1 /*
2  * Copyright (C) 2014 Broadcom Corporation
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License as
6  * published by the Free Software Foundation version 2.
7  *
8  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
9  * kind, whether express or implied; without even the implied warranty
10  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13 
14 #include <linux/delay.h>
15 #include <linux/i2c.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
23 
24 #define IDM_CTRL_DIRECT_OFFSET       0x00
25 #define CFG_OFFSET                   0x00
26 #define CFG_RESET_SHIFT              31
27 #define CFG_EN_SHIFT                 30
28 #define CFG_SLAVE_ADDR_0_SHIFT       28
29 #define CFG_M_RETRY_CNT_SHIFT        16
30 #define CFG_M_RETRY_CNT_MASK         0x0f
31 
32 #define TIM_CFG_OFFSET               0x04
33 #define TIM_CFG_MODE_400_SHIFT       31
34 #define TIM_RAND_SLAVE_STRETCH_SHIFT      24
35 #define TIM_RAND_SLAVE_STRETCH_MASK       0x7f
36 #define TIM_PERIODIC_SLAVE_STRETCH_SHIFT  16
37 #define TIM_PERIODIC_SLAVE_STRETCH_MASK   0x7f
38 
39 #define S_CFG_SMBUS_ADDR_OFFSET           0x08
40 #define S_CFG_EN_NIC_SMB_ADDR3_SHIFT      31
41 #define S_CFG_NIC_SMB_ADDR3_SHIFT         24
42 #define S_CFG_NIC_SMB_ADDR3_MASK          0x7f
43 #define S_CFG_EN_NIC_SMB_ADDR2_SHIFT      23
44 #define S_CFG_NIC_SMB_ADDR2_SHIFT         16
45 #define S_CFG_NIC_SMB_ADDR2_MASK          0x7f
46 #define S_CFG_EN_NIC_SMB_ADDR1_SHIFT      15
47 #define S_CFG_NIC_SMB_ADDR1_SHIFT         8
48 #define S_CFG_NIC_SMB_ADDR1_MASK          0x7f
49 #define S_CFG_EN_NIC_SMB_ADDR0_SHIFT      7
50 #define S_CFG_NIC_SMB_ADDR0_SHIFT         0
51 #define S_CFG_NIC_SMB_ADDR0_MASK          0x7f
52 
53 #define M_FIFO_CTRL_OFFSET           0x0c
54 #define M_FIFO_RX_FLUSH_SHIFT        31
55 #define M_FIFO_TX_FLUSH_SHIFT        30
56 #define M_FIFO_RX_CNT_SHIFT          16
57 #define M_FIFO_RX_CNT_MASK           0x7f
58 #define M_FIFO_RX_THLD_SHIFT         8
59 #define M_FIFO_RX_THLD_MASK          0x3f
60 
61 #define S_FIFO_CTRL_OFFSET           0x10
62 #define S_FIFO_RX_FLUSH_SHIFT        31
63 #define S_FIFO_TX_FLUSH_SHIFT        30
64 #define S_FIFO_RX_CNT_SHIFT          16
65 #define S_FIFO_RX_CNT_MASK           0x7f
66 #define S_FIFO_RX_THLD_SHIFT         8
67 #define S_FIFO_RX_THLD_MASK          0x3f
68 
69 #define M_CMD_OFFSET                 0x30
70 #define M_CMD_START_BUSY_SHIFT       31
71 #define M_CMD_STATUS_SHIFT           25
72 #define M_CMD_STATUS_MASK            0x07
73 #define M_CMD_STATUS_SUCCESS         0x0
74 #define M_CMD_STATUS_LOST_ARB        0x1
75 #define M_CMD_STATUS_NACK_ADDR       0x2
76 #define M_CMD_STATUS_NACK_DATA       0x3
77 #define M_CMD_STATUS_TIMEOUT         0x4
78 #define M_CMD_STATUS_FIFO_UNDERRUN   0x5
79 #define M_CMD_STATUS_RX_FIFO_FULL    0x6
80 #define M_CMD_PROTOCOL_SHIFT         9
81 #define M_CMD_PROTOCOL_MASK          0xf
82 #define M_CMD_PROTOCOL_QUICK         0x0
83 #define M_CMD_PROTOCOL_BLK_WR        0x7
84 #define M_CMD_PROTOCOL_BLK_RD        0x8
85 #define M_CMD_PROTOCOL_PROCESS       0xa
86 #define M_CMD_PEC_SHIFT              8
87 #define M_CMD_RD_CNT_SHIFT           0
88 #define M_CMD_RD_CNT_MASK            0xff
89 
90 #define S_CMD_OFFSET                 0x34
91 #define S_CMD_START_BUSY_SHIFT       31
92 #define S_CMD_STATUS_SHIFT           23
93 #define S_CMD_STATUS_MASK            0x07
94 #define S_CMD_STATUS_SUCCESS         0x0
95 #define S_CMD_STATUS_TIMEOUT         0x5
96 
97 #define IE_OFFSET                    0x38
98 #define IE_M_RX_FIFO_FULL_SHIFT      31
99 #define IE_M_RX_THLD_SHIFT           30
100 #define IE_M_START_BUSY_SHIFT        28
101 #define IE_M_TX_UNDERRUN_SHIFT       27
102 #define IE_S_RX_FIFO_FULL_SHIFT      26
103 #define IE_S_RX_THLD_SHIFT           25
104 #define IE_S_RX_EVENT_SHIFT          24
105 #define IE_S_START_BUSY_SHIFT        23
106 #define IE_S_TX_UNDERRUN_SHIFT       22
107 #define IE_S_RD_EVENT_SHIFT          21
108 
109 #define IS_OFFSET                    0x3c
110 #define IS_M_RX_FIFO_FULL_SHIFT      31
111 #define IS_M_RX_THLD_SHIFT           30
112 #define IS_M_START_BUSY_SHIFT        28
113 #define IS_M_TX_UNDERRUN_SHIFT       27
114 #define IS_S_RX_FIFO_FULL_SHIFT      26
115 #define IS_S_RX_THLD_SHIFT           25
116 #define IS_S_RX_EVENT_SHIFT          24
117 #define IS_S_START_BUSY_SHIFT        23
118 #define IS_S_TX_UNDERRUN_SHIFT       22
119 #define IS_S_RD_EVENT_SHIFT          21
120 
121 #define M_TX_OFFSET                  0x40
122 #define M_TX_WR_STATUS_SHIFT         31
123 #define M_TX_DATA_SHIFT              0
124 #define M_TX_DATA_MASK               0xff
125 
126 #define M_RX_OFFSET                  0x44
127 #define M_RX_STATUS_SHIFT            30
128 #define M_RX_STATUS_MASK             0x03
129 #define M_RX_PEC_ERR_SHIFT           29
130 #define M_RX_DATA_SHIFT              0
131 #define M_RX_DATA_MASK               0xff
132 
133 #define S_TX_OFFSET                  0x48
134 #define S_TX_WR_STATUS_SHIFT         31
135 #define S_TX_DATA_SHIFT              0
136 #define S_TX_DATA_MASK               0xff
137 
138 #define S_RX_OFFSET                  0x4c
139 #define S_RX_STATUS_SHIFT            30
140 #define S_RX_STATUS_MASK             0x03
141 #define S_RX_PEC_ERR_SHIFT           29
142 #define S_RX_DATA_SHIFT              0
143 #define S_RX_DATA_MASK               0xff
144 
145 #define I2C_TIMEOUT_MSEC             50000
146 #define M_TX_RX_FIFO_SIZE            64
147 #define M_RX_FIFO_MAX_THLD_VALUE     (M_TX_RX_FIFO_SIZE - 1)
148 
149 #define M_RX_MAX_READ_LEN            255
150 #define M_RX_FIFO_THLD_VALUE         50
151 
152 #define IE_M_ALL_INTERRUPT_SHIFT     27
153 #define IE_M_ALL_INTERRUPT_MASK      0x1e
154 
155 #define SLAVE_READ_WRITE_BIT_MASK    0x1
156 #define SLAVE_READ_WRITE_BIT_SHIFT   0x1
157 #define SLAVE_MAX_SIZE_TRANSACTION   64
158 #define SLAVE_CLOCK_STRETCH_TIME     25
159 
160 #define IE_S_ALL_INTERRUPT_SHIFT     21
161 #define IE_S_ALL_INTERRUPT_MASK      0x3f
162 /*
163  * It takes ~18us to reading 10bytes of data, hence to keep tasklet
164  * running for less time, max slave read per tasklet is set to 10 bytes.
165  */
166 #define MAX_SLAVE_RX_PER_INT         10
167 
168 enum i2c_slave_read_status {
169 	I2C_SLAVE_RX_FIFO_EMPTY = 0,
170 	I2C_SLAVE_RX_START,
171 	I2C_SLAVE_RX_DATA,
172 	I2C_SLAVE_RX_END,
173 };
174 
175 enum bus_speed_index {
176 	I2C_SPD_100K = 0,
177 	I2C_SPD_400K,
178 };
179 
180 enum bcm_iproc_i2c_type {
181 	IPROC_I2C,
182 	IPROC_I2C_NIC
183 };
184 
185 struct bcm_iproc_i2c_dev {
186 	struct device *device;
187 	enum bcm_iproc_i2c_type type;
188 	int irq;
189 
190 	void __iomem *base;
191 	void __iomem *idm_base;
192 
193 	u32 ape_addr_mask;
194 
195 	/* lock for indirect access through IDM */
196 	spinlock_t idm_lock;
197 
198 	struct i2c_adapter adapter;
199 	unsigned int bus_speed;
200 
201 	struct completion done;
202 	int xfer_is_done;
203 
204 	struct i2c_msg *msg;
205 
206 	struct i2c_client *slave;
207 
208 	/* bytes that have been transferred */
209 	unsigned int tx_bytes;
210 	/* bytes that have been read */
211 	unsigned int rx_bytes;
212 	unsigned int thld_bytes;
213 
214 	bool slave_rx_only;
215 	bool rx_start_rcvd;
216 	bool slave_read_complete;
217 	u32 tx_underrun;
218 	u32 slave_int_mask;
219 	struct tasklet_struct slave_rx_tasklet;
220 };
221 
222 /* tasklet to process slave rx data */
223 static void slave_rx_tasklet_fn(unsigned long);
224 
225 /*
226  * Can be expanded in the future if more interrupt status bits are utilized
227  */
228 #define ISR_MASK (BIT(IS_M_START_BUSY_SHIFT) | BIT(IS_M_TX_UNDERRUN_SHIFT)\
229 		| BIT(IS_M_RX_THLD_SHIFT))
230 
231 #define ISR_MASK_SLAVE (BIT(IS_S_START_BUSY_SHIFT)\
232 		| BIT(IS_S_RX_EVENT_SHIFT) | BIT(IS_S_RD_EVENT_SHIFT)\
233 		| BIT(IS_S_TX_UNDERRUN_SHIFT) | BIT(IS_S_RX_FIFO_FULL_SHIFT)\
234 		| BIT(IS_S_RX_THLD_SHIFT))
235 
236 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave);
237 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave);
238 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
239 					 bool enable);
240 
iproc_i2c_rd_reg(struct bcm_iproc_i2c_dev *iproc_i2c, u32 offset)241 static inline u32 iproc_i2c_rd_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
242 				   u32 offset)
243 {
244 	u32 val;
245 	unsigned long flags;
246 
247 	if (iproc_i2c->idm_base) {
248 		spin_lock_irqsave(&iproc_i2c->idm_lock, flags);
249 		writel(iproc_i2c->ape_addr_mask,
250 		       iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
251 		val = readl(iproc_i2c->base + offset);
252 		spin_unlock_irqrestore(&iproc_i2c->idm_lock, flags);
253 	} else {
254 		val = readl(iproc_i2c->base + offset);
255 	}
256 
257 	return val;
258 }
259 
iproc_i2c_wr_reg(struct bcm_iproc_i2c_dev *iproc_i2c, u32 offset, u32 val)260 static inline void iproc_i2c_wr_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
261 				    u32 offset, u32 val)
262 {
263 	unsigned long flags;
264 
265 	if (iproc_i2c->idm_base) {
266 		spin_lock_irqsave(&iproc_i2c->idm_lock, flags);
267 		writel(iproc_i2c->ape_addr_mask,
268 		       iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
269 		writel(val, iproc_i2c->base + offset);
270 		spin_unlock_irqrestore(&iproc_i2c->idm_lock, flags);
271 	} else {
272 		writel(val, iproc_i2c->base + offset);
273 	}
274 }
275 
bcm_iproc_i2c_slave_init( struct bcm_iproc_i2c_dev *iproc_i2c, bool need_reset)276 static void bcm_iproc_i2c_slave_init(
277 	struct bcm_iproc_i2c_dev *iproc_i2c, bool need_reset)
278 {
279 	u32 val;
280 
281 	iproc_i2c->tx_underrun = 0;
282 	if (need_reset) {
283 		/* put controller in reset */
284 		val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
285 		val |= BIT(CFG_RESET_SHIFT);
286 		iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
287 
288 		/* wait 100 usec per spec */
289 		udelay(100);
290 
291 		/* bring controller out of reset */
292 		val &= ~(BIT(CFG_RESET_SHIFT));
293 		iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
294 	}
295 
296 	/* flush TX/RX FIFOs */
297 	val = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
298 	iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
299 
300 	/* Maximum slave stretch time */
301 	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
302 	val &= ~(TIM_RAND_SLAVE_STRETCH_MASK << TIM_RAND_SLAVE_STRETCH_SHIFT);
303 	val |= (SLAVE_CLOCK_STRETCH_TIME << TIM_RAND_SLAVE_STRETCH_SHIFT);
304 	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
305 
306 	/* Configure the slave address */
307 	val = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
308 	val |= BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
309 	val &= ~(S_CFG_NIC_SMB_ADDR3_MASK << S_CFG_NIC_SMB_ADDR3_SHIFT);
310 	val |= (iproc_i2c->slave->addr << S_CFG_NIC_SMB_ADDR3_SHIFT);
311 	iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, val);
312 
313 	/* clear all pending slave interrupts */
314 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
315 
316 	/* Enable interrupt register to indicate a valid byte in receive fifo */
317 	val = BIT(IE_S_RX_EVENT_SHIFT);
318 	/* Enable interrupt register to indicate a Master read transaction */
319 	val |= BIT(IE_S_RD_EVENT_SHIFT);
320 	/* Enable interrupt register for the Slave BUSY command */
321 	val |= BIT(IE_S_START_BUSY_SHIFT);
322 	iproc_i2c->slave_int_mask = val;
323 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
324 }
325 
bcm_iproc_i2c_check_slave_status( struct bcm_iproc_i2c_dev *iproc_i2c)326 static void bcm_iproc_i2c_check_slave_status(
327 	struct bcm_iproc_i2c_dev *iproc_i2c)
328 {
329 	u32 val;
330 
331 	val = iproc_i2c_rd_reg(iproc_i2c, S_CMD_OFFSET);
332 	/* status is valid only when START_BUSY is cleared after it was set */
333 	if (val & BIT(S_CMD_START_BUSY_SHIFT))
334 		return;
335 
336 	val = (val >> S_CMD_STATUS_SHIFT) & S_CMD_STATUS_MASK;
337 	if (val == S_CMD_STATUS_TIMEOUT) {
338 		dev_err(iproc_i2c->device, "slave random stretch time timeout\n");
339 
340 		/* re-initialize i2c for recovery */
341 		bcm_iproc_i2c_enable_disable(iproc_i2c, false);
342 		bcm_iproc_i2c_slave_init(iproc_i2c, true);
343 		bcm_iproc_i2c_enable_disable(iproc_i2c, true);
344 	}
345 }
346 
bcm_iproc_i2c_slave_read(struct bcm_iproc_i2c_dev *iproc_i2c)347 static void bcm_iproc_i2c_slave_read(struct bcm_iproc_i2c_dev *iproc_i2c)
348 {
349 	u8 rx_data, rx_status;
350 	u32 rx_bytes = 0;
351 	u32 val;
352 
353 	while (rx_bytes < MAX_SLAVE_RX_PER_INT) {
354 		val = iproc_i2c_rd_reg(iproc_i2c, S_RX_OFFSET);
355 		rx_status = (val >> S_RX_STATUS_SHIFT) & S_RX_STATUS_MASK;
356 		rx_data = ((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK);
357 
358 		if (rx_status == I2C_SLAVE_RX_START) {
359 			/* Start of SMBUS Master write */
360 			i2c_slave_event(iproc_i2c->slave,
361 					I2C_SLAVE_WRITE_REQUESTED, &rx_data);
362 			iproc_i2c->rx_start_rcvd = true;
363 			iproc_i2c->slave_read_complete = false;
364 		} else if (rx_status == I2C_SLAVE_RX_DATA &&
365 			   iproc_i2c->rx_start_rcvd) {
366 			/* Middle of SMBUS Master write */
367 			i2c_slave_event(iproc_i2c->slave,
368 					I2C_SLAVE_WRITE_RECEIVED, &rx_data);
369 		} else if (rx_status == I2C_SLAVE_RX_END &&
370 			   iproc_i2c->rx_start_rcvd) {
371 			/* End of SMBUS Master write */
372 			if (iproc_i2c->slave_rx_only)
373 				i2c_slave_event(iproc_i2c->slave,
374 						I2C_SLAVE_WRITE_RECEIVED,
375 						&rx_data);
376 
377 			i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP,
378 					&rx_data);
379 		} else if (rx_status == I2C_SLAVE_RX_FIFO_EMPTY) {
380 			iproc_i2c->rx_start_rcvd = false;
381 			iproc_i2c->slave_read_complete = true;
382 			break;
383 		}
384 
385 		rx_bytes++;
386 	}
387 }
388 
slave_rx_tasklet_fn(unsigned long data)389 static void slave_rx_tasklet_fn(unsigned long data)
390 {
391 	struct bcm_iproc_i2c_dev *iproc_i2c = (struct bcm_iproc_i2c_dev *)data;
392 	u32 int_clr;
393 
394 	bcm_iproc_i2c_slave_read(iproc_i2c);
395 
396 	/* clear pending IS_S_RX_EVENT_SHIFT interrupt */
397 	int_clr = BIT(IS_S_RX_EVENT_SHIFT);
398 
399 	if (!iproc_i2c->slave_rx_only && iproc_i2c->slave_read_complete) {
400 		/*
401 		 * In case of single byte master-read request,
402 		 * IS_S_TX_UNDERRUN_SHIFT event is generated before
403 		 * IS_S_START_BUSY_SHIFT event. Hence start slave data send
404 		 * from first IS_S_TX_UNDERRUN_SHIFT event.
405 		 *
406 		 * This means don't send any data from slave when
407 		 * IS_S_RD_EVENT_SHIFT event is generated else it will increment
408 		 * eeprom or other backend slave driver read pointer twice.
409 		 */
410 		iproc_i2c->tx_underrun = 0;
411 		iproc_i2c->slave_int_mask |= BIT(IE_S_TX_UNDERRUN_SHIFT);
412 
413 		/* clear IS_S_RD_EVENT_SHIFT interrupt */
414 		int_clr |= BIT(IS_S_RD_EVENT_SHIFT);
415 	}
416 
417 	/* clear slave interrupt */
418 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, int_clr);
419 	/* enable slave interrupts */
420 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, iproc_i2c->slave_int_mask);
421 }
422 
bcm_iproc_i2c_slave_isr(struct bcm_iproc_i2c_dev *iproc_i2c, u32 status)423 static bool bcm_iproc_i2c_slave_isr(struct bcm_iproc_i2c_dev *iproc_i2c,
424 				    u32 status)
425 {
426 	u32 val;
427 	u8 value;
428 
429 	/*
430 	 * Slave events in case of master-write, master-write-read and,
431 	 * master-read
432 	 *
433 	 * Master-write     : only IS_S_RX_EVENT_SHIFT event
434 	 * Master-write-read: both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
435 	 *                    events
436 	 * Master-read      : both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
437 	 *                    events or only IS_S_RD_EVENT_SHIFT
438 	 */
439 	if (status & BIT(IS_S_RX_EVENT_SHIFT) ||
440 	    status & BIT(IS_S_RD_EVENT_SHIFT)) {
441 		/* disable slave interrupts */
442 		val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
443 		val &= ~iproc_i2c->slave_int_mask;
444 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
445 
446 		if (status & BIT(IS_S_RD_EVENT_SHIFT))
447 			/* Master-write-read request */
448 			iproc_i2c->slave_rx_only = false;
449 		else
450 			/* Master-write request only */
451 			iproc_i2c->slave_rx_only = true;
452 
453 		/* schedule tasklet to read data later */
454 		tasklet_schedule(&iproc_i2c->slave_rx_tasklet);
455 
456 		/* clear only IS_S_RX_EVENT_SHIFT interrupt */
457 		iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
458 				 BIT(IS_S_RX_EVENT_SHIFT));
459 	}
460 
461 	if (status & BIT(IS_S_TX_UNDERRUN_SHIFT)) {
462 		iproc_i2c->tx_underrun++;
463 		if (iproc_i2c->tx_underrun == 1)
464 			/* Start of SMBUS for Master Read */
465 			i2c_slave_event(iproc_i2c->slave,
466 					I2C_SLAVE_READ_REQUESTED,
467 					&value);
468 		else
469 			/* Master read other than start */
470 			i2c_slave_event(iproc_i2c->slave,
471 					I2C_SLAVE_READ_PROCESSED,
472 					&value);
473 
474 		iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, value);
475 		/* start transfer */
476 		val = BIT(S_CMD_START_BUSY_SHIFT);
477 		iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
478 
479 		/* clear interrupt */
480 		iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
481 				 BIT(IS_S_TX_UNDERRUN_SHIFT));
482 	}
483 
484 	/* Stop received from master in case of master read transaction */
485 	if (status & BIT(IS_S_START_BUSY_SHIFT)) {
486 		/*
487 		 * Enable interrupt for TX FIFO becomes empty and
488 		 * less than PKT_LENGTH bytes were output on the SMBUS
489 		 */
490 		iproc_i2c->slave_int_mask &= ~BIT(IE_S_TX_UNDERRUN_SHIFT);
491 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
492 				 iproc_i2c->slave_int_mask);
493 
494 		/* End of SMBUS for Master Read */
495 		val = BIT(S_TX_WR_STATUS_SHIFT);
496 		iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, val);
497 
498 		val = BIT(S_CMD_START_BUSY_SHIFT);
499 		iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
500 
501 		/* flush TX FIFOs */
502 		val = iproc_i2c_rd_reg(iproc_i2c, S_FIFO_CTRL_OFFSET);
503 		val |= (BIT(S_FIFO_TX_FLUSH_SHIFT));
504 		iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
505 
506 		i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP, &value);
507 
508 		/* clear interrupt */
509 		iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
510 				 BIT(IS_S_START_BUSY_SHIFT));
511 	}
512 
513 	/* check slave transmit status only if slave is transmitting */
514 	if (!iproc_i2c->slave_rx_only)
515 		bcm_iproc_i2c_check_slave_status(iproc_i2c);
516 
517 	return true;
518 }
519 
bcm_iproc_i2c_read_valid_bytes(struct bcm_iproc_i2c_dev *iproc_i2c)520 static void bcm_iproc_i2c_read_valid_bytes(struct bcm_iproc_i2c_dev *iproc_i2c)
521 {
522 	struct i2c_msg *msg = iproc_i2c->msg;
523 	uint32_t val;
524 
525 	/* Read valid data from RX FIFO */
526 	while (iproc_i2c->rx_bytes < msg->len) {
527 		val = iproc_i2c_rd_reg(iproc_i2c, M_RX_OFFSET);
528 
529 		/* rx fifo empty */
530 		if (!((val >> M_RX_STATUS_SHIFT) & M_RX_STATUS_MASK))
531 			break;
532 
533 		msg->buf[iproc_i2c->rx_bytes] =
534 			(val >> M_RX_DATA_SHIFT) & M_RX_DATA_MASK;
535 		iproc_i2c->rx_bytes++;
536 	}
537 }
538 
bcm_iproc_i2c_send(struct bcm_iproc_i2c_dev *iproc_i2c)539 static void bcm_iproc_i2c_send(struct bcm_iproc_i2c_dev *iproc_i2c)
540 {
541 	struct i2c_msg *msg = iproc_i2c->msg;
542 	unsigned int tx_bytes = msg->len - iproc_i2c->tx_bytes;
543 	unsigned int i;
544 	u32 val;
545 
546 	/* can only fill up to the FIFO size */
547 	tx_bytes = min_t(unsigned int, tx_bytes, M_TX_RX_FIFO_SIZE);
548 	for (i = 0; i < tx_bytes; i++) {
549 		/* start from where we left over */
550 		unsigned int idx = iproc_i2c->tx_bytes + i;
551 
552 		val = msg->buf[idx];
553 
554 		/* mark the last byte */
555 		if (idx == msg->len - 1) {
556 			val |= BIT(M_TX_WR_STATUS_SHIFT);
557 
558 			if (iproc_i2c->irq) {
559 				u32 tmp;
560 
561 				/*
562 				 * Since this is the last byte, we should now
563 				 * disable TX FIFO underrun interrupt
564 				 */
565 				tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
566 				tmp &= ~BIT(IE_M_TX_UNDERRUN_SHIFT);
567 				iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
568 						 tmp);
569 			}
570 		}
571 
572 		/* load data into TX FIFO */
573 		iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
574 	}
575 
576 	/* update number of transferred bytes */
577 	iproc_i2c->tx_bytes += tx_bytes;
578 }
579 
bcm_iproc_i2c_read(struct bcm_iproc_i2c_dev *iproc_i2c)580 static void bcm_iproc_i2c_read(struct bcm_iproc_i2c_dev *iproc_i2c)
581 {
582 	struct i2c_msg *msg = iproc_i2c->msg;
583 	u32 bytes_left, val;
584 
585 	bcm_iproc_i2c_read_valid_bytes(iproc_i2c);
586 	bytes_left = msg->len - iproc_i2c->rx_bytes;
587 	if (bytes_left == 0) {
588 		if (iproc_i2c->irq) {
589 			/* finished reading all data, disable rx thld event */
590 			val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
591 			val &= ~BIT(IS_M_RX_THLD_SHIFT);
592 			iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
593 		}
594 	} else if (bytes_left < iproc_i2c->thld_bytes) {
595 		/* set bytes left as threshold */
596 		val = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
597 		val &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
598 		val |= (bytes_left << M_FIFO_RX_THLD_SHIFT);
599 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
600 		iproc_i2c->thld_bytes = bytes_left;
601 	}
602 	/*
603 	 * bytes_left >= iproc_i2c->thld_bytes,
604 	 * hence no need to change the THRESHOLD SET.
605 	 * It will remain as iproc_i2c->thld_bytes itself
606 	 */
607 }
608 
bcm_iproc_i2c_process_m_event(struct bcm_iproc_i2c_dev *iproc_i2c, u32 status)609 static void bcm_iproc_i2c_process_m_event(struct bcm_iproc_i2c_dev *iproc_i2c,
610 					  u32 status)
611 {
612 	/* TX FIFO is empty and we have more data to send */
613 	if (status & BIT(IS_M_TX_UNDERRUN_SHIFT))
614 		bcm_iproc_i2c_send(iproc_i2c);
615 
616 	/* RX FIFO threshold is reached and data needs to be read out */
617 	if (status & BIT(IS_M_RX_THLD_SHIFT))
618 		bcm_iproc_i2c_read(iproc_i2c);
619 
620 	/* transfer is done */
621 	if (status & BIT(IS_M_START_BUSY_SHIFT)) {
622 		iproc_i2c->xfer_is_done = 1;
623 		if (iproc_i2c->irq)
624 			complete(&iproc_i2c->done);
625 	}
626 }
627 
bcm_iproc_i2c_isr(int irq, void *data)628 static irqreturn_t bcm_iproc_i2c_isr(int irq, void *data)
629 {
630 	struct bcm_iproc_i2c_dev *iproc_i2c = data;
631 	u32 slave_status;
632 	u32 status;
633 	bool ret;
634 
635 	status = iproc_i2c_rd_reg(iproc_i2c, IS_OFFSET);
636 	/* process only slave interrupt which are enabled */
637 	slave_status = status & iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET) &
638 		       ISR_MASK_SLAVE;
639 
640 	if (slave_status) {
641 		ret = bcm_iproc_i2c_slave_isr(iproc_i2c, slave_status);
642 		if (ret)
643 			return IRQ_HANDLED;
644 		else
645 			return IRQ_NONE;
646 	}
647 
648 	status &= ISR_MASK;
649 	if (!status)
650 		return IRQ_NONE;
651 
652 	/* process all master based events */
653 	bcm_iproc_i2c_process_m_event(iproc_i2c, status);
654 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
655 
656 	return IRQ_HANDLED;
657 }
658 
bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev *iproc_i2c)659 static int bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev *iproc_i2c)
660 {
661 	u32 val;
662 
663 	/* put controller in reset */
664 	val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
665 	val |= BIT(CFG_RESET_SHIFT);
666 	val &= ~(BIT(CFG_EN_SHIFT));
667 	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
668 
669 	/* wait 100 usec per spec */
670 	udelay(100);
671 
672 	/* bring controller out of reset */
673 	val &= ~(BIT(CFG_RESET_SHIFT));
674 	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
675 
676 	/* flush TX/RX FIFOs and set RX FIFO threshold to zero */
677 	val = (BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT));
678 	iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
679 	/* disable all interrupts */
680 	val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
681 	val &= ~(IE_M_ALL_INTERRUPT_MASK <<
682 			IE_M_ALL_INTERRUPT_SHIFT);
683 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
684 
685 	/* clear all pending interrupts */
686 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, 0xffffffff);
687 
688 	return 0;
689 }
690 
bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c, bool enable)691 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
692 					 bool enable)
693 {
694 	u32 val;
695 
696 	val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
697 	if (enable)
698 		val |= BIT(CFG_EN_SHIFT);
699 	else
700 		val &= ~BIT(CFG_EN_SHIFT);
701 	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
702 }
703 
bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev *iproc_i2c, struct i2c_msg *msg)704 static int bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev *iproc_i2c,
705 				      struct i2c_msg *msg)
706 {
707 	u32 val;
708 
709 	val = iproc_i2c_rd_reg(iproc_i2c, M_CMD_OFFSET);
710 	val = (val >> M_CMD_STATUS_SHIFT) & M_CMD_STATUS_MASK;
711 
712 	switch (val) {
713 	case M_CMD_STATUS_SUCCESS:
714 		return 0;
715 
716 	case M_CMD_STATUS_LOST_ARB:
717 		dev_dbg(iproc_i2c->device, "lost bus arbitration\n");
718 		return -EAGAIN;
719 
720 	case M_CMD_STATUS_NACK_ADDR:
721 		dev_dbg(iproc_i2c->device, "NAK addr:0x%02x\n", msg->addr);
722 		return -ENXIO;
723 
724 	case M_CMD_STATUS_NACK_DATA:
725 		dev_dbg(iproc_i2c->device, "NAK data\n");
726 		return -ENXIO;
727 
728 	case M_CMD_STATUS_TIMEOUT:
729 		dev_dbg(iproc_i2c->device, "bus timeout\n");
730 		return -ETIMEDOUT;
731 
732 	case M_CMD_STATUS_FIFO_UNDERRUN:
733 		dev_dbg(iproc_i2c->device, "FIFO under-run\n");
734 		return -ENXIO;
735 
736 	case M_CMD_STATUS_RX_FIFO_FULL:
737 		dev_dbg(iproc_i2c->device, "RX FIFO full\n");
738 		return -ETIMEDOUT;
739 
740 	default:
741 		dev_dbg(iproc_i2c->device, "unknown error code=%d\n", val);
742 
743 		/* re-initialize i2c for recovery */
744 		bcm_iproc_i2c_enable_disable(iproc_i2c, false);
745 		bcm_iproc_i2c_init(iproc_i2c);
746 		bcm_iproc_i2c_enable_disable(iproc_i2c, true);
747 
748 		return -EIO;
749 	}
750 }
751 
bcm_iproc_i2c_xfer_wait(struct bcm_iproc_i2c_dev *iproc_i2c, struct i2c_msg *msg, u32 cmd)752 static int bcm_iproc_i2c_xfer_wait(struct bcm_iproc_i2c_dev *iproc_i2c,
753 				   struct i2c_msg *msg,
754 				   u32 cmd)
755 {
756 	unsigned long time_left = msecs_to_jiffies(I2C_TIMEOUT_MSEC);
757 	u32 val, status;
758 	int ret;
759 
760 	iproc_i2c_wr_reg(iproc_i2c, M_CMD_OFFSET, cmd);
761 
762 	if (iproc_i2c->irq) {
763 		time_left = wait_for_completion_timeout(&iproc_i2c->done,
764 							time_left);
765 		/* disable all interrupts */
766 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
767 		/* read it back to flush the write */
768 		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
769 		/* make sure the interrupt handler isn't running */
770 		synchronize_irq(iproc_i2c->irq);
771 
772 	} else { /* polling mode */
773 		unsigned long timeout = jiffies + time_left;
774 
775 		do {
776 			status = iproc_i2c_rd_reg(iproc_i2c,
777 						  IS_OFFSET) & ISR_MASK;
778 			bcm_iproc_i2c_process_m_event(iproc_i2c, status);
779 			iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
780 
781 			if (time_after(jiffies, timeout)) {
782 				time_left = 0;
783 				break;
784 			}
785 
786 			cpu_relax();
787 			cond_resched();
788 		} while (!iproc_i2c->xfer_is_done);
789 	}
790 
791 	if (!time_left && !iproc_i2c->xfer_is_done) {
792 		dev_err(iproc_i2c->device, "transaction timed out\n");
793 
794 		/* flush both TX/RX FIFOs */
795 		val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
796 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
797 		return -ETIMEDOUT;
798 	}
799 
800 	ret = bcm_iproc_i2c_check_status(iproc_i2c, msg);
801 	if (ret) {
802 		/* flush both TX/RX FIFOs */
803 		val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
804 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
805 		return ret;
806 	}
807 
808 	return 0;
809 }
810 
811 /*
812  * If 'process_call' is true, then this is a multi-msg transfer that requires
813  * a repeated start between the messages.
814  * More specifically, it must be a write (reg) followed by a read (data).
815  * The i2c quirks are set to enforce this rule.
816  */
bcm_iproc_i2c_xfer_internal(struct bcm_iproc_i2c_dev *iproc_i2c, struct i2c_msg *msgs, bool process_call)817 static int bcm_iproc_i2c_xfer_internal(struct bcm_iproc_i2c_dev *iproc_i2c,
818 					struct i2c_msg *msgs, bool process_call)
819 {
820 	int i;
821 	u8 addr;
822 	u32 val, tmp, val_intr_en;
823 	unsigned int tx_bytes;
824 	struct i2c_msg *msg = &msgs[0];
825 
826 	/* check if bus is busy */
827 	if (!!(iproc_i2c_rd_reg(iproc_i2c,
828 				M_CMD_OFFSET) & BIT(M_CMD_START_BUSY_SHIFT))) {
829 		dev_warn(iproc_i2c->device, "bus is busy\n");
830 		return -EBUSY;
831 	}
832 
833 	iproc_i2c->msg = msg;
834 
835 	/* format and load slave address into the TX FIFO */
836 	addr = i2c_8bit_addr_from_msg(msg);
837 	iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, addr);
838 
839 	/*
840 	 * For a write transaction, load data into the TX FIFO. Only allow
841 	 * loading up to TX FIFO size - 1 bytes of data since the first byte
842 	 * has been used up by the slave address
843 	 */
844 	tx_bytes = min_t(unsigned int, msg->len, M_TX_RX_FIFO_SIZE - 1);
845 	if (!(msg->flags & I2C_M_RD)) {
846 		for (i = 0; i < tx_bytes; i++) {
847 			val = msg->buf[i];
848 
849 			/* mark the last byte */
850 			if (!process_call && (i == msg->len - 1))
851 				val |= BIT(M_TX_WR_STATUS_SHIFT);
852 
853 			iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
854 		}
855 		iproc_i2c->tx_bytes = tx_bytes;
856 	}
857 
858 	/* Process the read message if this is process call */
859 	if (process_call) {
860 		msg++;
861 		iproc_i2c->msg = msg;  /* point to second msg */
862 
863 		/*
864 		 * The last byte to be sent out should be a slave
865 		 * address with read operation
866 		 */
867 		addr = i2c_8bit_addr_from_msg(msg);
868 		/* mark it the last byte out */
869 		val = addr | BIT(M_TX_WR_STATUS_SHIFT);
870 		iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
871 	}
872 
873 	/* mark as incomplete before starting the transaction */
874 	if (iproc_i2c->irq)
875 		reinit_completion(&iproc_i2c->done);
876 
877 	iproc_i2c->xfer_is_done = 0;
878 
879 	/*
880 	 * Enable the "start busy" interrupt, which will be triggered after the
881 	 * transaction is done, i.e., the internal start_busy bit, transitions
882 	 * from 1 to 0.
883 	 */
884 	val_intr_en = BIT(IE_M_START_BUSY_SHIFT);
885 
886 	/*
887 	 * If TX data size is larger than the TX FIFO, need to enable TX
888 	 * underrun interrupt, which will be triggerred when the TX FIFO is
889 	 * empty. When that happens we can then pump more data into the FIFO
890 	 */
891 	if (!process_call && !(msg->flags & I2C_M_RD) &&
892 	    msg->len > iproc_i2c->tx_bytes)
893 		val_intr_en |= BIT(IE_M_TX_UNDERRUN_SHIFT);
894 
895 	/*
896 	 * Now we can activate the transfer. For a read operation, specify the
897 	 * number of bytes to read
898 	 */
899 	val = BIT(M_CMD_START_BUSY_SHIFT);
900 
901 	if (msg->len == 0) {
902 		/* SMBUS QUICK Command (Read/Write) */
903 		val |= (M_CMD_PROTOCOL_QUICK << M_CMD_PROTOCOL_SHIFT);
904 	} else if (msg->flags & I2C_M_RD) {
905 		u32 protocol;
906 
907 		iproc_i2c->rx_bytes = 0;
908 		if (msg->len > M_RX_FIFO_MAX_THLD_VALUE)
909 			iproc_i2c->thld_bytes = M_RX_FIFO_THLD_VALUE;
910 		else
911 			iproc_i2c->thld_bytes = msg->len;
912 
913 		/* set threshold value */
914 		tmp = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
915 		tmp &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
916 		tmp |= iproc_i2c->thld_bytes << M_FIFO_RX_THLD_SHIFT;
917 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, tmp);
918 
919 		/* enable the RX threshold interrupt */
920 		val_intr_en |= BIT(IE_M_RX_THLD_SHIFT);
921 
922 		protocol = process_call ?
923 				M_CMD_PROTOCOL_PROCESS : M_CMD_PROTOCOL_BLK_RD;
924 
925 		val |= (protocol << M_CMD_PROTOCOL_SHIFT) |
926 		       (msg->len << M_CMD_RD_CNT_SHIFT);
927 	} else {
928 		val |= (M_CMD_PROTOCOL_BLK_WR << M_CMD_PROTOCOL_SHIFT);
929 	}
930 
931 	if (iproc_i2c->irq)
932 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val_intr_en);
933 
934 	return bcm_iproc_i2c_xfer_wait(iproc_i2c, msg, val);
935 }
936 
bcm_iproc_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg msgs[], int num)937 static int bcm_iproc_i2c_xfer(struct i2c_adapter *adapter,
938 			      struct i2c_msg msgs[], int num)
939 {
940 	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(adapter);
941 	bool process_call = false;
942 	int ret;
943 
944 	if (num == 2) {
945 		/* Repeated start, use process call */
946 		process_call = true;
947 		if (msgs[1].flags & I2C_M_NOSTART) {
948 			dev_err(iproc_i2c->device, "Invalid repeated start\n");
949 			return -EOPNOTSUPP;
950 		}
951 	}
952 
953 	ret = bcm_iproc_i2c_xfer_internal(iproc_i2c, msgs, process_call);
954 	if (ret) {
955 		dev_dbg(iproc_i2c->device, "xfer failed\n");
956 		return ret;
957 	}
958 
959 	return num;
960 }
961 
bcm_iproc_i2c_functionality(struct i2c_adapter *adap)962 static uint32_t bcm_iproc_i2c_functionality(struct i2c_adapter *adap)
963 {
964 	u32 val;
965 
966 	val = I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
967 
968 	if (adap->algo->reg_slave)
969 		val |= I2C_FUNC_SLAVE;
970 
971 	return val;
972 }
973 
974 static struct i2c_algorithm bcm_iproc_algo = {
975 	.master_xfer = bcm_iproc_i2c_xfer,
976 	.functionality = bcm_iproc_i2c_functionality,
977 	.reg_slave = bcm_iproc_i2c_reg_slave,
978 	.unreg_slave = bcm_iproc_i2c_unreg_slave,
979 };
980 
981 static const struct i2c_adapter_quirks bcm_iproc_i2c_quirks = {
982 	.flags = I2C_AQ_COMB_WRITE_THEN_READ,
983 	.max_comb_1st_msg_len = M_TX_RX_FIFO_SIZE,
984 	.max_read_len = M_RX_MAX_READ_LEN,
985 };
986 
bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev *iproc_i2c)987 static int bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev *iproc_i2c)
988 {
989 	unsigned int bus_speed;
990 	u32 val;
991 	int ret = of_property_read_u32(iproc_i2c->device->of_node,
992 				       "clock-frequency", &bus_speed);
993 	if (ret < 0) {
994 		dev_info(iproc_i2c->device,
995 			"unable to interpret clock-frequency DT property\n");
996 		bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
997 	}
998 
999 	if (bus_speed < I2C_MAX_STANDARD_MODE_FREQ) {
1000 		dev_err(iproc_i2c->device, "%d Hz bus speed not supported\n",
1001 			bus_speed);
1002 		dev_err(iproc_i2c->device,
1003 			"valid speeds are 100khz and 400khz\n");
1004 		return -EINVAL;
1005 	} else if (bus_speed < I2C_MAX_FAST_MODE_FREQ) {
1006 		bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
1007 	} else {
1008 		bus_speed = I2C_MAX_FAST_MODE_FREQ;
1009 	}
1010 
1011 	iproc_i2c->bus_speed = bus_speed;
1012 	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
1013 	val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
1014 	val |= (bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
1015 	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1016 
1017 	dev_info(iproc_i2c->device, "bus set to %u Hz\n", bus_speed);
1018 
1019 	return 0;
1020 }
1021 
bcm_iproc_i2c_probe(struct platform_device *pdev)1022 static int bcm_iproc_i2c_probe(struct platform_device *pdev)
1023 {
1024 	int irq, ret = 0;
1025 	struct bcm_iproc_i2c_dev *iproc_i2c;
1026 	struct i2c_adapter *adap;
1027 	struct resource *res;
1028 
1029 	iproc_i2c = devm_kzalloc(&pdev->dev, sizeof(*iproc_i2c),
1030 				 GFP_KERNEL);
1031 	if (!iproc_i2c)
1032 		return -ENOMEM;
1033 
1034 	platform_set_drvdata(pdev, iproc_i2c);
1035 	iproc_i2c->device = &pdev->dev;
1036 	iproc_i2c->type =
1037 		(enum bcm_iproc_i2c_type)of_device_get_match_data(&pdev->dev);
1038 	init_completion(&iproc_i2c->done);
1039 
1040 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1041 	iproc_i2c->base = devm_ioremap_resource(iproc_i2c->device, res);
1042 	if (IS_ERR(iproc_i2c->base))
1043 		return PTR_ERR(iproc_i2c->base);
1044 
1045 	if (iproc_i2c->type == IPROC_I2C_NIC) {
1046 		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1047 		iproc_i2c->idm_base = devm_ioremap_resource(iproc_i2c->device,
1048 							    res);
1049 		if (IS_ERR(iproc_i2c->idm_base))
1050 			return PTR_ERR(iproc_i2c->idm_base);
1051 
1052 		ret = of_property_read_u32(iproc_i2c->device->of_node,
1053 					   "brcm,ape-hsls-addr-mask",
1054 					   &iproc_i2c->ape_addr_mask);
1055 		if (ret < 0) {
1056 			dev_err(iproc_i2c->device,
1057 				"'brcm,ape-hsls-addr-mask' missing\n");
1058 			return -EINVAL;
1059 		}
1060 
1061 		spin_lock_init(&iproc_i2c->idm_lock);
1062 
1063 		/* no slave support */
1064 		bcm_iproc_algo.reg_slave = NULL;
1065 		bcm_iproc_algo.unreg_slave = NULL;
1066 	}
1067 
1068 	ret = bcm_iproc_i2c_init(iproc_i2c);
1069 	if (ret)
1070 		return ret;
1071 
1072 	ret = bcm_iproc_i2c_cfg_speed(iproc_i2c);
1073 	if (ret)
1074 		return ret;
1075 
1076 	irq = platform_get_irq(pdev, 0);
1077 	if (irq > 0) {
1078 		ret = devm_request_irq(iproc_i2c->device, irq,
1079 				       bcm_iproc_i2c_isr, 0, pdev->name,
1080 				       iproc_i2c);
1081 		if (ret < 0) {
1082 			dev_err(iproc_i2c->device,
1083 				"unable to request irq %i\n", irq);
1084 			return ret;
1085 		}
1086 
1087 		iproc_i2c->irq = irq;
1088 	} else {
1089 		dev_warn(iproc_i2c->device,
1090 			 "no irq resource, falling back to poll mode\n");
1091 	}
1092 
1093 	bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1094 
1095 	adap = &iproc_i2c->adapter;
1096 	i2c_set_adapdata(adap, iproc_i2c);
1097 	snprintf(adap->name, sizeof(adap->name),
1098 		"Broadcom iProc (%s)",
1099 		of_node_full_name(iproc_i2c->device->of_node));
1100 	adap->algo = &bcm_iproc_algo;
1101 	adap->quirks = &bcm_iproc_i2c_quirks;
1102 	adap->dev.parent = &pdev->dev;
1103 	adap->dev.of_node = pdev->dev.of_node;
1104 
1105 	return i2c_add_adapter(adap);
1106 }
1107 
bcm_iproc_i2c_remove(struct platform_device *pdev)1108 static int bcm_iproc_i2c_remove(struct platform_device *pdev)
1109 {
1110 	struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);
1111 
1112 	if (iproc_i2c->irq) {
1113 		/*
1114 		 * Make sure there's no pending interrupt when we remove the
1115 		 * adapter
1116 		 */
1117 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
1118 		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1119 		synchronize_irq(iproc_i2c->irq);
1120 	}
1121 
1122 	i2c_del_adapter(&iproc_i2c->adapter);
1123 	bcm_iproc_i2c_enable_disable(iproc_i2c, false);
1124 
1125 	return 0;
1126 }
1127 
1128 #ifdef CONFIG_PM_SLEEP
1129 
bcm_iproc_i2c_suspend(struct device *dev)1130 static int bcm_iproc_i2c_suspend(struct device *dev)
1131 {
1132 	struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1133 
1134 	if (iproc_i2c->irq) {
1135 		/*
1136 		 * Make sure there's no pending interrupt when we go into
1137 		 * suspend
1138 		 */
1139 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
1140 		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1141 		synchronize_irq(iproc_i2c->irq);
1142 	}
1143 
1144 	/* now disable the controller */
1145 	bcm_iproc_i2c_enable_disable(iproc_i2c, false);
1146 
1147 	return 0;
1148 }
1149 
bcm_iproc_i2c_resume(struct device *dev)1150 static int bcm_iproc_i2c_resume(struct device *dev)
1151 {
1152 	struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1153 	int ret;
1154 	u32 val;
1155 
1156 	/*
1157 	 * Power domain could have been shut off completely in system deep
1158 	 * sleep, so re-initialize the block here
1159 	 */
1160 	ret = bcm_iproc_i2c_init(iproc_i2c);
1161 	if (ret)
1162 		return ret;
1163 
1164 	/* configure to the desired bus speed */
1165 	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
1166 	val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
1167 	val |= (iproc_i2c->bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
1168 	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1169 
1170 	bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1171 
1172 	return 0;
1173 }
1174 
1175 static const struct dev_pm_ops bcm_iproc_i2c_pm_ops = {
1176 	.suspend_late = &bcm_iproc_i2c_suspend,
1177 	.resume_early = &bcm_iproc_i2c_resume
1178 };
1179 
1180 #define BCM_IPROC_I2C_PM_OPS (&bcm_iproc_i2c_pm_ops)
1181 #else
1182 #define BCM_IPROC_I2C_PM_OPS NULL
1183 #endif /* CONFIG_PM_SLEEP */
1184 
1185 
bcm_iproc_i2c_reg_slave(struct i2c_client *slave)1186 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave)
1187 {
1188 	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1189 
1190 	if (iproc_i2c->slave)
1191 		return -EBUSY;
1192 
1193 	if (slave->flags & I2C_CLIENT_TEN)
1194 		return -EAFNOSUPPORT;
1195 
1196 	iproc_i2c->slave = slave;
1197 
1198 	tasklet_init(&iproc_i2c->slave_rx_tasklet, slave_rx_tasklet_fn,
1199 		     (unsigned long)iproc_i2c);
1200 
1201 	bcm_iproc_i2c_slave_init(iproc_i2c, false);
1202 	return 0;
1203 }
1204 
bcm_iproc_i2c_unreg_slave(struct i2c_client *slave)1205 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave)
1206 {
1207 	u32 tmp;
1208 	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1209 
1210 	if (!iproc_i2c->slave)
1211 		return -EINVAL;
1212 
1213 	disable_irq(iproc_i2c->irq);
1214 
1215 	/* disable all slave interrupts */
1216 	tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1217 	tmp &= ~(IE_S_ALL_INTERRUPT_MASK <<
1218 			IE_S_ALL_INTERRUPT_SHIFT);
1219 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, tmp);
1220 
1221 	tasklet_kill(&iproc_i2c->slave_rx_tasklet);
1222 
1223 	/* Erase the slave address programmed */
1224 	tmp = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
1225 	tmp &= ~BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
1226 	iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, tmp);
1227 
1228 	/* flush TX/RX FIFOs */
1229 	tmp = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
1230 	iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, tmp);
1231 
1232 	/* clear all pending slave interrupts */
1233 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
1234 
1235 	iproc_i2c->slave = NULL;
1236 
1237 	enable_irq(iproc_i2c->irq);
1238 
1239 	return 0;
1240 }
1241 
1242 static const struct of_device_id bcm_iproc_i2c_of_match[] = {
1243 	{
1244 		.compatible = "brcm,iproc-i2c",
1245 		.data = (int *)IPROC_I2C,
1246 	}, {
1247 		.compatible = "brcm,iproc-nic-i2c",
1248 		.data = (int *)IPROC_I2C_NIC,
1249 	},
1250 	{ /* sentinel */ }
1251 };
1252 MODULE_DEVICE_TABLE(of, bcm_iproc_i2c_of_match);
1253 
1254 static struct platform_driver bcm_iproc_i2c_driver = {
1255 	.driver = {
1256 		.name = "bcm-iproc-i2c",
1257 		.of_match_table = bcm_iproc_i2c_of_match,
1258 		.pm = BCM_IPROC_I2C_PM_OPS,
1259 	},
1260 	.probe = bcm_iproc_i2c_probe,
1261 	.remove = bcm_iproc_i2c_remove,
1262 };
1263 module_platform_driver(bcm_iproc_i2c_driver);
1264 
1265 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1266 MODULE_DESCRIPTION("Broadcom iProc I2C Driver");
1267 MODULE_LICENSE("GPL v2");
1268