1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * EFI stub implementation that is shared by arm and arm64 architectures.
4  * This should be #included by the EFI stub implementation files.
5  *
6  * Copyright (C) 2013,2014 Linaro Limited
7  *     Roy Franz <roy.franz@linaro.org
8  * Copyright (C) 2013 Red Hat, Inc.
9  *     Mark Salter <msalter@redhat.com>
10  */
11 
12 #include <linux/efi.h>
13 #include <asm/efi.h>
14 
15 #include "efistub.h"
16 
17 /*
18  * This is the base address at which to start allocating virtual memory ranges
19  * for UEFI Runtime Services.
20  *
21  * For ARM/ARM64:
22  * This is in the low TTBR0 range so that we can use
23  * any allocation we choose, and eliminate the risk of a conflict after kexec.
24  * The value chosen is the largest non-zero power of 2 suitable for this purpose
25  * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
26  * be mapped efficiently.
27  * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
28  * map everything below 1 GB. (512 MB is a reasonable upper bound for the
29  * entire footprint of the UEFI runtime services memory regions)
30  *
31  * For RISC-V:
32  * There is no specific reason for which, this address (512MB) can't be used
33  * EFI runtime virtual address for RISC-V. It also helps to use EFI runtime
34  * services on both RV32/RV64. Keep the same runtime virtual address for RISC-V
35  * as well to minimize the code churn.
36  */
37 #define EFI_RT_VIRTUAL_BASE	SZ_512M
38 #define EFI_RT_VIRTUAL_SIZE	SZ_512M
39 
40 #ifdef CONFIG_ARM64
41 # define EFI_RT_VIRTUAL_LIMIT	DEFAULT_MAP_WINDOW_64
42 #elif defined(CONFIG_RISCV) || defined(CONFIG_LOONGARCH)
43 # define EFI_RT_VIRTUAL_LIMIT	TASK_SIZE_MIN
44 #else
45 # define EFI_RT_VIRTUAL_LIMIT	TASK_SIZE
46 #endif
47 
48 #ifndef EFI_RT_VIRTUAL_OFFSET
49 #define EFI_RT_VIRTUAL_OFFSET	0
50 #endif
51 
52 static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
53 static bool flat_va_mapping = !!EFI_RT_VIRTUAL_OFFSET;
54 
55 const efi_system_table_t *efi_system_table;
56 
setup_graphics(void)57 static struct screen_info *setup_graphics(void)
58 {
59 	efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
60 	efi_status_t status;
61 	unsigned long size;
62 	void **gop_handle = NULL;
63 	struct screen_info *si = NULL;
64 
65 	size = 0;
66 	status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
67 			     &gop_proto, NULL, &size, gop_handle);
68 	if (status == EFI_BUFFER_TOO_SMALL) {
69 		si = alloc_screen_info();
70 		if (!si)
71 			return NULL;
72 		status = efi_setup_gop(si, &gop_proto, size);
73 		if (status != EFI_SUCCESS) {
74 			free_screen_info(si);
75 			return NULL;
76 		}
77 	}
78 	return si;
79 }
80 
install_memreserve_table(void)81 static void install_memreserve_table(void)
82 {
83 	struct linux_efi_memreserve *rsv;
84 	efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID;
85 	efi_status_t status;
86 
87 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv),
88 			     (void **)&rsv);
89 	if (status != EFI_SUCCESS) {
90 		efi_err("Failed to allocate memreserve entry!\n");
91 		return;
92 	}
93 
94 	rsv->next = 0;
95 	rsv->size = 0;
96 	atomic_set(&rsv->count, 0);
97 
98 	status = efi_bs_call(install_configuration_table,
99 			     &memreserve_table_guid, rsv);
100 	if (status != EFI_SUCCESS)
101 		efi_err("Failed to install memreserve config table!\n");
102 }
103 
get_supported_rt_services(void)104 static u32 get_supported_rt_services(void)
105 {
106 	const efi_rt_properties_table_t *rt_prop_table;
107 	u32 supported = EFI_RT_SUPPORTED_ALL;
108 
109 	rt_prop_table = get_efi_config_table(EFI_RT_PROPERTIES_TABLE_GUID);
110 	if (rt_prop_table)
111 		supported &= rt_prop_table->runtime_services_supported;
112 
113 	return supported;
114 }
115 
116 /*
117  * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint
118  * that is described in the PE/COFF header.  Most of the code is the same
119  * for both archictectures, with the arch-specific code provided in the
120  * handle_kernel_image() function.
121  */
efi_pe_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg)122 efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
123 				   efi_system_table_t *sys_table_arg)
124 {
125 	efi_loaded_image_t *image;
126 	efi_status_t status;
127 	unsigned long image_addr;
128 	unsigned long image_size = 0;
129 	/* addr/point and size pairs for memory management*/
130 	char *cmdline_ptr = NULL;
131 	int cmdline_size = 0;
132 	efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
133 	unsigned long reserve_addr = 0;
134 	unsigned long reserve_size = 0;
135 	struct screen_info *si;
136 	efi_properties_table_t *prop_tbl;
137 	unsigned long max_addr;
138 
139 	efi_system_table = sys_table_arg;
140 
141 	/* Check if we were booted by the EFI firmware */
142 	if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
143 		status = EFI_INVALID_PARAMETER;
144 		goto fail;
145 	}
146 
147 	status = check_platform_features();
148 	if (status != EFI_SUCCESS)
149 		goto fail;
150 
151 	/*
152 	 * Get a handle to the loaded image protocol.  This is used to get
153 	 * information about the running image, such as size and the command
154 	 * line.
155 	 */
156 	status = efi_system_table->boottime->handle_protocol(handle,
157 					&loaded_image_proto, (void *)&image);
158 	if (status != EFI_SUCCESS) {
159 		efi_err("Failed to get loaded image protocol\n");
160 		goto fail;
161 	}
162 
163 	/*
164 	 * Get the command line from EFI, using the LOADED_IMAGE
165 	 * protocol. We are going to copy the command line into the
166 	 * device tree, so this can be allocated anywhere.
167 	 */
168 	cmdline_ptr = efi_convert_cmdline(image, &cmdline_size);
169 	if (!cmdline_ptr) {
170 		efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n");
171 		status = EFI_OUT_OF_RESOURCES;
172 		goto fail;
173 	}
174 
175 	if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
176 	    IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
177 	    cmdline_size == 0) {
178 		status = efi_parse_options(CONFIG_CMDLINE);
179 		if (status != EFI_SUCCESS) {
180 			efi_err("Failed to parse options\n");
181 			goto fail_free_cmdline;
182 		}
183 	}
184 
185 	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0) {
186 		status = efi_parse_options(cmdline_ptr);
187 		if (status != EFI_SUCCESS) {
188 			efi_err("Failed to parse options\n");
189 			goto fail_free_cmdline;
190 		}
191 	}
192 
193 	efi_info("Booting Linux Kernel...\n");
194 
195 	si = setup_graphics();
196 
197 	status = handle_kernel_image(&image_addr, &image_size,
198 				     &reserve_addr,
199 				     &reserve_size,
200 				     image);
201 	if (status != EFI_SUCCESS) {
202 		efi_err("Failed to relocate kernel\n");
203 		goto fail_free_screeninfo;
204 	}
205 
206 	efi_retrieve_tpm2_eventlog();
207 
208 	/* Ask the firmware to clear memory on unclean shutdown */
209 	efi_enable_reset_attack_mitigation();
210 
211 	if (!efi_noinitrd) {
212 		max_addr = efi_get_max_initrd_addr(image_addr);
213 		efi_load_initrd(image, ULONG_MAX, efi_get_max_initrd_addr(image_addr),
214 				NULL);
215 		if (status != EFI_SUCCESS)
216 			efi_err("Failed to load initrd!\n");
217 	}
218 
219 	efi_random_get_seed();
220 
221 	/*
222 	 * If the NX PE data feature is enabled in the properties table, we
223 	 * should take care not to create a virtual mapping that changes the
224 	 * relative placement of runtime services code and data regions, as
225 	 * they may belong to the same PE/COFF executable image in memory.
226 	 * The easiest way to achieve that is to simply use a 1:1 mapping.
227 	 */
228 	prop_tbl = get_efi_config_table(EFI_PROPERTIES_TABLE_GUID);
229 	flat_va_mapping |= prop_tbl &&
230 			   (prop_tbl->memory_protection_attribute &
231 			   EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA);
232 
233 	/* force efi_novamap if SetVirtualAddressMap() is unsupported */
234 	efi_novamap |= !(get_supported_rt_services() &
235 			 EFI_RT_SUPPORTED_SET_VIRTUAL_ADDRESS_MAP);
236 
237 	/* hibernation expects the runtime regions to stay in the same place */
238 	if (!IS_ENABLED(CONFIG_HIBERNATION) && !efi_nokaslr && !flat_va_mapping) {
239 		/*
240 		 * Randomize the base of the UEFI runtime services region.
241 		 * Preserve the 2 MB alignment of the region by taking a
242 		 * shift of 21 bit positions into account when scaling
243 		 * the headroom value using a 32-bit random value.
244 		 */
245 		static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
246 					    EFI_RT_VIRTUAL_BASE -
247 					    EFI_RT_VIRTUAL_SIZE;
248 		u32 rnd;
249 
250 		status = efi_get_random_bytes(sizeof(rnd), (u8 *)&rnd);
251 		if (status == EFI_SUCCESS) {
252 			virtmap_base = EFI_RT_VIRTUAL_BASE +
253 				       (((headroom >> 21) * rnd) >> (32 - 21));
254 		}
255 	}
256 
257 	install_memreserve_table();
258 
259 	status = efi_boot_kernel(handle, image, image_addr, cmdline_ptr);
260 
261 	efi_free(image_size, image_addr);
262 	efi_free(reserve_size, reserve_addr);
263 fail_free_screeninfo:
264 	free_screen_info(si);
265 fail_free_cmdline:
266 	efi_bs_call(free_pool, cmdline_ptr);
267 fail:
268 	return status;
269 }
270 
271 /*
272  * efi_allocate_virtmap() - create a pool allocation for the virtmap
273  *
274  * Create an allocation that is of sufficient size to hold all the memory
275  * descriptors that will be passed to SetVirtualAddressMap() to inform the
276  * firmware about the virtual mapping that will be used under the OS to call
277  * into the firmware.
278  */
efi_alloc_virtmap(efi_memory_desc_t **virtmap, unsigned long *desc_size, u32 *desc_ver)279 efi_status_t efi_alloc_virtmap(efi_memory_desc_t **virtmap,
280 			       unsigned long *desc_size, u32 *desc_ver)
281 {
282 	unsigned long size, mmap_key;
283 	efi_status_t status;
284 
285 	/*
286 	 * Use the size of the current memory map as an upper bound for the
287 	 * size of the buffer we need to pass to SetVirtualAddressMap() to
288 	 * cover all EFI_MEMORY_RUNTIME regions.
289 	 */
290 	size = 0;
291 	status = efi_bs_call(get_memory_map, &size, NULL, &mmap_key, desc_size,
292 			     desc_ver);
293 	if (status != EFI_BUFFER_TOO_SMALL)
294 		return EFI_LOAD_ERROR;
295 
296 	return efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
297 			   (void **)virtmap);
298 }
299 
300 /*
301  * efi_get_virtmap() - create a virtual mapping for the EFI memory map
302  *
303  * This function populates the virt_addr fields of all memory region descriptors
304  * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
305  * are also copied to @runtime_map, and their total count is returned in @count.
306  */
efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size, unsigned long desc_size, efi_memory_desc_t *runtime_map, int *count)307 void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
308 		     unsigned long desc_size, efi_memory_desc_t *runtime_map,
309 		     int *count)
310 {
311 	u64 efi_virt_base = virtmap_base;
312 	efi_memory_desc_t *in, *out = runtime_map;
313 	int l;
314 
315 	*count = 0;
316 
317 	for (l = 0; l < map_size; l += desc_size) {
318 		u64 paddr, size;
319 
320 		in = (void *)memory_map + l;
321 		if (!(in->attribute & EFI_MEMORY_RUNTIME))
322 			continue;
323 
324 		paddr = in->phys_addr;
325 		size = in->num_pages * EFI_PAGE_SIZE;
326 
327 		in->virt_addr = in->phys_addr + EFI_RT_VIRTUAL_OFFSET;
328 		if (efi_novamap) {
329 			continue;
330 		}
331 
332 		/*
333 		 * Make the mapping compatible with 64k pages: this allows
334 		 * a 4k page size kernel to kexec a 64k page size kernel and
335 		 * vice versa.
336 		 */
337 		if (!flat_va_mapping) {
338 
339 			paddr = round_down(in->phys_addr, SZ_64K);
340 			size += in->phys_addr - paddr;
341 
342 			/*
343 			 * Avoid wasting memory on PTEs by choosing a virtual
344 			 * base that is compatible with section mappings if this
345 			 * region has the appropriate size and physical
346 			 * alignment. (Sections are 2 MB on 4k granule kernels)
347 			 */
348 			if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
349 				efi_virt_base = round_up(efi_virt_base, SZ_2M);
350 			else
351 				efi_virt_base = round_up(efi_virt_base, SZ_64K);
352 
353 			in->virt_addr += efi_virt_base - paddr;
354 			efi_virt_base += size;
355 		}
356 
357 		memcpy(out, in, desc_size);
358 		out = (void *)out + desc_size;
359 		++*count;
360 	}
361 }
362