1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2016 Linaro Limited. All rights reserved.
4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5 */
6
7 #include <linux/atomic.h>
8 #include <linux/coresight.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/iommu.h>
11 #include <linux/idr.h>
12 #include <linux/mutex.h>
13 #include <linux/refcount.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/vmalloc.h>
17 #include "coresight-catu.h"
18 #include "coresight-etm-perf.h"
19 #include "coresight-priv.h"
20 #include "coresight-tmc.h"
21
22 struct etr_flat_buf {
23 struct device *dev;
24 dma_addr_t daddr;
25 void *vaddr;
26 size_t size;
27 };
28
29 /*
30 * etr_perf_buffer - Perf buffer used for ETR
31 * @drvdata - The ETR drvdaga this buffer has been allocated for.
32 * @etr_buf - Actual buffer used by the ETR
33 * @pid - The PID this etr_perf_buffer belongs to.
34 * @snaphost - Perf session mode
35 * @head - handle->head at the beginning of the session.
36 * @nr_pages - Number of pages in the ring buffer.
37 * @pages - Array of Pages in the ring buffer.
38 */
39 struct etr_perf_buffer {
40 struct tmc_drvdata *drvdata;
41 struct etr_buf *etr_buf;
42 pid_t pid;
43 bool snapshot;
44 unsigned long head;
45 int nr_pages;
46 void **pages;
47 };
48
49 /* Convert the perf index to an offset within the ETR buffer */
50 #define PERF_IDX2OFF(idx, buf) \
51 ((idx) % ((unsigned long)(buf)->nr_pages << PAGE_SHIFT))
52
53 /* Lower limit for ETR hardware buffer */
54 #define TMC_ETR_PERF_MIN_BUF_SIZE SZ_1M
55
56 /*
57 * The TMC ETR SG has a page size of 4K. The SG table contains pointers
58 * to 4KB buffers. However, the OS may use a PAGE_SIZE different from
59 * 4K (i.e, 16KB or 64KB). This implies that a single OS page could
60 * contain more than one SG buffer and tables.
61 *
62 * A table entry has the following format:
63 *
64 * ---Bit31------------Bit4-------Bit1-----Bit0--
65 * | Address[39:12] | SBZ | Entry Type |
66 * ----------------------------------------------
67 *
68 * Address: Bits [39:12] of a physical page address. Bits [11:0] are
69 * always zero.
70 *
71 * Entry type:
72 * b00 - Reserved.
73 * b01 - Last entry in the tables, points to 4K page buffer.
74 * b10 - Normal entry, points to 4K page buffer.
75 * b11 - Link. The address points to the base of next table.
76 */
77
78 typedef u32 sgte_t;
79
80 #define ETR_SG_PAGE_SHIFT 12
81 #define ETR_SG_PAGE_SIZE (1UL << ETR_SG_PAGE_SHIFT)
82 #define ETR_SG_PAGES_PER_SYSPAGE (PAGE_SIZE / ETR_SG_PAGE_SIZE)
83 #define ETR_SG_PTRS_PER_PAGE (ETR_SG_PAGE_SIZE / sizeof(sgte_t))
84 #define ETR_SG_PTRS_PER_SYSPAGE (PAGE_SIZE / sizeof(sgte_t))
85
86 #define ETR_SG_ET_MASK 0x3
87 #define ETR_SG_ET_LAST 0x1
88 #define ETR_SG_ET_NORMAL 0x2
89 #define ETR_SG_ET_LINK 0x3
90
91 #define ETR_SG_ADDR_SHIFT 4
92
93 #define ETR_SG_ENTRY(addr, type) \
94 (sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \
95 (type & ETR_SG_ET_MASK))
96
97 #define ETR_SG_ADDR(entry) \
98 (((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT)
99 #define ETR_SG_ET(entry) ((entry) & ETR_SG_ET_MASK)
100
101 /*
102 * struct etr_sg_table : ETR SG Table
103 * @sg_table: Generic SG Table holding the data/table pages.
104 * @hwaddr: hwaddress used by the TMC, which is the base
105 * address of the table.
106 */
107 struct etr_sg_table {
108 struct tmc_sg_table *sg_table;
109 dma_addr_t hwaddr;
110 };
111
112 /*
113 * tmc_etr_sg_table_entries: Total number of table entries required to map
114 * @nr_pages system pages.
115 *
116 * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages.
117 * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers,
118 * with the last entry pointing to another page of table entries.
119 * If we spill over to a new page for mapping 1 entry, we could as
120 * well replace the link entry of the previous page with the last entry.
121 */
122 static inline unsigned long __attribute_const__
tmc_etr_sg_table_entries(int nr_pages)123 tmc_etr_sg_table_entries(int nr_pages)
124 {
125 unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE;
126 unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1);
127 /*
128 * If we spill over to a new page for 1 entry, we could as well
129 * make it the LAST entry in the previous page, skipping the Link
130 * address.
131 */
132 if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2))
133 nr_sglinks--;
134 return nr_sgpages + nr_sglinks;
135 }
136
137 /*
138 * tmc_pages_get_offset: Go through all the pages in the tmc_pages
139 * and map the device address @addr to an offset within the virtual
140 * contiguous buffer.
141 */
142 static long
tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr)143 tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr)
144 {
145 int i;
146 dma_addr_t page_start;
147
148 for (i = 0; i < tmc_pages->nr_pages; i++) {
149 page_start = tmc_pages->daddrs[i];
150 if (addr >= page_start && addr < (page_start + PAGE_SIZE))
151 return i * PAGE_SIZE + (addr - page_start);
152 }
153
154 return -EINVAL;
155 }
156
157 /*
158 * tmc_pages_free : Unmap and free the pages used by tmc_pages.
159 * If the pages were not allocated in tmc_pages_alloc(), we would
160 * simply drop the refcount.
161 */
tmc_pages_free(struct tmc_pages *tmc_pages, struct device *dev, enum dma_data_direction dir)162 static void tmc_pages_free(struct tmc_pages *tmc_pages,
163 struct device *dev, enum dma_data_direction dir)
164 {
165 int i;
166 struct device *real_dev = dev->parent;
167
168 for (i = 0; i < tmc_pages->nr_pages; i++) {
169 if (tmc_pages->daddrs && tmc_pages->daddrs[i])
170 dma_unmap_page(real_dev, tmc_pages->daddrs[i],
171 PAGE_SIZE, dir);
172 if (tmc_pages->pages && tmc_pages->pages[i])
173 __free_page(tmc_pages->pages[i]);
174 }
175
176 kfree(tmc_pages->pages);
177 kfree(tmc_pages->daddrs);
178 tmc_pages->pages = NULL;
179 tmc_pages->daddrs = NULL;
180 tmc_pages->nr_pages = 0;
181 }
182
183 /*
184 * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages.
185 * If @pages is not NULL, the list of page virtual addresses are
186 * used as the data pages. The pages are then dma_map'ed for @dev
187 * with dma_direction @dir.
188 *
189 * Returns 0 upon success, else the error number.
190 */
tmc_pages_alloc(struct tmc_pages *tmc_pages, struct device *dev, int node, enum dma_data_direction dir, void **pages)191 static int tmc_pages_alloc(struct tmc_pages *tmc_pages,
192 struct device *dev, int node,
193 enum dma_data_direction dir, void **pages)
194 {
195 int i, nr_pages;
196 dma_addr_t paddr;
197 struct page *page;
198 struct device *real_dev = dev->parent;
199
200 nr_pages = tmc_pages->nr_pages;
201 tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs),
202 GFP_KERNEL);
203 if (!tmc_pages->daddrs)
204 return -ENOMEM;
205 tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages),
206 GFP_KERNEL);
207 if (!tmc_pages->pages) {
208 kfree(tmc_pages->daddrs);
209 tmc_pages->daddrs = NULL;
210 return -ENOMEM;
211 }
212
213 for (i = 0; i < nr_pages; i++) {
214 if (pages && pages[i]) {
215 page = virt_to_page(pages[i]);
216 /* Hold a refcount on the page */
217 get_page(page);
218 } else {
219 page = alloc_pages_node(node,
220 GFP_KERNEL | __GFP_ZERO, 0);
221 if (!page)
222 goto err;
223 }
224 paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir);
225 if (dma_mapping_error(real_dev, paddr))
226 goto err;
227 tmc_pages->daddrs[i] = paddr;
228 tmc_pages->pages[i] = page;
229 }
230 return 0;
231 err:
232 tmc_pages_free(tmc_pages, dev, dir);
233 return -ENOMEM;
234 }
235
236 static inline long
tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr)237 tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr)
238 {
239 return tmc_pages_get_offset(&sg_table->data_pages, addr);
240 }
241
tmc_free_table_pages(struct tmc_sg_table *sg_table)242 static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table)
243 {
244 if (sg_table->table_vaddr)
245 vunmap(sg_table->table_vaddr);
246 tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE);
247 }
248
tmc_free_data_pages(struct tmc_sg_table *sg_table)249 static void tmc_free_data_pages(struct tmc_sg_table *sg_table)
250 {
251 if (sg_table->data_vaddr)
252 vunmap(sg_table->data_vaddr);
253 tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE);
254 }
255
tmc_free_sg_table(struct tmc_sg_table *sg_table)256 void tmc_free_sg_table(struct tmc_sg_table *sg_table)
257 {
258 tmc_free_table_pages(sg_table);
259 tmc_free_data_pages(sg_table);
260 }
261 EXPORT_SYMBOL_GPL(tmc_free_sg_table);
262
263 /*
264 * Alloc pages for the table. Since this will be used by the device,
265 * allocate the pages closer to the device (i.e, dev_to_node(dev)
266 * rather than the CPU node).
267 */
tmc_alloc_table_pages(struct tmc_sg_table *sg_table)268 static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table)
269 {
270 int rc;
271 struct tmc_pages *table_pages = &sg_table->table_pages;
272
273 rc = tmc_pages_alloc(table_pages, sg_table->dev,
274 dev_to_node(sg_table->dev),
275 DMA_TO_DEVICE, NULL);
276 if (rc)
277 return rc;
278 sg_table->table_vaddr = vmap(table_pages->pages,
279 table_pages->nr_pages,
280 VM_MAP,
281 PAGE_KERNEL);
282 if (!sg_table->table_vaddr)
283 rc = -ENOMEM;
284 else
285 sg_table->table_daddr = table_pages->daddrs[0];
286 return rc;
287 }
288
tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages)289 static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages)
290 {
291 int rc;
292
293 /* Allocate data pages on the node requested by the caller */
294 rc = tmc_pages_alloc(&sg_table->data_pages,
295 sg_table->dev, sg_table->node,
296 DMA_FROM_DEVICE, pages);
297 if (!rc) {
298 sg_table->data_vaddr = vmap(sg_table->data_pages.pages,
299 sg_table->data_pages.nr_pages,
300 VM_MAP,
301 PAGE_KERNEL);
302 if (!sg_table->data_vaddr)
303 rc = -ENOMEM;
304 }
305 return rc;
306 }
307
308 /*
309 * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table
310 * and data buffers. TMC writes to the data buffers and reads from the SG
311 * Table pages.
312 *
313 * @dev - Coresight device to which page should be DMA mapped.
314 * @node - Numa node for mem allocations
315 * @nr_tpages - Number of pages for the table entries.
316 * @nr_dpages - Number of pages for Data buffer.
317 * @pages - Optional list of virtual address of pages.
318 */
tmc_alloc_sg_table(struct device *dev, int node, int nr_tpages, int nr_dpages, void **pages)319 struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev,
320 int node,
321 int nr_tpages,
322 int nr_dpages,
323 void **pages)
324 {
325 long rc;
326 struct tmc_sg_table *sg_table;
327
328 sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL);
329 if (!sg_table)
330 return ERR_PTR(-ENOMEM);
331 sg_table->data_pages.nr_pages = nr_dpages;
332 sg_table->table_pages.nr_pages = nr_tpages;
333 sg_table->node = node;
334 sg_table->dev = dev;
335
336 rc = tmc_alloc_data_pages(sg_table, pages);
337 if (!rc)
338 rc = tmc_alloc_table_pages(sg_table);
339 if (rc) {
340 tmc_free_sg_table(sg_table);
341 kfree(sg_table);
342 return ERR_PTR(rc);
343 }
344
345 return sg_table;
346 }
347 EXPORT_SYMBOL_GPL(tmc_alloc_sg_table);
348
349 /*
350 * tmc_sg_table_sync_data_range: Sync the data buffer written
351 * by the device from @offset upto a @size bytes.
352 */
tmc_sg_table_sync_data_range(struct tmc_sg_table *table, u64 offset, u64 size)353 void tmc_sg_table_sync_data_range(struct tmc_sg_table *table,
354 u64 offset, u64 size)
355 {
356 int i, index, start;
357 int npages = DIV_ROUND_UP(size, PAGE_SIZE);
358 struct device *real_dev = table->dev->parent;
359 struct tmc_pages *data = &table->data_pages;
360
361 start = offset >> PAGE_SHIFT;
362 for (i = start; i < (start + npages); i++) {
363 index = i % data->nr_pages;
364 dma_sync_single_for_cpu(real_dev, data->daddrs[index],
365 PAGE_SIZE, DMA_FROM_DEVICE);
366 }
367 }
368 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_data_range);
369
370 /* tmc_sg_sync_table: Sync the page table */
tmc_sg_table_sync_table(struct tmc_sg_table *sg_table)371 void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table)
372 {
373 int i;
374 struct device *real_dev = sg_table->dev->parent;
375 struct tmc_pages *table_pages = &sg_table->table_pages;
376
377 for (i = 0; i < table_pages->nr_pages; i++)
378 dma_sync_single_for_device(real_dev, table_pages->daddrs[i],
379 PAGE_SIZE, DMA_TO_DEVICE);
380 }
381 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_table);
382
383 /*
384 * tmc_sg_table_get_data: Get the buffer pointer for data @offset
385 * in the SG buffer. The @bufpp is updated to point to the buffer.
386 * Returns :
387 * the length of linear data available at @offset.
388 * or
389 * <= 0 if no data is available.
390 */
tmc_sg_table_get_data(struct tmc_sg_table *sg_table, u64 offset, size_t len, char **bufpp)391 ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table,
392 u64 offset, size_t len, char **bufpp)
393 {
394 size_t size;
395 int pg_idx = offset >> PAGE_SHIFT;
396 int pg_offset = offset & (PAGE_SIZE - 1);
397 struct tmc_pages *data_pages = &sg_table->data_pages;
398
399 size = tmc_sg_table_buf_size(sg_table);
400 if (offset >= size)
401 return -EINVAL;
402
403 /* Make sure we don't go beyond the end */
404 len = (len < (size - offset)) ? len : size - offset;
405 /* Respect the page boundaries */
406 len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset);
407 if (len > 0)
408 *bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset;
409 return len;
410 }
411 EXPORT_SYMBOL_GPL(tmc_sg_table_get_data);
412
413 #ifdef ETR_SG_DEBUG
414 /* Map a dma address to virtual address */
415 static unsigned long
tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table, dma_addr_t addr, bool table)416 tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table,
417 dma_addr_t addr, bool table)
418 {
419 long offset;
420 unsigned long base;
421 struct tmc_pages *tmc_pages;
422
423 if (table) {
424 tmc_pages = &sg_table->table_pages;
425 base = (unsigned long)sg_table->table_vaddr;
426 } else {
427 tmc_pages = &sg_table->data_pages;
428 base = (unsigned long)sg_table->data_vaddr;
429 }
430
431 offset = tmc_pages_get_offset(tmc_pages, addr);
432 if (offset < 0)
433 return 0;
434 return base + offset;
435 }
436
437 /* Dump the given sg_table */
tmc_etr_sg_table_dump(struct etr_sg_table *etr_table)438 static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table)
439 {
440 sgte_t *ptr;
441 int i = 0;
442 dma_addr_t addr;
443 struct tmc_sg_table *sg_table = etr_table->sg_table;
444
445 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
446 etr_table->hwaddr, true);
447 while (ptr) {
448 addr = ETR_SG_ADDR(*ptr);
449 switch (ETR_SG_ET(*ptr)) {
450 case ETR_SG_ET_NORMAL:
451 dev_dbg(sg_table->dev,
452 "%05d: %p\t:[N] 0x%llx\n", i, ptr, addr);
453 ptr++;
454 break;
455 case ETR_SG_ET_LINK:
456 dev_dbg(sg_table->dev,
457 "%05d: *** %p\t:{L} 0x%llx ***\n",
458 i, ptr, addr);
459 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
460 addr, true);
461 break;
462 case ETR_SG_ET_LAST:
463 dev_dbg(sg_table->dev,
464 "%05d: ### %p\t:[L] 0x%llx ###\n",
465 i, ptr, addr);
466 return;
467 default:
468 dev_dbg(sg_table->dev,
469 "%05d: xxx %p\t:[INVALID] 0x%llx xxx\n",
470 i, ptr, addr);
471 return;
472 }
473 i++;
474 }
475 dev_dbg(sg_table->dev, "******* End of Table *****\n");
476 }
477 #else
tmc_etr_sg_table_dump(struct etr_sg_table *etr_table)478 static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {}
479 #endif
480
481 /*
482 * Populate the SG Table page table entries from table/data
483 * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages.
484 * So does a Table page. So we keep track of indices of the tables
485 * in each system page and move the pointers accordingly.
486 */
487 #define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size))
tmc_etr_sg_table_populate(struct etr_sg_table *etr_table)488 static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table)
489 {
490 dma_addr_t paddr;
491 int i, type, nr_entries;
492 int tpidx = 0; /* index to the current system table_page */
493 int sgtidx = 0; /* index to the sg_table within the current syspage */
494 int sgtentry = 0; /* the entry within the sg_table */
495 int dpidx = 0; /* index to the current system data_page */
496 int spidx = 0; /* index to the SG page within the current data page */
497 sgte_t *ptr; /* pointer to the table entry to fill */
498 struct tmc_sg_table *sg_table = etr_table->sg_table;
499 dma_addr_t *table_daddrs = sg_table->table_pages.daddrs;
500 dma_addr_t *data_daddrs = sg_table->data_pages.daddrs;
501
502 nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages);
503 /*
504 * Use the contiguous virtual address of the table to update entries.
505 */
506 ptr = sg_table->table_vaddr;
507 /*
508 * Fill all the entries, except the last entry to avoid special
509 * checks within the loop.
510 */
511 for (i = 0; i < nr_entries - 1; i++) {
512 if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) {
513 /*
514 * Last entry in a sg_table page is a link address to
515 * the next table page. If this sg_table is the last
516 * one in the system page, it links to the first
517 * sg_table in the next system page. Otherwise, it
518 * links to the next sg_table page within the system
519 * page.
520 */
521 if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) {
522 paddr = table_daddrs[tpidx + 1];
523 } else {
524 paddr = table_daddrs[tpidx] +
525 (ETR_SG_PAGE_SIZE * (sgtidx + 1));
526 }
527 type = ETR_SG_ET_LINK;
528 } else {
529 /*
530 * Update the indices to the data_pages to point to the
531 * next sg_page in the data buffer.
532 */
533 type = ETR_SG_ET_NORMAL;
534 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
535 if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE))
536 dpidx++;
537 }
538 *ptr++ = ETR_SG_ENTRY(paddr, type);
539 /*
540 * Move to the next table pointer, moving the table page index
541 * if necessary
542 */
543 if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) {
544 if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE))
545 tpidx++;
546 }
547 }
548
549 /* Set up the last entry, which is always a data pointer */
550 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
551 *ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST);
552 }
553
554 /*
555 * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and
556 * populate the table.
557 *
558 * @dev - Device pointer for the TMC
559 * @node - NUMA node where the memory should be allocated
560 * @size - Total size of the data buffer
561 * @pages - Optional list of page virtual address
562 */
563 static struct etr_sg_table *
tmc_init_etr_sg_table(struct device *dev, int node, unsigned long size, void **pages)564 tmc_init_etr_sg_table(struct device *dev, int node,
565 unsigned long size, void **pages)
566 {
567 int nr_entries, nr_tpages;
568 int nr_dpages = size >> PAGE_SHIFT;
569 struct tmc_sg_table *sg_table;
570 struct etr_sg_table *etr_table;
571
572 etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL);
573 if (!etr_table)
574 return ERR_PTR(-ENOMEM);
575 nr_entries = tmc_etr_sg_table_entries(nr_dpages);
576 nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE);
577
578 sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages);
579 if (IS_ERR(sg_table)) {
580 kfree(etr_table);
581 return ERR_CAST(sg_table);
582 }
583
584 etr_table->sg_table = sg_table;
585 /* TMC should use table base address for DBA */
586 etr_table->hwaddr = sg_table->table_daddr;
587 tmc_etr_sg_table_populate(etr_table);
588 /* Sync the table pages for the HW */
589 tmc_sg_table_sync_table(sg_table);
590 tmc_etr_sg_table_dump(etr_table);
591
592 return etr_table;
593 }
594
595 /*
596 * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer.
597 */
tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata, struct etr_buf *etr_buf, int node, void **pages)598 static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata,
599 struct etr_buf *etr_buf, int node,
600 void **pages)
601 {
602 struct etr_flat_buf *flat_buf;
603 struct device *real_dev = drvdata->csdev->dev.parent;
604
605 /* We cannot reuse existing pages for flat buf */
606 if (pages)
607 return -EINVAL;
608
609 flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL);
610 if (!flat_buf)
611 return -ENOMEM;
612
613 flat_buf->vaddr = dma_alloc_coherent(real_dev, etr_buf->size,
614 &flat_buf->daddr, GFP_KERNEL);
615 if (!flat_buf->vaddr) {
616 kfree(flat_buf);
617 return -ENOMEM;
618 }
619
620 flat_buf->size = etr_buf->size;
621 flat_buf->dev = &drvdata->csdev->dev;
622 etr_buf->hwaddr = flat_buf->daddr;
623 etr_buf->mode = ETR_MODE_FLAT;
624 etr_buf->private = flat_buf;
625 return 0;
626 }
627
tmc_etr_free_flat_buf(struct etr_buf *etr_buf)628 static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf)
629 {
630 struct etr_flat_buf *flat_buf = etr_buf->private;
631
632 if (flat_buf && flat_buf->daddr) {
633 struct device *real_dev = flat_buf->dev->parent;
634
635 dma_free_coherent(real_dev, flat_buf->size,
636 flat_buf->vaddr, flat_buf->daddr);
637 }
638 kfree(flat_buf);
639 }
640
tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)641 static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
642 {
643 /*
644 * Adjust the buffer to point to the beginning of the trace data
645 * and update the available trace data.
646 */
647 etr_buf->offset = rrp - etr_buf->hwaddr;
648 if (etr_buf->full)
649 etr_buf->len = etr_buf->size;
650 else
651 etr_buf->len = rwp - rrp;
652 }
653
tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf, u64 offset, size_t len, char **bufpp)654 static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf,
655 u64 offset, size_t len, char **bufpp)
656 {
657 struct etr_flat_buf *flat_buf = etr_buf->private;
658
659 *bufpp = (char *)flat_buf->vaddr + offset;
660 /*
661 * tmc_etr_buf_get_data already adjusts the length to handle
662 * buffer wrapping around.
663 */
664 return len;
665 }
666
667 static const struct etr_buf_operations etr_flat_buf_ops = {
668 .alloc = tmc_etr_alloc_flat_buf,
669 .free = tmc_etr_free_flat_buf,
670 .sync = tmc_etr_sync_flat_buf,
671 .get_data = tmc_etr_get_data_flat_buf,
672 };
673
674 /*
675 * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters
676 * appropriately.
677 */
tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata, struct etr_buf *etr_buf, int node, void **pages)678 static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata,
679 struct etr_buf *etr_buf, int node,
680 void **pages)
681 {
682 struct etr_sg_table *etr_table;
683 struct device *dev = &drvdata->csdev->dev;
684
685 etr_table = tmc_init_etr_sg_table(dev, node,
686 etr_buf->size, pages);
687 if (IS_ERR(etr_table))
688 return -ENOMEM;
689 etr_buf->hwaddr = etr_table->hwaddr;
690 etr_buf->mode = ETR_MODE_ETR_SG;
691 etr_buf->private = etr_table;
692 return 0;
693 }
694
tmc_etr_free_sg_buf(struct etr_buf *etr_buf)695 static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf)
696 {
697 struct etr_sg_table *etr_table = etr_buf->private;
698
699 if (etr_table) {
700 tmc_free_sg_table(etr_table->sg_table);
701 kfree(etr_table);
702 }
703 }
704
tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset, size_t len, char **bufpp)705 static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset,
706 size_t len, char **bufpp)
707 {
708 struct etr_sg_table *etr_table = etr_buf->private;
709
710 return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp);
711 }
712
tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)713 static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
714 {
715 long r_offset, w_offset;
716 struct etr_sg_table *etr_table = etr_buf->private;
717 struct tmc_sg_table *table = etr_table->sg_table;
718
719 /* Convert hw address to offset in the buffer */
720 r_offset = tmc_sg_get_data_page_offset(table, rrp);
721 if (r_offset < 0) {
722 dev_warn(table->dev,
723 "Unable to map RRP %llx to offset\n", rrp);
724 etr_buf->len = 0;
725 return;
726 }
727
728 w_offset = tmc_sg_get_data_page_offset(table, rwp);
729 if (w_offset < 0) {
730 dev_warn(table->dev,
731 "Unable to map RWP %llx to offset\n", rwp);
732 etr_buf->len = 0;
733 return;
734 }
735
736 etr_buf->offset = r_offset;
737 if (etr_buf->full)
738 etr_buf->len = etr_buf->size;
739 else
740 etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) +
741 w_offset - r_offset;
742 tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len);
743 }
744
745 static const struct etr_buf_operations etr_sg_buf_ops = {
746 .alloc = tmc_etr_alloc_sg_buf,
747 .free = tmc_etr_free_sg_buf,
748 .sync = tmc_etr_sync_sg_buf,
749 .get_data = tmc_etr_get_data_sg_buf,
750 };
751
752 /*
753 * TMC ETR could be connected to a CATU device, which can provide address
754 * translation service. This is represented by the Output port of the TMC
755 * (ETR) connected to the input port of the CATU.
756 *
757 * Returns : coresight_device ptr for the CATU device if a CATU is found.
758 * : NULL otherwise.
759 */
760 struct coresight_device *
tmc_etr_get_catu_device(struct tmc_drvdata *drvdata)761 tmc_etr_get_catu_device(struct tmc_drvdata *drvdata)
762 {
763 int i;
764 struct coresight_device *tmp, *etr = drvdata->csdev;
765
766 if (!IS_ENABLED(CONFIG_CORESIGHT_CATU))
767 return NULL;
768
769 for (i = 0; i < etr->pdata->nr_outport; i++) {
770 tmp = etr->pdata->conns[i].child_dev;
771 if (tmp && coresight_is_catu_device(tmp))
772 return tmp;
773 }
774
775 return NULL;
776 }
777 EXPORT_SYMBOL_GPL(tmc_etr_get_catu_device);
778
tmc_etr_enable_catu(struct tmc_drvdata *drvdata, struct etr_buf *etr_buf)779 static inline int tmc_etr_enable_catu(struct tmc_drvdata *drvdata,
780 struct etr_buf *etr_buf)
781 {
782 struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
783
784 if (catu && helper_ops(catu)->enable)
785 return helper_ops(catu)->enable(catu, etr_buf);
786 return 0;
787 }
788
tmc_etr_disable_catu(struct tmc_drvdata *drvdata)789 static inline void tmc_etr_disable_catu(struct tmc_drvdata *drvdata)
790 {
791 struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
792
793 if (catu && helper_ops(catu)->disable)
794 helper_ops(catu)->disable(catu, drvdata->etr_buf);
795 }
796
797 static const struct etr_buf_operations *etr_buf_ops[] = {
798 [ETR_MODE_FLAT] = &etr_flat_buf_ops,
799 [ETR_MODE_ETR_SG] = &etr_sg_buf_ops,
800 [ETR_MODE_CATU] = NULL,
801 };
802
tmc_etr_set_catu_ops(const struct etr_buf_operations *catu)803 void tmc_etr_set_catu_ops(const struct etr_buf_operations *catu)
804 {
805 etr_buf_ops[ETR_MODE_CATU] = catu;
806 }
807 EXPORT_SYMBOL_GPL(tmc_etr_set_catu_ops);
808
tmc_etr_remove_catu_ops(void)809 void tmc_etr_remove_catu_ops(void)
810 {
811 etr_buf_ops[ETR_MODE_CATU] = NULL;
812 }
813 EXPORT_SYMBOL_GPL(tmc_etr_remove_catu_ops);
814
tmc_etr_mode_alloc_buf(int mode, struct tmc_drvdata *drvdata, struct etr_buf *etr_buf, int node, void **pages)815 static inline int tmc_etr_mode_alloc_buf(int mode,
816 struct tmc_drvdata *drvdata,
817 struct etr_buf *etr_buf, int node,
818 void **pages)
819 {
820 int rc = -EINVAL;
821
822 switch (mode) {
823 case ETR_MODE_FLAT:
824 case ETR_MODE_ETR_SG:
825 case ETR_MODE_CATU:
826 if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc)
827 rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf,
828 node, pages);
829 if (!rc)
830 etr_buf->ops = etr_buf_ops[mode];
831 return rc;
832 default:
833 return -EINVAL;
834 }
835 }
836
837 /*
838 * tmc_alloc_etr_buf: Allocate a buffer use by ETR.
839 * @drvdata : ETR device details.
840 * @size : size of the requested buffer.
841 * @flags : Required properties for the buffer.
842 * @node : Node for memory allocations.
843 * @pages : An optional list of pages.
844 */
tmc_alloc_etr_buf(struct tmc_drvdata *drvdata, ssize_t size, int flags, int node, void **pages)845 static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata,
846 ssize_t size, int flags,
847 int node, void **pages)
848 {
849 int rc = -ENOMEM;
850 bool has_etr_sg, has_iommu;
851 bool has_sg, has_catu;
852 struct etr_buf *etr_buf;
853 struct device *dev = &drvdata->csdev->dev;
854
855 has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG);
856 has_iommu = iommu_get_domain_for_dev(dev->parent);
857 has_catu = !!tmc_etr_get_catu_device(drvdata);
858
859 has_sg = has_catu || has_etr_sg;
860
861 etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL);
862 if (!etr_buf)
863 return ERR_PTR(-ENOMEM);
864
865 etr_buf->size = size;
866
867 /*
868 * If we have to use an existing list of pages, we cannot reliably
869 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise,
870 * we use the contiguous DMA memory if at least one of the following
871 * conditions is true:
872 * a) The ETR cannot use Scatter-Gather.
873 * b) we have a backing IOMMU
874 * c) The requested memory size is smaller (< 1M).
875 *
876 * Fallback to available mechanisms.
877 *
878 */
879 if (!pages &&
880 (!has_sg || has_iommu || size < SZ_1M))
881 rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata,
882 etr_buf, node, pages);
883 if (rc && has_etr_sg)
884 rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata,
885 etr_buf, node, pages);
886 if (rc && has_catu)
887 rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata,
888 etr_buf, node, pages);
889 if (rc) {
890 kfree(etr_buf);
891 return ERR_PTR(rc);
892 }
893
894 refcount_set(&etr_buf->refcount, 1);
895 dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n",
896 (unsigned long)size >> 10, etr_buf->mode);
897 return etr_buf;
898 }
899
tmc_free_etr_buf(struct etr_buf *etr_buf)900 static void tmc_free_etr_buf(struct etr_buf *etr_buf)
901 {
902 WARN_ON(!etr_buf->ops || !etr_buf->ops->free);
903 etr_buf->ops->free(etr_buf);
904 kfree(etr_buf);
905 }
906
907 /*
908 * tmc_etr_buf_get_data: Get the pointer the trace data at @offset
909 * with a maximum of @len bytes.
910 * Returns: The size of the linear data available @pos, with *bufpp
911 * updated to point to the buffer.
912 */
tmc_etr_buf_get_data(struct etr_buf *etr_buf, u64 offset, size_t len, char **bufpp)913 static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf,
914 u64 offset, size_t len, char **bufpp)
915 {
916 /* Adjust the length to limit this transaction to end of buffer */
917 len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset;
918
919 return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp);
920 }
921
922 static inline s64
tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset)923 tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset)
924 {
925 ssize_t len;
926 char *bufp;
927
928 len = tmc_etr_buf_get_data(etr_buf, offset,
929 CORESIGHT_BARRIER_PKT_SIZE, &bufp);
930 if (WARN_ON(len < 0 || len < CORESIGHT_BARRIER_PKT_SIZE))
931 return -EINVAL;
932 coresight_insert_barrier_packet(bufp);
933 return offset + CORESIGHT_BARRIER_PKT_SIZE;
934 }
935
936 /*
937 * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata.
938 * Makes sure the trace data is synced to the memory for consumption.
939 * @etr_buf->offset will hold the offset to the beginning of the trace data
940 * within the buffer, with @etr_buf->len bytes to consume.
941 */
tmc_sync_etr_buf(struct tmc_drvdata *drvdata)942 static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata)
943 {
944 struct etr_buf *etr_buf = drvdata->etr_buf;
945 u64 rrp, rwp;
946 u32 status;
947
948 rrp = tmc_read_rrp(drvdata);
949 rwp = tmc_read_rwp(drvdata);
950 status = readl_relaxed(drvdata->base + TMC_STS);
951
952 /*
953 * If there were memory errors in the session, truncate the
954 * buffer.
955 */
956 if (WARN_ON_ONCE(status & TMC_STS_MEMERR)) {
957 dev_dbg(&drvdata->csdev->dev,
958 "tmc memory error detected, truncating buffer\n");
959 etr_buf->len = 0;
960 etr_buf->full = 0;
961 return;
962 }
963
964 etr_buf->full = status & TMC_STS_FULL;
965
966 WARN_ON(!etr_buf->ops || !etr_buf->ops->sync);
967
968 etr_buf->ops->sync(etr_buf, rrp, rwp);
969 }
970
__tmc_etr_enable_hw(struct tmc_drvdata *drvdata)971 static void __tmc_etr_enable_hw(struct tmc_drvdata *drvdata)
972 {
973 u32 axictl, sts;
974 struct etr_buf *etr_buf = drvdata->etr_buf;
975
976 CS_UNLOCK(drvdata->base);
977
978 /* Wait for TMCSReady bit to be set */
979 tmc_wait_for_tmcready(drvdata);
980
981 writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ);
982 writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE);
983
984 axictl = readl_relaxed(drvdata->base + TMC_AXICTL);
985 axictl &= ~TMC_AXICTL_CLEAR_MASK;
986 axictl |= (TMC_AXICTL_PROT_CTL_B1 | TMC_AXICTL_WR_BURST_16);
987 axictl |= TMC_AXICTL_AXCACHE_OS;
988
989 if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) {
990 axictl &= ~TMC_AXICTL_ARCACHE_MASK;
991 axictl |= TMC_AXICTL_ARCACHE_OS;
992 }
993
994 if (etr_buf->mode == ETR_MODE_ETR_SG)
995 axictl |= TMC_AXICTL_SCT_GAT_MODE;
996
997 writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
998 tmc_write_dba(drvdata, etr_buf->hwaddr);
999 /*
1000 * If the TMC pointers must be programmed before the session,
1001 * we have to set it properly (i.e, RRP/RWP to base address and
1002 * STS to "not full").
1003 */
1004 if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) {
1005 tmc_write_rrp(drvdata, etr_buf->hwaddr);
1006 tmc_write_rwp(drvdata, etr_buf->hwaddr);
1007 sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL;
1008 writel_relaxed(sts, drvdata->base + TMC_STS);
1009 }
1010
1011 writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI |
1012 TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT |
1013 TMC_FFCR_TRIGON_TRIGIN,
1014 drvdata->base + TMC_FFCR);
1015 writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG);
1016 tmc_enable_hw(drvdata);
1017
1018 CS_LOCK(drvdata->base);
1019 }
1020
tmc_etr_enable_hw(struct tmc_drvdata *drvdata, struct etr_buf *etr_buf)1021 static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata,
1022 struct etr_buf *etr_buf)
1023 {
1024 int rc;
1025
1026 /* Callers should provide an appropriate buffer for use */
1027 if (WARN_ON(!etr_buf))
1028 return -EINVAL;
1029
1030 if ((etr_buf->mode == ETR_MODE_ETR_SG) &&
1031 WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG)))
1032 return -EINVAL;
1033
1034 if (WARN_ON(drvdata->etr_buf))
1035 return -EBUSY;
1036
1037 /*
1038 * If this ETR is connected to a CATU, enable it before we turn
1039 * this on.
1040 */
1041 rc = tmc_etr_enable_catu(drvdata, etr_buf);
1042 if (rc)
1043 return rc;
1044 rc = coresight_claim_device(drvdata->base);
1045 if (!rc) {
1046 drvdata->etr_buf = etr_buf;
1047 __tmc_etr_enable_hw(drvdata);
1048 }
1049
1050 return rc;
1051 }
1052
1053 /*
1054 * Return the available trace data in the buffer (starts at etr_buf->offset,
1055 * limited by etr_buf->len) from @pos, with a maximum limit of @len,
1056 * also updating the @bufpp on where to find it. Since the trace data
1057 * starts at anywhere in the buffer, depending on the RRP, we adjust the
1058 * @len returned to handle buffer wrapping around.
1059 *
1060 * We are protected here by drvdata->reading != 0, which ensures the
1061 * sysfs_buf stays alive.
1062 */
tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata, loff_t pos, size_t len, char **bufpp)1063 ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata,
1064 loff_t pos, size_t len, char **bufpp)
1065 {
1066 s64 offset;
1067 ssize_t actual = len;
1068 struct etr_buf *etr_buf = drvdata->sysfs_buf;
1069
1070 if (pos + actual > etr_buf->len)
1071 actual = etr_buf->len - pos;
1072 if (actual <= 0)
1073 return actual;
1074
1075 /* Compute the offset from which we read the data */
1076 offset = etr_buf->offset + pos;
1077 if (offset >= etr_buf->size)
1078 offset -= etr_buf->size;
1079 return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp);
1080 }
1081
1082 static struct etr_buf *
tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata)1083 tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata)
1084 {
1085 return tmc_alloc_etr_buf(drvdata, drvdata->size,
1086 0, cpu_to_node(0), NULL);
1087 }
1088
1089 static void
tmc_etr_free_sysfs_buf(struct etr_buf *buf)1090 tmc_etr_free_sysfs_buf(struct etr_buf *buf)
1091 {
1092 if (buf)
1093 tmc_free_etr_buf(buf);
1094 }
1095
tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata)1096 static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata)
1097 {
1098 struct etr_buf *etr_buf = drvdata->etr_buf;
1099
1100 if (WARN_ON(drvdata->sysfs_buf != etr_buf)) {
1101 tmc_etr_free_sysfs_buf(drvdata->sysfs_buf);
1102 drvdata->sysfs_buf = NULL;
1103 } else {
1104 tmc_sync_etr_buf(drvdata);
1105 /*
1106 * Insert barrier packets at the beginning, if there was
1107 * an overflow.
1108 */
1109 if (etr_buf->full)
1110 tmc_etr_buf_insert_barrier_packet(etr_buf,
1111 etr_buf->offset);
1112 }
1113 }
1114
__tmc_etr_disable_hw(struct tmc_drvdata *drvdata)1115 static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1116 {
1117 CS_UNLOCK(drvdata->base);
1118
1119 tmc_flush_and_stop(drvdata);
1120 /*
1121 * When operating in sysFS mode the content of the buffer needs to be
1122 * read before the TMC is disabled.
1123 */
1124 if (drvdata->mode == CS_MODE_SYSFS)
1125 tmc_etr_sync_sysfs_buf(drvdata);
1126
1127 tmc_disable_hw(drvdata);
1128
1129 CS_LOCK(drvdata->base);
1130
1131 }
1132
tmc_etr_disable_hw(struct tmc_drvdata *drvdata)1133 void tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1134 {
1135 __tmc_etr_disable_hw(drvdata);
1136 /* Disable CATU device if this ETR is connected to one */
1137 tmc_etr_disable_catu(drvdata);
1138 coresight_disclaim_device(drvdata->base);
1139 /* Reset the ETR buf used by hardware */
1140 drvdata->etr_buf = NULL;
1141 }
1142
tmc_enable_etr_sink_sysfs(struct coresight_device *csdev)1143 static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev)
1144 {
1145 int ret = 0;
1146 unsigned long flags;
1147 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1148 struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL;
1149
1150 /*
1151 * If we are enabling the ETR from disabled state, we need to make
1152 * sure we have a buffer with the right size. The etr_buf is not reset
1153 * immediately after we stop the tracing in SYSFS mode as we wait for
1154 * the user to collect the data. We may be able to reuse the existing
1155 * buffer, provided the size matches. Any allocation has to be done
1156 * with the lock released.
1157 */
1158 spin_lock_irqsave(&drvdata->spinlock, flags);
1159 sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1160 if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) {
1161 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1162
1163 /* Allocate memory with the locks released */
1164 free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata);
1165 if (IS_ERR(new_buf))
1166 return PTR_ERR(new_buf);
1167
1168 /* Let's try again */
1169 spin_lock_irqsave(&drvdata->spinlock, flags);
1170 }
1171
1172 if (drvdata->reading || drvdata->mode == CS_MODE_PERF) {
1173 ret = -EBUSY;
1174 goto out;
1175 }
1176
1177 /*
1178 * In sysFS mode we can have multiple writers per sink. Since this
1179 * sink is already enabled no memory is needed and the HW need not be
1180 * touched, even if the buffer size has changed.
1181 */
1182 if (drvdata->mode == CS_MODE_SYSFS) {
1183 atomic_inc(csdev->refcnt);
1184 goto out;
1185 }
1186
1187 /*
1188 * If we don't have a buffer or it doesn't match the requested size,
1189 * use the buffer allocated above. Otherwise reuse the existing buffer.
1190 */
1191 sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1192 if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) {
1193 free_buf = sysfs_buf;
1194 drvdata->sysfs_buf = new_buf;
1195 }
1196
1197 ret = tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf);
1198 if (!ret) {
1199 drvdata->mode = CS_MODE_SYSFS;
1200 atomic_inc(csdev->refcnt);
1201 }
1202 out:
1203 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1204
1205 /* Free memory outside the spinlock if need be */
1206 if (free_buf)
1207 tmc_etr_free_sysfs_buf(free_buf);
1208
1209 if (!ret)
1210 dev_dbg(&csdev->dev, "TMC-ETR enabled\n");
1211
1212 return ret;
1213 }
1214
1215 /*
1216 * alloc_etr_buf: Allocate ETR buffer for use by perf.
1217 * The size of the hardware buffer is dependent on the size configured
1218 * via sysfs and the perf ring buffer size. We prefer to allocate the
1219 * largest possible size, scaling down the size by half until it
1220 * reaches a minimum limit (1M), beyond which we give up.
1221 */
1222 static struct etr_buf *
alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event, int nr_pages, void **pages, bool snapshot)1223 alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1224 int nr_pages, void **pages, bool snapshot)
1225 {
1226 int node;
1227 struct etr_buf *etr_buf;
1228 unsigned long size;
1229
1230 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1231 /*
1232 * Try to match the perf ring buffer size if it is larger
1233 * than the size requested via sysfs.
1234 */
1235 if ((nr_pages << PAGE_SHIFT) > drvdata->size) {
1236 etr_buf = tmc_alloc_etr_buf(drvdata, ((ssize_t)nr_pages << PAGE_SHIFT),
1237 0, node, NULL);
1238 if (!IS_ERR(etr_buf))
1239 goto done;
1240 }
1241
1242 /*
1243 * Else switch to configured size for this ETR
1244 * and scale down until we hit the minimum limit.
1245 */
1246 size = drvdata->size;
1247 do {
1248 etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL);
1249 if (!IS_ERR(etr_buf))
1250 goto done;
1251 size /= 2;
1252 } while (size >= TMC_ETR_PERF_MIN_BUF_SIZE);
1253
1254 return ERR_PTR(-ENOMEM);
1255
1256 done:
1257 return etr_buf;
1258 }
1259
1260 static struct etr_buf *
get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata, struct perf_event *event, int nr_pages, void **pages, bool snapshot)1261 get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata,
1262 struct perf_event *event, int nr_pages,
1263 void **pages, bool snapshot)
1264 {
1265 int ret;
1266 pid_t pid = task_pid_nr(event->owner);
1267 struct etr_buf *etr_buf;
1268
1269 retry:
1270 /*
1271 * An etr_perf_buffer is associated with an event and holds a reference
1272 * to the AUX ring buffer that was created for that event. In CPU-wide
1273 * N:1 mode multiple events (one per CPU), each with its own AUX ring
1274 * buffer, share a sink. As such an etr_perf_buffer is created for each
1275 * event but a single etr_buf associated with the ETR is shared between
1276 * them. The last event in a trace session will copy the content of the
1277 * etr_buf to its AUX ring buffer. Ring buffer associated to other
1278 * events are simply not used an freed as events are destoyed. We still
1279 * need to allocate a ring buffer for each event since we don't know
1280 * which event will be last.
1281 */
1282
1283 /*
1284 * The first thing to do here is check if an etr_buf has already been
1285 * allocated for this session. If so it is shared with this event,
1286 * otherwise it is created.
1287 */
1288 mutex_lock(&drvdata->idr_mutex);
1289 etr_buf = idr_find(&drvdata->idr, pid);
1290 if (etr_buf) {
1291 refcount_inc(&etr_buf->refcount);
1292 mutex_unlock(&drvdata->idr_mutex);
1293 return etr_buf;
1294 }
1295
1296 /* If we made it here no buffer has been allocated, do so now. */
1297 mutex_unlock(&drvdata->idr_mutex);
1298
1299 etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1300 if (IS_ERR(etr_buf))
1301 return etr_buf;
1302
1303 /* Now that we have a buffer, add it to the IDR. */
1304 mutex_lock(&drvdata->idr_mutex);
1305 ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL);
1306 mutex_unlock(&drvdata->idr_mutex);
1307
1308 /* Another event with this session ID has allocated this buffer. */
1309 if (ret == -ENOSPC) {
1310 tmc_free_etr_buf(etr_buf);
1311 goto retry;
1312 }
1313
1314 /* The IDR can't allocate room for a new session, abandon ship. */
1315 if (ret == -ENOMEM) {
1316 tmc_free_etr_buf(etr_buf);
1317 return ERR_PTR(ret);
1318 }
1319
1320
1321 return etr_buf;
1322 }
1323
1324 static struct etr_buf *
get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata, struct perf_event *event, int nr_pages, void **pages, bool snapshot)1325 get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata,
1326 struct perf_event *event, int nr_pages,
1327 void **pages, bool snapshot)
1328 {
1329 /*
1330 * In per-thread mode the etr_buf isn't shared, so just go ahead
1331 * with memory allocation.
1332 */
1333 return alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1334 }
1335
1336 static struct etr_buf *
get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event, int nr_pages, void **pages, bool snapshot)1337 get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1338 int nr_pages, void **pages, bool snapshot)
1339 {
1340 if (event->cpu == -1)
1341 return get_perf_etr_buf_per_thread(drvdata, event, nr_pages,
1342 pages, snapshot);
1343
1344 return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages,
1345 pages, snapshot);
1346 }
1347
1348 static struct etr_perf_buffer *
tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event, int nr_pages, void **pages, bool snapshot)1349 tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1350 int nr_pages, void **pages, bool snapshot)
1351 {
1352 int node;
1353 struct etr_buf *etr_buf;
1354 struct etr_perf_buffer *etr_perf;
1355
1356 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1357
1358 etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node);
1359 if (!etr_perf)
1360 return ERR_PTR(-ENOMEM);
1361
1362 etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1363 if (!IS_ERR(etr_buf))
1364 goto done;
1365
1366 kfree(etr_perf);
1367 return ERR_PTR(-ENOMEM);
1368
1369 done:
1370 /*
1371 * Keep a reference to the ETR this buffer has been allocated for
1372 * in order to have access to the IDR in tmc_free_etr_buffer().
1373 */
1374 etr_perf->drvdata = drvdata;
1375 etr_perf->etr_buf = etr_buf;
1376
1377 return etr_perf;
1378 }
1379
1380
tmc_alloc_etr_buffer(struct coresight_device *csdev, struct perf_event *event, void **pages, int nr_pages, bool snapshot)1381 static void *tmc_alloc_etr_buffer(struct coresight_device *csdev,
1382 struct perf_event *event, void **pages,
1383 int nr_pages, bool snapshot)
1384 {
1385 struct etr_perf_buffer *etr_perf;
1386 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1387
1388 etr_perf = tmc_etr_setup_perf_buf(drvdata, event,
1389 nr_pages, pages, snapshot);
1390 if (IS_ERR(etr_perf)) {
1391 dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n");
1392 return NULL;
1393 }
1394
1395 etr_perf->pid = task_pid_nr(event->owner);
1396 etr_perf->snapshot = snapshot;
1397 etr_perf->nr_pages = nr_pages;
1398 etr_perf->pages = pages;
1399
1400 return etr_perf;
1401 }
1402
tmc_free_etr_buffer(void *config)1403 static void tmc_free_etr_buffer(void *config)
1404 {
1405 struct etr_perf_buffer *etr_perf = config;
1406 struct tmc_drvdata *drvdata = etr_perf->drvdata;
1407 struct etr_buf *buf, *etr_buf = etr_perf->etr_buf;
1408
1409 if (!etr_buf)
1410 goto free_etr_perf_buffer;
1411
1412 mutex_lock(&drvdata->idr_mutex);
1413 /* If we are not the last one to use the buffer, don't touch it. */
1414 if (!refcount_dec_and_test(&etr_buf->refcount)) {
1415 mutex_unlock(&drvdata->idr_mutex);
1416 goto free_etr_perf_buffer;
1417 }
1418
1419 /* We are the last one, remove from the IDR and free the buffer. */
1420 buf = idr_remove(&drvdata->idr, etr_perf->pid);
1421 mutex_unlock(&drvdata->idr_mutex);
1422
1423 /*
1424 * Something went very wrong if the buffer associated with this ID
1425 * is not the same in the IDR. Leak to avoid use after free.
1426 */
1427 if (buf && WARN_ON(buf != etr_buf))
1428 goto free_etr_perf_buffer;
1429
1430 tmc_free_etr_buf(etr_perf->etr_buf);
1431
1432 free_etr_perf_buffer:
1433 kfree(etr_perf);
1434 }
1435
1436 /*
1437 * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware
1438 * buffer to the perf ring buffer.
1439 */
tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf, unsigned long src_offset, unsigned long to_copy)1440 static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf,
1441 unsigned long src_offset,
1442 unsigned long to_copy)
1443 {
1444 long bytes;
1445 long pg_idx, pg_offset;
1446 unsigned long head = etr_perf->head;
1447 char **dst_pages, *src_buf;
1448 struct etr_buf *etr_buf = etr_perf->etr_buf;
1449
1450 head = etr_perf->head;
1451 pg_idx = head >> PAGE_SHIFT;
1452 pg_offset = head & (PAGE_SIZE - 1);
1453 dst_pages = (char **)etr_perf->pages;
1454
1455 while (to_copy > 0) {
1456 /*
1457 * In one iteration, we can copy minimum of :
1458 * 1) what is available in the source buffer,
1459 * 2) what is available in the source buffer, before it
1460 * wraps around.
1461 * 3) what is available in the destination page.
1462 * in one iteration.
1463 */
1464 if (src_offset >= etr_buf->size)
1465 src_offset -= etr_buf->size;
1466 bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy,
1467 &src_buf);
1468 if (WARN_ON_ONCE(bytes <= 0))
1469 break;
1470 bytes = min(bytes, (long)(PAGE_SIZE - pg_offset));
1471
1472 memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes);
1473
1474 to_copy -= bytes;
1475
1476 /* Move destination pointers */
1477 pg_offset += bytes;
1478 if (pg_offset == PAGE_SIZE) {
1479 pg_offset = 0;
1480 if (++pg_idx == etr_perf->nr_pages)
1481 pg_idx = 0;
1482 }
1483
1484 /* Move source pointers */
1485 src_offset += bytes;
1486 }
1487 }
1488
1489 /*
1490 * tmc_update_etr_buffer : Update the perf ring buffer with the
1491 * available trace data. We use software double buffering at the moment.
1492 *
1493 * TODO: Add support for reusing the perf ring buffer.
1494 */
1495 static unsigned long
tmc_update_etr_buffer(struct coresight_device *csdev, struct perf_output_handle *handle, void *config)1496 tmc_update_etr_buffer(struct coresight_device *csdev,
1497 struct perf_output_handle *handle,
1498 void *config)
1499 {
1500 bool lost = false;
1501 unsigned long flags, offset, size = 0;
1502 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1503 struct etr_perf_buffer *etr_perf = config;
1504 struct etr_buf *etr_buf = etr_perf->etr_buf;
1505
1506 spin_lock_irqsave(&drvdata->spinlock, flags);
1507
1508 /* Don't do anything if another tracer is using this sink */
1509 if (atomic_read(csdev->refcnt) != 1) {
1510 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1511 goto out;
1512 }
1513
1514 if (WARN_ON(drvdata->perf_buf != etr_buf)) {
1515 lost = true;
1516 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1517 goto out;
1518 }
1519
1520 CS_UNLOCK(drvdata->base);
1521
1522 tmc_flush_and_stop(drvdata);
1523 tmc_sync_etr_buf(drvdata);
1524
1525 CS_LOCK(drvdata->base);
1526 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1527
1528 lost = etr_buf->full;
1529 offset = etr_buf->offset;
1530 size = etr_buf->len;
1531
1532 /*
1533 * The ETR buffer may be bigger than the space available in the
1534 * perf ring buffer (handle->size). If so advance the offset so that we
1535 * get the latest trace data. In snapshot mode none of that matters
1536 * since we are expected to clobber stale data in favour of the latest
1537 * traces.
1538 */
1539 if (!etr_perf->snapshot && size > handle->size) {
1540 u32 mask = tmc_get_memwidth_mask(drvdata);
1541
1542 /*
1543 * Make sure the new size is aligned in accordance with the
1544 * requirement explained in function tmc_get_memwidth_mask().
1545 */
1546 size = handle->size & mask;
1547 offset = etr_buf->offset + etr_buf->len - size;
1548
1549 if (offset >= etr_buf->size)
1550 offset -= etr_buf->size;
1551 lost = true;
1552 }
1553
1554 /* Insert barrier packets at the beginning, if there was an overflow */
1555 if (lost)
1556 tmc_etr_buf_insert_barrier_packet(etr_buf, offset);
1557 tmc_etr_sync_perf_buffer(etr_perf, offset, size);
1558
1559 /*
1560 * In snapshot mode we simply increment the head by the number of byte
1561 * that were written. User space function cs_etm_find_snapshot() will
1562 * figure out how many bytes to get from the AUX buffer based on the
1563 * position of the head.
1564 */
1565 if (etr_perf->snapshot)
1566 handle->head += size;
1567 out:
1568 /*
1569 * Don't set the TRUNCATED flag in snapshot mode because 1) the
1570 * captured buffer is expected to be truncated and 2) a full buffer
1571 * prevents the event from being re-enabled by the perf core,
1572 * resulting in stale data being send to user space.
1573 */
1574 if (!etr_perf->snapshot && lost)
1575 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
1576 return size;
1577 }
1578
tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data)1579 static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data)
1580 {
1581 int rc = 0;
1582 pid_t pid;
1583 unsigned long flags;
1584 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1585 struct perf_output_handle *handle = data;
1586 struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle);
1587
1588 spin_lock_irqsave(&drvdata->spinlock, flags);
1589 /* Don't use this sink if it is already claimed by sysFS */
1590 if (drvdata->mode == CS_MODE_SYSFS) {
1591 rc = -EBUSY;
1592 goto unlock_out;
1593 }
1594
1595 if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) {
1596 rc = -EINVAL;
1597 goto unlock_out;
1598 }
1599
1600 /* Get a handle on the pid of the process to monitor */
1601 pid = etr_perf->pid;
1602
1603 /* Do not proceed if this device is associated with another session */
1604 if (drvdata->pid != -1 && drvdata->pid != pid) {
1605 rc = -EBUSY;
1606 goto unlock_out;
1607 }
1608
1609 etr_perf->head = PERF_IDX2OFF(handle->head, etr_perf);
1610
1611 /*
1612 * No HW configuration is needed if the sink is already in
1613 * use for this session.
1614 */
1615 if (drvdata->pid == pid) {
1616 atomic_inc(csdev->refcnt);
1617 goto unlock_out;
1618 }
1619
1620 rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf);
1621 if (!rc) {
1622 /* Associate with monitored process. */
1623 drvdata->pid = pid;
1624 drvdata->mode = CS_MODE_PERF;
1625 drvdata->perf_buf = etr_perf->etr_buf;
1626 atomic_inc(csdev->refcnt);
1627 }
1628
1629 unlock_out:
1630 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1631 return rc;
1632 }
1633
tmc_enable_etr_sink(struct coresight_device *csdev, u32 mode, void *data)1634 static int tmc_enable_etr_sink(struct coresight_device *csdev,
1635 u32 mode, void *data)
1636 {
1637 switch (mode) {
1638 case CS_MODE_SYSFS:
1639 return tmc_enable_etr_sink_sysfs(csdev);
1640 case CS_MODE_PERF:
1641 return tmc_enable_etr_sink_perf(csdev, data);
1642 }
1643
1644 /* We shouldn't be here */
1645 return -EINVAL;
1646 }
1647
tmc_disable_etr_sink(struct coresight_device *csdev)1648 static int tmc_disable_etr_sink(struct coresight_device *csdev)
1649 {
1650 unsigned long flags;
1651 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1652
1653 spin_lock_irqsave(&drvdata->spinlock, flags);
1654
1655 if (drvdata->reading) {
1656 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1657 return -EBUSY;
1658 }
1659
1660 if (atomic_dec_return(csdev->refcnt)) {
1661 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1662 return -EBUSY;
1663 }
1664
1665 /* Complain if we (somehow) got out of sync */
1666 WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED);
1667 tmc_etr_disable_hw(drvdata);
1668 /* Dissociate from monitored process. */
1669 drvdata->pid = -1;
1670 drvdata->mode = CS_MODE_DISABLED;
1671 /* Reset perf specific data */
1672 drvdata->perf_buf = NULL;
1673
1674 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1675
1676 dev_dbg(&csdev->dev, "TMC-ETR disabled\n");
1677 return 0;
1678 }
1679
1680 static const struct coresight_ops_sink tmc_etr_sink_ops = {
1681 .enable = tmc_enable_etr_sink,
1682 .disable = tmc_disable_etr_sink,
1683 .alloc_buffer = tmc_alloc_etr_buffer,
1684 .update_buffer = tmc_update_etr_buffer,
1685 .free_buffer = tmc_free_etr_buffer,
1686 };
1687
1688 const struct coresight_ops tmc_etr_cs_ops = {
1689 .sink_ops = &tmc_etr_sink_ops,
1690 };
1691
tmc_read_prepare_etr(struct tmc_drvdata *drvdata)1692 int tmc_read_prepare_etr(struct tmc_drvdata *drvdata)
1693 {
1694 int ret = 0;
1695 unsigned long flags;
1696
1697 /* config types are set a boot time and never change */
1698 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1699 return -EINVAL;
1700
1701 spin_lock_irqsave(&drvdata->spinlock, flags);
1702 if (drvdata->reading) {
1703 ret = -EBUSY;
1704 goto out;
1705 }
1706
1707 /*
1708 * We can safely allow reads even if the ETR is operating in PERF mode,
1709 * since the sysfs session is captured in mode specific data.
1710 * If drvdata::sysfs_data is NULL the trace data has been read already.
1711 */
1712 if (!drvdata->sysfs_buf) {
1713 ret = -EINVAL;
1714 goto out;
1715 }
1716
1717 /* Disable the TMC if we are trying to read from a running session. */
1718 if (drvdata->mode == CS_MODE_SYSFS)
1719 __tmc_etr_disable_hw(drvdata);
1720
1721 drvdata->reading = true;
1722 out:
1723 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1724
1725 return ret;
1726 }
1727
tmc_read_unprepare_etr(struct tmc_drvdata *drvdata)1728 int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata)
1729 {
1730 unsigned long flags;
1731 struct etr_buf *sysfs_buf = NULL;
1732
1733 /* config types are set a boot time and never change */
1734 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1735 return -EINVAL;
1736
1737 spin_lock_irqsave(&drvdata->spinlock, flags);
1738
1739 /* RE-enable the TMC if need be */
1740 if (drvdata->mode == CS_MODE_SYSFS) {
1741 /*
1742 * The trace run will continue with the same allocated trace
1743 * buffer. Since the tracer is still enabled drvdata::buf can't
1744 * be NULL.
1745 */
1746 __tmc_etr_enable_hw(drvdata);
1747 } else {
1748 /*
1749 * The ETR is not tracing and the buffer was just read.
1750 * As such prepare to free the trace buffer.
1751 */
1752 sysfs_buf = drvdata->sysfs_buf;
1753 drvdata->sysfs_buf = NULL;
1754 }
1755
1756 drvdata->reading = false;
1757 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1758
1759 /* Free allocated memory out side of the spinlock */
1760 if (sysfs_buf)
1761 tmc_etr_free_sysfs_buf(sysfs_buf);
1762
1763 return 0;
1764 }
1765