1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Mellanox BlueField I2C bus driver
4  *
5  *  Copyright (C) 2020 Mellanox Technologies, Ltd.
6  */
7 
8 #include <linux/acpi.h>
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/err.h>
12 #include <linux/interrupt.h>
13 #include <linux/i2c.h>
14 #include <linux/io.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/of_device.h>
19 #include <linux/platform_device.h>
20 #include <linux/string.h>
21 
22 /* Defines what functionality is present. */
23 #define MLXBF_I2C_FUNC_SMBUS_BLOCK \
24 	(I2C_FUNC_SMBUS_BLOCK_DATA | I2C_FUNC_SMBUS_BLOCK_PROC_CALL)
25 
26 #define MLXBF_I2C_FUNC_SMBUS_DEFAULT \
27 	(I2C_FUNC_SMBUS_BYTE      | I2C_FUNC_SMBUS_BYTE_DATA | \
28 	 I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_I2C_BLOCK | \
29 	 I2C_FUNC_SMBUS_PROC_CALL)
30 
31 #define MLXBF_I2C_FUNC_ALL \
32 	(MLXBF_I2C_FUNC_SMBUS_DEFAULT | MLXBF_I2C_FUNC_SMBUS_BLOCK | \
33 	 I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SLAVE)
34 
35 #define MLXBF_I2C_SMBUS_MAX        3
36 
37 /* Shared resources info in BlueField platforms. */
38 
39 #define MLXBF_I2C_COALESCE_TYU_ADDR    0x02801300
40 #define MLXBF_I2C_COALESCE_TYU_SIZE    0x010
41 
42 #define MLXBF_I2C_GPIO_TYU_ADDR        0x02802000
43 #define MLXBF_I2C_GPIO_TYU_SIZE        0x100
44 
45 #define MLXBF_I2C_COREPLL_TYU_ADDR     0x02800358
46 #define MLXBF_I2C_COREPLL_TYU_SIZE     0x008
47 
48 #define MLXBF_I2C_COREPLL_YU_ADDR      0x02800c30
49 #define MLXBF_I2C_COREPLL_YU_SIZE      0x00c
50 
51 #define MLXBF_I2C_SHARED_RES_MAX       3
52 
53 /*
54  * Note that the following SMBus, CAUSE, GPIO and PLL register addresses
55  * refer to their respective offsets relative to the corresponding
56  * memory-mapped region whose addresses are specified in either the DT or
57  * the ACPI tables or above.
58  */
59 
60 /*
61  * SMBus Master core clock frequency. Timing configurations are
62  * strongly dependent on the core clock frequency of the SMBus
63  * Master. Default value is set to 400MHz.
64  */
65 #define MLXBF_I2C_TYU_PLL_OUT_FREQ  (400 * 1000 * 1000)
66 /* Reference clock for Bluefield - 156 MHz. */
67 #define MLXBF_I2C_PLL_IN_FREQ       156250000ULL
68 
69 /* Constant used to determine the PLL frequency. */
70 #define MLNXBF_I2C_COREPLL_CONST    16384ULL
71 
72 #define MLXBF_I2C_FREQUENCY_1GHZ  1000000000ULL
73 
74 /* PLL registers. */
75 #define MLXBF_I2C_CORE_PLL_REG1         0x4
76 #define MLXBF_I2C_CORE_PLL_REG2         0x8
77 
78 /* OR cause register. */
79 #define MLXBF_I2C_CAUSE_OR_EVTEN0    0x14
80 #define MLXBF_I2C_CAUSE_OR_CLEAR     0x18
81 
82 /* Arbiter Cause Register. */
83 #define MLXBF_I2C_CAUSE_ARBITER      0x1c
84 
85 /*
86  * Cause Status flags. Note that those bits might be considered
87  * as interrupt enabled bits.
88  */
89 
90 /* Transaction ended with STOP. */
91 #define MLXBF_I2C_CAUSE_TRANSACTION_ENDED  BIT(0)
92 /* Master arbitration lost. */
93 #define MLXBF_I2C_CAUSE_M_ARBITRATION_LOST BIT(1)
94 /* Unexpected start detected. */
95 #define MLXBF_I2C_CAUSE_UNEXPECTED_START   BIT(2)
96 /* Unexpected stop detected. */
97 #define MLXBF_I2C_CAUSE_UNEXPECTED_STOP    BIT(3)
98 /* Wait for transfer continuation. */
99 #define MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA   BIT(4)
100 /* Failed to generate STOP. */
101 #define MLXBF_I2C_CAUSE_PUT_STOP_FAILED    BIT(5)
102 /* Failed to generate START. */
103 #define MLXBF_I2C_CAUSE_PUT_START_FAILED   BIT(6)
104 /* Clock toggle completed. */
105 #define MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE    BIT(7)
106 /* Transfer timeout occurred. */
107 #define MLXBF_I2C_CAUSE_M_FW_TIMEOUT       BIT(8)
108 /* Master busy bit reset. */
109 #define MLXBF_I2C_CAUSE_M_GW_BUSY_FALL     BIT(9)
110 
111 #define MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK     GENMASK(9, 0)
112 
113 #define MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR \
114 	(MLXBF_I2C_CAUSE_M_ARBITRATION_LOST | \
115 	 MLXBF_I2C_CAUSE_UNEXPECTED_START | \
116 	 MLXBF_I2C_CAUSE_UNEXPECTED_STOP | \
117 	 MLXBF_I2C_CAUSE_PUT_STOP_FAILED | \
118 	 MLXBF_I2C_CAUSE_PUT_START_FAILED | \
119 	 MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE | \
120 	 MLXBF_I2C_CAUSE_M_FW_TIMEOUT)
121 
122 /*
123  * Slave cause status flags. Note that those bits might be considered
124  * as interrupt enabled bits.
125  */
126 
127 /* Write transaction received successfully. */
128 #define MLXBF_I2C_CAUSE_WRITE_SUCCESS         BIT(0)
129 /* Read transaction received, waiting for response. */
130 #define MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE BIT(13)
131 /* Slave busy bit reset. */
132 #define MLXBF_I2C_CAUSE_S_GW_BUSY_FALL        BIT(18)
133 
134 #define MLXBF_I2C_CAUSE_SLAVE_ARBITER_BITS_MASK     GENMASK(20, 0)
135 
136 /* Cause coalesce registers. */
137 #define MLXBF_I2C_CAUSE_COALESCE_0        0x00
138 #define MLXBF_I2C_CAUSE_COALESCE_1        0x04
139 #define MLXBF_I2C_CAUSE_COALESCE_2        0x08
140 
141 #define MLXBF_I2C_CAUSE_TYU_SLAVE_BIT   MLXBF_I2C_SMBUS_MAX
142 #define MLXBF_I2C_CAUSE_YU_SLAVE_BIT    1
143 
144 /* Functional enable register. */
145 #define MLXBF_I2C_GPIO_0_FUNC_EN_0    0x28
146 /* Force OE enable register. */
147 #define MLXBF_I2C_GPIO_0_FORCE_OE_EN  0x30
148 /*
149  * Note that Smbus GWs are on GPIOs 30:25. Two pins are used to control
150  * SDA/SCL lines:
151  *
152  *  SMBUS GW0 -> bits[26:25]
153  *  SMBUS GW1 -> bits[28:27]
154  *  SMBUS GW2 -> bits[30:29]
155  */
156 #define MLXBF_I2C_GPIO_SMBUS_GW_PINS(num) (25 + ((num) << 1))
157 
158 /* Note that gw_id can be 0,1 or 2. */
159 #define MLXBF_I2C_GPIO_SMBUS_GW_MASK(num) \
160 	(0xffffffff & (~(0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num))))
161 
162 #define MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(num, val) \
163 	((val) & MLXBF_I2C_GPIO_SMBUS_GW_MASK(num))
164 
165 #define MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(num, val) \
166 	((val) | (0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num)))
167 
168 /* SMBus timing parameters. */
169 #define MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH    0x00
170 #define MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE     0x04
171 #define MLXBF_I2C_SMBUS_TIMER_THOLD               0x08
172 #define MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP   0x0c
173 #define MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA         0x10
174 #define MLXBF_I2C_SMBUS_THIGH_MAX_TBUF            0x14
175 #define MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT           0x18
176 
177 enum {
178 	MLXBF_I2C_TIMING_100KHZ = 100000,
179 	MLXBF_I2C_TIMING_400KHZ = 400000,
180 	MLXBF_I2C_TIMING_1000KHZ = 1000000,
181 };
182 
183 /*
184  * Defines SMBus operating frequency and core clock frequency.
185  * According to ADB files, default values are compliant to 100KHz SMBus
186  * @ 400MHz core clock. The driver should be able to calculate core
187  * frequency based on PLL parameters.
188  */
189 #define MLXBF_I2C_COREPLL_FREQ          MLXBF_I2C_TYU_PLL_OUT_FREQ
190 
191 /* Core PLL TYU configuration. */
192 #define MLXBF_I2C_COREPLL_CORE_F_TYU_MASK   GENMASK(15, 3)
193 #define MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK  GENMASK(19, 16)
194 #define MLXBF_I2C_COREPLL_CORE_R_TYU_MASK   GENMASK(25, 20)
195 
196 /* Core PLL YU configuration. */
197 #define MLXBF_I2C_COREPLL_CORE_F_YU_MASK    GENMASK(25, 0)
198 #define MLXBF_I2C_COREPLL_CORE_OD_YU_MASK   GENMASK(3, 0)
199 #define MLXBF_I2C_COREPLL_CORE_R_YU_MASK    GENMASK(31, 26)
200 
201 
202 /* Core PLL frequency. */
203 static u64 mlxbf_i2c_corepll_frequency;
204 
205 /* SMBus Master GW. */
206 #define MLXBF_I2C_SMBUS_MASTER_GW     0x200
207 /* Number of bytes received and sent. */
208 #define MLXBF_I2C_SMBUS_RS_BYTES      0x300
209 /* Packet error check (PEC) value. */
210 #define MLXBF_I2C_SMBUS_MASTER_PEC    0x304
211 /* Status bits (ACK/NACK/FW Timeout). */
212 #define MLXBF_I2C_SMBUS_MASTER_STATUS 0x308
213 /* SMbus Master Finite State Machine. */
214 #define MLXBF_I2C_SMBUS_MASTER_FSM    0x310
215 
216 /*
217  * When enabled, the master will issue a stop condition in case of
218  * timeout while waiting for FW response.
219  */
220 #define MLXBF_I2C_SMBUS_EN_FW_TIMEOUT 0x31c
221 
222 /* SMBus master GW control bits offset in MLXBF_I2C_SMBUS_MASTER_GW[31:3]. */
223 #define MLXBF_I2C_MASTER_LOCK_BIT         BIT(31) /* Lock bit. */
224 #define MLXBF_I2C_MASTER_BUSY_BIT         BIT(30) /* Busy bit. */
225 #define MLXBF_I2C_MASTER_START_BIT        BIT(29) /* Control start. */
226 #define MLXBF_I2C_MASTER_CTL_WRITE_BIT    BIT(28) /* Control write phase. */
227 #define MLXBF_I2C_MASTER_CTL_READ_BIT     BIT(19) /* Control read phase. */
228 #define MLXBF_I2C_MASTER_STOP_BIT         BIT(3)  /* Control stop. */
229 
230 #define MLXBF_I2C_MASTER_ENABLE \
231 	(MLXBF_I2C_MASTER_LOCK_BIT | MLXBF_I2C_MASTER_BUSY_BIT | \
232 	 MLXBF_I2C_MASTER_START_BIT | MLXBF_I2C_MASTER_STOP_BIT)
233 
234 #define MLXBF_I2C_MASTER_ENABLE_WRITE \
235 	(MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_WRITE_BIT)
236 
237 #define MLXBF_I2C_MASTER_ENABLE_READ \
238 	(MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_READ_BIT)
239 
240 #define MLXBF_I2C_MASTER_SLV_ADDR_SHIFT   12 /* Slave address shift. */
241 #define MLXBF_I2C_MASTER_WRITE_SHIFT      21 /* Control write bytes shift. */
242 #define MLXBF_I2C_MASTER_SEND_PEC_SHIFT   20 /* Send PEC byte shift. */
243 #define MLXBF_I2C_MASTER_PARSE_EXP_SHIFT  11 /* Parse expected bytes shift. */
244 #define MLXBF_I2C_MASTER_READ_SHIFT       4  /* Control read bytes shift. */
245 
246 /* SMBus master GW Data descriptor. */
247 #define MLXBF_I2C_MASTER_DATA_DESC_ADDR   0x280
248 #define MLXBF_I2C_MASTER_DATA_DESC_SIZE   0x80 /* Size in bytes. */
249 
250 /* Maximum bytes to read/write per SMBus transaction. */
251 #define MLXBF_I2C_MASTER_DATA_R_LENGTH  MLXBF_I2C_MASTER_DATA_DESC_SIZE
252 #define MLXBF_I2C_MASTER_DATA_W_LENGTH (MLXBF_I2C_MASTER_DATA_DESC_SIZE - 1)
253 
254 /* All bytes were transmitted. */
255 #define MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE      BIT(0)
256 /* NACK received. */
257 #define MLXBF_I2C_SMBUS_STATUS_NACK_RCV           BIT(1)
258 /* Slave's byte count >128 bytes. */
259 #define MLXBF_I2C_SMBUS_STATUS_READ_ERR           BIT(2)
260 /* Timeout occurred. */
261 #define MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT         BIT(3)
262 
263 #define MLXBF_I2C_SMBUS_MASTER_STATUS_MASK        GENMASK(3, 0)
264 
265 #define MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR \
266 	(MLXBF_I2C_SMBUS_STATUS_NACK_RCV | \
267 	 MLXBF_I2C_SMBUS_STATUS_READ_ERR | \
268 	 MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT)
269 
270 #define MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK      BIT(31)
271 #define MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK  BIT(15)
272 
273 /* SMBus slave GW. */
274 #define MLXBF_I2C_SMBUS_SLAVE_GW              0x400
275 /* Number of bytes received and sent from/to master. */
276 #define MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES 0x500
277 /* Packet error check (PEC) value. */
278 #define MLXBF_I2C_SMBUS_SLAVE_PEC             0x504
279 /* SMBus slave Finite State Machine (FSM). */
280 #define MLXBF_I2C_SMBUS_SLAVE_FSM             0x510
281 /*
282  * Should be set when all raised causes handled, and cleared by HW on
283  * every new cause.
284  */
285 #define MLXBF_I2C_SMBUS_SLAVE_READY           0x52c
286 
287 /* SMBus slave GW control bits offset in MLXBF_I2C_SMBUS_SLAVE_GW[31:19]. */
288 #define MLXBF_I2C_SLAVE_BUSY_BIT         BIT(30) /* Busy bit. */
289 #define MLXBF_I2C_SLAVE_WRITE_BIT        BIT(29) /* Control write enable. */
290 
291 #define MLXBF_I2C_SLAVE_ENABLE \
292 	(MLXBF_I2C_SLAVE_BUSY_BIT | MLXBF_I2C_SLAVE_WRITE_BIT)
293 
294 #define MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT 22 /* Number of bytes to write. */
295 #define MLXBF_I2C_SLAVE_SEND_PEC_SHIFT    21 /* Send PEC byte shift. */
296 
297 /* SMBus slave GW Data descriptor. */
298 #define MLXBF_I2C_SLAVE_DATA_DESC_ADDR   0x480
299 #define MLXBF_I2C_SLAVE_DATA_DESC_SIZE   0x80 /* Size in bytes. */
300 
301 /* SMbus slave configuration registers. */
302 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG        0x514
303 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT        16
304 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT     7
305 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK       GENMASK(6, 0)
306 
307 #define MLXBF_I2C_SLAVE_ADDR_ENABLED(addr) \
308 	((addr) & (1 << MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT))
309 
310 /*
311  * Timeout is given in microsends. Note also that timeout handling is not
312  * exact.
313  */
314 #define MLXBF_I2C_SMBUS_TIMEOUT   (300 * 1000) /* 300ms */
315 #define MLXBF_I2C_SMBUS_LOCK_POLL_TIMEOUT (300 * 1000) /* 300ms */
316 
317 /* Encapsulates timing parameters. */
318 struct mlxbf_i2c_timings {
319 	u16 scl_high;		/* Clock high period. */
320 	u16 scl_low;		/* Clock low period. */
321 	u8 sda_rise;		/* Data rise time. */
322 	u8 sda_fall;		/* Data fall time. */
323 	u8 scl_rise;		/* Clock rise time. */
324 	u8 scl_fall;		/* Clock fall time. */
325 	u16 hold_start;		/* Hold time after (REPEATED) START. */
326 	u16 hold_data;		/* Data hold time. */
327 	u16 setup_start;	/* REPEATED START condition setup time. */
328 	u16 setup_stop;		/* STOP condition setup time. */
329 	u16 setup_data;		/* Data setup time. */
330 	u16 pad;		/* Padding. */
331 	u16 buf;		/* Bus free time between STOP and START. */
332 	u16 thigh_max;		/* Thigh max. */
333 	u32 timeout;		/* Detect clock low timeout. */
334 };
335 
336 enum {
337 	MLXBF_I2C_F_READ = BIT(0),
338 	MLXBF_I2C_F_WRITE = BIT(1),
339 	MLXBF_I2C_F_NORESTART = BIT(3),
340 	MLXBF_I2C_F_SMBUS_OPERATION = BIT(4),
341 	MLXBF_I2C_F_SMBUS_BLOCK = BIT(5),
342 	MLXBF_I2C_F_SMBUS_PEC = BIT(6),
343 	MLXBF_I2C_F_SMBUS_PROCESS_CALL = BIT(7),
344 };
345 
346 struct mlxbf_i2c_smbus_operation {
347 	u32 flags;
348 	u32 length; /* Buffer length in bytes. */
349 	u8 *buffer;
350 };
351 
352 #define MLXBF_I2C_SMBUS_OP_CNT_1	1
353 #define MLXBF_I2C_SMBUS_OP_CNT_2	2
354 #define MLXBF_I2C_SMBUS_OP_CNT_3	3
355 #define MLXBF_I2C_SMBUS_MAX_OP_CNT	MLXBF_I2C_SMBUS_OP_CNT_3
356 
357 struct mlxbf_i2c_smbus_request {
358 	u8 slave;
359 	u8 operation_cnt;
360 	struct mlxbf_i2c_smbus_operation operation[MLXBF_I2C_SMBUS_MAX_OP_CNT];
361 };
362 
363 struct mlxbf_i2c_resource {
364 	void __iomem *io;
365 	struct resource *params;
366 	struct mutex *lock; /* Mutex to protect mlxbf_i2c_resource. */
367 	u8 type;
368 };
369 
370 /* List of chip resources that are being accessed by the driver. */
371 enum {
372 	MLXBF_I2C_SMBUS_RES,
373 	MLXBF_I2C_MST_CAUSE_RES,
374 	MLXBF_I2C_SLV_CAUSE_RES,
375 	MLXBF_I2C_COALESCE_RES,
376 	MLXBF_I2C_COREPLL_RES,
377 	MLXBF_I2C_GPIO_RES,
378 	MLXBF_I2C_END_RES,
379 };
380 
381 /* Helper macro to define an I2C resource parameters. */
382 #define MLXBF_I2C_RES_PARAMS(addr, size, str) \
383 	{ \
384 		.start = (addr), \
385 		.end = (addr) + (size) - 1, \
386 		.name = (str) \
387 	}
388 
389 static struct resource mlxbf_i2c_coalesce_tyu_params =
390 		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COALESCE_TYU_ADDR,
391 				     MLXBF_I2C_COALESCE_TYU_SIZE,
392 				     "COALESCE_MEM");
393 static struct resource mlxbf_i2c_corepll_tyu_params =
394 		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_TYU_ADDR,
395 				     MLXBF_I2C_COREPLL_TYU_SIZE,
396 				     "COREPLL_MEM");
397 static struct resource mlxbf_i2c_corepll_yu_params =
398 		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_YU_ADDR,
399 				     MLXBF_I2C_COREPLL_YU_SIZE,
400 				     "COREPLL_MEM");
401 static struct resource mlxbf_i2c_gpio_tyu_params =
402 		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_GPIO_TYU_ADDR,
403 				     MLXBF_I2C_GPIO_TYU_SIZE,
404 				     "GPIO_MEM");
405 
406 static struct mutex mlxbf_i2c_coalesce_lock;
407 static struct mutex mlxbf_i2c_corepll_lock;
408 static struct mutex mlxbf_i2c_gpio_lock;
409 
410 /* Mellanox BlueField chip type. */
411 enum mlxbf_i2c_chip_type {
412 	MLXBF_I2C_CHIP_TYPE_1, /* Mellanox BlueField-1 chip. */
413 	MLXBF_I2C_CHIP_TYPE_2, /* Mallanox BlueField-2 chip. */
414 };
415 
416 struct mlxbf_i2c_chip_info {
417 	enum mlxbf_i2c_chip_type type;
418 	/* Chip shared resources that are being used by the I2C controller. */
419 	struct mlxbf_i2c_resource *shared_res[MLXBF_I2C_SHARED_RES_MAX];
420 
421 	/* Callback to calculate the core PLL frequency. */
422 	u64 (*calculate_freq)(struct mlxbf_i2c_resource *corepll_res);
423 };
424 
425 struct mlxbf_i2c_priv {
426 	const struct mlxbf_i2c_chip_info *chip;
427 	struct i2c_adapter adap;
428 	struct mlxbf_i2c_resource *smbus;
429 	struct mlxbf_i2c_resource *mst_cause;
430 	struct mlxbf_i2c_resource *slv_cause;
431 	struct mlxbf_i2c_resource *coalesce;
432 	u64 frequency; /* Core frequency in Hz. */
433 	int bus; /* Physical bus identifier. */
434 	int irq;
435 	struct i2c_client *slave;
436 };
437 
438 static struct mlxbf_i2c_resource mlxbf_i2c_coalesce_res[] = {
439 	[MLXBF_I2C_CHIP_TYPE_1] = {
440 		.params = &mlxbf_i2c_coalesce_tyu_params,
441 		.lock = &mlxbf_i2c_coalesce_lock,
442 		.type = MLXBF_I2C_COALESCE_RES
443 	},
444 	{}
445 };
446 
447 static struct mlxbf_i2c_resource mlxbf_i2c_corepll_res[] = {
448 	[MLXBF_I2C_CHIP_TYPE_1] = {
449 		.params = &mlxbf_i2c_corepll_tyu_params,
450 		.lock = &mlxbf_i2c_corepll_lock,
451 		.type = MLXBF_I2C_COREPLL_RES
452 	},
453 	[MLXBF_I2C_CHIP_TYPE_2] = {
454 		.params = &mlxbf_i2c_corepll_yu_params,
455 		.lock = &mlxbf_i2c_corepll_lock,
456 		.type = MLXBF_I2C_COREPLL_RES,
457 	}
458 };
459 
460 static struct mlxbf_i2c_resource mlxbf_i2c_gpio_res[] = {
461 	[MLXBF_I2C_CHIP_TYPE_1] = {
462 		.params = &mlxbf_i2c_gpio_tyu_params,
463 		.lock = &mlxbf_i2c_gpio_lock,
464 		.type = MLXBF_I2C_GPIO_RES
465 	},
466 	{}
467 };
468 
469 static u8 mlxbf_i2c_bus_count;
470 
471 static struct mutex mlxbf_i2c_bus_lock;
472 
473 /* Polling frequency in microseconds. */
474 #define MLXBF_I2C_POLL_FREQ_IN_USEC        200
475 
476 #define MLXBF_I2C_SHIFT_0   0
477 #define MLXBF_I2C_SHIFT_8   8
478 #define MLXBF_I2C_SHIFT_16  16
479 #define MLXBF_I2C_SHIFT_24  24
480 
481 #define MLXBF_I2C_MASK_8    GENMASK(7, 0)
482 #define MLXBF_I2C_MASK_16   GENMASK(15, 0)
483 
484 /*
485  * Function to poll a set of bits at a specific address; it checks whether
486  * the bits are equal to zero when eq_zero is set to 'true', and not equal
487  * to zero when eq_zero is set to 'false'.
488  * Note that the timeout is given in microseconds.
489  */
mlxbf_smbus_poll(void __iomem *io, u32 addr, u32 mask, bool eq_zero, u32 timeout)490 static u32 mlxbf_smbus_poll(void __iomem *io, u32 addr, u32 mask,
491 			    bool eq_zero, u32  timeout)
492 {
493 	u32 bits;
494 
495 	timeout = (timeout / MLXBF_I2C_POLL_FREQ_IN_USEC) + 1;
496 
497 	do {
498 		bits = readl(io + addr) & mask;
499 		if (eq_zero ? bits == 0 : bits != 0)
500 			return eq_zero ? 1 : bits;
501 		udelay(MLXBF_I2C_POLL_FREQ_IN_USEC);
502 	} while (timeout-- != 0);
503 
504 	return 0;
505 }
506 
507 /*
508  * SW must make sure that the SMBus Master GW is idle before starting
509  * a transaction. Accordingly, this function polls the Master FSM stop
510  * bit; it returns false when the bit is asserted, true if not.
511  */
mlxbf_smbus_master_wait_for_idle(struct mlxbf_i2c_priv *priv)512 static bool mlxbf_smbus_master_wait_for_idle(struct mlxbf_i2c_priv *priv)
513 {
514 	u32 mask = MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK;
515 	u32 addr = MLXBF_I2C_SMBUS_MASTER_FSM;
516 	u32 timeout = MLXBF_I2C_SMBUS_TIMEOUT;
517 
518 	if (mlxbf_smbus_poll(priv->smbus->io, addr, mask, true, timeout))
519 		return true;
520 
521 	return false;
522 }
523 
524 /*
525  * wait for the lock to be released before acquiring it.
526  */
mlxbf_i2c_smbus_master_lock(struct mlxbf_i2c_priv *priv)527 static bool mlxbf_i2c_smbus_master_lock(struct mlxbf_i2c_priv *priv)
528 {
529 	if (mlxbf_smbus_poll(priv->smbus->io, MLXBF_I2C_SMBUS_MASTER_GW,
530 			   MLXBF_I2C_MASTER_LOCK_BIT, true,
531 			   MLXBF_I2C_SMBUS_LOCK_POLL_TIMEOUT))
532 		return true;
533 
534 	return false;
535 }
536 
mlxbf_i2c_smbus_master_unlock(struct mlxbf_i2c_priv *priv)537 static void mlxbf_i2c_smbus_master_unlock(struct mlxbf_i2c_priv *priv)
538 {
539 	/* Clear the gw to clear the lock */
540 	writel(0, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_GW);
541 }
542 
mlxbf_i2c_smbus_transaction_success(u32 master_status, u32 cause_status)543 static bool mlxbf_i2c_smbus_transaction_success(u32 master_status,
544 						u32 cause_status)
545 {
546 	/*
547 	 * When transaction ended with STOP, all bytes were transmitted,
548 	 * and no NACK received, then the transaction ended successfully.
549 	 * On the other hand, when the GW is configured with the stop bit
550 	 * de-asserted then the SMBus expects the following GW configuration
551 	 * for transfer continuation.
552 	 */
553 	if ((cause_status & MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA) ||
554 	    ((cause_status & MLXBF_I2C_CAUSE_TRANSACTION_ENDED) &&
555 	     (master_status & MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE) &&
556 	     !(master_status & MLXBF_I2C_SMBUS_STATUS_NACK_RCV)))
557 		return true;
558 
559 	return false;
560 }
561 
562 /*
563  * Poll SMBus master status and return transaction status,
564  * i.e. whether succeeded or failed. I2C and SMBus fault codes
565  * are returned as negative numbers from most calls, with zero
566  * or some positive number indicating a non-fault return.
567  */
mlxbf_i2c_smbus_check_status(struct mlxbf_i2c_priv *priv)568 static int mlxbf_i2c_smbus_check_status(struct mlxbf_i2c_priv *priv)
569 {
570 	u32 master_status_bits;
571 	u32 cause_status_bits;
572 
573 	/*
574 	 * GW busy bit is raised by the driver and cleared by the HW
575 	 * when the transaction is completed. The busy bit is a good
576 	 * indicator of transaction status. So poll the busy bit, and
577 	 * then read the cause and master status bits to determine if
578 	 * errors occurred during the transaction.
579 	 */
580 	mlxbf_smbus_poll(priv->smbus->io, MLXBF_I2C_SMBUS_MASTER_GW,
581 			 MLXBF_I2C_MASTER_BUSY_BIT, true,
582 			 MLXBF_I2C_SMBUS_TIMEOUT);
583 
584 	/* Read cause status bits. */
585 	cause_status_bits = readl(priv->mst_cause->io +
586 					MLXBF_I2C_CAUSE_ARBITER);
587 	cause_status_bits &= MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK;
588 
589 	/*
590 	 * Parse both Cause and Master GW bits, then return transaction status.
591 	 */
592 
593 	master_status_bits = readl(priv->smbus->io +
594 					MLXBF_I2C_SMBUS_MASTER_STATUS);
595 	master_status_bits &= MLXBF_I2C_SMBUS_MASTER_STATUS_MASK;
596 
597 	if (mlxbf_i2c_smbus_transaction_success(master_status_bits,
598 						cause_status_bits))
599 		return 0;
600 
601 	/*
602 	 * In case of timeout on GW busy, the ISR will clear busy bit but
603 	 * transaction ended bits cause will not be set so the transaction
604 	 * fails. Then, we must check Master GW status bits.
605 	 */
606 	if ((master_status_bits & MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR) &&
607 	    (cause_status_bits & (MLXBF_I2C_CAUSE_TRANSACTION_ENDED |
608 				  MLXBF_I2C_CAUSE_M_GW_BUSY_FALL)))
609 		return -EIO;
610 
611 	if (cause_status_bits & MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR)
612 		return -EAGAIN;
613 
614 	return -ETIMEDOUT;
615 }
616 
mlxbf_i2c_smbus_write_data(struct mlxbf_i2c_priv *priv, const u8 *data, u8 length, u32 addr)617 static void mlxbf_i2c_smbus_write_data(struct mlxbf_i2c_priv *priv,
618 				       const u8 *data, u8 length, u32 addr)
619 {
620 	u8 offset, aligned_length;
621 	u32 data32;
622 
623 	aligned_length = round_up(length, 4);
624 
625 	/*
626 	 * Copy data bytes from 4-byte aligned source buffer.
627 	 * Data copied to the Master GW Data Descriptor MUST be shifted
628 	 * left so the data starts at the MSB of the descriptor registers
629 	 * as required by the underlying hardware. Enable byte swapping
630 	 * when writing data bytes to the 32 * 32-bit HW Data registers
631 	 * a.k.a Master GW Data Descriptor.
632 	 */
633 	for (offset = 0; offset < aligned_length; offset += sizeof(u32)) {
634 		data32 = *((u32 *)(data + offset));
635 		iowrite32be(data32, priv->smbus->io + addr + offset);
636 	}
637 }
638 
mlxbf_i2c_smbus_read_data(struct mlxbf_i2c_priv *priv, u8 *data, u8 length, u32 addr)639 static void mlxbf_i2c_smbus_read_data(struct mlxbf_i2c_priv *priv,
640 				      u8 *data, u8 length, u32 addr)
641 {
642 	u32 data32, mask;
643 	u8 byte, offset;
644 
645 	mask = sizeof(u32) - 1;
646 
647 	/*
648 	 * Data bytes in the Master GW Data Descriptor are shifted left
649 	 * so the data starts at the MSB of the descriptor registers as
650 	 * set by the underlying hardware. Enable byte swapping while
651 	 * reading data bytes from the 32 * 32-bit HW Data registers
652 	 * a.k.a Master GW Data Descriptor.
653 	 */
654 
655 	for (offset = 0; offset < (length & ~mask); offset += sizeof(u32)) {
656 		data32 = ioread32be(priv->smbus->io + addr + offset);
657 		*((u32 *)(data + offset)) = data32;
658 	}
659 
660 	if (!(length & mask))
661 		return;
662 
663 	data32 = ioread32be(priv->smbus->io + addr + offset);
664 
665 	for (byte = 0; byte < (length & mask); byte++) {
666 		data[offset + byte] = data32 & GENMASK(7, 0);
667 		data32 = ror32(data32, MLXBF_I2C_SHIFT_8);
668 	}
669 }
670 
mlxbf_i2c_smbus_enable(struct mlxbf_i2c_priv *priv, u8 slave, u8 len, u8 block_en, u8 pec_en, bool read)671 static int mlxbf_i2c_smbus_enable(struct mlxbf_i2c_priv *priv, u8 slave,
672 				  u8 len, u8 block_en, u8 pec_en, bool read)
673 {
674 	u32 command;
675 
676 	/* Set Master GW control word. */
677 	if (read) {
678 		command = MLXBF_I2C_MASTER_ENABLE_READ;
679 		command |= rol32(len, MLXBF_I2C_MASTER_READ_SHIFT);
680 	} else {
681 		command = MLXBF_I2C_MASTER_ENABLE_WRITE;
682 		command |= rol32(len, MLXBF_I2C_MASTER_WRITE_SHIFT);
683 	}
684 	command |= rol32(slave, MLXBF_I2C_MASTER_SLV_ADDR_SHIFT);
685 	command |= rol32(block_en, MLXBF_I2C_MASTER_PARSE_EXP_SHIFT);
686 	command |= rol32(pec_en, MLXBF_I2C_MASTER_SEND_PEC_SHIFT);
687 
688 	/* Clear status bits. */
689 	writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_STATUS);
690 	/* Set the cause data. */
691 	writel(~0x0, priv->mst_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
692 	/* Zero PEC byte. */
693 	writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_PEC);
694 	/* Zero byte count. */
695 	writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_RS_BYTES);
696 
697 	/* GW activation. */
698 	writel(command, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_GW);
699 
700 	/*
701 	 * Poll master status and check status bits. An ACK is sent when
702 	 * completing writing data to the bus (Master 'byte_count_done' bit
703 	 * is set to 1).
704 	 */
705 	return mlxbf_i2c_smbus_check_status(priv);
706 }
707 
708 static int
mlxbf_i2c_smbus_start_transaction(struct mlxbf_i2c_priv *priv, struct mlxbf_i2c_smbus_request *request)709 mlxbf_i2c_smbus_start_transaction(struct mlxbf_i2c_priv *priv,
710 				  struct mlxbf_i2c_smbus_request *request)
711 {
712 	u8 data_desc[MLXBF_I2C_MASTER_DATA_DESC_SIZE] = { 0 };
713 	u8 op_idx, data_idx, data_len, write_len, read_len;
714 	struct mlxbf_i2c_smbus_operation *operation;
715 	u8 read_en, write_en, block_en, pec_en;
716 	u8 slave, flags, addr;
717 	u8 *read_buf;
718 	int ret = 0;
719 
720 	if (request->operation_cnt > MLXBF_I2C_SMBUS_MAX_OP_CNT)
721 		return -EINVAL;
722 
723 	read_buf = NULL;
724 	data_idx = 0;
725 	read_en = 0;
726 	write_en = 0;
727 	write_len = 0;
728 	read_len = 0;
729 	block_en = 0;
730 	pec_en = 0;
731 	slave = request->slave & GENMASK(6, 0);
732 	addr = slave << 1;
733 
734 	/*
735 	 * Try to acquire the smbus gw lock before any reads of the GW register since
736 	 * a read sets the lock.
737 	 */
738 	if (WARN_ON(!mlxbf_i2c_smbus_master_lock(priv)))
739 		return -EBUSY;
740 
741 	/* Check whether the HW is idle */
742 	if (WARN_ON(!mlxbf_smbus_master_wait_for_idle(priv))) {
743 		ret = -EBUSY;
744 		goto out_unlock;
745 	}
746 
747 	/* Set first byte. */
748 	data_desc[data_idx++] = addr;
749 
750 	for (op_idx = 0; op_idx < request->operation_cnt; op_idx++) {
751 		operation = &request->operation[op_idx];
752 		flags = operation->flags;
753 
754 		/*
755 		 * Note that read and write operations might be handled by a
756 		 * single command. If the MLXBF_I2C_F_SMBUS_OPERATION is set
757 		 * then write command byte and set the optional SMBus specific
758 		 * bits such as block_en and pec_en. These bits MUST be
759 		 * submitted by the first operation only.
760 		 */
761 		if (op_idx == 0 && flags & MLXBF_I2C_F_SMBUS_OPERATION) {
762 			block_en = flags & MLXBF_I2C_F_SMBUS_BLOCK;
763 			pec_en = flags & MLXBF_I2C_F_SMBUS_PEC;
764 		}
765 
766 		if (flags & MLXBF_I2C_F_WRITE) {
767 			write_en = 1;
768 			write_len += operation->length;
769 			if (data_idx + operation->length >
770 					MLXBF_I2C_MASTER_DATA_DESC_SIZE) {
771 				ret = -ENOBUFS;
772 				goto out_unlock;
773 			}
774 			memcpy(data_desc + data_idx,
775 			       operation->buffer, operation->length);
776 			data_idx += operation->length;
777 		}
778 		/*
779 		 * We assume that read operations are performed only once per
780 		 * SMBus transaction. *TBD* protect this statement so it won't
781 		 * be executed twice? or return an error if we try to read more
782 		 * than once?
783 		 */
784 		if (flags & MLXBF_I2C_F_READ) {
785 			read_en = 1;
786 			/* Subtract 1 as required by HW. */
787 			read_len = operation->length - 1;
788 			read_buf = operation->buffer;
789 		}
790 	}
791 
792 	/* Set Master GW data descriptor. */
793 	data_len = write_len + 1; /* Add one byte of the slave address. */
794 	/*
795 	 * Note that data_len cannot be 0. Indeed, the slave address byte
796 	 * must be written to the data registers.
797 	 */
798 	mlxbf_i2c_smbus_write_data(priv, (const u8 *)data_desc, data_len,
799 				   MLXBF_I2C_MASTER_DATA_DESC_ADDR);
800 
801 	if (write_en) {
802 		ret = mlxbf_i2c_smbus_enable(priv, slave, write_len, block_en,
803 					 pec_en, 0);
804 		if (ret)
805 			goto out_unlock;
806 	}
807 
808 	if (read_en) {
809 		/* Write slave address to Master GW data descriptor. */
810 		mlxbf_i2c_smbus_write_data(priv, (const u8 *)&addr, 1,
811 					   MLXBF_I2C_MASTER_DATA_DESC_ADDR);
812 		ret = mlxbf_i2c_smbus_enable(priv, slave, read_len, block_en,
813 					 pec_en, 1);
814 		if (!ret) {
815 			/* Get Master GW data descriptor. */
816 			mlxbf_i2c_smbus_read_data(priv, data_desc, read_len + 1,
817 					     MLXBF_I2C_MASTER_DATA_DESC_ADDR);
818 
819 			/* Get data from Master GW data descriptor. */
820 			memcpy(read_buf, data_desc, read_len + 1);
821 		}
822 
823 		/*
824 		 * After a read operation the SMBus FSM ps (present state)
825 		 * needs to be 'manually' reset. This should be removed in
826 		 * next tag integration.
827 		 */
828 		writel(MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK,
829 			priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_FSM);
830 	}
831 
832 out_unlock:
833 	mlxbf_i2c_smbus_master_unlock(priv);
834 
835 	return ret;
836 }
837 
838 /* I2C SMBus protocols. */
839 
840 static void
mlxbf_i2c_smbus_quick_command(struct mlxbf_i2c_smbus_request *request, u8 read)841 mlxbf_i2c_smbus_quick_command(struct mlxbf_i2c_smbus_request *request,
842 			      u8 read)
843 {
844 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1;
845 
846 	request->operation[0].length = 0;
847 	request->operation[0].flags = MLXBF_I2C_F_WRITE;
848 	request->operation[0].flags |= read ? MLXBF_I2C_F_READ : 0;
849 }
850 
mlxbf_i2c_smbus_byte_func(struct mlxbf_i2c_smbus_request *request, u8 *data, bool read, bool pec_check)851 static void mlxbf_i2c_smbus_byte_func(struct mlxbf_i2c_smbus_request *request,
852 				      u8 *data, bool read, bool pec_check)
853 {
854 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1;
855 
856 	request->operation[0].length = 1;
857 	request->operation[0].length += pec_check;
858 
859 	request->operation[0].flags = MLXBF_I2C_F_SMBUS_OPERATION;
860 	request->operation[0].flags |= read ?
861 				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
862 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
863 
864 	request->operation[0].buffer = data;
865 }
866 
867 static void
mlxbf_i2c_smbus_data_byte_func(struct mlxbf_i2c_smbus_request *request, u8 *command, u8 *data, bool read, bool pec_check)868 mlxbf_i2c_smbus_data_byte_func(struct mlxbf_i2c_smbus_request *request,
869 			       u8 *command, u8 *data, bool read, bool pec_check)
870 {
871 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
872 
873 	request->operation[0].length = 1;
874 	request->operation[0].flags =
875 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
876 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
877 	request->operation[0].buffer = command;
878 
879 	request->operation[1].length = 1;
880 	request->operation[1].length += pec_check;
881 	request->operation[1].flags = read ?
882 				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
883 	request->operation[1].buffer = data;
884 }
885 
886 static void
mlxbf_i2c_smbus_data_word_func(struct mlxbf_i2c_smbus_request *request, u8 *command, u8 *data, bool read, bool pec_check)887 mlxbf_i2c_smbus_data_word_func(struct mlxbf_i2c_smbus_request *request,
888 			       u8 *command, u8 *data, bool read, bool pec_check)
889 {
890 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
891 
892 	request->operation[0].length = 1;
893 	request->operation[0].flags =
894 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
895 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
896 	request->operation[0].buffer = command;
897 
898 	request->operation[1].length = 2;
899 	request->operation[1].length += pec_check;
900 	request->operation[1].flags = read ?
901 				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
902 	request->operation[1].buffer = data;
903 }
904 
905 static void
mlxbf_i2c_smbus_i2c_block_func(struct mlxbf_i2c_smbus_request *request, u8 *command, u8 *data, u8 *data_len, bool read, bool pec_check)906 mlxbf_i2c_smbus_i2c_block_func(struct mlxbf_i2c_smbus_request *request,
907 			       u8 *command, u8 *data, u8 *data_len, bool read,
908 			       bool pec_check)
909 {
910 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
911 
912 	request->operation[0].length = 1;
913 	request->operation[0].flags =
914 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
915 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
916 	request->operation[0].buffer = command;
917 
918 	/*
919 	 * As specified in the standard, the max number of bytes to read/write
920 	 * per block operation is 32 bytes. In Golan code, the controller can
921 	 * read up to 128 bytes and write up to 127 bytes.
922 	 */
923 	request->operation[1].length =
924 	    (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
925 	    I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
926 	request->operation[1].flags = read ?
927 				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
928 	/*
929 	 * Skip the first data byte, which corresponds to the number of bytes
930 	 * to read/write.
931 	 */
932 	request->operation[1].buffer = data + 1;
933 
934 	*data_len = request->operation[1].length;
935 
936 	/* Set the number of byte to read. This will be used by userspace. */
937 	if (read)
938 		data[0] = *data_len;
939 }
940 
mlxbf_i2c_smbus_block_func(struct mlxbf_i2c_smbus_request *request, u8 *command, u8 *data, u8 *data_len, bool read, bool pec_check)941 static void mlxbf_i2c_smbus_block_func(struct mlxbf_i2c_smbus_request *request,
942 				       u8 *command, u8 *data, u8 *data_len,
943 				       bool read, bool pec_check)
944 {
945 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
946 
947 	request->operation[0].length = 1;
948 	request->operation[0].flags =
949 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
950 	request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
951 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
952 	request->operation[0].buffer = command;
953 
954 	request->operation[1].length =
955 	    (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
956 	    I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
957 	request->operation[1].flags = read ?
958 				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
959 	request->operation[1].buffer = data + 1;
960 
961 	*data_len = request->operation[1].length;
962 
963 	/* Set the number of bytes to read. This will be used by userspace. */
964 	if (read)
965 		data[0] = *data_len;
966 }
967 
968 static void
mlxbf_i2c_smbus_process_call_func(struct mlxbf_i2c_smbus_request *request, u8 *command, u8 *data, bool pec_check)969 mlxbf_i2c_smbus_process_call_func(struct mlxbf_i2c_smbus_request *request,
970 				  u8 *command, u8 *data, bool pec_check)
971 {
972 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3;
973 
974 	request->operation[0].length = 1;
975 	request->operation[0].flags =
976 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
977 	request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
978 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
979 	request->operation[0].buffer = command;
980 
981 	request->operation[1].length = 2;
982 	request->operation[1].flags = MLXBF_I2C_F_WRITE;
983 	request->operation[1].buffer = data;
984 
985 	request->operation[2].length = 3;
986 	request->operation[2].flags = MLXBF_I2C_F_READ;
987 	request->operation[2].buffer = data;
988 }
989 
990 static void
mlxbf_i2c_smbus_blk_process_call_func(struct mlxbf_i2c_smbus_request *request, u8 *command, u8 *data, u8 *data_len, bool pec_check)991 mlxbf_i2c_smbus_blk_process_call_func(struct mlxbf_i2c_smbus_request *request,
992 				      u8 *command, u8 *data, u8 *data_len,
993 				      bool pec_check)
994 {
995 	u32 length;
996 
997 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3;
998 
999 	request->operation[0].length = 1;
1000 	request->operation[0].flags =
1001 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
1002 	request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
1003 	request->operation[0].flags |= (pec_check) ? MLXBF_I2C_F_SMBUS_PEC : 0;
1004 	request->operation[0].buffer = command;
1005 
1006 	length = (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
1007 	    I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
1008 
1009 	request->operation[1].length = length - pec_check;
1010 	request->operation[1].flags = MLXBF_I2C_F_WRITE;
1011 	request->operation[1].buffer = data;
1012 
1013 	request->operation[2].length = length;
1014 	request->operation[2].flags = MLXBF_I2C_F_READ;
1015 	request->operation[2].buffer = data;
1016 
1017 	*data_len = length; /* including PEC byte. */
1018 }
1019 
1020 /* Initialization functions. */
1021 
mlxbf_i2c_has_chip_type(struct mlxbf_i2c_priv *priv, u8 type)1022 static bool mlxbf_i2c_has_chip_type(struct mlxbf_i2c_priv *priv, u8 type)
1023 {
1024 	return priv->chip->type == type;
1025 }
1026 
1027 static struct mlxbf_i2c_resource *
mlxbf_i2c_get_shared_resource(struct mlxbf_i2c_priv *priv, u8 type)1028 mlxbf_i2c_get_shared_resource(struct mlxbf_i2c_priv *priv, u8 type)
1029 {
1030 	const struct mlxbf_i2c_chip_info *chip = priv->chip;
1031 	struct mlxbf_i2c_resource *res;
1032 	u8 res_idx = 0;
1033 
1034 	for (res_idx = 0; res_idx < MLXBF_I2C_SHARED_RES_MAX; res_idx++) {
1035 		res = chip->shared_res[res_idx];
1036 		if (res && res->type == type)
1037 			return res;
1038 	}
1039 
1040 	return NULL;
1041 }
1042 
mlxbf_i2c_init_resource(struct platform_device *pdev, struct mlxbf_i2c_resource **res, u8 type)1043 static int mlxbf_i2c_init_resource(struct platform_device *pdev,
1044 				   struct mlxbf_i2c_resource **res,
1045 				   u8 type)
1046 {
1047 	struct mlxbf_i2c_resource *tmp_res;
1048 	struct device *dev = &pdev->dev;
1049 
1050 	if (!res || *res || type >= MLXBF_I2C_END_RES)
1051 		return -EINVAL;
1052 
1053 	tmp_res = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_resource),
1054 			       GFP_KERNEL);
1055 	if (!tmp_res)
1056 		return -ENOMEM;
1057 
1058 	tmp_res->params = platform_get_resource(pdev, IORESOURCE_MEM, type);
1059 	if (!tmp_res->params) {
1060 		devm_kfree(dev, tmp_res);
1061 		return -EIO;
1062 	}
1063 
1064 	tmp_res->io = devm_ioremap_resource(dev, tmp_res->params);
1065 	if (IS_ERR(tmp_res->io)) {
1066 		devm_kfree(dev, tmp_res);
1067 		return PTR_ERR(tmp_res->io);
1068 	}
1069 
1070 	tmp_res->type = type;
1071 
1072 	*res = tmp_res;
1073 
1074 	return 0;
1075 }
1076 
mlxbf_i2c_get_ticks(struct mlxbf_i2c_priv *priv, u64 nanoseconds, bool minimum)1077 static u32 mlxbf_i2c_get_ticks(struct mlxbf_i2c_priv *priv, u64 nanoseconds,
1078 			       bool minimum)
1079 {
1080 	u64 frequency;
1081 	u32 ticks;
1082 
1083 	/*
1084 	 * Compute ticks as follow:
1085 	 *
1086 	 *           Ticks
1087 	 * Time = --------- x 10^9    =>    Ticks = Time x Frequency x 10^-9
1088 	 *         Frequency
1089 	 */
1090 	frequency = priv->frequency;
1091 	ticks = (nanoseconds * frequency) / MLXBF_I2C_FREQUENCY_1GHZ;
1092 	/*
1093 	 * The number of ticks is rounded down and if minimum is equal to 1
1094 	 * then add one tick.
1095 	 */
1096 	if (minimum)
1097 		ticks++;
1098 
1099 	return ticks;
1100 }
1101 
mlxbf_i2c_set_timer(struct mlxbf_i2c_priv *priv, u64 nsec, bool opt, u32 mask, u8 shift)1102 static u32 mlxbf_i2c_set_timer(struct mlxbf_i2c_priv *priv, u64 nsec, bool opt,
1103 			       u32 mask, u8 shift)
1104 {
1105 	u32 val = (mlxbf_i2c_get_ticks(priv, nsec, opt) & mask) << shift;
1106 
1107 	return val;
1108 }
1109 
mlxbf_i2c_set_timings(struct mlxbf_i2c_priv *priv, const struct mlxbf_i2c_timings *timings)1110 static void mlxbf_i2c_set_timings(struct mlxbf_i2c_priv *priv,
1111 				  const struct mlxbf_i2c_timings *timings)
1112 {
1113 	u32 timer;
1114 
1115 	timer = mlxbf_i2c_set_timer(priv, timings->scl_high,
1116 				    false, MLXBF_I2C_MASK_16,
1117 				    MLXBF_I2C_SHIFT_0);
1118 	timer |= mlxbf_i2c_set_timer(priv, timings->scl_low,
1119 				     false, MLXBF_I2C_MASK_16,
1120 				     MLXBF_I2C_SHIFT_16);
1121 	writel(timer, priv->smbus->io +
1122 		MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH);
1123 
1124 	timer = mlxbf_i2c_set_timer(priv, timings->sda_rise, false,
1125 				    MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_0);
1126 	timer |= mlxbf_i2c_set_timer(priv, timings->sda_fall, false,
1127 				     MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_8);
1128 	timer |= mlxbf_i2c_set_timer(priv, timings->scl_rise, false,
1129 				     MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_16);
1130 	timer |= mlxbf_i2c_set_timer(priv, timings->scl_fall, false,
1131 				     MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_24);
1132 	writel(timer, priv->smbus->io +
1133 		MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE);
1134 
1135 	timer = mlxbf_i2c_set_timer(priv, timings->hold_start, true,
1136 				    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1137 	timer |= mlxbf_i2c_set_timer(priv, timings->hold_data, true,
1138 				     MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1139 	writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_TIMER_THOLD);
1140 
1141 	timer = mlxbf_i2c_set_timer(priv, timings->setup_start, true,
1142 				    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1143 	timer |= mlxbf_i2c_set_timer(priv, timings->setup_stop, true,
1144 				     MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1145 	writel(timer, priv->smbus->io +
1146 		MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP);
1147 
1148 	timer = mlxbf_i2c_set_timer(priv, timings->setup_data, true,
1149 				    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1150 	writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA);
1151 
1152 	timer = mlxbf_i2c_set_timer(priv, timings->buf, false,
1153 				    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1154 	timer |= mlxbf_i2c_set_timer(priv, timings->thigh_max, false,
1155 				     MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1156 	writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_THIGH_MAX_TBUF);
1157 
1158 	timer = timings->timeout;
1159 	writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT);
1160 }
1161 
1162 enum mlxbf_i2c_timings_config {
1163 	MLXBF_I2C_TIMING_CONFIG_100KHZ,
1164 	MLXBF_I2C_TIMING_CONFIG_400KHZ,
1165 	MLXBF_I2C_TIMING_CONFIG_1000KHZ,
1166 };
1167 
1168 /*
1169  * Note that the mlxbf_i2c_timings->timeout value is not related to the
1170  * bus frequency, it is impacted by the time it takes the driver to
1171  * complete data transmission before transaction abort.
1172  */
1173 static const struct mlxbf_i2c_timings mlxbf_i2c_timings[] = {
1174 	[MLXBF_I2C_TIMING_CONFIG_100KHZ] = {
1175 		.scl_high = 4810,
1176 		.scl_low = 5000,
1177 		.hold_start = 4000,
1178 		.setup_start = 4800,
1179 		.setup_stop = 4000,
1180 		.setup_data = 250,
1181 		.sda_rise = 50,
1182 		.sda_fall = 50,
1183 		.scl_rise = 50,
1184 		.scl_fall = 50,
1185 		.hold_data = 300,
1186 		.buf = 20000,
1187 		.thigh_max = 5000,
1188 		.timeout = 106500
1189 	},
1190 	[MLXBF_I2C_TIMING_CONFIG_400KHZ] = {
1191 		.scl_high = 1011,
1192 		.scl_low = 1300,
1193 		.hold_start = 600,
1194 		.setup_start = 700,
1195 		.setup_stop = 600,
1196 		.setup_data = 100,
1197 		.sda_rise = 50,
1198 		.sda_fall = 50,
1199 		.scl_rise = 50,
1200 		.scl_fall = 50,
1201 		.hold_data = 300,
1202 		.buf = 20000,
1203 		.thigh_max = 5000,
1204 		.timeout = 106500
1205 	},
1206 	[MLXBF_I2C_TIMING_CONFIG_1000KHZ] = {
1207 		.scl_high = 600,
1208 		.scl_low = 1300,
1209 		.hold_start = 600,
1210 		.setup_start = 600,
1211 		.setup_stop = 600,
1212 		.setup_data = 100,
1213 		.sda_rise = 50,
1214 		.sda_fall = 50,
1215 		.scl_rise = 50,
1216 		.scl_fall = 50,
1217 		.hold_data = 300,
1218 		.buf = 20000,
1219 		.thigh_max = 5000,
1220 		.timeout = 106500
1221 	}
1222 };
1223 
mlxbf_i2c_init_timings(struct platform_device *pdev, struct mlxbf_i2c_priv *priv)1224 static int mlxbf_i2c_init_timings(struct platform_device *pdev,
1225 				  struct mlxbf_i2c_priv *priv)
1226 {
1227 	enum mlxbf_i2c_timings_config config_idx;
1228 	struct device *dev = &pdev->dev;
1229 	u32 config_khz;
1230 
1231 	int ret;
1232 
1233 	ret = device_property_read_u32(dev, "clock-frequency", &config_khz);
1234 	if (ret < 0)
1235 		config_khz = MLXBF_I2C_TIMING_100KHZ;
1236 
1237 	switch (config_khz) {
1238 	default:
1239 		/* Default settings is 100 KHz. */
1240 		pr_warn("Illegal value %d: defaulting to 100 KHz\n",
1241 			config_khz);
1242 		fallthrough;
1243 	case MLXBF_I2C_TIMING_100KHZ:
1244 		config_idx = MLXBF_I2C_TIMING_CONFIG_100KHZ;
1245 		break;
1246 
1247 	case MLXBF_I2C_TIMING_400KHZ:
1248 		config_idx = MLXBF_I2C_TIMING_CONFIG_400KHZ;
1249 		break;
1250 
1251 	case MLXBF_I2C_TIMING_1000KHZ:
1252 		config_idx = MLXBF_I2C_TIMING_CONFIG_1000KHZ;
1253 		break;
1254 	}
1255 
1256 	mlxbf_i2c_set_timings(priv, &mlxbf_i2c_timings[config_idx]);
1257 
1258 	return 0;
1259 }
1260 
mlxbf_i2c_get_gpio(struct platform_device *pdev, struct mlxbf_i2c_priv *priv)1261 static int mlxbf_i2c_get_gpio(struct platform_device *pdev,
1262 			      struct mlxbf_i2c_priv *priv)
1263 {
1264 	struct mlxbf_i2c_resource *gpio_res;
1265 	struct device *dev = &pdev->dev;
1266 	struct resource	*params;
1267 	resource_size_t size;
1268 
1269 	gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1270 	if (!gpio_res)
1271 		return -EPERM;
1272 
1273 	/*
1274 	 * The GPIO region in TYU space is shared among I2C busses.
1275 	 * This function MUST be serialized to avoid racing when
1276 	 * claiming the memory region and/or setting up the GPIO.
1277 	 */
1278 	lockdep_assert_held(gpio_res->lock);
1279 
1280 	/* Check whether the memory map exist. */
1281 	if (gpio_res->io)
1282 		return 0;
1283 
1284 	params = gpio_res->params;
1285 	size = resource_size(params);
1286 
1287 	if (!devm_request_mem_region(dev, params->start, size, params->name))
1288 		return -EFAULT;
1289 
1290 	gpio_res->io = devm_ioremap(dev, params->start, size);
1291 	if (!gpio_res->io) {
1292 		devm_release_mem_region(dev, params->start, size);
1293 		return -ENOMEM;
1294 	}
1295 
1296 	return 0;
1297 }
1298 
mlxbf_i2c_release_gpio(struct platform_device *pdev, struct mlxbf_i2c_priv *priv)1299 static int mlxbf_i2c_release_gpio(struct platform_device *pdev,
1300 				  struct mlxbf_i2c_priv *priv)
1301 {
1302 	struct mlxbf_i2c_resource *gpio_res;
1303 	struct device *dev = &pdev->dev;
1304 	struct resource	*params;
1305 
1306 	gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1307 	if (!gpio_res)
1308 		return 0;
1309 
1310 	mutex_lock(gpio_res->lock);
1311 
1312 	if (gpio_res->io) {
1313 		/* Release the GPIO resource. */
1314 		params = gpio_res->params;
1315 		devm_iounmap(dev, gpio_res->io);
1316 		devm_release_mem_region(dev, params->start,
1317 					resource_size(params));
1318 	}
1319 
1320 	mutex_unlock(gpio_res->lock);
1321 
1322 	return 0;
1323 }
1324 
mlxbf_i2c_get_corepll(struct platform_device *pdev, struct mlxbf_i2c_priv *priv)1325 static int mlxbf_i2c_get_corepll(struct platform_device *pdev,
1326 				 struct mlxbf_i2c_priv *priv)
1327 {
1328 	struct mlxbf_i2c_resource *corepll_res;
1329 	struct device *dev = &pdev->dev;
1330 	struct resource *params;
1331 	resource_size_t size;
1332 
1333 	corepll_res = mlxbf_i2c_get_shared_resource(priv,
1334 						    MLXBF_I2C_COREPLL_RES);
1335 	if (!corepll_res)
1336 		return -EPERM;
1337 
1338 	/*
1339 	 * The COREPLL region in TYU space is shared among I2C busses.
1340 	 * This function MUST be serialized to avoid racing when
1341 	 * claiming the memory region.
1342 	 */
1343 	lockdep_assert_held(corepll_res->lock);
1344 
1345 	/* Check whether the memory map exist. */
1346 	if (corepll_res->io)
1347 		return 0;
1348 
1349 	params = corepll_res->params;
1350 	size = resource_size(params);
1351 
1352 	if (!devm_request_mem_region(dev, params->start, size, params->name))
1353 		return -EFAULT;
1354 
1355 	corepll_res->io = devm_ioremap(dev, params->start, size);
1356 	if (!corepll_res->io) {
1357 		devm_release_mem_region(dev, params->start, size);
1358 		return -ENOMEM;
1359 	}
1360 
1361 	return 0;
1362 }
1363 
mlxbf_i2c_release_corepll(struct platform_device *pdev, struct mlxbf_i2c_priv *priv)1364 static int mlxbf_i2c_release_corepll(struct platform_device *pdev,
1365 				     struct mlxbf_i2c_priv *priv)
1366 {
1367 	struct mlxbf_i2c_resource *corepll_res;
1368 	struct device *dev = &pdev->dev;
1369 	struct resource *params;
1370 
1371 	corepll_res = mlxbf_i2c_get_shared_resource(priv,
1372 						    MLXBF_I2C_COREPLL_RES);
1373 
1374 	mutex_lock(corepll_res->lock);
1375 
1376 	if (corepll_res->io) {
1377 		/* Release the CorePLL resource. */
1378 		params = corepll_res->params;
1379 		devm_iounmap(dev, corepll_res->io);
1380 		devm_release_mem_region(dev, params->start,
1381 					resource_size(params));
1382 	}
1383 
1384 	mutex_unlock(corepll_res->lock);
1385 
1386 	return 0;
1387 }
1388 
mlxbf_i2c_init_master(struct platform_device *pdev, struct mlxbf_i2c_priv *priv)1389 static int mlxbf_i2c_init_master(struct platform_device *pdev,
1390 				 struct mlxbf_i2c_priv *priv)
1391 {
1392 	struct mlxbf_i2c_resource *gpio_res;
1393 	struct device *dev = &pdev->dev;
1394 	u32 config_reg;
1395 	int ret;
1396 
1397 	/* This configuration is only needed for BlueField 1. */
1398 	if (!mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1))
1399 		return 0;
1400 
1401 	gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1402 	if (!gpio_res)
1403 		return -EPERM;
1404 
1405 	/*
1406 	 * The GPIO region in TYU space is shared among I2C busses.
1407 	 * This function MUST be serialized to avoid racing when
1408 	 * claiming the memory region and/or setting up the GPIO.
1409 	 */
1410 
1411 	mutex_lock(gpio_res->lock);
1412 
1413 	ret = mlxbf_i2c_get_gpio(pdev, priv);
1414 	if (ret < 0) {
1415 		dev_err(dev, "Failed to get gpio resource");
1416 		mutex_unlock(gpio_res->lock);
1417 		return ret;
1418 	}
1419 
1420 	/*
1421 	 * TYU - Configuration for GPIO pins. Those pins must be asserted in
1422 	 * MLXBF_I2C_GPIO_0_FUNC_EN_0, i.e. GPIO 0 is controlled by HW, and must
1423 	 * be reset in MLXBF_I2C_GPIO_0_FORCE_OE_EN, i.e. GPIO_OE will be driven
1424 	 * instead of HW_OE.
1425 	 * For now, we do not reset the GPIO state when the driver is removed.
1426 	 * First, it is not necessary to disable the bus since we are using
1427 	 * the same busses. Then, some busses might be shared among Linux and
1428 	 * platform firmware; disabling the bus might compromise the system
1429 	 * functionality.
1430 	 */
1431 	config_reg = readl(gpio_res->io + MLXBF_I2C_GPIO_0_FUNC_EN_0);
1432 	config_reg = MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(priv->bus,
1433 							 config_reg);
1434 	writel(config_reg, gpio_res->io + MLXBF_I2C_GPIO_0_FUNC_EN_0);
1435 
1436 	config_reg = readl(gpio_res->io + MLXBF_I2C_GPIO_0_FORCE_OE_EN);
1437 	config_reg = MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(priv->bus,
1438 							config_reg);
1439 	writel(config_reg, gpio_res->io + MLXBF_I2C_GPIO_0_FORCE_OE_EN);
1440 
1441 	mutex_unlock(gpio_res->lock);
1442 
1443 	return 0;
1444 }
1445 
mlxbf_i2c_calculate_freq_from_tyu(struct mlxbf_i2c_resource *corepll_res)1446 static u64 mlxbf_i2c_calculate_freq_from_tyu(struct mlxbf_i2c_resource *corepll_res)
1447 {
1448 	u64 core_frequency;
1449 	u8 core_od, core_r;
1450 	u32 corepll_val;
1451 	u16 core_f;
1452 
1453 	corepll_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG1);
1454 
1455 	/* Get Core PLL configuration bits. */
1456 	core_f = FIELD_GET(MLXBF_I2C_COREPLL_CORE_F_TYU_MASK, corepll_val);
1457 	core_od = FIELD_GET(MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK, corepll_val);
1458 	core_r = FIELD_GET(MLXBF_I2C_COREPLL_CORE_R_TYU_MASK, corepll_val);
1459 
1460 	/*
1461 	 * Compute PLL output frequency as follow:
1462 	 *
1463 	 *                                       CORE_F + 1
1464 	 * PLL_OUT_FREQ = PLL_IN_FREQ * ----------------------------
1465 	 *                              (CORE_R + 1) * (CORE_OD + 1)
1466 	 *
1467 	 * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency
1468 	 * and PadFrequency, respectively.
1469 	 */
1470 	core_frequency = MLXBF_I2C_PLL_IN_FREQ * (++core_f);
1471 	core_frequency /= (++core_r) * (++core_od);
1472 
1473 	return core_frequency;
1474 }
1475 
mlxbf_i2c_calculate_freq_from_yu(struct mlxbf_i2c_resource *corepll_res)1476 static u64 mlxbf_i2c_calculate_freq_from_yu(struct mlxbf_i2c_resource *corepll_res)
1477 {
1478 	u32 corepll_reg1_val, corepll_reg2_val;
1479 	u64 corepll_frequency;
1480 	u8 core_od, core_r;
1481 	u32 core_f;
1482 
1483 	corepll_reg1_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG1);
1484 	corepll_reg2_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG2);
1485 
1486 	/* Get Core PLL configuration bits */
1487 	core_f = FIELD_GET(MLXBF_I2C_COREPLL_CORE_F_YU_MASK, corepll_reg1_val);
1488 	core_r = FIELD_GET(MLXBF_I2C_COREPLL_CORE_R_YU_MASK, corepll_reg1_val);
1489 	core_od = FIELD_GET(MLXBF_I2C_COREPLL_CORE_OD_YU_MASK, corepll_reg2_val);
1490 
1491 	/*
1492 	 * Compute PLL output frequency as follow:
1493 	 *
1494 	 *                                     CORE_F / 16384
1495 	 * PLL_OUT_FREQ = PLL_IN_FREQ * ----------------------------
1496 	 *                              (CORE_R + 1) * (CORE_OD + 1)
1497 	 *
1498 	 * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency
1499 	 * and PadFrequency, respectively.
1500 	 */
1501 	corepll_frequency = (MLXBF_I2C_PLL_IN_FREQ * core_f) / MLNXBF_I2C_COREPLL_CONST;
1502 	corepll_frequency /= (++core_r) * (++core_od);
1503 
1504 	return corepll_frequency;
1505 }
1506 
mlxbf_i2c_calculate_corepll_freq(struct platform_device *pdev, struct mlxbf_i2c_priv *priv)1507 static int mlxbf_i2c_calculate_corepll_freq(struct platform_device *pdev,
1508 					    struct mlxbf_i2c_priv *priv)
1509 {
1510 	const struct mlxbf_i2c_chip_info *chip = priv->chip;
1511 	struct mlxbf_i2c_resource *corepll_res;
1512 	struct device *dev = &pdev->dev;
1513 	u64 *freq = &priv->frequency;
1514 	int ret;
1515 
1516 	corepll_res = mlxbf_i2c_get_shared_resource(priv,
1517 						    MLXBF_I2C_COREPLL_RES);
1518 	if (!corepll_res)
1519 		return -EPERM;
1520 
1521 	/*
1522 	 * First, check whether the TYU core Clock frequency is set.
1523 	 * The TYU core frequency is the same for all I2C busses; when
1524 	 * the first device gets probed the frequency is determined and
1525 	 * stored into a globally visible variable. So, first of all,
1526 	 * check whether the frequency is already set. Here, we assume
1527 	 * that the frequency is expected to be greater than 0.
1528 	 */
1529 	mutex_lock(corepll_res->lock);
1530 	if (!mlxbf_i2c_corepll_frequency) {
1531 		if (!chip->calculate_freq) {
1532 			mutex_unlock(corepll_res->lock);
1533 			return -EPERM;
1534 		}
1535 
1536 		ret = mlxbf_i2c_get_corepll(pdev, priv);
1537 		if (ret < 0) {
1538 			dev_err(dev, "Failed to get corePLL resource");
1539 			mutex_unlock(corepll_res->lock);
1540 			return ret;
1541 		}
1542 
1543 		mlxbf_i2c_corepll_frequency = chip->calculate_freq(corepll_res);
1544 	}
1545 	mutex_unlock(corepll_res->lock);
1546 
1547 	*freq = mlxbf_i2c_corepll_frequency;
1548 
1549 	return 0;
1550 }
1551 
mlxbf_slave_enable(struct mlxbf_i2c_priv *priv, u8 addr)1552 static int mlxbf_slave_enable(struct mlxbf_i2c_priv *priv, u8 addr)
1553 {
1554 	u32 slave_reg, slave_reg_tmp, slave_reg_avail, slave_addr_mask;
1555 	u8 reg, reg_cnt, byte, addr_tmp, reg_avail, byte_avail;
1556 	bool avail, disabled;
1557 
1558 	disabled = false;
1559 	avail = false;
1560 
1561 	if (!priv)
1562 		return -EPERM;
1563 
1564 	reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2;
1565 	slave_addr_mask = MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK;
1566 
1567 	/*
1568 	 * Read the slave registers. There are 4 * 32-bit slave registers.
1569 	 * Each slave register can hold up to 4 * 8-bit slave configuration
1570 	 * (7-bit address, 1 status bit (1 if enabled, 0 if not)).
1571 	 */
1572 	for (reg = 0; reg < reg_cnt; reg++) {
1573 		slave_reg = readl(priv->smbus->io +
1574 				MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4);
1575 		/*
1576 		 * Each register holds 4 slave addresses. So, we have to keep
1577 		 * the byte order consistent with the value read in order to
1578 		 * update the register correctly, if needed.
1579 		 */
1580 		slave_reg_tmp = slave_reg;
1581 		for (byte = 0; byte < 4; byte++) {
1582 			addr_tmp = slave_reg_tmp & GENMASK(7, 0);
1583 
1584 			/*
1585 			 * Mark the first available slave address slot, i.e. its
1586 			 * enabled bit should be unset. This slot might be used
1587 			 * later on to register our slave.
1588 			 */
1589 			if (!avail && !MLXBF_I2C_SLAVE_ADDR_ENABLED(addr_tmp)) {
1590 				avail = true;
1591 				reg_avail = reg;
1592 				byte_avail = byte;
1593 				slave_reg_avail = slave_reg;
1594 			}
1595 
1596 			/*
1597 			 * Parse slave address bytes and check whether the
1598 			 * slave address already exists and it's enabled,
1599 			 * i.e. most significant bit is set.
1600 			 */
1601 			if ((addr_tmp & slave_addr_mask) == addr) {
1602 				if (MLXBF_I2C_SLAVE_ADDR_ENABLED(addr_tmp))
1603 					return 0;
1604 				disabled = true;
1605 				break;
1606 			}
1607 
1608 			/* Parse next byte. */
1609 			slave_reg_tmp >>= 8;
1610 		}
1611 
1612 		/* Exit the loop if the slave address is found. */
1613 		if (disabled)
1614 			break;
1615 	}
1616 
1617 	if (!avail && !disabled)
1618 		return -EINVAL; /* No room for a new slave address. */
1619 
1620 	if (avail && !disabled) {
1621 		reg = reg_avail;
1622 		byte = byte_avail;
1623 		/* Set the slave address. */
1624 		slave_reg_avail &= ~(slave_addr_mask << (byte * 8));
1625 		slave_reg_avail |= addr << (byte * 8);
1626 		slave_reg = slave_reg_avail;
1627 	}
1628 
1629 	/* Enable the slave address and update the register. */
1630 	slave_reg |= (1 << MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT) << (byte * 8);
1631 	writel(slave_reg, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG +
1632 		reg * 0x4);
1633 
1634 	return 0;
1635 }
1636 
mlxbf_slave_disable(struct mlxbf_i2c_priv *priv)1637 static int mlxbf_slave_disable(struct mlxbf_i2c_priv *priv)
1638 {
1639 	u32 slave_reg, slave_reg_tmp, slave_addr_mask;
1640 	u8 addr, addr_tmp, reg, reg_cnt, slave_byte;
1641 	struct i2c_client *client = priv->slave;
1642 	bool exist;
1643 
1644 	exist = false;
1645 
1646 	addr = client->addr;
1647 	reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2;
1648 	slave_addr_mask = MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK;
1649 
1650 	/*
1651 	 * Read the slave registers. There are 4 * 32-bit slave registers.
1652 	 * Each slave register can hold up to 4 * 8-bit slave configuration
1653 	 * (7-bit address, 1 status bit (1 if enabled, 0 if not)).
1654 	 */
1655 	for (reg = 0; reg < reg_cnt; reg++) {
1656 		slave_reg = readl(priv->smbus->io +
1657 				MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4);
1658 
1659 		/* Check whether the address slots are empty. */
1660 		if (slave_reg == 0)
1661 			continue;
1662 
1663 		/*
1664 		 * Each register holds 4 slave addresses. So, we have to keep
1665 		 * the byte order consistent with the value read in order to
1666 		 * update the register correctly, if needed.
1667 		 */
1668 		slave_reg_tmp = slave_reg;
1669 		slave_byte = 0;
1670 		while (slave_reg_tmp != 0) {
1671 			addr_tmp = slave_reg_tmp & slave_addr_mask;
1672 			/*
1673 			 * Parse slave address bytes and check whether the
1674 			 * slave address already exists.
1675 			 */
1676 			if (addr_tmp == addr) {
1677 				exist = true;
1678 				break;
1679 			}
1680 
1681 			/* Parse next byte. */
1682 			slave_reg_tmp >>= 8;
1683 			slave_byte += 1;
1684 		}
1685 
1686 		/* Exit the loop if the slave address is found. */
1687 		if (exist)
1688 			break;
1689 	}
1690 
1691 	if (!exist)
1692 		return 0; /* Slave is not registered, nothing to do. */
1693 
1694 	/* Cleanup the slave address slot. */
1695 	slave_reg &= ~(GENMASK(7, 0) << (slave_byte * 8));
1696 	writel(slave_reg, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG +
1697 		reg * 0x4);
1698 
1699 	return 0;
1700 }
1701 
mlxbf_i2c_init_coalesce(struct platform_device *pdev, struct mlxbf_i2c_priv *priv)1702 static int mlxbf_i2c_init_coalesce(struct platform_device *pdev,
1703 				   struct mlxbf_i2c_priv *priv)
1704 {
1705 	struct mlxbf_i2c_resource *coalesce_res;
1706 	struct resource *params;
1707 	resource_size_t size;
1708 	int ret = 0;
1709 
1710 	/*
1711 	 * Unlike BlueField-1 platform, the coalesce registers is a dedicated
1712 	 * resource in the next generations of BlueField.
1713 	 */
1714 	if (mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) {
1715 		coalesce_res = mlxbf_i2c_get_shared_resource(priv,
1716 						MLXBF_I2C_COALESCE_RES);
1717 		if (!coalesce_res)
1718 			return -EPERM;
1719 
1720 		/*
1721 		 * The Cause Coalesce group in TYU space is shared among
1722 		 * I2C busses. This function MUST be serialized to avoid
1723 		 * racing when claiming the memory region.
1724 		 */
1725 		lockdep_assert_held(mlxbf_i2c_gpio_res->lock);
1726 
1727 		/* Check whether the memory map exist. */
1728 		if (coalesce_res->io) {
1729 			priv->coalesce = coalesce_res;
1730 			return 0;
1731 		}
1732 
1733 		params = coalesce_res->params;
1734 		size = resource_size(params);
1735 
1736 		if (!request_mem_region(params->start, size, params->name))
1737 			return -EFAULT;
1738 
1739 		coalesce_res->io = ioremap(params->start, size);
1740 		if (!coalesce_res->io) {
1741 			release_mem_region(params->start, size);
1742 			return -ENOMEM;
1743 		}
1744 
1745 		priv->coalesce = coalesce_res;
1746 
1747 	} else {
1748 		ret = mlxbf_i2c_init_resource(pdev, &priv->coalesce,
1749 					      MLXBF_I2C_COALESCE_RES);
1750 	}
1751 
1752 	return ret;
1753 }
1754 
mlxbf_i2c_release_coalesce(struct platform_device *pdev, struct mlxbf_i2c_priv *priv)1755 static int mlxbf_i2c_release_coalesce(struct platform_device *pdev,
1756 				      struct mlxbf_i2c_priv *priv)
1757 {
1758 	struct mlxbf_i2c_resource *coalesce_res;
1759 	struct device *dev = &pdev->dev;
1760 	struct resource *params;
1761 	resource_size_t size;
1762 
1763 	coalesce_res = priv->coalesce;
1764 
1765 	if (coalesce_res->io) {
1766 		params = coalesce_res->params;
1767 		size = resource_size(params);
1768 		if (mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) {
1769 			mutex_lock(coalesce_res->lock);
1770 			iounmap(coalesce_res->io);
1771 			release_mem_region(params->start, size);
1772 			mutex_unlock(coalesce_res->lock);
1773 		} else {
1774 			devm_release_mem_region(dev, params->start, size);
1775 		}
1776 	}
1777 
1778 	return 0;
1779 }
1780 
mlxbf_i2c_init_slave(struct platform_device *pdev, struct mlxbf_i2c_priv *priv)1781 static int mlxbf_i2c_init_slave(struct platform_device *pdev,
1782 				struct mlxbf_i2c_priv *priv)
1783 {
1784 	struct device *dev = &pdev->dev;
1785 	u32 int_reg;
1786 	int ret;
1787 
1788 	/* Reset FSM. */
1789 	writel(0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_FSM);
1790 
1791 	/*
1792 	 * Enable slave cause interrupt bits. Drive
1793 	 * MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE and
1794 	 * MLXBF_I2C_CAUSE_WRITE_SUCCESS, these are enabled when an external
1795 	 * masters issue a Read and Write, respectively. But, clear all
1796 	 * interrupts first.
1797 	 */
1798 	writel(~0, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
1799 	int_reg = MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE;
1800 	int_reg |= MLXBF_I2C_CAUSE_WRITE_SUCCESS;
1801 	writel(int_reg, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_EVTEN0);
1802 
1803 	/* Finally, set the 'ready' bit to start handling transactions. */
1804 	writel(0x1, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1805 
1806 	/* Initialize the cause coalesce resource. */
1807 	ret = mlxbf_i2c_init_coalesce(pdev, priv);
1808 	if (ret < 0) {
1809 		dev_err(dev, "failed to initialize cause coalesce\n");
1810 		return ret;
1811 	}
1812 
1813 	return 0;
1814 }
1815 
mlxbf_i2c_has_coalesce(struct mlxbf_i2c_priv *priv, bool *read, bool *write)1816 static bool mlxbf_i2c_has_coalesce(struct mlxbf_i2c_priv *priv, bool *read,
1817 				   bool *write)
1818 {
1819 	const struct mlxbf_i2c_chip_info *chip = priv->chip;
1820 	u32 coalesce0_reg, cause_reg;
1821 	u8 slave_shift, is_set;
1822 
1823 	*write = false;
1824 	*read = false;
1825 
1826 	slave_shift = chip->type != MLXBF_I2C_CHIP_TYPE_1 ?
1827 				MLXBF_I2C_CAUSE_YU_SLAVE_BIT :
1828 				priv->bus + MLXBF_I2C_CAUSE_TYU_SLAVE_BIT;
1829 
1830 	coalesce0_reg = readl(priv->coalesce->io + MLXBF_I2C_CAUSE_COALESCE_0);
1831 	is_set = coalesce0_reg & (1 << slave_shift);
1832 
1833 	if (!is_set)
1834 		return false;
1835 
1836 	/* Check the source of the interrupt, i.e. whether a Read or Write. */
1837 	cause_reg = readl(priv->slv_cause->io + MLXBF_I2C_CAUSE_ARBITER);
1838 	if (cause_reg & MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE)
1839 		*read = true;
1840 	else if (cause_reg & MLXBF_I2C_CAUSE_WRITE_SUCCESS)
1841 		*write = true;
1842 
1843 	/* Clear cause bits. */
1844 	writel(~0x0, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
1845 
1846 	return true;
1847 }
1848 
mlxbf_smbus_slave_wait_for_idle(struct mlxbf_i2c_priv *priv, u32 timeout)1849 static bool mlxbf_smbus_slave_wait_for_idle(struct mlxbf_i2c_priv *priv,
1850 					    u32 timeout)
1851 {
1852 	u32 mask = MLXBF_I2C_CAUSE_S_GW_BUSY_FALL;
1853 	u32 addr = MLXBF_I2C_CAUSE_ARBITER;
1854 
1855 	if (mlxbf_smbus_poll(priv->slv_cause->io, addr, mask, false, timeout))
1856 		return true;
1857 
1858 	return false;
1859 }
1860 
1861 /* Send byte to 'external' smbus master. */
mlxbf_smbus_irq_send(struct mlxbf_i2c_priv *priv, u8 recv_bytes)1862 static int mlxbf_smbus_irq_send(struct mlxbf_i2c_priv *priv, u8 recv_bytes)
1863 {
1864 	u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 };
1865 	u8 write_size, pec_en, addr, byte, value, byte_cnt, desc_size;
1866 	struct i2c_client *slave = priv->slave;
1867 	u32 control32, data32;
1868 	int ret;
1869 
1870 	if (!slave)
1871 		return -EINVAL;
1872 
1873 	addr = 0;
1874 	byte = 0;
1875 	desc_size = MLXBF_I2C_SLAVE_DATA_DESC_SIZE;
1876 
1877 	/*
1878 	 * Read bytes received from the external master. These bytes should
1879 	 * be located in the first data descriptor register of the slave GW.
1880 	 * These bytes are the slave address byte and the internal register
1881 	 * address, if supplied.
1882 	 */
1883 	if (recv_bytes > 0) {
1884 		data32 = ioread32be(priv->smbus->io +
1885 					MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1886 
1887 		/* Parse the received bytes. */
1888 		switch (recv_bytes) {
1889 		case 2:
1890 			byte = (data32 >> 8) & GENMASK(7, 0);
1891 			fallthrough;
1892 		case 1:
1893 			addr = (data32 & GENMASK(7, 0)) >> 1;
1894 		}
1895 
1896 		/* Check whether it's our slave address. */
1897 		if (slave->addr != addr)
1898 			return -EINVAL;
1899 	}
1900 
1901 	/*
1902 	 * I2C read transactions may start by a WRITE followed by a READ.
1903 	 * Indeed, most slave devices would expect the internal address
1904 	 * following the slave address byte. So, write that byte first,
1905 	 * and then, send the requested data bytes to the master.
1906 	 */
1907 	if (recv_bytes > 1) {
1908 		i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value);
1909 		value = byte;
1910 		ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED,
1911 				      &value);
1912 		i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1913 
1914 		if (ret < 0)
1915 			return ret;
1916 	}
1917 
1918 	/*
1919 	 * Now, send data to the master; currently, the driver supports
1920 	 * READ_BYTE, READ_WORD and BLOCK READ protocols. Note that the
1921 	 * hardware can send up to 128 bytes per transfer. That is the
1922 	 * size of its data registers.
1923 	 */
1924 	i2c_slave_event(slave, I2C_SLAVE_READ_REQUESTED, &value);
1925 
1926 	for (byte_cnt = 0; byte_cnt < desc_size; byte_cnt++) {
1927 		data_desc[byte_cnt] = value;
1928 		i2c_slave_event(slave, I2C_SLAVE_READ_PROCESSED, &value);
1929 	}
1930 
1931 	/* Send a stop condition to the backend. */
1932 	i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1933 
1934 	/* Handle the actual transfer. */
1935 
1936 	/* Set the number of bytes to write to master. */
1937 	write_size = (byte_cnt - 1) & 0x7f;
1938 
1939 	/* Write data to Slave GW data descriptor. */
1940 	mlxbf_i2c_smbus_write_data(priv, data_desc, byte_cnt,
1941 				   MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1942 
1943 	pec_en = 0; /* Disable PEC since it is not supported. */
1944 
1945 	/* Prepare control word. */
1946 	control32 = MLXBF_I2C_SLAVE_ENABLE;
1947 	control32 |= rol32(write_size, MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT);
1948 	control32 |= rol32(pec_en, MLXBF_I2C_SLAVE_SEND_PEC_SHIFT);
1949 
1950 	writel(control32, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_GW);
1951 
1952 	/*
1953 	 * Wait until the transfer is completed; the driver will wait
1954 	 * until the GW is idle, a cause will rise on fall of GW busy.
1955 	 */
1956 	mlxbf_smbus_slave_wait_for_idle(priv, MLXBF_I2C_SMBUS_TIMEOUT);
1957 
1958 	/* Release the Slave GW. */
1959 	writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
1960 	writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_PEC);
1961 	writel(0x1, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1962 
1963 	return 0;
1964 }
1965 
1966 /* Receive bytes from 'external' smbus master. */
mlxbf_smbus_irq_recv(struct mlxbf_i2c_priv *priv, u8 recv_bytes)1967 static int mlxbf_smbus_irq_recv(struct mlxbf_i2c_priv *priv, u8 recv_bytes)
1968 {
1969 	u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 };
1970 	struct i2c_client *slave = priv->slave;
1971 	u8 value, byte, addr;
1972 	int ret = 0;
1973 
1974 	if (!slave)
1975 		return -EINVAL;
1976 
1977 	/* Read data from Slave GW data descriptor. */
1978 	mlxbf_i2c_smbus_read_data(priv, data_desc, recv_bytes,
1979 				  MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1980 
1981 	/* Check whether its our slave address. */
1982 	addr = data_desc[0] >> 1;
1983 	if (slave->addr != addr)
1984 		return -EINVAL;
1985 
1986 	/*
1987 	 * Notify the slave backend; another I2C master wants to write data
1988 	 * to us. This event is sent once the slave address and the write bit
1989 	 * is detected.
1990 	 */
1991 	i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value);
1992 
1993 	/* Send the received data to the slave backend. */
1994 	for (byte = 1; byte < recv_bytes; byte++) {
1995 		value = data_desc[byte];
1996 		ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED,
1997 				      &value);
1998 		if (ret < 0)
1999 			break;
2000 	}
2001 
2002 	/* Send a stop condition to the backend. */
2003 	i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
2004 
2005 	/* Release the Slave GW. */
2006 	writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
2007 	writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_PEC);
2008 	writel(0x1, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_READY);
2009 
2010 	return ret;
2011 }
2012 
mlxbf_smbus_irq(int irq, void *ptr)2013 static irqreturn_t mlxbf_smbus_irq(int irq, void *ptr)
2014 {
2015 	struct mlxbf_i2c_priv *priv = ptr;
2016 	bool read, write, irq_is_set;
2017 	u32 rw_bytes_reg;
2018 	u8 recv_bytes;
2019 
2020 	/*
2021 	 * Read TYU interrupt register and determine the source of the
2022 	 * interrupt. Based on the source of the interrupt one of the
2023 	 * following actions are performed:
2024 	 *  - Receive data and send response to master.
2025 	 *  - Send data and release slave GW.
2026 	 *
2027 	 * Handle read/write transaction only. CRmaster and Iarp requests
2028 	 * are ignored for now.
2029 	 */
2030 	irq_is_set = mlxbf_i2c_has_coalesce(priv, &read, &write);
2031 	if (!irq_is_set || (!read && !write)) {
2032 		/* Nothing to do here, interrupt was not from this device. */
2033 		return IRQ_NONE;
2034 	}
2035 
2036 	/*
2037 	 * The MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES includes the number of
2038 	 * bytes from/to master. These are defined by 8-bits each. If the lower
2039 	 * 8 bits are set, then the master expect to read N bytes from the
2040 	 * slave, if the higher 8 bits are sent then the slave expect N bytes
2041 	 * from the master.
2042 	 */
2043 	rw_bytes_reg = readl(priv->smbus->io +
2044 				MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
2045 	recv_bytes = (rw_bytes_reg >> 8) & GENMASK(7, 0);
2046 
2047 	/*
2048 	 * For now, the slave supports 128 bytes transfer. Discard remaining
2049 	 * data bytes if the master wrote more than
2050 	 * MLXBF_I2C_SLAVE_DATA_DESC_SIZE, i.e, the actual size of the slave
2051 	 * data descriptor.
2052 	 *
2053 	 * Note that we will never expect to transfer more than 128 bytes; as
2054 	 * specified in the SMBus standard, block transactions cannot exceed
2055 	 * 32 bytes.
2056 	 */
2057 	recv_bytes = recv_bytes > MLXBF_I2C_SLAVE_DATA_DESC_SIZE ?
2058 		MLXBF_I2C_SLAVE_DATA_DESC_SIZE : recv_bytes;
2059 
2060 	if (read)
2061 		mlxbf_smbus_irq_send(priv, recv_bytes);
2062 	else
2063 		mlxbf_smbus_irq_recv(priv, recv_bytes);
2064 
2065 	return IRQ_HANDLED;
2066 }
2067 
2068 /* Return negative errno on error. */
mlxbf_i2c_smbus_xfer(struct i2c_adapter *adap, u16 addr, unsigned short flags, char read_write, u8 command, int size, union i2c_smbus_data *data)2069 static s32 mlxbf_i2c_smbus_xfer(struct i2c_adapter *adap, u16 addr,
2070 				unsigned short flags, char read_write,
2071 				u8 command, int size,
2072 				union i2c_smbus_data *data)
2073 {
2074 	struct mlxbf_i2c_smbus_request request = { 0 };
2075 	struct mlxbf_i2c_priv *priv;
2076 	bool read, pec;
2077 	u8 byte_cnt;
2078 
2079 	request.slave = addr;
2080 
2081 	read = (read_write == I2C_SMBUS_READ);
2082 	pec = flags & I2C_FUNC_SMBUS_PEC;
2083 
2084 	switch (size) {
2085 	case I2C_SMBUS_QUICK:
2086 		mlxbf_i2c_smbus_quick_command(&request, read);
2087 		dev_dbg(&adap->dev, "smbus quick, slave 0x%02x\n", addr);
2088 		break;
2089 
2090 	case I2C_SMBUS_BYTE:
2091 		mlxbf_i2c_smbus_byte_func(&request,
2092 					  read ? &data->byte : &command, read,
2093 					  pec);
2094 		dev_dbg(&adap->dev, "smbus %s byte, slave 0x%02x.\n",
2095 			read ? "read" : "write", addr);
2096 		break;
2097 
2098 	case I2C_SMBUS_BYTE_DATA:
2099 		mlxbf_i2c_smbus_data_byte_func(&request, &command, &data->byte,
2100 					       read, pec);
2101 		dev_dbg(&adap->dev, "smbus %s byte data at 0x%02x, slave 0x%02x.\n",
2102 			read ? "read" : "write", command, addr);
2103 		break;
2104 
2105 	case I2C_SMBUS_WORD_DATA:
2106 		mlxbf_i2c_smbus_data_word_func(&request, &command,
2107 					       (u8 *)&data->word, read, pec);
2108 		dev_dbg(&adap->dev, "smbus %s word data at 0x%02x, slave 0x%02x.\n",
2109 			read ? "read" : "write", command, addr);
2110 		break;
2111 
2112 	case I2C_SMBUS_I2C_BLOCK_DATA:
2113 		byte_cnt = data->block[0];
2114 		mlxbf_i2c_smbus_i2c_block_func(&request, &command, data->block,
2115 					       &byte_cnt, read, pec);
2116 		dev_dbg(&adap->dev, "i2c %s block data, %d bytes at 0x%02x, slave 0x%02x.\n",
2117 			read ? "read" : "write", byte_cnt, command, addr);
2118 		break;
2119 
2120 	case I2C_SMBUS_BLOCK_DATA:
2121 		byte_cnt = read ? I2C_SMBUS_BLOCK_MAX : data->block[0];
2122 		mlxbf_i2c_smbus_block_func(&request, &command, data->block,
2123 					   &byte_cnt, read, pec);
2124 		dev_dbg(&adap->dev, "smbus %s block data, %d bytes at 0x%02x, slave 0x%02x.\n",
2125 			read ? "read" : "write", byte_cnt, command, addr);
2126 		break;
2127 
2128 	case I2C_FUNC_SMBUS_PROC_CALL:
2129 		mlxbf_i2c_smbus_process_call_func(&request, &command,
2130 						  (u8 *)&data->word, pec);
2131 		dev_dbg(&adap->dev, "process call, wr/rd at 0x%02x, slave 0x%02x.\n",
2132 			command, addr);
2133 		break;
2134 
2135 	case I2C_FUNC_SMBUS_BLOCK_PROC_CALL:
2136 		byte_cnt = data->block[0];
2137 		mlxbf_i2c_smbus_blk_process_call_func(&request, &command,
2138 						      data->block, &byte_cnt,
2139 						      pec);
2140 		dev_dbg(&adap->dev, "block process call, wr/rd %d bytes, slave 0x%02x.\n",
2141 			byte_cnt, addr);
2142 		break;
2143 
2144 	default:
2145 		dev_dbg(&adap->dev, "Unsupported I2C/SMBus command %d\n",
2146 			size);
2147 		return -EOPNOTSUPP;
2148 	}
2149 
2150 	priv = i2c_get_adapdata(adap);
2151 
2152 	return mlxbf_i2c_smbus_start_transaction(priv, &request);
2153 }
2154 
mlxbf_i2c_reg_slave(struct i2c_client *slave)2155 static int mlxbf_i2c_reg_slave(struct i2c_client *slave)
2156 {
2157 	struct mlxbf_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
2158 	int ret;
2159 
2160 	if (priv->slave)
2161 		return -EBUSY;
2162 
2163 	/*
2164 	 * Do not support ten bit chip address and do not use Packet Error
2165 	 * Checking (PEC).
2166 	 */
2167 	if (slave->flags & (I2C_CLIENT_TEN | I2C_CLIENT_PEC))
2168 		return -EAFNOSUPPORT;
2169 
2170 	ret = mlxbf_slave_enable(priv, slave->addr);
2171 	if (ret < 0)
2172 		return ret;
2173 
2174 	priv->slave = slave;
2175 
2176 	return 0;
2177 }
2178 
mlxbf_i2c_unreg_slave(struct i2c_client *slave)2179 static int mlxbf_i2c_unreg_slave(struct i2c_client *slave)
2180 {
2181 	struct mlxbf_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
2182 	int ret;
2183 
2184 	WARN_ON(!priv->slave);
2185 
2186 	/* Unregister slave, i.e. disable the slave address in hardware. */
2187 	ret = mlxbf_slave_disable(priv);
2188 	if (ret < 0)
2189 		return ret;
2190 
2191 	priv->slave = NULL;
2192 
2193 	return 0;
2194 }
2195 
mlxbf_i2c_functionality(struct i2c_adapter *adap)2196 static u32 mlxbf_i2c_functionality(struct i2c_adapter *adap)
2197 {
2198 	return MLXBF_I2C_FUNC_ALL;
2199 }
2200 
2201 static struct mlxbf_i2c_chip_info mlxbf_i2c_chip[] = {
2202 	[MLXBF_I2C_CHIP_TYPE_1] = {
2203 		.type = MLXBF_I2C_CHIP_TYPE_1,
2204 		.shared_res = {
2205 			[0] = &mlxbf_i2c_coalesce_res[MLXBF_I2C_CHIP_TYPE_1],
2206 			[1] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_1],
2207 			[2] = &mlxbf_i2c_gpio_res[MLXBF_I2C_CHIP_TYPE_1]
2208 		},
2209 		.calculate_freq = mlxbf_i2c_calculate_freq_from_tyu
2210 	},
2211 	[MLXBF_I2C_CHIP_TYPE_2] = {
2212 		.type = MLXBF_I2C_CHIP_TYPE_2,
2213 		.shared_res = {
2214 			[0] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_2]
2215 		},
2216 		.calculate_freq = mlxbf_i2c_calculate_freq_from_yu
2217 	}
2218 };
2219 
2220 static const struct i2c_algorithm mlxbf_i2c_algo = {
2221 	.smbus_xfer = mlxbf_i2c_smbus_xfer,
2222 	.functionality = mlxbf_i2c_functionality,
2223 	.reg_slave = mlxbf_i2c_reg_slave,
2224 	.unreg_slave = mlxbf_i2c_unreg_slave,
2225 };
2226 
2227 static struct i2c_adapter_quirks mlxbf_i2c_quirks = {
2228 	.max_read_len = MLXBF_I2C_MASTER_DATA_R_LENGTH,
2229 	.max_write_len = MLXBF_I2C_MASTER_DATA_W_LENGTH,
2230 };
2231 
2232 static const struct of_device_id mlxbf_i2c_dt_ids[] = {
2233 	{
2234 		.compatible = "mellanox,i2c-mlxbf1",
2235 		.data = &mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_1]
2236 	},
2237 	{
2238 		.compatible = "mellanox,i2c-mlxbf2",
2239 		.data = &mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_2]
2240 	},
2241 	{},
2242 };
2243 
2244 MODULE_DEVICE_TABLE(of, mlxbf_i2c_dt_ids);
2245 
2246 #ifdef CONFIG_ACPI
2247 static const struct acpi_device_id mlxbf_i2c_acpi_ids[] = {
2248 	{ "MLNXBF03", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_1] },
2249 	{ "MLNXBF23", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_2] },
2250 	{},
2251 };
2252 
2253 MODULE_DEVICE_TABLE(acpi, mlxbf_i2c_acpi_ids);
2254 
mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv)2255 static int mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2256 {
2257 	const struct acpi_device_id *aid;
2258 	struct acpi_device *adev;
2259 	unsigned long bus_id = 0;
2260 	const char *uid;
2261 	int ret;
2262 
2263 	if (acpi_disabled)
2264 		return -ENOENT;
2265 
2266 	adev = ACPI_COMPANION(dev);
2267 	if (!adev)
2268 		return -ENXIO;
2269 
2270 	aid = acpi_match_device(mlxbf_i2c_acpi_ids, dev);
2271 	if (!aid)
2272 		return -ENODEV;
2273 
2274 	priv->chip = (struct mlxbf_i2c_chip_info *)aid->driver_data;
2275 
2276 	uid = acpi_device_uid(adev);
2277 	if (!uid || !(*uid)) {
2278 		dev_err(dev, "Cannot retrieve UID\n");
2279 		return -ENODEV;
2280 	}
2281 
2282 	ret = kstrtoul(uid, 0, &bus_id);
2283 	if (!ret)
2284 		priv->bus = bus_id;
2285 
2286 	return ret;
2287 }
2288 #else
mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv)2289 static int mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2290 {
2291 	return -ENOENT;
2292 }
2293 #endif /* CONFIG_ACPI */
2294 
mlxbf_i2c_of_probe(struct device *dev, struct mlxbf_i2c_priv *priv)2295 static int mlxbf_i2c_of_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2296 {
2297 	const struct of_device_id *oid;
2298 	int bus_id = -1;
2299 
2300 	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
2301 		oid = of_match_node(mlxbf_i2c_dt_ids, dev->of_node);
2302 		if (!oid)
2303 			return -ENODEV;
2304 
2305 		priv->chip = oid->data;
2306 
2307 		bus_id = of_alias_get_id(dev->of_node, "i2c");
2308 		if (bus_id >= 0)
2309 			priv->bus = bus_id;
2310 	}
2311 
2312 	if (bus_id < 0) {
2313 		dev_err(dev, "Cannot get bus id");
2314 		return bus_id;
2315 	}
2316 
2317 	return 0;
2318 }
2319 
mlxbf_i2c_probe(struct platform_device *pdev)2320 static int mlxbf_i2c_probe(struct platform_device *pdev)
2321 {
2322 	struct device *dev = &pdev->dev;
2323 	struct mlxbf_i2c_priv *priv;
2324 	struct i2c_adapter *adap;
2325 	int irq, ret;
2326 
2327 	priv = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_priv), GFP_KERNEL);
2328 	if (!priv)
2329 		return -ENOMEM;
2330 
2331 	ret = mlxbf_i2c_acpi_probe(dev, priv);
2332 	if (ret < 0 && ret != -ENOENT && ret != -ENXIO)
2333 		ret = mlxbf_i2c_of_probe(dev, priv);
2334 
2335 	if (ret < 0)
2336 		return ret;
2337 
2338 	ret = mlxbf_i2c_init_resource(pdev, &priv->smbus,
2339 				      MLXBF_I2C_SMBUS_RES);
2340 	if (ret < 0) {
2341 		dev_err(dev, "Cannot fetch smbus resource info");
2342 		return ret;
2343 	}
2344 
2345 	ret = mlxbf_i2c_init_resource(pdev, &priv->mst_cause,
2346 				      MLXBF_I2C_MST_CAUSE_RES);
2347 	if (ret < 0) {
2348 		dev_err(dev, "Cannot fetch cause master resource info");
2349 		return ret;
2350 	}
2351 
2352 	ret = mlxbf_i2c_init_resource(pdev, &priv->slv_cause,
2353 				      MLXBF_I2C_SLV_CAUSE_RES);
2354 	if (ret < 0) {
2355 		dev_err(dev, "Cannot fetch cause slave resource info");
2356 		return ret;
2357 	}
2358 
2359 	adap = &priv->adap;
2360 	adap->owner = THIS_MODULE;
2361 	adap->class = I2C_CLASS_HWMON;
2362 	adap->algo = &mlxbf_i2c_algo;
2363 	adap->quirks = &mlxbf_i2c_quirks;
2364 	adap->dev.parent = dev;
2365 	adap->dev.of_node = dev->of_node;
2366 	adap->nr = priv->bus;
2367 
2368 	snprintf(adap->name, sizeof(adap->name), "i2c%d", adap->nr);
2369 	i2c_set_adapdata(adap, priv);
2370 
2371 	/* Read Core PLL frequency. */
2372 	ret = mlxbf_i2c_calculate_corepll_freq(pdev, priv);
2373 	if (ret < 0) {
2374 		dev_err(dev, "cannot get core clock frequency\n");
2375 		/* Set to default value. */
2376 		priv->frequency = MLXBF_I2C_COREPLL_FREQ;
2377 	}
2378 
2379 	/*
2380 	 * Initialize master.
2381 	 * Note that a physical bus might be shared among Linux and firmware
2382 	 * (e.g., ATF). Thus, the bus should be initialized and ready and
2383 	 * bus initialization would be unnecessary. This requires additional
2384 	 * knowledge about physical busses. But, since an extra initialization
2385 	 * does not really hurt, then keep the code as is.
2386 	 */
2387 	ret = mlxbf_i2c_init_master(pdev, priv);
2388 	if (ret < 0) {
2389 		dev_err(dev, "failed to initialize smbus master %d",
2390 			priv->bus);
2391 		return ret;
2392 	}
2393 
2394 	mlxbf_i2c_init_timings(pdev, priv);
2395 
2396 	mlxbf_i2c_init_slave(pdev, priv);
2397 
2398 	irq = platform_get_irq(pdev, 0);
2399 	if (irq < 0)
2400 		return irq;
2401 	ret = devm_request_irq(dev, irq, mlxbf_smbus_irq,
2402 			       IRQF_ONESHOT | IRQF_SHARED | IRQF_PROBE_SHARED,
2403 			       dev_name(dev), priv);
2404 	if (ret < 0) {
2405 		dev_err(dev, "Cannot get irq %d\n", irq);
2406 		return ret;
2407 	}
2408 
2409 	priv->irq = irq;
2410 
2411 	platform_set_drvdata(pdev, priv);
2412 
2413 	ret = i2c_add_numbered_adapter(adap);
2414 	if (ret < 0)
2415 		return ret;
2416 
2417 	mutex_lock(&mlxbf_i2c_bus_lock);
2418 	mlxbf_i2c_bus_count++;
2419 	mutex_unlock(&mlxbf_i2c_bus_lock);
2420 
2421 	return 0;
2422 }
2423 
mlxbf_i2c_remove(struct platform_device *pdev)2424 static int mlxbf_i2c_remove(struct platform_device *pdev)
2425 {
2426 	struct mlxbf_i2c_priv *priv = platform_get_drvdata(pdev);
2427 	struct device *dev = &pdev->dev;
2428 	struct resource *params;
2429 
2430 	params = priv->smbus->params;
2431 	devm_release_mem_region(dev, params->start, resource_size(params));
2432 
2433 	params = priv->mst_cause->params;
2434 	devm_release_mem_region(dev, params->start, resource_size(params));
2435 
2436 	params = priv->slv_cause->params;
2437 	devm_release_mem_region(dev, params->start, resource_size(params));
2438 
2439 	/*
2440 	 * Release shared resources. This should be done when releasing
2441 	 * the I2C controller.
2442 	 */
2443 	mutex_lock(&mlxbf_i2c_bus_lock);
2444 	if (--mlxbf_i2c_bus_count == 0) {
2445 		mlxbf_i2c_release_coalesce(pdev, priv);
2446 		mlxbf_i2c_release_corepll(pdev, priv);
2447 		mlxbf_i2c_release_gpio(pdev, priv);
2448 	}
2449 	mutex_unlock(&mlxbf_i2c_bus_lock);
2450 
2451 	devm_free_irq(dev, priv->irq, priv);
2452 
2453 	i2c_del_adapter(&priv->adap);
2454 
2455 	return 0;
2456 }
2457 
2458 static struct platform_driver mlxbf_i2c_driver = {
2459 	.probe = mlxbf_i2c_probe,
2460 	.remove = mlxbf_i2c_remove,
2461 	.driver = {
2462 		.name = "i2c-mlxbf",
2463 		.of_match_table = mlxbf_i2c_dt_ids,
2464 #ifdef CONFIG_ACPI
2465 		.acpi_match_table = ACPI_PTR(mlxbf_i2c_acpi_ids),
2466 #endif /* CONFIG_ACPI  */
2467 	},
2468 };
2469 
mlxbf_i2c_init(void)2470 static int __init mlxbf_i2c_init(void)
2471 {
2472 	mutex_init(&mlxbf_i2c_coalesce_lock);
2473 	mutex_init(&mlxbf_i2c_corepll_lock);
2474 	mutex_init(&mlxbf_i2c_gpio_lock);
2475 
2476 	mutex_init(&mlxbf_i2c_bus_lock);
2477 
2478 	return platform_driver_register(&mlxbf_i2c_driver);
2479 }
2480 module_init(mlxbf_i2c_init);
2481 
mlxbf_i2c_exit(void)2482 static void __exit mlxbf_i2c_exit(void)
2483 {
2484 	platform_driver_unregister(&mlxbf_i2c_driver);
2485 
2486 	mutex_destroy(&mlxbf_i2c_bus_lock);
2487 
2488 	mutex_destroy(&mlxbf_i2c_gpio_lock);
2489 	mutex_destroy(&mlxbf_i2c_corepll_lock);
2490 	mutex_destroy(&mlxbf_i2c_coalesce_lock);
2491 }
2492 module_exit(mlxbf_i2c_exit);
2493 
2494 MODULE_DESCRIPTION("Mellanox BlueField I2C bus driver");
2495 MODULE_AUTHOR("Khalil Blaiech <kblaiech@nvidia.com>");
2496 MODULE_LICENSE("GPL v2");
2497