1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  HID support for Linux
4  *
5  *  Copyright (c) 1999 Andreas Gal
6  *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7  *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8  *  Copyright (c) 2006-2012 Jiri Kosina
9  */
10 
11 /*
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/spinlock.h>
23 #include <asm/unaligned.h>
24 #include <asm/byteorder.h>
25 #include <linux/input.h>
26 #include <linux/wait.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
35 
36 #include "hid-ids.h"
37 
38 /*
39  * Version Information
40  */
41 
42 #define DRIVER_DESC "HID core driver"
43 
44 int hid_debug = 0;
45 module_param_named(debug, hid_debug, int, 0600);
46 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
47 EXPORT_SYMBOL_GPL(hid_debug);
48 
49 static int hid_ignore_special_drivers = 0;
50 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
51 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
52 
53 /*
54  * Register a new report for a device.
55  */
56 
hid_register_report(struct hid_device *device, unsigned int type, unsigned int id, unsigned int application)57 struct hid_report *hid_register_report(struct hid_device *device,
58 				       unsigned int type, unsigned int id,
59 				       unsigned int application)
60 {
61 	struct hid_report_enum *report_enum = device->report_enum + type;
62 	struct hid_report *report;
63 
64 	if (id >= HID_MAX_IDS)
65 		return NULL;
66 	if (report_enum->report_id_hash[id])
67 		return report_enum->report_id_hash[id];
68 
69 	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
70 	if (!report)
71 		return NULL;
72 
73 	if (id != 0)
74 		report_enum->numbered = 1;
75 
76 	report->id = id;
77 	report->type = type;
78 	report->size = 0;
79 	report->device = device;
80 	report->application = application;
81 	report_enum->report_id_hash[id] = report;
82 
83 	list_add_tail(&report->list, &report_enum->report_list);
84 
85 	return report;
86 }
87 EXPORT_SYMBOL_GPL(hid_register_report);
88 
89 /*
90  * Register a new field for this report.
91  */
92 
hid_register_field(struct hid_report *report, unsigned usages)93 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
94 {
95 	struct hid_field *field;
96 
97 	if (report->maxfield == HID_MAX_FIELDS) {
98 		hid_err(report->device, "too many fields in report\n");
99 		return NULL;
100 	}
101 
102 	field = kzalloc((sizeof(struct hid_field) +
103 			 usages * sizeof(struct hid_usage) +
104 			 usages * sizeof(unsigned)), GFP_KERNEL);
105 	if (!field)
106 		return NULL;
107 
108 	field->index = report->maxfield++;
109 	report->field[field->index] = field;
110 	field->usage = (struct hid_usage *)(field + 1);
111 	field->value = (s32 *)(field->usage + usages);
112 	field->report = report;
113 
114 	return field;
115 }
116 
117 /*
118  * Open a collection. The type/usage is pushed on the stack.
119  */
120 
open_collection(struct hid_parser *parser, unsigned type)121 static int open_collection(struct hid_parser *parser, unsigned type)
122 {
123 	struct hid_collection *collection;
124 	unsigned usage;
125 	int collection_index;
126 
127 	usage = parser->local.usage[0];
128 
129 	if (parser->collection_stack_ptr == parser->collection_stack_size) {
130 		unsigned int *collection_stack;
131 		unsigned int new_size = parser->collection_stack_size +
132 					HID_COLLECTION_STACK_SIZE;
133 
134 		collection_stack = krealloc(parser->collection_stack,
135 					    new_size * sizeof(unsigned int),
136 					    GFP_KERNEL);
137 		if (!collection_stack)
138 			return -ENOMEM;
139 
140 		parser->collection_stack = collection_stack;
141 		parser->collection_stack_size = new_size;
142 	}
143 
144 	if (parser->device->maxcollection == parser->device->collection_size) {
145 		collection = kmalloc(
146 				array3_size(sizeof(struct hid_collection),
147 					    parser->device->collection_size,
148 					    2),
149 				GFP_KERNEL);
150 		if (collection == NULL) {
151 			hid_err(parser->device, "failed to reallocate collection array\n");
152 			return -ENOMEM;
153 		}
154 		memcpy(collection, parser->device->collection,
155 			sizeof(struct hid_collection) *
156 			parser->device->collection_size);
157 		memset(collection + parser->device->collection_size, 0,
158 			sizeof(struct hid_collection) *
159 			parser->device->collection_size);
160 		kfree(parser->device->collection);
161 		parser->device->collection = collection;
162 		parser->device->collection_size *= 2;
163 	}
164 
165 	parser->collection_stack[parser->collection_stack_ptr++] =
166 		parser->device->maxcollection;
167 
168 	collection_index = parser->device->maxcollection++;
169 	collection = parser->device->collection + collection_index;
170 	collection->type = type;
171 	collection->usage = usage;
172 	collection->level = parser->collection_stack_ptr - 1;
173 	collection->parent_idx = (collection->level == 0) ? -1 :
174 		parser->collection_stack[collection->level - 1];
175 
176 	if (type == HID_COLLECTION_APPLICATION)
177 		parser->device->maxapplication++;
178 
179 	return 0;
180 }
181 
182 /*
183  * Close a collection.
184  */
185 
close_collection(struct hid_parser *parser)186 static int close_collection(struct hid_parser *parser)
187 {
188 	if (!parser->collection_stack_ptr) {
189 		hid_err(parser->device, "collection stack underflow\n");
190 		return -EINVAL;
191 	}
192 	parser->collection_stack_ptr--;
193 	return 0;
194 }
195 
196 /*
197  * Climb up the stack, search for the specified collection type
198  * and return the usage.
199  */
200 
hid_lookup_collection(struct hid_parser *parser, unsigned type)201 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
202 {
203 	struct hid_collection *collection = parser->device->collection;
204 	int n;
205 
206 	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
207 		unsigned index = parser->collection_stack[n];
208 		if (collection[index].type == type)
209 			return collection[index].usage;
210 	}
211 	return 0; /* we know nothing about this usage type */
212 }
213 
214 /*
215  * Concatenate usage which defines 16 bits or less with the
216  * currently defined usage page to form a 32 bit usage
217  */
218 
complete_usage(struct hid_parser *parser, unsigned int index)219 static void complete_usage(struct hid_parser *parser, unsigned int index)
220 {
221 	parser->local.usage[index] &= 0xFFFF;
222 	parser->local.usage[index] |=
223 		(parser->global.usage_page & 0xFFFF) << 16;
224 }
225 
226 /*
227  * Add a usage to the temporary parser table.
228  */
229 
hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)230 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
231 {
232 	if (parser->local.usage_index >= HID_MAX_USAGES) {
233 		hid_err(parser->device, "usage index exceeded\n");
234 		return -1;
235 	}
236 	parser->local.usage[parser->local.usage_index] = usage;
237 
238 	/*
239 	 * If Usage item only includes usage id, concatenate it with
240 	 * currently defined usage page
241 	 */
242 	if (size <= 2)
243 		complete_usage(parser, parser->local.usage_index);
244 
245 	parser->local.usage_size[parser->local.usage_index] = size;
246 	parser->local.collection_index[parser->local.usage_index] =
247 		parser->collection_stack_ptr ?
248 		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
249 	parser->local.usage_index++;
250 	return 0;
251 }
252 
253 /*
254  * Register a new field for this report.
255  */
256 
hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)257 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
258 {
259 	struct hid_report *report;
260 	struct hid_field *field;
261 	unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
262 	unsigned int usages;
263 	unsigned int offset;
264 	unsigned int i;
265 	unsigned int application;
266 
267 	application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
268 
269 	report = hid_register_report(parser->device, report_type,
270 				     parser->global.report_id, application);
271 	if (!report) {
272 		hid_err(parser->device, "hid_register_report failed\n");
273 		return -1;
274 	}
275 
276 	/* Handle both signed and unsigned cases properly */
277 	if ((parser->global.logical_minimum < 0 &&
278 		parser->global.logical_maximum <
279 		parser->global.logical_minimum) ||
280 		(parser->global.logical_minimum >= 0 &&
281 		(__u32)parser->global.logical_maximum <
282 		(__u32)parser->global.logical_minimum)) {
283 		dbg_hid("logical range invalid 0x%x 0x%x\n",
284 			parser->global.logical_minimum,
285 			parser->global.logical_maximum);
286 		return -1;
287 	}
288 
289 	offset = report->size;
290 	report->size += parser->global.report_size * parser->global.report_count;
291 
292 	if (parser->device->ll_driver->max_buffer_size)
293 		max_buffer_size = parser->device->ll_driver->max_buffer_size;
294 
295 	/* Total size check: Allow for possible report index byte */
296 	if (report->size > (max_buffer_size - 1) << 3) {
297 		hid_err(parser->device, "report is too long\n");
298 		return -1;
299 	}
300 
301 	if (!parser->local.usage_index) /* Ignore padding fields */
302 		return 0;
303 
304 	usages = max_t(unsigned, parser->local.usage_index,
305 				 parser->global.report_count);
306 
307 	field = hid_register_field(report, usages);
308 	if (!field)
309 		return 0;
310 
311 	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
312 	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
313 	field->application = application;
314 
315 	for (i = 0; i < usages; i++) {
316 		unsigned j = i;
317 		/* Duplicate the last usage we parsed if we have excess values */
318 		if (i >= parser->local.usage_index)
319 			j = parser->local.usage_index - 1;
320 		field->usage[i].hid = parser->local.usage[j];
321 		field->usage[i].collection_index =
322 			parser->local.collection_index[j];
323 		field->usage[i].usage_index = i;
324 		field->usage[i].resolution_multiplier = 1;
325 	}
326 
327 	field->maxusage = usages;
328 	field->flags = flags;
329 	field->report_offset = offset;
330 	field->report_type = report_type;
331 	field->report_size = parser->global.report_size;
332 	field->report_count = parser->global.report_count;
333 	field->logical_minimum = parser->global.logical_minimum;
334 	field->logical_maximum = parser->global.logical_maximum;
335 	field->physical_minimum = parser->global.physical_minimum;
336 	field->physical_maximum = parser->global.physical_maximum;
337 	field->unit_exponent = parser->global.unit_exponent;
338 	field->unit = parser->global.unit;
339 
340 	return 0;
341 }
342 
343 /*
344  * Read data value from item.
345  */
346 
item_udata(struct hid_item *item)347 static u32 item_udata(struct hid_item *item)
348 {
349 	switch (item->size) {
350 	case 1: return item->data.u8;
351 	case 2: return item->data.u16;
352 	case 4: return item->data.u32;
353 	}
354 	return 0;
355 }
356 
item_sdata(struct hid_item *item)357 static s32 item_sdata(struct hid_item *item)
358 {
359 	switch (item->size) {
360 	case 1: return item->data.s8;
361 	case 2: return item->data.s16;
362 	case 4: return item->data.s32;
363 	}
364 	return 0;
365 }
366 
367 /*
368  * Process a global item.
369  */
370 
hid_parser_global(struct hid_parser *parser, struct hid_item *item)371 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
372 {
373 	__s32 raw_value;
374 	switch (item->tag) {
375 	case HID_GLOBAL_ITEM_TAG_PUSH:
376 
377 		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
378 			hid_err(parser->device, "global environment stack overflow\n");
379 			return -1;
380 		}
381 
382 		memcpy(parser->global_stack + parser->global_stack_ptr++,
383 			&parser->global, sizeof(struct hid_global));
384 		return 0;
385 
386 	case HID_GLOBAL_ITEM_TAG_POP:
387 
388 		if (!parser->global_stack_ptr) {
389 			hid_err(parser->device, "global environment stack underflow\n");
390 			return -1;
391 		}
392 
393 		memcpy(&parser->global, parser->global_stack +
394 			--parser->global_stack_ptr, sizeof(struct hid_global));
395 		return 0;
396 
397 	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
398 		parser->global.usage_page = item_udata(item);
399 		return 0;
400 
401 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
402 		parser->global.logical_minimum = item_sdata(item);
403 		return 0;
404 
405 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
406 		if (parser->global.logical_minimum < 0)
407 			parser->global.logical_maximum = item_sdata(item);
408 		else
409 			parser->global.logical_maximum = item_udata(item);
410 		return 0;
411 
412 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
413 		parser->global.physical_minimum = item_sdata(item);
414 		return 0;
415 
416 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
417 		if (parser->global.physical_minimum < 0)
418 			parser->global.physical_maximum = item_sdata(item);
419 		else
420 			parser->global.physical_maximum = item_udata(item);
421 		return 0;
422 
423 	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
424 		/* Many devices provide unit exponent as a two's complement
425 		 * nibble due to the common misunderstanding of HID
426 		 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
427 		 * both this and the standard encoding. */
428 		raw_value = item_sdata(item);
429 		if (!(raw_value & 0xfffffff0))
430 			parser->global.unit_exponent = hid_snto32(raw_value, 4);
431 		else
432 			parser->global.unit_exponent = raw_value;
433 		return 0;
434 
435 	case HID_GLOBAL_ITEM_TAG_UNIT:
436 		parser->global.unit = item_udata(item);
437 		return 0;
438 
439 	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
440 		parser->global.report_size = item_udata(item);
441 		if (parser->global.report_size > 256) {
442 			hid_err(parser->device, "invalid report_size %d\n",
443 					parser->global.report_size);
444 			return -1;
445 		}
446 		return 0;
447 
448 	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
449 		parser->global.report_count = item_udata(item);
450 		if (parser->global.report_count > HID_MAX_USAGES) {
451 			hid_err(parser->device, "invalid report_count %d\n",
452 					parser->global.report_count);
453 			return -1;
454 		}
455 		return 0;
456 
457 	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
458 		parser->global.report_id = item_udata(item);
459 		if (parser->global.report_id == 0 ||
460 		    parser->global.report_id >= HID_MAX_IDS) {
461 			hid_err(parser->device, "report_id %u is invalid\n",
462 				parser->global.report_id);
463 			return -1;
464 		}
465 		return 0;
466 
467 	default:
468 		hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
469 		return -1;
470 	}
471 }
472 
473 /*
474  * Process a local item.
475  */
476 
hid_parser_local(struct hid_parser *parser, struct hid_item *item)477 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
478 {
479 	__u32 data;
480 	unsigned n;
481 	__u32 count;
482 
483 	data = item_udata(item);
484 
485 	switch (item->tag) {
486 	case HID_LOCAL_ITEM_TAG_DELIMITER:
487 
488 		if (data) {
489 			/*
490 			 * We treat items before the first delimiter
491 			 * as global to all usage sets (branch 0).
492 			 * In the moment we process only these global
493 			 * items and the first delimiter set.
494 			 */
495 			if (parser->local.delimiter_depth != 0) {
496 				hid_err(parser->device, "nested delimiters\n");
497 				return -1;
498 			}
499 			parser->local.delimiter_depth++;
500 			parser->local.delimiter_branch++;
501 		} else {
502 			if (parser->local.delimiter_depth < 1) {
503 				hid_err(parser->device, "bogus close delimiter\n");
504 				return -1;
505 			}
506 			parser->local.delimiter_depth--;
507 		}
508 		return 0;
509 
510 	case HID_LOCAL_ITEM_TAG_USAGE:
511 
512 		if (parser->local.delimiter_branch > 1) {
513 			dbg_hid("alternative usage ignored\n");
514 			return 0;
515 		}
516 
517 		return hid_add_usage(parser, data, item->size);
518 
519 	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
520 
521 		if (parser->local.delimiter_branch > 1) {
522 			dbg_hid("alternative usage ignored\n");
523 			return 0;
524 		}
525 
526 		parser->local.usage_minimum = data;
527 		return 0;
528 
529 	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
530 
531 		if (parser->local.delimiter_branch > 1) {
532 			dbg_hid("alternative usage ignored\n");
533 			return 0;
534 		}
535 
536 		count = data - parser->local.usage_minimum;
537 		if (count + parser->local.usage_index >= HID_MAX_USAGES) {
538 			/*
539 			 * We do not warn if the name is not set, we are
540 			 * actually pre-scanning the device.
541 			 */
542 			if (dev_name(&parser->device->dev))
543 				hid_warn(parser->device,
544 					 "ignoring exceeding usage max\n");
545 			data = HID_MAX_USAGES - parser->local.usage_index +
546 				parser->local.usage_minimum - 1;
547 			if (data <= 0) {
548 				hid_err(parser->device,
549 					"no more usage index available\n");
550 				return -1;
551 			}
552 		}
553 
554 		for (n = parser->local.usage_minimum; n <= data; n++)
555 			if (hid_add_usage(parser, n, item->size)) {
556 				dbg_hid("hid_add_usage failed\n");
557 				return -1;
558 			}
559 		return 0;
560 
561 	default:
562 
563 		dbg_hid("unknown local item tag 0x%x\n", item->tag);
564 		return 0;
565 	}
566 	return 0;
567 }
568 
569 /*
570  * Concatenate Usage Pages into Usages where relevant:
571  * As per specification, 6.2.2.8: "When the parser encounters a main item it
572  * concatenates the last declared Usage Page with a Usage to form a complete
573  * usage value."
574  */
575 
hid_concatenate_last_usage_page(struct hid_parser *parser)576 static void hid_concatenate_last_usage_page(struct hid_parser *parser)
577 {
578 	int i;
579 	unsigned int usage_page;
580 	unsigned int current_page;
581 
582 	if (!parser->local.usage_index)
583 		return;
584 
585 	usage_page = parser->global.usage_page;
586 
587 	/*
588 	 * Concatenate usage page again only if last declared Usage Page
589 	 * has not been already used in previous usages concatenation
590 	 */
591 	for (i = parser->local.usage_index - 1; i >= 0; i--) {
592 		if (parser->local.usage_size[i] > 2)
593 			/* Ignore extended usages */
594 			continue;
595 
596 		current_page = parser->local.usage[i] >> 16;
597 		if (current_page == usage_page)
598 			break;
599 
600 		complete_usage(parser, i);
601 	}
602 }
603 
604 /*
605  * Process a main item.
606  */
607 
hid_parser_main(struct hid_parser *parser, struct hid_item *item)608 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
609 {
610 	__u32 data;
611 	int ret;
612 
613 	hid_concatenate_last_usage_page(parser);
614 
615 	data = item_udata(item);
616 
617 	switch (item->tag) {
618 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
619 		ret = open_collection(parser, data & 0xff);
620 		break;
621 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
622 		ret = close_collection(parser);
623 		break;
624 	case HID_MAIN_ITEM_TAG_INPUT:
625 		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
626 		break;
627 	case HID_MAIN_ITEM_TAG_OUTPUT:
628 		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
629 		break;
630 	case HID_MAIN_ITEM_TAG_FEATURE:
631 		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
632 		break;
633 	default:
634 		hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
635 		ret = 0;
636 	}
637 
638 	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
639 
640 	return ret;
641 }
642 
643 /*
644  * Process a reserved item.
645  */
646 
hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)647 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
648 {
649 	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
650 	return 0;
651 }
652 
653 /*
654  * Free a report and all registered fields. The field->usage and
655  * field->value table's are allocated behind the field, so we need
656  * only to free(field) itself.
657  */
658 
hid_free_report(struct hid_report *report)659 static void hid_free_report(struct hid_report *report)
660 {
661 	unsigned n;
662 
663 	for (n = 0; n < report->maxfield; n++)
664 		kfree(report->field[n]);
665 	kfree(report);
666 }
667 
668 /*
669  * Close report. This function returns the device
670  * state to the point prior to hid_open_report().
671  */
hid_close_report(struct hid_device *device)672 static void hid_close_report(struct hid_device *device)
673 {
674 	unsigned i, j;
675 
676 	for (i = 0; i < HID_REPORT_TYPES; i++) {
677 		struct hid_report_enum *report_enum = device->report_enum + i;
678 
679 		for (j = 0; j < HID_MAX_IDS; j++) {
680 			struct hid_report *report = report_enum->report_id_hash[j];
681 			if (report)
682 				hid_free_report(report);
683 		}
684 		memset(report_enum, 0, sizeof(*report_enum));
685 		INIT_LIST_HEAD(&report_enum->report_list);
686 	}
687 
688 	kfree(device->rdesc);
689 	device->rdesc = NULL;
690 	device->rsize = 0;
691 
692 	kfree(device->collection);
693 	device->collection = NULL;
694 	device->collection_size = 0;
695 	device->maxcollection = 0;
696 	device->maxapplication = 0;
697 
698 	device->status &= ~HID_STAT_PARSED;
699 }
700 
701 /*
702  * Free a device structure, all reports, and all fields.
703  */
704 
hiddev_free(struct kref *ref)705 void hiddev_free(struct kref *ref)
706 {
707 	struct hid_device *hid = container_of(ref, struct hid_device, ref);
708 
709 	hid_close_report(hid);
710 	kfree(hid->dev_rdesc);
711 	kfree(hid);
712 }
713 
hid_device_release(struct device *dev)714 static void hid_device_release(struct device *dev)
715 {
716 	struct hid_device *hid = to_hid_device(dev);
717 
718 	kref_put(&hid->ref, hiddev_free);
719 }
720 
721 /*
722  * Fetch a report description item from the data stream. We support long
723  * items, though they are not used yet.
724  */
725 
fetch_item(__u8 *start, __u8 *end, struct hid_item *item)726 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
727 {
728 	u8 b;
729 
730 	if ((end - start) <= 0)
731 		return NULL;
732 
733 	b = *start++;
734 
735 	item->type = (b >> 2) & 3;
736 	item->tag  = (b >> 4) & 15;
737 
738 	if (item->tag == HID_ITEM_TAG_LONG) {
739 
740 		item->format = HID_ITEM_FORMAT_LONG;
741 
742 		if ((end - start) < 2)
743 			return NULL;
744 
745 		item->size = *start++;
746 		item->tag  = *start++;
747 
748 		if ((end - start) < item->size)
749 			return NULL;
750 
751 		item->data.longdata = start;
752 		start += item->size;
753 		return start;
754 	}
755 
756 	item->format = HID_ITEM_FORMAT_SHORT;
757 	item->size = b & 3;
758 
759 	switch (item->size) {
760 	case 0:
761 		return start;
762 
763 	case 1:
764 		if ((end - start) < 1)
765 			return NULL;
766 		item->data.u8 = *start++;
767 		return start;
768 
769 	case 2:
770 		if ((end - start) < 2)
771 			return NULL;
772 		item->data.u16 = get_unaligned_le16(start);
773 		start = (__u8 *)((__le16 *)start + 1);
774 		return start;
775 
776 	case 3:
777 		item->size++;
778 		if ((end - start) < 4)
779 			return NULL;
780 		item->data.u32 = get_unaligned_le32(start);
781 		start = (__u8 *)((__le32 *)start + 1);
782 		return start;
783 	}
784 
785 	return NULL;
786 }
787 
hid_scan_input_usage(struct hid_parser *parser, u32 usage)788 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
789 {
790 	struct hid_device *hid = parser->device;
791 
792 	if (usage == HID_DG_CONTACTID)
793 		hid->group = HID_GROUP_MULTITOUCH;
794 }
795 
hid_scan_feature_usage(struct hid_parser *parser, u32 usage)796 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
797 {
798 	if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
799 	    parser->global.report_size == 8)
800 		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
801 
802 	if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
803 	    parser->global.report_size == 8)
804 		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
805 }
806 
hid_scan_collection(struct hid_parser *parser, unsigned type)807 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
808 {
809 	struct hid_device *hid = parser->device;
810 	int i;
811 
812 	if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
813 	    type == HID_COLLECTION_PHYSICAL)
814 		hid->group = HID_GROUP_SENSOR_HUB;
815 
816 	if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
817 	    hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
818 	    hid->group == HID_GROUP_MULTITOUCH)
819 		hid->group = HID_GROUP_GENERIC;
820 
821 	if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
822 		for (i = 0; i < parser->local.usage_index; i++)
823 			if (parser->local.usage[i] == HID_GD_POINTER)
824 				parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
825 
826 	if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
827 		parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
828 
829 	if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
830 		for (i = 0; i < parser->local.usage_index; i++)
831 			if (parser->local.usage[i] ==
832 					(HID_UP_GOOGLEVENDOR | 0x0001))
833 				parser->device->group =
834 					HID_GROUP_VIVALDI;
835 }
836 
hid_scan_main(struct hid_parser *parser, struct hid_item *item)837 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
838 {
839 	__u32 data;
840 	int i;
841 
842 	hid_concatenate_last_usage_page(parser);
843 
844 	data = item_udata(item);
845 
846 	switch (item->tag) {
847 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
848 		hid_scan_collection(parser, data & 0xff);
849 		break;
850 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
851 		break;
852 	case HID_MAIN_ITEM_TAG_INPUT:
853 		/* ignore constant inputs, they will be ignored by hid-input */
854 		if (data & HID_MAIN_ITEM_CONSTANT)
855 			break;
856 		for (i = 0; i < parser->local.usage_index; i++)
857 			hid_scan_input_usage(parser, parser->local.usage[i]);
858 		break;
859 	case HID_MAIN_ITEM_TAG_OUTPUT:
860 		break;
861 	case HID_MAIN_ITEM_TAG_FEATURE:
862 		for (i = 0; i < parser->local.usage_index; i++)
863 			hid_scan_feature_usage(parser, parser->local.usage[i]);
864 		break;
865 	}
866 
867 	/* Reset the local parser environment */
868 	memset(&parser->local, 0, sizeof(parser->local));
869 
870 	return 0;
871 }
872 
873 /*
874  * Scan a report descriptor before the device is added to the bus.
875  * Sets device groups and other properties that determine what driver
876  * to load.
877  */
hid_scan_report(struct hid_device *hid)878 static int hid_scan_report(struct hid_device *hid)
879 {
880 	struct hid_parser *parser;
881 	struct hid_item item;
882 	__u8 *start = hid->dev_rdesc;
883 	__u8 *end = start + hid->dev_rsize;
884 	static int (*dispatch_type[])(struct hid_parser *parser,
885 				      struct hid_item *item) = {
886 		hid_scan_main,
887 		hid_parser_global,
888 		hid_parser_local,
889 		hid_parser_reserved
890 	};
891 
892 	parser = vzalloc(sizeof(struct hid_parser));
893 	if (!parser)
894 		return -ENOMEM;
895 
896 	parser->device = hid;
897 	hid->group = HID_GROUP_GENERIC;
898 
899 	/*
900 	 * The parsing is simpler than the one in hid_open_report() as we should
901 	 * be robust against hid errors. Those errors will be raised by
902 	 * hid_open_report() anyway.
903 	 */
904 	while ((start = fetch_item(start, end, &item)) != NULL)
905 		dispatch_type[item.type](parser, &item);
906 
907 	/*
908 	 * Handle special flags set during scanning.
909 	 */
910 	if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
911 	    (hid->group == HID_GROUP_MULTITOUCH))
912 		hid->group = HID_GROUP_MULTITOUCH_WIN_8;
913 
914 	/*
915 	 * Vendor specific handlings
916 	 */
917 	switch (hid->vendor) {
918 	case USB_VENDOR_ID_WACOM:
919 		hid->group = HID_GROUP_WACOM;
920 		break;
921 	case USB_VENDOR_ID_SYNAPTICS:
922 		if (hid->group == HID_GROUP_GENERIC)
923 			if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
924 			    && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
925 				/*
926 				 * hid-rmi should take care of them,
927 				 * not hid-generic
928 				 */
929 				hid->group = HID_GROUP_RMI;
930 		break;
931 	}
932 
933 	kfree(parser->collection_stack);
934 	vfree(parser);
935 	return 0;
936 }
937 
938 /**
939  * hid_parse_report - parse device report
940  *
941  * @hid: hid device
942  * @start: report start
943  * @size: report size
944  *
945  * Allocate the device report as read by the bus driver. This function should
946  * only be called from parse() in ll drivers.
947  */
hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)948 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
949 {
950 	hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
951 	if (!hid->dev_rdesc)
952 		return -ENOMEM;
953 	hid->dev_rsize = size;
954 	return 0;
955 }
956 EXPORT_SYMBOL_GPL(hid_parse_report);
957 
958 static const char * const hid_report_names[] = {
959 	"HID_INPUT_REPORT",
960 	"HID_OUTPUT_REPORT",
961 	"HID_FEATURE_REPORT",
962 };
963 /**
964  * hid_validate_values - validate existing device report's value indexes
965  *
966  * @hid: hid device
967  * @type: which report type to examine
968  * @id: which report ID to examine (0 for first)
969  * @field_index: which report field to examine
970  * @report_counts: expected number of values
971  *
972  * Validate the number of values in a given field of a given report, after
973  * parsing.
974  */
hid_validate_values(struct hid_device *hid, unsigned int type, unsigned int id, unsigned int field_index, unsigned int report_counts)975 struct hid_report *hid_validate_values(struct hid_device *hid,
976 				       unsigned int type, unsigned int id,
977 				       unsigned int field_index,
978 				       unsigned int report_counts)
979 {
980 	struct hid_report *report;
981 
982 	if (type > HID_FEATURE_REPORT) {
983 		hid_err(hid, "invalid HID report type %u\n", type);
984 		return NULL;
985 	}
986 
987 	if (id >= HID_MAX_IDS) {
988 		hid_err(hid, "invalid HID report id %u\n", id);
989 		return NULL;
990 	}
991 
992 	/*
993 	 * Explicitly not using hid_get_report() here since it depends on
994 	 * ->numbered being checked, which may not always be the case when
995 	 * drivers go to access report values.
996 	 */
997 	if (id == 0) {
998 		/*
999 		 * Validating on id 0 means we should examine the first
1000 		 * report in the list.
1001 		 */
1002 		report = list_first_entry_or_null(
1003 				&hid->report_enum[type].report_list,
1004 				struct hid_report, list);
1005 	} else {
1006 		report = hid->report_enum[type].report_id_hash[id];
1007 	}
1008 	if (!report) {
1009 		hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1010 		return NULL;
1011 	}
1012 	if (report->maxfield <= field_index) {
1013 		hid_err(hid, "not enough fields in %s %u\n",
1014 			hid_report_names[type], id);
1015 		return NULL;
1016 	}
1017 	if (report->field[field_index]->report_count < report_counts) {
1018 		hid_err(hid, "not enough values in %s %u field %u\n",
1019 			hid_report_names[type], id, field_index);
1020 		return NULL;
1021 	}
1022 	return report;
1023 }
1024 EXPORT_SYMBOL_GPL(hid_validate_values);
1025 
hid_calculate_multiplier(struct hid_device *hid, struct hid_field *multiplier)1026 static int hid_calculate_multiplier(struct hid_device *hid,
1027 				     struct hid_field *multiplier)
1028 {
1029 	int m;
1030 	__s32 v = *multiplier->value;
1031 	__s32 lmin = multiplier->logical_minimum;
1032 	__s32 lmax = multiplier->logical_maximum;
1033 	__s32 pmin = multiplier->physical_minimum;
1034 	__s32 pmax = multiplier->physical_maximum;
1035 
1036 	/*
1037 	 * "Because OS implementations will generally divide the control's
1038 	 * reported count by the Effective Resolution Multiplier, designers
1039 	 * should take care not to establish a potential Effective
1040 	 * Resolution Multiplier of zero."
1041 	 * HID Usage Table, v1.12, Section 4.3.1, p31
1042 	 */
1043 	if (lmax - lmin == 0)
1044 		return 1;
1045 	/*
1046 	 * Handling the unit exponent is left as an exercise to whoever
1047 	 * finds a device where that exponent is not 0.
1048 	 */
1049 	m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1050 	if (unlikely(multiplier->unit_exponent != 0)) {
1051 		hid_warn(hid,
1052 			 "unsupported Resolution Multiplier unit exponent %d\n",
1053 			 multiplier->unit_exponent);
1054 	}
1055 
1056 	/* There are no devices with an effective multiplier > 255 */
1057 	if (unlikely(m == 0 || m > 255 || m < -255)) {
1058 		hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1059 		m = 1;
1060 	}
1061 
1062 	return m;
1063 }
1064 
hid_apply_multiplier_to_field(struct hid_device *hid, struct hid_field *field, struct hid_collection *multiplier_collection, int effective_multiplier)1065 static void hid_apply_multiplier_to_field(struct hid_device *hid,
1066 					  struct hid_field *field,
1067 					  struct hid_collection *multiplier_collection,
1068 					  int effective_multiplier)
1069 {
1070 	struct hid_collection *collection;
1071 	struct hid_usage *usage;
1072 	int i;
1073 
1074 	/*
1075 	 * If multiplier_collection is NULL, the multiplier applies
1076 	 * to all fields in the report.
1077 	 * Otherwise, it is the Logical Collection the multiplier applies to
1078 	 * but our field may be in a subcollection of that collection.
1079 	 */
1080 	for (i = 0; i < field->maxusage; i++) {
1081 		usage = &field->usage[i];
1082 
1083 		collection = &hid->collection[usage->collection_index];
1084 		while (collection->parent_idx != -1 &&
1085 		       collection != multiplier_collection)
1086 			collection = &hid->collection[collection->parent_idx];
1087 
1088 		if (collection->parent_idx != -1 ||
1089 		    multiplier_collection == NULL)
1090 			usage->resolution_multiplier = effective_multiplier;
1091 
1092 	}
1093 }
1094 
hid_apply_multiplier(struct hid_device *hid, struct hid_field *multiplier)1095 static void hid_apply_multiplier(struct hid_device *hid,
1096 				 struct hid_field *multiplier)
1097 {
1098 	struct hid_report_enum *rep_enum;
1099 	struct hid_report *rep;
1100 	struct hid_field *field;
1101 	struct hid_collection *multiplier_collection;
1102 	int effective_multiplier;
1103 	int i;
1104 
1105 	/*
1106 	 * "The Resolution Multiplier control must be contained in the same
1107 	 * Logical Collection as the control(s) to which it is to be applied.
1108 	 * If no Resolution Multiplier is defined, then the Resolution
1109 	 * Multiplier defaults to 1.  If more than one control exists in a
1110 	 * Logical Collection, the Resolution Multiplier is associated with
1111 	 * all controls in the collection. If no Logical Collection is
1112 	 * defined, the Resolution Multiplier is associated with all
1113 	 * controls in the report."
1114 	 * HID Usage Table, v1.12, Section 4.3.1, p30
1115 	 *
1116 	 * Thus, search from the current collection upwards until we find a
1117 	 * logical collection. Then search all fields for that same parent
1118 	 * collection. Those are the fields the multiplier applies to.
1119 	 *
1120 	 * If we have more than one multiplier, it will overwrite the
1121 	 * applicable fields later.
1122 	 */
1123 	multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1124 	while (multiplier_collection->parent_idx != -1 &&
1125 	       multiplier_collection->type != HID_COLLECTION_LOGICAL)
1126 		multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1127 
1128 	effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1129 
1130 	rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1131 	list_for_each_entry(rep, &rep_enum->report_list, list) {
1132 		for (i = 0; i < rep->maxfield; i++) {
1133 			field = rep->field[i];
1134 			hid_apply_multiplier_to_field(hid, field,
1135 						      multiplier_collection,
1136 						      effective_multiplier);
1137 		}
1138 	}
1139 }
1140 
1141 /*
1142  * hid_setup_resolution_multiplier - set up all resolution multipliers
1143  *
1144  * @device: hid device
1145  *
1146  * Search for all Resolution Multiplier Feature Reports and apply their
1147  * value to all matching Input items. This only updates the internal struct
1148  * fields.
1149  *
1150  * The Resolution Multiplier is applied by the hardware. If the multiplier
1151  * is anything other than 1, the hardware will send pre-multiplied events
1152  * so that the same physical interaction generates an accumulated
1153  *	accumulated_value = value * * multiplier
1154  * This may be achieved by sending
1155  * - "value * multiplier" for each event, or
1156  * - "value" but "multiplier" times as frequently, or
1157  * - a combination of the above
1158  * The only guarantee is that the same physical interaction always generates
1159  * an accumulated 'value * multiplier'.
1160  *
1161  * This function must be called before any event processing and after
1162  * any SetRequest to the Resolution Multiplier.
1163  */
hid_setup_resolution_multiplier(struct hid_device *hid)1164 void hid_setup_resolution_multiplier(struct hid_device *hid)
1165 {
1166 	struct hid_report_enum *rep_enum;
1167 	struct hid_report *rep;
1168 	struct hid_usage *usage;
1169 	int i, j;
1170 
1171 	rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1172 	list_for_each_entry(rep, &rep_enum->report_list, list) {
1173 		for (i = 0; i < rep->maxfield; i++) {
1174 			/* Ignore if report count is out of bounds. */
1175 			if (rep->field[i]->report_count < 1)
1176 				continue;
1177 
1178 			for (j = 0; j < rep->field[i]->maxusage; j++) {
1179 				usage = &rep->field[i]->usage[j];
1180 				if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1181 					hid_apply_multiplier(hid,
1182 							     rep->field[i]);
1183 			}
1184 		}
1185 	}
1186 }
1187 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1188 
1189 /**
1190  * hid_open_report - open a driver-specific device report
1191  *
1192  * @device: hid device
1193  *
1194  * Parse a report description into a hid_device structure. Reports are
1195  * enumerated, fields are attached to these reports.
1196  * 0 returned on success, otherwise nonzero error value.
1197  *
1198  * This function (or the equivalent hid_parse() macro) should only be
1199  * called from probe() in drivers, before starting the device.
1200  */
hid_open_report(struct hid_device *device)1201 int hid_open_report(struct hid_device *device)
1202 {
1203 	struct hid_parser *parser;
1204 	struct hid_item item;
1205 	unsigned int size;
1206 	__u8 *start;
1207 	__u8 *buf;
1208 	__u8 *end;
1209 	__u8 *next;
1210 	int ret;
1211 	int i;
1212 	static int (*dispatch_type[])(struct hid_parser *parser,
1213 				      struct hid_item *item) = {
1214 		hid_parser_main,
1215 		hid_parser_global,
1216 		hid_parser_local,
1217 		hid_parser_reserved
1218 	};
1219 
1220 	if (WARN_ON(device->status & HID_STAT_PARSED))
1221 		return -EBUSY;
1222 
1223 	start = device->dev_rdesc;
1224 	if (WARN_ON(!start))
1225 		return -ENODEV;
1226 	size = device->dev_rsize;
1227 
1228 	buf = kmemdup(start, size, GFP_KERNEL);
1229 	if (buf == NULL)
1230 		return -ENOMEM;
1231 
1232 	if (device->driver->report_fixup)
1233 		start = device->driver->report_fixup(device, buf, &size);
1234 	else
1235 		start = buf;
1236 
1237 	start = kmemdup(start, size, GFP_KERNEL);
1238 	kfree(buf);
1239 	if (start == NULL)
1240 		return -ENOMEM;
1241 
1242 	device->rdesc = start;
1243 	device->rsize = size;
1244 
1245 	parser = vzalloc(sizeof(struct hid_parser));
1246 	if (!parser) {
1247 		ret = -ENOMEM;
1248 		goto alloc_err;
1249 	}
1250 
1251 	parser->device = device;
1252 
1253 	end = start + size;
1254 
1255 	device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1256 				     sizeof(struct hid_collection), GFP_KERNEL);
1257 	if (!device->collection) {
1258 		ret = -ENOMEM;
1259 		goto err;
1260 	}
1261 	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1262 	for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1263 		device->collection[i].parent_idx = -1;
1264 
1265 	ret = -EINVAL;
1266 	while ((next = fetch_item(start, end, &item)) != NULL) {
1267 		start = next;
1268 
1269 		if (item.format != HID_ITEM_FORMAT_SHORT) {
1270 			hid_err(device, "unexpected long global item\n");
1271 			goto err;
1272 		}
1273 
1274 		if (dispatch_type[item.type](parser, &item)) {
1275 			hid_err(device, "item %u %u %u %u parsing failed\n",
1276 				item.format, (unsigned)item.size,
1277 				(unsigned)item.type, (unsigned)item.tag);
1278 			goto err;
1279 		}
1280 
1281 		if (start == end) {
1282 			if (parser->collection_stack_ptr) {
1283 				hid_err(device, "unbalanced collection at end of report description\n");
1284 				goto err;
1285 			}
1286 			if (parser->local.delimiter_depth) {
1287 				hid_err(device, "unbalanced delimiter at end of report description\n");
1288 				goto err;
1289 			}
1290 
1291 			/*
1292 			 * fetch initial values in case the device's
1293 			 * default multiplier isn't the recommended 1
1294 			 */
1295 			hid_setup_resolution_multiplier(device);
1296 
1297 			kfree(parser->collection_stack);
1298 			vfree(parser);
1299 			device->status |= HID_STAT_PARSED;
1300 
1301 			return 0;
1302 		}
1303 	}
1304 
1305 	hid_err(device, "item fetching failed at offset %u/%u\n",
1306 		size - (unsigned int)(end - start), size);
1307 err:
1308 	kfree(parser->collection_stack);
1309 alloc_err:
1310 	vfree(parser);
1311 	hid_close_report(device);
1312 	return ret;
1313 }
1314 EXPORT_SYMBOL_GPL(hid_open_report);
1315 
1316 /*
1317  * Convert a signed n-bit integer to signed 32-bit integer. Common
1318  * cases are done through the compiler, the screwed things has to be
1319  * done by hand.
1320  */
1321 
snto32(__u32 value, unsigned n)1322 static s32 snto32(__u32 value, unsigned n)
1323 {
1324 	if (!value || !n)
1325 		return 0;
1326 
1327 	if (n > 32)
1328 		n = 32;
1329 
1330 	switch (n) {
1331 	case 8:  return ((__s8)value);
1332 	case 16: return ((__s16)value);
1333 	case 32: return ((__s32)value);
1334 	}
1335 	return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1336 }
1337 
hid_snto32(__u32 value, unsigned n)1338 s32 hid_snto32(__u32 value, unsigned n)
1339 {
1340 	return snto32(value, n);
1341 }
1342 EXPORT_SYMBOL_GPL(hid_snto32);
1343 
1344 /*
1345  * Convert a signed 32-bit integer to a signed n-bit integer.
1346  */
1347 
s32ton(__s32 value, unsigned n)1348 static u32 s32ton(__s32 value, unsigned n)
1349 {
1350 	s32 a = value >> (n - 1);
1351 	if (a && a != -1)
1352 		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1353 	return value & ((1 << n) - 1);
1354 }
1355 
1356 /*
1357  * Extract/implement a data field from/to a little endian report (bit array).
1358  *
1359  * Code sort-of follows HID spec:
1360  *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1361  *
1362  * While the USB HID spec allows unlimited length bit fields in "report
1363  * descriptors", most devices never use more than 16 bits.
1364  * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1365  * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1366  */
1367 
__extract(u8 *report, unsigned offset, int n)1368 static u32 __extract(u8 *report, unsigned offset, int n)
1369 {
1370 	unsigned int idx = offset / 8;
1371 	unsigned int bit_nr = 0;
1372 	unsigned int bit_shift = offset % 8;
1373 	int bits_to_copy = 8 - bit_shift;
1374 	u32 value = 0;
1375 	u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1376 
1377 	while (n > 0) {
1378 		value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1379 		n -= bits_to_copy;
1380 		bit_nr += bits_to_copy;
1381 		bits_to_copy = 8;
1382 		bit_shift = 0;
1383 		idx++;
1384 	}
1385 
1386 	return value & mask;
1387 }
1388 
hid_field_extract(const struct hid_device *hid, u8 *report, unsigned offset, unsigned n)1389 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1390 			unsigned offset, unsigned n)
1391 {
1392 	if (n > 32) {
1393 		hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1394 			      __func__, n, current->comm);
1395 		n = 32;
1396 	}
1397 
1398 	return __extract(report, offset, n);
1399 }
1400 EXPORT_SYMBOL_GPL(hid_field_extract);
1401 
1402 /*
1403  * "implement" : set bits in a little endian bit stream.
1404  * Same concepts as "extract" (see comments above).
1405  * The data mangled in the bit stream remains in little endian
1406  * order the whole time. It make more sense to talk about
1407  * endianness of register values by considering a register
1408  * a "cached" copy of the little endian bit stream.
1409  */
1410 
__implement(u8 *report, unsigned offset, int n, u32 value)1411 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1412 {
1413 	unsigned int idx = offset / 8;
1414 	unsigned int bit_shift = offset % 8;
1415 	int bits_to_set = 8 - bit_shift;
1416 
1417 	while (n - bits_to_set >= 0) {
1418 		report[idx] &= ~(0xff << bit_shift);
1419 		report[idx] |= value << bit_shift;
1420 		value >>= bits_to_set;
1421 		n -= bits_to_set;
1422 		bits_to_set = 8;
1423 		bit_shift = 0;
1424 		idx++;
1425 	}
1426 
1427 	/* last nibble */
1428 	if (n) {
1429 		u8 bit_mask = ((1U << n) - 1);
1430 		report[idx] &= ~(bit_mask << bit_shift);
1431 		report[idx] |= value << bit_shift;
1432 	}
1433 }
1434 
implement(const struct hid_device *hid, u8 *report, unsigned offset, unsigned n, u32 value)1435 static void implement(const struct hid_device *hid, u8 *report,
1436 		      unsigned offset, unsigned n, u32 value)
1437 {
1438 	if (unlikely(n > 32)) {
1439 		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1440 			 __func__, n, current->comm);
1441 		n = 32;
1442 	} else if (n < 32) {
1443 		u32 m = (1U << n) - 1;
1444 
1445 		if (unlikely(value > m)) {
1446 			hid_warn(hid,
1447 				 "%s() called with too large value %d (n: %d)! (%s)\n",
1448 				 __func__, value, n, current->comm);
1449 			value &= m;
1450 		}
1451 	}
1452 
1453 	__implement(report, offset, n, value);
1454 }
1455 
1456 /*
1457  * Search an array for a value.
1458  */
1459 
search(__s32 *array, __s32 value, unsigned n)1460 static int search(__s32 *array, __s32 value, unsigned n)
1461 {
1462 	while (n--) {
1463 		if (*array++ == value)
1464 			return 0;
1465 	}
1466 	return -1;
1467 }
1468 
1469 /**
1470  * hid_match_report - check if driver's raw_event should be called
1471  *
1472  * @hid: hid device
1473  * @report: hid report to match against
1474  *
1475  * compare hid->driver->report_table->report_type to report->type
1476  */
hid_match_report(struct hid_device *hid, struct hid_report *report)1477 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1478 {
1479 	const struct hid_report_id *id = hid->driver->report_table;
1480 
1481 	if (!id) /* NULL means all */
1482 		return 1;
1483 
1484 	for (; id->report_type != HID_TERMINATOR; id++)
1485 		if (id->report_type == HID_ANY_ID ||
1486 				id->report_type == report->type)
1487 			return 1;
1488 	return 0;
1489 }
1490 
1491 /**
1492  * hid_match_usage - check if driver's event should be called
1493  *
1494  * @hid: hid device
1495  * @usage: usage to match against
1496  *
1497  * compare hid->driver->usage_table->usage_{type,code} to
1498  * usage->usage_{type,code}
1499  */
hid_match_usage(struct hid_device *hid, struct hid_usage *usage)1500 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1501 {
1502 	const struct hid_usage_id *id = hid->driver->usage_table;
1503 
1504 	if (!id) /* NULL means all */
1505 		return 1;
1506 
1507 	for (; id->usage_type != HID_ANY_ID - 1; id++)
1508 		if ((id->usage_hid == HID_ANY_ID ||
1509 				id->usage_hid == usage->hid) &&
1510 				(id->usage_type == HID_ANY_ID ||
1511 				id->usage_type == usage->type) &&
1512 				(id->usage_code == HID_ANY_ID ||
1513 				 id->usage_code == usage->code))
1514 			return 1;
1515 	return 0;
1516 }
1517 
hid_process_event(struct hid_device *hid, struct hid_field *field, struct hid_usage *usage, __s32 value, int interrupt)1518 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1519 		struct hid_usage *usage, __s32 value, int interrupt)
1520 {
1521 	struct hid_driver *hdrv = hid->driver;
1522 	int ret;
1523 
1524 	if (!list_empty(&hid->debug_list))
1525 		hid_dump_input(hid, usage, value);
1526 
1527 	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1528 		ret = hdrv->event(hid, field, usage, value);
1529 		if (ret != 0) {
1530 			if (ret < 0)
1531 				hid_err(hid, "%s's event failed with %d\n",
1532 						hdrv->name, ret);
1533 			return;
1534 		}
1535 	}
1536 
1537 	if (hid->claimed & HID_CLAIMED_INPUT)
1538 		hidinput_hid_event(hid, field, usage, value);
1539 	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1540 		hid->hiddev_hid_event(hid, field, usage, value);
1541 }
1542 
1543 /*
1544  * Analyse a received field, and fetch the data from it. The field
1545  * content is stored for next report processing (we do differential
1546  * reporting to the layer).
1547  */
1548 
hid_input_field(struct hid_device *hid, struct hid_field *field, __u8 *data, int interrupt)1549 static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1550 			    __u8 *data, int interrupt)
1551 {
1552 	unsigned n;
1553 	unsigned count = field->report_count;
1554 	unsigned offset = field->report_offset;
1555 	unsigned size = field->report_size;
1556 	__s32 min = field->logical_minimum;
1557 	__s32 max = field->logical_maximum;
1558 	__s32 *value;
1559 
1560 	value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1561 	if (!value)
1562 		return;
1563 
1564 	for (n = 0; n < count; n++) {
1565 
1566 		value[n] = min < 0 ?
1567 			snto32(hid_field_extract(hid, data, offset + n * size,
1568 			       size), size) :
1569 			hid_field_extract(hid, data, offset + n * size, size);
1570 
1571 		/* Ignore report if ErrorRollOver */
1572 		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1573 		    value[n] >= min && value[n] <= max &&
1574 		    value[n] - min < field->maxusage &&
1575 		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1576 			goto exit;
1577 	}
1578 
1579 	for (n = 0; n < count; n++) {
1580 
1581 		if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1582 			hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1583 			continue;
1584 		}
1585 
1586 		if (field->value[n] >= min && field->value[n] <= max
1587 			&& field->value[n] - min < field->maxusage
1588 			&& field->usage[field->value[n] - min].hid
1589 			&& search(value, field->value[n], count))
1590 				hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1591 
1592 		if (value[n] >= min && value[n] <= max
1593 			&& value[n] - min < field->maxusage
1594 			&& field->usage[value[n] - min].hid
1595 			&& search(field->value, value[n], count))
1596 				hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1597 	}
1598 
1599 	memcpy(field->value, value, count * sizeof(__s32));
1600 exit:
1601 	kfree(value);
1602 }
1603 
1604 /*
1605  * Output the field into the report.
1606  */
1607 
hid_output_field(const struct hid_device *hid, struct hid_field *field, __u8 *data)1608 static void hid_output_field(const struct hid_device *hid,
1609 			     struct hid_field *field, __u8 *data)
1610 {
1611 	unsigned count = field->report_count;
1612 	unsigned offset = field->report_offset;
1613 	unsigned size = field->report_size;
1614 	unsigned n;
1615 
1616 	for (n = 0; n < count; n++) {
1617 		if (field->logical_minimum < 0)	/* signed values */
1618 			implement(hid, data, offset + n * size, size,
1619 				  s32ton(field->value[n], size));
1620 		else				/* unsigned values */
1621 			implement(hid, data, offset + n * size, size,
1622 				  field->value[n]);
1623 	}
1624 }
1625 
1626 /*
1627  * Compute the size of a report.
1628  */
hid_compute_report_size(struct hid_report *report)1629 static size_t hid_compute_report_size(struct hid_report *report)
1630 {
1631 	if (report->size)
1632 		return ((report->size - 1) >> 3) + 1;
1633 
1634 	return 0;
1635 }
1636 
1637 /*
1638  * Create a report. 'data' has to be allocated using
1639  * hid_alloc_report_buf() so that it has proper size.
1640  */
1641 
hid_output_report(struct hid_report *report, __u8 *data)1642 void hid_output_report(struct hid_report *report, __u8 *data)
1643 {
1644 	unsigned n;
1645 
1646 	if (report->id > 0)
1647 		*data++ = report->id;
1648 
1649 	memset(data, 0, hid_compute_report_size(report));
1650 	for (n = 0; n < report->maxfield; n++)
1651 		hid_output_field(report->device, report->field[n], data);
1652 }
1653 EXPORT_SYMBOL_GPL(hid_output_report);
1654 
1655 /*
1656  * Allocator for buffer that is going to be passed to hid_output_report()
1657  */
hid_alloc_report_buf(struct hid_report *report, gfp_t flags)1658 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1659 {
1660 	/*
1661 	 * 7 extra bytes are necessary to achieve proper functionality
1662 	 * of implement() working on 8 byte chunks
1663 	 */
1664 
1665 	u32 len = hid_report_len(report) + 7;
1666 
1667 	return kmalloc(len, flags);
1668 }
1669 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1670 
1671 /*
1672  * Set a field value. The report this field belongs to has to be
1673  * created and transferred to the device, to set this value in the
1674  * device.
1675  */
1676 
hid_set_field(struct hid_field *field, unsigned offset, __s32 value)1677 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1678 {
1679 	unsigned size;
1680 
1681 	if (!field)
1682 		return -1;
1683 
1684 	size = field->report_size;
1685 
1686 	hid_dump_input(field->report->device, field->usage + offset, value);
1687 
1688 	if (offset >= field->report_count) {
1689 		hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1690 				offset, field->report_count);
1691 		return -1;
1692 	}
1693 	if (field->logical_minimum < 0) {
1694 		if (value != snto32(s32ton(value, size), size)) {
1695 			hid_err(field->report->device, "value %d is out of range\n", value);
1696 			return -1;
1697 		}
1698 	}
1699 	field->value[offset] = value;
1700 	return 0;
1701 }
1702 EXPORT_SYMBOL_GPL(hid_set_field);
1703 
hid_get_report(struct hid_report_enum *report_enum, const u8 *data)1704 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1705 		const u8 *data)
1706 {
1707 	struct hid_report *report;
1708 	unsigned int n = 0;	/* Normally report number is 0 */
1709 
1710 	/* Device uses numbered reports, data[0] is report number */
1711 	if (report_enum->numbered)
1712 		n = *data;
1713 
1714 	report = report_enum->report_id_hash[n];
1715 	if (report == NULL)
1716 		dbg_hid("undefined report_id %u received\n", n);
1717 
1718 	return report;
1719 }
1720 
1721 /*
1722  * Implement a generic .request() callback, using .raw_request()
1723  * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1724  */
__hid_request(struct hid_device *hid, struct hid_report *report, int reqtype)1725 int __hid_request(struct hid_device *hid, struct hid_report *report,
1726 		int reqtype)
1727 {
1728 	char *buf;
1729 	int ret;
1730 	u32 len;
1731 
1732 	buf = hid_alloc_report_buf(report, GFP_KERNEL);
1733 	if (!buf)
1734 		return -ENOMEM;
1735 
1736 	len = hid_report_len(report);
1737 
1738 	if (reqtype == HID_REQ_SET_REPORT)
1739 		hid_output_report(report, buf);
1740 
1741 	ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1742 					  report->type, reqtype);
1743 	if (ret < 0) {
1744 		dbg_hid("unable to complete request: %d\n", ret);
1745 		goto out;
1746 	}
1747 
1748 	if (reqtype == HID_REQ_GET_REPORT)
1749 		hid_input_report(hid, report->type, buf, ret, 0);
1750 
1751 	ret = 0;
1752 
1753 out:
1754 	kfree(buf);
1755 	return ret;
1756 }
1757 EXPORT_SYMBOL_GPL(__hid_request);
1758 
hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)1759 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1760 		int interrupt)
1761 {
1762 	struct hid_report_enum *report_enum = hid->report_enum + type;
1763 	struct hid_report *report;
1764 	struct hid_driver *hdrv;
1765 	int max_buffer_size = HID_MAX_BUFFER_SIZE;
1766 	unsigned int a;
1767 	u32 rsize, csize = size;
1768 	u8 *cdata = data;
1769 	int ret = 0;
1770 
1771 	report = hid_get_report(report_enum, data);
1772 	if (!report)
1773 		goto out;
1774 
1775 	if (report_enum->numbered) {
1776 		cdata++;
1777 		csize--;
1778 	}
1779 
1780 	rsize = hid_compute_report_size(report);
1781 
1782 	if (hid->ll_driver->max_buffer_size)
1783 		max_buffer_size = hid->ll_driver->max_buffer_size;
1784 
1785 	if (report_enum->numbered && rsize >= max_buffer_size)
1786 		rsize = max_buffer_size - 1;
1787 	else if (rsize > max_buffer_size)
1788 		rsize = max_buffer_size;
1789 
1790 	if (csize < rsize) {
1791 		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1792 				csize, rsize);
1793 		memset(cdata + csize, 0, rsize - csize);
1794 	}
1795 
1796 	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1797 		hid->hiddev_report_event(hid, report);
1798 	if (hid->claimed & HID_CLAIMED_HIDRAW) {
1799 		ret = hidraw_report_event(hid, data, size);
1800 		if (ret)
1801 			goto out;
1802 	}
1803 
1804 	if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1805 		for (a = 0; a < report->maxfield; a++)
1806 			hid_input_field(hid, report->field[a], cdata, interrupt);
1807 		hdrv = hid->driver;
1808 		if (hdrv && hdrv->report)
1809 			hdrv->report(hid, report);
1810 	}
1811 
1812 	if (hid->claimed & HID_CLAIMED_INPUT)
1813 		hidinput_report_event(hid, report);
1814 out:
1815 	return ret;
1816 }
1817 EXPORT_SYMBOL_GPL(hid_report_raw_event);
1818 
1819 /**
1820  * hid_input_report - report data from lower layer (usb, bt...)
1821  *
1822  * @hid: hid device
1823  * @type: HID report type (HID_*_REPORT)
1824  * @data: report contents
1825  * @size: size of data parameter
1826  * @interrupt: distinguish between interrupt and control transfers
1827  *
1828  * This is data entry for lower layers.
1829  */
hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)1830 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1831 {
1832 	struct hid_report_enum *report_enum;
1833 	struct hid_driver *hdrv;
1834 	struct hid_report *report;
1835 	int ret = 0;
1836 
1837 	if (!hid)
1838 		return -ENODEV;
1839 
1840 	if (down_trylock(&hid->driver_input_lock))
1841 		return -EBUSY;
1842 
1843 	if (!hid->driver) {
1844 		ret = -ENODEV;
1845 		goto unlock;
1846 	}
1847 	report_enum = hid->report_enum + type;
1848 	hdrv = hid->driver;
1849 
1850 	if (!size) {
1851 		dbg_hid("empty report\n");
1852 		ret = -1;
1853 		goto unlock;
1854 	}
1855 
1856 	/* Avoid unnecessary overhead if debugfs is disabled */
1857 	if (!list_empty(&hid->debug_list))
1858 		hid_dump_report(hid, type, data, size);
1859 
1860 	report = hid_get_report(report_enum, data);
1861 
1862 	if (!report) {
1863 		ret = -1;
1864 		goto unlock;
1865 	}
1866 
1867 	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1868 		ret = hdrv->raw_event(hid, report, data, size);
1869 		if (ret < 0)
1870 			goto unlock;
1871 	}
1872 
1873 	ret = hid_report_raw_event(hid, type, data, size, interrupt);
1874 
1875 unlock:
1876 	up(&hid->driver_input_lock);
1877 	return ret;
1878 }
1879 EXPORT_SYMBOL_GPL(hid_input_report);
1880 
hid_match_one_id(const struct hid_device *hdev, const struct hid_device_id *id)1881 bool hid_match_one_id(const struct hid_device *hdev,
1882 		      const struct hid_device_id *id)
1883 {
1884 	return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1885 		(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1886 		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1887 		(id->product == HID_ANY_ID || id->product == hdev->product);
1888 }
1889 
hid_match_id(const struct hid_device *hdev, const struct hid_device_id *id)1890 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1891 		const struct hid_device_id *id)
1892 {
1893 	for (; id->bus; id++)
1894 		if (hid_match_one_id(hdev, id))
1895 			return id;
1896 
1897 	return NULL;
1898 }
1899 
1900 static const struct hid_device_id hid_hiddev_list[] = {
1901 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1902 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1903 	{ }
1904 };
1905 
hid_hiddev(struct hid_device *hdev)1906 static bool hid_hiddev(struct hid_device *hdev)
1907 {
1908 	return !!hid_match_id(hdev, hid_hiddev_list);
1909 }
1910 
1911 
1912 static ssize_t
read_report_descriptor(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count)1913 read_report_descriptor(struct file *filp, struct kobject *kobj,
1914 		struct bin_attribute *attr,
1915 		char *buf, loff_t off, size_t count)
1916 {
1917 	struct device *dev = kobj_to_dev(kobj);
1918 	struct hid_device *hdev = to_hid_device(dev);
1919 
1920 	if (off >= hdev->rsize)
1921 		return 0;
1922 
1923 	if (off + count > hdev->rsize)
1924 		count = hdev->rsize - off;
1925 
1926 	memcpy(buf, hdev->rdesc + off, count);
1927 
1928 	return count;
1929 }
1930 
1931 static ssize_t
show_country(struct device *dev, struct device_attribute *attr, char *buf)1932 show_country(struct device *dev, struct device_attribute *attr,
1933 		char *buf)
1934 {
1935 	struct hid_device *hdev = to_hid_device(dev);
1936 
1937 	return sprintf(buf, "%02x\n", hdev->country & 0xff);
1938 }
1939 
1940 static struct bin_attribute dev_bin_attr_report_desc = {
1941 	.attr = { .name = "report_descriptor", .mode = 0444 },
1942 	.read = read_report_descriptor,
1943 	.size = HID_MAX_DESCRIPTOR_SIZE,
1944 };
1945 
1946 static const struct device_attribute dev_attr_country = {
1947 	.attr = { .name = "country", .mode = 0444 },
1948 	.show = show_country,
1949 };
1950 
hid_connect(struct hid_device *hdev, unsigned int connect_mask)1951 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1952 {
1953 	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1954 		"Joystick", "Gamepad", "Keyboard", "Keypad",
1955 		"Multi-Axis Controller"
1956 	};
1957 	const char *type, *bus;
1958 	char buf[64] = "";
1959 	unsigned int i;
1960 	int len;
1961 	int ret;
1962 
1963 	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1964 		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1965 	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1966 		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1967 	if (hdev->bus != BUS_USB)
1968 		connect_mask &= ~HID_CONNECT_HIDDEV;
1969 	if (hid_hiddev(hdev))
1970 		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1971 
1972 	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1973 				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1974 		hdev->claimed |= HID_CLAIMED_INPUT;
1975 
1976 	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1977 			!hdev->hiddev_connect(hdev,
1978 				connect_mask & HID_CONNECT_HIDDEV_FORCE))
1979 		hdev->claimed |= HID_CLAIMED_HIDDEV;
1980 	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1981 		hdev->claimed |= HID_CLAIMED_HIDRAW;
1982 
1983 	if (connect_mask & HID_CONNECT_DRIVER)
1984 		hdev->claimed |= HID_CLAIMED_DRIVER;
1985 
1986 	/* Drivers with the ->raw_event callback set are not required to connect
1987 	 * to any other listener. */
1988 	if (!hdev->claimed && !hdev->driver->raw_event) {
1989 		hid_err(hdev, "device has no listeners, quitting\n");
1990 		return -ENODEV;
1991 	}
1992 
1993 	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1994 			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1995 		hdev->ff_init(hdev);
1996 
1997 	len = 0;
1998 	if (hdev->claimed & HID_CLAIMED_INPUT)
1999 		len += sprintf(buf + len, "input");
2000 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2001 		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2002 				((struct hiddev *)hdev->hiddev)->minor);
2003 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2004 		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2005 				((struct hidraw *)hdev->hidraw)->minor);
2006 
2007 	type = "Device";
2008 	for (i = 0; i < hdev->maxcollection; i++) {
2009 		struct hid_collection *col = &hdev->collection[i];
2010 		if (col->type == HID_COLLECTION_APPLICATION &&
2011 		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2012 		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2013 			type = types[col->usage & 0xffff];
2014 			break;
2015 		}
2016 	}
2017 
2018 	switch (hdev->bus) {
2019 	case BUS_USB:
2020 		bus = "USB";
2021 		break;
2022 	case BUS_BLUETOOTH:
2023 		bus = "BLUETOOTH";
2024 		break;
2025 	case BUS_I2C:
2026 		bus = "I2C";
2027 		break;
2028 	case BUS_VIRTUAL:
2029 		bus = "VIRTUAL";
2030 		break;
2031 	default:
2032 		bus = "<UNKNOWN>";
2033 	}
2034 
2035 	ret = device_create_file(&hdev->dev, &dev_attr_country);
2036 	if (ret)
2037 		hid_warn(hdev,
2038 			 "can't create sysfs country code attribute err: %d\n", ret);
2039 
2040 	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2041 		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2042 		 type, hdev->name, hdev->phys);
2043 
2044 	return 0;
2045 }
2046 EXPORT_SYMBOL_GPL(hid_connect);
2047 
hid_disconnect(struct hid_device *hdev)2048 void hid_disconnect(struct hid_device *hdev)
2049 {
2050 	device_remove_file(&hdev->dev, &dev_attr_country);
2051 	if (hdev->claimed & HID_CLAIMED_INPUT)
2052 		hidinput_disconnect(hdev);
2053 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2054 		hdev->hiddev_disconnect(hdev);
2055 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2056 		hidraw_disconnect(hdev);
2057 	hdev->claimed = 0;
2058 }
2059 EXPORT_SYMBOL_GPL(hid_disconnect);
2060 
2061 /**
2062  * hid_hw_start - start underlying HW
2063  * @hdev: hid device
2064  * @connect_mask: which outputs to connect, see HID_CONNECT_*
2065  *
2066  * Call this in probe function *after* hid_parse. This will setup HW
2067  * buffers and start the device (if not defeirred to device open).
2068  * hid_hw_stop must be called if this was successful.
2069  */
hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)2070 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2071 {
2072 	int error;
2073 
2074 	error = hdev->ll_driver->start(hdev);
2075 	if (error)
2076 		return error;
2077 
2078 	if (connect_mask) {
2079 		error = hid_connect(hdev, connect_mask);
2080 		if (error) {
2081 			hdev->ll_driver->stop(hdev);
2082 			return error;
2083 		}
2084 	}
2085 
2086 	return 0;
2087 }
2088 EXPORT_SYMBOL_GPL(hid_hw_start);
2089 
2090 /**
2091  * hid_hw_stop - stop underlying HW
2092  * @hdev: hid device
2093  *
2094  * This is usually called from remove function or from probe when something
2095  * failed and hid_hw_start was called already.
2096  */
hid_hw_stop(struct hid_device *hdev)2097 void hid_hw_stop(struct hid_device *hdev)
2098 {
2099 	hid_disconnect(hdev);
2100 	hdev->ll_driver->stop(hdev);
2101 }
2102 EXPORT_SYMBOL_GPL(hid_hw_stop);
2103 
2104 /**
2105  * hid_hw_open - signal underlying HW to start delivering events
2106  * @hdev: hid device
2107  *
2108  * Tell underlying HW to start delivering events from the device.
2109  * This function should be called sometime after successful call
2110  * to hid_hw_start().
2111  */
hid_hw_open(struct hid_device *hdev)2112 int hid_hw_open(struct hid_device *hdev)
2113 {
2114 	int ret;
2115 
2116 	ret = mutex_lock_killable(&hdev->ll_open_lock);
2117 	if (ret)
2118 		return ret;
2119 
2120 	if (!hdev->ll_open_count++) {
2121 		ret = hdev->ll_driver->open(hdev);
2122 		if (ret)
2123 			hdev->ll_open_count--;
2124 	}
2125 
2126 	mutex_unlock(&hdev->ll_open_lock);
2127 	return ret;
2128 }
2129 EXPORT_SYMBOL_GPL(hid_hw_open);
2130 
2131 /**
2132  * hid_hw_close - signal underlaying HW to stop delivering events
2133  *
2134  * @hdev: hid device
2135  *
2136  * This function indicates that we are not interested in the events
2137  * from this device anymore. Delivery of events may or may not stop,
2138  * depending on the number of users still outstanding.
2139  */
hid_hw_close(struct hid_device *hdev)2140 void hid_hw_close(struct hid_device *hdev)
2141 {
2142 	mutex_lock(&hdev->ll_open_lock);
2143 	if (!--hdev->ll_open_count)
2144 		hdev->ll_driver->close(hdev);
2145 	mutex_unlock(&hdev->ll_open_lock);
2146 }
2147 EXPORT_SYMBOL_GPL(hid_hw_close);
2148 
2149 struct hid_dynid {
2150 	struct list_head list;
2151 	struct hid_device_id id;
2152 };
2153 
2154 /**
2155  * store_new_id - add a new HID device ID to this driver and re-probe devices
2156  * @drv: target device driver
2157  * @buf: buffer for scanning device ID data
2158  * @count: input size
2159  *
2160  * Adds a new dynamic hid device ID to this driver,
2161  * and causes the driver to probe for all devices again.
2162  */
new_id_store(struct device_driver *drv, const char *buf, size_t count)2163 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2164 		size_t count)
2165 {
2166 	struct hid_driver *hdrv = to_hid_driver(drv);
2167 	struct hid_dynid *dynid;
2168 	__u32 bus, vendor, product;
2169 	unsigned long driver_data = 0;
2170 	int ret;
2171 
2172 	ret = sscanf(buf, "%x %x %x %lx",
2173 			&bus, &vendor, &product, &driver_data);
2174 	if (ret < 3)
2175 		return -EINVAL;
2176 
2177 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2178 	if (!dynid)
2179 		return -ENOMEM;
2180 
2181 	dynid->id.bus = bus;
2182 	dynid->id.group = HID_GROUP_ANY;
2183 	dynid->id.vendor = vendor;
2184 	dynid->id.product = product;
2185 	dynid->id.driver_data = driver_data;
2186 
2187 	spin_lock(&hdrv->dyn_lock);
2188 	list_add_tail(&dynid->list, &hdrv->dyn_list);
2189 	spin_unlock(&hdrv->dyn_lock);
2190 
2191 	ret = driver_attach(&hdrv->driver);
2192 
2193 	return ret ? : count;
2194 }
2195 static DRIVER_ATTR_WO(new_id);
2196 
2197 static struct attribute *hid_drv_attrs[] = {
2198 	&driver_attr_new_id.attr,
2199 	NULL,
2200 };
2201 ATTRIBUTE_GROUPS(hid_drv);
2202 
hid_free_dynids(struct hid_driver *hdrv)2203 static void hid_free_dynids(struct hid_driver *hdrv)
2204 {
2205 	struct hid_dynid *dynid, *n;
2206 
2207 	spin_lock(&hdrv->dyn_lock);
2208 	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2209 		list_del(&dynid->list);
2210 		kfree(dynid);
2211 	}
2212 	spin_unlock(&hdrv->dyn_lock);
2213 }
2214 
hid_match_device(struct hid_device *hdev, struct hid_driver *hdrv)2215 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2216 					     struct hid_driver *hdrv)
2217 {
2218 	struct hid_dynid *dynid;
2219 
2220 	spin_lock(&hdrv->dyn_lock);
2221 	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2222 		if (hid_match_one_id(hdev, &dynid->id)) {
2223 			spin_unlock(&hdrv->dyn_lock);
2224 			return &dynid->id;
2225 		}
2226 	}
2227 	spin_unlock(&hdrv->dyn_lock);
2228 
2229 	return hid_match_id(hdev, hdrv->id_table);
2230 }
2231 EXPORT_SYMBOL_GPL(hid_match_device);
2232 
hid_bus_match(struct device *dev, struct device_driver *drv)2233 static int hid_bus_match(struct device *dev, struct device_driver *drv)
2234 {
2235 	struct hid_driver *hdrv = to_hid_driver(drv);
2236 	struct hid_device *hdev = to_hid_device(dev);
2237 
2238 	return hid_match_device(hdev, hdrv) != NULL;
2239 }
2240 
2241 /**
2242  * hid_compare_device_paths - check if both devices share the same path
2243  * @hdev_a: hid device
2244  * @hdev_b: hid device
2245  * @separator: char to use as separator
2246  *
2247  * Check if two devices share the same path up to the last occurrence of
2248  * the separator char. Both paths must exist (i.e., zero-length paths
2249  * don't match).
2250  */
hid_compare_device_paths(struct hid_device *hdev_a, struct hid_device *hdev_b, char separator)2251 bool hid_compare_device_paths(struct hid_device *hdev_a,
2252 			      struct hid_device *hdev_b, char separator)
2253 {
2254 	int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2255 	int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2256 
2257 	if (n1 != n2 || n1 <= 0 || n2 <= 0)
2258 		return false;
2259 
2260 	return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2261 }
2262 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2263 
hid_device_probe(struct device *dev)2264 static int hid_device_probe(struct device *dev)
2265 {
2266 	struct hid_driver *hdrv = to_hid_driver(dev->driver);
2267 	struct hid_device *hdev = to_hid_device(dev);
2268 	const struct hid_device_id *id;
2269 	int ret = 0;
2270 
2271 	if (down_interruptible(&hdev->driver_input_lock)) {
2272 		ret = -EINTR;
2273 		goto end;
2274 	}
2275 	hdev->io_started = false;
2276 
2277 	clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2278 
2279 	if (!hdev->driver) {
2280 		id = hid_match_device(hdev, hdrv);
2281 		if (id == NULL) {
2282 			ret = -ENODEV;
2283 			goto unlock;
2284 		}
2285 
2286 		if (hdrv->match) {
2287 			if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2288 				ret = -ENODEV;
2289 				goto unlock;
2290 			}
2291 		} else {
2292 			/*
2293 			 * hid-generic implements .match(), so if
2294 			 * hid_ignore_special_drivers is set, we can safely
2295 			 * return.
2296 			 */
2297 			if (hid_ignore_special_drivers) {
2298 				ret = -ENODEV;
2299 				goto unlock;
2300 			}
2301 		}
2302 
2303 		/* reset the quirks that has been previously set */
2304 		hdev->quirks = hid_lookup_quirk(hdev);
2305 		hdev->driver = hdrv;
2306 		if (hdrv->probe) {
2307 			ret = hdrv->probe(hdev, id);
2308 		} else { /* default probe */
2309 			ret = hid_open_report(hdev);
2310 			if (!ret)
2311 				ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2312 		}
2313 		if (ret) {
2314 			hid_close_report(hdev);
2315 			hdev->driver = NULL;
2316 		}
2317 	}
2318 unlock:
2319 	if (!hdev->io_started)
2320 		up(&hdev->driver_input_lock);
2321 end:
2322 	return ret;
2323 }
2324 
hid_device_remove(struct device *dev)2325 static int hid_device_remove(struct device *dev)
2326 {
2327 	struct hid_device *hdev = to_hid_device(dev);
2328 	struct hid_driver *hdrv;
2329 
2330 	down(&hdev->driver_input_lock);
2331 	hdev->io_started = false;
2332 
2333 	hdrv = hdev->driver;
2334 	if (hdrv) {
2335 		if (hdrv->remove)
2336 			hdrv->remove(hdev);
2337 		else /* default remove */
2338 			hid_hw_stop(hdev);
2339 		hid_close_report(hdev);
2340 		hdev->driver = NULL;
2341 	}
2342 
2343 	if (!hdev->io_started)
2344 		up(&hdev->driver_input_lock);
2345 
2346 	return 0;
2347 }
2348 
modalias_show(struct device *dev, struct device_attribute *a, char *buf)2349 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2350 			     char *buf)
2351 {
2352 	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2353 
2354 	return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2355 			 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2356 }
2357 static DEVICE_ATTR_RO(modalias);
2358 
2359 static struct attribute *hid_dev_attrs[] = {
2360 	&dev_attr_modalias.attr,
2361 	NULL,
2362 };
2363 static struct bin_attribute *hid_dev_bin_attrs[] = {
2364 	&dev_bin_attr_report_desc,
2365 	NULL
2366 };
2367 static const struct attribute_group hid_dev_group = {
2368 	.attrs = hid_dev_attrs,
2369 	.bin_attrs = hid_dev_bin_attrs,
2370 };
2371 __ATTRIBUTE_GROUPS(hid_dev);
2372 
hid_uevent(struct device *dev, struct kobj_uevent_env *env)2373 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2374 {
2375 	struct hid_device *hdev = to_hid_device(dev);
2376 
2377 	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2378 			hdev->bus, hdev->vendor, hdev->product))
2379 		return -ENOMEM;
2380 
2381 	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2382 		return -ENOMEM;
2383 
2384 	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2385 		return -ENOMEM;
2386 
2387 	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2388 		return -ENOMEM;
2389 
2390 	if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2391 			   hdev->bus, hdev->group, hdev->vendor, hdev->product))
2392 		return -ENOMEM;
2393 
2394 	return 0;
2395 }
2396 
2397 struct bus_type hid_bus_type = {
2398 	.name		= "hid",
2399 	.dev_groups	= hid_dev_groups,
2400 	.drv_groups	= hid_drv_groups,
2401 	.match		= hid_bus_match,
2402 	.probe		= hid_device_probe,
2403 	.remove		= hid_device_remove,
2404 	.uevent		= hid_uevent,
2405 };
2406 EXPORT_SYMBOL(hid_bus_type);
2407 
hid_add_device(struct hid_device *hdev)2408 int hid_add_device(struct hid_device *hdev)
2409 {
2410 	static atomic_t id = ATOMIC_INIT(0);
2411 	int ret;
2412 
2413 	if (WARN_ON(hdev->status & HID_STAT_ADDED))
2414 		return -EBUSY;
2415 
2416 	hdev->quirks = hid_lookup_quirk(hdev);
2417 
2418 	/* we need to kill them here, otherwise they will stay allocated to
2419 	 * wait for coming driver */
2420 	if (hid_ignore(hdev))
2421 		return -ENODEV;
2422 
2423 	/*
2424 	 * Check for the mandatory transport channel.
2425 	 */
2426 	 if (!hdev->ll_driver->raw_request) {
2427 		hid_err(hdev, "transport driver missing .raw_request()\n");
2428 		return -EINVAL;
2429 	 }
2430 
2431 	/*
2432 	 * Read the device report descriptor once and use as template
2433 	 * for the driver-specific modifications.
2434 	 */
2435 	ret = hdev->ll_driver->parse(hdev);
2436 	if (ret)
2437 		return ret;
2438 	if (!hdev->dev_rdesc)
2439 		return -ENODEV;
2440 
2441 	/*
2442 	 * Scan generic devices for group information
2443 	 */
2444 	if (hid_ignore_special_drivers) {
2445 		hdev->group = HID_GROUP_GENERIC;
2446 	} else if (!hdev->group &&
2447 		   !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2448 		ret = hid_scan_report(hdev);
2449 		if (ret)
2450 			hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2451 	}
2452 
2453 	hdev->id = atomic_inc_return(&id);
2454 
2455 	/* XXX hack, any other cleaner solution after the driver core
2456 	 * is converted to allow more than 20 bytes as the device name? */
2457 	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2458 		     hdev->vendor, hdev->product, hdev->id);
2459 
2460 	hid_debug_register(hdev, dev_name(&hdev->dev));
2461 	ret = device_add(&hdev->dev);
2462 	if (!ret)
2463 		hdev->status |= HID_STAT_ADDED;
2464 	else
2465 		hid_debug_unregister(hdev);
2466 
2467 	return ret;
2468 }
2469 EXPORT_SYMBOL_GPL(hid_add_device);
2470 
2471 /**
2472  * hid_allocate_device - allocate new hid device descriptor
2473  *
2474  * Allocate and initialize hid device, so that hid_destroy_device might be
2475  * used to free it.
2476  *
2477  * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2478  * error value.
2479  */
hid_allocate_device(void)2480 struct hid_device *hid_allocate_device(void)
2481 {
2482 	struct hid_device *hdev;
2483 	int ret = -ENOMEM;
2484 
2485 	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2486 	if (hdev == NULL)
2487 		return ERR_PTR(ret);
2488 
2489 	device_initialize(&hdev->dev);
2490 	hdev->dev.release = hid_device_release;
2491 	hdev->dev.bus = &hid_bus_type;
2492 	device_enable_async_suspend(&hdev->dev);
2493 
2494 	hid_close_report(hdev);
2495 
2496 	init_waitqueue_head(&hdev->debug_wait);
2497 	INIT_LIST_HEAD(&hdev->debug_list);
2498 	spin_lock_init(&hdev->debug_list_lock);
2499 	sema_init(&hdev->driver_input_lock, 1);
2500 	mutex_init(&hdev->ll_open_lock);
2501 	kref_init(&hdev->ref);
2502 
2503 	return hdev;
2504 }
2505 EXPORT_SYMBOL_GPL(hid_allocate_device);
2506 
hid_remove_device(struct hid_device *hdev)2507 static void hid_remove_device(struct hid_device *hdev)
2508 {
2509 	if (hdev->status & HID_STAT_ADDED) {
2510 		device_del(&hdev->dev);
2511 		hid_debug_unregister(hdev);
2512 		hdev->status &= ~HID_STAT_ADDED;
2513 	}
2514 	kfree(hdev->dev_rdesc);
2515 	hdev->dev_rdesc = NULL;
2516 	hdev->dev_rsize = 0;
2517 }
2518 
2519 /**
2520  * hid_destroy_device - free previously allocated device
2521  *
2522  * @hdev: hid device
2523  *
2524  * If you allocate hid_device through hid_allocate_device, you should ever
2525  * free by this function.
2526  */
hid_destroy_device(struct hid_device *hdev)2527 void hid_destroy_device(struct hid_device *hdev)
2528 {
2529 	hid_remove_device(hdev);
2530 	put_device(&hdev->dev);
2531 }
2532 EXPORT_SYMBOL_GPL(hid_destroy_device);
2533 
2534 
__hid_bus_reprobe_drivers(struct device *dev, void *data)2535 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2536 {
2537 	struct hid_driver *hdrv = data;
2538 	struct hid_device *hdev = to_hid_device(dev);
2539 
2540 	if (hdev->driver == hdrv &&
2541 	    !hdrv->match(hdev, hid_ignore_special_drivers) &&
2542 	    !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2543 		return device_reprobe(dev);
2544 
2545 	return 0;
2546 }
2547 
__hid_bus_driver_added(struct device_driver *drv, void *data)2548 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2549 {
2550 	struct hid_driver *hdrv = to_hid_driver(drv);
2551 
2552 	if (hdrv->match) {
2553 		bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2554 				 __hid_bus_reprobe_drivers);
2555 	}
2556 
2557 	return 0;
2558 }
2559 
__bus_removed_driver(struct device_driver *drv, void *data)2560 static int __bus_removed_driver(struct device_driver *drv, void *data)
2561 {
2562 	return bus_rescan_devices(&hid_bus_type);
2563 }
2564 
__hid_register_driver(struct hid_driver *hdrv, struct module *owner, const char *mod_name)2565 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2566 		const char *mod_name)
2567 {
2568 	int ret;
2569 
2570 	hdrv->driver.name = hdrv->name;
2571 	hdrv->driver.bus = &hid_bus_type;
2572 	hdrv->driver.owner = owner;
2573 	hdrv->driver.mod_name = mod_name;
2574 
2575 	INIT_LIST_HEAD(&hdrv->dyn_list);
2576 	spin_lock_init(&hdrv->dyn_lock);
2577 
2578 	ret = driver_register(&hdrv->driver);
2579 
2580 	if (ret == 0)
2581 		bus_for_each_drv(&hid_bus_type, NULL, NULL,
2582 				 __hid_bus_driver_added);
2583 
2584 	return ret;
2585 }
2586 EXPORT_SYMBOL_GPL(__hid_register_driver);
2587 
hid_unregister_driver(struct hid_driver *hdrv)2588 void hid_unregister_driver(struct hid_driver *hdrv)
2589 {
2590 	driver_unregister(&hdrv->driver);
2591 	hid_free_dynids(hdrv);
2592 
2593 	bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2594 }
2595 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2596 
hid_check_keys_pressed(struct hid_device *hid)2597 int hid_check_keys_pressed(struct hid_device *hid)
2598 {
2599 	struct hid_input *hidinput;
2600 	int i;
2601 
2602 	if (!(hid->claimed & HID_CLAIMED_INPUT))
2603 		return 0;
2604 
2605 	list_for_each_entry(hidinput, &hid->inputs, list) {
2606 		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2607 			if (hidinput->input->key[i])
2608 				return 1;
2609 	}
2610 
2611 	return 0;
2612 }
2613 
2614 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2615 
hid_init(void)2616 static int __init hid_init(void)
2617 {
2618 	int ret;
2619 
2620 	if (hid_debug)
2621 		pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2622 			"debugfs is now used for inspecting the device (report descriptor, reports)\n");
2623 
2624 	ret = bus_register(&hid_bus_type);
2625 	if (ret) {
2626 		pr_err("can't register hid bus\n");
2627 		goto err;
2628 	}
2629 
2630 	ret = hidraw_init();
2631 	if (ret)
2632 		goto err_bus;
2633 
2634 	hid_debug_init();
2635 
2636 	return 0;
2637 err_bus:
2638 	bus_unregister(&hid_bus_type);
2639 err:
2640 	return ret;
2641 }
2642 
hid_exit(void)2643 static void __exit hid_exit(void)
2644 {
2645 	hid_debug_exit();
2646 	hidraw_exit();
2647 	bus_unregister(&hid_bus_type);
2648 	hid_quirks_exit(HID_BUS_ANY);
2649 }
2650 
2651 module_init(hid_init);
2652 module_exit(hid_exit);
2653 
2654 MODULE_AUTHOR("Andreas Gal");
2655 MODULE_AUTHOR("Vojtech Pavlik");
2656 MODULE_AUTHOR("Jiri Kosina");
2657 MODULE_LICENSE("GPL");
2658