS_BYTE:
2091 mlxbf_i2c_smbus_byte_func(&request,
2092 read ? &data->byte : &command, read,
2093 pec);
2094 dev_dbg(&adap->dev, "smbus %s byte, slave 0x%02x.\n",
2095 read ? "read" : "write", addr);
2096 break;
2097
2098 case I2C_SMBUS_BYTE_DATA:
2099 mlxbf_i2c_smbus_data_byte_func(&request, &command, &data->byte,
2100 read, pec);
2101 dev_dbg(&adap->dev, "smbus %s byte data at 0x%02x, slave 0x%02x.\n",
2102 read ? "read" : "write", command, addr);
2103 break;
2104
2105 case I2C_SMBUS_WORD_DATA:
2106 mlxbf_i2c_smbus_data_word_func(&request, &command,
2107 (u8 *)&data->word, read, pec);
2108 dev_dbg(&adap->dev, "smbus %s word data at 0x%02x, slave 0x%02x.\n",
2109 read ? "read" : "write", command, addr);
2110 break;
2111
2112 case I2C_SMBUS_I2C_BLOCK_DATA:
2113 byte_cnt = data->block[0];
2114 mlxbf_i2c_smbus_i2c_block_func(&request, &command, data->block,
2115 &byte_cnt, read, pec);
2116 dev_dbg(&adap->dev, "i2c %s block data, %d bytes at 0x%02x, slave 0x%02x.\n",
2117 read ? "read" : "write", byte_cnt, command, addr);
2118 break;
2119
2120 case I2C_SMBUS_BLOCK_DATA:
2121 byte_cnt = read ? I2C_SMBUS_BLOCK_MAX : data->block[0];
2122 mlxbf_i2c_smbus_block_func(&request, &command, data->block,
2123 &byte_cnt, read, pec);
2124 dev_dbg(&adap->dev, "smbus %s block data, %d bytes at 0x%02x, slave 0x%02x.\n",
2125 read ? "read" : "write", byte_cnt, command, addr);
2126 break;
2127
2128 case I2C_FUNC_SMBUS_PROC_CALL:
2129 mlxbf_i2c_smbus_process_call_func(&request, &command,
2130 (u8 *)&data->word, pec);
2131 dev_dbg(&adap->dev, "process call, wr/rd at 0x%02x, slave 0x%02x.\n",
2132 command, addr);
2133 break;
2134
2135 case I2C_FUNC_SMBUS_BLOCK_PROC_CALL:
2136 byte_cnt = data->block[0];
2137 mlxbf_i2c_smbus_blk_process_call_func(&request, &command,
2138 data->block, &byte_cnt,
2139 pec);
2140 dev_dbg(&adap->dev, "block process call, wr/rd %d bytes, slave 0x%02x.\n",
2141 byte_cnt, addr);
2142 break;
2143
2144 default:
2145 dev_dbg(&adap->dev, "Unsupported I2C/SMBus command %d\n",
2146 size);
2147 return -EOPNOTSUPP;
2148 }
2149
2150 priv = i2c_get_adapdata(adap);
2151
2152 return mlxbf_i2c_smbus_start_transaction(priv, &request);
2153 }
2154
mlxbf_i2c_reg_slave(struct i2c_client *slave)2155 static int mlxbf_i2c_reg_slave(struct i2c_client *slave)
2156 {
2157 struct mlxbf_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
2158 int ret;
2159
2160 if (priv->slave)
2161 return -EBUSY;
2162
2163 /*
2164 * Do not support ten bit chip address and do not use Packet Error
2165 * Checking (PEC).
2166 */
2167 if (slave->flags & (I2C_CLIENT_TEN | I2C_CLIENT_PEC))
2168 return -EAFNOSUPPORT;
2169
2170 ret = mlxbf_slave_enable(priv, slave->addr);
2171 if (ret < 0)
2172 return ret;
2173
2174 priv->slave = slave;
2175
2176 return 0;
2177 }
2178
mlxbf_i2c_unreg_slave(struct i2c_client *slave)2179 static int mlxbf_i2c_unreg_slave(struct i2c_client *slave)
2180 {
2181 struct mlxbf_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
2182 int ret;
2183
2184 WARN_ON(!priv->slave);
2185
2186 /* Unregister slave, i.e. disable the slave address in hardware. */
2187 ret = mlxbf_slave_disable(priv);
2188 if (ret < 0)
2189 return ret;
2190
2191 priv->slave = NULL;
2192
2193 return 0;
2194 }
2195
mlxbf_i2c_functionality(struct i2c_adapter *adap)2196 static u32 mlxbf_i2c_functionality(struct i2c_adapter *adap)
2197 {
2198 return MLXBF_I2C_FUNC_ALL;
2199 }
2200
2201 static struct mlxbf_i2c_chip_info mlxbf_i2c_chip[] = {
2202 [MLXBF_I2C_CHIP_TYPE_1] = {
2203 .type = MLXBF_I2C_CHIP_TYPE_1,
2204 .shared_res = {
2205 [0] = &mlxbf_i2c_coalesce_res[MLXBF_I2C_CHIP_TYPE_1],
2206 [1] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_1],
2207 [2] = &mlxbf_i2c_gpio_res[MLXBF_I2C_CHIP_TYPE_1]
2208 },
2209 .calculate_freq = mlxbf_i2c_calculate_freq_from_tyu
2210 },
2211 [MLXBF_I2C_CHIP_TYPE_2] = {
2212 .type = MLXBF_I2C_CHIP_TYPE_2,
2213 .shared_res = {
2214 [0] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_2]
2215 },
2216 .calculate_freq = mlxbf_i2c_calculate_freq_from_yu
2217 }
2218 };
2219
2220 static const struct i2c_algorithm mlxbf_i2c_algo = {
2221 .smbus_xfer = mlxbf_i2c_smbus_xfer,
2222 .functionality = mlxbf_i2c_functionality,
2223 .reg_slave = mlxbf_i2c_reg_slave,
2224 .unreg_slave = mlxbf_i2c_unreg_slave,
2225 };
2226
2227 static struct i2c_adapter_quirks mlxbf_i2c_quirks = {
2228 .max_read_len = MLXBF_I2C_MASTER_DATA_R_LENGTH,
2229 .max_write_len = MLXBF_I2C_MASTER_DATA_W_LENGTH,
2230 };
2231
2232 static const struct of_device_id mlxbf_i2c_dt_ids[] = {
2233 {
2234 .compatible = "mellanox,i2c-mlxbf1",
2235 .data = &mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_1]
2236 },
2237 {
2238 .compatible = "mellanox,i2c-mlxbf2",
2239 .data = &mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_2]
2240 },
2241 {},
2242 };
2243
2244 MODULE_DEVICE_TABLE(of, mlxbf_i2c_dt_ids);
2245
2246 #ifdef CONFIG_ACPI
2247 static const struct acpi_device_id mlxbf_i2c_acpi_ids[] = {
2248 { "MLNXBF03", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_1] },
2249 { "MLNXBF23", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_2] },
2250 {},
2251 };
2252
2253 MODULE_DEVICE_TABLE(acpi, mlxbf_i2c_acpi_ids);
2254
mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv)2255 static int mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2256 {
2257 const struct acpi_device_id *aid;
2258 struct acpi_device *adev;
2259 unsigned long bus_id = 0;
2260 const char *uid;
2261 int ret;
2262
2263 if (acpi_disabled)
2264 return -ENOENT;
2265
2266 adev = ACPI_COMPANION(dev);
2267 if (!adev)
2268 return -ENXIO;
2269
2270 aid = acpi_match_device(mlxbf_i2c_acpi_ids, dev);
2271 if (!aid)
2272 return -ENODEV;
2273
2274 priv->chip = (struct mlxbf_i2c_chip_info *)aid->driver_data;
2275
2276 uid = acpi_device_uid(adev);
2277 if (!uid || !(*uid)) {
2278 dev_err(dev, "Cannot retrieve UID\n");
2279 return -ENODEV;
2280 }
2281
2282 ret = kstrtoul(uid, 0, &bus_id);
2283 if (!ret)
2284 priv->bus = bus_id;
2285
2286 return ret;
2287 }
2288 #else
mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv)2289 static int mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2290 {
2291 return -ENOENT;
2292 }
2293 #endif /* CONFIG_ACPI */
2294
mlxbf_i2c_of_probe(struct device *dev, struct mlxbf_i2c_priv *priv)2295 static int mlxbf_i2c_of_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2296 {
2297 const struct of_device_id *oid;
2298 int bus_id = -1;
2299
2300 if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
2301 oid = of_match_node(mlxbf_i2c_dt_ids, dev->of_node);
2302 if (!oid)
2303 return -ENODEV;
2304
2305 priv->chip = oid->data;
2306
2307 bus_id = of_alias_get_id(dev->of_node, "i2c");
2308 if (bus_id >= 0)
2309 priv->bus = bus_id;
2310 }
2311
2312 if (bus_id < 0) {
2313 dev_err(dev, "Cannot get bus id");
2314 return bus_id;
2315 }
2316
2317 return 0;
2318 }
2319
mlxbf_i2c_probe(struct platform_device *pdev)2320 static int mlxbf_i2c_probe(struct platform_device *pdev)
2321 {
2322 struct device *dev = &pdev->dev;
2323 struct mlxbf_i2c_priv *priv;
2324 struct i2c_adapter *adap;
2325 int irq, ret;
2326
2327 priv = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_priv), GFP_KERNEL);
2328 if (!priv)
2329 return -ENOMEM;
2330
2331 ret = mlxbf_i2c_acpi_probe(dev, priv);
2332 if (ret < 0 && ret != -ENOENT && ret != -ENXIO)
2333 ret = mlxbf_i2c_of_probe(dev, priv);
2334
2335 if (ret < 0)
2336 return ret;
2337
2338 ret = mlxbf_i2c_init_resource(pdev, &priv->smbus,
2339 MLXBF_I2C_SMBUS_RES);
2340 if (ret < 0) {
2341 dev_err(dev, "Cannot fetch smbus resource info");
2342 return ret;
2343 }
2344
2345 ret = mlxbf_i2c_init_resource(pdev, &priv->mst_cause,
2346 MLXBF_I2C_MST_CAUSE_RES);
2347 if (ret < 0) {
2348 dev_err(dev, "Cannot fetch cause master resource info");
2349 return ret;
2350 }
2351
2352 ret = mlxbf_i2c_init_resource(pdev, &priv->slv_cause,
2353 MLXBF_I2C_SLV_CAUSE_RES);
2354 if (ret < 0) {
2355 dev_err(dev, "Cannot fetch cause slave resource info");
2356 return ret;
2357 }
2358
2359 adap = &priv->adap;
2360 adap->owner = THIS_MODULE;
2361 adap->class = I2C_CLASS_HWMON;
2362 adap->algo = &mlxbf_i2c_algo;
2363 adap->quirks = &mlxbf_i2c_quirks;
2364 adap->dev.parent = dev;
2365 adap->dev.of_node = dev->of_node;
2366 adap->nr = priv->bus;
2367
2368 snprintf(adap->name, sizeof(adap->name), "i2c%d", adap->nr);
2369 i2c_set_adapdata(adap, priv);
2370
2371 /* Read Core PLL frequency. */
2372 ret = mlxbf_i2c_calculate_corepll_freq(pdev, priv);
2373 if (ret < 0) {
2374 dev_err(dev, "cannot get core clock frequency\n");
2375 /* Set to default value. */
2376 priv->frequency = MLXBF_I2C_COREPLL_FREQ;
2377 }
2378
2379 /*
2380 * Initialize master.
2381 * Note that a physical bus might be shared among Linux and firmware
2382 * (e.g., ATF). Thus, the bus should be initialized and ready and
2383 * bus initialization would be unnecessary. This requires additional
2384 * knowledge about physical busses. But, since an extra initialization
2385 * does not really hurt, then keep the code as is.
2386 */
2387 ret = mlxbf_i2c_init_master(pdev, priv);
2388 if (ret < 0) {
2389 dev_err(dev, "failed to initialize smbus master %d",
2390 priv->bus);
2391 return ret;
2392 }
2393
2394 mlxbf_i2c_init_timings(pdev, priv);
2395
2396 mlxbf_i2c_init_slave(pdev, priv);
2397
2398 irq = platform_get_irq(pdev, 0);
2399 if (irq < 0)
2400 return irq;
2401 ret = devm_request_irq(dev, irq, mlxbf_smbus_irq,
2402 IRQF_ONESHOT | IRQF_SHARED | IRQF_PROBE_SHARED,
2403 dev_name(dev), priv);
2404 if (ret < 0) {
2405 dev_err(dev, "Cannot get irq %d\n", irq);
2406 return ret;
2407 }
2408
2409 priv->irq = irq;
2410
2411 platform_set_drvdata(pdev, priv);
2412
2413 ret = i2c_add_numbered_adapter(adap);
2414 if (ret < 0)
2415 return ret;
2416
2417 mutex_lock(&mlxbf_i2c_bus_lock);
2418 mlxbf_i2c_bus_count++;
2419 mutex_unlock(&mlxbf_i2c_bus_lock);
2420
2421 return 0;
2422 }
2423
mlxbf_i2c_remove(struct platform_device *pdev)2424 static int mlxbf_i2c_remove(struct platform_device *pdev)
2425 {
2426 struct mlxbf_i2c_priv *priv = platform_get_drvdata(pdev);
2427 struct device *dev = &pdev->dev;
2428 struct resource *params;
2429
2430 params = priv->smbus->params;
2431 devm_release_mem_region(dev, params->start, resource_size(params));
2432
2433 params = priv->mst_cause->params;
2434 devm_release_mem_region(dev, params->start, resource_size(params));
2435
2436 params = priv->slv_cause->params;
2437 devm_release_mem_region(dev, params->start, resource_size(params));
2438
2439 /*
2440 * Release shared resources. This should be done when releasing
2441 * the I2C controller.
2442 */
2443 mutex_lock(&mlxbf_i2c_bus_lock);
2444 if (--mlxbf_i2c_bus_count == 0) {
2445 mlxbf_i2c_release_coalesce(pdev, priv);
2446 mlxbf_i2c_release_corepll(pdev, priv);
2447 mlxbf_i2c_release_gpio(pdev, priv);
2448 }
2449 mutex_unlock(&mlxbf_i2c_bus_lock);
2450
2451 devm_free_irq(dev, priv->irq, priv);
2452
2453 i2c_del_adapter(&priv->adap);
2454
2455 return 0;
2456 }
2457
2458 static struct platform_driver mlxbf_i2c_driver = {
2459 .probe = mlxbf_i2c_probe,
2460 .remove = mlxbf_i2c_remove,
2461 .driver = {
2462 .name = "i2c-mlxbf",
2463 .of_match_table = mlxbf_i2c_dt_ids,
2464 #ifdef CONFIG_ACPI
2465 .acpi_match_table = ACPI_PTR(mlxbf_i2c_acpi_ids),
2466 #endif /* CONFIG_ACPI */
2467 },
2468 };
2469
mlxbf_i2c_init(void)2470 static int __init mlxbf_i2c_init(void)
2471 {
2472 mutex_init(&mlxbf_i2c_coalesce_lock);
2473 mutex_init(&mlxbf_i2c_corepll_lock);
2474 mutex_init(&mlxbf_i2c_gpio_lock);
2475
2476 mutex_init(&mlxbf_i2c_bus_lock);
2477
2478 return platform_driver_register(&mlxbf_i2c_driver);
2479 }
2480 module_init(mlxbf_i2c_init);
2481
mlxbf_i2c_exit(void)2482 static void __exit mlxbf_i2c_exit(void)
2483 {
2484 platform_driver_unregister(&mlxbf_i2c_driver);
2485
2486 mutex_destroy(&mlxbf_i2c_bus_lock);
2487
2488 mutex_destroy(&mlxbf_i2c_gpio_lock);
2489 mutex_destroy(&mlxbf_i2c_corepll_lock);
2490 mutex_destroy(&mlxbf_i2c_coalesce_lock);
2491 }
2492 module_exit(mlxbf_i2c_exit);
2493
2494 MODULE_DESCRIPTION("Mellanox BlueField I2C bus driver");
2495 MODULE_AUTHOR("Khalil Blaiech <kblaiech@nvidia.com>");
2496 MODULE_LICENSE("GPL v2");
2497