1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
4  * Author:Mark Yao <mark.yao@rock-chips.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/component.h>
9 #include <linux/delay.h>
10 #include <linux/iopoll.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_device.h>
15 #include <linux/overflow.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/reset.h>
19 
20 #include <drm/drm.h>
21 #include <drm/drm_atomic.h>
22 #include <drm/drm_atomic_uapi.h>
23 #include <drm/drm_crtc.h>
24 #include <drm/drm_flip_work.h>
25 #include <drm/drm_fourcc.h>
26 #include <drm/drm_gem_framebuffer_helper.h>
27 #include <drm/drm_plane_helper.h>
28 #include <drm/drm_probe_helper.h>
29 #include <drm/drm_self_refresh_helper.h>
30 #include <drm/drm_vblank.h>
31 
32 #ifdef CONFIG_DRM_ANALOGIX_DP
33 #include <drm/bridge/analogix_dp.h>
34 #endif
35 
36 #include "rockchip_drm_drv.h"
37 #include "rockchip_drm_gem.h"
38 #include "rockchip_drm_fb.h"
39 #include "rockchip_drm_vop.h"
40 #include "rockchip_rgb.h"
41 
42 #define VOP_WIN_SET(vop, win, name, v) \
43 		vop_reg_set(vop, &win->phy->name, win->base, ~0, v, #name)
44 #define VOP_SCL_SET(vop, win, name, v) \
45 		vop_reg_set(vop, &win->phy->scl->name, win->base, ~0, v, #name)
46 #define VOP_SCL_SET_EXT(vop, win, name, v) \
47 		vop_reg_set(vop, &win->phy->scl->ext->name, \
48 			    win->base, ~0, v, #name)
49 
50 #define VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, name, v) \
51 	do { \
52 		if (win_yuv2yuv && win_yuv2yuv->name.mask) \
53 			vop_reg_set(vop, &win_yuv2yuv->name, 0, ~0, v, #name); \
54 	} while (0)
55 
56 #define VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, win_yuv2yuv, name, v) \
57 	do { \
58 		if (win_yuv2yuv && win_yuv2yuv->phy->name.mask) \
59 			vop_reg_set(vop, &win_yuv2yuv->phy->name, win_yuv2yuv->base, ~0, v, #name); \
60 	} while (0)
61 
62 #define VOP_INTR_SET_MASK(vop, name, mask, v) \
63 		vop_reg_set(vop, &vop->data->intr->name, 0, mask, v, #name)
64 
65 #define VOP_REG_SET(vop, group, name, v) \
66 		    vop_reg_set(vop, &vop->data->group->name, 0, ~0, v, #name)
67 
68 #define VOP_INTR_SET_TYPE(vop, name, type, v) \
69 	do { \
70 		int i, reg = 0, mask = 0; \
71 		for (i = 0; i < vop->data->intr->nintrs; i++) { \
72 			if (vop->data->intr->intrs[i] & type) { \
73 				reg |= (v) << i; \
74 				mask |= 1 << i; \
75 			} \
76 		} \
77 		VOP_INTR_SET_MASK(vop, name, mask, reg); \
78 	} while (0)
79 #define VOP_INTR_GET_TYPE(vop, name, type) \
80 		vop_get_intr_type(vop, &vop->data->intr->name, type)
81 
82 #define VOP_WIN_GET(vop, win, name) \
83 		vop_read_reg(vop, win->base, &win->phy->name)
84 
85 #define VOP_WIN_HAS_REG(win, name) \
86 	(!!(win->phy->name.mask))
87 
88 #define VOP_WIN_GET_YRGBADDR(vop, win) \
89 		vop_readl(vop, win->base + win->phy->yrgb_mst.offset)
90 
91 #define VOP_WIN_TO_INDEX(vop_win) \
92 	((vop_win) - (vop_win)->vop->win)
93 
94 #define VOP_AFBC_SET(vop, name, v) \
95 	do { \
96 		if ((vop)->data->afbc) \
97 			vop_reg_set((vop), &(vop)->data->afbc->name, \
98 				    0, ~0, v, #name); \
99 	} while (0)
100 
101 #define to_vop(x) container_of(x, struct vop, crtc)
102 #define to_vop_win(x) container_of(x, struct vop_win, base)
103 
104 #define AFBC_FMT_RGB565		0x0
105 #define AFBC_FMT_U8U8U8U8	0x5
106 #define AFBC_FMT_U8U8U8		0x4
107 
108 #define AFBC_TILE_16x16		BIT(4)
109 
110 /*
111  * The coefficients of the following matrix are all fixed points.
112  * The format is S2.10 for the 3x3 part of the matrix, and S9.12 for the offsets.
113  * They are all represented in two's complement.
114  */
115 static const uint32_t bt601_yuv2rgb[] = {
116 	0x4A8, 0x0,    0x662,
117 	0x4A8, 0x1E6F, 0x1CBF,
118 	0x4A8, 0x812,  0x0,
119 	0x321168, 0x0877CF, 0x2EB127
120 };
121 
122 enum vop_pending {
123 	VOP_PENDING_FB_UNREF,
124 };
125 
126 struct vop_win {
127 	struct drm_plane base;
128 	const struct vop_win_data *data;
129 	const struct vop_win_yuv2yuv_data *yuv2yuv_data;
130 	struct vop *vop;
131 };
132 
133 struct rockchip_rgb;
134 struct vop {
135 	struct drm_crtc crtc;
136 	struct device *dev;
137 	struct drm_device *drm_dev;
138 	bool is_enabled;
139 
140 	struct completion dsp_hold_completion;
141 	unsigned int win_enabled;
142 
143 	/* protected by dev->event_lock */
144 	struct drm_pending_vblank_event *event;
145 
146 	struct drm_flip_work fb_unref_work;
147 	unsigned long pending;
148 
149 	struct completion line_flag_completion;
150 
151 	const struct vop_data *data;
152 
153 	uint32_t *regsbak;
154 	void __iomem *regs;
155 	void __iomem *lut_regs;
156 
157 	/* physical map length of vop register */
158 	uint32_t len;
159 
160 	/* one time only one process allowed to config the register */
161 	spinlock_t reg_lock;
162 	/* lock vop irq reg */
163 	spinlock_t irq_lock;
164 	/* protects crtc enable/disable */
165 	struct mutex vop_lock;
166 
167 	unsigned int irq;
168 
169 	/* vop AHP clk */
170 	struct clk *hclk;
171 	/* vop dclk */
172 	struct clk *dclk;
173 	/* vop share memory frequency */
174 	struct clk *aclk;
175 
176 	/* vop dclk reset */
177 	struct reset_control *dclk_rst;
178 
179 	/* optional internal rgb encoder */
180 	struct rockchip_rgb *rgb;
181 
182 	struct vop_win win[];
183 };
184 
vop_writel(struct vop *vop, uint32_t offset, uint32_t v)185 static inline void vop_writel(struct vop *vop, uint32_t offset, uint32_t v)
186 {
187 	writel(v, vop->regs + offset);
188 	vop->regsbak[offset >> 2] = v;
189 }
190 
vop_readl(struct vop *vop, uint32_t offset)191 static inline uint32_t vop_readl(struct vop *vop, uint32_t offset)
192 {
193 	return readl(vop->regs + offset);
194 }
195 
vop_read_reg(struct vop *vop, uint32_t base, const struct vop_reg *reg)196 static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base,
197 				    const struct vop_reg *reg)
198 {
199 	return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask;
200 }
201 
vop_reg_set(struct vop *vop, const struct vop_reg *reg, uint32_t _offset, uint32_t _mask, uint32_t v, const char *reg_name)202 static void vop_reg_set(struct vop *vop, const struct vop_reg *reg,
203 			uint32_t _offset, uint32_t _mask, uint32_t v,
204 			const char *reg_name)
205 {
206 	int offset, mask, shift;
207 
208 	if (!reg || !reg->mask) {
209 		DRM_DEV_DEBUG(vop->dev, "Warning: not support %s\n", reg_name);
210 		return;
211 	}
212 
213 	offset = reg->offset + _offset;
214 	mask = reg->mask & _mask;
215 	shift = reg->shift;
216 
217 	if (reg->write_mask) {
218 		v = ((v << shift) & 0xffff) | (mask << (shift + 16));
219 	} else {
220 		uint32_t cached_val = vop->regsbak[offset >> 2];
221 
222 		v = (cached_val & ~(mask << shift)) | ((v & mask) << shift);
223 		vop->regsbak[offset >> 2] = v;
224 	}
225 
226 	if (reg->relaxed)
227 		writel_relaxed(v, vop->regs + offset);
228 	else
229 		writel(v, vop->regs + offset);
230 }
231 
vop_get_intr_type(struct vop *vop, const struct vop_reg *reg, int type)232 static inline uint32_t vop_get_intr_type(struct vop *vop,
233 					 const struct vop_reg *reg, int type)
234 {
235 	uint32_t i, ret = 0;
236 	uint32_t regs = vop_read_reg(vop, 0, reg);
237 
238 	for (i = 0; i < vop->data->intr->nintrs; i++) {
239 		if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i))
240 			ret |= vop->data->intr->intrs[i];
241 	}
242 
243 	return ret;
244 }
245 
vop_cfg_done(struct vop *vop)246 static inline void vop_cfg_done(struct vop *vop)
247 {
248 	VOP_REG_SET(vop, common, cfg_done, 1);
249 }
250 
has_rb_swapped(uint32_t version, uint32_t format)251 static bool has_rb_swapped(uint32_t version, uint32_t format)
252 {
253 	switch (format) {
254 	case DRM_FORMAT_XBGR8888:
255 	case DRM_FORMAT_ABGR8888:
256 	case DRM_FORMAT_BGR565:
257 		return true;
258 	/*
259 	 * full framework (IP version 3.x) only need rb swapped for RGB888 and
260 	 * little framework (IP version 2.x) only need rb swapped for BGR888,
261 	 * check for 3.x to also only rb swap BGR888 for unknown vop version
262 	 */
263 	case DRM_FORMAT_RGB888:
264 		return VOP_MAJOR(version) == 3;
265 	case DRM_FORMAT_BGR888:
266 		return VOP_MAJOR(version) != 3;
267 	default:
268 		return false;
269 	}
270 }
271 
vop_convert_format(uint32_t format)272 static enum vop_data_format vop_convert_format(uint32_t format)
273 {
274 	switch (format) {
275 	case DRM_FORMAT_XRGB8888:
276 	case DRM_FORMAT_ARGB8888:
277 	case DRM_FORMAT_XBGR8888:
278 	case DRM_FORMAT_ABGR8888:
279 		return VOP_FMT_ARGB8888;
280 	case DRM_FORMAT_RGB888:
281 	case DRM_FORMAT_BGR888:
282 		return VOP_FMT_RGB888;
283 	case DRM_FORMAT_RGB565:
284 	case DRM_FORMAT_BGR565:
285 		return VOP_FMT_RGB565;
286 	case DRM_FORMAT_NV12:
287 		return VOP_FMT_YUV420SP;
288 	case DRM_FORMAT_NV16:
289 		return VOP_FMT_YUV422SP;
290 	case DRM_FORMAT_NV24:
291 		return VOP_FMT_YUV444SP;
292 	default:
293 		DRM_ERROR("unsupported format[%08x]\n", format);
294 		return -EINVAL;
295 	}
296 }
297 
vop_convert_afbc_format(uint32_t format)298 static int vop_convert_afbc_format(uint32_t format)
299 {
300 	switch (format) {
301 	case DRM_FORMAT_XRGB8888:
302 	case DRM_FORMAT_ARGB8888:
303 	case DRM_FORMAT_XBGR8888:
304 	case DRM_FORMAT_ABGR8888:
305 		return AFBC_FMT_U8U8U8U8;
306 	case DRM_FORMAT_RGB888:
307 	case DRM_FORMAT_BGR888:
308 		return AFBC_FMT_U8U8U8;
309 	case DRM_FORMAT_RGB565:
310 	case DRM_FORMAT_BGR565:
311 		return AFBC_FMT_RGB565;
312 	/* either of the below should not be reachable */
313 	default:
314 		DRM_WARN_ONCE("unsupported AFBC format[%08x]\n", format);
315 		return -EINVAL;
316 	}
317 
318 	return -EINVAL;
319 }
320 
scl_vop_cal_scale(enum scale_mode mode, uint32_t src, uint32_t dst, bool is_horizontal, int vsu_mode, int *vskiplines)321 static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src,
322 				  uint32_t dst, bool is_horizontal,
323 				  int vsu_mode, int *vskiplines)
324 {
325 	uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT;
326 
327 	if (vskiplines)
328 		*vskiplines = 0;
329 
330 	if (is_horizontal) {
331 		if (mode == SCALE_UP)
332 			val = GET_SCL_FT_BIC(src, dst);
333 		else if (mode == SCALE_DOWN)
334 			val = GET_SCL_FT_BILI_DN(src, dst);
335 	} else {
336 		if (mode == SCALE_UP) {
337 			if (vsu_mode == SCALE_UP_BIL)
338 				val = GET_SCL_FT_BILI_UP(src, dst);
339 			else
340 				val = GET_SCL_FT_BIC(src, dst);
341 		} else if (mode == SCALE_DOWN) {
342 			if (vskiplines) {
343 				*vskiplines = scl_get_vskiplines(src, dst);
344 				val = scl_get_bili_dn_vskip(src, dst,
345 							    *vskiplines);
346 			} else {
347 				val = GET_SCL_FT_BILI_DN(src, dst);
348 			}
349 		}
350 	}
351 
352 	return val;
353 }
354 
scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win, uint32_t src_w, uint32_t src_h, uint32_t dst_w, uint32_t dst_h, const struct drm_format_info *info)355 static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win,
356 			     uint32_t src_w, uint32_t src_h, uint32_t dst_w,
357 			     uint32_t dst_h, const struct drm_format_info *info)
358 {
359 	uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode;
360 	uint16_t cbcr_hor_scl_mode = SCALE_NONE;
361 	uint16_t cbcr_ver_scl_mode = SCALE_NONE;
362 	bool is_yuv = false;
363 	uint16_t cbcr_src_w = src_w / info->hsub;
364 	uint16_t cbcr_src_h = src_h / info->vsub;
365 	uint16_t vsu_mode;
366 	uint16_t lb_mode;
367 	uint32_t val;
368 	int vskiplines;
369 
370 	if (info->is_yuv)
371 		is_yuv = true;
372 
373 	if (dst_w > 3840) {
374 		DRM_DEV_ERROR(vop->dev, "Maximum dst width (3840) exceeded\n");
375 		return;
376 	}
377 
378 	if (!win->phy->scl->ext) {
379 		VOP_SCL_SET(vop, win, scale_yrgb_x,
380 			    scl_cal_scale2(src_w, dst_w));
381 		VOP_SCL_SET(vop, win, scale_yrgb_y,
382 			    scl_cal_scale2(src_h, dst_h));
383 		if (is_yuv) {
384 			VOP_SCL_SET(vop, win, scale_cbcr_x,
385 				    scl_cal_scale2(cbcr_src_w, dst_w));
386 			VOP_SCL_SET(vop, win, scale_cbcr_y,
387 				    scl_cal_scale2(cbcr_src_h, dst_h));
388 		}
389 		return;
390 	}
391 
392 	yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w);
393 	yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h);
394 
395 	if (is_yuv) {
396 		cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w);
397 		cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h);
398 		if (cbcr_hor_scl_mode == SCALE_DOWN)
399 			lb_mode = scl_vop_cal_lb_mode(dst_w, true);
400 		else
401 			lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true);
402 	} else {
403 		if (yrgb_hor_scl_mode == SCALE_DOWN)
404 			lb_mode = scl_vop_cal_lb_mode(dst_w, false);
405 		else
406 			lb_mode = scl_vop_cal_lb_mode(src_w, false);
407 	}
408 
409 	VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode);
410 	if (lb_mode == LB_RGB_3840X2) {
411 		if (yrgb_ver_scl_mode != SCALE_NONE) {
412 			DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n");
413 			return;
414 		}
415 		if (cbcr_ver_scl_mode != SCALE_NONE) {
416 			DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n");
417 			return;
418 		}
419 		vsu_mode = SCALE_UP_BIL;
420 	} else if (lb_mode == LB_RGB_2560X4) {
421 		vsu_mode = SCALE_UP_BIL;
422 	} else {
423 		vsu_mode = SCALE_UP_BIC;
424 	}
425 
426 	val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w,
427 				true, 0, NULL);
428 	VOP_SCL_SET(vop, win, scale_yrgb_x, val);
429 	val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h,
430 				false, vsu_mode, &vskiplines);
431 	VOP_SCL_SET(vop, win, scale_yrgb_y, val);
432 
433 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4);
434 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2);
435 
436 	VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode);
437 	VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode);
438 	VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL);
439 	VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL);
440 	VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode);
441 	if (is_yuv) {
442 		val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w,
443 					dst_w, true, 0, NULL);
444 		VOP_SCL_SET(vop, win, scale_cbcr_x, val);
445 		val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h,
446 					dst_h, false, vsu_mode, &vskiplines);
447 		VOP_SCL_SET(vop, win, scale_cbcr_y, val);
448 
449 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4);
450 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2);
451 		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode);
452 		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode);
453 		VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL);
454 		VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL);
455 		VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode);
456 	}
457 }
458 
vop_dsp_hold_valid_irq_enable(struct vop *vop)459 static void vop_dsp_hold_valid_irq_enable(struct vop *vop)
460 {
461 	unsigned long flags;
462 
463 	if (WARN_ON(!vop->is_enabled))
464 		return;
465 
466 	spin_lock_irqsave(&vop->irq_lock, flags);
467 
468 	VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1);
469 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1);
470 
471 	spin_unlock_irqrestore(&vop->irq_lock, flags);
472 }
473 
vop_dsp_hold_valid_irq_disable(struct vop *vop)474 static void vop_dsp_hold_valid_irq_disable(struct vop *vop)
475 {
476 	unsigned long flags;
477 
478 	if (WARN_ON(!vop->is_enabled))
479 		return;
480 
481 	spin_lock_irqsave(&vop->irq_lock, flags);
482 
483 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0);
484 
485 	spin_unlock_irqrestore(&vop->irq_lock, flags);
486 }
487 
488 /*
489  * (1) each frame starts at the start of the Vsync pulse which is signaled by
490  *     the "FRAME_SYNC" interrupt.
491  * (2) the active data region of each frame ends at dsp_vact_end
492  * (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num,
493  *      to get "LINE_FLAG" interrupt at the end of the active on screen data.
494  *
495  * VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end
496  * Interrupts
497  * LINE_FLAG -------------------------------+
498  * FRAME_SYNC ----+                         |
499  *                |                         |
500  *                v                         v
501  *                | Vsync | Vbp |  Vactive  | Vfp |
502  *                        ^     ^           ^     ^
503  *                        |     |           |     |
504  *                        |     |           |     |
505  * dsp_vs_end ------------+     |           |     |   VOP_DSP_VTOTAL_VS_END
506  * dsp_vact_start --------------+           |     |   VOP_DSP_VACT_ST_END
507  * dsp_vact_end ----------------------------+     |   VOP_DSP_VACT_ST_END
508  * dsp_total -------------------------------------+   VOP_DSP_VTOTAL_VS_END
509  */
vop_line_flag_irq_is_enabled(struct vop *vop)510 static bool vop_line_flag_irq_is_enabled(struct vop *vop)
511 {
512 	uint32_t line_flag_irq;
513 	unsigned long flags;
514 
515 	spin_lock_irqsave(&vop->irq_lock, flags);
516 
517 	line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR);
518 
519 	spin_unlock_irqrestore(&vop->irq_lock, flags);
520 
521 	return !!line_flag_irq;
522 }
523 
vop_line_flag_irq_enable(struct vop *vop)524 static void vop_line_flag_irq_enable(struct vop *vop)
525 {
526 	unsigned long flags;
527 
528 	if (WARN_ON(!vop->is_enabled))
529 		return;
530 
531 	spin_lock_irqsave(&vop->irq_lock, flags);
532 
533 	VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1);
534 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1);
535 
536 	spin_unlock_irqrestore(&vop->irq_lock, flags);
537 }
538 
vop_line_flag_irq_disable(struct vop *vop)539 static void vop_line_flag_irq_disable(struct vop *vop)
540 {
541 	unsigned long flags;
542 
543 	if (WARN_ON(!vop->is_enabled))
544 		return;
545 
546 	spin_lock_irqsave(&vop->irq_lock, flags);
547 
548 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0);
549 
550 	spin_unlock_irqrestore(&vop->irq_lock, flags);
551 }
552 
vop_core_clks_enable(struct vop *vop)553 static int vop_core_clks_enable(struct vop *vop)
554 {
555 	int ret;
556 
557 	ret = clk_enable(vop->hclk);
558 	if (ret < 0)
559 		return ret;
560 
561 	ret = clk_enable(vop->aclk);
562 	if (ret < 0)
563 		goto err_disable_hclk;
564 
565 	return 0;
566 
567 err_disable_hclk:
568 	clk_disable(vop->hclk);
569 	return ret;
570 }
571 
vop_core_clks_disable(struct vop *vop)572 static void vop_core_clks_disable(struct vop *vop)
573 {
574 	clk_disable(vop->aclk);
575 	clk_disable(vop->hclk);
576 }
577 
vop_win_disable(struct vop *vop, const struct vop_win *vop_win)578 static void vop_win_disable(struct vop *vop, const struct vop_win *vop_win)
579 {
580 	const struct vop_win_data *win = vop_win->data;
581 
582 	if (win->phy->scl && win->phy->scl->ext) {
583 		VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, SCALE_NONE);
584 		VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, SCALE_NONE);
585 		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, SCALE_NONE);
586 		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, SCALE_NONE);
587 	}
588 
589 	VOP_WIN_SET(vop, win, enable, 0);
590 	vop->win_enabled &= ~BIT(VOP_WIN_TO_INDEX(vop_win));
591 }
592 
vop_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state)593 static int vop_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state)
594 {
595 	struct vop *vop = to_vop(crtc);
596 	int ret, i;
597 
598 	ret = pm_runtime_get_sync(vop->dev);
599 	if (ret < 0) {
600 		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
601 		return ret;
602 	}
603 
604 	ret = vop_core_clks_enable(vop);
605 	if (WARN_ON(ret < 0))
606 		goto err_put_pm_runtime;
607 
608 	ret = clk_enable(vop->dclk);
609 	if (WARN_ON(ret < 0))
610 		goto err_disable_core;
611 
612 	/*
613 	 * Slave iommu shares power, irq and clock with vop.  It was associated
614 	 * automatically with this master device via common driver code.
615 	 * Now that we have enabled the clock we attach it to the shared drm
616 	 * mapping.
617 	 */
618 	ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev);
619 	if (ret) {
620 		DRM_DEV_ERROR(vop->dev,
621 			      "failed to attach dma mapping, %d\n", ret);
622 		goto err_disable_dclk;
623 	}
624 
625 	spin_lock(&vop->reg_lock);
626 	for (i = 0; i < vop->len; i += 4)
627 		writel_relaxed(vop->regsbak[i / 4], vop->regs + i);
628 
629 	/*
630 	 * We need to make sure that all windows are disabled before we
631 	 * enable the crtc. Otherwise we might try to scan from a destroyed
632 	 * buffer later.
633 	 *
634 	 * In the case of enable-after-PSR, we don't need to worry about this
635 	 * case since the buffer is guaranteed to be valid and disabling the
636 	 * window will result in screen glitches on PSR exit.
637 	 */
638 	if (!old_state || !old_state->self_refresh_active) {
639 		for (i = 0; i < vop->data->win_size; i++) {
640 			struct vop_win *vop_win = &vop->win[i];
641 
642 			vop_win_disable(vop, vop_win);
643 		}
644 	}
645 
646 	if (vop->data->afbc) {
647 		struct rockchip_crtc_state *s;
648 		/*
649 		 * Disable AFBC and forget there was a vop window with AFBC
650 		 */
651 		VOP_AFBC_SET(vop, enable, 0);
652 		s = to_rockchip_crtc_state(crtc->state);
653 		s->enable_afbc = false;
654 	}
655 
656 	vop_cfg_done(vop);
657 
658 	spin_unlock(&vop->reg_lock);
659 
660 	/*
661 	 * At here, vop clock & iommu is enable, R/W vop regs would be safe.
662 	 */
663 	vop->is_enabled = true;
664 
665 	spin_lock(&vop->reg_lock);
666 
667 	VOP_REG_SET(vop, common, standby, 1);
668 
669 	spin_unlock(&vop->reg_lock);
670 
671 	drm_crtc_vblank_on(crtc);
672 
673 	return 0;
674 
675 err_disable_dclk:
676 	clk_disable(vop->dclk);
677 err_disable_core:
678 	vop_core_clks_disable(vop);
679 err_put_pm_runtime:
680 	pm_runtime_put_sync(vop->dev);
681 	return ret;
682 }
683 
rockchip_drm_set_win_enabled(struct drm_crtc *crtc, bool enabled)684 static void rockchip_drm_set_win_enabled(struct drm_crtc *crtc, bool enabled)
685 {
686         struct vop *vop = to_vop(crtc);
687         int i;
688 
689         spin_lock(&vop->reg_lock);
690 
691         for (i = 0; i < vop->data->win_size; i++) {
692                 struct vop_win *vop_win = &vop->win[i];
693                 const struct vop_win_data *win = vop_win->data;
694 
695                 VOP_WIN_SET(vop, win, enable,
696                             enabled && (vop->win_enabled & BIT(i)));
697         }
698         vop_cfg_done(vop);
699 
700         spin_unlock(&vop->reg_lock);
701 }
702 
vop_crtc_atomic_disable(struct drm_crtc *crtc, struct drm_crtc_state *old_state)703 static void vop_crtc_atomic_disable(struct drm_crtc *crtc,
704 				    struct drm_crtc_state *old_state)
705 {
706 	struct vop *vop = to_vop(crtc);
707 
708 	WARN_ON(vop->event);
709 
710 	if (crtc->state->self_refresh_active)
711 		rockchip_drm_set_win_enabled(crtc, false);
712 
713 	if (crtc->state->self_refresh_active)
714 		goto out;
715 
716 	mutex_lock(&vop->vop_lock);
717 
718 	drm_crtc_vblank_off(crtc);
719 
720 	/*
721 	 * Vop standby will take effect at end of current frame,
722 	 * if dsp hold valid irq happen, it means standby complete.
723 	 *
724 	 * we must wait standby complete when we want to disable aclk,
725 	 * if not, memory bus maybe dead.
726 	 */
727 	reinit_completion(&vop->dsp_hold_completion);
728 	vop_dsp_hold_valid_irq_enable(vop);
729 
730 	spin_lock(&vop->reg_lock);
731 
732 	VOP_REG_SET(vop, common, standby, 1);
733 
734 	spin_unlock(&vop->reg_lock);
735 
736 	wait_for_completion(&vop->dsp_hold_completion);
737 
738 	vop_dsp_hold_valid_irq_disable(vop);
739 
740 	vop->is_enabled = false;
741 
742 	/*
743 	 * vop standby complete, so iommu detach is safe.
744 	 */
745 	rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev);
746 
747 	clk_disable(vop->dclk);
748 	vop_core_clks_disable(vop);
749 	pm_runtime_put(vop->dev);
750 
751 	mutex_unlock(&vop->vop_lock);
752 
753 out:
754 	if (crtc->state->event && !crtc->state->active) {
755 		spin_lock_irq(&crtc->dev->event_lock);
756 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
757 		spin_unlock_irq(&crtc->dev->event_lock);
758 
759 		crtc->state->event = NULL;
760 	}
761 }
762 
vop_plane_destroy(struct drm_plane *plane)763 static void vop_plane_destroy(struct drm_plane *plane)
764 {
765 	drm_plane_cleanup(plane);
766 }
767 
rockchip_afbc(u64 modifier)768 static inline bool rockchip_afbc(u64 modifier)
769 {
770 	return modifier == ROCKCHIP_AFBC_MOD;
771 }
772 
rockchip_mod_supported(struct drm_plane *plane, u32 format, u64 modifier)773 static bool rockchip_mod_supported(struct drm_plane *plane,
774 				   u32 format, u64 modifier)
775 {
776 	if (modifier == DRM_FORMAT_MOD_LINEAR)
777 		return true;
778 
779 	if (!rockchip_afbc(modifier)) {
780 		DRM_DEBUG_KMS("Unsupported format modifier 0x%llx\n", modifier);
781 
782 		return false;
783 	}
784 
785 	return vop_convert_afbc_format(format) >= 0;
786 }
787 
vop_plane_atomic_check(struct drm_plane *plane, struct drm_plane_state *state)788 static int vop_plane_atomic_check(struct drm_plane *plane,
789 			   struct drm_plane_state *state)
790 {
791 	struct drm_crtc *crtc = state->crtc;
792 	struct drm_crtc_state *crtc_state;
793 	struct drm_framebuffer *fb = state->fb;
794 	struct vop_win *vop_win = to_vop_win(plane);
795 	const struct vop_win_data *win = vop_win->data;
796 	int ret;
797 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
798 					DRM_PLANE_HELPER_NO_SCALING;
799 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
800 					DRM_PLANE_HELPER_NO_SCALING;
801 
802 	if (!crtc || WARN_ON(!fb))
803 		return 0;
804 
805 	crtc_state = drm_atomic_get_existing_crtc_state(state->state, crtc);
806 	if (WARN_ON(!crtc_state))
807 		return -EINVAL;
808 
809 	ret = drm_atomic_helper_check_plane_state(state, crtc_state,
810 						  min_scale, max_scale,
811 						  true, true);
812 	if (ret)
813 		return ret;
814 
815 	if (!state->visible)
816 		return 0;
817 
818 	ret = vop_convert_format(fb->format->format);
819 	if (ret < 0)
820 		return ret;
821 
822 	/*
823 	 * Src.x1 can be odd when do clip, but yuv plane start point
824 	 * need align with 2 pixel.
825 	 */
826 	if (fb->format->is_yuv && ((state->src.x1 >> 16) % 2)) {
827 		DRM_ERROR("Invalid Source: Yuv format not support odd xpos\n");
828 		return -EINVAL;
829 	}
830 
831 	if (fb->format->is_yuv && state->rotation & DRM_MODE_REFLECT_Y) {
832 		DRM_ERROR("Invalid Source: Yuv format does not support this rotation\n");
833 		return -EINVAL;
834 	}
835 
836 	if (rockchip_afbc(fb->modifier)) {
837 		struct vop *vop = to_vop(crtc);
838 
839 		if (!vop->data->afbc) {
840 			DRM_ERROR("vop does not support AFBC\n");
841 			return -EINVAL;
842 		}
843 
844 		ret = vop_convert_afbc_format(fb->format->format);
845 		if (ret < 0)
846 			return ret;
847 
848 		if (state->src.x1 || state->src.y1) {
849 			DRM_ERROR("AFBC does not support offset display, xpos=%d, ypos=%d, offset=%d\n", state->src.x1, state->src.y1, fb->offsets[0]);
850 			return -EINVAL;
851 		}
852 
853 		if (state->rotation && state->rotation != DRM_MODE_ROTATE_0) {
854 			DRM_ERROR("No rotation support in AFBC, rotation=%d\n",
855 				  state->rotation);
856 			return -EINVAL;
857 		}
858 	}
859 
860 	return 0;
861 }
862 
vop_plane_atomic_disable(struct drm_plane *plane, struct drm_plane_state *old_state)863 static void vop_plane_atomic_disable(struct drm_plane *plane,
864 				     struct drm_plane_state *old_state)
865 {
866 	struct vop_win *vop_win = to_vop_win(plane);
867 	struct vop *vop = to_vop(old_state->crtc);
868 
869 	if (!old_state->crtc)
870 		return;
871 
872 	spin_lock(&vop->reg_lock);
873 
874 	vop_win_disable(vop, vop_win);
875 
876 	spin_unlock(&vop->reg_lock);
877 }
878 
vop_plane_atomic_update(struct drm_plane *plane, struct drm_plane_state *old_state)879 static void vop_plane_atomic_update(struct drm_plane *plane,
880 		struct drm_plane_state *old_state)
881 {
882 	struct drm_plane_state *state = plane->state;
883 	struct drm_crtc *crtc = state->crtc;
884 	struct vop_win *vop_win = to_vop_win(plane);
885 	const struct vop_win_data *win = vop_win->data;
886 	const struct vop_win_yuv2yuv_data *win_yuv2yuv = vop_win->yuv2yuv_data;
887 	struct vop *vop = to_vop(state->crtc);
888 	struct drm_framebuffer *fb = state->fb;
889 	unsigned int actual_w, actual_h;
890 	unsigned int dsp_stx, dsp_sty;
891 	uint32_t act_info, dsp_info, dsp_st;
892 	struct drm_rect *src = &state->src;
893 	struct drm_rect *dest = &state->dst;
894 	struct drm_gem_object *obj, *uv_obj;
895 	struct rockchip_gem_object *rk_obj, *rk_uv_obj;
896 	unsigned long offset;
897 	dma_addr_t dma_addr;
898 	uint32_t val;
899 	bool rb_swap;
900 	int win_index = VOP_WIN_TO_INDEX(vop_win);
901 	int format;
902 	int is_yuv = fb->format->is_yuv;
903 	int i;
904 
905 	/*
906 	 * can't update plane when vop is disabled.
907 	 */
908 	if (WARN_ON(!crtc))
909 		return;
910 
911 	if (WARN_ON(!vop->is_enabled))
912 		return;
913 
914 	if (!state->visible) {
915 		vop_plane_atomic_disable(plane, old_state);
916 		return;
917 	}
918 
919 	obj = fb->obj[0];
920 	rk_obj = to_rockchip_obj(obj);
921 
922 	actual_w = drm_rect_width(src) >> 16;
923 	actual_h = drm_rect_height(src) >> 16;
924 	act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff);
925 
926 	dsp_info = (drm_rect_height(dest) - 1) << 16;
927 	dsp_info |= (drm_rect_width(dest) - 1) & 0xffff;
928 
929 	dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start;
930 	dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start;
931 	dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff);
932 
933 	offset = (src->x1 >> 16) * fb->format->cpp[0];
934 	offset += (src->y1 >> 16) * fb->pitches[0];
935 	dma_addr = rk_obj->dma_addr + offset + fb->offsets[0];
936 
937 	/*
938 	 * For y-mirroring we need to move address
939 	 * to the beginning of the last line.
940 	 */
941 	if (state->rotation & DRM_MODE_REFLECT_Y)
942 		dma_addr += (actual_h - 1) * fb->pitches[0];
943 
944 	format = vop_convert_format(fb->format->format);
945 
946 	spin_lock(&vop->reg_lock);
947 
948 	if (rockchip_afbc(fb->modifier)) {
949 		int afbc_format = vop_convert_afbc_format(fb->format->format);
950 
951 		VOP_AFBC_SET(vop, format, afbc_format | AFBC_TILE_16x16);
952 		VOP_AFBC_SET(vop, hreg_block_split, 0);
953 		VOP_AFBC_SET(vop, win_sel, VOP_WIN_TO_INDEX(vop_win));
954 		VOP_AFBC_SET(vop, hdr_ptr, dma_addr);
955 		VOP_AFBC_SET(vop, pic_size, act_info);
956 	}
957 
958 	VOP_WIN_SET(vop, win, format, format);
959 	VOP_WIN_SET(vop, win, yrgb_vir, DIV_ROUND_UP(fb->pitches[0], 4));
960 	VOP_WIN_SET(vop, win, yrgb_mst, dma_addr);
961 	VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, y2r_en, is_yuv);
962 	VOP_WIN_SET(vop, win, y_mir_en,
963 		    (state->rotation & DRM_MODE_REFLECT_Y) ? 1 : 0);
964 	VOP_WIN_SET(vop, win, x_mir_en,
965 		    (state->rotation & DRM_MODE_REFLECT_X) ? 1 : 0);
966 
967 	if (is_yuv) {
968 		int hsub = fb->format->hsub;
969 		int vsub = fb->format->vsub;
970 		int bpp = fb->format->cpp[1];
971 
972 		uv_obj = fb->obj[1];
973 		rk_uv_obj = to_rockchip_obj(uv_obj);
974 
975 		offset = (src->x1 >> 16) * bpp / hsub;
976 		offset += (src->y1 >> 16) * fb->pitches[1] / vsub;
977 
978 		dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1];
979 		VOP_WIN_SET(vop, win, uv_vir, DIV_ROUND_UP(fb->pitches[1], 4));
980 		VOP_WIN_SET(vop, win, uv_mst, dma_addr);
981 
982 		for (i = 0; i < NUM_YUV2YUV_COEFFICIENTS; i++) {
983 			VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop,
984 							win_yuv2yuv,
985 							y2r_coefficients[i],
986 							bt601_yuv2rgb[i]);
987 		}
988 	}
989 
990 	if (win->phy->scl)
991 		scl_vop_cal_scl_fac(vop, win, actual_w, actual_h,
992 				    drm_rect_width(dest), drm_rect_height(dest),
993 				    fb->format);
994 
995 	VOP_WIN_SET(vop, win, act_info, act_info);
996 	VOP_WIN_SET(vop, win, dsp_info, dsp_info);
997 	VOP_WIN_SET(vop, win, dsp_st, dsp_st);
998 
999 	rb_swap = has_rb_swapped(vop->data->version, fb->format->format);
1000 	VOP_WIN_SET(vop, win, rb_swap, rb_swap);
1001 
1002 	/*
1003 	 * Blending win0 with the background color doesn't seem to work
1004 	 * correctly. We only get the background color, no matter the contents
1005 	 * of the win0 framebuffer.  However, blending pre-multiplied color
1006 	 * with the default opaque black default background color is a no-op,
1007 	 * so we can just disable blending to get the correct result.
1008 	 */
1009 	if (fb->format->has_alpha && win_index > 0) {
1010 		VOP_WIN_SET(vop, win, dst_alpha_ctl,
1011 			    DST_FACTOR_M0(ALPHA_SRC_INVERSE));
1012 		val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) |
1013 			SRC_ALPHA_M0(ALPHA_STRAIGHT) |
1014 			SRC_BLEND_M0(ALPHA_PER_PIX) |
1015 			SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) |
1016 			SRC_FACTOR_M0(ALPHA_ONE);
1017 		VOP_WIN_SET(vop, win, src_alpha_ctl, val);
1018 
1019 		VOP_WIN_SET(vop, win, alpha_pre_mul, ALPHA_SRC_PRE_MUL);
1020 		VOP_WIN_SET(vop, win, alpha_mode, ALPHA_PER_PIX);
1021 		VOP_WIN_SET(vop, win, alpha_en, 1);
1022 	} else {
1023 		VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0));
1024 		VOP_WIN_SET(vop, win, alpha_en, 0);
1025 	}
1026 
1027 	VOP_WIN_SET(vop, win, enable, 1);
1028 	vop->win_enabled |= BIT(win_index);
1029 	spin_unlock(&vop->reg_lock);
1030 }
1031 
vop_plane_atomic_async_check(struct drm_plane *plane, struct drm_plane_state *state)1032 static int vop_plane_atomic_async_check(struct drm_plane *plane,
1033 					struct drm_plane_state *state)
1034 {
1035 	struct vop_win *vop_win = to_vop_win(plane);
1036 	const struct vop_win_data *win = vop_win->data;
1037 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
1038 					DRM_PLANE_HELPER_NO_SCALING;
1039 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
1040 					DRM_PLANE_HELPER_NO_SCALING;
1041 	struct drm_crtc_state *crtc_state;
1042 
1043 	if (plane != state->crtc->cursor)
1044 		return -EINVAL;
1045 
1046 	if (!plane->state)
1047 		return -EINVAL;
1048 
1049 	if (!plane->state->fb)
1050 		return -EINVAL;
1051 
1052 	if (state->state)
1053 		crtc_state = drm_atomic_get_existing_crtc_state(state->state,
1054 								state->crtc);
1055 	else /* Special case for asynchronous cursor updates. */
1056 		crtc_state = plane->crtc->state;
1057 
1058 	return drm_atomic_helper_check_plane_state(plane->state, crtc_state,
1059 						   min_scale, max_scale,
1060 						   true, true);
1061 }
1062 
vop_plane_atomic_async_update(struct drm_plane *plane, struct drm_plane_state *new_state)1063 static void vop_plane_atomic_async_update(struct drm_plane *plane,
1064 					  struct drm_plane_state *new_state)
1065 {
1066 	struct vop *vop = to_vop(plane->state->crtc);
1067 	struct drm_framebuffer *old_fb = plane->state->fb;
1068 
1069 	plane->state->crtc_x = new_state->crtc_x;
1070 	plane->state->crtc_y = new_state->crtc_y;
1071 	plane->state->crtc_h = new_state->crtc_h;
1072 	plane->state->crtc_w = new_state->crtc_w;
1073 	plane->state->src_x = new_state->src_x;
1074 	plane->state->src_y = new_state->src_y;
1075 	plane->state->src_h = new_state->src_h;
1076 	plane->state->src_w = new_state->src_w;
1077 	swap(plane->state->fb, new_state->fb);
1078 
1079 	if (vop->is_enabled) {
1080 		vop_plane_atomic_update(plane, plane->state);
1081 		spin_lock(&vop->reg_lock);
1082 		vop_cfg_done(vop);
1083 		spin_unlock(&vop->reg_lock);
1084 
1085 		/*
1086 		 * A scanout can still be occurring, so we can't drop the
1087 		 * reference to the old framebuffer. To solve this we get a
1088 		 * reference to old_fb and set a worker to release it later.
1089 		 * FIXME: if we perform 500 async_update calls before the
1090 		 * vblank, then we can have 500 different framebuffers waiting
1091 		 * to be released.
1092 		 */
1093 		if (old_fb && plane->state->fb != old_fb) {
1094 			drm_framebuffer_get(old_fb);
1095 			WARN_ON(drm_crtc_vblank_get(plane->state->crtc) != 0);
1096 			drm_flip_work_queue(&vop->fb_unref_work, old_fb);
1097 			set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1098 		}
1099 	}
1100 }
1101 
1102 static const struct drm_plane_helper_funcs plane_helper_funcs = {
1103 	.atomic_check = vop_plane_atomic_check,
1104 	.atomic_update = vop_plane_atomic_update,
1105 	.atomic_disable = vop_plane_atomic_disable,
1106 	.atomic_async_check = vop_plane_atomic_async_check,
1107 	.atomic_async_update = vop_plane_atomic_async_update,
1108 	.prepare_fb = drm_gem_fb_prepare_fb,
1109 };
1110 
1111 static const struct drm_plane_funcs vop_plane_funcs = {
1112 	.update_plane	= drm_atomic_helper_update_plane,
1113 	.disable_plane	= drm_atomic_helper_disable_plane,
1114 	.destroy = vop_plane_destroy,
1115 	.reset = drm_atomic_helper_plane_reset,
1116 	.atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
1117 	.atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
1118 	.format_mod_supported = rockchip_mod_supported,
1119 };
1120 
vop_crtc_enable_vblank(struct drm_crtc *crtc)1121 static int vop_crtc_enable_vblank(struct drm_crtc *crtc)
1122 {
1123 	struct vop *vop = to_vop(crtc);
1124 	unsigned long flags;
1125 
1126 	if (WARN_ON(!vop->is_enabled))
1127 		return -EPERM;
1128 
1129 	spin_lock_irqsave(&vop->irq_lock, flags);
1130 
1131 	VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1);
1132 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1);
1133 
1134 	spin_unlock_irqrestore(&vop->irq_lock, flags);
1135 
1136 	return 0;
1137 }
1138 
vop_crtc_disable_vblank(struct drm_crtc *crtc)1139 static void vop_crtc_disable_vblank(struct drm_crtc *crtc)
1140 {
1141 	struct vop *vop = to_vop(crtc);
1142 	unsigned long flags;
1143 
1144 	if (WARN_ON(!vop->is_enabled))
1145 		return;
1146 
1147 	spin_lock_irqsave(&vop->irq_lock, flags);
1148 
1149 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0);
1150 
1151 	spin_unlock_irqrestore(&vop->irq_lock, flags);
1152 }
1153 
vop_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode)1154 static bool vop_crtc_mode_fixup(struct drm_crtc *crtc,
1155 				const struct drm_display_mode *mode,
1156 				struct drm_display_mode *adjusted_mode)
1157 {
1158 	struct vop *vop = to_vop(crtc);
1159 	unsigned long rate;
1160 
1161 	/*
1162 	 * Clock craziness.
1163 	 *
1164 	 * Key points:
1165 	 *
1166 	 * - DRM works in in kHz.
1167 	 * - Clock framework works in Hz.
1168 	 * - Rockchip's clock driver picks the clock rate that is the
1169 	 *   same _OR LOWER_ than the one requested.
1170 	 *
1171 	 * Action plan:
1172 	 *
1173 	 * 1. When DRM gives us a mode, we should add 999 Hz to it.  That way
1174 	 *    if the clock we need is 60000001 Hz (~60 MHz) and DRM tells us to
1175 	 *    make 60000 kHz then the clock framework will actually give us
1176 	 *    the right clock.
1177 	 *
1178 	 *    NOTE: if the PLL (maybe through a divider) could actually make
1179 	 *    a clock rate 999 Hz higher instead of the one we want then this
1180 	 *    could be a problem.  Unfortunately there's not much we can do
1181 	 *    since it's baked into DRM to use kHz.  It shouldn't matter in
1182 	 *    practice since Rockchip PLLs are controlled by tables and
1183 	 *    even if there is a divider in the middle I wouldn't expect PLL
1184 	 *    rates in the table that are just a few kHz different.
1185 	 *
1186 	 * 2. Get the clock framework to round the rate for us to tell us
1187 	 *    what it will actually make.
1188 	 *
1189 	 * 3. Store the rounded up rate so that we don't need to worry about
1190 	 *    this in the actual clk_set_rate().
1191 	 */
1192 	rate = clk_round_rate(vop->dclk, adjusted_mode->clock * 1000 + 999);
1193 	adjusted_mode->clock = DIV_ROUND_UP(rate, 1000);
1194 
1195 	return true;
1196 }
1197 
vop_dsp_lut_is_enabled(struct vop *vop)1198 static bool vop_dsp_lut_is_enabled(struct vop *vop)
1199 {
1200 	return vop_read_reg(vop, 0, &vop->data->common->dsp_lut_en);
1201 }
1202 
vop_crtc_write_gamma_lut(struct vop *vop, struct drm_crtc *crtc)1203 static void vop_crtc_write_gamma_lut(struct vop *vop, struct drm_crtc *crtc)
1204 {
1205 	struct drm_color_lut *lut = crtc->state->gamma_lut->data;
1206 	unsigned int i;
1207 
1208 	for (i = 0; i < crtc->gamma_size; i++) {
1209 		u32 word;
1210 
1211 		word = (drm_color_lut_extract(lut[i].red, 10) << 20) |
1212 		       (drm_color_lut_extract(lut[i].green, 10) << 10) |
1213 			drm_color_lut_extract(lut[i].blue, 10);
1214 		writel(word, vop->lut_regs + i * 4);
1215 	}
1216 }
1217 
vop_crtc_gamma_set(struct vop *vop, struct drm_crtc *crtc, struct drm_crtc_state *old_state)1218 static void vop_crtc_gamma_set(struct vop *vop, struct drm_crtc *crtc,
1219 			       struct drm_crtc_state *old_state)
1220 {
1221 	struct drm_crtc_state *state = crtc->state;
1222 	unsigned int idle;
1223 	int ret;
1224 
1225 	if (!vop->lut_regs)
1226 		return;
1227 	/*
1228 	 * To disable gamma (gamma_lut is null) or to write
1229 	 * an update to the LUT, clear dsp_lut_en.
1230 	 */
1231 	spin_lock(&vop->reg_lock);
1232 	VOP_REG_SET(vop, common, dsp_lut_en, 0);
1233 	vop_cfg_done(vop);
1234 	spin_unlock(&vop->reg_lock);
1235 
1236 	/*
1237 	 * In order to write the LUT to the internal memory,
1238 	 * we need to first make sure the dsp_lut_en bit is cleared.
1239 	 */
1240 	ret = readx_poll_timeout(vop_dsp_lut_is_enabled, vop,
1241 				 idle, !idle, 5, 30 * 1000);
1242 	if (ret) {
1243 		DRM_DEV_ERROR(vop->dev, "display LUT RAM enable timeout!\n");
1244 		return;
1245 	}
1246 
1247 	if (!state->gamma_lut)
1248 		return;
1249 
1250 	spin_lock(&vop->reg_lock);
1251 	vop_crtc_write_gamma_lut(vop, crtc);
1252 	VOP_REG_SET(vop, common, dsp_lut_en, 1);
1253 	vop_cfg_done(vop);
1254 	spin_unlock(&vop->reg_lock);
1255 }
1256 
vop_crtc_atomic_begin(struct drm_crtc *crtc, struct drm_crtc_state *old_crtc_state)1257 static void vop_crtc_atomic_begin(struct drm_crtc *crtc,
1258 				  struct drm_crtc_state *old_crtc_state)
1259 {
1260 	struct vop *vop = to_vop(crtc);
1261 
1262 	/*
1263 	 * Only update GAMMA if the 'active' flag is not changed,
1264 	 * otherwise it's updated by .atomic_enable.
1265 	 */
1266 	if (crtc->state->color_mgmt_changed &&
1267 	    !crtc->state->active_changed)
1268 		vop_crtc_gamma_set(vop, crtc, old_crtc_state);
1269 }
1270 
vop_crtc_atomic_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state)1271 static void vop_crtc_atomic_enable(struct drm_crtc *crtc,
1272 				   struct drm_crtc_state *old_state)
1273 {
1274 	struct vop *vop = to_vop(crtc);
1275 	const struct vop_data *vop_data = vop->data;
1276 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state);
1277 	struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode;
1278 	u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start;
1279 	u16 hdisplay = adjusted_mode->hdisplay;
1280 	u16 htotal = adjusted_mode->htotal;
1281 	u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start;
1282 	u16 hact_end = hact_st + hdisplay;
1283 	u16 vdisplay = adjusted_mode->vdisplay;
1284 	u16 vtotal = adjusted_mode->vtotal;
1285 	u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start;
1286 	u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start;
1287 	u16 vact_end = vact_st + vdisplay;
1288 	uint32_t pin_pol, val;
1289 	int dither_bpc = s->output_bpc ? s->output_bpc : 10;
1290 	int ret;
1291 
1292 	if (old_state && old_state->self_refresh_active) {
1293 		drm_crtc_vblank_on(crtc);
1294 		rockchip_drm_set_win_enabled(crtc, true);
1295 		return;
1296 	}
1297 
1298 	/*
1299 	 * If we have a GAMMA LUT in the state, then let's make sure
1300 	 * it's updated. We might be coming out of suspend,
1301 	 * which means the LUT internal memory needs to be re-written.
1302 	 */
1303 	if (crtc->state->gamma_lut)
1304 		vop_crtc_gamma_set(vop, crtc, old_state);
1305 
1306 	mutex_lock(&vop->vop_lock);
1307 
1308 	WARN_ON(vop->event);
1309 
1310 	ret = vop_enable(crtc, old_state);
1311 	if (ret) {
1312 		mutex_unlock(&vop->vop_lock);
1313 		DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret);
1314 		return;
1315 	}
1316 	pin_pol = (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) ?
1317 		   BIT(HSYNC_POSITIVE) : 0;
1318 	pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) ?
1319 		   BIT(VSYNC_POSITIVE) : 0;
1320 	VOP_REG_SET(vop, output, pin_pol, pin_pol);
1321 	VOP_REG_SET(vop, output, mipi_dual_channel_en, 0);
1322 
1323 	switch (s->output_type) {
1324 	case DRM_MODE_CONNECTOR_LVDS:
1325 		VOP_REG_SET(vop, output, rgb_dclk_pol, 1);
1326 		VOP_REG_SET(vop, output, rgb_pin_pol, pin_pol);
1327 		VOP_REG_SET(vop, output, rgb_en, 1);
1328 		break;
1329 	case DRM_MODE_CONNECTOR_eDP:
1330 		VOP_REG_SET(vop, output, edp_dclk_pol, 1);
1331 		VOP_REG_SET(vop, output, edp_pin_pol, pin_pol);
1332 		VOP_REG_SET(vop, output, edp_en, 1);
1333 		break;
1334 	case DRM_MODE_CONNECTOR_HDMIA:
1335 		VOP_REG_SET(vop, output, hdmi_dclk_pol, 1);
1336 		VOP_REG_SET(vop, output, hdmi_pin_pol, pin_pol);
1337 		VOP_REG_SET(vop, output, hdmi_en, 1);
1338 		break;
1339 	case DRM_MODE_CONNECTOR_DSI:
1340 		VOP_REG_SET(vop, output, mipi_dclk_pol, 1);
1341 		VOP_REG_SET(vop, output, mipi_pin_pol, pin_pol);
1342 		VOP_REG_SET(vop, output, mipi_en, 1);
1343 		VOP_REG_SET(vop, output, mipi_dual_channel_en,
1344 			    !!(s->output_flags & ROCKCHIP_OUTPUT_DSI_DUAL));
1345 		break;
1346 	case DRM_MODE_CONNECTOR_DisplayPort:
1347 		VOP_REG_SET(vop, output, dp_dclk_pol, 0);
1348 		VOP_REG_SET(vop, output, dp_pin_pol, pin_pol);
1349 		VOP_REG_SET(vop, output, dp_en, 1);
1350 		break;
1351 	default:
1352 		DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n",
1353 			      s->output_type);
1354 	}
1355 
1356 	/*
1357 	 * if vop is not support RGB10 output, need force RGB10 to RGB888.
1358 	 */
1359 	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA &&
1360 	    !(vop_data->feature & VOP_FEATURE_OUTPUT_RGB10))
1361 		s->output_mode = ROCKCHIP_OUT_MODE_P888;
1362 
1363 	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && dither_bpc <= 8)
1364 		VOP_REG_SET(vop, common, pre_dither_down, 1);
1365 	else
1366 		VOP_REG_SET(vop, common, pre_dither_down, 0);
1367 
1368 	if (dither_bpc == 6) {
1369 		VOP_REG_SET(vop, common, dither_down_sel, DITHER_DOWN_ALLEGRO);
1370 		VOP_REG_SET(vop, common, dither_down_mode, RGB888_TO_RGB666);
1371 		VOP_REG_SET(vop, common, dither_down_en, 1);
1372 	} else {
1373 		VOP_REG_SET(vop, common, dither_down_en, 0);
1374 	}
1375 
1376 	VOP_REG_SET(vop, common, out_mode, s->output_mode);
1377 
1378 	VOP_REG_SET(vop, modeset, htotal_pw, (htotal << 16) | hsync_len);
1379 	val = hact_st << 16;
1380 	val |= hact_end;
1381 	VOP_REG_SET(vop, modeset, hact_st_end, val);
1382 	VOP_REG_SET(vop, modeset, hpost_st_end, val);
1383 
1384 	VOP_REG_SET(vop, modeset, vtotal_pw, (vtotal << 16) | vsync_len);
1385 	val = vact_st << 16;
1386 	val |= vact_end;
1387 	VOP_REG_SET(vop, modeset, vact_st_end, val);
1388 	VOP_REG_SET(vop, modeset, vpost_st_end, val);
1389 
1390 	VOP_REG_SET(vop, intr, line_flag_num[0], vact_end);
1391 
1392 	clk_set_rate(vop->dclk, adjusted_mode->clock * 1000);
1393 
1394 	VOP_REG_SET(vop, common, standby, 0);
1395 	mutex_unlock(&vop->vop_lock);
1396 }
1397 
vop_fs_irq_is_pending(struct vop *vop)1398 static bool vop_fs_irq_is_pending(struct vop *vop)
1399 {
1400 	return VOP_INTR_GET_TYPE(vop, status, FS_INTR);
1401 }
1402 
vop_wait_for_irq_handler(struct vop *vop)1403 static void vop_wait_for_irq_handler(struct vop *vop)
1404 {
1405 	bool pending;
1406 	int ret;
1407 
1408 	/*
1409 	 * Spin until frame start interrupt status bit goes low, which means
1410 	 * that interrupt handler was invoked and cleared it. The timeout of
1411 	 * 10 msecs is really too long, but it is just a safety measure if
1412 	 * something goes really wrong. The wait will only happen in the very
1413 	 * unlikely case of a vblank happening exactly at the same time and
1414 	 * shouldn't exceed microseconds range.
1415 	 */
1416 	ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending,
1417 					!pending, 0, 10 * 1000);
1418 	if (ret)
1419 		DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n");
1420 
1421 	synchronize_irq(vop->irq);
1422 }
1423 
vop_crtc_atomic_check(struct drm_crtc *crtc, struct drm_crtc_state *crtc_state)1424 static int vop_crtc_atomic_check(struct drm_crtc *crtc,
1425 				 struct drm_crtc_state *crtc_state)
1426 {
1427 	struct vop *vop = to_vop(crtc);
1428 	struct drm_plane *plane;
1429 	struct drm_plane_state *plane_state;
1430 	struct rockchip_crtc_state *s;
1431 	int afbc_planes = 0;
1432 
1433 	if (vop->lut_regs && crtc_state->color_mgmt_changed &&
1434 	    crtc_state->gamma_lut) {
1435 		unsigned int len;
1436 
1437 		len = drm_color_lut_size(crtc_state->gamma_lut);
1438 		if (len != crtc->gamma_size) {
1439 			DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n",
1440 				      len, crtc->gamma_size);
1441 			return -EINVAL;
1442 		}
1443 	}
1444 
1445 	drm_atomic_crtc_state_for_each_plane(plane, crtc_state) {
1446 		plane_state =
1447 			drm_atomic_get_plane_state(crtc_state->state, plane);
1448 		if (IS_ERR(plane_state)) {
1449 			DRM_DEBUG_KMS("Cannot get plane state for plane %s\n",
1450 				      plane->name);
1451 			return PTR_ERR(plane_state);
1452 		}
1453 
1454 		if (drm_is_afbc(plane_state->fb->modifier))
1455 			++afbc_planes;
1456 	}
1457 
1458 	if (afbc_planes > 1) {
1459 		DRM_DEBUG_KMS("Invalid number of AFBC planes; got %d, expected at most 1\n", afbc_planes);
1460 		return -EINVAL;
1461 	}
1462 
1463 	s = to_rockchip_crtc_state(crtc_state);
1464 	s->enable_afbc = afbc_planes > 0;
1465 
1466 	return 0;
1467 }
1468 
vop_crtc_atomic_flush(struct drm_crtc *crtc, struct drm_crtc_state *old_crtc_state)1469 static void vop_crtc_atomic_flush(struct drm_crtc *crtc,
1470 				  struct drm_crtc_state *old_crtc_state)
1471 {
1472 	struct drm_atomic_state *old_state = old_crtc_state->state;
1473 	struct drm_plane_state *old_plane_state, *new_plane_state;
1474 	struct vop *vop = to_vop(crtc);
1475 	struct drm_plane *plane;
1476 	struct rockchip_crtc_state *s;
1477 	int i;
1478 
1479 	if (WARN_ON(!vop->is_enabled))
1480 		return;
1481 
1482 	spin_lock(&vop->reg_lock);
1483 
1484 	/* Enable AFBC if there is some AFBC window, disable otherwise. */
1485 	s = to_rockchip_crtc_state(crtc->state);
1486 	VOP_AFBC_SET(vop, enable, s->enable_afbc);
1487 	vop_cfg_done(vop);
1488 
1489 	spin_unlock(&vop->reg_lock);
1490 
1491 	/*
1492 	 * There is a (rather unlikely) possiblity that a vblank interrupt
1493 	 * fired before we set the cfg_done bit. To avoid spuriously
1494 	 * signalling flip completion we need to wait for it to finish.
1495 	 */
1496 	vop_wait_for_irq_handler(vop);
1497 
1498 	spin_lock_irq(&crtc->dev->event_lock);
1499 	if (crtc->state->event) {
1500 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1501 		WARN_ON(vop->event);
1502 
1503 		vop->event = crtc->state->event;
1504 		crtc->state->event = NULL;
1505 	}
1506 	spin_unlock_irq(&crtc->dev->event_lock);
1507 
1508 	for_each_oldnew_plane_in_state(old_state, plane, old_plane_state,
1509 				       new_plane_state, i) {
1510 		if (!old_plane_state->fb)
1511 			continue;
1512 
1513 		if (old_plane_state->fb == new_plane_state->fb)
1514 			continue;
1515 
1516 		drm_framebuffer_get(old_plane_state->fb);
1517 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1518 		drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb);
1519 		set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1520 	}
1521 }
1522 
1523 static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = {
1524 	.mode_fixup = vop_crtc_mode_fixup,
1525 	.atomic_check = vop_crtc_atomic_check,
1526 	.atomic_begin = vop_crtc_atomic_begin,
1527 	.atomic_flush = vop_crtc_atomic_flush,
1528 	.atomic_enable = vop_crtc_atomic_enable,
1529 	.atomic_disable = vop_crtc_atomic_disable,
1530 };
1531 
vop_crtc_destroy(struct drm_crtc *crtc)1532 static void vop_crtc_destroy(struct drm_crtc *crtc)
1533 {
1534 	drm_crtc_cleanup(crtc);
1535 }
1536 
vop_crtc_duplicate_state(struct drm_crtc *crtc)1537 static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc)
1538 {
1539 	struct rockchip_crtc_state *rockchip_state;
1540 
1541 	if (WARN_ON(!crtc->state))
1542 		return NULL;
1543 
1544 	rockchip_state = kmemdup(to_rockchip_crtc_state(crtc->state),
1545 				 sizeof(*rockchip_state), GFP_KERNEL);
1546 	if (!rockchip_state)
1547 		return NULL;
1548 
1549 	__drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base);
1550 	return &rockchip_state->base;
1551 }
1552 
vop_crtc_destroy_state(struct drm_crtc *crtc, struct drm_crtc_state *state)1553 static void vop_crtc_destroy_state(struct drm_crtc *crtc,
1554 				   struct drm_crtc_state *state)
1555 {
1556 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(state);
1557 
1558 	__drm_atomic_helper_crtc_destroy_state(&s->base);
1559 	kfree(s);
1560 }
1561 
vop_crtc_reset(struct drm_crtc *crtc)1562 static void vop_crtc_reset(struct drm_crtc *crtc)
1563 {
1564 	struct rockchip_crtc_state *crtc_state =
1565 		kzalloc(sizeof(*crtc_state), GFP_KERNEL);
1566 
1567 	if (crtc->state)
1568 		vop_crtc_destroy_state(crtc, crtc->state);
1569 
1570 	if (crtc_state)
1571 		__drm_atomic_helper_crtc_reset(crtc, &crtc_state->base);
1572 	else
1573 		__drm_atomic_helper_crtc_reset(crtc, NULL);
1574 }
1575 
1576 #ifdef CONFIG_DRM_ANALOGIX_DP
vop_get_edp_connector(struct vop *vop)1577 static struct drm_connector *vop_get_edp_connector(struct vop *vop)
1578 {
1579 	struct drm_connector *connector;
1580 	struct drm_connector_list_iter conn_iter;
1581 
1582 	drm_connector_list_iter_begin(vop->drm_dev, &conn_iter);
1583 	drm_for_each_connector_iter(connector, &conn_iter) {
1584 		if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) {
1585 			drm_connector_list_iter_end(&conn_iter);
1586 			return connector;
1587 		}
1588 	}
1589 	drm_connector_list_iter_end(&conn_iter);
1590 
1591 	return NULL;
1592 }
1593 
vop_crtc_set_crc_source(struct drm_crtc *crtc, const char *source_name)1594 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1595 				   const char *source_name)
1596 {
1597 	struct vop *vop = to_vop(crtc);
1598 	struct drm_connector *connector;
1599 	int ret;
1600 
1601 	connector = vop_get_edp_connector(vop);
1602 	if (!connector)
1603 		return -EINVAL;
1604 
1605 	if (source_name && strcmp(source_name, "auto") == 0)
1606 		ret = analogix_dp_start_crc(connector);
1607 	else if (!source_name)
1608 		ret = analogix_dp_stop_crc(connector);
1609 	else
1610 		ret = -EINVAL;
1611 
1612 	return ret;
1613 }
1614 
1615 static int
vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name, size_t *values_cnt)1616 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1617 			   size_t *values_cnt)
1618 {
1619 	if (source_name && strcmp(source_name, "auto") != 0)
1620 		return -EINVAL;
1621 
1622 	*values_cnt = 3;
1623 	return 0;
1624 }
1625 
1626 #else
vop_crtc_set_crc_source(struct drm_crtc *crtc, const char *source_name)1627 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1628 				   const char *source_name)
1629 {
1630 	return -ENODEV;
1631 }
1632 
1633 static int
vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name, size_t *values_cnt)1634 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1635 			   size_t *values_cnt)
1636 {
1637 	return -ENODEV;
1638 }
1639 #endif
1640 
1641 static const struct drm_crtc_funcs vop_crtc_funcs = {
1642 	.set_config = drm_atomic_helper_set_config,
1643 	.page_flip = drm_atomic_helper_page_flip,
1644 	.destroy = vop_crtc_destroy,
1645 	.reset = vop_crtc_reset,
1646 	.atomic_duplicate_state = vop_crtc_duplicate_state,
1647 	.atomic_destroy_state = vop_crtc_destroy_state,
1648 	.enable_vblank = vop_crtc_enable_vblank,
1649 	.disable_vblank = vop_crtc_disable_vblank,
1650 	.set_crc_source = vop_crtc_set_crc_source,
1651 	.verify_crc_source = vop_crtc_verify_crc_source,
1652 	.gamma_set = drm_atomic_helper_legacy_gamma_set,
1653 };
1654 
vop_fb_unref_worker(struct drm_flip_work *work, void *val)1655 static void vop_fb_unref_worker(struct drm_flip_work *work, void *val)
1656 {
1657 	struct vop *vop = container_of(work, struct vop, fb_unref_work);
1658 	struct drm_framebuffer *fb = val;
1659 
1660 	drm_crtc_vblank_put(&vop->crtc);
1661 	drm_framebuffer_put(fb);
1662 }
1663 
vop_handle_vblank(struct vop *vop)1664 static void vop_handle_vblank(struct vop *vop)
1665 {
1666 	struct drm_device *drm = vop->drm_dev;
1667 	struct drm_crtc *crtc = &vop->crtc;
1668 
1669 	spin_lock(&drm->event_lock);
1670 	if (vop->event) {
1671 		drm_crtc_send_vblank_event(crtc, vop->event);
1672 		drm_crtc_vblank_put(crtc);
1673 		vop->event = NULL;
1674 	}
1675 	spin_unlock(&drm->event_lock);
1676 
1677 	if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending))
1678 		drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq);
1679 }
1680 
vop_isr(int irq, void *data)1681 static irqreturn_t vop_isr(int irq, void *data)
1682 {
1683 	struct vop *vop = data;
1684 	struct drm_crtc *crtc = &vop->crtc;
1685 	uint32_t active_irqs;
1686 	int ret = IRQ_NONE;
1687 
1688 	/*
1689 	 * The irq is shared with the iommu. If the runtime-pm state of the
1690 	 * vop-device is disabled the irq has to be targeted at the iommu.
1691 	 */
1692 	if (!pm_runtime_get_if_in_use(vop->dev))
1693 		return IRQ_NONE;
1694 
1695 	if (vop_core_clks_enable(vop)) {
1696 		DRM_DEV_ERROR_RATELIMITED(vop->dev, "couldn't enable clocks\n");
1697 		goto out;
1698 	}
1699 
1700 	/*
1701 	 * interrupt register has interrupt status, enable and clear bits, we
1702 	 * must hold irq_lock to avoid a race with enable/disable_vblank().
1703 	*/
1704 	spin_lock(&vop->irq_lock);
1705 
1706 	active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK);
1707 	/* Clear all active interrupt sources */
1708 	if (active_irqs)
1709 		VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1);
1710 
1711 	spin_unlock(&vop->irq_lock);
1712 
1713 	/* This is expected for vop iommu irqs, since the irq is shared */
1714 	if (!active_irqs)
1715 		goto out_disable;
1716 
1717 	if (active_irqs & DSP_HOLD_VALID_INTR) {
1718 		complete(&vop->dsp_hold_completion);
1719 		active_irqs &= ~DSP_HOLD_VALID_INTR;
1720 		ret = IRQ_HANDLED;
1721 	}
1722 
1723 	if (active_irqs & LINE_FLAG_INTR) {
1724 		complete(&vop->line_flag_completion);
1725 		active_irqs &= ~LINE_FLAG_INTR;
1726 		ret = IRQ_HANDLED;
1727 	}
1728 
1729 	if (active_irqs & FS_INTR) {
1730 		drm_crtc_handle_vblank(crtc);
1731 		vop_handle_vblank(vop);
1732 		active_irqs &= ~FS_INTR;
1733 		ret = IRQ_HANDLED;
1734 	}
1735 
1736 	/* Unhandled irqs are spurious. */
1737 	if (active_irqs)
1738 		DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n",
1739 			      active_irqs);
1740 
1741 out_disable:
1742 	vop_core_clks_disable(vop);
1743 out:
1744 	pm_runtime_put(vop->dev);
1745 	return ret;
1746 }
1747 
vop_plane_add_properties(struct drm_plane *plane, const struct vop_win_data *win_data)1748 static void vop_plane_add_properties(struct drm_plane *plane,
1749 				     const struct vop_win_data *win_data)
1750 {
1751 	unsigned int flags = 0;
1752 
1753 	flags |= VOP_WIN_HAS_REG(win_data, x_mir_en) ? DRM_MODE_REFLECT_X : 0;
1754 	flags |= VOP_WIN_HAS_REG(win_data, y_mir_en) ? DRM_MODE_REFLECT_Y : 0;
1755 	if (flags)
1756 		drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1757 						   DRM_MODE_ROTATE_0 | flags);
1758 }
1759 
vop_create_crtc(struct vop *vop)1760 static int vop_create_crtc(struct vop *vop)
1761 {
1762 	const struct vop_data *vop_data = vop->data;
1763 	struct device *dev = vop->dev;
1764 	struct drm_device *drm_dev = vop->drm_dev;
1765 	struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp;
1766 	struct drm_crtc *crtc = &vop->crtc;
1767 	struct device_node *port;
1768 	int ret;
1769 	int i;
1770 
1771 	/*
1772 	 * Create drm_plane for primary and cursor planes first, since we need
1773 	 * to pass them to drm_crtc_init_with_planes, which sets the
1774 	 * "possible_crtcs" to the newly initialized crtc.
1775 	 */
1776 	for (i = 0; i < vop_data->win_size; i++) {
1777 		struct vop_win *vop_win = &vop->win[i];
1778 		const struct vop_win_data *win_data = vop_win->data;
1779 
1780 		if (win_data->type != DRM_PLANE_TYPE_PRIMARY &&
1781 		    win_data->type != DRM_PLANE_TYPE_CURSOR)
1782 			continue;
1783 
1784 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1785 					       0, &vop_plane_funcs,
1786 					       win_data->phy->data_formats,
1787 					       win_data->phy->nformats,
1788 					       win_data->phy->format_modifiers,
1789 					       win_data->type, NULL);
1790 		if (ret) {
1791 			DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n",
1792 				      ret);
1793 			goto err_cleanup_planes;
1794 		}
1795 
1796 		plane = &vop_win->base;
1797 		drm_plane_helper_add(plane, &plane_helper_funcs);
1798 		vop_plane_add_properties(plane, win_data);
1799 		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
1800 			primary = plane;
1801 		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
1802 			cursor = plane;
1803 	}
1804 
1805 	ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor,
1806 					&vop_crtc_funcs, NULL);
1807 	if (ret)
1808 		goto err_cleanup_planes;
1809 
1810 	drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs);
1811 	if (vop->lut_regs) {
1812 		drm_mode_crtc_set_gamma_size(crtc, vop_data->lut_size);
1813 		drm_crtc_enable_color_mgmt(crtc, 0, false, vop_data->lut_size);
1814 	}
1815 
1816 	/*
1817 	 * Create drm_planes for overlay windows with possible_crtcs restricted
1818 	 * to the newly created crtc.
1819 	 */
1820 	for (i = 0; i < vop_data->win_size; i++) {
1821 		struct vop_win *vop_win = &vop->win[i];
1822 		const struct vop_win_data *win_data = vop_win->data;
1823 		unsigned long possible_crtcs = drm_crtc_mask(crtc);
1824 
1825 		if (win_data->type != DRM_PLANE_TYPE_OVERLAY)
1826 			continue;
1827 
1828 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1829 					       possible_crtcs,
1830 					       &vop_plane_funcs,
1831 					       win_data->phy->data_formats,
1832 					       win_data->phy->nformats,
1833 					       win_data->phy->format_modifiers,
1834 					       win_data->type, NULL);
1835 		if (ret) {
1836 			DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n",
1837 				      ret);
1838 			goto err_cleanup_crtc;
1839 		}
1840 		drm_plane_helper_add(&vop_win->base, &plane_helper_funcs);
1841 		vop_plane_add_properties(&vop_win->base, win_data);
1842 	}
1843 
1844 	port = of_get_child_by_name(dev->of_node, "port");
1845 	if (!port) {
1846 		DRM_DEV_ERROR(vop->dev, "no port node found in %pOF\n",
1847 			      dev->of_node);
1848 		ret = -ENOENT;
1849 		goto err_cleanup_crtc;
1850 	}
1851 
1852 	drm_flip_work_init(&vop->fb_unref_work, "fb_unref",
1853 			   vop_fb_unref_worker);
1854 
1855 	init_completion(&vop->dsp_hold_completion);
1856 	init_completion(&vop->line_flag_completion);
1857 	crtc->port = port;
1858 
1859 	ret = drm_self_refresh_helper_init(crtc);
1860 	if (ret)
1861 		DRM_DEV_DEBUG_KMS(vop->dev,
1862 			"Failed to init %s with SR helpers %d, ignoring\n",
1863 			crtc->name, ret);
1864 
1865 	return 0;
1866 
1867 err_cleanup_crtc:
1868 	drm_crtc_cleanup(crtc);
1869 err_cleanup_planes:
1870 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1871 				 head)
1872 		drm_plane_cleanup(plane);
1873 	return ret;
1874 }
1875 
vop_destroy_crtc(struct vop *vop)1876 static void vop_destroy_crtc(struct vop *vop)
1877 {
1878 	struct drm_crtc *crtc = &vop->crtc;
1879 	struct drm_device *drm_dev = vop->drm_dev;
1880 	struct drm_plane *plane, *tmp;
1881 
1882 	drm_self_refresh_helper_cleanup(crtc);
1883 
1884 	of_node_put(crtc->port);
1885 
1886 	/*
1887 	 * We need to cleanup the planes now.  Why?
1888 	 *
1889 	 * The planes are "&vop->win[i].base".  That means the memory is
1890 	 * all part of the big "struct vop" chunk of memory.  That memory
1891 	 * was devm allocated and associated with this component.  We need to
1892 	 * free it ourselves before vop_unbind() finishes.
1893 	 */
1894 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1895 				 head)
1896 		vop_plane_destroy(plane);
1897 
1898 	/*
1899 	 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane()
1900 	 * references the CRTC.
1901 	 */
1902 	drm_crtc_cleanup(crtc);
1903 	drm_flip_work_cleanup(&vop->fb_unref_work);
1904 }
1905 
vop_initial(struct vop *vop)1906 static int vop_initial(struct vop *vop)
1907 {
1908 	struct reset_control *ahb_rst;
1909 	int i, ret;
1910 
1911 	vop->hclk = devm_clk_get(vop->dev, "hclk_vop");
1912 	if (IS_ERR(vop->hclk)) {
1913 		DRM_DEV_ERROR(vop->dev, "failed to get hclk source\n");
1914 		return PTR_ERR(vop->hclk);
1915 	}
1916 	vop->aclk = devm_clk_get(vop->dev, "aclk_vop");
1917 	if (IS_ERR(vop->aclk)) {
1918 		DRM_DEV_ERROR(vop->dev, "failed to get aclk source\n");
1919 		return PTR_ERR(vop->aclk);
1920 	}
1921 	vop->dclk = devm_clk_get(vop->dev, "dclk_vop");
1922 	if (IS_ERR(vop->dclk)) {
1923 		DRM_DEV_ERROR(vop->dev, "failed to get dclk source\n");
1924 		return PTR_ERR(vop->dclk);
1925 	}
1926 
1927 	ret = pm_runtime_get_sync(vop->dev);
1928 	if (ret < 0) {
1929 		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
1930 		return ret;
1931 	}
1932 
1933 	ret = clk_prepare(vop->dclk);
1934 	if (ret < 0) {
1935 		DRM_DEV_ERROR(vop->dev, "failed to prepare dclk\n");
1936 		goto err_put_pm_runtime;
1937 	}
1938 
1939 	/* Enable both the hclk and aclk to setup the vop */
1940 	ret = clk_prepare_enable(vop->hclk);
1941 	if (ret < 0) {
1942 		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable hclk\n");
1943 		goto err_unprepare_dclk;
1944 	}
1945 
1946 	ret = clk_prepare_enable(vop->aclk);
1947 	if (ret < 0) {
1948 		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable aclk\n");
1949 		goto err_disable_hclk;
1950 	}
1951 
1952 	/*
1953 	 * do hclk_reset, reset all vop registers.
1954 	 */
1955 	ahb_rst = devm_reset_control_get(vop->dev, "ahb");
1956 	if (IS_ERR(ahb_rst)) {
1957 		DRM_DEV_ERROR(vop->dev, "failed to get ahb reset\n");
1958 		ret = PTR_ERR(ahb_rst);
1959 		goto err_disable_aclk;
1960 	}
1961 	reset_control_assert(ahb_rst);
1962 	usleep_range(10, 20);
1963 	reset_control_deassert(ahb_rst);
1964 
1965 	VOP_INTR_SET_TYPE(vop, clear, INTR_MASK, 1);
1966 	VOP_INTR_SET_TYPE(vop, enable, INTR_MASK, 0);
1967 
1968 	for (i = 0; i < vop->len; i += sizeof(u32))
1969 		vop->regsbak[i / 4] = readl_relaxed(vop->regs + i);
1970 
1971 	VOP_REG_SET(vop, misc, global_regdone_en, 1);
1972 	VOP_REG_SET(vop, common, dsp_blank, 0);
1973 
1974 	for (i = 0; i < vop->data->win_size; i++) {
1975 		struct vop_win *vop_win = &vop->win[i];
1976 		const struct vop_win_data *win = vop_win->data;
1977 		int channel = i * 2 + 1;
1978 
1979 		VOP_WIN_SET(vop, win, channel, (channel + 1) << 4 | channel);
1980 		vop_win_disable(vop, vop_win);
1981 		VOP_WIN_SET(vop, win, gate, 1);
1982 	}
1983 
1984 	vop_cfg_done(vop);
1985 
1986 	/*
1987 	 * do dclk_reset, let all config take affect.
1988 	 */
1989 	vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk");
1990 	if (IS_ERR(vop->dclk_rst)) {
1991 		DRM_DEV_ERROR(vop->dev, "failed to get dclk reset\n");
1992 		ret = PTR_ERR(vop->dclk_rst);
1993 		goto err_disable_aclk;
1994 	}
1995 	reset_control_assert(vop->dclk_rst);
1996 	usleep_range(10, 20);
1997 	reset_control_deassert(vop->dclk_rst);
1998 
1999 	clk_disable(vop->hclk);
2000 	clk_disable(vop->aclk);
2001 
2002 	vop->is_enabled = false;
2003 
2004 	pm_runtime_put_sync(vop->dev);
2005 
2006 	return 0;
2007 
2008 err_disable_aclk:
2009 	clk_disable_unprepare(vop->aclk);
2010 err_disable_hclk:
2011 	clk_disable_unprepare(vop->hclk);
2012 err_unprepare_dclk:
2013 	clk_unprepare(vop->dclk);
2014 err_put_pm_runtime:
2015 	pm_runtime_put_sync(vop->dev);
2016 	return ret;
2017 }
2018 
2019 /*
2020  * Initialize the vop->win array elements.
2021  */
vop_win_init(struct vop *vop)2022 static void vop_win_init(struct vop *vop)
2023 {
2024 	const struct vop_data *vop_data = vop->data;
2025 	unsigned int i;
2026 
2027 	for (i = 0; i < vop_data->win_size; i++) {
2028 		struct vop_win *vop_win = &vop->win[i];
2029 		const struct vop_win_data *win_data = &vop_data->win[i];
2030 
2031 		vop_win->data = win_data;
2032 		vop_win->vop = vop;
2033 
2034 		if (vop_data->win_yuv2yuv)
2035 			vop_win->yuv2yuv_data = &vop_data->win_yuv2yuv[i];
2036 	}
2037 }
2038 
2039 /**
2040  * rockchip_drm_wait_vact_end
2041  * @crtc: CRTC to enable line flag
2042  * @mstimeout: millisecond for timeout
2043  *
2044  * Wait for vact_end line flag irq or timeout.
2045  *
2046  * Returns:
2047  * Zero on success, negative errno on failure.
2048  */
rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout)2049 int rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout)
2050 {
2051 	struct vop *vop = to_vop(crtc);
2052 	unsigned long jiffies_left;
2053 	int ret = 0;
2054 
2055 	if (!crtc || !vop->is_enabled)
2056 		return -ENODEV;
2057 
2058 	mutex_lock(&vop->vop_lock);
2059 	if (mstimeout <= 0) {
2060 		ret = -EINVAL;
2061 		goto out;
2062 	}
2063 
2064 	if (vop_line_flag_irq_is_enabled(vop)) {
2065 		ret = -EBUSY;
2066 		goto out;
2067 	}
2068 
2069 	reinit_completion(&vop->line_flag_completion);
2070 	vop_line_flag_irq_enable(vop);
2071 
2072 	jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion,
2073 						   msecs_to_jiffies(mstimeout));
2074 	vop_line_flag_irq_disable(vop);
2075 
2076 	if (jiffies_left == 0) {
2077 		DRM_DEV_ERROR(vop->dev, "Timeout waiting for IRQ\n");
2078 		ret = -ETIMEDOUT;
2079 		goto out;
2080 	}
2081 
2082 out:
2083 	mutex_unlock(&vop->vop_lock);
2084 	return ret;
2085 }
2086 EXPORT_SYMBOL(rockchip_drm_wait_vact_end);
2087 
vop_bind(struct device *dev, struct device *master, void *data)2088 static int vop_bind(struct device *dev, struct device *master, void *data)
2089 {
2090 	struct platform_device *pdev = to_platform_device(dev);
2091 	const struct vop_data *vop_data;
2092 	struct drm_device *drm_dev = data;
2093 	struct vop *vop;
2094 	struct resource *res;
2095 	int ret, irq;
2096 
2097 	vop_data = of_device_get_match_data(dev);
2098 	if (!vop_data)
2099 		return -ENODEV;
2100 
2101 	/* Allocate vop struct and its vop_win array */
2102 	vop = devm_kzalloc(dev, struct_size(vop, win, vop_data->win_size),
2103 			   GFP_KERNEL);
2104 	if (!vop)
2105 		return -ENOMEM;
2106 
2107 	vop->dev = dev;
2108 	vop->data = vop_data;
2109 	vop->drm_dev = drm_dev;
2110 	dev_set_drvdata(dev, vop);
2111 
2112 	vop_win_init(vop);
2113 
2114 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2115 	vop->regs = devm_ioremap_resource(dev, res);
2116 	if (IS_ERR(vop->regs))
2117 		return PTR_ERR(vop->regs);
2118 	vop->len = resource_size(res);
2119 
2120 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2121 	if (res) {
2122 		if (!vop_data->lut_size) {
2123 			DRM_DEV_ERROR(dev, "no gamma LUT size defined\n");
2124 			return -EINVAL;
2125 		}
2126 		vop->lut_regs = devm_ioremap_resource(dev, res);
2127 		if (IS_ERR(vop->lut_regs))
2128 			return PTR_ERR(vop->lut_regs);
2129 	}
2130 
2131 	vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL);
2132 	if (!vop->regsbak)
2133 		return -ENOMEM;
2134 
2135 	irq = platform_get_irq(pdev, 0);
2136 	if (irq < 0) {
2137 		DRM_DEV_ERROR(dev, "cannot find irq for vop\n");
2138 		return irq;
2139 	}
2140 	vop->irq = (unsigned int)irq;
2141 
2142 	spin_lock_init(&vop->reg_lock);
2143 	spin_lock_init(&vop->irq_lock);
2144 	mutex_init(&vop->vop_lock);
2145 
2146 	ret = vop_create_crtc(vop);
2147 	if (ret)
2148 		return ret;
2149 
2150 	pm_runtime_enable(&pdev->dev);
2151 
2152 	ret = vop_initial(vop);
2153 	if (ret < 0) {
2154 		DRM_DEV_ERROR(&pdev->dev,
2155 			      "cannot initial vop dev - err %d\n", ret);
2156 		goto err_disable_pm_runtime;
2157 	}
2158 
2159 	ret = devm_request_irq(dev, vop->irq, vop_isr,
2160 			       IRQF_SHARED, dev_name(dev), vop);
2161 	if (ret)
2162 		goto err_disable_pm_runtime;
2163 
2164 	if (vop->data->feature & VOP_FEATURE_INTERNAL_RGB) {
2165 		vop->rgb = rockchip_rgb_init(dev, &vop->crtc, vop->drm_dev);
2166 		if (IS_ERR(vop->rgb)) {
2167 			ret = PTR_ERR(vop->rgb);
2168 			goto err_disable_pm_runtime;
2169 		}
2170 	}
2171 
2172 	return 0;
2173 
2174 err_disable_pm_runtime:
2175 	pm_runtime_disable(&pdev->dev);
2176 	vop_destroy_crtc(vop);
2177 	return ret;
2178 }
2179 
vop_unbind(struct device *dev, struct device *master, void *data)2180 static void vop_unbind(struct device *dev, struct device *master, void *data)
2181 {
2182 	struct vop *vop = dev_get_drvdata(dev);
2183 
2184 	if (vop->rgb)
2185 		rockchip_rgb_fini(vop->rgb);
2186 
2187 	pm_runtime_disable(dev);
2188 	vop_destroy_crtc(vop);
2189 
2190 	clk_unprepare(vop->aclk);
2191 	clk_unprepare(vop->hclk);
2192 	clk_unprepare(vop->dclk);
2193 }
2194 
2195 const struct component_ops vop_component_ops = {
2196 	.bind = vop_bind,
2197 	.unbind = vop_unbind,
2198 };
2199 EXPORT_SYMBOL_GPL(vop_component_ops);
2200