1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * EFI stub implementation that is shared by arm and arm64 architectures. 4 * This should be #included by the EFI stub implementation files. 5 * 6 * Copyright (C) 2013,2014 Linaro Limited 7 * Roy Franz <roy.franz@linaro.org 8 * Copyright (C) 2013 Red Hat, Inc. 9 * Mark Salter <msalter@redhat.com> 10 */ 11 12#include <linux/efi.h> 13#include <asm/efi.h> 14 15#include "efistub.h" 16 17/* 18 * This is the base address at which to start allocating virtual memory ranges 19 * for UEFI Runtime Services. 20 * 21 * For ARM/ARM64: 22 * This is in the low TTBR0 range so that we can use 23 * any allocation we choose, and eliminate the risk of a conflict after kexec. 24 * The value chosen is the largest non-zero power of 2 suitable for this purpose 25 * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can 26 * be mapped efficiently. 27 * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split, 28 * map everything below 1 GB. (512 MB is a reasonable upper bound for the 29 * entire footprint of the UEFI runtime services memory regions) 30 * 31 * For RISC-V: 32 * There is no specific reason for which, this address (512MB) can't be used 33 * EFI runtime virtual address for RISC-V. It also helps to use EFI runtime 34 * services on both RV32/RV64. Keep the same runtime virtual address for RISC-V 35 * as well to minimize the code churn. 36 */ 37#define EFI_RT_VIRTUAL_BASE SZ_512M 38#define EFI_RT_VIRTUAL_SIZE SZ_512M 39 40#ifdef CONFIG_ARM64 41# define EFI_RT_VIRTUAL_LIMIT DEFAULT_MAP_WINDOW_64 42#elif defined(CONFIG_RISCV) || defined(CONFIG_LOONGARCH) 43# define EFI_RT_VIRTUAL_LIMIT TASK_SIZE_MIN 44#else 45# define EFI_RT_VIRTUAL_LIMIT TASK_SIZE 46#endif 47 48#ifndef EFI_RT_VIRTUAL_OFFSET 49#define EFI_RT_VIRTUAL_OFFSET 0 50#endif 51 52static u64 virtmap_base = EFI_RT_VIRTUAL_BASE; 53static bool flat_va_mapping = !!EFI_RT_VIRTUAL_OFFSET; 54 55const efi_system_table_t *efi_system_table; 56 57static struct screen_info *setup_graphics(void) 58{ 59 efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID; 60 efi_status_t status; 61 unsigned long size; 62 void **gop_handle = NULL; 63 struct screen_info *si = NULL; 64 65 size = 0; 66 status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL, 67 &gop_proto, NULL, &size, gop_handle); 68 if (status == EFI_BUFFER_TOO_SMALL) { 69 si = alloc_screen_info(); 70 if (!si) 71 return NULL; 72 status = efi_setup_gop(si, &gop_proto, size); 73 if (status != EFI_SUCCESS) { 74 free_screen_info(si); 75 return NULL; 76 } 77 } 78 return si; 79} 80 81static void install_memreserve_table(void) 82{ 83 struct linux_efi_memreserve *rsv; 84 efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID; 85 efi_status_t status; 86 87 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv), 88 (void **)&rsv); 89 if (status != EFI_SUCCESS) { 90 efi_err("Failed to allocate memreserve entry!\n"); 91 return; 92 } 93 94 rsv->next = 0; 95 rsv->size = 0; 96 atomic_set(&rsv->count, 0); 97 98 status = efi_bs_call(install_configuration_table, 99 &memreserve_table_guid, rsv); 100 if (status != EFI_SUCCESS) 101 efi_err("Failed to install memreserve config table!\n"); 102} 103 104static u32 get_supported_rt_services(void) 105{ 106 const efi_rt_properties_table_t *rt_prop_table; 107 u32 supported = EFI_RT_SUPPORTED_ALL; 108 109 rt_prop_table = get_efi_config_table(EFI_RT_PROPERTIES_TABLE_GUID); 110 if (rt_prop_table) 111 supported &= rt_prop_table->runtime_services_supported; 112 113 return supported; 114} 115 116/* 117 * EFI entry point for the arm/arm64 EFI stubs. This is the entrypoint 118 * that is described in the PE/COFF header. Most of the code is the same 119 * for both archictectures, with the arch-specific code provided in the 120 * handle_kernel_image() function. 121 */ 122efi_status_t __efiapi efi_pe_entry(efi_handle_t handle, 123 efi_system_table_t *sys_table_arg) 124{ 125 efi_loaded_image_t *image; 126 efi_status_t status; 127 unsigned long image_addr; 128 unsigned long image_size = 0; 129 /* addr/point and size pairs for memory management*/ 130 char *cmdline_ptr = NULL; 131 int cmdline_size = 0; 132 efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID; 133 unsigned long reserve_addr = 0; 134 unsigned long reserve_size = 0; 135 struct screen_info *si; 136 efi_properties_table_t *prop_tbl; 137 unsigned long max_addr; 138 139 efi_system_table = sys_table_arg; 140 141 /* Check if we were booted by the EFI firmware */ 142 if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) { 143 status = EFI_INVALID_PARAMETER; 144 goto fail; 145 } 146 147 status = check_platform_features(); 148 if (status != EFI_SUCCESS) 149 goto fail; 150 151 /* 152 * Get a handle to the loaded image protocol. This is used to get 153 * information about the running image, such as size and the command 154 * line. 155 */ 156 status = efi_system_table->boottime->handle_protocol(handle, 157 &loaded_image_proto, (void *)&image); 158 if (status != EFI_SUCCESS) { 159 efi_err("Failed to get loaded image protocol\n"); 160 goto fail; 161 } 162 163 /* 164 * Get the command line from EFI, using the LOADED_IMAGE 165 * protocol. We are going to copy the command line into the 166 * device tree, so this can be allocated anywhere. 167 */ 168 cmdline_ptr = efi_convert_cmdline(image, &cmdline_size); 169 if (!cmdline_ptr) { 170 efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n"); 171 status = EFI_OUT_OF_RESOURCES; 172 goto fail; 173 } 174 175 if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) || 176 IS_ENABLED(CONFIG_CMDLINE_FORCE) || 177 cmdline_size == 0) { 178 status = efi_parse_options(CONFIG_CMDLINE); 179 if (status != EFI_SUCCESS) { 180 efi_err("Failed to parse options\n"); 181 goto fail_free_cmdline; 182 } 183 } 184 185 if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0) { 186 status = efi_parse_options(cmdline_ptr); 187 if (status != EFI_SUCCESS) { 188 efi_err("Failed to parse options\n"); 189 goto fail_free_cmdline; 190 } 191 } 192 193 efi_info("Booting Linux Kernel...\n"); 194 195 si = setup_graphics(); 196 197 status = handle_kernel_image(&image_addr, &image_size, 198 &reserve_addr, 199 &reserve_size, 200 image); 201 if (status != EFI_SUCCESS) { 202 efi_err("Failed to relocate kernel\n"); 203 goto fail_free_screeninfo; 204 } 205 206 efi_retrieve_tpm2_eventlog(); 207 208 /* Ask the firmware to clear memory on unclean shutdown */ 209 efi_enable_reset_attack_mitigation(); 210 211 if (!efi_noinitrd) { 212 max_addr = efi_get_max_initrd_addr(image_addr); 213 efi_load_initrd(image, ULONG_MAX, efi_get_max_initrd_addr(image_addr), 214 NULL); 215 if (status != EFI_SUCCESS) 216 efi_err("Failed to load initrd!\n"); 217 } 218 219 efi_random_get_seed(); 220 221 /* 222 * If the NX PE data feature is enabled in the properties table, we 223 * should take care not to create a virtual mapping that changes the 224 * relative placement of runtime services code and data regions, as 225 * they may belong to the same PE/COFF executable image in memory. 226 * The easiest way to achieve that is to simply use a 1:1 mapping. 227 */ 228 prop_tbl = get_efi_config_table(EFI_PROPERTIES_TABLE_GUID); 229 flat_va_mapping |= prop_tbl && 230 (prop_tbl->memory_protection_attribute & 231 EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA); 232 233 /* force efi_novamap if SetVirtualAddressMap() is unsupported */ 234 efi_novamap |= !(get_supported_rt_services() & 235 EFI_RT_SUPPORTED_SET_VIRTUAL_ADDRESS_MAP); 236 237 /* hibernation expects the runtime regions to stay in the same place */ 238 if (!IS_ENABLED(CONFIG_HIBERNATION) && !efi_nokaslr && !flat_va_mapping) { 239 /* 240 * Randomize the base of the UEFI runtime services region. 241 * Preserve the 2 MB alignment of the region by taking a 242 * shift of 21 bit positions into account when scaling 243 * the headroom value using a 32-bit random value. 244 */ 245 static const u64 headroom = EFI_RT_VIRTUAL_LIMIT - 246 EFI_RT_VIRTUAL_BASE - 247 EFI_RT_VIRTUAL_SIZE; 248 u32 rnd; 249 250 status = efi_get_random_bytes(sizeof(rnd), (u8 *)&rnd); 251 if (status == EFI_SUCCESS) { 252 virtmap_base = EFI_RT_VIRTUAL_BASE + 253 (((headroom >> 21) * rnd) >> (32 - 21)); 254 } 255 } 256 257 install_memreserve_table(); 258 259 status = efi_boot_kernel(handle, image, image_addr, cmdline_ptr); 260 261 efi_free(image_size, image_addr); 262 efi_free(reserve_size, reserve_addr); 263fail_free_screeninfo: 264 free_screen_info(si); 265fail_free_cmdline: 266 efi_bs_call(free_pool, cmdline_ptr); 267fail: 268 return status; 269} 270 271/* 272 * efi_allocate_virtmap() - create a pool allocation for the virtmap 273 * 274 * Create an allocation that is of sufficient size to hold all the memory 275 * descriptors that will be passed to SetVirtualAddressMap() to inform the 276 * firmware about the virtual mapping that will be used under the OS to call 277 * into the firmware. 278 */ 279efi_status_t efi_alloc_virtmap(efi_memory_desc_t **virtmap, 280 unsigned long *desc_size, u32 *desc_ver) 281{ 282 unsigned long size, mmap_key; 283 efi_status_t status; 284 285 /* 286 * Use the size of the current memory map as an upper bound for the 287 * size of the buffer we need to pass to SetVirtualAddressMap() to 288 * cover all EFI_MEMORY_RUNTIME regions. 289 */ 290 size = 0; 291 status = efi_bs_call(get_memory_map, &size, NULL, &mmap_key, desc_size, 292 desc_ver); 293 if (status != EFI_BUFFER_TOO_SMALL) 294 return EFI_LOAD_ERROR; 295 296 return efi_bs_call(allocate_pool, EFI_LOADER_DATA, size, 297 (void **)virtmap); 298} 299 300/* 301 * efi_get_virtmap() - create a virtual mapping for the EFI memory map 302 * 303 * This function populates the virt_addr fields of all memory region descriptors 304 * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors 305 * are also copied to @runtime_map, and their total count is returned in @count. 306 */ 307void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size, 308 unsigned long desc_size, efi_memory_desc_t *runtime_map, 309 int *count) 310{ 311 u64 efi_virt_base = virtmap_base; 312 efi_memory_desc_t *in, *out = runtime_map; 313 int l; 314 315 *count = 0; 316 317 for (l = 0; l < map_size; l += desc_size) { 318 u64 paddr, size; 319 320 in = (void *)memory_map + l; 321 if (!(in->attribute & EFI_MEMORY_RUNTIME)) 322 continue; 323 324 paddr = in->phys_addr; 325 size = in->num_pages * EFI_PAGE_SIZE; 326 327 in->virt_addr = in->phys_addr + EFI_RT_VIRTUAL_OFFSET; 328 if (efi_novamap) { 329 continue; 330 } 331 332 /* 333 * Make the mapping compatible with 64k pages: this allows 334 * a 4k page size kernel to kexec a 64k page size kernel and 335 * vice versa. 336 */ 337 if (!flat_va_mapping) { 338 339 paddr = round_down(in->phys_addr, SZ_64K); 340 size += in->phys_addr - paddr; 341 342 /* 343 * Avoid wasting memory on PTEs by choosing a virtual 344 * base that is compatible with section mappings if this 345 * region has the appropriate size and physical 346 * alignment. (Sections are 2 MB on 4k granule kernels) 347 */ 348 if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M) 349 efi_virt_base = round_up(efi_virt_base, SZ_2M); 350 else 351 efi_virt_base = round_up(efi_virt_base, SZ_64K); 352 353 in->virt_addr += efi_virt_base - paddr; 354 efi_virt_base += size; 355 } 356 357 memcpy(out, in, desc_size); 358 out = (void *)out + desc_size; 359 ++*count; 360 } 361} 362